
Advancing Software Development and Evolution through Multimodal Learning

Yanfu Yan

Xi’an, Shaanxi, China

Bachelor of Engineering, Xiamen University, China, 2016
Master of Science, University of Chinese Academy of Sciences, China, 2019

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

William & Mary
May, 2025

© Copyright by Yanfu Yan 2025

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Yanfu Yan

Approved by the Committee, May 2025

Committee Chair
Denys Poshyvanyk, Professor, Computer Science

William & Mary

Robert Michael Lewis, Associate Professor, Computer Science

William & Mary

Oscar Chaparro, Assistant Professor, Computer Science

William & Mary

Antonio Mastropaolo, Assistant Professor, Computer Science

William & Mary

Kevin Moran, Assistant Professor, Computer Science

University of Central Florida

ABSTRACT

Software systems play a vital role in modern society, supporting everything from
mobile applications to enterprise solutions and critical infrastructure. As these sys-
tems continue to grow in size and complexity, software engineers face increasing
challenges in maintaining their quality, reliability, and maintainability. Core tasks
such as bug triaging, code search, and change impact analysis require a deep and
comprehensive understanding of heterogeneous software artifacts, including source
code, textual documentation, graphical user interfaces (GUIs), and structural de-
pendencies. Traditional learning-based techniques, often limited to a single data
modality, struggle to capture the rich, interconnected context necessary for accu-
rate and scalable analysis in these domains.

This dissertation explores multimodal learning as a promising direction for address-
ing long-standing challenges in software engineering. By integrating multiple com-
plementary data modalities, this research improves automation, accuracy, and ro-
bustness in critical software maintenance tasks. Specifically, it investigates the use
of modern deep learning architectures, such as vision transformers, graph neural
networks, and code-specific language models, in constructing multimodal represen-
tations of software artifacts. Three novel techniques are proposed, each demon-
strating how multimodal integration can significantly improve the effectiveness of
automated software engineering tools.

The first contribution, Janus, is a technique for detecting duplicate video-based bug
reports, which are increasingly prevalent in GUI-centric mobile applications. Janus
combines vision transformer-based scene understanding with sequential frame align-
ment to capture visual, textual, and sequential patterns on GUI screens, enabling
nuanced comparison across video reports. Evaluation on an extended real-world
benchmark demonstrates that Janus outperforms prior work by 9%, supported by
both quantitative metrics and qualitative interpretability through hierarchical GUI
representations.

The second contribution, Athena, addresses the critical task of change impact anal-
ysis. Traditional impact analysis techniques often rely on historical co-change data
or dynamic execution traces, which can be brittle or expensive to collect. Athena
instead introduces a hybrid framework that integrates conceptual coupling, derived
from Transformer-based code embeddings, with structural dependencies encoded in
program dependence graphs. This fusion enables more accurate and fine-grained im-
pact predictions without the need for historical or run-time information. To support
a reliable evaluation, we construct the first large-scale benchmark for impact anal-
ysis based on fine-grained untangled commit data, revealing that Athena achieves
a performance gain of over 10% compared to state-of-the-art baselines.

The third contribution tackles the pressing issue of trustworthiness in deep code
models, particularly in the face of out-of-distribution (OOD) inputs. As software
models are deployed in open-world settings, they are increasingly exposed to in-
puts that differ from their training distribution, potentially leading to unreliable
behavior. To address this, we propose COOD and COOD+, the first multimodal
OOD detection frameworks tailored to code-related tasks. These techniques leverage
contrastive learning and binary rejection mechanisms across both code and natural
language comment modalities to detect anomalous inputs and recover performance
degradation in critical downstream SE tasks such as code search.

Together, these contributions demonstrate the power of multimodal learning to over-
come key limitations of traditional software engineering tools. By capturing the full
complexity of real-world software artifacts, which span code, text, visuals, and struc-
tural dependencies, this research offers a unified and robust foundation for the next
generation of intelligent software development tools. The proposed systems, mod-
els, and benchmarks not only improve automation and scalability, but also pave
the way for more trustworthy, accurate, and context-aware solutions in software
engineering.

TABLE OF CONTENTS

Acknowledgments vi

Dedication vii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Task Focus and Contributions . 4

1.1.1 Detecting Duplicate Video-based Bug Reports through Mul-

timodal GUI Scene Learning 4

1.1.2 Code Change Impact Analysis via Multimodal Coupling . . . 5

1.1.3 Towards More Trustworthy Deep Code Models by Enabling

Multimodal Out-of-Distribution Detection 6

1.2 Organization . 7

1.3 Bibliography Notes . 8

2 Background 9

2.1 Visual Representation Learning . 9

2.2 Optical Character Recognition . 11

2.3 Code Representations Learning . 12

2.3.1 Multimodal Contrastive Learning 13

i

3 Detecting Duplicate Video-based Bug Reports through Multimodal GUI Scene

Learning 14

3.1 Introduction . 15

3.2 Related Work . 18

3.3 The JANUS Duplicate Detector . 18

3.3.1 Problem Formulation and Challenges 19

3.3.2 Janus Overview . 20

3.3.3 Janusvis: Visual Representation of Videos 21

3.3.3.1 Visual Representation of Video Frames 22

3.3.3.2 Visual Representation of Videos 23

3.3.4 Janustxt: Textual Representation of Videos 25

3.3.5 Janusseq: Sequential Similarity of Videos 26

3.3.6 Combining Janus’s Components 27

3.4 Evaluation Methodology . 27

3.4.1 Duplicate Detection Dataset 28

3.4.1.1 Extended Real Bug Dataset 28

3.4.1.2 Duplicate Video Recording 29

3.4.1.3 Duplicate Detection Tasks 30

3.4.2 Baseline Duplicate Detector 31

3.4.3 Metrics and Experimental Settings 31

3.4.3.1 Evaluation Metrics 31

3.4.3.2 Model Configurations 32

3.4.3.3 Model Training . 33

3.5 Evaluation Results . 34

3.5.1 RQ1: Janusvis’s Performance 35

3.5.2 RQ2: Janustxt’s Performance 36

3.5.3 RQ3: Janusseq’s Performance 37

ii

3.5.4 RQ4: Component Combination Performance 38

3.5.5 Qualitative Analysis . 40

3.5.5.1 Example 1: Vision Transformer-based Representa-

tions Capture Subtle GUI patterns 41

3.5.5.2 Example 2: Scene-based Text Detection Improves

Text Localization . 43

3.6 Threats to Validity . 44

3.6.1 Internal and Construct Validity 44

3.6.2 External Validity . 44

3.7 Chapter Summary . 45

4 Code Change Impact Analysis via Multimodal Coupling 46

4.1 Introduction . 47

4.2 Related Work . 50

4.2.1 Impact Analysis Techniques 50

4.2.2 Impact Analysis Benchmarks 53

4.3 ATHENA . 54

4.3.1 Dependence Graph Generator 56

4.3.2 Code Representation Extraction 57

4.3.3 Embedding Propagation . 60

4.3.4 Impact Set Estimation . 62

4.4 Experimental Design . 62

4.4.1 Impact Analysis Benchmark: Alexandria 62

4.4.2 Evaluation Metrics . 66

4.4.3 Baselines . 67

4.4.4 ATHENA Configurations . 67

4.5 Evaluation Results . 68

iii

4.5.1 RQ3: Athena Performance on IA 68

4.5.2 RQ2: The Impact of Call Dependence and Class Member De-

pendence . 70

4.5.3 RQ3: Ablation Study . 71

4.5.4 RQ4: The Performance of Athena and the Baseline on the

Tangled Benchmark Counterpart 73

4.5.5 RQ4: Qualitative Analyses on Impact Analysis Tasks 74

4.6 Threats to Validity . 77

4.6.1 Internal Validity . 77

4.6.2 External Validity . 77

4.7 Chapter Summary . 77

5 Towards More Trustworthy Deep Code Models through Multimodal Out-of-

Distribution Detection 79

5.1 Introduction . 80

5.2 Related Work . 84

5.2.1 OOD Detection in SE . 84

5.2.2 OOD Detection in CV and NLP 85

5.3 Approach . 87

5.3.1 Problem Statement . 87

5.3.2 Overview . 88

5.3.3 Unsupervised COOD . 89

5.3.4 Weakly-Supervised COOD+ 91

5.4 Empirical Evaluation Design . 93

5.4.1 Datasets . 94

5.4.2 OOD Scenarios . 95

5.4.3 Model Configurations . 96

iv

5.4.4 OOD Detection Model Training and Measurement 97

5.4.5 Baselines . 98

5.4.6 Main Task Performance Analysis 99

5.5 Experimental Results . 101

5.5.1 RQ1: Unsupervised COOD Performance 101

5.5.2 RQ2: Weakly-supervised COOD+ Performance 101

5.5.3 RQ3: Weakly-Supervised COOD+ Performance with Differ-

ent Model Components and Encoder Backbone 103

5.5.4 RQ4: Main Task Performance 104

5.6 Discussions . 106

5.6.1 Analysis of the Overconfidence of MSP with Conformal Pre-

diction . 106

5.6.2 OOD Detection with Large Language Models (LLMs). 108

5.6.3 Generalization of COOD/COOD+ to Other Code-related Tasks.108

5.7 Threats to Validity . 109

5.7.1 Construct Validity . 109

5.7.2 Internal Validity . 109

5.7.3 External Validity . 109

5.8 Chapter Summary . 109

6 Conclusion 111

Bibliography 113

Vita 137

v

ACKNOWLEDGMENTS

Above all, I would like to express my deepest appreciation to my advisor, Professor
Denys Poshyvanyk, whose guidance, patience, and unwavering support have been
instrumental throughout this journey. His vast knowledge, insightful feedback, and
commitment to excellence have profoundly shaped my academic growth. I am
especially grateful for his patience in challenging me to think critically, and for the
countless hours he devoted to reviewing my work and offering constructive
suggestions. Beyond his academic mentorship, his kindness and wisdom have been
a constant source of encouragement in my personal life. I consider myself
incredibly fortunate to have had him not only as an outstanding advisor but also
as a role model for my future career. This dissertation would not have been
possible without his invaluable support, and for that, I am deeply grateful.

I would also like to thank my Ph.D. committee members, Professor Robert Michael
Lewis, Professor Oscar Chaparro, Professor Antonio Mastropaolo, and Professor
Kevin Moran, for their valuable time, thoughtful feedback, and encouragement.
Their insights have been essential in shaping the final version of this work.

My sincere thanks also go to my collaborators, Professor Kevin Moran, Professor
Oscar Chaparro, Professor Gabriele Bavota, and many others. I am truly grateful
for the opportunity to work with such exceptional researchers and for the guidance
and ideas they have shared with me along the way.

Finally, I would like to thank my family and friends for their constant support and
encouragement throughout this journey.

vi

To my beloved mom and dad —
Your unwavering love, sacrifices, and guidance have shaped every step of my

journey. Thank you for instilling in me the values of perseverance, optimistic, and
compassion. This work is a reflection of your enduring support, and I dedicate it

to you with all my heart.

vii

LIST OF TABLES

3.1 The network configurations and fine-tuning hyperparameters for Janusvis

compared with SimCLR used by Tango 33

3.2 Performance of the individual components of Janus and the baseline

Tango . 35

3.3 Performance of different component combinations for Janus and the

baseline Tango . 38

4.1 Dataset statistics of our evaluation benchmark 65
4.2 Effectiveness of baseline models and Athena with different components 68

4.3 Ablation Study of Athena on mRR and mAP 71

4.4 The results of LSI and Athena on the filtered Alexandria and its

tangled counterpart. 73

4.5 Effectiveness of Athena and the baseline (LSI) on each software system 74

5.1 Dataset statistics for weakly-supervised COOD+. 97

5.2 Effectiveness of our COOD and COOD+ models compared with the

baselines on the CSN-Python dataset. 100

5.3 Effectiveness of our COOD and COOD+ models compared with the

baselines on the CSN-Java dataset. 100

5.4 Our COOD+ model with different encoders. 103

5.5 Code search performance under the impact of OOD detection. Higher

numbers represent better performance 105

5.6 Effectiveness of COOD+ compared to selected methods for overcom-

ing overconfident OOD predictions. 107

viii

LIST OF FIGURES

2.1 The Vision Transformer (ViT) Architecture. 10

3.1 Overview of the Janus duplicate detector. 20

3.2 Visualization of ResNet-50 and ViT on keyframes of video-based bug reports 42

3.3 Bounding boxes localized by EAST and the Tesseract OCR library on

keyframes of video-based bug reports 43

4.1 Overview of the Workflow of the Athena Impact Analysis Approach . 55

4.2 Two qualitative examples for illustrating the effectiveness of Athena. . . 76

5.1 The Overview of Our Proposed COOD and COOD+ Approaches for

OOD Detection . 88

ix

Chapter 1

Introduction

Software systems are essential to modern life, driving innovation and efficiency in areas

ranging from mobile applications to enterprise solutions and critical infrastructure. How-

ever, as these systems grow in scale, functionality, and complexity, developers face increas-

ing challenges to maintain their quality and reliability. Tasks such as understanding the

cascade impacts of code changes, managing extensive repositories of diverse artifacts, and

diagnosing complex issues require substantial effort and expertise. To address these chal-

lenges, researchers and practitioners have increasingly turned to advanced learning-based

techniques to automate and optimize various stages of software development. Traditional

approaches based on machine learning, which often rely on single data modalities [22,215],

have proven useful but often fail to capture the global context required for sophisticated

software engineering tasks. In fact, these tasks often span multiple modalities, requiring an

integrated understanding of various forms of data. For example, a screenshot of the mobile

app contains both visual demonstrations and textual information about the components,

requiring tools capable of simultaneously processing and understanding both.

Software engineering is inherently multimodal, encompassing diverse artifacts that

contribute to the development and maintenance of software systems. The key modalities

include textual data, source code, visual data, and structural information, each offering

distinct insights. Textual artifacts, such as bug reports, commit messages, and documenta-

1

tion, are ubiquitous in software engineering, providing context and descriptions of system

behavior. The source code, a distinct modality, combines syntax, semantics, and structural

relationships. Effectively representing and understanding code requires techniques that

capture its meaning, structure, and context. The rise of graphical user interfaces (GUIs)

has introduced visual artifacts such as screenshots [211], video-based bug reports [55],

etc., which often depict the visual behavior of software systems, providing insights that

textual descriptions alone cannot convey. Structural information, characterized by de-

pendencies and relationships between modules of software systems, plays a critical role

in understanding interconnectivity. Represented through methods like data flow graphs

and control flow graphs, structural data provide a global view of software module inter-

actions. Together, these modalities enable for more comprehensive analysis and informed

decision making in software development. Using their complementary strengths, multi-

modal learning produces richer representations of software artifacts, improving prediction

accuracy and automation.

Despite its significant potential, multimodal learning in software engineering faces sev-

eral challenges. The heterogeneity of the modalities is a primary concern, as each has

distinct characteristics that require specialized processing techniques. Textual data are

typically sequential, visual data are based on spatial relationships, and structural data

is graph-based, necessitating tailored approaches for effective integration. Aligning in-

formation across modalities presents another complexity; for example, correlating local

code semantics with global structural dependencies demands a nuanced understanding

of how semantic and structural information interact. Scalability further complicates the

application of multimodal learning, as software systems often involve large-scale data, in-

cluding large volumes of code, numerous bug reports, and complex dependency graphs.

Multimodal models must process this data efficiently without compromising performance.

Lastly, software engineering tasks frequently require domain-specific expertise, such as

proficiency in programming languages, knowledge of software design principles, and un-

derstanding of bug manifestation patterns. Integrating this expertise into multimodal

2

frameworks is crucial to ensuring their effectiveness in real-world scenarios.

Recent advances in deep learning have accelerated the adoption of multimodal ap-

proaches in software engineering. Transformer-based models such as CodeBERT [72] and

GraphCodeBERT [81] have achieved strong performance by modeling data from both nat-

ural language (NL) and programming language (PL). For structural data, graph neural

networks (GNNs) [84] are widely used to process program dependence graphs, enabling the

integration of global structural information into localized representations. Meanwhile, vi-

sion transformers (ViTs) [62] have proven to be highly effective for processing visual data,

such as screenshots and GUI components, capturing critical layout patterns for tasks such

as GUI comprehension. These advances have collectively improved the ability to represent

and integrate multimodal information, paving the way for more sophisticated solutions in

software engineering.

This dissertation explores how multimodal learning can improve essential software en-

gineering tasks, such as bug triaging and impact analysis. These tasks are chosen for

their relevance and complexity as they represent core challenges in maintaining modern

software systems. Bug triaging involves efficiently identifying, categorizing, and address-

ing software defects, while impact analysis predicts the cascading effects of code changes

across a software system. Despite their importance, these tasks remain labor intensive,

time consuming, and error-prone, particularly as software systems evolve. Addressing

these challenges requires innovative approaches that integrate advanced computational

techniques into software engineering workflows. To this end, this dissertation proposes

several novel techniques, such as Janus and Athena, which exemplify how the combina-

tion of various data modalities can significantly improve automation and effectiveness in

software development.

Specifically, Janus is designed to address the growing challenge of managing video-

based bug reports, which are increasingly used to document issues in mobile and GUI-

based applications. By combining visual representation learning, information retrieval

and sequence-based algorithms, Janus analyzes the visual, textual, and sequential in-

3

formation present in video-based bug reports, improving the detection of duplicate bug

reports. Athena, on the other hand, focuses on impact analysis (IA), enhancing tradi-

tional IA techniques by integrating conceptual coupling, derived from transformer-based

neural models, with structural dependencies extracted from program dependence graphs.

This hybrid approach enables more accurate and scalable impact predictions without re-

lying on historical commits or execution traces.

Beyond improving performance on these core tasks, this dissertation addresses a broader

concern in modern ML-driven SE: the trustworthiness of deep code models. Specifically,

we examine the problem of out-of-distribution (OOD) detection, which is essential in

open-world settings where models encounter data that deviates from their training distri-

bution. Failing to recognize such input can lead to unreliable or erroneous predictions.

Motivated by the gaps in current SE research on OOD detection, we introduce COOD

and COOD+, the first multimodal OOD detection frameworks tailored for code-related

tasks. These techniques enhance the robustness of a key downstream task, namely code

search, by accurately identifying and managing OOD inputs.

In general, this dissertation contributes novel methods, systems, and evaluation bench-

marks that advance the field of multimodal learning in software engineering. By integrat-

ing heterogeneous sources of information, including text, code, visuals, and structural

relationships, these contributions demonstrate how SE tools can become more intelligent,

trustworthy, and more aligned with the complexities of real-world software development.

1.1 Task Focus and Contributions

1.1.1 Detecting Duplicate Video-based Bug Reports through Multimodal

GUI Scene Learning

Video-based bug reports have become a promising alternative to text-based reports for

programs centered around a graphical user interface (GUI), as they allow for seamless

documentation of software faults by visually capturing buggy behavior on app screens.

4

However, developing automated techniques to manage video-based reports is challenging,

as it requires identifying and understanding often nuanced visual patterns that capture

key information about a reported bug.

To this end, we propose a new approach Janus, which adapts the scene learning capa-

bilities of vision transformers to capture subtle visual and textual patterns that manifest

on GUI screens of the application - which is key to differentiate between similar screens for

accurate duplicate detection. Our approach also makes use of a video alignment technique

capable of adaptive weighting of video frames to account for sequential bug manifestation

patterns. We created a comprehensive benchmark for evaluation (the largest benchmark

to date) by drastically extending a prior dataset with real bugs as opposed to injected

bugs from prior work. The evaluation results demonstrate that our approach outperforms

previous work by 9%, with statistical significance. Additionally, we qualitatively illus-

trate how the improved performance Janus’s benefits from its scene-learning capabilities

through interpretable hierarchical GUI representations.

1.1.2 Code Change Impact Analysis via Multimodal Coupling

Impact analysis (IA) is a critical software maintenance task that identifies the effects of

a given set of code changes on a larger software project with the intention of avoiding

potential adverse effects. IA is a cognitively challenging task that involves reasoning

about the abstract relationships between various code constructs. Given its difficulty,

researchers have worked to automate IA with approaches that primarily use coupling

metrics as a measure of “connectedness” of different parts of a software project. Many of

these coupling metrics rely on static, dynamic, or evolutionary information and are based

on heuristics that tend to be brittle, require expensive execution analysis, or large histories

of co-changes to accurately estimate impact sets.

To address these challenges, we introduce Athena, a novel approach that first com-

bines graph information from the (structural) dependence of a software system with a

conceptual coupling approach that uses advances in deep representation learning for code

5

without the need for change histories and execution information. The code embeddings

are augmented through a graph-based propagation strategy to integrate global dependence

information into local code semantics. Prior benchmarks are small and suffer from tangled

commits, making it difficult to measure accurate results. Therefore, we built the first large-

scale impact analysis benchmark based on fine-grained commit information from bug fixes.

On this more reliable benchmark, Athena shows a significant improvement of 10% over

the baselines. In collaboration with Cisco Systems [1], this work has revitalized research

on impact analysis, a fundamental SE task that has been largely overlooked since 2018.

1.1.3 Towards More Trustworthy Deep Code Models by Enabling Mul-

timodal Out-of-Distribution Detection

When developers utilize state-of-the-art deep code models for various understanding and

generation tasks (e.g., code search, conceptual coupling used in our Athena approach),

it is crucial to ensure that the predictions produced by these models are trustworthy.

However, these models are typically developed under the assumption that training and

testing data come from the same distribution, which is often violated in the open world

since deployed models may frequently encounter OOD instances (OODs) that are not

seen in the training. Hence, when confronted with OODs, a reliable and trustworthy code

model must be capable of detecting them to either abstain from making predictions or

potentially forward these OODs to appropriate models handling other distributions or

tasks. Although OOD detection has been studied in the machine learning field, it has not

yet been explored in the SE context for code-related tasks.

Pre-trained natural language Transformers have been shown to be vulnerable to OODs,

so we hypothesize that pre-trained Transformer-based code models are similarly suscep-

tible. To verify this, we systematically investigate the ability of pre-trained code models

to detect OODs and the impact of OOD detection on a downstream code task (i.e., code

search). Our findings reveal that the performance of a code search model drops by around

5% due to the presence of OODs. Therefore, we developed the first multi-modal (i.e., com-

6

ment and code) OOD detection framework for pre-trained code models using contrastive

learning in both unsupervised (COOD) and weakly-supervised settings (COOD+) [7].

As distribution shifts can occur in either modality (comment or code) or both, COOD+

integrates an improved contrastive learning module with a binary OOD rejections mod-

ule and devises a new scoring metric to fuse their prediction results. For evaluation, we

constructed the first OOD benchmark tailored for the code context with multiple (four)

scenarios. Extensive experimental results demonstrate the effectiveness of our COOD and

the integration of two modules in COOD+ for detecting OODs from different scenarios in

two modalities. More importantly, the performance loss of the code search model caused

by the presence of OODs is recovered by utilizing our COOD/COOD+ detector.

1.2 Organization

The remainder of this dissertation is organized as follows. Chapter 2 reviews the back-

ground relevant to this work, focusing on existing learning-based techniques for deriving

representations of software artifacts to support key tasks such as bug triaging and change

impact analysis. Chapter 3 presents the design and implementation of Janus, a system to

detect duplicate video-based bug reports in GUI-intensive mobile applications. It describes

how Janus leverages vision transformers and adaptive video alignment to model multi-

modal patterns, and reports the evaluation results on an extended benchmark. Chapter 4

introduces Athena, a novel framework for the analysis of change impact that integrates

deep code representation learning with structural dependency information to predict the

cascading effects of code changes. This chapter also details the creation of a new large-scale

benchmark and demonstrates Athena’s improvements over state-of-the-art approaches.

Chapter 5 turns to the challenge of ensuring the reliability of deep-code models in real-

world software engineering environments. It presents COOD and COOD+, the first mul-

timodal out-of-distribution (OOD) detection frameworks designed for code-related tasks.

These systems integrate contrastive learning and binary OOD rejection across code and

7

natural language modalities to identify anomalous inputs and improve the robustness of

downstream tasks in open-world settings. Finally, Chapter 6 concludes the dissertation by

summarizing the key contributions of this work and reaffirming the value of multimodal

learning in enabling more intelligent, trustworthy, and scalable software analysis tools.

1.3 Bibliography Notes

This proposal is based on the author’s previously published work, and permission has been

obtained from the publishers and all co-authors to reprint sections of it:

• Y. Yan, V. Duong, H. Shao, and D. Poshyvanyk, “Towards More Trustworthy

Deep Code Models by Enabling Out-of-Distribution Detection,” in Proceedings of

the IEEE/ACM 47th International Conference on Software Engineering (ICSE),

2025, 13 pages.

• Y. Yan, N. Cooper, K. Moran, G. Bavota, D. Poshyvanyk, and S. Rich, “Enhancing

Code Understanding for Impact Analysis by Combining Transformers and Program

Dependence Graphs,” in Proceedings of the ACM International Conference on the

Foundations of Software Engineering (FSE), 2024, 24 pages.

• Y. Yan, N. Cooper, O. Chaparro, K. Moran, and D. Poshyvanyk, “Semantic GUI

Scene Learning and Video Alignment for Detecting Duplicate Video-based Bug Re-

ports,” in Proceedings of the IEEE/ACM 46th International Conference on Software

Engineering (ICSE), 2024, 13 pages.

• Y. Yan, “On Improving Management of Duplicate Video-based Bug Reports,” in

Proceedings of the IEEE/ACM 46th International Conference on Software Engineer-

ing: Companion Proceedings (ICSE-Companion), 2024, 3 pages.

• A. Chen, Y. Yan, and D. Poshyvanyk, “ACER: An AST-based Call Graph Genera-

tor Framework,” in Proceedings of the IEEE 23rd International Working Conference

on Source Code Analysis and Manipulation (SCAM), 2023, 6 pages.

8

Chapter 2

Background

This chapter provides the necessary background for understanding the learning-based tech-

niques central to the dissertation proposal. We begin by discussing methods for visual rep-

resentation learning, highlighting both convolutional and Transformer-based approaches.

Next, we examine optical character recognition (OCR) techniques used to extract textual

information from GUI screens. Finally, we explore advances in code representation learn-

ing, focusing on both traditional and deep learning-based methods that enable semantic

understanding of software artifacts.

2.1 Visual Representation Learning

CNN-based Techniques. Visual Representation learning has become a popular field in

the Computer Vision domain [131]. The purpose of this research area is to learn high-

quality visual representations that are helpful for downstream tasks such as image clas-

sification [135], object detection [250], or image captioning [101]. Generally, this visual

representation task is performed unsupervised, self-supervised, or supervised [50, 176].

Most recently, a focus has been on contrastive methods [50, 176] and distillation meth-

ods [42]. While there has been a wealth of work on visual representation learning, it is

important to understand the techniques employed by past work on duplicate detection for

9

video-based bug reports. The most closely related work to Janus is the Tango approach

introduced by Cooper et al. [55], where the authors used a self-supervised contrastive

method called SimCLR [50]. This technique uses data augmentation to generate different

views of a given image by training a Siamese network based on the temperature-scaled

cross entropy loss in order to learn representations that are invariant to image changes.

However, there are notable downsides of this approach including: (i) the need for large

collections of negative examples to facilitate the contrastive loss function, and (ii) limita-

tions related to the traditional Convolutional Neural Networks (ConvNets), upon which

SimCLR is built, which can have difficulty in distilling subtle visual patterns from the

learned representation that are essential for video de-duplication.

Li
ne

ar
 P

ro
je

ct
io

n
of

 P
at

ch
es

*

Transformer
Encoder

Video
Keyframe

Video
Patches

0

1

2

3

4

5

6

7

MLP
Head

Class
Prediction

Transformer

Images
Patches

Norm

Multi-Head
Aention

+

Norm

MLP

+

Image Position Encoding

Figure 2.1: The Vision Transformer (ViT) Architecture.

Transformer-based Techniques Recent advancements in deep learning from visual

data have, similar to other fields such as natural language processing, embraced the Trans-

former architecture [62] to learn visual representations. A popular recent approach, called

DINO [42], is capable of learning explicit information about the semantic segmentation

10

of an image (i.e., object boundaries), which is likely a direct consequence of adopting the

Vision Transformer (ViT) architecture [62] and a self-supervised learning procedure. We

posit that learning object segmentation within an image will be particularly useful for

images of app GUIs, given their structured, component-based nature. An overview of the

ViT architecture is shown in Figure 2.1. As illustrated, it is made up of a standard Trans-

former encoder model [60] but instead of lexical tokens, “patches” of the images are fed

into the network. These image patches are treated the same way that tokens are treated

in lexical transformers: they are linearly transformed and have added positional embed-

dings. Given that image-level supervision requires laborious annotations and limits the

information that can be learned during training to a single concept with a few categories

of objects, Caron et al. [42] proposed a self-supervised training methodology for DINO,

which utilizes a student-teacher knowledge distillation training scheme [100].

2.2 Optical Character Recognition

Optical Character Recognition (OCR) is the process of converting images of typed, printed,

or handwritten text into machine-encoded text through text localization and recognition.

Text localization identifies textual regions, i.e., it distinguishes text from the background

by using object detection models that are capable of localizing text bounding boxes at

the word or text line level. The content in these regions is then recognized and converted

into natural language tokens based on an encoder-decoder architecture [198]. Historically,

OCR techniques have combined learning-based techniques with a number of heuristics to

aid in pruning false positives or merging neighboring image regions, making technique

pipelines quite complicated [196]. In prior work on Tango, the authors used the popular

Tesseract OCR [2] library, which segments components of the screen likely to contain text

by generating binary maps of the images to first obtain image regions and then uses the

long short term memory (LSTM) [78] model to recognize text on them.

11

2.3 Code Representations Learning

To generate vectorized code representations, information retrieval (IR) approaches (e.g.,

LSI, term frequency - reverse document frequency (TF-IDF), latent dirichlet allocation

(LDA)) were first used to support SE tasks. They typically require building a corpus from

all documents (code artifacts) and then representing code by measuring the importance

of each code token to a document in the corpus and/or exploiting co-occurrences of code

tokens based on singular value decomposition (SVD) or Bayesian topic modeling. However,

these IR approaches treat the code as bag-of-words, ignoring the order and semantics of

code tokens. Thus, neural networks have been used to obtain more meaningful code

representations. For example, word2vec [163] takes into account each individual token

and its context tokens by using a sliding context window during training. Furthermore,

doc2vec [138] could learn a paragraph vector for variable length code, instead of using an

average representation of code tokens as word2vec does. Subsequently, more and more

end-to-end deep models (e.g., Bi-RNN [52], TextCNN [125], Self-Attention [209]) have

been used to extract code embeddings.

Representation learning refers to the process of learning a parametric mapping from

raw input data to a low-dimensional latent space with the goal of extracting more ab-

stract and useful features that enhance performance across various downstream tasks. In

recent years, self-supervised representation learning has gained significant traction in the

machine learning community, largely due to the success of large pretrained models. The

pretraining-then-finetuning paradigm [31, 60, 177, 237] has proven particularly effective in

natural language processing (NLP), where models are first pretrained on massive text

corpora in a self-supervised manner to learn general-purpose representations, and then

fine-tuned on task-specific datasets. The Transformer [209] architecture stands out as the

most representative encoder backbone for this scheme. With the advent of large-scale

code datasets (i.e., CodeSearchNet [107]), this scheme has also been increasingly applied

to learn code representations and auto-build software engineering tasks [17, 80, 216, 218].

12

CodeBERT [72] was one of the first transformer-based pre-trained models to support var-

ious code-related tasks. It distinguishes between the programming language (PL) and the

natural language (NL) modality and captures their semantic connection during pretrain-

ing. However, it only utilizes the sequential information of the bi-modal data while ignor-

ing the inherent structure of code. Therefore, GraphCodeBERT [81] further incorporates

data flow information within methods into sequenced code snippets during pre-training,

resulting in enhanced code embeddings. Other pretrained models like UniXcoder [80] that

encode abstract syntax tree (AST) information to produce syntax-aware code embeddings.

2.3.1 Multimodal Contrastive Learning

Contrastive learning [85] is an emerging technique that learns discriminative representa-

tions from data organized into similar / dissimilar pairs. It has been developed over mul-

tiple subfields, such as computer vision (CV), NLP, [50, 122], and SE [80, 108]. Recently,

researchers have developed multimodal approaches that combine contrastive learning with

multiple data modalities, achieving superior performance over unimodal models in various

tasks [150, 176]. Due to the prowess of contrastive learning in discriminative tasks (e.g.,

classification and information retrieval), it naturally fits the OOD detection domain, as

shown by studies on unimodal and multimodal data [67,165,175]. Inspired by this, we ap-

plied contrastive learning to NL-PL data to learn representative and discriminate features

to train our OOD detector.

