

Visualization of CVS Repository Information

Xinrong Xie, Denys Poshyvanyk, Andrian Marcus*

Department of Computer Science
Wayne State University
Detroit Michigan 48202

{xxr, denys, amarcus}@wayne.edu

Abstract*

Mining software repositories is an important activity
during software evolution, as the extracted data is used
to support a variety of software maintenance tasks. The
key information extracted from these repositories gives a
picture of the changes on the software system. To have a
complete picture, tailored to the needs of the developer,
the extracted data needs to be filtered, aggregated, and
presented to the users.

In this paper we propose a new visualization for such
data, which relies on an existing software visualization
front-end, SourceViewer3D (sv3D). The new
visualization allows users to define multiple views of the
change history data, each view helps answer a set of
questions relevant to specific maintenance tasks. Data
can be viewed at different granularity (e.g., file, line of
text, method, class) and comprehensive views can be
defined, which display to the user multiple data types at
the same time. Complex questions and tasks can be
solved with the aid of such views.

Note: the paper uses many colors. We recommend
reading an electronic (color) version.

1. Introduction

The use of version control systems in software
management is a standard practice nowadays in almost
any software development project. Not only that they
support users to collaborate effectively, the data stored
by these systems on the history of changes has many
uses in the maintenance of software systems.

For instance, a project manager may use information
from the change history to assign new tasks to the most
appropriate developers; a tester may find out who is
responsible for a bug and when it was injected in the
source code; a developer may find out what parts of the
system were changed during the implementation of
certain features; etc. The software repositories keep the
data necessary to formulate answers to all these and other
questions, which directly support a variety of

* Contact author

maintenance tasks, such as impact analysis [2],
improving software design [19], refactoring [5], guiding
software changes and verifying the completeness of a
change [27], detecting logical coupling [10], etc.

Researchers and practitioners devised a variety of
methods to extract and analyze information from
software repositories [13]. The larger the evolving
software systems and their development teams are, the
larger the repositories grow, and the more important the
collected data is. As with any analysis problem of large
data sets, data visualization is often used to show the
users information obtained through mining the software
repositories [1, 3, 4, 6-9, 12, 15, 22, 23, 25, 27].
Individual tools provide visualizations, which help the
user to find the answers to a subset of their questions.

This paper presents a new tool named CVSViewer3D
(cv3D), which extracts, processes, and visualizes
information from CVS repositories. The visualization
component is based on an existing framework,
SourceViewer3D (sv3D) [18], which can generate 2D
and 3D views composed on easy to understand, abstract
geometric metaphors. Using sv3D to visualize CVS
information was suggested before by researchers [10].

Several features set cv3D apart from related work.
The tool allows the user to define views of the data at
different granularity level (e.g., system, file, method,
line); navigation between granularity levels (and views)
is supported. Within each view, various version centric
perspectives can also be used. Finally, taking advantage
of the 3D rendering space and metaphors, different
visualizations can be combined into comprehensive
views, which help the user to answer an extended set of
maintenance related questions.

The new tool is analyzed and compared with the
existing state of the art in the field; usage scenarios and
examples are presented.

2. Related work

A recent survey on the use of visualization to support
awareness of human activities in software development
[20] reviews many of the existing tools that visualize
information extracted from software repositories.

Existing tools use different types of visual metaphors to
represent heterogeneous data. For those tools that will
be used later in the paper for comparison, we provide a
three letter abbreviation in parenthesis, for easier
reference later on.

Seesoft (SEE) [7] is one of the earliest visualization
tools for version control system, which represents source
code through file and pixel maps. Color is used to show
the data extracted from the repository. Other tools were
developed following the Seesoft approach. Augur
(AUG) [8], to name one, visualizes code artifacts by
lines and encodes two additional data elements next to
the line information. It also provides secondary views to
show various cumulative graphs and statistics. CVSscan
(CSS) [22] is another example that uses file maps, where
each version is represented by a column and the
horizontal axis marks the time. It also has a separate
view, which shows various metrics along with the source
code of a system and implements a version centric filter.

Charts and matrixes are also used to display the
evolution of the software. Evolution chart (EVC) [10]
shows a property on the vertical axis and time on the
horizontal axis. This approach is suitable to explore
evolution of one property using one software entity. In
order to view multiple properties and compare evolution
of different entities, classes are arranged using the
Evolution Matrix (EVM) [15]. In the evolution matrix,
each rectangle represents a version of a class and each
line holds all the versions of that class.

Graphs are also used to reveal the hierarchical
evolution of software. For example, Xia/Creole (XIC)
[25] uses hierarchical graph views to display
architectural differences between artifacts of two
versions. In the graph-based views, visual attributes,
such as color and position are mapped to the data
extracted from CVS. Beagle [21] displays every release
of a project in call graph. It also generates additional
static graphs: tree views to show how a given method
evolves and scatter plots to show the structural changes
of a file or group of files. Another visualization tool,
softChange (CHA) [12], is composed of a graphical
component and a hypertext component. The graphical
component provides two types of views: histograms with
statistical information and graphs representing files,
authors, and their inter-relationships. The hypertext
component in softChange allows the user to navigate,
search and inspect source for a given change.

Other 2D representations have also been used to
visualize the change of software and related information:
spectrographs [24], fractal figures (FRF) [4], etc.

