
Automatically Documenting Unit Test Cases

Boyang Li, Christopher Vendome, Mario Linares-Vásquez, Denys Poshyvanyk, Nicholas A. Kraft∗
College of William and Mary, Williamsburg, VA, USA
∗ABB Corporate Research Center, Raleigh, NC, USA

{boyang, cvendome, mlinarev, denys}@cs.wm.edu, nicholas.a.kraft@us.abb.com

Abstract—Maintaining unit test cases is important during the
maintenance and evolution of a software system. In particular, au-
tomatically documenting these unit test cases can ameliorate the
burden on developers maintaining them. For instance, by relying
on up-to-date documentation, developers can more easily identify
test cases that relate to some new or modified functionality of
the system. We surveyed 212 developers (both industrial and
open-source) to understand their perspective towards writing,
maintaining, and documenting unit test cases. In addition, we
mined change histories of C# software systems and empirically
found that unit test methods seldom had preceding comments and
infrequently had inner comments, and both were rarely modified
as those methods were modified.

In order to support developers in maintaining unit test
cases, we propose a novel approach —UnitTestScribe— that
combines static analysis, natural language processing, backward
slicing, and code summarization techniques to automatically
generate natural language documentation of unit test cases. We
evaluated UnitTestScribe on four subject systems by means
of an online survey with industrial developers and graduate stu-
dents. In general, participants indicated that UnitTestScribe
descriptions are complete, concise, and easy to read.

I. INTRODUCTION

During evolution and maintenance of software systems, the
number of unit test cases often grows as new functionality
is introduced into the system. Maintaining these unit tests is
important to reduce the introduction of regression bugs due to
outdated unit tests (i.e., unit test cases that were not updated
simultaneously with the update of the particular functionality
that it intends to test). For instance, Test Driven Development
(TDD) [14] has been employed by a myriad of developers and
organizations to create and expand software systems [15, 16].
TDD requires unit test cases to be written prior to development
after which developers write code to build the particular
functionality that is required to pass those existing test cases.

In a survey (Section II) with 212 open-source and indus-
trial developers, we found that 89.15% of the developers
acknowledged that is it very important to maintain unit tests
cases. In particular, developers acknowledged that unit test
cases benefit maintenance of legacy code, reduce the burden
of understanding on new members of a project, and provide
confidence in the quality of new code added to an existing
system, among other reasons. Moreover, developers reported
that they do not frequently update comments pertaining to unit
test cases despite the fact that they consider maintaining unit
test cases an important task. While some developers suggested
that comments were not necessary for unit tests, we observed
that a majority of developers found understanding of unit test
cases to be at least moderately difficult.

We also performed an empirical study on the change his-
tories of 1,414 software systems to understand the prevalence
of unit test case comments and whether developers update
such comments between releases of the system. We found
that approximately 3.56% of unit test cases had preceding
comments and 14.02% of unit test cases had inner comments

out of a total of 53,735 unit test cases. We observed that these
comments rarely got updated during the development of these
systems (1.54% of the unit test method changes for preceding
comments and 15.23% of the unit test method changes for
inner comments).

The results from the survey and the mining-based study
highlight that (i) developers consider having up-to-date doc-
umentation and comments within source code regarding the
unit test cases to be useful, but (ii) commenting unit test
cases is not a widely used practice (in-the-wild). In order to
effectively maintain test cases, it is important that developers
understand the impact of each unit test case and the particular
functionality that it aims to test. Prior studies demonstrated
that developers seldom update comments in source code when
they modify those regions of code to which the comments
relate [28, 44, 64].

Consequently, in this paper, we present an approach, called
UnitTestScribe, to automatically generate natural lan-
guage (NL) documentation of unit test cases. Our approach
aims to ameliorate the burden of maintaining unit test cases
for developers and ideally help developers rapidly identify
outdated unit test cases to avoid regressions in their sys-
tems. UnitTestScribe is a novel combination of static
analysis, natural language processing, backward slicing, and
code summarization techniques to generate descriptions at
unit test method level. UnitTestScribe generates the
descriptions by detecting focal methods [30], assertions, and
data dependencies in unit test methods.

To validate the quality of the descriptions generated by
UnitTestScribe, we conducted a study with both open
source and industrial systems, and followed a widely used
framework for evaluating automatically generated documen-
tation [19, 47, 57]. We asked the participants (i) to evaluate
the completeness, conciseness, and expressiveness of the gen-
erated descriptions, and (ii) to describe the usefulness of the
description and the techniques.

This work is the first to investigate documentation practices
of unit test cases. In addition, the paper makes the following
contributions:

• an empirical study to understand whether developers
comment and update comments of unit test cases, which
have been modified, from a large dataset of C# projects;

• a survey of both open-source and industrial developers to
understand their perspective and practices with respect to
documenting unit test cases;

• an approach for automatically documenting test cases that
generates NL descriptions for unit test methods depicting
focal methods, assertions, and data dependencies.