13

Chapter 3

Detecting Duplicate Video-based

Bug Reports through Multimodal

GUI Scene Learning

Video-based bug reports are increasingly being used to document bugs for programs cen-

tered on a graphical user interface (GUI). However, developing automated techniques to

manage video-based reports is challenging, as it requires identifying and understanding

often nuanced visual patterns that capture key information about a reported bug. In this

project, our goal is to overcome these challenges by advancing the bug report management

task of duplicate detection for video-based reports. To this end, we introduce a new ap-

proach, called Janus, which adapts the scene-learning capabilities of vision transformers

to capture subtle visual and textual patterns that manifest on the application UI screens

– which is key to differentiate between similar screens for accurate detection of duplicate

reports. Janus also makes use of a video alignment technique capable of adaptive weight-

ing of video frames to account for typical bug manifestation patterns. In a comprehensive

evaluation on a benchmark containing 7,290 duplicate detection tasks derived from 270

video-based bug reports from 90 Android app bugs, the best configuration of our approach

14

achieves an overall mRR/mAP of 89.8%/84.7%, and for the large majority of duplicate

detection tasks, outperforms prior work by ≈9% to a statistically significant degree. Fi-

nally, we qualitatively illustrate how the scene learning capabilities provided by Janus

benefit its performance.

3.1 Introduction

Video-based bug reports are becoming increasingly popular for mobile applications [48,

70, 71, 137]. As mobile app bugs are typically manifested visually via the graphical user

interface (GUI), recording videos depicting bugs is more natural compared to textual bug

reports [43, 48, 69, 71, 197]. App users can easily record app bugs through the recording

features of mobile operating systems (e.g., Android [6]) or through third-party recording

apps [5]. In addition, popular issue trackers, such as GitHub [11], offer easy-to-use features

for users to submit these videos to app developers. Recent studies have documented the

rapidly increasing use of videos in mobile app issue trackers [70,137]. Feng et al. studied

open source apps hosted on FDroid [9] and reported the usage of more than 13k video

recordings on issue trackers between 2012 and 2020, with a significant increase in usage

during 2018-2020 (i.e., a 15% - 35% increase). Kuramoto et al. [137] reported a 13%

increase in videos-containing issues in 2017-2021 for 289k popular GitHub projects.

Although video-based bug reporting offers various advantages (easiness of recording

and submission, and visual details about app bugs [48, 55, 70, 71, 137]), it also presents

several challenges for developers during bug report management tasks, particularly in

scenarios where a high volume of bug reports is encountered [48,70,71,137].

One of the most challenging tasks for developers is determining whether video-based

bug reports depict the same app bug. This situation arises when multiple users inde-

pendently report identical problems with the application (e.g., during crowd-sourced app

testing [55, 63, 88, 148]). In such scenarios, developers face the challenge of watching, un-

derstanding and assessing incoming and previously submitted video-based bug reports.

15

This task can be extremely challenging, as these recordings typically show numerous steps

executed quickly, making it difficult to recognize the bug-reproduction scenario from the

videos [48,55,71]. Additionally, the behavior of buggy apps may not be apparent in videos

of the various types of bugs that apps can show on their GUI [66]. Developers often need

to pause and replay the videos multiple times in order to fully understand the reported

problems [48, 71]. The task of detecting duplicate (video-based) bug reports is crucial

during the bug triage process, as it helps developers avoid excessive redundant effort to

investigate and resolve identical problems [55,63,88,211].

This challenge is particularly prominent in the crowd-sourced testing of mobile apps [63,

88], wherein software vendors engage a large distributed user base to test applications in

various operational environments, for example, encompassing various devices, locations

and mobile networks. Crowd-sourced app testing often leads to multiple users encounter-

ing and reporting the same app-related issues. In fact, previous research has found that

a substantial proportion (80%+) of bug reports submitted by users during crowd-sourced

app testing are duplicates [211]. Consequently, developers often spend considerable effort

on duplicate detection, which can impede the overall bug resolution process [55,63,88,211].

This dissertation proposes Janus, a novel automated approach designed to assist devel-

opers in identifying duplicate video-based bug reports. Janus combines visual represen-

tation learning, information retrieval, and sequence-based algorithms to analyze visual,

textual, and sequential information present in video-based bug reports. Through these

methods, Janus establishes the degree of similarity between videos when reporting the

same bug, enabling the automated detection of duplicate reports.

To model visual information within videos, Janus leverages the Vision Transformer

(ViT) architecture [62] and the DINO self-supervised training scheme DINO [42], which

extract rich hierarchical features that explicitly capture scene layout information related

to GUI screens. In addition, Janus analyzes the textual content of videos using the

Efficient and Accurate Scene Text Detector (EAST) [253] and a Transformer-based Op-

tical Character Recognition (TrOCR) model [143], which accurately localize and extract

16

text from video frames. By encoding this textual content via an adapted vector space

model (VSM) [77], Janus assesses the textual similarity between two videos. Finally,

to encode the sequential aspect of videos, Janus incorporates an adapted version of the

classical longest common substring algorithm, giving higher weight to subsequent video

frames that show the behavior of the buggy app even if the videos show different bug

reproduction scenarios.

We evaluated Janus using a comprehensive benchmark of 7,290 duplicate detection

tasks, constructed from 270 video-based bug reports that represent 90 unique bugs found

in nine Android apps. We created this benchmark by extending an existing data set

that relied mainly on synthetic bugs [55]. Specifically, we extended it by incorporating

90 video-based bug reports pertaining to 30 real bugs of different kinds (e.g., crashes,

incorrect app output, and cosmetic issues) from three additional apps, resulting in a more

comprehensive, realistic, and diverse benchmark.

Through multiple ablation experiments, we systematically assess the performance of

the individual components of Janus and various combinations of these components. Our

evaluation demonstrates that the most optimal configuration of Janus (when visual, tex-

tual, and sequential video information is combined) achieves an overall mRR / mAP of

89.8% / 84.7%, exceeding the performance of an existing duplicate detector by ≈9% (with

statistical significance). These results suggest that Janus can significantly reduce the ef-

fort required to identify duplicate video-based bug reports, as developers would only need

to review fewer video reports to assess whether an incoming report depicts a known bug.

Furthermore, we conducted a qualitative analysis to understand the reasons behind

Janus’ performance compared to prior work. In particular, Janus exhibits an inter-

pretable representation of video frames, effectively capturing nuanced patterns related to

the style, composition, and layout of the GUI component, which are crucial in accurately

distinguishing duplicate video-based bug reports.

17

3.2 Related Work

GUI Comprehension. Understanding GUI can help with many software engineering

tasks related to mobile applications, such as GUI reverse engineering [24, 46, 166, 248],

software testing [25,155,167,174,241], and GUI search [26,45,47]. Most GUI understanding

techniques need to detect GUI elements first to understand the information provided by

the GUI. Chen et al. [49] show that deep learning-based object detection models [64,179,

180] and scene text detector EAST [253] outperform old-fashioned detection models [169]

and the OCR tool Tesseract [195], respectively. Fu et al. [75] utilize the Transformer

architecture for GUI element detection, but only based on limited pixel words. The most

closely related work to our own [55] uses the self-supervised approach SimCLR [50] based

on ResNet [90] to understand the visual GUI and use OCR to obtain textual information

in order to detect duplicate video-based bug reports.

Duplicate Video Retrieval. To retrieve similar videos, traditional techniques in the

computer vision domain first extract global and/or local features of video frames, then

aggregate extracted features to represent a whole video, and finally calculate similarity

scores between videos. Visual features are extracted by hand-crafted image processing

methods, such as Local Binary Patterns (LBP) [113, 227], Scale-Invariant Feature Trans-

form (SIFT) [225, 249], or Convolutional Neural Networks (CNN) [90, 203]. The features

can then be aggregated based on global vectors [225], bag-of-words [53, 132], or deep

metric learning [133]. Kordopatis-Zilos et al. [134] conducted a comprehensive experi-

mental study comparing feature extraction methods, CNN architectures, and aggregation

schemes, showing that CNN+BoVW is the best performing combination, which is the rea-

son why the most relevant work [55] chose this strategy to obtain video representations.

3.3 The JANUS Duplicate Detector

This section describes the architecture and design details behind Janus, our approach to

detect duplicate video-based bug reports.

18

3.3.1 Problem Formulation and Challenges

We formulate the problem of duplicate detection as an information retrieval (IR) problem,

as is typical for textual bug reports [120, 147, 173, 246]. A newly submitted video-based

bug report (the query) is compared to the set of previously submitted video reports in the

issue tracker (the corpus) using a retrieval engine (e.g., Janus), which retrieves and ranks

the corpus reports according to their similarity to the query. The higher a video-based

report is ranked, the more likely it is to depict the same bug as the query. A developer

would then watch the ranked videos in a top-down manner, marking the new video as

duplicate if they find a video depicting the same bug. Video-based bug reports depict the

incorrect behavior of an application (e.g., GUI screens showing a crash, layout problems,

or functional misbehavior), and the actions performed by the user on the GUI screens that

lead to such misbehavior (i.e., steps to reproduce the bug). Duplicate video-based bug

reports are pairs of two reports, e.g., the query report and one corpus report, that depict

the same buggy behavior, possibly showing different GUI steps, as multiple sequences of

steps can lead to the manifestation of the same buggy behavior. An advantage of an IR

formulation over other methods (binary classification e.g., as (non-)duplicate reports [44])

is the fact that a ranked list gives higher flexibility to developers, because multiple bug

reports are recommended as possibly showing the same bug.

Although the primary goal of a duplicate detector is to identify whether two distinct

videos depict the same incorrect app behavior, there are multiple challenges that make

this task particularly difficult. For example, duplicate videos may vary in length and

display different reproduction steps, originating from various reproduction scenarios exe-

cuted by users or the omission of certain steps during recording. Even if the reproduction

steps appear to be the same or highly similar in all videos, users can execute them at

varying speeds. Distinguishing between different videos that display distinct yet similar

unexpected app behavior and reproduction steps can pose challenges to detectors. Fur-

thermore, certain applications may display dynamic content. For example, a mobile web

19

browser allows users to navigate websites with varying layouts and content.

Video 1 Video 2(Fixed Sampling Rate)

JANUSvis JANUS+txt

Keyframe Representation Text Detection & Recognition

DINO (ViT)

TrOCR

Video Representation Video Representation

JANUStxt

ViT (Encoder)
Decoder

Encoder

Frame Patches

JANUSseq
LCS-Based Frame

Alignment & Weighting

Similarity Computation

EAST

Frame Set 1

Video 1+2
Frame Sets

Frame Set 2
Video Processing

K-Means TF-IDF Lucene TF-IDF

JANUSseq-v JANUSseq-t
Visual Frame

Weighting
Textual Frame

Weighting

Figure 3.1: Overview of the Janus duplicate detector.

3.3.2 Janus Overview

An overview of Janus is shown in Fig. 3.1. Janus receives as input two video-based bug

reports and outputs a similarity score that indicates how similar they are to depict the

same app bug. Janus can be used to compute the scores between a new video-based bug

report and a corpus of videos that represent previously submitted bug reports. The scores

allow for ranking the corpus videos as a list of potential duplicate candidates. The goal

of Janus is to rank higher in this list the actual duplicates for the new video.

Internally, Janus begins sampling a number of frames from the two videos at a given

20

rate (every sixth frame following the findings of previous work [55]) to reduce overhead,

since successive frames tend to be exact or near duplicates of each other. Next, Janus

computes a vector representation of the videos by processing the visual and/or textual

content of the frames. Janus’s visual component, Janusvis, vectorizes each video into

a visual TF-IDF representation by discretizing the frames into a Bag of Visual Words

(BoVW) [110], using a feature extractor based on a Vision Transformer (ViT) model [62]

and the DINO self-supervised training scheme [42]. Janus’s textual component, Janustxt,

vectorizes each video into a textual TF-IDF representation by extracting the text from the

video frame (via the EAST [253] and TrOCR [143] models) and constructing a document

of the concatenated text, represented as a Bag of Words (BoW) [187]. Each pair of visual

or textual TF-IDF representations is then compared via cosine similarity. Visual and

textual similarities can be used individually to rank duplicate candidates, or combined

into a single similarity score to account for both modalities of information, ideally leading

to more effective duplicate detection.

To account for the sequential nature of video-based bug reports, which typically show

the reproduction steps first and the incorrect app behavior afterward, Janus can compute

an alternative similarity score, based on a customized version of the longest common

substring (LCS) algorithm, which matches the vector representation of video frames via

cosine similarity and produces an overall similarity score that weights the later frames

in the video more heavily than the earlier ones. This similarity is calculated by the

sequential component Janus’s, Janusseq, which operates on the visual (Janusseq−v) and

textual (Janusseq−t) vector representations of the frames.

3.3.3 Janusvis: Visual Representation of Videos

Janusvis obtains a visual representation of a video in two steps. First, the sampled

video frames are resized to 224 × 224 (pixels) and encoded using visual representation

learning [131]. Second, these frame embeddings are further processed into a Bag of Visual

Words (BoVW) [134], which is used to represent a video as a TF-IDF vector [187]. The

21

goal is to learn useful visual information from the GUI components and layouts of the app

shown in the videos to distinguish potential duplicates from non-duplicates.

3.3.3.1 Visual Representation of Video Frames

Visual representation learning aims to obtain high-quality visual representations that are

helpful for downstream tasks such as image classification [135], object detection [250], or

image captioning [101]. This task is typically carried out unsupervised, self-supervised,

or supervised [50, 176]. Most recently, a focus has been on contrastive [50, 176] and dis-

tillation learning methods [42]. A promising technique, known as the Vision Transformer

(ViT) [62] has recently been proposed to better understand visual representations. The

performance of this architecture has been demonstrated to surpass or, at the very least,

match previous models relying on Convolutional Neural Networks (CNNs) for image clas-

sification. However, the most significant advantage of ViT lies in its ability to excel beyond

CNNs in capturing explicit information concerning the semantic segmentation of an image

(i.e., layouts and object boundaries) [62].

We posit that learning object segmentation within an image is particularly useful for

app GUI screens, given their structured, component-based nature. Hence, we adopted the

ViT architecture for designing Janusvis. The ViT architecture is made up of a standard

Transformer encoder model [60] but instead of lexical tokens, “patches” of the images are

fed into the network. These patches are treated in the same way that tokens are treated in

lexical transformers: they are linearly transformed and have added positional embeddings.

Given that image-level supervision requires labor-intensive annotations and limits the

information that can be learned during training to a single concept with a few categories of

objects (as is the case of app GUI screens, which contain components and layouts of well-

defined kinds), we need to train our ViT model in a self-supervised manner. Janusvis

trains its ViT using the DINO self-supervised training methodology DINO [42], which

leverages a student-teacher knowledge distillation training scheme [100]. In this scheme,

The student network is trained to match the distribution of the teacher network by min-

22

imizing the standard cross-entropy loss. Usually, the teacher network is larger than the

student network in terms of the number of model parameters. However, the teacher net-

work in DINO is built from the past iterations of the student network with an exponential

moving average strategy, whose parameters are frozen over an epoch by applying a stop-

gradient operator, given that direct replication of the student weights fails to converge.

The outputs of both networks are normalized using a softmax temperature. To adapt

the knowledge distillation architecture to self-supervised learning, two global views and

several local views are constructed on the basis of data augmentations [79] and the multi-

crop strategy [41], with local views passed through the student while only the global views

are passed through the teacher network, to encourage local-to-global correspondence. By

combining DINO with ViT, we aim to further improve the ability to capture global GUI

layouts.

Through this self-supervised training process, the model learns a rich representation

of images that emphasize scene layouts and object boundaries. To further refine the

DINO model’s capabilities to our domain of app GUI screens, we fine-tuned the Janus’s

ViT model, which was pre-trained on ImageNet [59], on a collection of 66k mobile app

screenshots from the popular RICO dataset [58]. We directly use the projected output of

the [CLS] token, a special token that marks the weighted aggregation of all image patch

embeddings, from the last block of the ViT model as the representation of video frames.

3.3.3.2 Visual Representation of Videos

To represent a video, Janusvis implements a BoVW + TF-IDF approach, since it has

been shown to be more useful for video retrieval compared to other approaches [134] (e.g.,

using directly the frame representations for similarity computation or aggregating them

into a single vector).

Janusvis discretizes the frame representations by leveraging a Codebook of visual

words [134]. The Codebook represents a catalog of visual words, which are representative

vectors found in a corpus of images (in our case, images of app GUIs). The Codebook is

23

constructed using a trained K-Means model that clusters the corpus of image represen-

tations into K clusters, the centroids being the visual words. Janusvis then assigns each

video frame representation to its closest cluster centroid (i.e., a visual word) via Euclidean

distance. The Codebook is trained by randomly sampling 15k mobile app screenshots from

the RICO dataset [58], vectorizing them via our fine-tuned ViT model, and running the

K-Means algorithm on the vectors, with K = 1k recommended by prior work [134]. We

take a sample rather than using the entire RICO dataset due to computational constraints

of the K-Means algorithm. The codebook is trained only once before the TF-IDF repre-

sentation approach is applied.

Once each frame representation is discretized to its corresponding visual word, Janusvis

computes a TF-IDF vector representation of a video, as was similarly done for text re-

trieval [187]. The term frequency (TF) is the count of each visual word in the video. The

inverse document frequency (IDF) is the count of BoVW representations of existing videos

where a visual word appears. Since a corpus of existing videos for a particular app may be

small and may lack diversity, we consider the set of RICO images as the corpus of existing

videos. By considering the diversity of apps in the RICO dataset, we aim to improve the

generalization of the TF-IDF video representations.

Janusvis compares the TF-IDF representation of two videos via cosine similarity to

establish the likelihood that the videos show the same app bug. This method is applied

to the existing corpus of TF-IDF visual representations for an app to generate a ranked

list of candidate duplicate videos for a new video-based bug report.

To address potential biases due to random sampling when creating the codebook, we

adapted Janusvis to use four codebooks (each trained on 15k RICO images, 60k in total).

Specifically, Janusvis uses each codebook to produce similarity scores for a set of videos.

These similarity scores are averaged to produce a final set of similarities and video ranking.

More details are given in section 3.4.3.2.

24

3.3.4 Janustxt: Textual Representation of Videos

Janustxt creates a textual representation of a video in two steps: (1) it localizes and

extracts the text present in the video frames via neural text localization and Optical

Character Recognition (OCR); and (2), it encodes the extracted text using a standard

TF-IDF representation [187]. The goal is to take advantage of text from labels, messages,

and other sources shown in the frames to compute video similarity.

For the first step, Janustxt has two components: (1) a text localization component

that proposes image regions where text is rendered, and (2) a text recognition component

that takes those regions and extracts any text present in them. The text localization com-

ponent implements the Efficient and Accurate Scene Text Detector (EAST) model [253],

which has been trained to directly derive region proposals. The text recognition com-

ponent uses the TrOCR Transformer model [143], which takes proposals from the EAST

region and directly predicts the text represented in the proposals. The combination of

EAST and TrOCR was adopted over the popular TesseractOCR [2] approach because:

(1) such a combination simplifies the overall OCR pipeline since it relies only on neural

models, without needing heuristic-based approaches to filter out poor text region candi-

dates (as TesseractOCR does); and (2) such a combination has shown strong performance

improvements in detecting scene text as well as handwritten/printed text, which means

it is less sensitive to noise in the images. Each video frame is put through this 2-stage

pipeline to extract its text.

For the second step, Janustxt concatenates the text from all video frames and pre-

processes it by tokenization, lemmatization, and removal of special characters, such as

non-ASCII characters, punctuation, or stop words. This resulting text is used to build a

Bag of Words (BoW) representation of the video, which is then encoded as a standard tex-

tual TF-IDF representation using the popular Lucene library [77], which implements the

standard Boolean information retrieval model and the Vector Space Model (VSM) [187].

We use this textual representation approach over neural text encoding models because it

25

is based on exact text matching, which could lead to more accurate similarity computation

of duplicate videos (as they are likely to show the same text on the buggy app screens).

Finally, Janustxt compares the TF-IDF representation of two videos using Lucene’s

similarity scoring function (based on cosine similarity and document length normaliza-

tion) [14]. The similarity computation can be applied to a corpus of video-based bug

reports to generate a ranked list of possible duplicate videos to the new video.

3.3.5 Janusseq: Sequential Similarity of Videos

Janusvis and Janustxt ignore the sequential order of the videos, as these components are

based on Bags of (Visual) Words. However, the buggy app behavior is typically shown

toward the end of a video-based bug report, after the bug reproduction steps have been

rendered. To account for the sequential order of the videos, Janus employs a modified

version of the longest common substring algorithm (LCS) to calculate an alternative sim-

ilarity score between videos. This approach is coined as Janusseq and operates on both

visual (Janusseq−v) and textual representations of videos (Janusseq−t).

Janusseq treats a video as a sequence of visual/textual words, based on the vector

representation of the video frames, and applies an LCS-based approach for similarity

computation. Intuitively, the longer the LCS between videos, the higher their similarity.

The textual representation of a video frame is the TF-IDF vector of the text extracted

from the frame, using the approach described in section 3.3.4. In the standard word-based

LCS algorithm, words are compared using exact text matching. To account for similar,

yet different video words (which might be common for textual video representations),

we relaxed this matching scheme and instead used cosine similarity between video frame

representations. Additionally, similarity-based matching should weigh more heavily the

frames that appear later in the videos, as they are more likely to show the buggy app

behavior and should give a normalized similarity score between zero and one.

Given these requirements, we defined the following similarity computation for Janusseq:

Sseq =
w-LCS

max w-LCS , where the numerator, w-LCS, represents the amount of overlap between

26

two videos, given by our modified LCS algorithm, which uses the cosine similarity between

frames (rather than exact matching) and a weighting scheme that favors later frames in

the videos. The weighting scheme is i
m × j

n , where i is the ith frame of a first video, with

m being its # of frames, and j is the jth frame of a second video, with n being its # of

frames. The denominator, max w-LCS, represents the maximum possible overlap if the

videos were identical. Since the videos could be of different lengths, we align the end of

the shorter video (with length min), to the end of the longer video (with length max),

and calculate the maximum overlap as:
∑min

i=1
i

min × max−i
max .

3.3.6 Combining Janus’s Components

To design Janus, we explore different combinations of its components. The similarity

scores of Janusvis and Janustxt can be linearly combined as (1 − w) × Svis + w × Stxt,

with w ∈ [0, 1]— the higher w is, the more weight it gives to the textual information of

the videos. We also explore various combinations that replace this similarity calculation

with those given by Janusseq (Janusseq−v & Janusseq−t), which consider sequential video

information.

3.4 Evaluation Methodology

We investigate the performance of Janus’s components (Janusvis, Janustxt, and Janusseq),

as well as the performance of various combinations of these components, and compare these

to a baseline duplicate detection technique proposed in prior work [55]. Furthermore, our

objective is to understand why we observe various trends in the overall performance of

Janus and qualitatively examine the cases where Janus is able to outperform the baseline

technique. To that end, we formulate the following research questions (RQs):

RQ1: What is Janusvis’s duplicate detection performance?

RQ2: What is Janustxt’s duplicate detection performance?

27

RQ3: What is Janusseq’s duplicate detection performance?

RQ4: What is the performance of Janus’s component combinations?

3.4.1 Duplicate Detection Dataset

We constructed a comprehensive evaluation dataset by extending a prior dataset that

mainly relied on synthetic app bugs [55]. The previous data set collected 60 distinct bugs

(35 crashes and 25 non-crashes) in six Android apps of different sizes and domains (e.g.,

podcast, finance and weight management apps). The data set contains ten confirmed real

bugs and 50 bugs injected by the MutAPK mutation testing tool [66], which generates

code mutations based on diverse mutant operators that affect various features of the app.

The data set includes three duplicate videos per bug, for a total of 180 video-based bug

reports, and a set of 810 duplicate detection tasks per app, for a total of 4,860 tasks created

from the videos. We refer to this dataset as the original dataset. Next, we describe how

we extended this dataset and detail the creation of video-based bug reports and duplicate

detection tasks to evaluate Janus.

3.4.1.1 Extended Real Bug Dataset

We extended the previous data set by building an evaluation data set containing only

real bugs. Wendland et al. [220] released the AndroR2 data set containing 90 manually

reproduced bug reports for Android apps. This data set was then extended by adding

more 90 reproduced bug reports in the AndroR2+ dataset [114], for a total of 180 real

and reproducible reports. For each bug report, AndroR2+ provides a link to the original

bug report in the issue tracker, an apk of the version of the buggy app, a reproduction

script and metadata for bug reproduction (device, OS version, etc.).

To construct our new real bug dataset, we chose the three apps with the largest number

of bugs from AndroR2+, while also ensuring the diversity of app categories. We selected:

Firefox Focus (FCS) [10], a web browser; PDF Converter (ITP) [13], an image-to-PDF

28

converter; and GPSTest (GPS) [12], a GPS testing app. FCS is the only app that renders

dynamic content on the screen. For these apps in AndroR2+, we found ten bug reports

for FCS, nine reports for GPS, and eight reports for ITP. We further manually checked

each app’s issue tracker and collected one more bug for GPS and two more bugs for ITP

to have the same number of bugs per app. To find the apkfiles of the correct buggy

version of the apps for these three bugs, we chose the version of the app closest to the

date the issue was created and confirmed that the apk allowed a successful reproduction

of the bug. Based on the AndroR2+ metadata and the three bug reports we collected,

there are seven different OS versions used to reproduce the bugs, namely, Android version

4.4.4, 6.0.1, 7, 7.1, 8, 8.1, & 9.

3.4.1.2 Duplicate Video Recording

The authors of the article and the external participants recorded videos replicating the 30

real bugs collected from the three AndroR2 + apps, following previous work [55].

We re-wrote the descriptions of the steps to reproduce (S2R), expected behaviors, and

observed behaviors for these bugs to ensure that they are clear and easy for participants

to reproduce from an end-user perspective. Although AndroR2 + bugs were reproducible

in a Pixel 2 emulator, we chose Nexus 5X to maintain the same device configuration as

the previous dataset [55], since bugs were also reproducible in Nexus 5X. This ensures

a consistent resolution of the videos across the benchmarks. Additionally, we minimized

the different OS versions to three (6, 8.1, and 9) to reduce the participants’ effort by

finding the closest OS versions to their original ones while ensuring the bugs were still

reproducible. Also, having these additional OSes in our video reproductions of these bugs

has the added benefit of being more realistic—the prior dataset only used Android 7.0.

Although AndroR2 + provides automated bug reproduction scripts, we avoided using

them for two reasons: (i) we found that certain scripts led to errors that did not properly

reproduce the bug and (ii) we wanted to capture video-based reports depicting real human

actions, to ensure the most realistic setting possible.

29

The authors of the paper created video reports for the 30 bugs according to the S2R.

To maintain three duplicate videos per bug, in line with the previous dataset, two authors

(who previously did not record any videos) along with two Ph.D. students were asked to

record the additional 60 videos, each responsible for reproducing 15 distinct bugs with only

the descriptions of expected and observed behaviors, to ensure diversity of reproduction

steps. Unlike the previous data set, the recorded videos do not show the Android touch

indicator when the user taps the screen.

In total, our new dataset consists of 90 video-based bug reports corresponding with

three duplicates of 30 real bugs from three apps. It contains two crashes and 28 non-

crashes, comprising 270 reproduction steps in total (249 taps, six gestures, and 15 input

entry actions) and ≈35-second videos, on average. There are six videos for Android 6,

nine for Android 9, and 75 for Android 8.1.

3.4.1.3 Duplicate Detection Tasks

In line with the previous data set, we construct duplicate detection tasks for each app to

be as realistic as possible. We define a duplicate detection task as having: (1) a query

video that represents a newly reported video-based bug report, and (2) a corpus of 13

existing video-based reports. The query must be compared against the corpus in order

to determine whether the incoming report is a duplicate of an existing report. Each task

contains videos of the 10 bugs for an application. The corpus contains two duplicate videos

of the query (i.e., they show the same bug). The remaining 11 videos are non-duplicates:

three of them are duplicates of each other but not of the query (i.e., they show a bug

different from the query bug), and eight videos show distinct bugs. Each task simulates

a situation that is similar to crowd-sourced app testing, where duplicates of the query, of

other bugs, and unique video-based reports exist together on the issue tracker for an app.

Using different combinations of bugs and videos, we created a total of 810 tasks per

app or 2,430 tasks across all apps. Combining both the previous and the new datasets,

there are 7,920 tasks in our extended evaluation benchmark to evaluate Janus.

30

3.4.2 Baseline Duplicate Detector

We compare Janus against the Tango duplicate detector introduced by Cooper et al. [55].

Tango also leverages multimodal information to detect duplicate video-based reports, us-

ing less sophisticated methods compared to Janus. It extracts visual features from video

frames using a contrastive learning method called SimCLR, which uses a ResNet-50 CNN

to learn local features of app GUIs [50]. It also analyzes text displayed on GUI screens

using an approach that combines LSTM-based language models and heuristics, relying on

TesseracOCR to extract text from video frames [2]. Finally, Tango performs a limited

alignment of video frames: only for its visual SimCLR features extracted. Tango’s evalu-

ation found the best performing configuration is when the visual and textual components

are combined, hence we compare Janus against this configuration while also performing

ablation comparisons between their individual components.

3.4.3 Metrics and Experimental Settings

3.4.3.1 Evaluation Metrics

We use standard metrics used in previous work on duplicate bug report detection evalua-

tions [55,120,147,246]:

• Mean Reciprocal Rank (mRR): gives a measure of the average ranking of the first

duplicate video found in the candidate list of videos given by a duplicate detector. It is

calculated as: mRR = 1
N

∑N
i=1

1
ranki

, for N duplicate detection tasks (ranki is the rank

of the first duplicate video for task i).

• Mean Average Precision (mAP): it gives a measure of the average ranking of all du-

plicate videos for a query video. It is calculated as: mAP = 1
N

∑N
i=1

1
DV

∑DV
v=1 Pi(rankv),

where DV is the set of duplicate videos for task i, rankv is the rank of the duplicate

video v, and Pi(k) =
duplicates

k is the number of duplicates in the top-k candidates.

31

All metrics give a normalized score in [0, 1]—the higher the score, the higher the

duplicate detection performance. We executed different configurations of Janus and the

baseline on the 7,920 tasks and computed/compared the metrics between these approaches.

3.4.3.2 Model Configurations

We compared Janusvis against Tango’s visual component by experimenting with two

ViT models: ViT-Small (ViT-S) and ViT-Base (ViT-B), which have six and 12 self-

attention heads, respectively. ViT-S has a size similar to RestNet-50’s size (used by

Tango’s SimCLR): ≈23M parameters. To evaluate the differences between SimCLR

(contrastive) and DINO (distillation) training schemes, we implemented Janusvis with

DINO + RestNet-50. We also experimented with the following patch sizes for ViT: 16×16

(/16) and 8× 8 (/8) pixels, as patch size can affect Janusvis’s performance [62]. In total,

we executed four DINO models: DINO (ResNet), DINO (ViT-S/16), DINO (ViT-S/8), &

DINO (ViT-B/16). ViT-B/8 was not included in the experimentation for Janusvis due

to its substantial computation overhead.

To account for potential biases from random image selection when constructing the

Janusvis’s Codebook, we used four distinct Codebooks, each trained on 15k distinct RICO

images (60K images in total). With each codebook, Janusvis generates similarity scores

for a set of videos. These similarities are averaged across the four codebooks to produce

final scores used for ranking. To perform a fair comparison with the visual component

of Tango, we implemented the same codebook generation strategy in Tango, using its

publicly released implementation [55]. The recomputed results Tango in the previous

dataset are slightly higher than those reported in the original paper (76.2 vs. 75.3 mRR

and 69.8 vs 67.8 mAP).

We compared Janustxt against Tango’s textual component by experimenting with

different configurations for the EAST and TrOCR models. For EAST, we used three

different resolution thresholds to filter out small text regions: 5 × 5 (EAST-5), 40 × 20

(EAST-40), and 80× 40 (EAST-80). The 5× 5 threshold is used by default in EAST. We

32

Table 3.1: The network configurations and fine-tuning hyperparameters for Janusvis compared
with SimCLR used by Tango

model dim # params batch size w-temp temp
SimCLR 2,048 23M 1,792 – –

DINO (ResNet) 2,048 23M 96 0.03 0.03 (0)
DINO (ViT-S/16) 384 21M 96 0.03 0.03 (0)
DINO (ViT-S/8) 384 21M 18 0.04 0.05 (30)
DINO (ViT-B/16) 768 85M 64 0.05 0.07 (50)

did not test larger resolutions than 80× 40 to ensure that each textual document created

for the video has at least one valid detection. 40× 20 was included as a middle ground to

understand the impact of threshold size on video similarity calculation. For TrOCR, we

used its large version with BEiT Large [23] as the encoder and RoBERTa Large [153] as

the decoder. Two fine-tuned TrOCR-Large models are used, namely TrOCR-p (fine-tuned

on the printed text dataset SROIE [106]) and TrOCR-s (finetuned on the synthetic scene

text datasets such as ICDAR15 [121] and SVT [212]).