Since the historical data extracted from version
control system usually consists of large amount of
information with multiple attributes, some tools use
three-dimensional visualizations. The third dimension is
usually used to express the time dimension. In VRCS
[14], each version of a system within a history is
represented as a 3D tree showing module and file

relationships along the x and y axes, and time on the z
axis. Each major release is represented as a sphere and
links between version nodes show which ones should be
compiled together. Gall [11] proposed a visual
representation for examining a software system’s release
history using color and third dimension. Colors are used
to display module properties and their historical changes
in the system. The historical information is represented
on the third dimension, which stands for time.

Several tools are trying to combine visualization
techniques. For instance, Advisor (ADV) [6] constructs
multiple views, using matrix displays, 2D and 3D bar
charts, pie charts, zoom-able text displays, and graphs to
express the same software change data. Another tool,
JRefleX (JRX) [23], shows analysis results in matrix,
pie, and 2D bar charts, etc.

Some tools are trying to solve special change history
problems with visualization. ROSE (ROS) [27], to name
one, generates a set of suggestions which are based on
history of related changes and sorted in a table by
support count and confidence values, obtained for every
related software entity which is likely to change.
CCVISU (CCV) [1] implements co-change visualization
with a clustering layout.

3. Extracting and representing historical data

The main architectural elements of cv3D are
presented in Figure 1. First, cv3D extracts the data from
a CVS repository. After that, the extracted data is
processed for further analysis. Additional data, statically
extracted from the source code is also added. Once the
data is extracted and preprocessed, the user can request
sv3D to represent the desired information using a set of
predefined views, discussed in the next section. The
user’s query is translated into a set of commands to
extract the necessary data and display it with sv3D.
Finally, once sv3D renders the data, the user can
interactively explore all the details of the visualized
historical information. The user can also define new
views by redefining the default mappings between the
data and the visual attributes of the metaphors in sv3D.

Figure 1. cv3D architectural elements

Once the data is extracted from the CVS repositories,
the pre-processing is a one time operation. The pre-
processed data is stored in an XML file and subsequently
loaded into sv3D.

The data extraction and pre-processing part is
decoupled from the visualization in cv3D, so that we are
able to adapt our parsers and other parsers to the sv3D
framework. In the current version of cv3D, we extract
information from CVS repositories. Extracting data
from other version control systems, like Subversion,
requires implementing additional parsers and adapters
for our data model, which is not a complicated issue.

3.1. Extracting the CVS data

In order to visualize historical data for further
analysis, we extract the data from CVS repository,
formally defined as R, which stores all versions of the
files for a given software system under version control.
A repository R is a set of n unique files:
R = {F1, F2, …Fn}.

In turn, every file Fi has a number of revisions in the
repository, rev(Fi) = {Fi1, Fi2, … Fir}, where r = |rev(Fi)|,
the number of revisions for file Fi.

In order to extract information about the changes
according to every two consecutive revisions of the same
file, cv3D uses the UNIX diff tool, which computes the
difference between Fi,j and Fi,j+1. Then, the result is
parsed to determine the change status (added, deleted,
modified, or constant) for every line in revision Fi+1.

For every revision of the file Fij we obtain the set of
the following tuples:

Fij = <file, j, author, date, LOC_status>, where file is
name of the file Fi, j is the current revision of the file Fi,
author is the name of the author who contributed to
(committed) this revision to the repository, date is time
and date when this revision was committed, and LOC is
the change status for every line in this revision.

In order to extract the CVS comments and associate
those with respective revisions of the file we used cvs log
command, which produces the required mapping
between CVS comments and code:

Fij = <rev_id, cvs_comments> for all i = 1 ... n and j =
1 ... |rev(Fi)|, where n is the number of unique files in the
repository and |rev(Fi)| is the number of unique revisions
of every file.

By associating CVS comments with file revisions, we
get the final tuples:

Fij = <file, j, author, date, LOC_status, CVS_com>,
where CVS_com is the CVS comment associated with
the current revision of this file.

3.2. Data pre-processing for fine-grained entities
and co-changes

By querying the CVS repository it is possible to
obtain information only on files and differences between

revisions of files, as CVS does not provide information
on specific syntactic entities (methods, functions, classes,
etc.) that have been changed. In order to be able to
analyze fine-grained entities we need a different type of
preprocessing (see Figure 1).

Changes made within fine-grained entities like
methods or classes can be determined using a diff-tool
and a light-weight analysis used in this paper
(determining the lines of text where methods start and
end). Using this approach we can determine actual
changes and types of changes (changed, added, deleted,
or constant) in methods and classes in two consecutive
revisions of files. However, this approach depends upon
the quality of the actual diff-tool with intrinsic problem
of the use of diff-tool which does not take renaming or
moves between files into account. Another approach,
which first computes actual locations of entities in the
source code and then compares those entities in two
revisions, is considered to be more precise, but more
complicated to implement [26].

Since CVS does not keep track of which files have
been changed together within the same commit operation
(or group commit operation), we group commit
operations in time in order to analyze files or syntactic
entities that have been changed together. There are two
available approaches in the literature on how to group
related commit operations: fixed time windows and
sliding time windows [26, 27]. For the purpose of
flexibility, we use sliding time windows approach to
group related transactions.