II. AN EMPIRICAL STUDY AND A SURVEY

To the best of our knowledge, no study has been performed
to identify practices of developers when documenting test

cases. Co-evolution of comments and source code have been
investigated previously [27, 28, 44]; however, this work is the
first to investigate evolution of comments and unit test cases.
Hence, we performed a study aimed at identifying specific
requirements for an approach to automatically document unit
test methods. In particular, the preliminary study had two
parts: i) an online survey with open-source C# developers and
industrial practitioners (all of whom are Visual Studio users)
and ii) a mining-based study that investigates the prevalence
of comments in open-source C# systems from GitHub. The
goal of this study was to determine the extent that developers
write and update comments for unit test cases during evolution
and maintenance of software systems. Additionally, we were
interested in the answers from both open source and industrial
developers with respect to documenting unit test cases. The
context of the study was 1,414 open source C# projects hosted
on GitHub and the complete revision history of 246 of these
projects. The survey was completed by 212 developers that
either contributed to these projects or worked in industry.
The perspective is that of researchers interested in identifying
developers’ practices for documenting unit tests.

A. Research Questions

We investigated the following research questions (RQs):

RQ1 To what extent do unit test cases contain comments? This
RQ aims to address the prevalence of both a preceding
comment and inner comments for the unit test cases.

RQ2 To what extent do developers update unit test case
comments? This RQ investigates how often developers
modify and update the unit test case comments (both
preceding and inner) during software evolution.

RQ3 To what extent, do developers have difficulty understand-
ing unit test cases? This RQ investigates whether there
are obstacles in understanding unit tests cases and the
need by developers for support in this task.

The RQs (RQ1-RQ3) were answered by combining the
results from an online survey and a mining-based analysis.
The rationale for this combined approach is that we aimed to
gather answers directly from practitioners, and also to leverage
empirical evidence from change histories of a large dataset of
open source projects.

B. Data Collection

We identified all of the C# projects on GitHub through
GitHub’s public API [1]. We first extracted a comprehensive
list of all hosted projects and extracted all of the projects
identified as C#. We applied a filter to the projects to ensure
the projects were not a fork and contained at least one star,
watcher, or were forked. We avoided forks to prevent data
duplication and we used the other three criteria as a way
to remove abandoned projects. Our filtered dataset contained
2,209 projects that we locally cloned. We identified the devel-
opers of each project and sorted the unique email addresses
that followed a regex format validation ˆ[a-zA-Z0-9 .+-]+@[a-
zA-Z0-9-]+.[a-zA-Z0-9-.]+$), which sought to remove invalid
email addresses, as well as remove email addresses with
the patterns @(none) and @localhost. We had 4,115 email
addresses from open-source developers. Additionally, we con-
tacted 565 industrial developers from ABB. The survey was
distributed to the potential participants via email and the
survey was hosted on Qualtrics [7].

TABLE I
DEVELOPER SURVEY QUESTIONS AND RESULTS.

Question/Answer
Q1. How often do you write unit test cases for your project(s)?
Never: 13 (6.13%), Rarely: 23 (10.85%), Sometimes: 62 (29.24%),
Fairly Often: 67 (31.60%), Always: 47 (22.17%)
Q2. How often do you add/write documentation comments to unit test cases?
(i.e., comments preceding the unit test method declaration)
Never: 41 (19.34%), Rarely: 71 (33.49%), Sometimes: 38 (17.92%),
Fairly Often: 39 (18.40%), Always: 23 (10.85%)
Q3. How often do you find outdated comments (at method level)
in unit test cases?

Never: 37 (17.45%), Rarely: 64 (30.19%), Sometimes: 74 (34.90%),
Fairly Often: 32 (15.09%), Always: 5 (2.36%)
Q4. When you make changes to the unit tests,
how often do you comment the changes (or update existing comments)?

Never: 46 (21.70%), Rarely: 49 (23.11%), Sometimes: 48 (23.64%),
Fairly Often: 37 (17.45%), Always: 32 (15.09%)
Q5. Maintaining good unit test cases and documentations is important
to the quality of a system.

Strongly Disagree: 3 (1.41%), Disagree: 2 (0,94%), Neutral: 18 (8.49%),
Agree: 89 (41.98%, Strongly Agree: 100 (47.17%)
Q6. How difficult is it to understand a unit test? I.e., identifying focal methods
under test (F-MUT) in unit test, where the F-MUTs are responsible for
system state changes that are verified through assertions in the unit test.

Very Easy: 22 (10.38%), Easy: 62 (29.24%), Moderate: 106 (50.00%),
Hard: 17 (8.02%), Very Hard: 5 (2.36%)

The survey included three questions with demographic pur-
poses (D1 - D3) and six questions (Q1 - Q6) that investigated
whether developers document and maintain unit test cases.
Table I lists Q1 to Q6. Respondents were also given an
opportunity to describe their rationale in a free response field
after each question. Q1 and Q2 relate to RQ1; Q3 and Q4

relate to RQ2; Q5 and Q6 relate to RQ3 and serve to directly
motivate our proposed approach for documenting unit test
methods (Section III). In addition to the survey, for RQ1,
we analyzed the latest snapshot of 1,414 projects randomly
selected out of the 2,209 projects, and counted the number
of unit test methods that were documented in source code;
the random sampling is justified because of limitations on
computation time.