3.4.3.3 Model Training

All visual models were fine-tuned in the 66k mobile app screenshots from the RICO

dataset [58] for 100 epochs using model checkpoints trained on ImageNet [59], except

for DINO (ViT-B/16), to fairly compare it with the Tangovis’s SimCLR model. After

examining preliminary results showing the advantages of DINO with ViT, we decided to

train DINO (ViT-B/16) for 400 epochs [42]. Fine-tuning was performed on three NVIDIA

T4 Tesla GPUs with 16GB of memory each. Because DINO does not use contrastive

learning, we were able to use a much smaller batch size compared to the SimCLR model

used in Tango: 96 vs 1,792 for ViT-S/16 and ResNet-50. For the ViT-B/16 and ViT-

S/8 models, we used a batch size of 64 and 16 due to memory constraints. Table 3.1

shows the network configurations and three hyperparameters to fine-tune, where dim is

the representation dimension of the output, # parameters is the total number of model

parameters. ”temp” and ”w-temp” represent the teacher temperature and the warm-up

teacher temperature, respectively, and the numbers in parentheses are the # epochs used

33

for warm-up. Model training was not required for Janustxt as we directly use pre-trained

EAST and TrCOR models for GUI text localization and recognition [143,253].

3.5 Evaluation Results

Table 3.2 shows Janus’s duplicate detection performance compared to the baseline Tango,

for their individual components: visual, textual, and sequential. Table 3.3 shows the per-

formance of different combinations of components Janus, compared to the baseline.

Cells shaded green in these tables indicate a statistically significant (via Wilcoxon’s

paired test at the p < 0.05 level) higher effectiveness when comparing a given Janus

configuration/component to a given Tango configuration/component. Yellow-shaded cells

indicate higher performance, but without statistical significance. We present the results

for each app of the original (mostly synthetic bugs) and extended (real bugs) datasets and

the general results that account for all the apps in both sets, separately and together.

While we calculated the performance of four Janusvis DINO models (i.e., DINO with

ResNet, ViT-S/16, ViT-S/8 and ViT-B/16), we present (in tables 3.2 and 3.3) the best

performing model for Janusvis: DINO with ViT-B. Likewise, we report here the results of

the best performing model configuration for Janustxt, namely EAST-80 (EAST that filters

out region proposals smaller than 80 × 40) combined with TrOCR-s (TrOCR fine-tuned

on real-world scenes, e.g., street scenes, instead of text found in printed and handwritten

documents). The results for all DINO, EAST, and TrOCR configurations can be found in

our replication package [231].

Tables 3.2 and 3.3 show a consistent trend: the performance achieved by any duplicate

detector (i.e., any configuration) is lower for the original dataset than for the extended

dataset. After investigating the minimal set of ground truth reproduction steps of bugs

used in the datasets, we found that this trend is explained by the number of overlapping

steps between distinct bugs in an app. We observed that distinct bugs for a given app

in the original dataset have a larger step overlap than distinct bugs in the extended

34

dataset. It is more challenging for a duplicate detector to distinguish between duplicate

and nonduplicate videos if there is a larger step overlap across bugs (hence, across videos).

Recall that in a duplicate detection task, the videos in the corpus are for distinct bugs; if

there is a larger overlap among them, particularly between duplicates and nonduplicates,

a detector would struggle to discern the differences.

3.5.1 RQ1: Janusvis’s Performance

Table 3.2: Performance of the individual components of Janus and the baseline Tango
Visual Textual Sequential (visual) Seq. (textual)

Tango Janusvis Tango Janustxt Tango Janusseq−v Janusseq−tApp
mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP

APOD 77.19 69.98 87.32 79.79 80.80 75.30 79.76 73.09 55.01 44.85 84.45 71.11 73.40 68.09
DROID 68.43 58.82 80.77 71.44 67.90 64.70 78.88 72.52 46.54 37.91 61.49 50.88 76.19 73.64
GNU 81.53 75.83 81.83 75.54 84.50 82.30 89.53 81.28 55.91 43.37 71.41 58.82 52.79 43.81
GROW 83.53 78.60 87.46 80.33 76.80 69.00 82.65 77.38 74.57 64.46 92.14 84.57 77.45 76.24
TIME 70.26 65.35 73.76 69.46 47.40 37.70 64.80 56.67 50.85 43.62 63.14 56.18 69.34 66.16
TOK 76.03 70.37 81.11 71.33 61.30 53.30 53.95 44.48 38.13 33.36 53.39 43.22 54.00 47.83

Original 76.16 69.83 82.04 74.65 69.80 63.70 74.93 67.57 53.50 44.59 71.00 60.80 67.20 62.63

FCS 91.09 85.82 86.88 82.69 85.12 79.12 86.17 84.88 65.23 55.42 90.20 85.91 90.53 88.21
GPS 95.99 92.15 98.09 95.70 92.11 84.82 97.51 96.10 68.34 60.63 93.72 86.64 57.83 53.33
ITP 81.93 73.92 93.29 84.08 89.73 86.34 96.77 89.83 69.50 54.37 90.56 78.20 54.74 46.87

Extended 89.67 83.96 92.75 87.49 88.98 85.74 93.48 90.27 67.69 56.81 91.50 83.58 67.70 62.80

Overall 80.66 74.54 85.61 78.93 76.14 70.06 81.11 75.14 58.23 48.67 77.84 68.39 67.36 62.69

Table 3.2 shows the duplicate detection effectiveness of Janusvis (DINO with ViT-B)

compared to visual Tango (SimCLR).

Before discussing the table results, we briefly discuss the results of comparing the

training schemes (distillation via DINO vs. contrastive via SimCLR, both using the same

pre-trained ResNet weights). We found that SimCLR outperforms DINO for six of nine

apps by a relatively small margin (by 3.5% mRR and 4.2% mAP, on average), but DINO

outperforms SimCLR for the remaining three apps (APOD, GNU, DINO) by a larger

margin (7.5% mRR and 6% mAP, on avg.). Overall, across all the apps, we found a similar

performance between these two approaches (less than 1.1% mRR/mAP improvement),

which indicates the training scheme does not have a large impact on duplicate detection

performance.

Furthermore, both ViT-S/16 and ViT-S/8 used by Janusvis’s DINO exhibit superior

performance compared to ResNet-50 used by visual Tango’s SimCLR. Specifically, al-

35

though ViT-S/16 and ViT-S/8 have a similar model size to RestNet-50, they outperform

ResNet-50 by 2.91% and 2.92% respectively, in terms of mRR on average, with statistical

significance. This highlights the effectiveness of ViT over ResNet for duplicate video-based

bug report detection.

Table 3.2 shows that Janusvis (DINO with ViT-B) significantly outperforms the base-

line in both datasets. We observe an overall improvement of (85.61 - 80.66)/80.66 = 6.1%

mRR and (78.93 - 74.54)/74.54 = 5.9% mAP, with statistical significance. This overall

performance results from an improvement in eight of nine apps compared to the baseline

(seven with statistical significance), with Tango only having a substantial improvement

over Janusvis for the FCS app. These FCS results are due to the nature of the app and

the underlying models. Specifically, FCS is a web browser and the video-based bug re-

ports produced for this app show users navigating to different websites. The app produces

dynamic content: the navigated websites have different layouts and visual characteristics.

Janusvis’s ViT is prone to focusing more on the structure of the GUIs, extracting global

features about the layouts, while the baseline’s ResNet tends to focus on local visual fea-

tures of the GUIs, not necessarily on general screen layouts, which are more beneficial

to detect duplicates. Compared to ResNet, ViT’s emphasis on GUI layouts leads to a

more substantial dissimilarity between duplicates when sequential visual information is

not taken into account.

3.5.2 RQ2: Janustxt’s Performance

Table 3.2 shows that Janustxt is substantially more effective than textual Tango for seven

of nine apps (with statistical significance), especially for DROID (improvement of 16.2%

mRR and 12.1% mAP) and TIME (improvement of 36.7% mRR and 50.3% mAP). Only

for the apps APOD and TOK, Tango is higher, resulting in Janustxt’s overall superiority

on both the original and the real bug datasets (overall, by 6.5%/7.3% mRR/mAP). The

reason why Janustxt does not perform better for APOD and TOK is that these apps

usually contain short or small pieces of text (e.g., due to small fonts) on many of their

36

screens, and EAST fails to identify them because these pieces fit in smaller regions than

80 × 40 pixels. Indeed, when reducing the threshold to 40 × 20, Janustxt outperforms

Tango for APOD and TOK (by 1.5%/1.1% and 8.8%/5.2% mRR/mAP respectively).

Janustxt’s performance is slightly higher than Janusvis’s for the extended dataset

(improvement of 0.8%/3.1% mRR/mAP overall), but lower for the original dataset (by

9.5%/10.5% mRR/mAP). The lower improvements come from the TOK app, which does

not contain enough textual information to accurately detect duplicates [55].

3.5.3 RQ3: Janusseq’s Performance

Table 3.2 shows that Janusseq−v is substantially more effective in detecting duplicates

than sequential Tango, when using visual frame representations. Janusseq−v outper-

forms the baseline for every app in the original dataset (by 32.7% mRR and 36.4% mAP

overall) and in the extended dataset (by 35.2% mRR and 47.1% mAP overall). The high

improvements can be attributed to the power of Janus’s ViT in learning the global struc-

ture of GUI screens, while Tango’s ResNet focuses on learning local GUI features. Global

GUI structure representations are more useful to measure the sequential overlap between

video frames even when there are small variations in the frames because of slightly different

reproduction steps. Also, we note that the improvements for the FCS app are substantial

(38%/55% mRR/mAP). Since we observed very different GUI layouts in video frames

for this app (because users navigated to different websites), these results are indicative

of the effectiveness of the sequential similarity approach of Janus in combination with

ViT-based frame representations (compared to the baseline).

Since Tango’s sequential component is not designed to work with textual frame

representations (unlike Janus), we only compare the performance of Janusseq−t with

Janusseq−v. In general, Janusseq−v outperforms Janusseq−t by 15.6%/9.1% mRR/mAP.

It substantially outperforms Janusseq−t for five of nine apps by 39.4%/ 35.8% mRR/mAP

on average, while having a lower performance for the remaining four apps (7.4%/14.6%

mRR/mAP). The largest improvement is observed in the GPS and ITP apps. ITP is an

37

app used to convert images to PDF, involving mostly image editing, while GPS focuses

on editing coordinates and displaying locations on a map. Consequently, video-based bug

reports have limited text on each frame, which negatively impacts the performance of

Janusseq−t. However, since Janustxt leads to high performance for these two applica-

tions, we attribute Janusseq−t’s relatively low performance to the alignment approach,

which processes each video frame text rather than using the text from all frames together.

Table 3.3: Performance of different component combinations for Janus and the baseline Tango
Visual + Textual Vis + Seq Txt + Seq Vis+Txt+Seq

Tango Janus Janus Janus JanusApp
mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP

APOD 81.08 75.11 86.72 80.64 86.59 77.30 91.54 86.30 94.95 86.55
DROID 71.74 64.31 83.95 78.98 75.50 64.96 89.26 83.15 88.56 81.06
GNU 89.16 85.92 89.62 81.75 83.48 74.18 84.24 73.80 90.58 81.58
GROW 86.61 80.73 89.84 86.32 91.40 86.88 83.56 80.96 93.32 90.72
TIME 65.06 59.23 67.51 64.31 71.33 63.68 73.69 69.67 74.88 71.92
TOK 71.11 63.95 75.51 62.59 63.35 57.30 55.23 48.57 75.92 67.91

Orig. 77.46 71.54 82.19 75.76 78.61 70.72 79.59 73.74 86.37 79.95

FCS 91.11 86.87 88.46 85.95 93.98 89.85 90.38 84.74 94.73 91.90
GPS 97.35 95.53 99.30 98.31 98.09 96.01 89.20 86.91 98.24 97.26
ITP 90.64 86.51 96.84 91.58 96.05 89.99 83.94 77.07 97.41 93.51

Ext. 93.03 89.64 94.87 91.94 96.04 91.95 87.84 82.91 96.79 94.22

Overall 82.65 77.57 86.42 81.16 84.42 77.79 82.34 76.80 89.84 84.71

3.5.4 RQ4: Component Combination Performance

We linearly combined the Janus’s components (as described in section 3.3.6) to determine

how much they improve performance, compared to the baseline and individual compo-

nents. We experimented with different weights (from 0 to 1 in 0.1 increments) using all

duplicate detection tasks and selected the weights that lead to the highest mRR/mAP

performance.

As mentioned earlier, the best Tango configuration is when its visual and textual

components are combined (with a weight of 0.8 and 0.2, respectively), as reported in the

original paper [55]. Janus’s visual and textual components (i.e., Janusvis and Janustxt)

are combined using 0.9 and 0.1 as weights. This combination is denoted as ”Visual +

38

Textual” in Table 3.3. The table also shows the combination of Janus’s visual/textual

components and the sequential one: “Vis + Seq” denotes the average of the similarity

scores produced by Janusvis and Janusseq−v, while “Txt + Seq” denotes the average

of the similarity scores produced by Janustxt and Janusseq−t. An average combination

means a weight of 0.5. Finally, we combine the similarities produced by the last two

combinations using a weighted linear combination as follows: Sim(Vis + Seq) × 0.6 +

Sim(Txt + Seq) × 0.4. This combination incorporates every information source from the

videos and is denoted as “Vis + Txt + Seq”.

Table 3.3 shows that the best performing Janus combinations are “Visual + Textual”

and “Vis + Txt + Seq”, both outperforming the baseline by 4.6%/4.6% mRR/mAP and

8.7%/9.2% mRR/mAP overall respectively (with statistical significance). The other two

Janus combinations lead to mixed results: “Vis + Seq” leads to overall performance gains

while “Txt + Seq” does not produce overall gains, due to its lower performance on the

extended dataset.

When using “Visual + Textual”, Janus significantly outperforms Tango on seven of

nine apps and is only worse than Tango on FCS, considering both mRR and mAP. As

previously mentioned, Janus’s lower performance for FCS, compared to Tango, stems

from the nature of the app itself. FCS is a web browser and the bugs used for this app were

not dependent on a particular web page. When reproducing the bugs, the users navigated

to different web pages, each one having different layouts and appearances. This means

that the duplicate video-based bug reports appeared to be substantially different. Since

Janus focuses more heavily on global GUI layout information, via its DINO+ViT model,

Janus struggles to differentiate duplicates from non-duplicates. The local features learned

by Tango seem to be useful for duplicate detection even when the duplicate videos show

different layouts. The lower Janus mAP value on GNU is explained by the lower mAP

values of Janusvis and Janustxt on that app (by 0.4% and 1.2%—see Table 3.2).

Janus’s configuration “Vis + Txt + Seq” consistently shows mRR/mAP improvement

in all nine apps except GNU, when compared to the baseline Tango. Across these apps,

39

we observe improvements ranging from 6.8%/6.2% to 23.4%/26% mRR/MAP in the origi-

nal dataset, and from 0.9%/1.8% to 7.5%/8.1% mRR/MAP in the extended dataset. This

is interesting because the performance of the individual components of this configuration

is substantially different across the apps. For instance, for TOK, the sequential aspect

of the videos, individually combined with Janusvis or Janustxt, is less effective than

Tango, but when Janusvis and Janustxt are combined together with Janusseq, Janus

leads to substantial improvement (by 6.8%/6.2% mRR/mAP). Another example is the

FCS app, which seems to benefit from the visual and sequential information, as Janusvis

+Janusseq−v seems to contribute most to the overall performance of the “ Vis + Txt

+ Seq” configuration. This suggests that the incorporation of sequential information en-

hances the Janus’s ability to handle dynamic content, resulting in improved performance

in comparison to its “Visual + Textual” configuration and the baseline Tango.

Best Janus configuration: The best performing Janus configuration is when combining

visual (Janusvis), textual (Janustxt), and sequential information (Janusseq) from video-based

bug reports. This configuration consistently outperforms the baseline duplicate detector for 8/9

mobile apps. It achieves an overall performance of 89.8%/84.7 mRR/mAP, outperforming the

baseline by 8.7%/9.2% mRR/mAP. This means that Janus can reduce the effort that developers

spend determining if a new video-based bug report shows a known bug (by (1.60− 1.38)/1.38 =

16%, based on avg. rank), since they would need to inspect only 1.38 videos on average (i.e.,

1.38 avg. rank across all tasks) for finding the first duplicate video in the candidate duplicates

suggested by Janus.

3.5.5 Qualitative Analysis

We discuss two qualitative examples that illustrate the validity of our hypothesis that the

richer representations learned by Janus’s transformer-based visual representation and

OCR models improve duplicate detection for video-based bug reports.

40

3.5.5.1 Example 1: Vision Transformer-based Representations Capture Sub-

tle GUI patterns

To illustrate why we observed improvement in visual Janus as compared to visual Tango,

we use interpretability techniques that generate saliency maps that help visualize the

learned visual features. To visualize patterns learned by CNNs, we use a technique called

AGF [83]. Although AGF can visualize self-supervised models such as SimCLR (used by

the baseline), this requires training a supervised linear classifier after each layer and a

dedicated algorithm to extract the segmentation information from their weights. There-

fore, to simplify our comparison, instead of visualizing SimCLR directly, we visualize its

main component, the ResNet-50 CNN using AGF under supervision. We follow past work

and use the pre-trained ResNet-50 (on ImageNet [59]: the training dataset for ResNet) to

generate the saliency map based on the class IDs with the highest probabilities for a given

target GUI screen [83]. We further visualized the ViT-S/16 model (used by Janusvis’s

DINO) by directly displaying the self-attention maps. Visualization of ViTs does not ne-

cessitate sophisticated algorithms, given the inherent attention mechanism within these

architectures.

In Fig. 3.2, we show three keyframes of two non-duplicate video-based bug reports

from DroidWeight (DROID) [3]: DROID-CC1 and DROID-CC2. SimCLR fails to dis-

tinguish between the videos of these two bugs and mistakenly ranks DROID-CC2 as the

first duplicate video of DROID-CC1. The DROID-CC1 video mainly has one trace that

generates a new weight record by entering the weight on a pop-up component (Fig. 3.2

(b)), while the DROID-CC2 video not only includes the previous trace but also a trace

that further edits the recorded weight on another different pop-up component (Fig. 3.2

(c)). Fig. 3.2 illustrates the saliency maps, overlaid over frames from two Droidweight

video-based bug reports. We observe that the ViT-S/16 is able to attend to key parts

of GUI components that ResNet-50 does not. Specifically, for the main screen (a) and

entering weight screen (b) from videos of DROID-CC1 shown in Fig. 3.2, ResNet-50 and

41

R
es

N
et

-5
0

V
iT

-S

Video Frames for Droid-CC1 Video Frame
for Droid-CC2

(a) (b) (c)

Figure 3.2: Visualization of ResNet-50 and ViT on keyframes of video-based bug reports

ViT-S/16 are all able to attend well to the objects, but ViT-S/16 pays more attention

to the GUI layout information. However, for the edit weight screen (c) from videos of

DROID-CC2, ResNet-50 has more difficulty in distinguishing between foreground pop-up

components and the background. We can see it pays less attention to the lower edges

and the bottom part of the foreground component. In contrast, ViT-S/16 effectively at-

tends better to the edges and pays enough attention to the foreground component to help

distinguish between (b) and (c), hence improving performance on this specific duplicate

detection task.

From this example, there is a clear benefit to the visual nuances learned by ViTs.

While here we present one example, after investigating several cases where Janusvis out-

performs the baseline, we observed this pattern holds, wherein Janusvis learned visual

representation is able to better capture nuanced visual patterns, such as the difference be-

42

tween two similar pop-ups, or the difference between background and foreground element

when menus are displayed.

Te
ss

er
ac

t O
C

R
EA

ST

(a) (b) (c)

Video Frame
From GNU-CC6

Video Frame
From GNU-CC9

Video Frame
From GNU-CC7

Figure 3.3: Bounding boxes localized by EAST and the Tesseract OCR library on
keyframes of video-based bug reports

3.5.5.2 Example 2: Scene-based Text Detection Improves Text Localization

Textual Tango, which uses Tesseract OCR is unable to distinguish between similar video

reports for a number of bugs, including three bugs from the GNUCash (GNU) app [4].

Therefore, we visualize the detection bounding boxes of text for three keyframes of these

three videos in Fig. 3.3 for both Tesseract (first row) and EAST [253] (used by Janus).

The first report for the GNU-CC6 bug has a main trace that goes to the balance sheet

screen and checks the sub-account: we show one keyframe for this report in (Fig. 3.3-

(a)), while the second video report for the GNU-CC9 bug navigates to the General

Preferences screen, as shown in keyframe in (Fig. 3.3-(b)), and finally, the report for

43

GNU-CC7 changes the password under the General Preferences menu, as shown in

(Fig. 3.3-(c)). While these bugs are different, they include many similar screens where

keywords are important for differentiation.

As observed in Fig. 3.3, EAST is more accurate than TesseractOCR for GUI component

and text detection. In Fig. 3.3-(a), Tesseract OCR fails to localize the text on some buttons

(e.g., sheet) and the text in brighter colors (e.g., Asset). Also, for the keyframe of GNU-

CC9 (Fig. 3.3-(b)), Tesseract misses the text General Preferences, making it difficult

to distinguish between report GNU-CC9 and GNU-CC7, as they both access various parts

of the settings menu. In addition, Tesseract does not detect the text when it is in regions

of low brightness and low contrast, including the text on the dialing circles (Fig. 3.3(c)),

which also helps differentiate between GNU-CC9 and GNU-CC7, since GNU-CC7 enters

a passcode, but GNU-CC9 only accesses the passcode settings. Thus, the more accurate

text extraction of EAST clearly aids in the accurate extraction of key text that can help

to differentiate between similar GUI screens.

3.6 Threats to Validity

3.6.1 Internal and Construct Validity

Beyond the evaluation dataset, the implementation of Janus’s models and experimental

settings represent key validity threats. We controlled as many factors as possible for a fair

comparison with the baseline. For example, we implemented the 4-Codebook approach

in both Janus and the baseline, used the same duplicate detection tasks, and measured

their performance using well-known metrics in duplicate detection studies.

3.6.2 External Validity

To improve generalization, we created a new dataset to include ≈3k more duplicate detec-

tion tasks, for real bugs of different types, reported on mobile app issue trackers. These

bugs were recorded by multiple users on various versions of mobile operating systems and

44

did not include touch indicators. We ensured that the recorded videos contained different

reproduction scenarios for the same bugs. Decisions were made to make our data set more

comprehensive, realistic, and diverse. Our data set could be improved by considering

different app languages or other mobile platforms such as iOS.

3.7 Chapter Summary

To help developers identify video-based bug reports that show identical bug reports in mo-

bile apps, we propose Janus, a new approach to detect duplicate video-based bug reports.

Janus leverages visual, textual, and sequential information from videos using a combina-

tion of representation learning, information retrieval, and frame alignment approaches.

We evaluated Janus and found that it significantly outperforms an existing duplicate

detector. The evaluation considered a new benchmark of 7,290 duplicate detection tasks

based on 270 video-based bug reports, drastically extending a prior dataset (with real bugs

as opposed to injected bugs from prior work). We conducted ablation experiments and

an in-depth qualitative analysis visually showing that Janus learns a more interpretable

hierarchical visual representation and localizes text regions more accurately.

45

Chapter 4

Code Change Impact Analysis via

Multimodal Coupling

Impact analysis (IA) is a critical software maintenance task that identifies the effects of

a given set of code changes on a larger software project with the intention of avoiding

potential adverse effects. IA is a cognitively challenging task that involves reasoning

about the abstract relationships between various code constructs. Given its difficulty,

researchers have worked to automate IA with approaches that primarily use coupling

metrics as a measure of “connectedness” of different parts of a software project. Many of

these coupling metrics rely on static, dynamic, or evolutionary information and are based

on heuristics that tend to be brittle, require expensive execution analysis, or large histories

of co-changes to accurately estimate impact sets.

In this project, we introduce a novel IA approach, called Athena, which combines the

dependency graph information of a software system with a conceptual coupling approach

that uses advances in deep representation learning for code without the need for change

histories and execution information. Previous IA benchmarks are small, containing less

than ten software projects, and suffer from tangled commits, making it difficult to measure

accurate results. Therefore, we constructed a large-scale IA benchmark, from 25 open-

46

source software projects, that utilizes fine-grained commit information from bug fixes.

On this new benchmark, our best performing approach configuration achieves a score of

mRR, mAP, and HIT@10 of 60. 32%, 35. 19%, and 81. 48%, respectively. Through

various calculations and qualitative analyzes, we show that Athena’s novel combination

of program dependence graphs and conceptual coupling information leads it to outperform

a simpler baseline by 10.34%, 9.55%, and 11.68% with statistical significance.

4.1 Introduction

Modern software systems are long-lived and have extensive development and maintenance

histories. Many projects experience churn in the developers or teams that work on them

and can consist of millions of lines of code [192]. As such, understanding the potential

cascading impacts of seemingly simple code changes can be a difficult proposition. This

comprehension task forms the basis of impact analysis (IA) in which a given code change

may result in undesirable side effects, such as a fault that leads to an erroneous program

state, caused by unintended interactions between the changes and other parts of a software

system [116,136]. Thus, the task of IA involves estimating an impact set of entities, usually

classes or methods of a software system, from a given change to an entity, also usually

a class or method [20] in the hopes of preventing unintended changes. This process can

be cognitively challenging for developers, as reasoning about complex interactions of a

software system requires careful comprehension of large volumes of code. Given that

many important engineering and maintenance tasks – such as bug fixing and refactoring

– require code change comprehension, they necessarily require IA as well. This process

is typically performed manually by developers, but given its complexity, researchers have

proposed a range of approaches to automate it.

Past techniques for automated IA have explored using four main types of informa-

tion: (i) structural information (i.e., from program dependence graphs), (ii) semantic or

conceptual information (i.e., code similarity), (iii) evolutionary information (i.e., commit

47

histories), and (iv) execution information. Conventional automatic IA techniques [21, 30]

have focused on analyzing structural dependencies (e.g., control flow dependence) between

different code entities to predict change impacts, but tend to generate large impact sets

with lower precision [142]. As a result, other IA techniques have chosen to take advantage

of additional information gathered by mining change histories from software reposito-

ries [39,76] or program executions [136] to generate more accurate impact sets. However,

these techniques rely on certain assumptions (e.g., sufficient historical data, comprehen-

sive execution profiles), require brittle heuristics, or significantly increase computational

overhead, making them less practical. These techniques may also ignore conceptual / se-

mantic information that naturally occurs in code (e.g., identifiers) and is key to expressing

the underlying intent of code entities. Given that code entities with similar intent likely

contribute to similar problem domains, there is another set of IA techniques (i.e., concep-

tual or semantic IA) [76, 116, 215] which extract vectorized code semantics and compute

a similarity-based ranked list of code entities that are potentially impacted by a change.

Existing conceptual techniques formulate IA as an information retrieval (IR) task, and

typically apply IR-based (e.g., latent semantic indexing (LSI)) or machine learning-based

(e.g., doc2vec [138]) approaches to obtain code representations that capture the semantic

relationships between code entities.

The possibility of combining semantic and structural information specifically for the

task of impact analysis has not been well explored [84]. Such a combination could prove

beneficial due to the orthogonal nature of these information sources and the practicality

of forgoing the collection and sanitation of evolutionary or execution information. For

instance, semantic coupling can help to relate methods or classes that share similar se-

mantic purposes and hence may impact one another, whereas structural information can

help deduce logical relationships between code entities which may appear to be unrelated

based upon modeled semantics.

While there is promise in combining semantic and structural information for IA, there

is also an opportunity to leverage recent advances in robust semantic models of code.

48

Transformer-based [209] neural architectures [72,80,216,218] have achieved great success in

learning rich representations for a variety of code understanding and generation tasks [162,

219], e.g., code search, clone detection [223], program repair [222], etc.. These models are

typically first pre-trained on large-scale datasets containing unimodal (code-only) and/or

bimodal (comment, code) data to learn generalized code representations. The models are

then fine-tuned on task-specific datasets for downstream code-related tasks. However,

despite their demonstrated benefits, none of these models have been applied to IA.

However, adapting transformer-based models of code to the task of IA, and integrating

these models with structural information presents at least two major challenges. First, we

currently lack large-scale vetted data sets that would allow a neural model to be fine-tuned

on IA-specific code representations. This is due to the fact that deriving an IA dataset

is labor intensive, as impact sets cannot be easily extracted from software repositories

without manual validation. Second, while the general code representations produced by

pre-trained models could be directly used for similarity calculation for conceptual IA, they

still ignore the global context the code finds itself in, i.e., the structural dependencies that

illustrate how the code is used within a software system. Unlike other code understanding

tasks (i.e., code search) that can rely solely on isolated code snippets to extract semantics,

structural dependencies between code entities also play an important role in IA since

mutually dependent entities are likely to be affected by each other.

To overcome these limitations and advance the task of automated IA, we introduce

Athena, which enhances the understanding of the code with Transformer-based neural

models [209] and structural dependence graphs to capture relationships between code

entities. We perform IA at method-level granularity for code entities in the Java program-

ming language (PL). Specifically, Athena begins by constructing a software system’s

dependence graph, where nodes represent methods, and edges represent the dependence

relationship (i.e., call dependence and class-member dependence) between methods. We

then leverage neural code models including CodeBERT [72], UniXcoder [80], and Graph-

CodeBERT [81], prominent Transformer-based code models, for the initial extraction of

49

the embedding of the method. These pretrained neural code models are fine-tuned on

a code understanding task, namely code search, to learn richer representations that are

aware of underlying code intent and potentially transferring the additional knowledge

learned from code search to IA. To integrate global dependence information into local

code semantics, the initial method embeddings are further enhanced using an embedding

propagation strategy inspired by graph convolutional networks (GCN) [127] based on the

constructed dependence graphs.

Evaluating our proposed approach effectively also presents challenges. Existing IA

benchmarks tend to be outdated and are constructed from original/unvetted commits, but

as highlighted in multiple prior studies [129,130,164,214], tangling has a high prevalence

in these commits which is likely to affect the reliability of evaluation results of previous

IA techniques on these benchmarks. Therefore, to evaluate Athena for the task of IA,

we created a large-scale IA benchmark, called Alexandria, that leverages an existing

dataset of fine-grained, manually untangled commit information from bug-fixes [97]. The

benchmark consists of 910 commits across 25 open-source Java projects, which we use

to construct 4,405 IA tasks – where each task consists of a query method and a set of

impacted methods. Using the standard information retrieval metrics of mRR, mAP, and

HIT@10, we find Athena significantly (based on statistical tests) improve over the best

performed conceptual IA baseline by 10.34%, 9.55%, and 11.68% respectively.

4.2 Related Work

4.2.1 Impact Analysis Techniques

Typical IA techniques require a seed/starting entity to perform the analysis. Some start

with a change request [76, 206] in natural language form, while most start with code

entities [116,136,172] at different levels of granularity (e.g., classes, methods, statements),

since developers can usually identify at least one code entity that needs to be changed by

using feature location techniques [61] and their knowledge about software development.

50

The output of the IA (i.e., estimated impact set) is usually at the same granularity

level as the seed entity. Given that the class / file level IA [206] is too coarse and the

statement level IA [84] is too costly, most existing techniques choose to conduct IA at the

method level [136,215]. Moreover, Java, as one of the most commonly used object-oriented

programming languages (PLs), has been selected as the primary focus of IA more often

than any other PL. (e.g., C [84]).

In general, IA comprises two branches of techniques. One is to predict / infer the

potential impact of all possible changes [35, 38, 84] (i.e., dependence analysis); the other

is to reason about the actual impact sets of code changes [116, 136, 215]. Specifically,

the first branch assesses the user-perceived accuracy by creating the ground-truth impact

set based on the static program dependence analysis or dynamic execution differencing,

since they regard the real ground-truth as unknown. However, identifying the full set of

dependencies based on static analysis is uncertain, and execution differencing relies on

certain test cases and executions, which cannot cover all possible dependencies either. [33]

gives a comprehensive summary of the first branch of techniques, while our approach falls

into the second category, and we will now introduce the related techniques within this

category in detail.