In its current form, cv3D extracts and computes the
following data and measures:
• Developer (author), Change status, Version, Time of

change, Comments;
• #LOC, #methods per class, #revisions, #LOC

changed, Co-change (support, confidence), and
#changes per author.

Some of this data is directly extracted from the
repository, while the measures (in italics) are derived.
This data is then mapped to the sv3D [18] visual
metaphors and their attributes. sv3D provides users with
rich interactions, such as: rotation, scale, and zoom of the
entire space and of individual containers; moving
containers; use of transparency for filtering, etc.

3.3. The sv3D data model

sv3D is a software visualization front end, which
extends the pixel map metaphor in three dimensions. Its
application P is defined as a quadruple P ={V, D, S, M},
where V defines the visual metaphors to be used, D
represents the data resulted from software analysis stored
as a set of files D = {d1, d2,…, dn}, corresponding to a set
of source code files S = {s1, s2,…, sn}. M = {m1, m2,…,
mk} defines the mapping between data and visualization
as a set mi of relations mi = D*S*V.

Table 1. Summary of tools visualizing CVS data across different views, metaphors, and questions they help to answer.
The tool abbreviations are those defined in section 2.

Views Questions Visual Metaphors Tool Mappings and data represented
10 Bar, Data Sheet ADV # of lines changed
10 Chart EVC # of programs added/deleted
10 Matrix JRX Area of bubble – number of changes System

9, 10 Bar CV3 See section 4.1.1
1,2,7,8 Fractal FRF Size - # submissions per author
1,3,4,5,
7,8,10

Graph, Text
Nested Graph XIC Color – author name; LOC in text; Position of node – ordered by

last commit date; CVS comments; Size of node - # of changes
3,7,8 Bar JRX Percentage of bar - # of type of modification

4 Matrix JRX Show the type of change and time in Matrix
6 Table ROS Show the sorted co-change files in table
6 Graph CCV Color – subsystem name, File – filled circles

7,8 Matrix EVM # attributes – width of node; # methods – height of node
4,7,8 DTF DTF color – # of revisions/bugs for period of time

10 Chart CHA Percentage of bar - # of type of modification

File/
Class

1,2,4-8,10 Bar CV3 See section 4.1.2
3,7,8 Bar JRX Percentage of bar - # of type of modification Function/

Method 7,8 Bar CV3 See section 4.1.3

3,4,5,7,8 Text, Tooltip,
Nested Graph XIC Show lines of source code in text; Color – time; Shows CVS

comments and documentation; Size of node - # of changes

3,7,8 PixelMap SEE
AUG Color – author last submitted; Color – age of code

3 PixelMap CSS Color – change status

Line

3,4,5,7,8 Bar CV3 See section 4.1.4

In the current version of sv3D each attribute is linked
to an element of the visualization v ∈ V, by a mapping mi
∈ M. Currently sv3D supports mapping to the following
elements of the visualization, defined in V:
- Poly cylinder – p; Container of poly cylinders – o;
- Poly cylinder position in the container on its ox axis

– px;
- Poly cylinder position in the container on its oy axis

– py;
- Poly cylinder height – z+; Poly cylinder depth – z-;
- Poly cylinder color on oz+ axis – c+;
- Poly cylinder color on oz- axis – c-;
- Poly cylinder shape – σ

Every element in V is a nine-tuple:
v = {p, o, px, py, z+, z-, c+, c-, σ}
Views in sv3D are defined by mapping data elements

from any d to the visual elements and their attributes
from v. A view may have several containers and all
elements from d need not be represented in a view, nor
need all elements of v to be used.

4. Answering questions and defining views

As mentioned before, visualization of CVS data is
important as it helps answering important questions
about the evolution of the software. A representative set
of questions addressed by most existing tools is
summarized in bellow:

1. Who has been working on the artifacts?
2. Which authors work on the same files?

3. What kind of modifications did the author make?
4. When was a modification made?
5. Why was a modification made?
6. What files do frequently change together (co-change)?
7. Which parts of the code are stable?
8. Which parts of the code change frequently?
9. How many authors worked on a release of a system?
10. How many files or lines are added or deleted?

Since software engineering is a highly collaborative
activity, one of the major issues is to “understand the
activities of others, which provide a context for one’s
own activity” [20]. Usually, developers need to know
who else is working on the project and what exactly they
are working on, which files they have been modifying
etc. Questions 1 and 2 are geared towards supporting
understanding the “programmer’s neighborhood” in a
software project.

Questions 3-5 relate to understanding fundamental
components of a software change: when, why and what
exactly has been changed? Every of these questions
require different information about the change. For
example, in order to understand why the change has been
made we may need to analyze the semantics of the
change between consecutive revisions as well as CVS
comments associated with particular change. Answering
the “when” question is rather trivial since every revision
of the file has a time stamp, which is easily extracted.
On the other hand, the “what” question is two-fold, since
we may identify the actual change on different
granularity levels: simple lines of code changed using
diff or fine-grained entities using syntactic (based on an

abstract syntax representation of the source code) or
semantic differencing [16].

One of the important applications of software change
data is using that to detect evolutionary or logical
couplings [10, 27]. One of the applications of
evolutionary coupling is to use historical change data to
predict likely changes or prevent errors or incomplete
changes (question 6).