Concerning the source code pre-processing, we split the
inner and preceding comments in our analysis. We extracted
the unit test methods with srcML [9] by identifying the an-
notations [Test], [TestMethod], [TestCase] - these annotations
are used by NUnit [5] and Microsoft unit testing frameworks
[4]. We also included some special annotations for other
frameworks such as [Fact] and [Theory]. We automatically
extracted the data and subsequently ran the analysis at release-
level for the 246 projects with tagged releases and compared
both the inner and preceding comments (as in RQ1, we split
this analysis) in order to determine the extent that developers
are modifying comments when the unit test method is modified
during the project’s development (RQ2).

C. Results

The survey questions and the results from 212 developers
are summarized in Table I and the developer demographics
information can be found in our online appendix [6].

RQ1: Our primary interest in answering RQ1 is to un-
derstand whether developers comment unit test methods - as
preceding comments or as comments inside the method. To
this end, we first asked Q1 to understand how often developers
employ unit test cases in their systems. We observed that only
16.98% “rarely” or “never” write unit test cases, while 53.77%
“fairly often” or “always” write unit test cases (or 83.01% of
developers if we also consider “sometimes” respondents, since
this does suggest a mid-level usage). Hence, more than half
of the surveyed developers relatively frequently rely on unit
tests. The following comments demonstrate their rationale:

“I wish I could do it Always, but most of the time my
employer doesn’t want to pay the price of it, OR, the
practice is not well-perceived by other team members,
therefore abandoned. sadly.”

“When quality is required and time/budget allows”

“Always for commercial software. Only occasionally for
personal projects.”
Q3 demonstrates that developers are less prone to writing

comments for the unit tests. We observe that 52.83% of
developers “rarely” or “never” write comments and 17.92%
“sometimes” write comments. This observation indicates that
while a majority of developers utilize unit testing, typically
developers are not writing comments for unit tests. Some of
the rationale provided by the participants is:

“Comments need to be maintained which adds complexity
to the task.”

“I use very verbose naming of tests to be the docu-
mentation, along with meaningful naming of methods and
variables used in the test”

“I do, unless the test is really obvious”
Thus, we observed that in many cases developers find unit

test cases to be simple enough for comprehension or try to
encode the meaning in the naming. However, some developers
also indicated documentation is necessary to understand the
intent or importance of the unit test cases.

The mining-based study contradicts the developers’ prefer-
ences in that most of the projects do not have unit test methods
and these methods are predominantly not documented with
comments. In the analyzed source code (i.e., 1,414 projects),
we identified that 395 projects (27.93%) had unit test classes
and extracted a total of 53,735 unit test methods from these
projects. In total, 51,821 unit test methods did not have outer
comments (96.44%) and 46,201 did not have inner comments
(85.98%). These results contradict our observations from Q1

and Q2, since we observe that the vast majority of unit
test methods do not have preceding or inner comments. The
contradictory results can be explained as an artifact of the
sample analyzed in the mining-based study, and the diversity
of projects; it is worth noting that GitHub also hosts personal
projects that might not require unit testing. However, the
diverse set of projects in GitHub provide us with a general
view of developer practices.

Summary for RQ1. Although 47.17% of the developers
indicated that they document unit test cases in comments,
we observed that 96.44% of the projects lacked preceding
comments and 85.98% lacked inner comments to document
the unit tests. We also observed that 27.93% projects con-
tained test cases despite 53.77% of developers indicating
that they “fairly often” or “always” write test cases (83.01%
if we consider the response “sometimes”).

RQ2: In addition to the prevalence of comments for unit
test methods, we were interested in whether developers update
these comments or find outdated comments related to unit
test methods. In terms of outdated comments, 47.64% of the
developers indicated that they “rarely” or “never” find outdated
comments in Q3. This observation demonstrates that outdated
comments are relatively common since 52.36% of developers
find them at least “sometimes” to “always.” However, the

results do indicate that only 17.45% of developers find the
problem to be pervasive. The following are some offered
explanations:

“Comments very quickly get out of sync. As code evolves
the comments almost never get updated.”

“Because I don’t write comments for tests.”
These responses indicate that developers usually do not con-
sider comments and assume them to be outdated. The latter
assumption seems to be validated for database-related meth-
ods, since only 17% of these methods that were modified
had preceding comments that were also updated at least once
between releases for a dataset including 3,113 systems [44].
Similarly, the developer feedback suggests that the “never” and
“rarely” categories are over-represented in that developers do
not find outdated comments because the code lacks comments.

Following these observations, answers to Q4 suggest that
only 32.54% of developers frequently (“fairly often” and
“always”) update comments when making changes to unit test
cases. A plurality, 44.81%, either “rarely” or “never” update
comments. These results somewhat contradict the former ob-
servation from Q3 in that more developers indicate that they
do not update unit test comments than the developers that
indicated finding outdated comments. It suggests that more of
those comments are likely to be outdated than it may seem. For
instance, we got the following rationale from the participants:

“I usually remove comments when I find them”

“There aren’t any since tests should be self documenting.”

“When I feel a need to comment on “why” I made the
changes I prefer to add them as commit comments”
Interestingly, the developers indicated that many of the “up-

dates” are the removal of comments. Additionally, developers
indicated that such documentation of changes are logged in the
commit messages. We also observe that the lack of comments
impacts the results of Q4 (i.e., developers that do not comment
unit test cases also will not update these non-existing com-
ments). However, 32.54% of developers acknowledged that
existing comments were updated frequently.