The existing IA techniques in the second category can be further divided into four types

based on the information they analyze. i.e., structural, conceptual/textual, evolutionary,

or dynamic. Conventional IA approaches [21,30] that use program graphs or slicing tend

to generate very large impact sets [142], and most importantly, they ignore the conceptual

information encoded in the code (e.g., identifiers), which is also important for expressing

the intent of code entities. Since code entities with similar intents likely contribute to simi-

lar problem/solution domains, conceptual IA techniques [116,172,206,215] typically apply

IR-based (e.g., LSI) or machine learning-based (e.g., doc2vec [138]) approaches to code

to extract vectorized code semantics and estimate impact sets by computing a ranked list

based on cosine similarity of code entities. [172] quantitatively show that the conceptual

coupling is superior to the structural coupling-based measures for IA. Moreover, some IA

51

techniques analyze evolutionary couplings [109, 190, 255] extracted from multiple histori-

cal releases/commits of version control systems to discover frequent co-change patterns to

predict current change impacts, but sufficient historical data is not always available (e.g.,

for new projects), and sometimes previous change patterns may be outdated and mis-

leading. In addition, dynamic IA [29, 136] utilizes execution information (e.g., execution

traces, relations) to compute a more accurate impact set, but the computation overhead

is much greater than static IA. The quality of dynamic techniques relies heavily on the

representativeness of the test suites and/or profiles gathered during program execution.

Industrial case studies [16,28,56,84,204] indicate preferences for static IA techniques over

dynamic ones, as there is a lack of published studies reporting the adoption of dynamic

IA [33].

To further improve the accuracy of the impact set estimation, some research attempts

to combine existing techniques. [117] blend conceptual and evolutionary analysis showing

additional advantages over using either of them alone. [76] further augment them with

dynamic analysis to obtain more accurate impact sets. It should be noted that these

two hybrid techniques are only compared with their variants (i.e., using only one of the

components) to validate the effectiveness. A recent work [136] combines dynamic analysis

with structural analysis (i.e., data and call dependencies) demonstrating that dynamic

data sharing dependencies are complementary to dynamic call dependencies.

Our approach belongs to the set of hybrid analysis-based IA techniques, as Athena

extracts the semantics of the code and dependencies and computes a ranked list to esti-

mate the impact sets. Therefore, it avoids the associated limitations and drawbacks of

other categories of techniques (i.e., evolutionary and dynamic analysis) while retaining

the benefits of multiple information sources. LSI is the model most commonly used to

obtain code semantics for conceptual IA [76,117,172]. The latest and most closely related

work to ours is [215] which integrates LSI with doc2vec to improve code semantics by

considering the context of each code token within the code entity. They quantitatively

show that the combined model outperforms using LSI only in IA.

52

Unlike existing conceptual IA techniques, our approach (i) leverages advanced transformer-

based code models to obtain more meaningful code representations, and (ii) further en-

hances code semantics by embedding propagation based on structural dependence graphs.

To our knowledge, our approach is the first IA technique that integrates global struc-

tural information into local code semantics based on only a single release of the source

code without any additional information (e.g., previous releases and/or execution informa-

tion). Given that [215] has not made their implementation publicly available, we directly

use LSI and doc2vec independently as conceptual IA baselines for our work. This also

allows us to compare the performance of different models for code semantics extraction

when they are individually applied for IA.

4.2.2 Impact Analysis Benchmarks

Existing IA benchmarks [35,76,136] are typically constructed in two ways. The first type

of construction considers the impact sets of ground truth to be unknown and tries to create

them using program dependence analysis [34, 36] or execution differencing [35, 37, 38, 84].

However, computing a full set of program dependencies [33] is an undecidable problem.

As such, they are usually generated on the basis of artificial changes and/or by sampling

changes in real open-source projects. All possible changes to a code entity (only involving

one certain release of the code repository) are used as seeding entities.

The other more popular way for constructing IA benchmarks involves building multi-

ple co-changed sets of code entities, each of which is collected based on two consecutive

commits [136] or several grouped commits [215]. All entities within a cochanged set are

assumed to be affected by each other. To construct the ground truth, one [116] or a few

code entities [136] in the co-changed set are selected as the seed entity, and the remaining

others are served as the real impact set. Existing benchmarks/case studies in this cate-

gory usually consist of 3-6 open-source repositories, and the commits used are bug fixing

commits only [111] or are dominated by bug fixing commits [76]. However, the prevalence

of tangling [97,99,128,164] existing in commits negatively affects the reliability of the eval-

53

uation performance of techniques (e.g., bug localization [164], defect detection [98]) that

rely on commit data for testing due to the presence of noise. Tangled commits refer to the

changes to software which address multiple concerns at once. For example, a (original)

commit that claims to be fixing a bug may not only fix the bug, but also include additional

unrelated changes (e.g., refactorings). Although we have limited knowledge on the exact

impact of tangled commits on the reliability IA technique evaluations, the potential for

impact is clear — in tangled commits the co-changed code entities within a commit do not

all contribute to a single concern (e.g., bug fixing) and thus are not necessarily impacted

by each other, leading to inaccurate ground-truth impact sets. Given that previous studies

have confirmed the prevalence of tangled commits [97], it is highly likely that evaluations

of past techniques were affected by this phenomenon.

Our Alexandria dataset falls into the second category of the IA benchmark, but

with a notable key difference — it is built from untangled bug fixing commits [97]. Her-

bold et al.’s work quantitatively shows that tangled commits have a high prevalence,

and the authors manually untangle them by annotating line-level change types. Using

only co-changed code entities that have been manually verified to contribute to one con-

cern (i.e., bug fix), our benchmark contains more reliable ground-truth impact sets, and

this favorable characteristic is demonstrated quantitatively through experiments. To our

knowledge, our Alexandria is the first IA benchmark whose ground-truth impact sets

are built from manually validated untangled commits. Moreover, Alexandria contains

910 commits from 25 systems, which is greater than the past benchmarks.

4.3 ATHENA

In line with previous conceptual IA techniques [76,116,215], we formulate impact analysis

as an information retrieval task where if a developer intends to modify a method (i.e.,

query/seed method) in a software system, Athena will return a ranked list of other

methods that could be affected in descending order of likelihood. All methods, but the

54

Method
Embedding

Method Representation Extraction Embedding Propagation Impact Set Estimation1 2 3

Source Code Information

def hello_world():
 a = “hello“
 b = “world”
 print(a,b)

Tokens AST Data Flow

M1

M2

M3M4

M5

M7

M6

Multi-Head
Aention

Norm MLP Norm M1

M2

M3M4

M5

M7

M6

+ +

N=1 Method Neighborhood for M2

Original Method
Embeddings

M1

M2

M3M4

M5

M7

M6

Propagated Method
Embeddings

M1

M2

M3M4

M5

M7

M6

Change Set

M1 M2

eries

M1

M2

Estimated Impact Set

ery: M1
M2

Ranked
List:

1) M3
2) M6
3) M2

4) M4
5) M7
6) M5

1) M5
2) M3
3) M7

4) M6
5) M4
6) M1

Cosine
Similarity

Program
Dependence Graph

Figure 4.1: Overview of the Workflow of the Athena Impact Analysis Approach

query, are used as the search corpus. Formally, for a software system S containing a set of

methods S = {m1,m2, ...,mn}, a potential change to one of the methods mi ∈ S triggers

Athena to rank all other methods, thus estimating the impact set.

Figure 4.1 provides an overview of Athena. Athena begins by building a depen-

dence graph among all methods in a complete software system, where the nodes rep-

resent the methods and the edges represent the dependence relationships between the

methods. Each method is processed by a state-of-the-art Transformer-based code model

(e.g., GraphCodeBERT) to obtain an initial method representation considering the con-

text that exists within the method. These neural code models are then fine-tuned on

the code search task to generate richer code representations and potentially transfer the

additional knowledge learned from code search to IA. Next, Athena analyzes the global

dependencies and propagates information from the nodes of the ”neighbor” method in the

dependence graph to a given target method. Specifically, each initial method embedding

is updated/augmented based on a propagation strategy inspired by Graph Convolutional

Networks (GCNs) [127] so that the information of global dependences is integrated into

its local code semantics. To obtain a final ranking list, the cosine similarity between the

augmented representations of a given query method and each method in the corpus is

computed. Next, we discuss each step of Athena in detail.

55

4.3.1 Dependence Graph Generator

The initial step of Athena is to build a static dependence graph generator to capture

method dependencies across a software system. Essentially, we identify two methods as

having dependencies if there exists a caller-callee relationship between them (i.e., call

dependence) and/or if they belong to the same class (i.e., class member dependence).

Although certain existing tools such as WALA [73] and Soot [185] can produce static

call graphs for Java, they require JVM bytecode as input, thus necessitating compliable

source code. Although the latest version of Soot provides source code analysis, it limits

the source code to Java 7 and still requires internal compilation. Thus, these tools increase

the preprocessing time for IA and negatively affect their scalability. To better integrate

the graph generator into Athena and capture the dependencies of both call and class

members, we developed our own tool to generate static dependence graphs, which simply

takes the source code of a software system as input.

A dependence graph can be formally defined as G = (V,E), where V denotes a set of

method nodes and E denotes a set of edges representing the method dependence relation-

ships. Since impact analysis is usually performed on production entities (i.e., excluding

testing entities) [136], we first collect all .java production source files in a software system

and use the Tree Sitter library [32] to identify all the methods contained in these files.

The library enables the construction of a specific syntax tree for each file and supports

the search for various patterns (e.g., method calls, method declarations) in the tree. All

identified methods then serve as the nodes of the dependence graph. To precisely locate

each method and facilitate the process of method representation extraction, we attach to

each method node the complete method content (i.e., the declaration of the method with

its body), the name of the class to which it belongs and the path of the package.

Next, we construct the edges for the dependence graph. To capture the class member

dependencies, the edges are added between each pair of the methods in the same class.

Regarding call dependencies, we utilize the Tree-Sitter library to identify all method in-

56

vocation statements (e.g., receiver.method()) within each method and resolve these

statements by finding its callee methods. The edges are then added between each pair

of caller-callee methods. In general, we travel upward from each invocation statement to

find where the receiver is introduced by analyzing the declaration statements and the

arguments of the caller method. Then it is easy to obtain the class name of the callee

method and its belonging package path. In order to locate the callee method based on the

class name and the package path, we use both the method name and the # arguments

(rather than the complete signature) to ensure the efficiency and scalability of our gen-

erator. When the callee method is overloaded with the same number of arguments, we

add the edges from the caller method to each of these overloaded callee methods. It is

worth noting that combining the method name and # arguments helps filter quite a few

overloaded methods than using the method name only.

Although we can add directed edges from caller-to-callee methods, their semantics are

actually interrelated and mutually affect each other when performing IA. Thus, by us-

ing our tool, the dependence graph is constructed in an undirected manner. Moreover,

edges representing class member dependencies are distinguished from those representing

call dependencies by attaching each edge to its property (i.e., call or class member depen-

dence). If two methods have both types of dependencies, we add two edges with different

properties between them.

4.3.2 Code Representation Extraction

We then use one of three Transformer-based code models (CodeBERT, UniXcoder, or

GraphCodeBERT) to extract the initial embeddings of the method to perform IA, as

shown in Figure 4.1- 1 . In the case of GraphCodeBERT, it goes beyond the sequential

information of the code by considering the inherent structure of the code (i.e., data flow)

to encode the relation ’where the value comes from’ between variables. In this model, the

input is encoded by a multilayer bidirectional transformer containing a sequence of self-

attention and feedforward layers (i.e., multilayer perceptron (MLP)) with normalizations.

57

These pretrained models can directly produce code embeddings, but the self-supervised

objectives used during pre-training are quite different from IA, and most importantly,

the representations are not specifically learned for Java, but generally for multiple PLs.

Although these neural models can be further fine-tuned for downstream tasks, neither

GraphCodeBERT nor other Transformer-based code models have been fine-tuned or eval-

uated for IA due to the absence of large available IA training/fine-tuning datasets. IA

belongs to a general family of code understanding tasks (and hence is not generative),

and there are two other downstream understanding tasks that have been extensively re-

searched and evaluated, namely code search and clone detection. The code search aims to

retrieve relevant code given an NL query, while clone detection aims to predict whether

two code snippets can output similar results when given the same input. We leverage

code search as a proxy to potentially transfer additional knowledge learned from code

search during fine-tuning to enhance code semantics for IA. Although detection may ini-

tially seem more closely aligned with IA, we do not use it because (i) datasets such as

BigCloneBench [158, 202] which could be used for fine-tuning do not include comments,

which is likely to enhance code understanding; and (ii) instead of generating separate

code embeddings, the fine-tuned neural model for clone detection concatenates two code

snippets as a whole and only generate one embedding for them, thus making the following

embedding propagation process more difficult. They typically add a classifier on top of

the Transformer-based encoder to directly produce the probability of whether two code

snippets can yield similar results.

To fine-tune our neural code models for code search, we follow the pipelines recom-

mended in their corresponding papers. For example, for GraphCodeBERT, our best per-

forming model, we follow the authors’ recommendation [81] to use a Siamese framework

on the CodeSearchNet [107] Java split dataset. CodeSearchNet consists of 2.3 million

functions in six programming languages paired with NL descriptions (i.e., comments).

The CodeSearchNet Java split has been filtered by hand-crafted rules by [81] to remove

low-quality data and contains 164,923 bimodal (comment, code) pairs. Each code snippet

58

in the paired data is a method from a software GitHub repository with all comments

removed, and the corresponding comment is extracted from the first line of the method’s

documentation comment. The objective of fine-tuning is to map the code and its comment

onto the vectors close to each other to learn high-level intent-aware code semantics. Dur-

ing fine-tuning, the comment and code (with data flow extracted) are separately fed into a

comment encoder and a code encoder. These two encoders have identical model architec-

tures (i.e., GraphCodeBERT) and are initialized from the pre-trained GraphCodeBERT

parameters (i.e., weights and biases). The parameter updating is synchronized across

both encoders during fine-tuning based on the standard cross-entropy loss. We use the

AdamW [126] optimizer and the same hyperparameters (e.g., # epochs, learning rate,

batch size etc.) recommended by [81] for parameter updating, and the whole process was

performed on an Ubuntu 20.04 server with an NVIDIA A100 40GB GPU. The fine-tuned

GraphCodeBERT is expected to generate more meaningful representations of code that

are aware of the underlying intent.

When performing IA, we need to first preprocess the method content attached to

each method node in the generated dependence graph. Taking GraphCodeBERT as an

example, we first follow the CodeSearchNet preprocessing procedure [107] by extracting

the initial line of the documentation comment and the code-only data. The code is then

parsed into an abstract syntax tree (AST), the leaves of which are used to identify the

variable sequence for data flow construction. The input to the fine-tuned GraphCode-

BERT for IA is the concatenation of the comment, the source code, the set of variables

X = ([CLS], A, [SEP], C, [SEP], V) or X = ([CLS], C, [SEP], V). A, C and V stand

for the comment token sequence, the code token sequence, and the variable sequence, re-

spectively. [CLS] is a token for learning aggregated information from the entire sequence

during training, and its final representation is typically used for classification-related tasks.

[SEP] is a separation token that is used to split two types of data. Edges are added be-

tween variables in the variable sequence where a data flow relationship exists, and the

variables are aligned across source code and data flow. The input is then processed by

59

the fine-tuned encoder, and we take the average output of all the hidden states of the

last layer as the method representation. The input sequence length is set to 256 and the

output representation dimension is 768 to maintain consistency with GraphCodeBERT.

Finally, the initial method embeddings are generated for all the nodes of the method in

the dependence graph of a given software system.

4.3.3 Embedding Propagation

Although the initial embeddings effectively capture meaningful code semantics via the self-

attention mechanism, they are limited to the local context and lack the global dependence

of methods. To further improve code understanding, we utilize an embedding propagation

strategy that updates each embedding of the method by propagating the embeddings of its

neighbor methods based on the constructed dependence graph G, thus integrating the in-

formation of global structural dependence into local code semantics. We visualize this pro-

cess in Figure 4.1- 2 . Formally, this is represented as m′
i = f(mi,m

nebr
1 ,mnebr

2 , ...,mnebr
k),

where mi is the method that is being updated through the embedding propagation strat-

egy f with its neighbors mnebr
j (1 ≤ j ≤ k). In particular, our embedding propagation

strategy is inspired by the graph convolutional network [127] that adopts layer-wise prop-

agation in neural networks motivated by a localized first-order approximation of spectral

graph convolutions:

M ′ = σ(D̃− 1
2 ÃD̃− 1

2MW), (4.1)

where σ represents an activation function and W is a trainable weight matrix. Ã = A+IN

denotes the adjacency matrix of a graph G with self-connections. IN is the identity matrix

and D̃ii =
∑

j Ãij . This propagation strategy has been modified using a renormalization

method [127] to mitigate the effects of numerical instabilities and exploding / disappearing

gradients when matrix multiplication operators are repeated during deep neural network

training. Since we do not train our dependence graph G in this phase, our embedding

60

propagation strategy is directly derived from the first-order approximation of localized

spectral filters on graphs [57,87], which can be summarized as follows:

M ′ = (IN + wD− 1
2 (Ac +Acm)D− 1

2)M. (4.2)

M ∈ RN×F represents the matrix of all the method embeds with respect to the depen-

dence graph G and M ′ ∈ RN×F stands for the matrix in which each method embedding

is updated by its neighbor method embeddings. N denotes the number of nodes in the

method and F denotes the dimension of each embedding method (i.e., 768). Ac is the

adjacency matrix based on the call dependence edges of G, while Acm is the one based

on class dependence edges. Neither of them contains self-connections. D is the degree

matrix of (Ac + Acm) for normalization with respect to both rows and columns. w is

a constant that is responsible for balancing the information between methods and its

neighbor methods. According to this formula, if a method exhibits both call and class

member dependencies with its neighbor method, the embedding of this neighbor method

will be propagated/aggregated twice to the target method embedding. Intuitively, meth-

ods that share multiple dependencies are inherently more closely related than those with

only a single type of dependency. Moreover, in order to evaluate the effect of the dis-

tance of neighbor methods used for embedding propagation, neighbor methods in other

orders(hops) are also utilized in addition to the direct neighbors:

M ′ = (IN + w
∑
i

D
− 1

2
i (Ac

i +Acm
i)D

− 1
2

i)M, (4.3)

where 1 ≤ i ≤ 3 since we usually take into account neighbor methods within three or-

ders due to computational constraints. After the embedding propagation strategy has

completed, all the methods identified in a given software system will have an augmented

embed calculated by propagating the original method embedding from neighbors to the

target method, as illustrated at the top of Figure 4.1- 3 .

61

4.3.4 Impact Set Estimation

Finally, as illustrated in Figure 4.1- 3 , Athena calculates the cosine similarity between

the augmented embedding of a given query method and the augmented embeddings of

each of the methods in the search corpus. Based on the cosine similarity scores, Athena

returns a ranked list in descending order to help developers find other methods that are

possibly affected and likely to be modified.

4.4 Experimental Design

To evaluate the effectiveness of Athena in the impact analysis task, we investigate four

research questions (RQ):

RQ1: How effective is Athena with / without embedding propagation compared to con-

ceptual baselines on the impact analysis task?

RQ2: How do call and class member dependencies improve Athena’s overall effective-

ness in IA?

RQ3: How well does Athena perform on IA based on different configurations (e.g., using

other Transformer-based pre-trained code models)?

RQ4: How does the tangled benchmark affect the reliability of IA evaluation results?

RQ5: How do properties of different impact analysis tasks affect our studied techniques?

4.4.1 Impact Analysis Benchmark: Alexandria

Our IA benchmark Alexandria is constructed from manually untangled bug fixing com-

mits [97] in order to generate more reliable ground truth impact sets. Multiple prior stud-

ies [129, 168, 214], supported by manual validation, have consistently shown that tangled

commits naturally occur in codebases. However, all existing IA benchmarks [116,136,215],

built directly from these original/unvetted commits, inaccurately assume that all co-

62

changed entities in a commit address one single concern, thus impacted by each other.

Invalidated data (i.e., (query, ground truth impact set) pairs) are likely to be noisy, which

can affect the reliability of experimental results of previous IA techniques.

Recently, Herbold et al. [97] introduced a large data set that covers 3,498 commits

from 28 Java projects, with the purpose of studying the tangling that occurs in bug fixing

commits. All selected projects are from the Apache Software Foundation and were devel-

oped by contributors from the open-source community or industry. These projects cover

diverse application domains, such as build systems (e.g., ant-ivy), web applications (e.g.,

jspwiki), general purpose libraries (e.g., commons), etc.. In this dataset, each changed

line was annotated with its type of change, whether it was modified to fix a bug, or it

was a change to tests, whitespace, a documentation change, a refactoring or an improve-

ment of unrelated features. The data were annotated by four participants, and consensus

was obtained if at least three participants agreed on the annotation to ensure accuracy.

Although some existing datasets [128,130,164] also manually untangle the commits, they

either cover a limited sample of commits or typically perform untanglement at the com-

mit or file level, which is relatively coarse-grained so that the validated co-changed entities

cannot be identified at the method level. Therefore, we built our IA benchmark based

on the fine-grained untangled dataset [97] allowing us to know exactly which methods are

changed to address a single concern, thus generating a reliable ground truth for evaluation.

Co-Changed Set Construction. To create IA evaluation tasks, we systematically

analyzed the data set from [97]. Using only co-changed code entities that have been

rigorously manually verified to contribute to one concern, our benchmark Alexandria

contains more reliable ground-truth impact sets. Specifically, for each line changed in

production code files labeled as ’contributes to bug fix’, we added the corresponding

method to our benchmark by recording the information of GitHub Diff URL, repository

name, commit ID, parent commit ID, file path, method name, line numbers indicating

where the method starts and ends. Since [97] does not provide method-related information,

such as method names and line numbers of method boundaries, we used the srcML library

63

[54] to locate each changed method based on the changed line numbers labeled. We

utilized the snapshot/release of a software system that corresponds to the parent commit

ID, as that is the state in which the change would be applied. Then, for each parent

commit, we formulate a co-changed method set based on concurrently changed methods.

Since there is no clear indication of a query/seed method, i.e., which method would be

changed “first” in the commit, we treat each method in the set of co-changed methods as

a potential query, whereas the remaining others constitute the ground-truth impact set.

From developers’ point of view, they usually at least know where the change starts and

intend to know which other methods need to be modified. We further post-process the

dataset to exclude commits that contain only one changed method.

IA Task Definition and Settings Formally, for each set of co-changed methods

M = {m1,m2, ...,mn}, n ≥ 2, we perform IA with a query being ∀ mi ∈ M and the

corresponding set of ground truth impact being M − mi. We consider three different

settings where the search corpus differs. In the first setting (Setting 1 -whole), the search

corpus includes all methods except the query in all production files from the corresponding

snapshot of the software system. This setting provides a comprehensive evaluation scenario

in which all methods in the software system are taken into account. The similar process of

formulating co-changed methods in IA tasks has been widely adopted in previous work to

evaluate IA approaches [76, 116, 136]. In practice, conceptual IA techniques will generate

a ranked list of methods in the corpus, and developers would determine whether a method

should be modified by inspecting the corpus in the given order. After analyzing our

benchmark, it was observed that methods in the same class are more likely to be changed

together. To account for this and mitigate potential biases introduced by IA approaches

that equally prioritize methods within the same class as the query, we formulate two more

specific task settings. In our second setting, the methods in both the ground-truth impact

set and the search corpus are of the same class as the query (Setting 2 - inner). In our

third setting, the methods in both the ground-truth impact set and the search corpus are

from different classes than the query (Setting 3 - outer).

64

Table 4.1: Dataset statistics of our evaluation benchmark

Settings # queries # commits ground-truth set corpus
1 - whole 4,405 910 15.14 3,346
2 - inner 3,379 734 4.47 30
3 - outer 2,999 444 17.21 3,440

Dataset Statistics. Two software projects (i.e., santuario-java and wss4j) in [97] are

no longer accessible and for the software project eagle, we were unable to build any valid

co-changed method sets, i.e., the size of the co-changed set less than two. As a result, our

benchmark contains 25 Java software projects, and the lines of code (LOC), # commits,

tasks for each project is shown in Table 4.5. Moreover, for each of the three settings,

Table 4.1 shows # tasks, # commits, the average number of methods in the ground-truth

impact set and in the search corpus respectively. Compared to Setting 2 (inner), which

requires retrieving four or five affected methods out of 31 methods, Setting 3 (outer) is

much more challenging, requiring 17 or 18 methods to be retrieved from a larger corpus

with an average of 3,440 methods.

Tangled Counterpart. To analyze the effect of tangling commits on the evaluation of

IA techniques, we also construct a benchmark without manually untangling similar to what

previous IA benchmarks did [116,136,215]. Specifically, we directly construct co-changed

method sets from original/tangling commits, so the bug fix changes are likely to be tangled

with refactoring and unrelated improvement changes. Then, we compare the Alexandria

dataset with its tangled counterpart in terms of tasks with inconsistent pairs (query,

impact set). We observe that 606 tasks from 50 commits (setting 1 - Whole) in Alexandria

could have brought inaccurate ground-truth impact sets if not untangling. Furthermore,

the tangled Alexandria dataset has 856 tasks (out of 4,655) from 81 commits that are

inaccurate with respect to (query, ground-truth impact set) pairs. The increase in the

number of tasks and commits is due to an increase in the size of co-changed method sets,

i.e., more changed methods (for refactoring/unrelated improvement) are used as queries

and some previously filtered commits with co-changed set less than two are likely to be

65

added again.

4.4.2 Evaluation Metrics

We use standard information retrieval metrics to measure the effectiveness of Athena,

namely mRR (mean Reciprocal Rank), mAP (mean Average Precision) and HIT@k. For

each task, the list of ranked lists generated by Athena is compared to the set of ground-

truth impact data. Specifically, we calculated the rank of the first truly affected method

found in the ranked list, indicating the number of methods developers need to inspect

before finding the first that requires modification. The reciprocal rank is then calculated

for each task and these values are averaged across all tasks to derive the final mRR score.

Furthermore, we compute the AP score for each task and average these scores across all

tasks to obtain the final mAP score. AP is the average of the precision values calculated

after each method in the ground-truth impact set, which approximates the area under the

uninterpolated Precision-Recall curve. mAP scores measure the ability of the approach

to help developers identify all possible affected methods. Moreover, we use HIT@k to

measure the proportion of successful tasks for the cut point k. A successful task means

that the approach has found at least one truly affected method among the top-k results

it returns.

Many IA techniques [136] rely on Precision, Recall and F-measure for evaluation since

they consider IA as a binary classification task by finding possibly affected methods based

on structural/evolutionary/dynamic dependencies. Therefore, what these techniques pro-

duce is not a ranked list, but an uneven impact estimate set, which is then directly

compared to the ground truth impact set to compute an F score (i.e., the harmonic mean

of the precision and recall values). However, conceptual IA techniques [76, 116, 215], for-

mulate IA as an information retrieval task but still adapted prior Recall/Precision/F-score

metrics to the IR context. We argue that IR metrics provide a more realistic represen-

tation of the potential benefits that conceptual IA approaches may actually provide to a

developer in a recommender system setting. Furthermore, the mAP score is more accurate

66

than the F measure because it analyzes Precision-Recall relationship globally rather than

only based on the calculation of the mean value.

4.4.3 Baselines

We compare our approach Athena, with three baseline approaches that extract code

semantics for intent-aware IA. Specifically, two traditional IR-based approaches (i.e., TF-

IDF and LSI) and a deep learning-based model (i.e., doc2vec [138]) are used as our

conceptual IA baseline. To use IR for IA, we first build a corpus using all production

methods from a specific snapshot/commit of a software system. For each code token in

a method, we calculate its term frequency (TF), which represents the number of times

the token appears in the method, and the inverse document frequency (IDF), which is

the number of occurrences of the code token in all code tokens from the corpus. Each

method in the corpus is then represented as a TF-IDF vector for the following cosine

similarity computation. In line with previous conceptual IA techniques [76,215], LSI also

employs singular value decomposition (SVD) on the TF-IDF matrix consisting of TF-

IDF representations of all methods in the corpus, and the cosine similarity is computed

based on the new dimension-reduced method representations. As for doc2vec, we first

train the model using the distributed memory algorithm on the CodeSearchNet Java

split dataset by concatenating comment tokens with code tokens to maintain consistency

with the Transformer-based model (e.g., GraphCodeBERT) training process. The doc2vec

model can then generate representations based on the paragraph-based method for the

constructed IA tasks.

4.4.4 ATHENA Configurations

By using our approach Athena, we integrate global dependence information into local

code semantics to improve IA and set w = 0.5 for information balancing. We use Graph-

CodeBERT as the encoder for the final version of Athena, and in RQ3, as it achieves

the best IA performance. We also validate the effectiveness of initial method represen-

67

tations (without embedding propagation) obtained by GraphCodeBERT for conceptual

IA (Athenact) and conduct experiments by using call (Athenact+cd) or class member de-

pendencies (Athenact+cmd) with GraphCodeBERT in order to quantitatively show the

contribution of each type of dependence from the dependence graphs.

We also experimented with different encoders (i.e., CodeBERT [72] and UniXcoder [80])

that are also fine-tuned on the code search task following the similar procedure described

in section 5.3 in order to demonstrate the effectiveness of our approach when using other

Transformer-based code models. Moreover, we try neighbors of different orders/distances

(1-3) when propagating the embeddings based on structural dependence graphs. Addition-

ally, we conduct experiments based on different initial method representations obtained

by GraphCodeBERT, including with/without comment, using output of the [CLS] token

to represent methods, and using the pre-trained GraphCodeBert directly without finetun-

ing it on code search. Last, we also fine-tune the pretrained GraphCodeBERT on the

BigCloneBench dataset [158] constructed for the clone detection task following the same

procedure provided by [81], and employ this fine-tuned GraphCodeBERT to directly gen-

erate the probability of whether two methods are semantically similar for the IA task.

4.5 Evaluation Results

4.5.1 RQ3: Athena Performance on IA

Table 4.2: Effectiveness of baseline models and Athena with different components

Baseline Settings mRR mAP Hit@10 Athena Settings mRR mAP Hit@10

TF-IDF
1-whole 49.57 25.38 70.35

Athenact

whole 52.38 28.86 73.87
2-inner 73.86 64.69 94.61 inner 75.94 66.24 95.44
3-outer 34.50 16.50 49.35 outer 40.39 21.43 58.19

LSI
whole 49.98 25.64 69.80

Athena
whole 60.32 35.19 81.48

inner 74.11 64.97 94.53 inner 75.59 65.94 95.80
outer 34.85 16.68 49.45 outer 45.07 23.41 61.59

doc2vec
whole 43.62 19.97 58.59

Athenact+cd

whole 54.26 30.43 76.96
inner 68.93 59.05 90.97 inner 75.05 65.52 95.38
outer 29.63 12.35 40.25 outer 42.50 22.70 60.95

LSI (+comment)
whole 50.28 26.16 70.94

Athenact+cmd

whole 59.55 34.50 80.50
inner 73.83 64.69 94.61 inner 75.91 66.22 95.32
outer 34.60 19.93 49.91 outer 42.93 22.02 59.92

68

Table 4.2 presents Athena’s and baseline performance (%) on our Alexandria

benchmark for IA. All of these models take code-only information (i.e., without comment)

as input except LSI (+comm.), and we will show the performance of Athena (+comm.)

in the RQ3 Ablation Study. Table 4.2 reveal that the LSI model achieves the highest

effectiveness in the baseline models across three settings. Given the effect of the number

of related topics on LSI’s performance, we experimented with varying numbers of related

topics (for 0 to 2,000 in 100 increments) and selected the one with the best performance

(1,300) for the final LSI configuration. Moreover, LSI only slightly outperforms TF-IDF

on three metrics, indicating that the advantage is not significant if high-level code seman-

tics is extracted through SVD. Surprisingly, the doc2vec model performs worse than LSI.

This could be due to the fact that the IR-based approaches can directly build corpora

and measure importance of code tokens on the evaluation dataset, and thus excel at key-

word matching in favor of IA. However, for the deep learning-based model doc2vec, it is

primarily trained for high-level semantics understanding rather than keyword matching

with evaluation set unknown, but it struggles with understanding code intent compared

to Transformer-based code models. In addition, we add comment information to the input

for the best performing baseline LSI, but the with-comment version only performs slightly

better than the one without comments in Setting 1 (whole), but not in Setting 2 (inner)

and 3 (outer) on mRR and mAP, which does not result in the real improvement for IA.

We provide detailed explanation of this in RQ2.