Another important question for software evolution
activities is to know which software components are
stable (question 7) vs. those that repeatedly need
corrective maintenance because of decay, perfective, or
adaptive maintenance (question 8).

In addition to these issues, users need views to see
software release level details, e.g., the size of changes in
any given release (question 10) [6]. It is often useful to
identify developers who contributed to particular release
of the software (question 9).

The extracted data needs to be grouped into views in
order to answer specific set of questions. For example,
question 9 and 10 ask about the changes in the entire
software system, whereas question 2 refers to specific
files. Questions 7 and 8 can be answered by visualizing
the change frequency information for methods in classes,
while question 3 reveals modifications to every line of
code in the file. Furthermore, some questions may be
addressed using more than one granularity level, e.g.
questions 7 and 8.

4.1. Views

In order to properly address all these questions we
define a set of granularity-based views for the
visualization of CVS data: system level view, file (class)
level view, function (method) level view, and line (LOC)
level view. The lowest level granularity software
element that is visualized defines the abstraction level of
each view. Each view is used for a specific set of
questions, to answer some questions, several views may
be combined.

While defining such views at various granularity
levels is not uncommon in software visualization
problems, the CVS data has an important aspect, not
common in other software visualization tasks: time
dependency. This fact requires us to define version-
centric perspectives for each of the defined views. For
example, users may need to investigate only one revision
at a time, a sequence of revisions (of the same software
elements), or the differences between two versions.

These views are general and they are realized
differently by various existing tools. Most tools support
the representation of the data in one or two views. In
cv3D we are providing the users the possibility of
defining all four types of views and perspectives.

We present how these views are constructed in cv3D
and other tools and which questions are addressed by
these views. We define some of the possible mappings

for each view however; the user is able to select his
preferred mappings as well. Table 1 summarizes this
information.

4.1.1. System level views
System level views represent different releases or

versions of the entire system to overview the evolution of
the software. Although we discuss here only two
questions related to the system views, it is not limited
only to these two.

In cv3D the system views can be realized in several
ways. The simplest mapping to use is by representing a
system release by a poly cylinder. Since we only need to
capture the order of the release, they need not be grouped
in any specific fashion (other than chronological), hence
this can be represented as a set of 2D bars (see Figure 2).
Using system view we may represent the following data -
number of files/classes/methods added or deleted,
number of revisions, number of authors, LOC of
changes. Color and height can be mapped to variety of
data elements or measures.

Figure 2. System level view. The entire system is

represented, with each bar (flattened poly cylinder) showing
one version. Two alternative mappings of the visual

attributes to data are shown.

Figure 2 shows two possibilities of such mappings.
On the left hand side, nine consecutive versions of the K-
Meleon system are represented. Each bar (flattened poly
cylinder) shows one such release. The height of the poly
cylinders (bars in this case) shows the number of lines
added in each version and the color shows how many
authors contributed to that release. The depth (negative
height) of each bar shows the number of lines deleted in
each version (times ten here for scaling purposes). The
color here shows the number of files in that release.

On the right hand side, we show an alternative
mapping that the users can define. The same nine
versions are represented. This time, the height and the
depth show the (same information as above, but) number
of files that are modified with added and deleted lines of
code respectively, and colors show on each dimension
the number of files in each version that were modified,
added or deleted respectively.

System views support all three types of version-
centric perspectives. The example in Figure 2 shows
multiple versions of the system at the same time.

System views are used to address questions 9 and 10.
Question 9 is about the information of every single
version, thus the number of authors could be mapped to
height. On the other hand, Question 10 is about the
difference between two versions, thus the number of
files/classes/methods/LOC added or deleted is mapped to
height. For these answers, different perspectives can be
used (i.e., only one version or two versions to be
compared).

Three other tools (see Table 1) can answer question
10 using system view. ADVIZOR uses bar chart and
data sheet to show how many lines of code is changed in
each version. Evolution chart display the chart of how
many programs is added or deleted of the whole system
during the evolution. And JRefleX uses area of bubbles
to represent the number of changes in each version.

4.1.2. File (class) level views
The bulk of change history information can be

represented using file level views. We also call this view
class view when we display change history data for
classes, rather than files, as cv3D extracts this
information from the source code (not directly available
in the CVS repository).

File views in cv3D use the following sv3D mappings:
container represents a system and a poly cylinder
represents a file/class in the system (see Figure 3). Using
file views we are able to represent the following data –
number of LOC changed, authors of the changes, time,
comments, and co-change (support and confidence).
Once again, different version-centric perspectives can be
defined. Figure 3 aggregates data from all the revisions
of the system we studied.

Figure 3. File level view representing the files that co-

changed with BrowserViewFind.cpp (the red poly cylinder)
in the K-Meleon system. Each poly cylinder shows a file.

The support count values are mapped to height and
confidence values to color.

File (class) views are used to answer questions 1, 2, 4-
8. Question 1 is about showing information of all single
revisions. Author name is mapped to color. Questions 4,
5 are about every revisions of the file. Time and
comments will be shown in text. Question 6 is about
summary results of all revisions. Confidence value is
mapped to color and Support Count is mapped to height
(see Figure 3). Questions 7 and 8 are about summary of
all revisions. LOC/method changed is mapped to height.