The mining study at release-level opposes the developer
survey results in that it demonstrates unit test methods are
not typically updated. For the 246 projects with releases, we
identified 101 projects that utilized unit test cases. From those
101 projects, we identified 1,075,076 unit test method changes
from 3,160 total methods (aggregated numbers). In 16,561 of
those test method changes, we observed the preceding com-
ment was modified (1.54%), while 163,737 unit test method
changes had inner comments that were modified (15.23%).
These results contradict our observations from Q3 and Q4,
since we observe far fewer updates to unit test methods than
expected from the developer survey.

Summary for RQ2. Despite 44.81% of developers indi-
cated that they “rarely” or “never” update unit test com-
ments, we found that 1.54% of the preceding comments
and 15.23% of the inner comments in 101 projects were
changed at least once between releases when the unit test
method was also modified.

RQ3: Finally, we were interested in understanding whether
developers had difficulty understanding unit test cases because
of the comments, and the perceived importance of main-
taining unit test cases. Overwhelmingly, developers indicated

that maintaining unit test cases is important with 89.15%
of developers responding “agree” or “strongly agree” to Q5.
Thus, developers acknowledged that maintenance is important,
but we also observe that understanding unit test cases is not
trivial. 60.38% of developers indicated a “moderate” to “very
hard” difficulty with respect to understanding. Thus, the unit
test cases are important, but they are commonly not easy to
understand. We found the following potential causes for this
lack of understanding:

“This depends primarily on your level of immersion in the
project, which if high makes understanding easier than if
you are less immersed.”

“Depends on the complexity of the unit and the setup/fix-
tures required it can be hard”

“It depends of how well you know the system and how
the system is build”
While 39.62% of respondents indicated that they should be

easy to understand, we observed that project familiarity and
complexity of what is tested to be common causes of difficulty.
31.91% of the respondent providing rationale Q6 indicated unit
test cases should be simple or should follow the “Arrange, Act,
Assert” paradigm [12], which also aids in understandability.

Summary for RQ3. More than half of the developers
indicated a difficulty of “moderate” to “very hard” in terms
of understanding unit tests. Emphasizing this importance,
we observed that 89.15% of developers “agree” or strongly
agree” that maintaining test cases impacts the quality of the
system. This suggests that developers could benefit from
tools that support them in maintaining unit test cases during
software evolution and maintenance.

D. Threats to Validity
The construct threat to validity relates to bias in our

observations from the two perspectives of analysis (survey
and mining of unit test cases). We do not offer rationale
beyond the rationale provided by participants avoid inaccu-
rate inferences. Additionally, the projects on GitHub may
not contain the complete history of the projects due to the
maturity differential of the sampled projects and GitHub. It
is also possible developers did not tag all of the releases for
the projects. However, these limitations are inherent to any
mining study utilizing GitHub [35]. Threats to internal validity
relate to response bias by developers that either had more
difficulty or did not have problems while understanding or
maintaining unit test cases. Based on the results of the survey,
we observed that responses were not dominantly distributed to
extremes that indicates that these developers were particularly
biased based on such difficulty. The external threats to validity
relate to generalizing the conclusions from this work. In our
conclusions, we state that these results are based on open-
source developers from GitHub and industrial developers, but
do not claim that these results generalize to all developers
in other industrial companies, contributing to other forges,
and developing systems in other languages. We do present
demographic information in our online appendix [6] that
suggests that we have a diverse sample of open-source and
industrial C# developers.

III. APPROACH

Based on the findings from the study (Section II), it is
clearly important to have an approach to support devel-

1public AddWordsSeveralTimes(){
2int listLength = 20;
3int coocurrenceCount = 3;
4var words =

GenerateRandomWordList(listLength);
5for(int i = 0; i < coocurrenceCount; i ++){
6matrix.HandleCoOcurrentWordsSync(words);
7}
8for(int i = 0; i < listLength - 1; i ++){
9var word1 = words.ElementAt(i);
10var word2 = words.ElementAt(i + 1);
11var count =
12matrix.GetCoOccurrenceCount(word1,word2);
13Assert.IsTrue(count > 0);
14}
15}

Fig. 1. CoOccurrenceMatrixTests.AddWordsSeveralTimes unit
test method of the Sando system

1public ExpandMoreLetters(){
2var queries =

expander.GetExpandedQueries("abfdsafafdc");
3Assert.IsNotNull(queries);
4queries =

expander.GetExpandedQueries("bcfdasfdsad");
5Assert.IsNotNull(queries);
6queries =

expander.GetExpandedQueries("defdasfdsaf");
7Assert.IsNotNull(queries);
8}

Fig. 2. AcronymExpanderTests.ExpandMoreLetters unit test
method of the Sando system

opers in maintaining unit test case documentation. There-
fore, we designed and implemented an approach, called
UnitTestScribe, to support unit test cases documenta-
tion. UnitTestScribe is a novel approach that combines
static analysis, natural language processing, backward slicing,
and code summarization techniques in order to automatically
generate expressive NL descriptions concisely documenting
the purpose of unit test methods (i.e., methods in unit tests).
The main conjecture of UnitTestScribe’s approach is
that the purpose of a unit test method can be described by
identifying (i) general descriptions of the test case method,
(ii) focal methods, (iii) assertions in the test case method, and
(iv) internal data dependencies for the variables in assertions.
A focal method is a method from the system under test, which
is invoked in a unit test case, and is responsible for system
state changes that are examined through assertions in unit
tests [30]. We recognized focal methods as an important piece
of information to be included in the resulting summary. In
addition, results from our second study (Section IV) showed
that identifying and highlighting focal methods would help
developers better understand respective unit test cases (see
Table VI).