As can be seen from Table 4.2, both Athenact (without embedding propagation) and

Athena outperforms LSI with statistical significance (Wilcoxon’s paired test p < 0.05) on

three metrics across all settings, and their improvements in Setting 1 (whole) can mainly

be attributed to the improvements in Setting 3 (outer). Specifically, Athenact improves

LSI by 2.4%/3.22% mRR/mAP in Setting 1, and 5.54%/4.75% mRR/mAP in Setting 3.

In fact, LSI performs quite well in Setting 2 (inner) because of its proficiency in keyword

matching and the observation that keyword overlap is more common among methods

within the same class as the query. Yet the Transformer-based model GraphCodeBERT

69

excels in understanding the underlying code semantics, resulting in superior performance

of Athenact in both Setting 2 and 3. However, the improvements from Setting 2 and 3

do not all contribute to the performance gain for Setting 1. The reason behind this is that

LSI tends to rank all methods in the same class as the query higher than those in other

classes and methods in the same class are more likely to be actually affected as indicated

by the ratio of ground-truth impact set size to the corpus size based on Table 4.1. Conse-

quently, LSI results in better relative performance in Setting 1 (i.e., smaller improvement

margin got by Athenact) than in Setting 3, but this does not change the relative positions

of methods within the same class (Setting 2) or methods in different classes (Setting 3).

More evidence supporting this explanation is provided in RQ2. In addition, when inte-

grating global dependence information into local code semantics, Athena substantially

outperforms LSI by 10.34%/9.55% and 10.22%/6.73% mRR/mAP in Setting 1 and 3 re-

spectively. Athena considers neighbor methods within two orders (hops) in dependence

graphs for embedding propagation.

4.5.2 RQ2: The Impact of Call Dependence and Class Member Depen-

dence

In Table 4.2, we also present the performance of Athena when utilizing either the call

(i.e.,Athenact+cd) or the class member dependences (i.e.,Athenact+cmd) for embedding

propagation based on dependence graphs, which allows us to investigate how each type

of dependency contributes to the effectiveness of Athena in IA. By comparing both

Athenact+cd and Athenact+cmd with Athenact, we observed that both of them outper-

form Athenact and their improvements in Setting 1 (whole) are also attributed to the

improvements in Setting 3 (outer). This confirms the accuracy of our dependence graph

generator when capturing either the call or class member dependence.

Although Athenact+cd and Athenact+cmd obtain comparable results in Setting 2

and Setting 3, Athenact+cmd outperforms Athenact+cd in Setting 1 by 5.29%/4.07%

on mRR/mAP. This is because in Athenact+cmd, the query method is integrated with

70

the information from all the other methods in the same class. As such it ranks all these

methods higher than those in other classes, as previously described in Section 4.5.1. To

further support this explanation, we experimented with another strategy for considering

only class member dependence. Instead of using embedding propagation, we directly

reduce the cosine distance of the query method and each method within the same class

as the query by 50% for IA. The results are quite good in Setting 1 (60.72%/37.23%

mRR/mAP), but as expected it behaves exactly the same as Athenact in Setting 2 and

3 because while all methods in the same class are drawn closer to the query, the relative

positions of methods in the same class or those in other classes remain unchanged. In

addition, when comparing both Athenact+cd and Athenact+cmd with Athena, both

contribute to Athena’s effectiveness particularly in Setting 1+3.

4.5.3 RQ3: Ablation Study

Table 4.3: Ablation Study of Athena on mRR and mAP

Settings
Encoders # neighbor orders

[CLS] token pretrain-only +comm. clone detect.
CodeBERT UniXcoder 1 order 3 orders
mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP

whole 58.40 33.37 60.19 34.61 59.42 34.33 59.90 34.73 56.36 32.10 59.92 32.86 59.92 34.96 47.26 22.72
inner 74.68 64.74 75.87 66.18 75.95 66.26 74.94 65.20 73.74 63.83 75.62 65.94 75.12 65.37 71.18 61.11
outer 43.09 22.08 43.93 22.64 43.80 22.56 44.66 23.12 42.67 22.12 41.48 19.99 45.11 23.54 32.42 14.43

Table 4.3 illustrates the various configurations of Athena for the ablation study.

Specifically, we first conducted experiments using different pre-trained Transformer-based

code models, namely CodeBERT and UniXcoder. Both of them were also fine-tuned on

the code search task in order to transfer additional knowledge learned from code search

to IA, similar to our approach with GraphCodeBERT. Also, we follow the procedures

recommended in the corresponding papers for finetuning and IA evaluation (e.g., AST

is only used for UniXcoder pretraining, but not for finetuning and evaluation). Since

CodeBERT only considers sequential code information during pretraining and finetuning,

the method representations obtained by CodeBERT are not as meaningful as those ob-

tained by GraphCodeBERT, which results in poorer performance than Athena on IA.

71

On the other hand, UniXcoder’s IA results are comparable to GraphCodeBERT for IA

in Setting 1 (whole), but it does not perform as well as GraphCodeBERT in Setting 3

(outer). This may be due to the fact that UniXcoder only utilizes AST information in

pretraining, but not in finetuning and evaluation, unlike GraphCodeBERT, which utilizes

data flow in all these phases, thus benefiting the understanding of the underlying code

intent. Moreover, we experimented with neighbor methods of different orders (1 and 3)

for embedding propagation for IA, and the results showed that utilizing neighbor methods

within two orders (Athena) is the optimal choice. Although considering the third order

involves more dependent methods and requires more computational resources, it does not

improve the IA performance.

Moreover, instead of taking the average output of all hidden states from the final

layer, we experimented with using the output of the [CLS] token of the Transformer-based

model (i.e., GraphCodeBERT) as the initial method representation for Athena. While

the output of the [CLS] token is widely used for code understanding-related tasks (e.g.,

code search), taking the average output of all hidden states is more suitable for representing

code semantics for IA, according to the results showed in Table 4.2 and Table 4.3. We

also conducted experiments by removing the code search fine-tuning of Athena and using

the pre-trained GraphCodeBERT directly for initial method embedding extraction, but

the pretrained GraphCodeBERT is less effective than the fine-tuned one (Athena) for

IA especially in Setting 3 (by 3.59%/3.42% mRR/mAP). The reason is that during the

code search finetuning, the code is mapped closer to its corresponding NL description,

further enhancing the model’s ability of understanding the underlying code intent and

thereby improving Athena’s effectiveness. In addition, we add the comment information

to the input of Athena, but the benefit isn’t obvious, probably because our IA evaluation

benchmark Alexandria directly collect developer-written methods from commit history,

resulting in some methods having (documentation) comments while others do not (in a

realistic setting for IA), which may negatively affect the similarity computation between

methods. However, the CodeSearchNet dataset used for code search fine-tuning is well-

72

curated to ensure each code snippet is paired with its corresponding NL description (i.e.,

the first line of the documentation comment). Therefore, for the sake of efficiency, our

final version of Athena takes code-only information as input with data flow extracted for

IA.

Table 4.4: The results of LSI and Athena on the filtered Alexandria and its tangled counter-
part.

Settings
LSI Athenact Athena

tangled untangled tangled untangled tangled untangled
mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP

whole 52.94 17.51 58.42 18.88 54.93 19.56 60.55 20.86 64.56 23.71 68.36 24.88
inner 80.72 70.36 82.17 71.50 81.37 69.03 82.67 70.69 81.81 69.16 83.65 71.05
outer 37.72 11.45 42.89 12.80 41.31 15.10 46.06 15.72 47.53 16.41 50.65 17.09

In addition, we replace code search with clone detection to use it as a proxy for

IA. Specifically, we finetuned the GraphCodeBERT for clone detection following the same

pipeline recommended by [81]. Instead of generating separate code embeddings, the model

directly produces the probability of whether two code snippets can yield similar results,

and as a result, the embedding propagation strategy cannot be applied. Therefore, we

utilize the generated probability scores to obtain a ranked list for IA and compare it with

Athenact (without embedding propagation). However, from Table 4.2 and Table 4.3, we

observe that using clone detection as a proxy is less effective than Athenact using code

search.

4.5.4 RQ4: The Performance of Athena and the Baseline on the Tangled

Benchmark Counterpart

In Table 4.4, we present the evaluation results of the best performing baseline LSI,

Athenact, and Athena on the filtered Alexandria and its corresponding tangled coun-

terpart using the mRR and mAP metrics. Specifically, after comparing our IA bench-

mark Alexandria with its tangled counterpart, we extract the tasks with inconsistent

(query, ground-truth impact set) pairs and conduct experiments on these filtered tasks

from Alexandria (untangled) and its tangled counterpart respectively. The statistics

of the filtered datasets are described in Section 4.4.1. As observed in Table 4.4, there

73

is a significant performance difference between untangled Alexandria and its tangled

counterpart across three settings when using any of the models, especially on mRR (rang-

ing from 3.80% to 5.62% in Setting 1). However, existing IA benchmarks are typically

built from tangled/original commits, which affects the reliability of evaluation results of

previous IA techniques. Moreover, as expected, each of the three models perform better

on untangled Alexandria than on the tangled version across 3 settings. The reason is

that each co-changed set in Alexandria was manually verified to address one single con-

cern, ensuring that methods within it are truly impacted by each other. In contrast, the

tangled counterpart is built from original/unvetted commits and the methods within each

co-changed set may not all contribute to one concern, thus not necessarily be impacted by

each other. Therefore, Identifying the methods that are necessarily impacted with respect

to the query is harder for each of the representative models.

4.5.5 RQ4: Qualitative Analyses on Impact Analysis Tasks

Table 4.5: Effectiveness of Athena and the baseline (LSI) on each software system

Repo Name LOC(k) # Commits # queries
Athena LSI

mRR mAP mRR mAP
ant-ivy 412.3 176 785 50.19 26.47 39.79 18.48
archiva 361.2 2 43 70.81 32.17 69.39 10.17
commons-bcel 168.3 18 138 66.07 30.79 57.76 21.68
commons-beanutils 67.5 11 42 65.64 44.58 67.67 43.64
commons-codec 55.1 8 41 67.78 52.79 57.65 34.91
commons-collections 136.3 15 73 47.84 24.80 41.43 18.85
commons-compress 147.3 61 260 51.67 32.99 45.26 23.73
commons-configuration 72.9 65 253 56.89 36.87 41.04 24.75
commons-dbcp 55.6 21 91 67.17 52.55 61.73 46.65
commons-digester 89.7 8 22 38.65 29.07 28.05 23.86
commons-io 102.5 19 58 64.34 49.13 52.16 32.53
commons-jcs 164 26 221 70.35 26.10 61.02 18.86
commons-lang 192.5 36 115 67.16 56.23 58.38 46.66
commons-math 431.1 124 589 65.93 42.02 52.43 29.20
commons-net 58.2 44 171 66.59 44.59 51.02 26.35
commons-scxml 43.8 28 114 50.32 34.62 45.82 31.19
commons-validator 42.3 12 35 62.74 56.51 51.70 40.29
commons-vfs 91.2 40 166 55.02 36.62 51.30 35.71
deltaspike 174.2 2 5 60.98 57.65 35.04 27.25
giraph 200.6 68 527 70.80 38.40 59.01 26.78
gora 132.4 40 174 49.31 26.93 41.91 23.59
jspwiki 439.4 1 12 87.50 40.03 100.00 70.28
opennlp 293.5 33 141 64.61 40.16 52.13 28.94
parquet 177.6 50 324 60.09 25.92 48.27 17.65
systemml 4000 2 5 47.15 41.60 41.63 31.25

We begin our analysis of IA tasks by looking at the performance of our studied

74

techniques across different studied software projects. Table 4.5 provides a finer-grained

picture of the improvements per repository our Athena model achieves over the LSI

baseline. As shown, Athena improves performance on 24 of 25 repositories in terms

of mAP and 23 of 25 in terms of mRR in setting 1 (whole). For the failing repository

commons-beanutils, we found that Athena substantially outperforms LSI in setting 3

(34.97%/30.58% vs.18.68%/12.37% mRR/mAP), but not in setting 2 (75.35%/64.92% vs.

88.37%/80.20% mRR/mAP). As for the repository jspwiki, it contains a single commit

with 12 methods in the constructed co-changed set, which corresponds to 12 IA tasks.

Among these 12 methods, 6 methods belong to one class, and the remainder are from

another class. After investigating the failed tasks, we found that LSI was able to iden-

tify the affected methods quite well when the query and the ground truth methods had

similar code lengths and a lot of keyword overlap, especially when they belonged to the

same class. Now that we have examined the performance of Athena across IA tasks at a

repository level, we will now discuss some exemplars from our benchmark that showcase

how incorporating both structural information and semantic information can benefit IA.

Example 1: The Importance of Semantics. Figure 4.2 (a) shows two meth-

ods from different classes. The top method checkStatusCode URL HttpURLConnection

from class BasicURLHandler is the query method and the bottom method checkStat

URL HttpMethodBase is in the corresponding ground-truth impact set. This is repre-

sentative of conceptual coupling [172], where the concepts of the two methods, i.e., both

performing a check on a status code, couples them together making it more likely that

a change in one would result in a change in the other. Utilizing the semantic infor-

mation between the methods, either through a traditional LSI or a Transformer-based

neural model is necessary to determine that these two methods are highly related. Since

they are not structurally dependent (via call or class member dependencies), structural

dependence-only approach is likely to fail on this scenario.

Example 2: The Importance of Richer Semantics and Integration of De-

pendence Graphs. Figure 4.2 (a) illustrates a scenario with three methods from two

75

public class BasicURLHandler extends AbstractURLHandler {

 private boolean checkStatusCode(URL url, HttpURLConnection con) throws IOException {
 int status = con.getResponseCode();
 if (status == HttpStatus.SC_OK) {
 return true;
 }
 Message.debug("HTTP response status: " + status + " url=" + url);
 if (status == HttpStatus.SC_PROXY_AUTHENTICATION_REQUIRED) {
 Message.warn("Your proxy requires authentication.");
 } else if (String.valueOf(status).startsWith("4")) {
 Message.verbose("CLIENT ERROR: " + con.getResponseMessage() + " url=" + url);
 } else if (String.valueOf(status).startsWith("5")) {
 Message.error("SERVER ERROR: " + con.getResponseMessage() + " url=" + url);
 }
 return false;
 }
}

public class HttpClientHandler extends AbstractURLHandler {

private boolean checkStatusCode(URL url, HttpMethodBase method) throws IOException {
 int status = method.getStatusCode();
 if (status == HttpStatus.SC_OK) {
 return true;
 }
 Message.debug("HTTP response status: " + status + " url=" + url);
 if (status == HttpStatus.SC_PROXY_AUTHENTICATION_REQUIRED) {
 Message.warn("Your proxy requires authentication.");
 } else if (String.valueOf(status).startsWith("4")) {
 Message.verbose("CLIENT ERROR: " + method.getStatusText() + " url=" + url);
 } else if (String.valueOf(status).startsWith("5")) {
 Message.error("SERVER ERROR: " + method.getStatusText() + " url=" + url);
 }

 return false;
 }
}

public class UrlValidator implements Serializable {
 public boolean isValid(String value) {
 if (value == null) {
 return false;
 }
 if (!ASCII_PATTERN.matcher(value).matches()) {
 // Non-ASCII input, try and convert HTTP domain
 return false;
 }
 // Check the whole url address structure
 Matcher urlMatcher = URL_PATTERN.matcher(value);

public class DomainValidator implements Serializable {
private static String unicodeToASCII(String input) {

 try {
 return /* java.net.IDN. */ toASCII(input);
 } catch (IllegalArgumentException e) { // input is not valid
 return input;
 }
 }
 public boolean isValid(String domain) {
 if (domain == null || domain.length() > 253) {
 return false;
 }
 domain = unicodeToASCII(domain); // TODO should this be before the length check?
 String[] groups = domainRegex.match(domain);
 if (groups != null && groups.length > 0) {
 return isValidTld(groups[0]);
 }
 return allowLocal && hostnameRegex.isValid(domain);
 }

}

(a) (b)

Figure 4.2: Two qualitative examples for illustrating the effectiveness of Athena.

different classes, where the method isValid from the class UrlValidator is the query,

and the method unicodeToASCII and isValid from the class DomainValidator are in

the ground-truth impact set. In this scenario, the baseline LSI ranks the unicodeToASCII

method quite high at 589 due to the limited keyword overlap. When using Athenact

(without embedding propagation), which leverages GraphCodeBERT for better code un-

derstanding, the rank of the unicodeToASCII method improves to 137. However, it’s

still relatively high, which means developers might need substantial effort to locate this

method. Remarkably, our Athena achieves a rank of 36, significantly outperforming the

baseline. To understand why this occurred, we found that the method isValid in the

DomainValidator class calls the unicodeToASCII method, which means these two meth-

ods have both call and class member dependencies. Through embedding propagation of

Athena, the unicodeToASCII method is updated with information from the isValid

method (in the DomainValidator class) that is more semantically similar to the query.

This additional information helps improve the rank of the ground truth, even though there

is no direct dependence relationship between the query and the unicodeToASCII.

As can be observed from these examples, there are clear benefits when code understand-

ing is enhanced by the Transformer-based neural model and structural dependence graphs,

76

and we saw this pattern hold after investigating additional cases where Athena outper-

forms the baseline LSI. The contextual information obtained from the global call/class

member dependencies among methods enriches the original semantics of the methods,

which indeed helps to identify the impact set associated with the given query.

4.6 Threats to Validity

4.6.1 Internal Validity

To reduce potential issues from internal threats to validity, we experimented with three

different DL models when validating our proposed approach of incorporating program

dependence graph information into local code semantics to improve IA. Additionally, we

constructed our benchmark from commits that have been manually annotated and had the

changes made to fix bugs untangled from other changes, such as those to documentation,

to ensure our benchmark is more reliable.

4.6.2 External Validity

To lessen the potential for threats to external validity, we used a significantly larger set

of projects, 25 compared to previous work that used around five, and tested our approach

across different DL models to show generalizability. One potential issue with generality is

that we only evaluated our approach on Java and Apache projects; therefore, our approach

may not generalize to other programming languages such as Python or to different types of

project. However, the DL models we used have shown success across multiple programming

languages, and so most likely the same would apply to our approach.

4.7 Chapter Summary

In this project, we introduce Athena, a novel technique for impact analysis that combines

Transformer-based neural code semantics with structural dependence graphs. Addition-

77

ally, we established a large benchmark for impact analysis, which has been manually

verified for bug-fixing commits. In our new benchmark, Athena demonstrates significant

improvements over the simple conceptual baseline (+10.34% mRR, +9.55% mAP, and

+11.68% HIT@10) and exhibits robust performance across software systems, with 23 of

25 systems showing improvement. Furthermore, our analysis reveals that the Athena’s

performance boost lies in its ability to more effectively identify impacted methods when

they are outside the query method’s class.

78

Chapter 5

Towards More Trustworthy Deep

Code Models through Multimodal

Out-of-Distribution Detection

Numerous ML models have been developed, including those for SE tasks, under the as-

sumption that training and testing data come from the same distribution. However,

training and testing distributions often differ as training datasets rarely cover the entire

distribution, while the testing distribution tends to shift over time. Hence, when con-

fronted with out-of-distribution (OOD) instances that differ from the training data, a

reliable and trustworthy SE ML model must be capable of detecting them to either ab-

stain from making predictions or potentially forward these OODs to appropriate models

handling other categories or tasks.

In this paper, we develop two types of SE-specific OOD detection models, unsuper-

vised and weakly supervised OOD detection for code. The unsupervised OOD detection

approach is trained solely on in-distribution samples, while the weakly supervised approach

utilizes a tiny number of OOD samples to further enhance the detection performance in

various OOD scenarios. Extensive experimental results demonstrate that our proposed

79

methods significantly outperform the baselines in detecting OOD samples from four dif-

ferent scenarios simultaneously and also positively impact a main code understanding

task.

5.1 Introduction

Extensive ML models have been developed under the assumption that training and testing

data come from the same distribution (i.e., closed-world assumption). However, this

assumption is often violated in practice, where deployed models often encounter out-of-

distribution (OOD) instances that are not seen in training [207]. For example, a model

trained on high-quality code may struggle to comprehend buggy code. Adapting ML

models to distribution changes is possible, but challenging and costly due to constantly

evolving data [152]. Moreover, even if the training data are up-to-date, models will still

encounter unforeseen scenarios in the open world setting. Failure to recognize an OOD

sample and, consequently, to produce incorrect predictions significantly compromises the

reliability of a model. A reliable and reliable ML model should not only achieve high

performance on samples from known distributions, i.e., in-distribution (ID) data, but also

accurately detect OOD samples, which can then either abstain from making predictions

or potentially be forwarded to appropriate models handling other distributions or tasks.

OOD detection has been extensively studied in computer vision (CV) [235] and natural

language processing (NLP) [145] on a range of tasks (e.g., image / sentence classification,

question answering). Existing OOD detectors typically design a scoring function to de-

rive confidence/ID scores, allowing the detection of OOD samples based on a predefined

threshold. These OOD detectors serve as an auxiliary function to the original ML models

and ensure a high proportion (e.g., 95%) [165] of ID data finally retained based on the

threshold. This is crucial to prevent the OOD auxiliary scoring from adversely affect-

ing ML models’ performance on their main image/language-related tasks. Current OOD

detection approaches are proposed in supervised, unsupervised, and weakly supervised

80

regimes depending on the availability of OOD data. The supervised approaches [95] learn

a classical binary classifier based on both ID and OOD data, but in practice it is hard to

assume the presence of a large data set that captures everything different from the ID data.

Unsupervised ones [160,252] only utilize ID data for training, but are likely to suffer from

poor performance. Recent studies have shown that weak supervision [123, 124, 161, 205]

can remarkably outperform unsupervised learning methods for the detection of anomalies

/ OOD. Some weakly supervised approaches [123,124,161] generate pseudolabeled OODs

by partially corrupting ID data based on output attention mappings, while others [205]

leverage a tiny collection of labeled OODs (e.g., 1% of ID data) to detect specific OOD

types in applications where access to OOD samples is limited and pseudo OOD genera-

tion is challenging [239]. However, none of these ML approaches have been applied in the

context of SE for code-related tasks.

Existing OOD detection research in SE primarily focuses on anomaly detection or

software defect detection. Anomaly detection techniques [82, 139, 149, 217] are designed

to detect anomalous system states (e.g., failed processes, availability issues, security inci-

dents) during system running based on monitoring data (e.g., logs, traces), but they still

cannot been applied to the code context. There also exists a body of research dedicated

to detecting suspicious defects in source code (e.g., vulnerability detection [40, 189, 199],

neural bug detection [18, 89]). Although defective source code represents a type of dis-

tribution shift from normal code, current defect detection techniques are not sufficient to

cover a broad range of unseen scenarios considered by OOD detection.

Therefore, the goal of this project is to address the OOD detection problem in the

context of SE for code-related tasks. Although transformer-based [209] NL-PL models

have shown remarkable success in code understanding and generation [80, 81, 232] utiliz-

ing bimodal data (i.e., comment and code), they often assume that training and testing

examples belong to the same distribution. Thus, these models may not guarantee the

robustness against OOD instances in the open world (as evidenced by [94] for NL Trans-

formers). For instance, a code search engine, which is trained on GitHub comment-based

81

queries and code, is likely to fail in user questions and code answers from StackOverflow.

In this project, we systematically investigate the ability of pre-trained NL-PL mod-

els [80,81,150] in detecting OOD instances and the impact of OOD detection on a down-

stream code task (i.e., code search). While NLP OOD detection techniques show promise

for adaptation to NL-PL models due to the similarity between NL and PL, they can only

detect textual OODs from uni-modal data. However, in the SE context for code-related

tasks, distribution shifts can occur in either modality (comment or code) or both of them.

An effective OOD code detector should be able to detect OOD from comments, code, or

both modalities, by utilizing multi-modal NL-PL pairs. Several multi-modal approaches

have been proposed for vision OOD detection [67, 165], utilizing information from both

images and their textual descriptions, but they are still designed to detect only visual

OODs.

To overcome these challenges, we develop two types of multimodal OOD detection

models to equip NL-PL models with OOD code detection capability. The first is unsu-

pervised (coined as COOD), which fine-tunes the NL-PL models to closely align NL-PL

representations solely from ID data [107] based on multimodal contrastive learning [170],

and then uses their prediction confidences as OOD scores. The contrastive learning objec-

tive is expected to effectively capture high-level alignment information within pairs (NL,

PL) to detect OOD. To further enhance the OOD detection performance, we propose

a weakly supervised OOD detection model, COOD+, which utilizes a tiny collection of

OOD samples (e.g., 1%) during model training. Current techniques in ML typically con-

sidered unsupervised contrastive learning [252] or outlier exposure [95,151], in conjunction

with a scoring function, limiting their ability to detect OOD from only one modality. In

contrast, our COOD+ integrates an improved contrastive learning module with a binary

OOD rejection module to effectively detect OODs from NL, PL, or both modalities. OOD

samples are then identified by a combination of two different scoring functions: the confi-

dence scores produced by the contrastive learning module and the prediction probabilities

of the binary OOD rejection module.

82

Due to the lack of evaluation benchmarks for OOD code detection, we create a new

benchmark tailored for code context following the construction principles in ML [160,252],

but containing more OOD scenarios: (1) aligned (NL, PL) pairs collected from a new

domain, e.g., from StackOverflow rather than GitHub, (2) misaligned (NL, PL) pairs,

(3) the presence of syntactic errors in NL descriptions, and (4) buggy source code. We

first evaluate the proposed models on two real-world datasets, CodeSearchNet-Java and

CodeSearchNet-Python, and establish a range of unsupervised and weakly-supervised

baselines for comparison. Experimental results show that both COOD and COOD+

models significantly outperform the best unsupervised and weakly-supervised baselines,

respectively. Specifically, our unsupervised COOD is moderately capable of detecting

OODs from three scenarios but does not perform well across all four scenarios. By in-

tegrating two modules, our COOD+ model effectively detects OODs from all scenarios

simultaneously.

Furthermore, we apply our approaches to improve the robustness of existing (NL, PL)

models for the code search task under the four OOD scenarios described above. By corrupt-

ing 15% of the testing dataset with OOD examples, we demonstrate that NL-PL models

actually are not robust to OOD samples. Specifically, the performance of a fine-tuned

GraphCodeBERT code search model drops by around 5% due to the presence of OODs.

Subsequently, we filter the corrupted testing dataset with our COOD/COOD+, and show

that our detectors successfully recover this performance loss and also improve the code

search performance compared to the original testing set. In summary, the contributions

are as follows.

• A novel OOD benchmark specifically designed for code contexts, encompassing mul-

tiple OOD scenarios;

• The first work to address OOD detection for code across four distinct scenarios;

• A multi-modal OOD detection framework for NL-PL pre-trained models, leveraging

contrastive learning in both unsupervised and weakly-supervised settings;

83

• A comprehensive evaluation showcasing the superior performance of our COOD and

COOD+ frameworks in detecting OOD samples across four scenarios;

• An online appendix providing the full codebase and experimental infrastructure of

our approaches [233].

5.2 Related Work

We review related work on OOD detection in various fields such as CV, NLP, and SE, and

then point out the unique characteristics of our approach.

5.2.1 OOD Detection in SE

To ensure the reliability and safety of large-scale software systems, extensive work [139,

240, 245] has been carried out on anomaly detection to identify anomalous system state

(e.g., failed processes, availability problems, security incidents) during system operation

based on monitoring data (not in code format). Specifically, monitoring data include

logs [139, 217], metrics (e.g., response time, CPU usage) [243], traces [82, 149], etc. Al-

though some approaches utilize supervised learning techniques [159, 247], others employ

unsupervised [68] or semisupervised learning [140,236] due to insufficient anomaly labels.

However, none of these anomaly detection techniques targets code-based OOD detection,

the main focus of our work. We mention this research line here since some existing OOD-

related work in ML uses the terms anomaly detection and (generalized) OOD detection

interchangeably [95], but anomaly detection in SE has distinct characteristics as described.

Furthermore, current defect detection techniques [158] in SE typically identify defects

by analyzing source code with extracted code semantic features. Research in vulnerabil-

ity detection focuses on security-related defects, such as buffer overflows and use-after-free.

Compared to conventional static tools [7,8], DL-based techniques [40,154,189,199] utilize

graph neural networks (GNN) or transformers to learn implicit vulnerability patterns from

the source code. Additionally, bug detection techniques [18,51,89,119] also fall under the

84

umbrella of defect detection but typically address semantically incorrect code (e.g., wrong

binary operators, variable misuse) which is not necessarily security-related and probably

syntactically feasible. Although our focus is also on the source code, defective code is only

considered as one scenario within the scope of our OOD detection problem.

More recently, several studies have explored the robustness and generalization of source

code models to different OOD scenarios [86, 103, 221]. Hu et al. introduced a bench-

mark dataset to assess the performance of code models under distribution shifts [103],

while others investigated fine-tuning strategies like low-rank adaptation [86] and contin-

ual learning [221] for enhanced generalization on OOD data. However, these studies did

not specifically tackle OOD detection, and existing unsupervised OOD detectors have

shown limited effectiveness for source code data [103]. In short, unlike previous work, our

study directly aims to improve the OOD detection performance of existing code-related

models, ensuring greater robustness and trustworthiness in the open world where many

unseen OOD scenarios may be encountered.

5.2.2 OOD Detection in CV and NLP

In the ML community, the detection of OOD [93,145,186,235] has been extensively studied

over the years, leading to a better defined and formulated task. The primary objective

of OOD detection here is to design an auxiliary ID-OOD classifier derived from neural-

based visual and/or textual models based on OOD scores. Given that correctly predicted

instances tend to have higher maximum softmax probabilities (MSP) than incorrectly

predicted and OOD instances, the MSP-based OOD scoring function [91,93] was initially

used to identify OOD samples. Subsequently, energy and distance-based scores [151, 201,

252] have also been used to derive OOD scores. For visual OOD data, existing techniques

often aim for multiclass classification tasks (e.g., image classification) and learn a K + 1

classifier assuming that the unseen space is included in the additional class [104,156]. The

OOD data utilized for evaluation are typically constructed from a completely different

dataset (out-domain data) or by holding out a subset of classes in a categorized dataset,

85

where one category is considered normal and the remaining categories are treated as OOD.

In the context of textual data, OOD detection techniques are applied to both clas-

sification tasks (e.g., sentiment/topic classification [123, 252]) and selective prediction

tasks [118, 208, 228] (e.g., question answering, semantic equivalence judgments). These

techniques rely on various algorithmic solutions including exposure to outliers [104, 242],

data augmentation [244, 251], contrastive learning [112, 252], etc.. Compared to tradi-

tional neural-based language models, pre-trained Transformer-based [209] models exhibit

greater robustness to distributional shifts and are more effective in identifying OOD in-

stances [94, 229]. In addition to the out-domain data, text-based OOD detection also

considers syntactic OOD data [160] due to the intrinsic characteristics of sentences. Syn-

tactic OOD and ID data come from the same domain, but the syntactic OOD data have

its word order shuffled, which allows for the measurement of OOD detectors’ sensitivity

to underlying syntactic information while preserving word frequency.

Some studies [200,213] have explored the incorporation of multimodal data into neural-

based models to improve OOD detection accuracy. Recently, CLIP-based methods [67,74,

165] have emerged as a promising approach to OOD detection utilizing vision-language

bimodal data, showing superior performance over unimodal data only. The main intuition

behind these approaches is to take advantage of the alignment between visual classes or

concepts and their textual descriptions. For example, Ming et al. [165] detect visual OOD

in an unsupervised manner by matching visual features with known ID concepts in the

corresponding textual descriptions.

However, these studies typically focus on detecting OOD data from at most two scenar-

ios (i.e., out-domain and shuffled text OODs) within a single modality. Even multimodal

approaches are often limited to detecting only visual OODs by additionally considering

accompanying textual descriptions. Our proposed approach aims to effectively identify

OOD samples from four different scenarios in two modalities (i.e., NL and PL). To

achieve this, we use a combination of different scoring functions from two different mod-

ules: cosine similarities of a contrastive learning module and prediction probabilities of a

86

binary OOD classifier.

5.3 Approach

In this section, we first formally define the OOD code detection problem for (NL, PL)

models (Sec. IV-A), then introduce the overall proposed framework (Sec. IV-B), and

finally present details of unsupervised COOD and weakly-supervised COOD+ in Sec. IV-

C and Sec. IV-D, respectively.

5.3.1 Problem Statement

Since current state-of-the-art code related models [80,81] typically extract code semantics

by capturing the semantic connection between the NL modalities (i.e., comment) and PL

(i.e., code) modalities, we formally defined OOD samples involving these two modalities

in the SE context following the convention in ML [235,252]. Consider a dataset comprising

training samples ((t1, c1), y1), ((t2, c2), y2), ... from the joint distribution P ((T,C), Y) over

the space (T , C)×Y, and a neural-based code model is trained to learn this distribution.