Many tools are able to answer a subset of these file
level granularity questions using different visual
metaphors and mappings (see Table 1). However, none
of them can answer all the questions. For example,
Xia/Creole can answer questions 1, 3-5, 7,8 and 10. It
answers question 4 by ordering the position of nodes,
each of which stands for a revision of a file. It may also
answer question 10 using the size of the nodes
representing the number of changes. Another
visualization tool, Fractal Figure, is able to answer
question 1, 2, 7, 8, using fractal figures, whose size
representing the number of submissions per author.
Evolution Matrix, which uses nodes for classes, number
of attributes for width of nodes, and number of methods
for height of nodes, is able to answer question 7 and 8.
CCVISU, a visualization tool for co-change, have filled
circles for files, and color for subsystem name,
displaying a force-directed graph layout, may help to
answer question 6.

4.1.3. Function (method) views
In function (method) level views, the representation in

cv3D is as the following: container represents a file (or
class) and a poly cylinder represents a function (or
method) in the file; data that can be mapped to the
attributes - # lines changed, number of methods added or
deleted, etc (see Figure 4b). Once again, different
version-centric views can be defined. Figure 4b shows
the difference between two versions.

Function views are used to address questions 7 and 8.
Questions 7 and 8 are about summary of all revisions.
LOC/method changed is mapped to height.

Few tools are able to deal with questions at method
level granularity (see Table 1). This is no surprise as
most tools do not add data extracted from the source
code to the one extracted from the CVS repository.
JRefleX can also answer questions 7 and 8 using bar
charts.

4.1.4. Line (LOC) level views
In the cv3D line views, the representation is as the

following: a container represents a file, a poly cylinder
represents a line of text in the file; author name, change
status, revision number, date and comments can be
mapped to the visual attributes (see Figure 4a). In Figure
4a, we can see several versions of the same file from the
system.

Figure 4b. Method view representing the
BrowserView class with its methods. The

#LOC in each method is mapped to color and
the number of changed lines (from version

1.114 to 1.115.) to height.

Figure 4a. Line view with 5 revisions of BrowserViewFind.cpp.
The author is mapped to color and change status is mapped to height

 for each LOC/poly cylinder.

Line views are used for questions 3, 4, 5, 7, 8.
Question 3 is about difference between two revisions.
Change status can be mapped to height, and author is
mapped to color. Questions 4 and 5 are about every
revision of the file. Time and comments will be shown
in the text. Questions 7 and 8 are about difference
between two revisions. Change status is mapped to
color.

Several tools display or visualize lines of code issue
(see Table 1). For instance, Seesoft and Augur represent
lines of code as pixels or lines in file maps, using color
for author name for question 3 and color for the age of
code for questions 7 and 8. CVSScan also visualizes the
difference of lines between two revisions in file maps
using color for change status. Xia/Creole displays text
information for questions 3, 4, 5 and uses nested graph
for questions 7 and 8.

5. Using cv3D in software evolution

In order to show how the cv3D generated views can
be used to solve problems related to software
maintenance, we used cv3D to solve several tasks. We
give here two examples of usage. In the first example
we use cv3D visualization of historical information to
guide software changes, whereas in the second example
we look into using visualization to support more general
activities, which may be useful in a larger number of
maintenance tasks.

In both studies we visualize historical information of
the same open source system, namely K-Meleon
(http://kmeleon.sourceforge.net/), which is a Win32 web
browser, powered by the same Gecko rendering engine
used by the Firebox and Mozilla browsers. The software
consists of about 185 *.h and *.cpp files with 57 classes
and 213 methods. The latest release of K-Meleon 0.9.12
has 34,253 lines of code and 6,940 lines of comments

(not included in the LOC). Overall, the history of the
project is quite rich, consisting of more than 1,000 file
revisions (across all the files in the project). For this
study, we extracted and analyzed the version history of
the K-Meleon project up to the release 0.9.12. Version
numbers of files in the CVS repository are not related to
the Sourceforge release number.

5.1. Visualizing historical information to guide
software changes

Zimmermann et al. [27] proposed an approach to
guide software changes by mining version histories.
This approach allows suggesting and predicting likely
changes as well as preventing errors due to incomplete
changes. For a software entity that the programmer is
currently investigating, the tool (i.e., ROSE), generates a
set of suggestions which are based on the history of
related changes and sorted by support count and
confidence values obtained for every related software
entity which is likely to change [27]. These suggested
entities for further exploration are presented in simple
tables.

In this part of the study we show how sv3D can be
used to enrich the process of guiding software changes
using aforementioned approach with visualization. In
this case, we use visualization to represent the
information about co-changed software entities using file
level granularity. The advantage of using visualization
in this case is that we can represent the related files,
which were co-changed in the past, in the context of the
complete software system (in other words, as the map of
previous co-changes).

In this example we focus on a specific maintenance
problem: fixing a bug in K-Meleon. The bug that we
chose relates to the “Find” feature of the browser which
has a problem with auto-search. The problem with the

current implementation is that “Find” starts to search at
the end of the current selection of the cursor, however,
with auto-search (using “Find Next”) it should start at the
beginning of the page. We decided to choose this bug
for the study since it has been fixed, thus we could use
this information to verify the correctness of our fix.