Assertions are a key programming mechanism that is of-
ten used in unit test cases for comparing expected results
to actual results after executing one (or more) method(s)
from the software system under test. In addition, asser-
tions are often related to focal methods in test methods.
Therefore, the description of a focal method can be aug-
mented with those assertions related to a focal method.
Let us consider the CoOccurrenceMatrixTests.
AddWordsSeveralTimes test method in the Sando [8]
system (Fig. 1). The assertion in line 13 validates that the vari-
able count is greater than zero after calling the focal method
matrix.getCoOccurrenceCount. Thus, describing the
focal methods in the test method and the assertions related
to those methods by data dependencies might be useful for
understanding the purpose of unit test methods.

TABLE II
TAXONOMY OF METHOD STEREOTYPES PROPOSED BY DRAGAN ET AL.[23] WITH OUR PROPOSED MODIFICATIONS

Type Category Description Modified rules
Getter Accessor Returns the value of a data member No class field is changed && Return type is not void && Only return

one class field.
Predicate Accessor Returns a Boolean result based on a data member(s) No data member is changed && Return type is bool && Do not directly

return any data member
Property Accessor Returns information about a data member No data member is changed && Return type is not bool or not void. &&

Do not directly return any data member
Setter Mutator Changes the value of a data member Only 1 data member is changed&&Return type is void or 0/1
Command Mutator Executes complex changes on data members More than 1 class field is changed&&Return type is void or 0/1
Collaborator Collaborator Works on objects of classes different from the

method
At least one of the method’s parameters or local variables is an object
|| Invokes external method(s)

Factory Creator Creates an object and returns it Not returns primitive type Local && (A local variable is instantiated and
returned || Creates and returns a new object directly)

The purpose of an assertion can be inferred and translated
automatically into NL sentences by analyzing the assertion sig-
nature (e.g., Assert.AreEqual and Assert.AreSame
methods in the C# API) and the arguments. For instance,
the assertion Assert.IsNotNull(queries) in the
AcronymExpanderTests.ExpandMoreLetters unit
test method in the Sando system (Fig. 2) can be translated
into “Validate that the queries are not null”. Additionally,
arguments in focal methods and assertions have data depen-
dencies with variables defined in the test method. These data
dependencies can be described by slicing paths (analyzing data
flows) ending at a focal method or an assertion call. Con-
sequently, the descriptions generated by UnitTestScribe
combine (i) general descriptions of the test case method, (ii)
focal methods, (iii) assertions in the test case method, and (iv)
internal data dependencies for the variables in assertions.

A. UnitTestScribe Architecture

Source Codes Unit Test Cases Unit Test Cases
Detector 1

Focal Method
Detector 3

Program Slicing
Analyzer 5

Focal Methods
Information

SWUM.NET
4

Stereotype
Analyzer 2

Variable Slicing
Information

SWUM.NET
Description

Templates

Description
Generator 6

Unit Test Case
Documentation

Fig. 3. UnitTestScribe Architecture. The solid arrows denote the flow of data.
Numbers denote the sequence of operations.

The architecture of UnitTestScribe is depicted in
Fig. 3. The starting point of UnitTestScribe is the source
code of the system, including source code of the unit tests.
UnitTestScribe analyzes the source code to identify all
the unit test cases 1 . Then, UnitTestScribe performs
data-flow analysis to identify stereotypes at method level [23]
in the source code; the stereotypes detection is necessary
to identify the focal methods in the unit test methods 2 .
After having identified all the test cases and stereotypes,
UnitTestScribe detects focal methods for each unit test
case 3 . UnitTestScribe also uses SWUM.NET to gener-
ate a general NL description for each unit test case method.
SWUM.NET [11, 31] captures both linguistic and structural
information about a program, and then generates a sentence
describing the purpose of a source code method 4 . The
data dependencies between focal methods, assertions, and

variables in the test method are detected by performing static
backward slicing [34] 5 . Finally, the extracted information
(focal methods, assertions, slices, and SWUM sentence) are
structured in NL description by using predefined templates
6 . The final descriptions for all the methods are organized in
UnitTestScribe documentation in HTML format. In the
following subsections, we describe the details behind each of
the steps and components in UnitTestScribe.

B. Unit Test Detector
Our implementation focuses on systems that utilize NUnit

[5] and Microsoft unit testing frameworks [4] for unit testing
(because of the systems that were available for analysis
and evaluation through our industrial collaboration). Unit
test methods designed by developers are annotated with
[Test] and [TestMethod] for NUnit and Microsoft
testing frameworks respectively, which was utilized by our
detection algorithm (we also include [TestCase], [Fact],
and [Theory] for some special cases or new frameworks).