Here, ((t1, c1), y1) represents the first input pair of (comment, code) along with its predic-

tion of ground truth in the training corpus. T , C and Y are random variables on an input

(comment, code) space (T , C) and a output (semantic) space Y, respectively. OOD code

samples refer to instances that typically deviate from the overall training distribution due

to distribution shifts. The concept of distribution shift is very broad [186, 235] and can

occur in either the marginal distribution P (T,C), or both P (Y) and P (T,C).

We then formally define the OOD code detection task following [102, 123, 151, 205]

as follows. Given a main code-related task (e.g., clone detection, code search, etc.), the

objective here is to develop an auxiliary scoring function g : (T , C) → R that assigns

higher scores to normal instances where ((t, c), y) ∈ P ((T,C), Y), and lower scores to

OOD instances where ((t, c), y) /∈ P ((T,C), Y). Based on whether to use OOD instances

during the main-task training of pre-trained NL-PL models, we define OOD for code in

87

two settings, namely unsupervised and weakly supervised learning. For the unsupervised

setting, only normal data are used in the main-task training. Conversely, weakly super-

vised approaches utilize ID and a tiny collection of OOD data (e.g., 1% of ID data) [205]

in training. In this context, the output space Y is typically a binary set, indicating normal

or abnormal, which is probably unknown during inference. Due to the small number of

training OOD data, the OOD samples required by our COOD+ and other existing weakly

supervised approaches [184, 205] in ML can be generated at minimal cost and feasibly

verified by human experts when necessary.

5.3.2 Overview

Binary OOD
Rejection

ℒ!"

ID Probabilities

ℒ"#

Similarity Matrix

ID OOD

Contrastive
Learning

Unsupervised COOD

Weakly-Supervised COOD+

M
ulti-H

ead
A
ttention

N
orm

M
LP

N
orm

+ +

Code Encoder

M
ulti-H

ead
A
ttention

N
orm

M
LP

N
orm

+ +

Comment Encoder

GraphCodeBERT

GraphCodeBERT

Shared

Code

public static boolean isEqual(Object s1, Object s2)
{

return s1 == s2 | | (s1 != null) && s1.equals(s2);
}

Comment

A convenience function to check if two objects are equal .

Figure 5.1: The Overview of Our Proposed COOD and COOD+ Approaches for OOD Detection

Overall, there are two versions of our COOD approach: unsupervised COOD and

weakly supervised COOD +. Given a multimodal input (NL, PL), the unsupervised

COOD learns distinct representations based on a contrastive learning module utilizing a

pre-trained Transformer-based code representation model (i.e., GraphCodeBERT [81]).

Then, these representations are mapped to distance-based OOD detection scores in order

to indicate whether the test samples are OODs during inference. The weakly supervised

COOD+ further integrates an improved contrastive learning module with a binary OOD

88

rejection module to enhance the detection performance by using a very tiny number of

OOD data during model training. The OOD samples are then identified by the detection

scores produced by the contrastive learning module, as well as the prediction probabilities

of the binary OOD rejection module.

5.3.3 Unsupervised COOD

Our unsupervised COOD approach consists of a contrastive learning (CL) module trained

only on ID samples. Specifically, given (comment, code) pairs as input, we fine-tune a

comment encoder and a code encoder through a contrastive objective to learn discrim-

inative features, which are expected to help identify OOD samples based on a scoring

function.

The (comment, code) pairs are first converted into the comment and code represen-

tations, which are processed by the comment and code encoder, respectively. We use

the pre-trained GraphCodeBERT model [81] as the encoder architecture (i.e., backbone).

GraphCodeBERT is a Transformer-based model pre-trained on six PLs by taking the

(comment, code) pairs as well as the data flow graph of the code as input, which has

shown superior performance on code understanding and generation tasks. All the rep-

resentations of the last hidden states of the GraphCodeBERT encoder are averaged to

obtain the sequence-level features of comment and code.

Contrastive Learning Module. To achieve the contrastive learning objective, we

fine-tune the base (GraphCodeBERT) encoders with the InfoNCE loss [170]. The com-

ment and code encoders follow the Siamese architecture [80] since they are designed to

be identical subnetworks with the same GraphCodeBERT backbones, in which their pa-

rameters (i.e., weights and biases) are shared during fine-tuning. Parameter sharing can

reduce the model size and has shown state-of-the-art performance for the code search

task [191]. To extract discriminative features for (comment, code) pairs, we organize them

into functionally-similar positive pairs and dissimilar negative (unpaired) pairs. Through

a contrastive objective, positive pairs are drawn together, while unpaired comment and

89

code are pulled apart. Specifically, for each positive (comment, code) pair (ti, ci) in the

batch, the code in each of other pairs and ti are constructed as in-batch negatives, sim-

ilarly for the comment side. The loss function then formulates the contrastive learning

as a classification task, which maximizes the probability of selecting positives along the

diagonal of the similarity matrix (as shown in Fig. 5.1) by taking the softmax of projected

embedding similarities across the batch. The loss function can be summarized as follows:

LCL = − 1

2N
(

N∑
n=1

log
esim(vti ,vci)/τ∑N
j=1 e

sim(vti ,vcj)/τ
+

N∑
n=1

log
esim(vti ,vci)/τ∑N
j=1 e

sim(vtj ,vci)/τ
) (5.1)

where vti and vci represent the extracted features of the comment ti and the code ci.

τ is the temperature hyperparameter, which is set to 0.07 following previous work [191].

sim(vci , vti) and sim(vti , vcj)/sim(vtj , vci) represent the cosine similarities between com-

ment and code features for positive and negative pairs, respectively. N is the number

of input pairs in the batch. InfoNCE loss is designed for self-supervised learning and

learns to distinguish positive pairs from in-batch negatives. Compared to other contrastive

losses [122,252], it can take advantage of large batch size to automatically construct many

diverse in-batch negatives for robustness representation learning, which is more effective

to capture the alignment information between comment and code.

Scoring Function. Existing OOD detection techniques in ML derive scoring func-

tions based on model’s output, which typically map the learned class-probabilistic dis-

tributions to OOD detection scores for testing samples. Maximum Softmax Probability

(MSP) [92] is commonly used for OOD scoring. This method uses the maximum classifi-

cation probability maxl∈L softmax (f(vt, vc)), where f(vt, vc) is the output of the classifi-

cation model, with low scores indicating low likelihoods of being OOD. However, NL-PL

code search models typically utilize similarity retrieval scores of NL-PL output repre-

sentations to make predictions. Therefore, to enable simultaneous similarity and OOD

inference, we alternatively extract cosine similarity scores for the testing of NL-PL pairs

as OOD detection scores, denoted as PCL = sim(vc, vt). The underlying intuition behind

90

this scoring metric is that OOD testing samples should receive low retrieval confidence

from the model fine-tuned on ID data, which establishes a closer relationship between ID

(comment, code) pairs. Hence, this scoring function also assigns higher scores to ID data

and lower scores to OOD data, similar to previous scoring methods.

5.3.4 Weakly-Supervised COOD+

To further enhance the performance of unsupervised COOD, we extend it to a weakly su-

pervised detection model, called COOD+, which takes advantage of a few OOD examples.

Inspired by [65], our COOD + combines improved contrastive learning (CL) and a binary

OOD rejection classifier (BC). The improved CL module adopts a margin-based loss [230]

which enforces a margin of difference between the cosine similarities of the aligned and

unaligned pairs (comment, code) and restricts the cosine similarities of OOD pairs below

another margin. The BC module integrates features from both comments and code to

calculate the probabilities of OOD pairs. The OOD scoring function is then designed by

combining the cosine similarity scores from the CL module and the prediction probabil-

ities from the BC module. Below, we detail each component of our weakly supervised

COOD+.

Improved Contrastive Learning (CL) Module. Given a batch of N input pairs

(comprising N −K ID pairs and K OOD pairs), latent representations are first obtained

from the comment and code encoders. The margin-based loss is then leveraged in the

CL module to distinguish representations of ID and OOD data by constraining the cosine

similarity. Specifically, the margin-based contrastive loss is first applied to the N − K

ID code to maximize the difference between aligned pairs (comment, code) and incorrect

pairs for each batch:

LID =
N−K∑
i=1

 1

N

N∑
j=1,j ̸=i

max
(
0,m− s(vt+i

, vc+i
) + s(vt−j

, vc+i
)
) (5.2)

s(vt+i
, vc+i

) represents the cosine similarity of representations between each aligned ID

91

pair from all the N −K aligned pairs, and s(vt−j
, vc+i

) represents the cosine similarity of

representations between each ID code and all the other N−1 comments (i.e., the comment

is either not aligned with the ID code or from OOD comments). Thus, this margin-based

loss encourages the difference between the aligned pairs and the incorrect pairs greater

than margin m.

Regarding the K OOD code, we enforce a constraint on the cosine similarity between

each OOD code and all the comments, ensuring that the similarity remains below a mar-

gin m. This constraint is necessary because each OOD code should not align with its

corresponding comment, nor with any of the other K − 1 OOD comments and the N −K

ID comments. The loss function is denoted as follows:

LOOD =

K∑
k=1

(
1

N

N∑
i=1

max
(
0,−m+ sim(t−j , c

−
k)
))

, (5.3)

where sim(t−j , c
−
k) represents the cosine similarity between each of the K OOD code and

all N comments. Finally, the overall loss for the contrastive module can be expressed as:

LCL =
1

N

(
LID + LOOD

)
. (5.4)

Binary OOD Rejection (BC) Module. Besides the CL module, we also introduce

a classification module under weakly-supervision for identifying OOD samples. Inspired by

the Replaced Token Detection (RTD) objective utilized in [72], we bypass the generation

phase since our OOD data are generated prior to training. Therefore, we directly train a

rejection network responsible for determining whether (comment, code) pairs are OOD or

not, which can be framed as a binary classification problem. Our binary OOD rejection

network comprises a 3-layer fully-connected neural network with Tanh activation, and the

input is based on the concatenation of features from the comment and code encoders:

vi = (vti , vci , vti − vci , vti + vci). Apart from utilizing the comment and code features, we

also incorporate feature subtraction vti − vci and aggregation vti + vci . Additionally, we

apply the sigmoid function to the output layer, producing a prediction probability that

92

indicates whether the sample is OOD. We then use binary cross entropy loss for this

module:

LBC =
1

N

N−K∑
i=1

(yi log p(vi) + (1− yi) log(1− p(vi))), (5.5)

where p(vi) is the output probability of the BC module, and yi ∈ [0, 1] is the ground-truth

label. yi = 1 indicates the input sample is an inlier, while yi = 0 signifies it is an outlier.

Hence, for weakly-supervised COOD+, we combine the objectives of the CL and the

BC modules to jointly train our model, where λ is a weight used to balance the loss

functions:

L = LCL + λLBC . (5.6)

Combined Scoring Function. Similar to the unsupervised COOD approach, we utilize

the diagonals of the similarity matrix as the OOD detection scores obtained from the CL

module. To further improve the detection performance of the weakly-supervised version,

we combine these PCL scores with the output probabilities of the BC module, denoted as

PBC . Here, we convert cosine similarity scores into probabilities using the sigmoid function

PCL∗ = σ(sim(vc, vt)), then use multiplication to create the overall scoring function,

yielding P ID = PCL∗ × PBC . We anticipate that higher scores will be assigned to ID

pairs, while lower scores will be assigned to OOD pairs. This combined scoring function

aims to enhance the discrimination between inliers and outliers, leading to more effective

OOD detection.

5.4 Empirical Evaluation Design

To evaluate the performance of the proposed approaches in four scenarios, we investigate

the following research questions:

93

RQ1: How effective is the proposed unsupervised COOD when compared to unsupervised

baselines?

RQ2: How effective is the proposed weakly-supervised COOD+ when compared to weakly-

supervised baselines?

RQ3: How effective is the proposed weakly-supervised COOD+ when using different mod-

ules or encode backbone?

RQ4: Is the main task (Code Search) performance affected by our COOD/COOD+ aux-

iliary, and to what extent?

5.4.1 Datasets

In our experiments, we rely on two benchmark datasets: CodeSearchNet (CSN) [81] and

TLCS [188]. CSN contains bimodal data points consisting of code paired with function-

level NL descriptions (i.e., first lines of documentation comments) in six PLs (e.g., Python,

Java) collected from GitHub repositories. While CSN was originally created for a specific

downstream task (i.e., code search), it has since been widely adopted by large (NL, PL)

models [80,81] for pre-training due to the informative nature of bimodal instances. Large

NL-PL models are first pre-trained across all six languages, and then further fine-tuned

for a specific PL for some downstream task to enhance performance. For code search, the

goal is to retrieve the most relevant code given a NL query, where CSN is widely used to

further fine-tune a PL-specific code search model [72].

Salza et al. [188] used training samples from CSN for pre-training, and created a new

dataset sourced from StackOverflow (SO) for fine-tuning the code search model, involv-

ing only three PLs: Java, Python, and JavaScript. Specifically, they leverage SO user

questions as search queries and accepted answers as retrieved code snippets, which differ

from GitHub comments and the corresponding code in CSN. We refer to this new dataset

as TLCS. Existing work [15, 157, 234] investigated code clones between SO and GitHub,

demonstrating there exists only 1-3% code reuse. Besides code, user questions in SO

94

are typically formulated before code answers, without concrete knowledge of what code

answers will be, and are mostly written by end-users. Conversely, in GitHub, method doc-

strings (i.e., comments) are often written following code snippets, and are mostly written

by developers. These distinctions cause performance shortfall when directly applying mod-

els trained on CSN to TLCS without further fine-tuning or transfer learning [80,105,188].

5.4.2 OOD Scenarios

We design four distinct OOD scenarios using the datasets described above, with CSN-Java

and CSN-Python as inliers due to their common use for the pre-training of code models.

Scenario 1: Out-domain. Following existing ML work [94, 171,252], we create an out-

of-domain setting by choosing OOD samples from a different dataset than the training

data. Thus, samples from TLCS-Java or TLCS-Python are treated as outliers accordingly.

Inliers and their corresponding outliers belong to the same PL to ensure approaches don’t

identify OODs based on syntax differences between PLs but on data domains: GitHub vs.

SO. Prior studies [210] show that CSN queries are longer than SO questions on average,

so we sampled TLCS questions and answers to match the length distribution of CSN

comments and code, to avoid OOD approaches exploiting spurious cues of query length

differences. We didn’t consider other code search datasets [144, 178, 238] because they

either contain only one of the PLs (Python or Java) or have a smaller dataset size.

Scenario 2: Misaligned. In this scenario, we shuffle normal NL-PL pairs so that each

code doesn’t match its NL description. Although the NL modality sourced from attached

comments in code are typically aligned with the PL modality, documentation errors may

still occur and not effectively filtered by handcrafted rules [81].

Scenario 3: Shuffled-comment. For (comment, code) pairs, we modify the syntactic

information in each comment by shuffling 20% of selected tokens using a seeded random

algorithm [193] with positions of stopwords and punctuations unchanged. No changes are

made to the code for this scenario. This scenario is inspired by [160,194]. [194] discovered

that NL pre-trained models are insensitive to permuted sentences, which contrasts with

95

human behavior as humans struggle to understand ungrammatical sentences, or interpret

a completely different meaning from a few changes in word order. [160] further introduces

syntactic (shuffling) outliers into NL pre-training corpora to enhance OOD robustness and

NL understanding performance.

Scenario 4: Buggy-code. We create buggy code using a semantic mutation algorithm

which injects more natural and realistic bugs into code than other traditional loose/strict

mutators [182]. This simulates buggy programs that the model may encounter during test-

ing, typically absent from the training dataset, and should be taken into account by OOD

code detectors according to the OOD definition [89]. We avoid using real bug/vulnerability

datasets [115,224,254] due to limitations like the absence of paired comments, lack of sup-

port for Python or Java, introduction to a new dataset domain etc.. We generate buggy

code for each code in CSN-Java and CSN-Python using [182] to serve as outliers, ensur-

ing the inliers and outliers are from the same dataset domain with the only difference

being normal vs. buggy code. We focus on variable-misuse bugs, as only this mutation

algorithm is available for both Python and Java in [182]. Variable-misuses occur when a

variable name is used but another was meant in scope, and often remain undetected after

compilation and regarded as hard-to-detect by recent bug detection techniques [89, 181].

Comments remain unchanged for this scenario.

5.4.3 Model Configurations

For the weakly-supervised COOD+, we experiment with either the contrastive learning

module (COOD+ CL) or the binary OOD rejection module (COOD+ BC) to compare

against the combined model. All models are trained using the Adam optimizer with a

learning rate of 1e − 5, and a linear schedule with 10% warmup steps. The batch size is

set to 64, and the number of training epochs is 10. For the COOD+ CL and COOD+, the

margins in the margin-based loss are set to 0.2. The balancing value λ is set to 0.2 after

a grid search. The hidden layer size in the binary OOD rejection module for COOD+ is

384 (768/2). We also explore the robustness and agnosticism of our COOD+ approach to

96

different NL-PL models by replacing the GraphCodeBERT encoder with CodeBERT [72],

UniXcoder [80], and ContraBERT [150].

Table 5.1: Dataset statistics for weakly-supervised COOD+.
CodeSearchNet-Java CodeSearchNet-Python
train valid test train valid test

ID 142,502 15,838 2,199 217,577 24,178 4,281
Out-domain 1,484 164 2,191 2,266 251 2,983
Misaligned 1,483 163 2,191 2,265 251 2,983

Shuffled-comment 1,478 163 2,183 2,264 251 2,978
Buggy-code 1,484 164 2,191 2,266 251 1,693

5.4.4 OOD Detection Model Training and Measurement

For unsupervised COOD, we use only ID data for model training, thus involving all training

data from CSN-Python and CSN-Java, with 10% randomly sampled for validation. We

avoid using the CSN development dataset for validation due to its smaller size. For weakly-

supervised COOD+, we randomly select 1% of the training data and replaced them with

OOD samples generated for each scenario (following [205]), resulting in a total of 4% OOD

samples and 96% ID samples for training. During inference, both COOD and COOD+

utilize the same ratio (20%) for inliers and outliers from each scenario, which is more

convincing than using an imbalanced dataset (i.e., tiny number of OOD data). Detailed

dataset statistics are provided in the Table 4.1. Since all outliers are randomly selected,

we report average OOD detection results across five random seeds of the test dataset to

ensure evaluation reliability and reproducibility.

Following prior work in ML [96,156], we use two standard metrics to measure the effec-

tiveness of our COOD/COOD+ models: the area under the receiver operating character-

istic curve (AUROC) and the false positive rate at 95% (FPR95). AUROC is threshold-

independent, calculating the area under the ROC curve over a range of threshold values,

representing the trade-off between true positive rate and false positive rate. It quantifies

the probability that a positive example (ID sample) receives a higher score than a negative

one (OOD sample). Higher AUROC indicates better performance. Additionally, FPR95

97

corresponds to the false positive rate (FPR) when the true positive rate of ID samples is

95%. FPR95 is threshold-dependent, where OODs are identified by setting a threshold

σ with POOD < 1 − σ (P ID > σ) so that a high fraction (95%) of ID data is above the

threshold. It measures the proportion of OOD samples that are mistakenly classified when

95% of ID samples are correctly recalled based on the threshold. Lower FPR95 indicates

better performance.

5.4.5 Baselines

We compare our COOD/COOD+ against various OOD detection baselines, including

adaptations of existing unsupervised NLP OOD approaches on NL-PL encoders (1-2),

weakly-supervised approaches based on outlier exposure (3), and neural bug detection

techniques (4-5). Since unsupervised approaches (1-2) rely on classification outputs for

OOD scoring, we reformulate code search as binary classification to fine-tune the encoders

similarly to [72]. (1-2) is supervised for code search, but unsupervised for OOD detec-

tion. For weakly-supervised baselines (3-5), we use the same number of OOD samples as

COOD+ for a fair comparison. Note that the encoder backbone of (1-3) is also Graph-

CodeBERT. (4-5) are specifically designed for neural bug detection, thus not requiring

other encoder backbone for OOD detection.

1. Supervised Contrastive Learning For Classification (SCL) [122]. This method

fine-tunes transformer-based classification models by maximizing similarity of input

pairs if they are from the same class and minimize it otherwise. Following [252], we

adopts MSP, Energy, and Mahalanobis OOD scoring algorithms for OOD detection.

2. Margin-based Contrastive Learning for Classification (MCL) [252]. This ap-

proach fine-tunes transformer-based classification models by minimizing the L2 dis-

tances between instances from the same class, and encouraging the L2 distances be-

tween instances of different classes to exceed a margin. We also detect OODs by

applying MSP, Energy, and Mahalanobis OOD scoring algorithms.

98

3. Energy-based Outlier Exposure (EOE) [151]. This approach uses a few auxiliary

OOD data to fine-tune the classification model with an energy-based margin loss [151],

and then utilize Energy scores for OOD detection.

4. CuBERT [119]. CuBERT is pre-trained on a large code corpus using masked language

modeling, then fine-tuned for bug detection and repair. We adapt CuBERT for OOD

classification by alternatively fine-tuning it on our datasets with comments appended

to their corresponding code, as CuBERT only accepts single instance inputs.

5. 2P-CuBERT [89]. This method enhances CuBERT’s bug detection accuracy with

a two-phase fine-tuning approach. The first phase utilizes contrastive learning on

generated synthetic buggy code [18]. For the second phase, we alternatively fine-tune

CuBERT to detect OOD using our datasets. Results are reported only for CSN-Python

due to the lack of Java bug generation algorithms in [89].

5.4.6 Main Task Performance Analysis

An effective OOD detector, serving as an auxiliary component, should identify and reject

OOD samples without negatively impacting the original model’s performance on the main

downstream task with ID data [252]. Consequently, we validate the effectiveness of our

COOD/COOD+ auxiliary on the code search task using the official evaluation bench-

mark [81, 150] by calculating the mean reciprocal rank (mRR) for each pair of comment-

code data over distractor codes in the testing code corpus. Specifically, we first measure

the performance of original GraphCodeBERT code search model on both ID and OOD

data, whose performance is expected to be negatively affected with the presence of OOD

samples. Then, we utilize our COOD/COOD+ auxiliary to filter the testing dataset by

setting a threshold to retain 95% of ID instances with higher scores (following existing

ML work [165] and the FPR95 definition), as real-world deployment typically involves few

OODs. Finally, we directly use the fine-tuned encoder in COOD/COOD+ to perform code

search but on the retained ID instances, and compare this performance with that on the

99

ground-truth ID instances. If the performance loss is recovered by using COOD/COOD+,

we actually enhance the trustworthiness and robustness of the original code search model

(as shown in Sec. VI-D). Here trustworthiness and robustness mean that predictions of

code models become more reliable when encountering OOD data in real-world deploy-

ment. Note that the dataset used for COOD/COOD+ training is the same as that used

for PL-specific training of existing SOTA code search models.

Table 5.2: Effectiveness of our COOD and COOD+ models compared with the baselines on the
CSN-Python dataset.

Approaches
Out-domain+ID Misaligned+ID Shuffled-comment+ ID Buggy-code+ ID Overall (All OODs+ID)

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
Unsupervised

SCL+MSP 78.21 68.93 49.80 97.23 60.91 90.36 49.23 95.26 60.79 87.05

SCL+Energy 77.76 70.13 65.07 96.11 61.24 90.04 49.58 95.00 65.09 86.95

SCL+Maha 73.34 82.82 73.21 92.13 68.03 87.02 53.89 92.43 68.72 88.14

MCL+MSP 81.18 65.57 53.51 96.43 62.17 90.44 48.69 94.42 63.11 85.78

MCL+Energy 82.55 64.03 62.57 95.43 63.03 90.52 48.26 94.90 66.02 85.16

MCL+Maha 53.05 94.60 62.47 93.12 49.23 95.73 51.13 93.64 54.31 94.35

COOD 86.60 48.25 99.85 0.16 72.82 85.18 49.17 93.58 80.50 52.31

Weakly-supervised

EOE 98.96 3.26 91.18 50.03 98.37 4.07 94.78 24.69 95.95 20.02

CuBERT 92.56 14.46 91.13 17.33 88.92 21.74 60.93 77.73 86.11 27.38

2P-CuBERT 92.26 15.16 84.42 30.83 86.38 26.92 92.87 13.94 88.51 22.65

COOD+ 98.80 4.30 99.53 0.40 98.02 6.52 97.90 5.96 98.64 4.09
COOD+ CL 93.91 25.44 99.89 0.17 82.57 72.97 52.56 93.99 85.83 42.57
COOD+ BC 96.49 8.67 74.27 61.38 97.53 5.68 95.71 10.95 90.43 22.98

Table 5.3: Effectiveness of our COOD and COOD+ models compared with the baselines on the
CSN-Java dataset.
Approaches

Out-domain+ID Misaligned+ID Shuffled-comment+ ID Buggy-code+ ID Overall (All OODs+ID)
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Unsupervised

SCL+MSP 85.15 63.66 58.93 95.76 58.51 92.59 49.01 95.70 62.91 86.92

SCL+Energy 84.00 66.69 55.27 95.56 60.07 91.82 49.13 95.86 62.12 87.48

SCL+Maha 82.16 73.57 79.20 89.71 64.61 91.68 46.55 97.32 68.13 88.07

MCL+MSP 85.16 65.74 59.12 95.83 59.50 95.73 49.44 95.73 63.31 87.40

MCL+Energy 83.44 68.53 44.85 96.22 59.26 91.79 49.61 95.51 59.45 88.01

MCL+Maha 50.36 96.73 67.11 90.61 48.44 96.07 46.68 97.44 53.00 95.21

COOD 92.27 40.14 99.41 0.39 75.78 86.88 48.72 95.04 79.05 55.95

Weakly-supervised

EOE 99.49 1.59 88.83 62.12 98.71 3.58 92.27 25.51 94.82 23.22

CuBERT 82.59 62.23 49.38 95.25 50.14 94.93 67.97 94.82 62.53 86.80

COOD+ 99.29 2.79 99.56 0.81 97.05 9.43 91.11 20.88 96.75 8.48
COOD+ CL 93.73 23.76 99.65 0.31 83.24 78.14 50.12 95.53 82.47 47.96
COOD+ BC 98.67 3.92 64.55 78.89 95.35 10.17 94.09 14.40 88.16 26.86

100

5.5 Experimental Results

5.5.1 RQ1: Unsupervised COOD Performance

In this subsection, we analyze the experimental results to assess the detection performance

of our unsupervised COOD model compared with the unsupervised baselines. According

to Table 5.2 and 5.3, we can observe that COOD outperforms all unsupervised baselines

on both CSN-Python and CSN-Java. Notably, COOD effectively detect out-domain and

misaligned OOD testing samples, while other unsupervised approaches only work for the

out-domain scenario. This is because COOD effectively captures alignment information

within (comment, code) pairs through a multi-modal contrastive learning objective with

InfoNCE loss and uses similarity scores between comments and code to detect OODs.

Specifically, COOD outputs low similarity scores for the out-domain data from TLCS by

additionally considering the knowledge gap difference in (comment, code) pairs between

ID and out-domain data. Also, as the misaligned scenario involves misaligned (com-

ment, code) pairs, their similarity scores are naturally low. In contrast, the unsupervised

baselines aggregate misaligned information into classification logits and rely on the con-

fidence of the ”aligned” class to detect OODs. As previously discussed in Sec. IV-C,

the contrastive losses [122, 252] used by them are not as effective for learning alignment

information, leading to inferior performance. Additionally, detecting token-level OOD in

shuffled-comment and buggy-code scenarios proves challenging without seeing OOD sam-

ples during training, as all unsupervised methods fail to detect these OODs.

5.5.2 RQ2: Weakly-supervised COOD+ Performance

We further investigate the performance of our weakly-supervised COOD+ method against

several weakly-supervised baselines on CSN-Python and CSN-Java. Table 5.2 shows that

weak supervision on a tiny amount of OOD data enables COOD+ (and EOE) to not only

address unsupervised COOD’s shortcomings in detecting finer-grained shuffled-comment

and buggy-code OODs, but also enhance performance for the out-domain scenario for CSN-

101

Python. This improvement aligns with previous research [95, 123, 151] which enhances

OOD detection by complementing the downstream task objective with an complementary

discriminator operating to distinguish IDs from external OODs. While EOE slightly

outperforms COOD+ for the out-domain and shuffled-comment scenarios by utilizing the

prediction probabilities from one classification module, our COOD+, which combines the

BC and CL modules, delivers consistently high performance across all four scenarios,

resulting in superior overall performance. In addition, the BC module can be directly

adapted to the overall COOD+ framework without modifying the underlying learning

objective, but the outlier exposure-based methods (e.g., EOE) typically require additional

engineering (e.g., determining class-probabilistic distributions [95], boundaries for energy

scores [151]) to equip ML models with OOD detection abilities. Besides, the bug detection

method 2P-CuBERT can reasonably detect OODs, but its performance for the buggy-code

scenario is negatively impacted by the limited amount of training OOD examples.

On the CSN-Java dataset, our COOD+ also achieves the best overall performance com-

pared to all baselines, despite trailing slightly behind EOE for out-domain and shuffled-

comment OODs. While EOE has higher AUROC score than that of COOD+ for the

buggy-code scenario, it suffers from a high FPR95, indicating a higher margin of error for

OOD inference using a threshold of 95% ID recall. Moreover, similar to CSN-Python,

CuBERT fails to detect OODs effectively on CSN-Java either, likely due to the lack of

training examples. In summary, the superior performance of our COOD+ model results

from the interplay between the CL and BL modules, where contrastive learning captures

high-level alignment between NL-PL input pairs that is naturally suitable for out-domain

and misaligned OODs, while the OOD rejection classifier targets lower-level OOD in-

formation from shuffled-comment and buggy-code samples. Furthermore, by utilizing a

weakly-supervised contrastive learning objective that jointly optimizes for OOD detection

and the code search task, our method enables effective deployment of the code search

model in OOD environments, which will be further studied in Sec. VI-D.

102

Table 5.4: Our COOD+ model with different encoders.

Encoders
CSN-Java CSN-Python

AUROC↑ FPR95↓ AUROC↑ FPR95↓
GraphCodeBERT 96.75 8.48 98.64 4.09

CodeBERT 95.42 10.27 98.59 4.20
UniXcoder 95.49 10.63 97.83 5.91

ContraBERT 96.19 9.32 98.25 4.76

5.5.3 RQ3: Weakly-Supervised COOD+ Performance with Different

Model Components and Encoder Backbone

In this subsection, we evaluate the effect of using only the CL (COOD+ CL) or the BC

module (COOD+ BC) against the proposed combined COOD+ model to illustrate how

COOD+ generalizes in four OOD scenarios. As shown in Table 5.2 and 5.3, COOD+ CL

performs well in the out-domain and misaligned scenarios, which is due to its ability to

effectively capture high-level (comment, code) alignment information. COOD+ BC excels

in the out-domain, shuffled-comment, and buggy-code scenarios, since it can learn lower-

level features from these types of OOD samples. While COOD+ BC maintains acceptable

OOD detection performance with high AUROC (>90%) and low FPR95 (<25%), the CL

module remains crucial for overall performance, since without it the overall performance

of COOD+ will drop below the EOE baseline. Moreover, removing the BC module has

a more negative impact on the OOD detection as COOD+ loses the ability to capture

the necessary lower-level OOD information for detecting shuffled-comment and buggy-

code OODs. Note that the standalone CL module performs better than the unsupervised

COOD overall, demonstrating that our proposed modification to the original CL objective

enhance OOD detection by leveraging the margin-based loss. Thus, the combined model’s

superior performance validates our design choices. That is, the combined scoring function

(cosine similarities from CL and the prediction probabilities from BC) is thoughtfully

designed to leverage the advantage of each module for high detection accuracy.

Moreover, we compare the detection performance of our COOD+ with various un-

103

derlying NL-PL pre-trained encoder. Specifically, we compare our choice of GraphCode-

BERT [81] against other NL-PL encoders from the literature including its predecessor,

CodeBERT [72], and more recent ones such as UniXcoder [80] and ContraBERT [150].

As shown in Table 5.4, all encoders perform within a 1-2% difference, indicating that our

COOD+ framework is robust across different encoders. This demonstrates our frame-

work’s flexibility and effectiveness in detecting OODs when deploying various NL-PL

encoders for code-related tasks. Furthermore, we investigate key hyperparameters in

COOD+, such as m for margin-based contrastive loss and λ in the overall loss function.

The detailed results are available in our online appendix [233].