We identified the place in the source code which
implements the “Find” concept. The concept was found
in the BrowserViewFind.cpp file, which contains the
implementation of the CBrowserView class, which is
responsible for handing the “Find” bar in the browser.
We also located the method OnFindNext, which possibly
needs to be modified in order to fix the bug. However,
after we started to plan how to implement this bug fix,
we also needed to perform impact analysis to see
whether we need to change anything else to complete the
fix. To support impact analysis we visualized historical
information about co-changes of BrowserViewFind.cpp
with other files in K-Meleon software system, using
cv3D (see Figure 3).

In this case we used color and height to represent
confidence and support count values for co-changed files.
By using colors to represent confidence values it is easy
to identify, for example, those files which were changed
only together with BrowserViewFind.cpp. The color
ranges that we use to represent similarities are outlined in
Figure 3. We also represent support count by mapping
frequencies of co-changes of the other files in K_Meleon
with BrowserViewFind.cpp. In addition to the historical
information represented with color and height attributes,
the user can obtain more information about the method
represented in cv3D by clicking on the respective poly-
cylinder. In other words, the user may view the content
of the given file as well as CVS comments listed for all
revisions of the file represented as a poly-cylinder.

The file BrowserViewFind.cpp is represented with red
color 1 in Figure 3. We started exploring the relevant
files by looking to the poly-cylinders with the highest
confidence values which are between [0.9, 1.0]. The file
that catches attention at the very first sight is
nsGenericFactory.cpp (2 in Figure 3), which has support
count of 1 and confidence of 1. After clicking on the
poly-cylinder, we noticed on the information tooltip that
this file has just one revision, in other words it has been
just created along with changing BrowserViewFind.cpp
and does not actually relate to it.

The next obvious candidate is BrowserViewUtils.cpp
(3 in Figure 3), which has a support count of 5 and
confidence of 0.132. Again, after exploring the source
code for this file we concluded that we will not have to
modify this to fix the bug.

Then, we explored two poly-cylinders,
BrowserView.cpp (4 in Figure 3) and BrowserView.h (5
in Figure 3) respectively. The BrowserView.cpp file has
a support count of 6 and confidence of 0.053. It has been
changed 115 times, which is a good indicator of its
importance in the system. After exploring this file we

decided that we need to change several macros in
MESSAGE_MAP. Also, the file BrowserView.h needs
to be changed since we needed to comment out several
handlers for messages from the previous file. By
browsing CVS messages for revision of the
BrowserView files we found a message “small find
related improvements” in revision 23. Inspecting the
difference between revision 22 and 23 revealed that this
was an unsuccessful attempt to fix the bug.

The Resource.h file (6 in Figure 3) has been changed
67 times overall and 4 times together with
BrowserViewFind.cpp. We decided that this file will be
changed as well, since we will need to add several
definitions of constants for the visual elements in “Find”
dialog box.

The next inspected file was BrowserFrameGlue.cpp
(7 in Figure 3). It turned out that we needed to modify
the login in the FocusNextElement method in order to
correctly set focus for “Find” dialog.

Eventually, we explored BrowserFrm.cpp (8 in
Figure 3) and we identified several methods that we need
to change in order to complete the bug fix:
PreTranslateMessage and OnShowFindBar.

Overall, we were able to successfully implement the
bug fix in this case by exploring information about co-
changed files represented in cv3D. We were able to
quickly identify important evolutionary couplings
between files and complete impact analysis for this
change. Among other observations, we noticed that it
would be useful to map additional information to color or
height. For example, we could map to color the most
recently co-changed files to BrowserViewFind.cpp. It
would be helpful in the case when we know that we
recently implemented a similar change and are going to
explore the same classes or files this time as well.

This example shows that visualizing historical data
about co-changes in the source code is useful in a
number of ways. First of all, the user can easily grasp
the overall image on how the files are related depending
on the relative frequency of co-changes with a current
file under investigation. Second, the user can easily
navigate between different levels of abstraction by
simply clicking on the poly-cylinder and looking into the
source code of the necessary revision, differences
between two different revisions, or even obtaining CVS
comments for all the revisions of the chosen file. All this
information is within the reach with few mouse clicks on
the selected poly-cylinders, in the cv3D representation
on the historical information of the software system.
Using cv3D we can display all the instances of this
particular co-change and the user can explore this
information “back in time” by navigating those co-
changes in different file revisions (as in Figure 4a) and
reading specific CVS messages, which may provide
clues on why this specific co-change happened.
Obviously, we can visualize other aspects of

evolutionary changes that may be beneficial for the
developer.

5.2. Studying evolution of a software system with
cv3D

The main target group of cv3D is the maintenance
community, since the maintainers perform different tasks,
which are usually done on the source code which has
been developed some time ago. Software maintainers
usually spend a lot of time for program comprehension
and finding out who is the expert on different parts of the
system. We tailored our approach to support these tasks
of maintainers.

In this example we decided to look closer into the
evolution of the file BrowserViewFind.cpp from the K-
Meleon project and see who did what kind of
modifications (see Figure 4a). In order to effectively
visualize the history of the file we map a container to the
difference between two consecutive revisions of the file
(e.g., container BrowserViewFind.cpp 1.2 shows
revision 1.1 plus the difference which were introduced in
1.2; in turn 1.3 shows revision 1.2, which may have lines
of code propagated from 1.1, plus the difference
introduces in 1.3., and so on). In this view we map
information about author to color and information about
change status of the line of source code to the height.
Since we have only 4 possible combinations for change
status (unmodified, modified, deleted and added) we use
the height of 1, 2, 4 and 8 respectively to represent all
these cases (Figure 4a).