C. Method Stereotype Analyzer
Method stereotypes are labels/categories that indicate the

intent and the role of a method in a class [23], e.g., getter, set-
ter, collaborator. We modified the rules proposed by Dragan
et al. [23] for C++ to have the corresponding stereotypes for
C#. The Method Stereotype Analyzer in UnitTestCribe
analyzes data flows provided by SrcML.NET [10], and then
detects the stereotypes with the rules listed in Table II. In order
to collect all information for identifying method stereotypes
for each method, we track all the changes to local variables
and data members by examining statements that may cause a
variable to change. We also analyze the call graph of a given
project to record internal and external function calls for a given
method. The main goal behind method stereotype analyzer is
to accurately classify the method’s intent, which is later used
in the algorithm for identifying the focal methods.

D. Focal Method Detector
Because a test unit can have more than one assertion, we

consider each call to an assert method as a testing sub-goal of
the test method. Focal methods are responsible for application
state changes that are verified through assertions in the unit test
[30]. If there is a focal method associated with an assertion,
then the focal method is the “core” of the corresponding testing
sub-goal. UnitTestScribe identifies the focal methods by
following the approach proposed by Ghafari et al. [30]. Unlike
Ghafari et al.’s implementation, which only works with Java,
our implementation works across the main modern object
oriented programming languages, i.e., C#, Java, and C++,

TABLE III
A SUBSET OF PLACEHOLDER TEMPLATES WITH EXAMPLES

Placeholder Template Example
〈Part1〉 This unit test case method is to 〈Action〉 〈Theme〉

〈Preposition〉 〈SecondaryArg〉
This unit test case method is to test class with declared variable.

〈Part2〉 This unit test case includes following focal methods:
{〈FocalMd〉}

This unit test case includes following focal methods: . . .

〈Part3〉 This unit test case validates that: {〈Validatn〉} This unit test case validates that: . . .
〈FocalMd〉 〈Statement〉 This focal method is related with assertions at

〈LineNumber〉
col.Add("black","hole");(@line 49) This focal method is
related to assertions at line 50

〈Validatn〉 〈AsrtDesc〉. {〈Variable〉 is obtained from variable
〈Variable〉 through slicing path 〈Path〉}.

globalScope.IsGlobal is true. globalScope is obtained
from variable xml through slicing path xml >>> globalScope.

〈Path〉 {〈Variable〉 >>> } xml >>> xmlElement >>> globalScope >>> actual

Algorithm 1: An Algorithm for Focal Method Detection
Input: MethodDefinition m, AssertionStatement assert
Output: Set<FunctionCall> fmSet

1 begin
2 fmSet← new Set<FunctionCall>()
3 v ←GetEvaluatedVariable (assert)
4 queue.Push(v)
5 while queue.Size > 0 do
6 v ← queue.Pop()
7 decl stmt v ←FindDeclaration (m, v)
8 b← IsExternalObject (decl stmt v)
9 if b == true then

10 vSet←GetRelatedVariables (m, v)
11 queue.PushAll(vSet)

12 else
13 call← FindTheLastMutatorCall (m, v)
14 fmSet.Add(call)

15 return fmSet

since we rely on a multi-language parsing tool, srcML, for
generating XML files for source code and then analyzing them.

For each assertion, the Focal Method Detector in
UnitTestScribe applies the following steps to find its
focal methods; the procedure is listed in Algorithm 1. First,
we identify the variables and literals used as arguments in
the assertion call and distinguish the expected values from
the actual values according to the API documentation. For
example, in the assertion statement Assert.AreEqual(1,
parts.Count), the value of parts.Count is the actual
value and the integer literal 1 is the expected value. We push
the variable of actual value to the analysis queue queue
(line 3-4). Then, we check whether queue is empty since
queue contains all the variables which potentially invoke
focal methods (line 5). If queue has element(s), we pop up a
variable, v, from queue (line 6). Next, we find the declaration
statement decl_stmt_v of the assertion argument by using
static backward slicing and analyze the type of v (line 7-
8). If the type of v is an external class to the system (e.g
libraries, build-in types), we then find a variable set vSet
containing all of the variables that initialized v or are called
by v as parameters (line 10); for each variable v_new in
vSet, we push v_new to queue for further analysis (line
11). Otherwise, i.e., if the type of v belongs to the project
code, v is marked as a focal variable for the current sub-goal
and one of the focal methods for the current sub-scenario is
defined to be the last mutator/collaborator function that the
focal variable v calls before the assertion (line 13-14). The
algorithm returns a set of detected focal methods when queue
is empty (line 15).

E. General Description Extractor
Class/method/argument signatures usually contain verb

phrases, noun phrases, and preposition phrases that are useful
when constructing NL descriptions of code units [32, 57]. In

TABLE IV
LEAF LEVEL PLACEHOLDERS

Placeholder Explanation
〈Action〉 Action phrase from SWUM.NET for the entity
〈Theme〉 Theme phrase from SWUM.NET for the entity
〈Preposition〉 Preposition from SWUM.NET for the entity
〈SecondaryArg〉 The second object phrase from SWUM.NET
〈Statement〉 A source code statement
〈LineNumber〉 An integer value indicating the line number
〈AsrtDesc〉 NL description for an assertion statement
〈Variable〉 A source code variable

addition, programmers do not arbitrarily select names and tend
to choose descriptive and meaningful names for code units
[42]. UnitTestScribe relies on the SWUM approach by
Hill et al. [32], in particular the SWUM.NET tool implemented
by ABB in C# [11], to extract natural language phrases that are
used in composing general descriptions for unit test methods.