5.5.4 RQ4: Main Task Performance

We present the code search performance under the impact of OOD instances by using

GraphCodeBERT (GCB), COOD/COOD+, and the closest competitor EOE in Table 5.5.

As described in Sec. V-F, we use the official metric mRR and follow the same testing

scheme as the original GraphCodeBERT code search model for evaluation. From Ta-

ble 5.5, we first observe that our COOD/COOD+ achieves performance comparable to

GraphCodeBERT, while the EOE suffers from a significant reduction in performance, as

it reformulates code search as binary classification to gain OOD detection ability. This

reveals a critical trade-off between OOD detection and downstream task performance. To

further validate the importance of OOD detection for code search, we construct outliers

based on the CSN-Java and -Python testing dataset, respectively. Given that code search

aims to retrieve the most aligned code from a code corpus given an NL query, the outliers

are only sampled from three OOD scenarios: out-domain, shuffled-comment and buggy-

code, each replacing 5% ID data of the original testing set. We then show the results

when the dataset contains 15% OOD samples (i.e., 15% outliers), discard OOD samples

by filtering the testing set by ground-truth labels (i.e., Filtered-GT) or using various OOD

detection models (i.e., Filtered-OOD-model). Note that the Filtered-GT dataset is the

original CSN’s subset with 15% of ID samples removed.

104

Table 5.5: Code search performance under the impact of OOD detection. Higher numbers repre-
sent better performance

Dataset Testing Subset GCB EOE COOD COOD+

CSN-Python

Origin 69.20 50.11 68.47 69.69
15% outliers 65.85 43.68 64.67 65.67
Filtered-GT 70.24 44.85 68.95 70.24

Filtered-OOD-model – 46.82 70.30 73.10

CSN-Java

Origin 69.10 46.29 68.85 69.46
15% outliers 64.99 37.77 64.86 64.54
Filtered-GT 69.12 38.94 69.36 69.93

Filtered-OOD-model – 39.33 71.02 73.18

According to Table 5.5, the performance of the original GraphCodeBERT code search

model drops by 4.84% and 5.95% ((69.10-64.99)/69.10) mRR when outliers are present

in CSN-Python and -Java, respectively. As a solution to this issue, our COOD/COOD+

detector recover the performance losses by identifying and filtering out the OOD sam-

ples without negatively impacting the model’s code understanding ability in code search.

Specifically, the code search performance of COOD/COOD+ on the Filtered-COOD/COOD+

dataset (70.30%/73.10% and 71.02%/73.18% on CSN-Python and -Java, respectively) is

comparable to or even better than GraphCodeBERT on the Filtered-GT dataset (70.24%

and 69.12% on CSN-Python and -Java, respectively). This slight improvement is probably

because our detectors filter out additional lower-quality testing samples that resemble out-

liers. Thus, our COOD/COOD+ detectors enhance the trustworthiness and robustness of

the GraphCodeBERT, since the model’s predictions become more reliable when encoun-

tering OOD data. Note that the original GraphCodeBERT is not equipped with the OOD

detection ability, so its corresponding cells for the Filtered-OOD-model in Table 5.5 are

left blank.

105

5.6 Discussions

5.6.1 Analysis of the Overconfidence of MSP with Conformal Prediction

Given an OOD testing sample, ML models pre-trained on ID data are prone to predict

a higher MSP confidence score than the threshold and incorrectly identify it as an ID

sample [141, 146]. This overconfidence issue limits the effectiveness of OOD detection.

For NL data, this is caused by the spurious correlation between OOD and ID features

such as entities and syntactic structures [226, 251]. Such correlation also occurs in PL

data. For example, an OOD PL input with the syntactic structure “def ... if ... return

... else ... return ...” may receive an ID score if this pattern is commonly used in other

ID inputs. To overcome overconfident predictions, previous work explored techniques

such as temperature scaling [146], confidence calibration using adversarial samples [27,

141], or adaptive class-dependent threshold [226]. In contrast, our proposed COOD+

utilizes a weakly-supervised contrastive learning objective to take advantage of a small

number of OOD samples during training and prevent the alignment between OOD pairs.

Moreover, we adopt the binary OOD rejection module to discriminate the fused OOD

and ID representations. We further verify whether COOD+ overcomes the overconfidence

issue through the lens of Conformal Prediction (CP) [19].

Conformal Prediction (CP) involves post-processing uncertainty quantification tech-

niques that are model-agnostic, and provide statistical guarantees on the predictions of a

trained model [19]. The commonly used split CP technique first computes the noncon-

formity scores, which are OOD scores in our case, and class-dependent thresholds on a

calibration set independent of the training data. Then, it builds a prediction set for each

testing sample Cα(ttestl , ctestl) satisfying the condition P (ytestl ∈ Cα(ttestl , ctestl)) ≥ 1 − α,

where α is a small error rate (e.g., 0.05) that the user is willing to tolerate. Here, this con-

dition guarantees that the true outcome is covered by the prediction set with probability

1 − α, which is also known as the CP coverage. When CP is applied to the OOD de-

tection scores, all scores have the same statistical guarantee, but better OOD scores will

106

Table 5.6: Effectiveness of COOD+ compared to selected methods for overcoming overconfident
OOD predictions.

Methods
CSN-Java CSN-Python

Coverage↑ P-Set Size↓ Coverage↑ P-Set Size↓
MCL+MSP 97.03 1.891 95.00 1.834

COOD 95.66 1.593 95.81 1.576
COOD+ 95.31 1.077 95.35 1.010

give tighter prediction sets. Conversely, worse scores will give large and uninformative

prediction sets, which corresponds to ineffective OOD detection caused by overconfident

predictions.

In our experiment, we apply split CP by reserving 20% of the testing samples from

each testing dataset (CSN-Java and CSN-Python) for CP calibration, and construct the

prediction sets with tolerable error rate α = 0.05 on the remaining testing samples. To

assess how effectively COOD+ addresses the overconfidence issue, we compare its average

prediction set (P-Set) size (between 1 and 2 for binary predictions) with that of selected

baselines including MCL+MSP, the best performing approach using MSP OOD scores,

and our proposed COOD. As observed in Table 5.6, the proposed COOD+ achieves the

smallest prediction sets on both datasets. Specifically, the vast majority of prediction

sets obtained by COOD+ contain one value that is 95% statistically guaranteed to be the

true OOD label according to the CP condition, indicating the minimal overconfidence of

OOD scores. In contrast, the MCL+MSP method is prone to overconfidence, because it

produces large prediction sets (i.e., size 2) including both IDs and overconfident OODs.

Additionally, without utilizing OOD samples during training, COOD cannot effectively

prevent overconfident predictions. Note that in the CP context, although higher coverage

is desired, the main goal is to build the smallest prediction sets given the user-specified er-

ror rate of 0.05. Therefore, COOD+ is the most effective at overcoming the overconfidence

barrier despite its slightly lower coverage than that of MCL+MSP and COOD.

107

5.6.2 OOD Detection with Large Language Models (LLMs).

It’s worth noting that transformer-based code models (e.g., GraphCodeBERT [81]) and

LLMs share the same underlying transformer architecture. Scaling up transformer-based

code models and training them on vast amounts of code data allows LLMs [183] to perform

a wide range of code-related tasks, making coding less labor-intensive and more accessible

to end-users. Since LLMs are transformer-based, they are also vulnerable to OOD data,

with potentially worse performance degradation due to error accumulation during auto-

regressive inference. Thus, identifying OOD samples is crucial to knowing when to trust

LLM outputs. Our proposed OOD code framework techniques can be applied to these

larger transformer-based code models, similarly as demonstrated in our experiments with

different encoders in Table 5.4.

5.6.3 Generalization of COOD/COOD+ to Other Code-related Tasks.

Our COOD/COOD+ framework can be applied for any code-related tasks, particularly

code understanding tasks, as long as their input consists of (comment, code) pairs. During

software development, developers often write comments following code snippets (meth-

ods/functions). Thus, from a realistic perspective, our framework can be generalized to

many code understanding tasks, such as clone detection and defect detection, beyond code

search. All that is needed is to determine the ID dataset and the out-domain data since all

four OOD scenarios are generally relevant to every code understanding task. For instance,

in clone detection, before checking whether two (comment, code) pairs are clones, we can

first input each pair into our framework (after dataset-specific training) to identify whether

they are OODs under the four scenarios designed in our benchmark. Unfortunately, the

currently available clone and defect detection datasets only include code without corre-

sponding comments. This is why we haven’t yet applied our framework to these tasks.

However, there is every reason to believe that our framework will be useful for these tasks

when more realistic bi-modal datasets are available in the future.

108

5.7 Threats to Validity

5.7.1 Construct Validity

Our COOD/COOD+ framework uses data-driven techniques to synthesize OOD samples,

which may not fully reflect real-world SE scenarios. While we include diverse OOD sce-

narios, a pilot study with developers is necessary. Additionally, the reliability of our OOD

benchmark depends heavily on the quality of the OOD datasets used.

5.7.2 Internal Validity

Hyperparameter tuning impacts ML performance. For model fine-tuning, we kept the

GraphCodeBERT architecture unchanged due to feasibility reasons, but conducted abla-

tion studies with various model components, encoder backbones, and key hyperparameters.

5.7.3 External Validity

We conduct OOD detection experiments on two large-scale code search datasets. Although

our focus on Python and Java limits generalizability, experiments on these two languages

partially demonstrate that our approach is PL-agnostic.

5.8 Chapter Summary

We proposed two multi-modal OOD detection aproaches for code-related pre-trained ML

models; namely unsupervised COOD and weakly-supervised COOD+. The COOD merely

leveraged unsupervised contrastive learning to identify OOD samples. As an extension of

COOD, COOD+ combined contrastive learning and a binary classifier for OOD detection

using a small number of labelled OOD samples. To reap the benefits of these two modules,

we also devised a novel scoring metric to fuse their prediction results. The evaluation

results demonstrated that the integration of the rejection network and contrastive learning

can achieve superior performance in detecting all four OOD scenarios for multi-modal NL-

109

PL data. Additionally, our models can be applied to the downstream SE task, achieving

comparable performance to existing code-related models.

110

Chapter 6

Conclusion

This dissertation advocates for a paradigm shift in software engineering research and

practice toward embracing multimodal learning approaches that reflect the inherent di-

versity of software artifacts. By integrating multiple data modalities, including source

code, natural language documentation, GUI visuals, and structural dependencies, this

work demonstrates that software engineering tools can achieve significantly greater accu-

racy, robustness, and real-world applicability. This dissertation introduces and evaluates

three core systems that exemplify the potential of multimodal learning in advancing key

software engineering tasks.

First, Janus addresses the increasingly prevalent challenge of detecting duplicate

video-based bug reports in GUI-intensive mobile applications. By combining visual repre-

sentation learning, information retrieval, and adaptive frame alignment, Janus effectively

captures the visual, textual, and sequential patterns present in bug report videos. Evalu-

ated on a large benchmark comprising 7,290 duplicate detection tasks from 270 real-world

bug reports, Janus significantly outperforms existing techniques. Ablation and qualitative

analyses further highlight its ability to produce interpretable hierarchical GUI represen-

tations and to accurately localize relevant textual content.

Second, Athena tackles the critical task of change impact analysis. This technique

combines conceptual coupling, derived from deep semantic code embeddings, with struc-

111

tural dependency information from program dependence graphs to enable precise impact

predictions, without relying on execution traces or historical change data. Evaluated on

a newly constructed benchmark of fine-grained bug-fixing commits, Athena achieves no-

table improvements over strong baselines: +10.34% in mean reciprocal rank, +9.55% in

mean average precision, and +11.68% in HIT@10. Its strength is particularly evident when

identifying impacted methods outside the query method’s class, illustrating its capacity

to model long-range semantic and structural relationships.

Third, this dissertation extends its contributions to address a broader challenge in

model reliability: specifically, the detection of OOD inputs in open-world settings. As

deep code models are increasingly deployed in practical development environments, the

ability to detect anomalous or unseen inputs becomes essential. To meet this need, we

introduce COOD and COOD+, the first multimodal OOD detection frameworks tailored

for code-related tasks. These techniques apply contrastive learning across both code and

natural language modalities and include OOD rejection modules that significantly mitigate

performance degradation in the downstream code search task.

Beyond the development of these individual systems, this work represents a broader

opportunity to rethink how we model and reason about software. By viewing code, text,

visuals, and structural relationships as interconnected perspectives rather than isolated

data sources, multimodal learning opens the door to more context-aware, interpretable,

and trustworthy software tools. In addition to technical contributions, this dissertation

introduces reusable benchmarks and methodologies that offer valuable infrastructure for

future research in this area. Looking forward, this research lays the foundation for expand-

ing the reach of multimodal learning in software engineering. Future directions include

refining the proposed techniques, extending OOD detection for broader software contexts,

and exploring new applications such as code generation, code summarization, and merge

conflict resolution. Ultimately, the long-term vision is to enable a new generation of intelli-

gent, adaptive, and reliable software engineering tools that support developers throughout

the full lifecycle of modern software systems.

112

Bibliography

[1] Cisco systems https://www.cisco.com.

[2] Tesseract ocr library https://github.com/tesseract-ocr/tesseract/
wiki.

[3] Droidweight https://test.f-droid.org/de/packages/de.delusions.
measure/index.html, 2020.

[4] Gnucash https://github.com/codinguser/gnucash-android, 2020.

[5] Android apps for screen recording: https://www.androidauthority.com/
best-screen-recording-apps-600838/, 2023.

[6] Android screenshot and video recording features: https://support.google.
com/android/answer/9075928?hl=en, 2023.

[7] Checkmarx, 2023.

[8] Codeql, 2023.

[9] Fdroid https://f-droid.org/en/, 2023.

[10] Firefox focus https://github.com/mozilla-mobile/focus-android,
2023.

[11] Github video uploads: https://github.blog/
2021-05-13-video-uploads-available-github/, 2023.

[12] Gpstest https://github.com/barbeau/gpstest, 2023.

[13] Images to pdf https://github.com/Swati4star/Images-to-PDF, 2023.

[14] Lucene’s tfidf similarity javadoc - https://tinyurl.com/ybhqqrqm, 2023.

[15] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. On code reuse
from stackoverflow: An exploratory study on android apps. Inf. Softw. Technol.,
88:148–158, 2017.

113

https://www.cisco.com
https://github.com/tesseract-ocr/tesseract/wiki
https://github.com/tesseract-ocr/tesseract/wiki
https://test.f-droid.org/de/packages/de.delusions.measure/index.html
https://test.f-droid.org/de/packages/de.delusions.measure/index.html
https://github.com/codinguser/gnucash-android
https://www.androidauthority.com/best-screen-recording-apps-600838/
https://www.androidauthority.com/best-screen-recording-apps-600838/
https://support.google.com/android/answer/9075928?hl=en
https://support.google.com/android/answer/9075928?hl=en
https://f-droid.org/en/
https://github.com/mozilla-mobile/focus-android
https://github.blog/2021-05-13-video-uploads-available-github/
https://github.blog/2021-05-13-video-uploads-available-github/
https://github.com/barbeau/gpstest
https://github.com/Swati4star/Images-to-PDF
https://tinyurl.com/ybhqqrqm

[16] Mithun Acharya and Brian Robinson. Practical change impact analysis based
on static program slicing for industrial software systems. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, page 746–755, New
York, NY, USA, 2011. Association for Computing Machinery.

[17] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
Unified pre-training for program understanding and generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 2655–2668, Online, June
2021. Association for Computational Linguistics.

[18] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-
supervised bug detection and repair. NeurIPS, 34:27865–27876, 2021.

[19] Anastasios N Angelopoulos, Stephen Bates, et al. Conformal prediction:
A gentle introduction. Found. Trends Mach. Learn., 16(4):494–591, 2023.

[20] Robert S Arnold. Software change impact analysis. IEEE Computer Society
Press, 1996.

[21] Linda Badri, Mourad Badri, and Daniel St-Yves. Supporting predictive
change impact analysis: a control call graph based technique. In Proceedings of
the 12th Asia-Pacific Software Engineering Conference (APSEC’05), pages 9 pp.–,
2005.

[22] Sean Banerjee, Zahid Syed, Jordan Helmick, and Bojan Cukic. A fusion
approach for classifying duplicate problem reports. In Proceedings of the IEEE
24th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
November 2013.

[23] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training
of image transformers. arXiv preprint arXiv:2106.08254, 2021.

[24] Tony Beltramelli. pix2code: Generating code from a graphical user interface
screenshot. In Proceedings of the ACM SIGCHI Symposium on Engineering Inter-
active Computing Systems. ACM, June 2018.

[25] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Cha-
parro, Andrian Marcus, and Denys Poshyvanyk. Translating video record-
ings of mobile app usages into replayable scenarios. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. ACM, June 2020.

[26] Carlos Bernal-Cárdenas, Kevin Moran, Michele Tufano, Zichang Liu,
Linyong Nan, Zhehan Shi, and Denys Poshyvanyk. Guigle: a gui search
engine for android apps. In Proceedings of the 41st International Conference on
Software Engineering: Companion Proceedings, ICSE ’19, page 71–74. IEEE Press,
2019.

114

[27] Julian Bitterwolf, Alexander Meinke, and Matthias Hein. Certifiably
adversarially robust detection of out-of-distribution data. NeurIPS, 33:16085–16095,
2020.

[28] Markus Borg, Krzysztof Wnuk, Björn Regnell, and Per Runeson. Sup-
porting change impact analysis using a recommendation system: An industrial case
study in a safety-critical context. IEEE Transactions on Software Engineering,
43(07):675–700, jul 2017.

[29] Ben Breech, Anthony Danalis, Stacey Shindo, and Lori Pollock. Online
impact analysis via dynamic compilation technology. In Proceedings of the IEEE
International Conference on Software Maintenance, 2004. Proceedings., pages 453–
457, 2004.

[30] Ben Breech, Mike Tegtmeyer, and Lori Pollock. Integrating influence
mechanisms into impact analysis for increased precision. In Proceedings of the 22nd
IEEE International Conference on Software Maintenance, pages 55–65, 2006.

[31] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[32] Max Brunsfeld, Patrick Thomson, Andrew Hlynskyi, Josh Vera, Phil
Turnbull, Timothy Clem, Douglas Creager, Andrew Helwer, Rob
Rix, Hendrik van Antwerpen, Michael Davis, Ika, Tuan-Anh Nguyen,
Stafford Brunk, Niranjan Hasabnis, bfredl, Mingkai Dong, Vladimir
Panteleev, ikrima, Steven Kalt, Kolja Lampe, Alex Pinkus, Mark
Schmitz, Matthew Krupcale, narpfel, Santos Gallegos, Vicent Mart́ı,
Edgar, and George Fraser. tree-sitter/tree-sitter: v0.20.7, September 2022.

[33] Haipeng Cai. A reflection on the predictive accuracy of dynamic impact analysis.
In Proceedings of the IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 562–566, 2020.

[34] Haipeng Cai and Raul Santelices. Diver: precise dynamic impact analysis
using dependence-based trace pruning. In Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering, ASE ’14, page 343–348,
New York, NY, USA, 2014. Association for Computing Machinery.

115

[35] Haipeng Cai and Raul Santelices. A comprehensive study of the predictive
accuracy of dynamic change-impact analysis. Journal of Systems and Software,
103:248–265, 2015.

[36] Haipeng Cai, Raul Santelices, and Siyuan Jiang. Prioritizing change-impact
analysis via semantic program-dependence quantification. IEEE Transactions on
Reliability, 65(3):1114–1132, 2016.

[37] Haipeng Cai, Raúl A. Santelices, and Douglas Thain. Diapro: Unifying
dynamic impact analyses for improved and variable cost-effectiveness. ACM Trans.
Softw. Eng. Methodol., 25(2):18:1–18:50, 2016.

[38] Haipeng Cai and Douglas Thain. Distia: a cost-effective dynamic impact anal-
ysis for distributed programs. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE ’16, page 344–355, New York,
NY, USA, 2016. Association for Computing Machinery.

[39] Gerardo Canfora, Michele Ceccarelli, Luigi Cerulo, and Massimiliano
Di Penta. Using multivariate time series and association rules to detect logical
change coupling: An empirical study. In 2010 IEEE International Conference on
Software Maintenance, pages 1–10, 2010.

[40] S. Cao, X. Sun, X. Wu, D. Lo, L. Bo, B. Li, and W. Liu. Coca: Improving
and explaining graph neural network-based vulnerability detection systems. In ICSE,
pages 939–939, 2024.

[41] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bo-
janowski, and Armand Joulin. Unsupervised learning of visual features by
contrasting cluster assignments. Advances in neural information processing systems,
33:9912–9924, 2020.

[42] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien
Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in
self-supervised vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 9650–9660, 2021.

[43] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, An-
drian Marcus, Massimiliano Di Penta, Denys Poshyvanyk, and Vincent
Ng. Assessing the quality of the steps to reproduce in bug reports. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019, page
86–96, New York, NY, USA, 2019. Association for Computing Machinery.

[44] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Mar-
cus. Reformulating queries for duplicate bug report detection. In Proceedings of the
IEEE 26th international conference on software analysis, evolution and reengineer-
ing (SANER), pages 218–229, 2019.

116

[45] Chunyang Chen, Sidong Feng, Zhengyang Liu, Zhenchang Xing, and
Shengdong Zhao. From lost to found: Discover missing ui design semantics
through reovering missing tags. In Proceedings of the ACM on Human-Computer
Interaction, volume 4, pages 1–22. Association for Computing Machinery (ACM),
October 2020.

[46] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu.
From UI design image to GUI skeleton. In Proceedings of the 40th International
Conference on Software Engineering. ACM, May 2018.

[47] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu,
John Grundy, and Jinshui Wang. Wireframe-based UI design search through
image autoencoder. ACM Transactions on Software Engineering and Methodology,
29(3):1–31, June 2020.

[48] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey
Nichols, and Xiaoyi Zhang. Extracting replayable interactions from videos of
mobile app usage. arXiv preprint arXiv:2207.04165, 2022.

[49] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu,
Liming Zhu, and Guoqiang Li. Object detection for graphical user interface:
old fashioned or deep learning or a combination? In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, November 2020.

[50] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hin-
ton. A simple framework for contrastive learning of visual representations. In
Proceedings of the International conference on machine learning, pages 1597–1607.
PMLR, 2020.

[51] Zimin Chen, Vincent J Hellendoorn, Pascal Lamblin, Petros Mani-
atis, Pierre-Antoine Manzagol, Daniel Tarlow, and Subhodeep Moitra.
Plur: A unifying, graph-based view of program learning, understanding, and repair.
NeurIPS, 34:23089–23101, 2021.

[52] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and
Yoshua Bengio. On the properties of neural machine translation: Encoder–
decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Se-
mantics and Structure in Statistical Translation, Dekai Wu, Marine Carpuat, Xavier
Carreras, and Eva Maria Vecchi, editors, pages 103–111, Doha, Qatar, October 2014.
Association for Computational Linguistics.

[53] Chien-Li Chou, Hua-Tsung Chen, and Suh-Yin Lee. Pattern-based near-
duplicate video retrieval and localization on web-scale videos. IEEE Transactions
on Multimedia, 17:382–395, 2015.

[54] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic.
srcml: An infrastructure for the exploration, analysis, and manipulation of source

117

code: A tool demonstration. In Proceedings of the 2013 IEEE International Con-
ference on Software Maintenance, pages 516–519, 2013.

[55] Nathan Cooper, Carlos Bernal-Cárdenas, Oscar Chaparro, Kevin
Moran, and Denys Poshyvanyk. It takes two to tango: Combining visual and
textual information for detecting duplicate video-based bug reports. In Proceedings
of the 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 957–969. IEEE, 2021.

[56] Jose Luis de la Vara, Markus Borg, Krzysztof Wnuk, and Leon Moo-
nen. An industrial survey of safety evidence change impact analysis practice. IEEE
Transactions on Software Engineering, 42(12):1095–1117, 2016.

[57] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Con-
volutional neural networks on graphs with fast localized spectral filtering. In Proceed-
ings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, page 3844–3852, Red Hook, NY, USA, 2016. Curran Associates Inc.

[58] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel
Afergan, Yang Li, Jeffrey Nichols, and Ranjitha Kumar. Rico: A mobile
app dataset for building data-driven design applications. In Proceedings of the 30th
annual ACM symposium on user interface software and technology, pages 845–854,
2017.

[59] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009
IEEE conference on computer vision and pattern recognition, pages 248–255. IEEE,
2009.

[60] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguistics, 2019.

[61] Bogdan Dit, Meghan Revelle, and Denys Poshyvanyk. Integrating infor-
mation retrieval, execution and link analysis algorithms to improve feature location
in software. Empirical Softw. Engg., 18(2):277–309, apr 2013.

[62] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[63] Mingzhe Du, Shengcheng Yu, Chunrong Fang, Tongyu Li, Heyuan
Zhang, and Zhenyu Chen. Semcluster: a semi-supervised clustering tool for

118

crowdsourced test reports with deep image understanding. In Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1756–1759, 2022.

[64] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang,
and Qi Tian. CenterNet: Keypoint triplets for object detection. In Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE,
October 2019.

[65] Viet Duong, Qiong Wu, Zhengyi Zhou, Eric Zavesky, Jiahe Chen, Xi-
angzhou Liu, Wen-Ling Hsu, and Huajie Shao. General-purpose multi-modal
ood detection framework. TMLR, 2024.

[66] Camilo Escobar-Velásquez, Michael Osorio-Riaño, and Mario Linares-
Vásquez. Mutapk: Source-codeless mutant generation for android apps. In Proceed-
ings of the 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 1090–1093. IEEE, 2019.

[67] Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-shot
out-of-distribution detection based on the pretrained model clip. In AAAI, 2022.

[68] Amir Farzad and T Aaron Gulliver. Unsupervised log message anomaly de-
tection. ICT Express, 6(3):229–237, 2020.

[69] Mattia Fazzini, Kevin Moran, Carlos Bernal-Cárdenas, Tyler Wend-
land, Alessandro Orso, and Denys Poshyvanyk. Enhancing mobile app bug
reporting via real-time understanding of reproduction steps. IEEE Trans. Softw.
Eng., 49(3):1246–1272, March 2023.

[70] Sidong Feng and Chunyang Chen. Gifdroid: automated replay of visual bug
reports for android apps. In Proceedings of the 44th International Conference on
Software Engineering, pages 1045–1057, 2022.

[71] Sidong Feng, Mulong Xie, Yinxing Xue, and Chunyang Chen. Read
it, don’t watch it: Captioning bug recordings automatically. arXiv preprint
arXiv:2302.00886, 2023.

[72] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. CodeBERT: A pre-trained model for programming and natural languages.
In Findings of the Association for Computational Linguistics: EMNLP 2020, Trevor
Cohn, Yulan He, and Yang Liu, editors, pages 1536–1547, Online, November 2020.
Association for Computational Linguistics.

[73] Stephen Fink and Julian Dolby. Wala–the tj watson libraries for analysis, 2012.

[74] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the
limits of out-of-distribution detection. NeurIPS, 34:7068–7081, 2021.

119

[75] Jingwen Fu, Xiaoyi Zhang, Yuwang Wang, Wenjun Zeng, Sam Yang,
and Grayson Hilliard. Understanding mobile gui: from pixel-words to screen-
sentences. arXiv preprint arXiv:2105.11941, 2021.

[76] Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk.
Integrated impact analysis for managing software changes. In Proceedings of the
2012 34th International Conference on Software Engineering (ICSE), pages 430–
440, 2012.

[77] Otis Gospodnetic, Erik Hatcher, and Douglas R. Cutting. Lucene in
action. 2004.

[78] Alex Graves and Alex Graves. Long short-term memory. Supervised sequence
labelling with recurrent neural networks, pages 37–45, 2012.

[79] Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tal-
lec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko.
Bootstrap your own latent: A new approach to self-supervised learning. ArXiv,
abs/2006.07733, 2020.

[80] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin.
UniXcoder: Unified cross-modal pre-training for code representation. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Smaranda Muresan, Preslav Nakov, and Aline Villavicencio,
editors, pages 7212–7225, Dublin, Ireland, May 2022. Association for Computational
Linguistics.

[81] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu,
Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tu-
fano, Shao Kun Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code rep-
resentations with data flow. CoRR, abs/2009.08366, 2020.

[82] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan
Ding, Tao Xie, and Liangfei Su. Graph-based trace analysis for microservice
architecture understanding and problem diagnosis. In ESEC/FSE, page 1387–1397,
2020.

[83] Shir Gur, Ameen Ali, and Lior Wolf. Visualization of supervised and self-
supervised neural networks via attribution guided factorization. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(13):11545–11554, May 2021.

[84] Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush. Refining interpro-
cedural change-impact analysis using equivalence relations. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis,

120

ISSTA 2017, page 318–328, New York, NY, USA, 2017. Association for Computing
Machinery.

[85] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning
an invariant mapping. In CVPR, volume 2, pages 1735–1742, 2006.

[86] Hossein Hajipour, Ning Yu, Cristian-Alexandru Staicu, and Mario
Fritz. Simscood: Systematic analysis of out-of-distribution generalization in fine-
tuned source code models. In NAACL, pages 1400–1416, 2024.

[87] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets
on graphs via spectral graph theory. Applied and Computational Harmonic Analysis,
30(2):129–150, 2011.

[88] Rui Hao, Yang Feng, James A Jones, Yuying Li, and Zhenyu Chen. Ctras:
Crowdsourced test report aggregation and summarization. In Proceedings of the
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pages 900–911. IEEE, 2019.

[89] Jingxuan He, Luca Beurer-Kellner, and Martin Vechev. On distribution
shift in learning-based bug detectors. In ICML, pages 8559–8580. PMLR, 2022.

[90] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2015.

[91] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why
relu networks yield high-confidence predictions far away from the training data and
how to mitigate the problem. In CVPR, pages 41–50, 2019.

[92] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. arXiv:1610.02136, 2016.

[93] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. In ICLR, 2017.

[94] Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh
Krishnan, and Dawn Song. Pretrained transformers improve out-of-distribution
robustness. arXiv:2004.06100, 2020.

[95] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly
detection with outlier exposure. arXiv:1812.04606, 2018.

[96] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Us-
ing self-supervised learning can improve model robustness and uncertainty. NeurIPS,
32, 2019.

[97] Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza
Aghamohammadi, Taher Ahmed Ghaleb, Kuljit Kaur Chahal, Tim

121

Bossenmaier, Bhaveet Nagaria, Philip Makedonski, Matin Nili Ahmad-
abadi, Kristóf Szabados, Helge Spieker, Matej Madeja, Nathaniel
Hoy, Valentina Lenarduzzi, Shangwen Wang, Gema Rodŕıguez-Pérez,
Ricardo Colomo Palacios, Roberto Verdecchia, Paramvir Singh, Yi-
hao Qin, Debasish Chakroborti, Willard Davis, Vijay Walunj, Hongjun
Wu, Diego Marcilio, Omar Alam, Abdullah Aldaeej, Idan Amit, Bu-
rak Turhan, Simon Eismann, Anna-Katharina Wickert, Ivano Mala-
volta, Matús Suĺır, Fatemeh H. Fard, Austin Z. Henley, Stratos
Kourtzanidis, Eray Tuzun, Christoph Treude, Simin Maleki Shamasbi,
Ivan Pashchenko, Marvin Wyrich, James Davis, Alexander Serebrenik,
Ella Albrecht, Ethem Utku Aktas, Daniel Strüber, and Johannes Er-
bel. Large-scale manual validation of bug fixing commits: A fine-grained analysis
of tangling. CoRR, abs/2011.06244, 2020.

[98] Kim Herzig, Sascha Just, and Andreas Zeller. The impact of tangled code
changes on defect prediction models. Empirical Software Engineering, 21, 04 2015.

[99] Kim Herzig and Andreas Zeller. The impact of tangled code changes. In
Proceedings of the 2013 10th Working Conference on Mining Software Repositories
(MSR), pages 121–130, 2013.

[100] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the
knowledge in a neural network. ArXiv, abs/1503.02531, 2015.

[101] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid
Laga. A comprehensive survey of deep learning for image captioning. ACM Com-
puting Surveys (CsUR), 51(6):1–36, 2019.

[102] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized
odin: Detecting out-of-distribution image without learning from out-of-distribution
data. In CVPR, pages 10951–10960, 2020.

[103] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Mike Papadakis,
Lei Ma, and Yves Le Traon. Codes: towards code model generalization under
distribution shift. In ICSE-NIER, pages 1–6. IEEE, 2023.

[104] Yibo Hu and Latifur Khan. Uncertainty-aware reliable text classification. In
KDD, page 628–636, 2021.

[105] Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang,
Ming Zhou, and Nan Duan. Cosqa: 20,000+ web queries for code search and
question answering. arXiv:2105.13239, 2021.