Container 1 (see Figure 4a) shows a very simple
pattern: several poly-cylinders are elevated meaning that
six lines of source code have been added to the very first
revision of this file. By reading the tool-tips associated
with these poly-cylinders we identify the “green” author
of the modifications who is “doozan”, whereas original
version of the file belongs to the “grey” author,
“bynaric”. A similar pattern is observed for the second
container 2. “Doozan” adds mode functionality to the
file and modifies a few existing lines of source code.
Using the cv3D control panel we explore the lines of
source code which have been added to the revision 1.3 of
the files. Additions are simply two new methods
OnShowFindDlg and OnFindMsg and modifications
involve “un-commenting” existing methods. In this case
there are several lines of code (i.e., the green ones with
height of 1) which were introduced by “Doozan” in
revision 1.2, but remain unmodified in the current
revision. The author is the same from revision to
revision for these lines until a new author actually
modifies these lines.

A new author, “ulferikson”, is responsible for
committing new modifications in revision 1.4 (container
3). It is clear that this revision contains only deletions
and modifications of the existing source code.

Container 4 representing revision 1.5 reveals a pattern
of fixing small changes. A new author “boisso”,
represented with the blue color, modifies several lines of
source code and adds one more line. Quick inspection of
the lines shows that all the changes relate to small
memory allocation and data type conversion problems.

The revision that underwent the most serious
modifications is 1.6 represented with container 5. It is
obvious that almost everything has been modified in this
revision, leaving almost no traces of the original authors
of the files.

Overall, this usage example shows how this line level
view can contribute to the understanding of some of the
aspects of the evolution of chosen files. Using this view
it is easy to determine who is the author of modifications
in specific revision and what kind of modifications are
performed in this revision. Using additional tools of
cv3D, like the control panel, it is easy to explore actual
source code and CVS comments of the chosen revision.

Another view that may reveal useful patterns for
consecutive revisions is representing fine-grained
software entities, e.g. classes and methods (see Figure
4b). Using this view we can quickly grasp the picture of
how many methods and how many lines of code have
been modified in those methods as well as how large
those methods are, or other similar information. For
example, in Figure 3 we can easily see that most changes
(the tall poly cylinders) correspond to the smaller
methods (color) with less than 50 LOC. Only one of the
six largest methods (i.e., the red ones), OnDragUrl, was
modified between these two revisions.

The methods which observed to be heavily modified
are NicknameLookup, OnFileOpen, GetUnicodeFromCString,
and ChangeTextSize. There are also some methods with
smaller modifications: OnUrlSelectedInUrlBar,
OnNewUrlEnteredInUrlBar, OnDragUrl, etc.

We can also conclude from this view that the
BrowserView class has only a few methods which have
more than 100 LOC, the majority of the methods have
less than 20 LOC.

6. Conclusions and future work

We introduced a new tool, cv3D that visualizes
information extracted from CVS repositories. Compared
with other tools, cv3D can represent the data in views at
different granularity levels, which may contain various
version-centric perspectives. These views help the user
answer many questions about the CVS data, which in
turn directly support a variety of maintenance tasks.

The visualization component of cv3D is based on an
existing tool, sv3D. As sv3D will evolve, some of its
new features will also be used in cv3D.

Cv3D can be used to define more views, in addition to
the ones mentioned and shown in this paper. We must
investigate and assess these other views as well.

Usability studies [17] and further comparisons with other
tools are planned and needed.

7. Acknowledgements

This research was supported in part by grants from the
National Science Foundation (CCF-0438970) and the
National Institute for Health (NHGRI 1R01HG003491).
Louis Feng, Jonathan Maletic, Andrey Sergeyev, and
Denise Comorski contributed to the development of the
previous versions of sv3D.