F. Slicing Path Analyzer

UnitTestScribe performs over-approximate analysis
for each variable v in an assertion statement to compute all
potential paths that may influence the value of v by using
backward slicing [34]. Although UnitTestScribe does not
track any branch conditions in the method (some paths may
not be executed with a certain input), the over-approximate
approach guarantees that potential slices are not missed in the
description of the unit test case.

G. Description Generator

The Description Generator in UnitTestScribe uses the
collected information from the previous steps and the prede-
fined templates to generate NL descriptions for test methods.
A description of a test unit method contains three parts:

• 〈Part1〉: General sentence describing the purpose of
a test method (based on class, method, and argument
signatures) generated with SWUM.NET;

• 〈Part2〉: Descriptions of focal methods;
• 〈Part3〉: Description of assertions in the unit test

method, including slicing paths of the variables validated
with an assertion.

The templates are listed in Table III . The placeholders
〈...〉 in the templates mark tokens to be replaced (the place-
holders are described in Table IV) by the Description Gen-
erator. We provide a complete list of templates, placeholders,
and report examples in our online appendix [6]. A description
for the method in Fig. 1 generated by UnitTestScribe is
shown in Fig. 4. The 1 marker indicates the general sentence
describing the purpose of the test method; 2 indicates the
focal method of the unit test method; 3 highlights the
assertions in the test method; and 4 indicates the variable’s
slicing path when users hover over the hyper link.

3

1

2

4

Fig. 4. An example of UnitTestScribe Description for Sando’s method
CoOccurrenceMatrixTests.AddWordsSeveralTimes

IV. EMPIRICAL STUDY

We conducted a user study in which the descriptions gen-
erated by UnitTestScribe were evaluated by developers
at ABB, computer science students, and researchers from
different universities. The goal of this study was to measure
the quality of UnitTestScribe descriptions as perceived
by users according to a well-established framework for eval-
uating automatically generated documentation [19, 47, 57].
The context consisted of four C# open source software sys-
tems that use either NUnit or Microsoft unit testing frame-
works, and 20 descriptions of unit test methods generated
by UnitTestScribe (five methods for each system). The
perspective was of researchers interested in evaluating the
quality of a method for automated documentation generation.
The quality focus was on the three attributes in the evaluation
framework: completeness, conciseness, and expressiveness.

A. Data Collection
The list of analyzed systems included two open-source sys-

tems from ABB Corporate Research Center and two popular
C# systems hosted on Github. Those subject applications are:
1) the SrcML.NET framework [10] used by ABB Corporate
Research for program transformation and source code analysis;
2) the Sando [8] system developed by ABB Corporate
Research, which is a Visual Studio Extension for searching
C, C++, and C# projects; 3) Glimpse [2], which is a
open-source diagnostics platform for inspecting web requests;
and 4) the Google-api-dotnet library [3] for accessing
Google services such as Drive, YouTube, Calendar in .NET
applications.

We selected these four subject systems according to the
following criteria: 1) the system should be a C# project and
use either NUnit or Microsoft unit testing framework; 2) the
system should be mature and under active maintenance. At the
time that we selected the systems, Glimpse had 149 watches
and 1,484 stars on Github, while Google-api-dotnet
had 27 watches and 102 stars. Detailed information about the
systems are shown in Table V. Note that the lines of code for
the test cases is in the range between 3 and 44 (average = 8.3,
median = 7).

For the evaluation we ran UnitTestScribe on each
subject system using an Intel Core i7-4700MQ CPU2.4GHZ
machine with 16GB RAM. We randomly selected five descrip-
tions for each software system while covering the following
criteria: 1) the selected method should have at least one
assertion and 5 LOC (We define LOC as the lines of codes
including method signature and brackets belong to the method

TABLE V
SUBJECT SYSTEMS: NUMBER OF FILES (NF), NUMBER OF METHODS

(MD), NUMBER OF CLASSES (CLS), NUMBER OF NAMESPACES (NS),
NUMBER OF TEST CASES (TS), RUNNING TIME (RT).

System NF MD CLS NS TS RT
SrcML.NET 332 2,867 306 42 410 546s
Sando 505 6,566 946 93 313 466s
Glimpse 909 6,503 1,045 153 943 1,281s
Google-api-dotnet 189 1,448 246 44 166 229s

in the unit test case file); 2) two descriptions must contain at
most 4 assertions (simple cases); 3) three descriptions must
have more than four assertions (complex cases). Our decision
for including only five methods per system was based on
the fact that analyzing the descriptions require inspection and
navigation of the source code; on average it may take 4-5
minutes to investigate each test case and we had to restrict
the study to 45 mins to avoid early-drop. After the study,
we also randomly interviewed some participants to collect
their opinions on limitations, usefulness, and suggestions for
improvement.