[106] Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Dimosthenis Karatzas,
Shijian Lu, and CV Jawahar. Icdar2019 competition on scanned receipt ocr
and information extraction. In Proceedings of the 2019 International Conference on
Document Analysis and Recognition (ICDAR), pages 1516–1520. IEEE, 2019.

122

[107] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. Codesearchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436, 2019.

[108] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E Gonza-
lez, and Ion Stoica. Contrastive code representation learning. arXiv:2007.04973,
2020.

[109] Mohammad-Amin Jashki, Reza Zafarani, and Ebrahim Bagheri. Towards a
more efficient static software change impact analysis method. In Proceedings of the
8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, PASTE ’08, page 84–90, New York, NY, USA, 2008. Association
for Computing Machinery.

[110] Yu-Gang Jiang, Chong-Wah Ngo, and Jun Yang. Towards optimal bag-of-
features for object categorization and semantic video retrieval. In Proceedings of
the 6th ACM international conference on Image and video retrieval, pages 494–501,
2007.

[111] Zijian Jiang, Ye Wang, Hao Zhong, and Na Meng. Automatic method change
suggestion to complement multi-entity edits. Journal of Systems and Software,
159:110441, 10 2019.

[112] Di Jin, Shuyang Gao, Seokhwan Kim, Yang Liu, and Dilek Hakkani-Tür.
Towards textual out-of-domain detection without in-domain labels. IEEE/ACM
Trans. Audio, Speech and Lang. Proc., 30:1386–1395, 2022.

[113] Weizhen Jing, Xiushan Nie, C. Cui, Xiaoming Xi, Gongping Yang, and
Yilong Yin. Global-view hashing: harnessing global relations in near-duplicate
video retrieval. World Wide Web, 22:771–789, 2019.

[114] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia
Rubin, and Mattia Fazzini. An empirical investigation into the reproduction
of bug reports for android apps. In Proceedings of the 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
321–322, 2022.

[115] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database
of existing faults to enable controlled testing studies for java programs. In ISSTA,
pages 437–440, 2014.

[116] Huzefa Kagdi, Malcom Gethers, and Denys Poshyvanyk. Integrating con-
ceptual and logical couplings for change impact analysis in software. Empirical
Software Engineering, 18, 10 2012.

[117] Huzefa Kagdi, Malcom Gethers, Denys Poshyvanyk, and Michael L.
Collard. Blending conceptual and evolutionary couplings to support change im-
pact analysis in source code. In 2010 17th Working Conference on Reverse Engi-
neering, pages 119–128, 2010.

123

[118] Amita Kamath, Robin Jia, and Percy Liang. Selective question answering
under domain shift. In ACL, pages 5684–5696, 2020.

[119] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi.
Learning and evaluating contextual embedding of source code. In Proceedings of the
International conference on machine learning, pages 5110–5121. PMLR, 2020.

[120] Li Kang. Automated Duplicate Bug Reports Detection - An Experiment at Axis
Communication AB. Master’s thesis, 2017.

[121] Dimosthenis Karatzas, Llúıs Gómez i Bigorda, Anguelos Nicolaou,
Suman K. Ghosh, Andrew D. Bagdanov, M. Iwamura, Jiri Matas, Lukás
Neumann, Vijay Ramaseshan Chandrasekhar, Shijian Lu, Faisal Shafait,
Seiichi Uchida, and Ernest Valveny. Icdar 2015 competition on robust read-
ing. 2015 13th International Conference on Document Analysis and Recognition
(ICDAR), pages 1156–1160, 2015.

[122] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yong-
long Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan.
Supervised contrastive learning. NeurIPS, 33:18661–18673, 2020.

[123] Jaeyoung Kim, Kyuheon Jung, Dongbin Na, Sion Jang, Eunbin Park, and
Sungchul Choi. Pseudo outlier exposure for out-of-distribution detection using
pretrained transformers. In ACL, pages 1469–1482, 2023.

[124] Jaeyoung Kim, Seo Taek Kong, Dongbin Na, and Kyu-Hwan Jung. Key
feature replacement of in-distribution samples for out-of-distribution detection. In
AAAI, volume 37, pages 8246–8254, 2023.

[125] Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors, pages
1746–1751, Doha, Qatar, October 2014. Association for Computational Linguistics.

[126] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In Proceedings of the 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun, editors, 2015.

[127] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In Proceedings of the 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[128] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto.
Hey! are you committing tangled changes? In Proceedings of the 22nd International
Conference on Program Comprehension, ICPC 2014, page 262–265, New York, NY,
USA, 2014. Association for Computing Machinery.

124

[129] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto.
Splitting commits via past code changes. In Proceedings of the 2016 23rd Asia-
Pacific Software Engineering Conference (APSEC), pages 129–136, 2016.

[130] Pavneet Singh Kochhar, Yuan Tian, and David Lo. Potential biases in bug
localization: do they matter? In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, page 803–814, New York,
NY, USA, 2014. Association for Computing Machinery.

[131] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver,
Jessica Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General
visual representation learning. In Proceedings of the 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pages 491–507. Springer,
2020.

[132] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, I. Patras, and Yian-
nis Kompatsiaris. Near-duplicate video retrieval by aggregating intermediate cnn
layers. In Proceedings of the International Conference on Multimedia Modeling, 2017.

[133] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, I. Patras, and Yiannis
Kompatsiaris. Near-duplicate video retrieval with deep metric learning. Proceed-
ings of the 2017 IEEE International Conference on Computer Vision Workshops
(ICCVW), pages 347–356, 2017.

[134] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and
Ioannis Kompatsiaris. Fivr: Fine-grained incident video retrieval. IEEE Trans-
actions on Multimedia, 21(10):2638–2652, 2019.

[135] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[136] Hongyu Kuang, Patrick Mäder, Hao Hu, Achraf Ghabi, LiGuo Huang,
Lv Jian, and Alexander Egyed. Do data dependencies in source code comple-
ment call dependencies for understanding requirements traceability? In Proceedings
of the 2012 28th IEEE International Conference on Software Maintenance (ICSM),
pages 181–190, 2012.

[137] Hiroki Kuramoto, Masanari Kondo, Yutaro Kashiwa, Yuta Ishimoto,
Kaze Shindo, Yasutaka Kamei, and Naoyasu Ubayashi. Do visual issue
reports help developers fix bugs? a preliminary study of using videos and images
to report issues on github. In Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, pages 511–515, 2022.

[138] Quoc V. Le and Tomás Mikolov. Distributed representations of sentences and
documents. CoRR, abs/1405.4053, 2014.

[139] Van-Hoang Le and Hongyu Zhang. Log-based anomaly detection with deep
learning: How far are we? In ICSE, pages 1356–1367, 2022.

125

[140] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Yongqiang Yang,
and Michael R. Lyu. Heterogeneous anomaly detection for software systems via
semi-supervised cross-modal attention. In ICSE, page 1724–1736, 2023.

[141] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-
calibrated classifiers for detecting out-of-distribution samples. arXiv:1711.09325,
2017.

[142] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. A survey of code-
based change impact analysis techniques. Software Testing, Verification and Relia-
bility, 23, 12 2013.

[143] Minghao Li, Tengchao Lv, Jingye Chen, Lei Cui, Yijuan Lu, Dinei Flo-
rencio, Cha Zhang, Zhoujun Li, and Furu Wei. Trocr: Transformer-
based optical character recognition with pre-trained models. arXiv preprint
arXiv:2109.10282, 2021.

[144] Ruitong Li, Gang Hu, and Min Peng. Hierarchical embedding for code search
in software q&a sites. In IJCNN, pages 1–10. IEEE, 2020.

[145] Xinzhe Li, Ming Liu, Shang Gao, and Wray Buntine. A survey on out-of-
distribution evaluation of neural nlp models. In IJCAI, pages 6683–6691, 2023.

[146] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability
of out-of-distribution image detection in neural networks. arXiv:1706.02690, 2017.

[147] Meng-Jie Lin, Cheng-Zen Yang, Chao-Yuan Lee, and Chun-Chang Chen.
Enhancements for duplication detection in bug reports with manifold correlation
features. Journal of Systems and Software, 121:223–233, 2016.

[148] Mario Linares-Vásquez, Martin White, Carlos Bernal-Cárdenas,
Kevin Moran, and Denys Poshyvanyk. Mining android app usages for gener-
ating actionable gui-based execution scenarios. In Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR ’15, page 111–122. IEEE Press,
2015.

[149] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang
Gong, Ziang Li, Jiayu Ou, and Zheshun Wu. Microhecl: High-efficient root
cause localization in large-scale microservice systems. In ICSE-SEIP, pages 338–347,
2021.

[150] Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng, and Yang Liu.
Contrabert: Enhancing code pre-trained models via contrastive learning. In ICSE,
page 2476–2487, 2023.

[151] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based
out-of-distribution detection. NeurIPS, 33:21464–21475, 2020.

126

[152] Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges
El Fakhri, Je-Won Kang, Jonghye Woo, et al. Deep unsupervised domain
adaptation: A review of recent advances and perspectives. APSIPA Trans. Signal
Inf. Proc., 11(1), 2022.

[153] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[154] Z. Liu, Z. Tang, J. Zhang, X. Xia, and X. Yang. Pre-training by predicting
program dependencies for vulnerability analysis tasks. In ICSE, pages 935–935,
2024.

[155] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing
Wang. Owl eyes. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. ACM, December 2020.

[156] Philipp Liznerski, Lukas Ruff, Robert A Vandermeulen, Billy Joe
Franks, Klaus-Robert Müller, and Marius Kloft. Exposing outlier expo-
sure: What can be learned from few, one, and zero outlier images. arXiv:2205.11474,
2022.

[157] Adriaan Lotter, Sherlock A. Licorish, Bastin Tony Roy Savarimuthu,
and Sarah Meldrum. Code reuse in stack overflow and popular open source java
projects. In ASWEC, pages 141–150, 2018.

[158] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu
Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset
for code understanding and generation. CoRR, abs/2102.04664, 2021.

[159] Siyang Lu, Xiang Wei, Yandong Li, and Liqiang Wang. Detect-
ing anomaly in big data system logs using convolutional neural network. In
DASC/PiCom/DataCom/CyberSciTech 2018, pages 151–158. IEEE, 2018.

[160] Kimberly T Mai, Toby Davies, and Lewis D Griffin. Self-supervised losses
for one-class textual anomaly detection. arXiv:2204.05695, 2022.

[161] Snehashis Majhi, Srijan Das, François Brémond, Ratnakar Dash, and
Pankaj Kumar Sa. Weakly-supervised joint anomaly detection and classification.
In FG, pages 1–7. IEEE, 2021.

[162] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David
Nader Palacio, Denys Poshyvanyk, Rocco Oliveto, and Gabriele

127

Bavota. Studying the usage of text-to-text transfer transformer to support code-
related tasks. In Proceedings of the 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pages 336–347, 2021.

[163] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, Yoshua Bengio and Yann LeCun, editors, 2013.

[164] Chris Mills, Esteban Parra, Jevgenija Pantiuchina, Gabriele Bavota,
and Sonia Haiduc. On the relationship between bug reports and queries for text
retrieval-based bug localization. Empirical Software Engineering, 25, 09 2020.

[165] Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan
Li. Delving into out-of-distribution detection with vision-language representations.
NeurIPS, 35:35087–35102, 2022.

[166] Kevin Moran, Carlos Bernal-Cardenas, Michael Curcio, Richard
Bonett, and Denys Poshyvanyk. Machine learning-based prototyping of graph-
ical user interfaces for mobile apps. IEEE Transactions on Software Engineering,
46(2):196–221, February 2020.

[167] Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas,
Christopher Vendome, and Denys Poshyvanyk. Automatically Discover-
ing, Reporting and Reproducing Android Application Crashes . In Proceedings of
the 2016 IEEE International Conference on Software Testing, Verification and Val-
idation (ICST), pages 33–44, Los Alamitos, CA, USA, April 2016. IEEE Computer
Society.

[168] Hoan Anh Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. Filtering noise
in mixed-purpose fixing commits to improve defect prediction and localization. In
Proceedings of the 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), pages 138–147, 2013.

[169] Tuan Anh Nguyen and Christoph Csallner. Reverse engineering mobile
application user interfaces with REMAUI (t). In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, November 2015.

[170] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning
with contrastive predictive coding. arXiv:1807.03748, 2018.

[171] Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Ekaterina Arte-
mova, and Irina Piontkovskaya. Revisiting mahalanobis distance for
transformer-based out-of-domain detection. In AAAI, volume 35, pages 13675–
13682, 2021.

128

[172] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor
Gyimóthy. Using information retrieval based coupling measures for impact analy-
sis. Empirical Software Engineering, 14:5–32, 02 2009.

[173] Denys Poshyvanyk, Maksym Petrenko, Andrian Marcus, Xinrong Xie,
and Dapeng Liu. Source code exploration with google. In Proceedings of the 2006
22nd IEEE International Conference on Software Maintenance, pages 334–338, 2006.

[174] Ju Qian, Zhengyu Shang, Shuoyan Yan, Yan Wang, and Lin Chen. Ro-
Script. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. ACM, June 2020.

[175] Yuning Qiu, Teruhisa Misu, and Carlos Busso. Unsupervised scalable mul-
timodal driving anomaly detection. IEEE TIV, 2022.

[176] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, et al. Learning transferable visual models from natural language
supervision. In Proceedings of the International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[177] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Explor-
ing the limits of transfer learning with a unified text-to-text transformer. CoRR,
abs/1910.10683, 2019.

[178] Nikitha Rao, Chetan Bansal, and Joe Guan. Search4code: Code search intent
classification using weak supervision. In MSR, pages 575–579, 2021.

[179] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[180] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-CNN: To-
wards real-time object detection with region proposal networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, June 2017.

[181] C. Richter and H. Wehrheim. How to train your neural bug detector: Artificial
vs real bugs. In ASE, pages 1036–1048. IEEE Computer Society, 2023.

[182] Cedric Richter and Heike Wehrheim. Learning realistic mutations: Bug cre-
ation for neural bug detectors. In ICST, pages 162–173, 2022.

[183] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai
Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy
Rapin, et al. Code llama: Open foundation models for code. arXiv:2308.12950,
2023.

[184] Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander
Binder, Emmanuel Müller, Klaus-Robert Müller, and Marius Kloft.
Deep semi-supervised anomaly detection. In ICLR, 2020.

129

[185] Sable Research Group. Soot: A java bytecode optimization framework. https:
//soot-oss.github.io/soot/, 2023.

[186] Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Mo-
hammad Hossein Rohban, and Mohammad Sabokrou. A unified survey on
anomaly, novelty, open-set, and out of-distribution detection: Solutions and future
challenges. TMLR, 2022.

[187] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., USA, 1986.

[188] Pasquale Salza, Christoph Schwizer, Jian Gu, and Harald C Gall. On
the effectiveness of transfer learning for code search. TSE, 2022.

[189] Adriana Sejfia, Satyaki Das, Saad Shafiq, and Nenad Medvidović. To-
ward improved deep learning-based vulnerability detection. In ICSE, pages 1–12,
2024.

[190] Mark Sherriff and Laurie Williams. Empirical software change impact anal-
ysis using singular value decomposition. In Proceedings of the 2008 1st International
Conference on Software Testing, Verification, and Validation, pages 268–277, 2008.

[191] Ensheng Shi, Yanlin Wang, Wenchao Gu, Lun Du, Hongyu Zhang, Shi
Han, Dongmei Zhang, and Hongbin Sun. Cocosoda: Effective contrastive learn-
ing for code search. In ICSE, pages 2198–2210, 2023.

[192] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Os-
borne. Evaluating complexity, code churn, and developer activity metrics as in-
dicators of software vulnerabilities. IEEE Transactions on Software Engineering,
37(6):772–787, 2011.

[193] Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina
Williams, and Douwe Kiela. Masked language modeling and the distributional
hypothesis: Order word matters pre-training for little. In EMNLP, pages 2888–2913,
2021.

[194] Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, and Adina
Williams. Unnatural language inference. arXiv:2101.00010, 2020.

[195] R. Smith. An overview of the tesseract OCR engine. In Proceedings of the Ninth
International Conference on Document Analysis and Recognition (ICDAR 2007) Vol
2. IEEE, September 2007.

[196] Ray Smith. An overview of the tesseract ocr engine. In Proceedings of the Ninth
international conference on document analysis and recognition (ICDAR 2007), vol-
ume 2, pages 629–633. IEEE, 2007.

130

https://soot-oss.github.io/soot/
https://soot-oss.github.io/soot/

[197] Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin
Moran, Andrian Marcus, and Denys Poshyvanyk. Toward interactive bug
reporting for (android app) end-users. In Proceedings of the 30th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2022, page 344–356, New York, NY, USA, 2022.
Association for Computing Machinery.

[198] Sargur N Srihari, Ajay Shekhawat, and Stephen W Lam. Optical character
recognition (ocr). In Encyclopedia of Computer Science, pages 1326–1333. 2003.

[199] Benjamin Steenhoek, Hongyang Gao, and Wei Le. Dataflow analysis-
inspired deep learning for efficient vulnerability detection. In ICSE, pages 1–13,
2024.

[200] Lei Sun, Kailun Yang, Xinxin Hu, Weijian Hu, and Kaiwei Wang. Real-
time fusion network for rgb-d semantic segmentation incorporating unexpected ob-
stacle detection for road-driving images. IEEE Robot. Autom. Lett., 5(4):5558–5565,
2020.

[201] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution
detection with deep nearest neighbors. In ICML, 2022.

[202] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy,
and Mohammad Mamun Mia. Towards a big data curated benchmark of inter-
project code clones. In Proceedings of the 2014 IEEE International Conference on
Software Maintenance and Evolution, pages 476–480, 2014.

[203] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexan-
der A. Alemi. Inception-v4, inception-resnet and the impact of residual connec-
tions on learning. ArXiv, abs/1602.07261, 2016.

[204] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim.
How do software engineers understand code changes? an exploratory study in in-
dustry. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, New York, NY, USA, 2012. Associ-
ation for Computing Machinery.

[205] Yu Tian, Gabriel Maicas, Leonardo Zorron Cheng Tao Pu, Rajvinder
Singh, Johan W Verjans, and Gustavo Carneiro. Few-shot anomaly de-
tection for polyp frames from colonoscopy. In MICCAI, pages 274–284. Springer,
2020.

[206] Marco Torchiano and Filippo Ricca. Impact analysis by means of unstruc-
tured knowledge in the context of bug repositories. In Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and Mea-
surement, ESEM ’10, New York, NY, USA, 2010. Association for Computing Ma-
chinery.

131

[207] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In
CVPR, pages 1521–1528. IEEE, 2011.

[208] Neeraj Varshney, Swaroop Mishra, and Chitta Baral. Investigating selec-
tive prediction approaches across several tasks in IID, OOD, and adversarial settings.
In ACL, pages 1995–2002, 2022.

[209] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems, I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, volume 30. Curran Associates, Inc., 2017.

[210] Chaozheng Wang, Zhenhao Nong, Cuiyun Gao, Zongjie Li, Jichuan Zeng,
Zhenchang Xing, and Yang Liu. Enriching query semantics for code search with
reinforcement learning. Neural Netw., 145:22–32, 2022.

[211] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies, and Qing Wang.
Images don’t lie: Duplicate crowdtesting reports detection with screenshot informa-
tion. Information and Software Technology, 110:139–155, June 2019.

[212] Kai Wang, Boris Babenko, and Serge J. Belongie. End-to-end scene text
recognition. In Proceedings of the 2011 International Conference on Computer Vi-
sion, pages 1457–1464, 2011.

[213] LeiChen Wang, Simon Giebenhain, Carsten Anklam, and Bastian Gold-
luecke. Radar ghost target detection via multimodal transformers. IEEE Robot.
Autom. Lett., 6(4):7758–7765, 2021.

[214] Min Wang, Zeqi Lin, Yanzhen Zou, and Bing Xie. Cora: Decomposing
and describing tangled code changes for reviewer. In Proceedings of the 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 1050–1061, 2019.

[215] Wei Wang, Yun He, Tong Li, Jiajun Zhu, and Jinzhuo Liu. An integrated
model for information retrieval based change impact analysis. Scientific Program-
ming, 2018:1–13, 03 2018.

[216] Xin Wang, Yasheng Wang, Pingyi Zhou, Fei Mi, Meng Xiao, Yadao Wang,
Li Li, Xiao Liu, Hao Wu, Jin Liu, and Xin Jiang. CLSEBERT: contrastive
learning for syntax enhanced code pre-trained model. CoRR, abs/2108.04556, 2021.

[217] Xuheng Wang, Jiaxing Song, Xu Zhang, Junshu Tang, Weihe Gao, and
Qingwei Lin. Logonline: A semi-supervised log-based anomaly detector aided with
online learning mechanism. In ASE, pages 141–152. IEEE, 2023.

[218] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5:
Identifier-aware unified pre-trained encoder-decoder models for code understanding

132

and generation. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, Marie-Francine Moens, Xuanjing Huang, Lucia Spe-
cia, and Scott Wen-tau Yih, editors, pages 8696–8708, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics.

[219] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and
Denys Poshyvanyk. A systematic literature review on the use of deep learning
in software engineering research. ACM Trans. Softw. Eng. Methodol., 31(2), March
2022.

[220] Tyler Wendland, Jingyang Sun, Junayed Mahmud, SM Hasan Mansur,
Steven Huang, Kevin Moran, Julia Rubin, and Mattia Fazzini. Andror2: A
dataset of manually-reproduced bug reports for android apps. In Proceedings of the
2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR), pages 600–604. IEEE, 2021.

[221] Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui.
On the usage of continual learning for out-of-distribution generalization in pre-
trained language models of code. arXiv:2305.04106, 2023.

[222] Martin White, Michele Tufano, Mat́ıas Mart́ınez, Martin Monperrus,
and Denys Poshyvanyk. Sorting and transforming program repair ingredients via
deep learning code similarities. In Proceedings of the 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
479–490, 2019.

[223] Martin White, Michele Tufano, Christopher Vendome, and Denys
Poshyvanyk. Deep learning code fragments for code clone detection. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE ’16, page 87–98, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[224] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack
Phan, Qijin Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng
Yieh, et al. Bugsinpy: a database of existing bugs in python programs to enable
controlled testing and debugging studies. In ESEC/FSE, pages 1556–1560, 2020.

[225] Xiao Wu, Alexander Hauptmann, and Chong-Wah Ngo. Practical elim-
ination of near-duplicates from web video search. Proceedings of the 15th ACM
international conference on Multimedia, 2007.

[226] Yanan Wu, Keqing He, Yuanmeng Yan, QiXiang Gao, Zhiyuan Zeng,
Fujia Zheng, Lulu Zhao, Huixing Jiang, Wei Wu, and Weiran Xu. Revisit
overconfidence for ood detection: Reassigned contrastive learning with adaptive
class-dependent threshold. In NAACL-HLT, pages 4165–4179, 2022.

[227] Zhipeng Wu and Kiyoharu Aizawa. Self-similarity-based partial near-duplicate
video retrieval and alignment. International Journal of Multimedia Information
Retrieval, 3:1–14, 2014.

133

[228] Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. The art of abstention:
Selective prediction and error regularization for natural language processing. In
ACL-IJCNLP, pages 1040–1051, 2021.

[229] Keyang Xu, Tongzheng Ren, Shikun Zhang, Yihao Feng, and Caiming
Xiong. Unsupervised out-of-domain detection via pre-trained transformers. In
ACL, pages 1052–1061, 2021.

[230] Hui Xue, Qiang Yang, and Songcan Chen. Svm: Support vector machines.
In The top ten algorithms in data mining, pages 51–74. Chapman and Hall/CRC,
2009.

[231] Yanfu Yan, Nathan Cooper, Oscar Chaparro, Kevin Moran, and
Denys Poshyvanyk. Janus replication package: https://doi.org/10.5281/
zenodo.10455811, 2023.

[232] Yanfu Yan, Nathan Cooper, Kevin Moran, Gabriele Bavota, Denys
Poshyvanyk, and Steve Rich. Enhancing code understanding for impact analy-
sis by combining transformers and program dependence graphs. Proc. ACM Softw.
Eng., (FSE), 2024.

[233] Yanfu Yan, Viet Duong, Huajie Shao, and Denys Poshyvanyk. Cood online
appendix: https://github.com/yanyanfu/COOD, 2024.

[234] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. Stack overflow
in github: Any snippets there? In MSR, pages 280–290, 2017.

[235] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-
of-distribution detection: A survey. IJCV, 2024.

[236] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan
Dong, and Wenbin Zhang. Semi-supervised log-based anomaly detection via
probabilistic label estimation. In ICSE, pages 1448–1460. IEEE, 2021.

[237] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan
Salakhutdinov, and Quoc V. Le. XLNet: generalized autoregressive pretraining
for language understanding. Curran Associates Inc., Red Hook, NY, USA, 2019.

[238] Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. Staqc: A sys-
tematically mined question-code dataset from stack overflow. InWWW, pages 1693–
1703, 2018.

[239] Jaemin Yoo, Tiancheng Zhao, and Leman Akoglu. Data augmentation is a
hyperparameter: Cherry-picked self-supervision for unsupervised anomaly detection
is creating the illusion of success. TMLR, 2022.

[240] Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang
Wu, Yuchi Ma, and Pinjia He. Deep learning or classical machine learning? an
empirical study on log-based anomaly detection. In ICSE, pages 1–13, 2024.

134

https://doi.org/10.5281/zenodo.10455811
https://doi.org/10.5281/zenodo.10455811
https://github.com/yanyanfu/COOD

[241] Shengcheng Yu, Chunrong Fang, Yulei Liu, Ziqian Zhang, Yexiao Yun,
Xin Li, and Zhenyu Chen. Universally adaptive cross-platform reinforcement
learning testing via gui image understanding. arXiv preprint arXiv:2208.09116,
2022.

[242] Zhiyuan Zeng, Hong Xu, Keqing He, Yuanmeng Yan, Sihong Liu, Zijun
Liu, and Weiran Xu. Adversarial generative distance-based classifier for robust
out-of-domain detection. In ICASSP, pages 7658–7662. IEEE, 2021.

[243] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha
Bhamidipaty, and Carsten Eickhoff. A transformer-based framework for mul-
tivariate time series representation learning. In KDD, page 2114–2124, 2021.

[244] Li-Ming Zhan, Haowen Liang, Bo Liu, Lu Fan, Xiao-Ming Wu, and Al-
bert Y.S. Lam. Out-of-scope intent detection with self-supervision and discrimi-
native training. In ACL, pages 3521–3532, 2021.

[245] Chenyangguang Zhang, Tong Jia, Guopeng Shen, Pinyan Zhu, and Ying
Li. Metalog: Generalizable cross-system anomaly detection from logs with meta-
learning. In ICSE, pages 938–938. IEEE Computer Society, 2024.

[246] Ting Zhang, DongGyun Han, Venkatesh Vinayakarao, Ivana Clairine
Irsan, Bowen Xu, Ferdian Thung, David Lo, and Lingxiao Jiang. Du-
plicate bug report detection: How far are we? ACM Transactions on Software
Engineering and Methodology, 32(4):1–32, 2023.

[247] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong
Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. Robust
log-based anomaly detection on unstable log data. In ESEC/FSE, pages 807–817,
2019.

[248] Tianming Zhao, Chunyang Chen, Yuanning Liu, and Xiaodong Zhu.
GUIGAN: Learning to generate GUI designs using generative adversarial networks.
In Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, May 2021.

[249] Wanlei Zhao and Chong-Wah Ngo. Scale-rotation invariant pattern entropy for
keypoint-based near-duplicate detection. IEEE Transactions on Image Processing,
18:412–423, 2009.

[250] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object
detection with deep learning: A review. IEEE transactions on neural networks and
learning systems, 30(11):3212–3232, 2019.

[251] Yinhe Zheng, Guanyi Chen, and Minlie Huang. Out-of-domain detection
for natural language understanding in dialog systems. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 28:1198–1209, 2020.

135

[252] Wenxuan Zhou, Fangyu Liu, and Muhao Chen. Contrastive out-of-
distribution detection for pretrained transformers. In EMNLP, pages 1100–1111,
2021.

[253] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran
He, and Jiajun Liang. East: an efficient and accurate scene text detector. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 5551–5560, 2017.

[254] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. NeurIPS, 32, 2019.

[255] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller. Mining version
histories to guide software changes. In Proceedings of the 26th International Con-
ference on Software Engineering, pages 563–572, 2004.

136

137

VITA

Yanfu Yan

Yanfu Yan is a Ph.D. candidate in Computer Science at William & Mary, where she is ad-

vised by Prof. Denys Poshyvanyk. Her research centers on designing tailored approaches

to facilitate software engineering (SE) tasks through multimodal learning, which analyzes

and leverages software data in various modalities and builds upon innovative adaptation

and integration of techniques from diverse fields. Yanfu’s work has been published in

top-tier SE venues, such as the IEEE/ACM International Conference on Software Engi-

neering (ICSE) and the ACM International Conference on the Foundations of Software

Engineering (FSE). She graduated with her M.S. in computer science and technology from

the University of Chinese Academy of Sciences and her B.E. in software engineering from

Xiamen University.

	Acknowledgments
	Dedication
	List of Tables
	List of Figures
	Introduction
	Task Focus and Contributions
	Detecting Duplicate Video-based Bug Reports through Multimodal GUI Scene Learning
	Code Change Impact Analysis via Multimodal Coupling
	Towards More Trustworthy Deep Code Models by Enabling Multimodal Out-of-Distribution Detection

	Organization
	Bibliography Notes

	Background
	Visual Representation Learning
	Optical Character Recognition
	Code Representations Learning
	Multimodal Contrastive Learning

	Detecting Duplicate Video-based Bug Reports through Multimodal GUI Scene Learning
	Introduction
	Related Work
	The JANUS Duplicate Detector
	Problem Formulation and Challenges
	Janus Overview
	Janusvis: Visual Representation of Videos
	Visual Representation of Video Frames
	Visual Representation of Videos

	Janustxt: Textual Representation of Videos
	Janusseq: Sequential Similarity of Videos
	Combining Janus's Components

	Evaluation Methodology
	Duplicate Detection Dataset
	Extended Real Bug Dataset
	Duplicate Video Recording
	Duplicate Detection Tasks

	Baseline Duplicate Detector
	Metrics and Experimental Settings
	Evaluation Metrics
	Model Configurations
	Model Training

	Evaluation Results
	RQ1: Janusvis's Performance
	RQ2: Janustxt's Performance
	RQ3: Janusseq's Performance
	RQ4: Component Combination Performance
	Qualitative Analysis
	Example 1: Vision Transformer-based Representations Capture Subtle GUI patterns
	Example 2: Scene-based Text Detection Improves Text Localization

	Threats to Validity
	Internal and Construct Validity
	External Validity

	Chapter Summary

	Code Change Impact Analysis via Multimodal Coupling
	Introduction
	Related Work
	Impact Analysis Techniques
	Impact Analysis Benchmarks

	ATHENA
	Dependence Graph Generator
	Code Representation Extraction
	Embedding Propagation
	Impact Set Estimation

	Experimental Design
	Impact Analysis Benchmark: Alexandria
	Evaluation Metrics
	Baselines
	ATHENA Configurations

	Evaluation Results
	RQ3: Athena Performance on IA
	RQ2: The Impact of Call Dependence and Class Member Dependence
	RQ3: Ablation Study
	RQ4: The Performance of Athena and the Baseline on the Tangled Benchmark Counterpart
	RQ4: Qualitative Analyses on Impact Analysis Tasks

	Threats to Validity
	Internal Validity
	External Validity

	Chapter Summary

	Towards More Trustworthy Deep Code Models through Multimodal Out-of-Distribution Detection
	Introduction
	Related Work
	OOD Detection in SE
	OOD Detection in CV and NLP

	Approach
	Problem Statement
	Overview
	Unsupervised COOD
	Weakly-Supervised COOD+

	Empirical Evaluation Design
	Datasets
	OOD Scenarios
	Model Configurations
	OOD Detection Model Training and Measurement
	Baselines
	Main Task Performance Analysis

	Experimental Results
	RQ1: Unsupervised COOD Performance
	RQ2: Weakly-supervised COOD+ Performance
	RQ3: Weakly-Supervised COOD+ Performance with Different Model Components and Encoder Backbone
	RQ4: Main Task Performance

	Discussions
	Analysis of the Overconfidence of MSP with Conformal Prediction
	OOD Detection with Large Language Models (LLMs).
	Generalization of COOD/COOD+ to Other Code-related Tasks.

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Chapter Summary

	Conclusion
	Bibliography
	Vita