8. References
[1] Beyer, D., "Co-Change Visualization", in Proceedings 21st
IEEE International Conference on Software Maintenance
(ICSM'05), Budapest, Hungary, Sept 25-30 2005, pp. 89-92.
[2] Canfora, G. and Cerulo, L., "Impact Analysis by Mining
Software and Change Request Repositories", in Proceedings
11th IEEE International Symposium on Software Metrics
(METRICS'05), September 19-22 2005, pp. 20-29.
[3] D'Ambros, M. and Lanza, M., "Software Bugs and
Evolution: A Visual Approach to Uncover Their Relationships",
in Proceedings 10th European Conference on Software
Maintenance and Reengineering, 2006, pp. 227-236.
[4] D'Ambros, M., Lanza, M., and Gall, H., "Fractal Figures:
Visualizing Development Effort for CVS Entities", in
Proceedings 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT'05),
Budapest, Hungary, 2005, pp. 46-51.
[5] Demeyer, S., Ducasse, S., and Nierstrasz, O., "Finding
Refactorings via Change Metrics", in Proceedings ACM
Conference on Object-Oriented Programming, Systems,
Languages and Application, New York NY, 2000, pp. 166-178.
[6] Eick, S., Graves, T. L., Karr, A. F., Mockus, A., and
Schuster, P., "Visualizing Software Changes", IEEE Trans. on
Software Engineering, 28, 4, 2002, pp. 396 - 412.
[7] Eick, S., Steffen, J. L., and Summer, E. E., "Seesoft - A
Tool For Visualizing Line Oriented Software Statistics", IEEE
Trans. on Soft. Engineering, 18, 11, Nov. 1992, pp. 957-968.
[8] Froehlich, J. and Dourish, P., "Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams", in Proceedings IEEE/ACM International
Conference on Software Engineering (ICSE'04), pp. 387-396.
[9] Gall, H., Jazayeri, M., Klosch, R., and Trausmuth, G.,
"Software Evolution Observation based on Product Release
History", in Proceedings IEEE International Conference on
Software Maintenance (ICSM'97), pp. 160-166.
[10] Gall, H., Jazayeri, M., Krajewski, J., "CVS Release
History Data for Detecting Logical Couplings", Sixth
International Workshop on Principles of Software Evolution
(IWPSE'03), September 1 - 2, 2003 2003, pp. 13 - 23.
[11] Gall, H., Jazayeri, M., Riva, C., "Visualizing Software
Release Histories: The Use of Color and Third Dimension",
IEEE International Conference on Software Maintenance
(ICSM'99), August 30 - September 3, 1999 1999, pp. 99 - 108.
[12] German, D. M., "Mining CVS Repositories, the
softChange Experience", in Proceedings International

Workshop on Mining Software Repositories (MSR'04),
Edinburgh, Scotland, UK, 2004, pp. 17-21.
[13] Hassan, A., Mockus, A., Holt, R. C., and Johnson, P. M.,
"Special Issue on Mining Software Repositories", IEEE
Transactions on Software Engineering, 31, 6, 2005, pp.
[14] Koike, H. and Chu, H. C., "VRCS: Integrating Version
Control and Module Management using Interactive three-
dimensional Graphics", in Proceedings IEEE Symposium on
Visual Languages (VL'97), Capri, Italy, 1997, pp. 170-175.
[15] Lanza, M. and Ducasse, S., "Understanding Software
Evolution using a Combination of Software Visualization and
Software Metrics", in Proceedings Languages et Modeles a
Objets (LMO'02), Lavoisier, Paris, 2002, pp. 135-149.
[16] Maletic, J. I. and Collard, M. L., "Supporting Source Code
Difference Analysis", in Proceedings International Conference
on Software Maintenance, September 11-17 2004, pp. 284-293.
[17] Marcus, A., Comorski, D., and Sergeyev, A., "Supporting
the Evolution of a Software Visualization Tool through
Usability Studies", in Proceedings International Workshop on
Program Comprehension, St. Louis, MO, 2005, pp. 307-316.
[18] Marcus, A., Feng, L., and Maletic, J. I., "3D
Representations for Software Visualization", in Proceedings 1st
ACM Symposium on Software Visualization (SoftVis'03), San
Diego, CA, June 11-13 2003, pp. 27-36.
[19] Mattsson, M. and Bosch, J., "Observations on the
Evolution of an Industrial OO Framework", in Proceedings
IEEE International Conference on Software Maintenance
(ICSM'99), 30 Aug -3 Sept 1999, pp. 139-145.
[20] Storey, M. D., Čubranić, D., and German, D. M., "On the
Use of Visualization to Support Awareness of Human
Activities in Software Development: A Survey and a
Framework", in Proceedings 3rd ACM Symposium on Software
Visualization, St. Louis, Missouri, 2005, pp. 193-202.
[21] Tu, Q. and Godfrey, M. W., "An Integrated Approach for
Studying Architectural Evolution", in Proceedings 10th
International Workshop on Program Comprehension
(IWPC'02), Paris, France, 2002, pp. 127-136.
[22] Voinea, L., Telea, A., and Van Wijk, J. J., "CVSscan:
Visualization of Code Evolution", in Proceedings Symposium
on Software Visualization, St. Louis, MO, 2005, pp. 47-56.
[23] Wong, K., Blanchet, W., Liu, Y., Schofield, C., Stroulia,
E., and Xing, Z., "JRefleX: towards supporting small student
software teams", in Proceedings OOPSLA Workshop on
Eclipse Technology eXchange (EXT'05), 2003, pp. 50-54.
[24] Wu, J., Holt, R. C., and Hassan, A. E., "Exploring
Software Evolution using spectrographs", in Proceedings 11th
Working Conference on Reverse Engineering, 2004, pp. 80-89.
[25] Wu, X., Murray, A., Storey, M.-A., and Lintern, R., "A
Reverse Engineering Approach to Support Software
Maintenance: Version Control Knowledge Extraction", in Proc.
11th Working Conf. on Reverse Engineering, 2004, pp. 90-99.
[26] Zimmermann, T. and Weißgerber, P., "Preprocessing CVS
Data for Fine-grained Analysis", in Proceedings International
Workshop on Mining Software Repositories (MSR 2004),
Edinburgh, Scotland, U.K., 2004, pp. 2-6.
[27] Zimmermann, T., Zeller, A., Weißgerber, P., and Diehl, S.,
"Mining Version Histories to Guide Software Changes", IEEE
Trans. on Soft. Engineering, 31, 6, Jun 2005, pp. 429-445.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