We did not generate descriptions for test methods with less
than five lines of code, since we assume developers should
be able to quickly read those test cases and understand them
without additional analysis. In other words, given the results
of our empirical study, it was clear that developers prefer test
case documentation for more complex test cases. We computed
the ratio of comments in test cases of our subject systems.
We found that 28% of test cases with more than or equal
to 5 LOC had comments, while only 13% of test cases with
fewer than 5 LOC had comments. The observation suggests
that larger unit test cases are commented more than smaller
unit test cases, and unit test cases in our subject systems are
rarely commented. Based on all the above, we claim that (i)
developers need more help on complex test cases rather than
simple ones; (ii) the test cases are rarely documented, which
is consistent with our motivation study in Section II.

B. Research Questions
The RQs aimed at evaluating the three quality attributes

in the evaluation framework [19, 47, 57] (i.e., completeness,
conciseness, and expressiveness); in addition, we evaluated
whether focal methods are useful for describing the purpose
of test methods, and whether the descriptions are useful for
understanding test methods. Consequently, in the context of
our study, we defined the following research questions:

RQ4 How complete are the unit test case descriptions gener-
ated by UnitTestScribe?

RQ5 How concise are the unit test case descriptions gener-
ated by UnitTestScribe?

RQ6 How expressive are the unit test case descriptions gen-
erated by UnitTestScribe?

RQ7 How important are focal methods and program slicing
for understanding unit test cases?

RQ8 How well can UnitTestScribe help developers under-
stand unit test cases?

C. Analysis Method
To answer the RQs, we organized the participants in two

groups: developers/researchers from ABB, and academic re-
searchers/students. The former group evaluated the descrip-
tions generated by UnitTestScribe for SrcML.NET and
Sando, and the latter group evaluated the descriptions for
Glimpse and Google-api-dotnet. For each group, we
created an on-line survey using the Qualtrics tool [7]. The

TABLE VI
STUDY QUESTIONS AND ANSWERS.

Completeness: Only focusing on the content of
the description without considering the way it
has been presented, do you think the message
is complete?

Group 1 Group 2

• The description does not miss any important
information

33(47.14%) 132(69.47%)

• The description misses some important informa-
tion to understand the unit test case

28(40.00%) 50(26.32%)

• The description misses the majority of the im-
portant information to understand the unit test case

9(12.86%) 8(4.21%)

Conciseness: Only focusing on the content of
the description without considering the way it
has been presented, do you think the message
is concise?

Group 1 Group 2

• The description contains no redundant/useless
information

36(51.43%) 100(52.63%)

• The description contains some redundant/useless
information

25(35.71%) 77(40.53%)

• The description contains a lot of redundant/use-
less information

9(12.86%) 13(6.84%)

Expressiveness: Only focusing on the content
of the description without considering the com-
pleteness and conciseness, do you think the
description is expressive?

Group 1 Group 2

• The description is easy to read and understand 43(61.43%) 114(60.00%)
• The description is somewhat readable and under-
standable

16(22.86%) 53(27.89%)

• The description is hard to read and understand 11(15.71%) 23(12.11%)
Preferences: Identifying of focal methods would
help developers to understand the unit test case

Group 1 Group 2

• Yes 7(100%) 17(89%)
• No 0(0%) 2(11%)
Preferences: Identifying of slicing path would
help developers to understand the unit test case

Group 1 Group 2

• Yes 6(86%) 13(68%)
• No 1(14%) 6(32%)

Preferences: Are our generated description use-
ful for understanding the unit test cases in the
system?

Group 1 Group 2

• Yes 4(57%) 17(89%)
• No 3(43%) 2(11%)

survey included (i) demographic background questions, and
(ii) questions aimed at answering the RQs (Table VI lists
the questions and possible answers). For each method, we
also asked the participants to provide the rationale for their
answers. We analyzed the collected results based on partici-
pants’ choices on each question as well as free-text answers.
For more detail, we analyzed the collected data based on the
distributions of responses in diverse combinations (ABB vs.
academic group, simple methods vs. complex methods). We
also checked the free-text responses in depth to understand the
rationale behind the choices.

D. Threats to Validity

One threat to internal validity is that participants may not
be familiar with the test case methods and subject systems.
In order to reduce this threat, we let participants first un-
derstand each selected method and then answer questions
about the method. Since we also provided source code for
each system, participants could navigate the context related
to the method. In addition, to avoid any type of bias, we
did not tell the participants whether the documentation was
automatically generated or not. One threat to external validity
is that our current implementation only focuses on NUnit or
Microsoft frameworks, however, UnitTestScribe can be
easily extended to other testing frameworks. The other threat
to external validity is that we only had limited number of
methods in our user study. However, we selected a diverse
set of methods to cover both simple and complex test cases.

One more threat to external validity is that only C# unit tests
and projects are analyzed in the study. However, since C# is a
standard OOP language and we may consider that the results
would be approximately the same with other standard OOP
languages such as Java.

V. RESULTS

We collected 26 valid responses from the participants in
two groups. In particular, the valid results contain responses
from 7 developers/researchers from ABB (group 1) and 19
responses from students/researchers (group 2). It should be
noted that participants from group 1 were/are developers of
the Sando and SrcML.NET projects. Therefore, we assume
that participants in group 1 have better understanding on the
unit test cases in the subject projects. Conversely, we consider
participants in group 2 as newcomers since they did not have
prior experience with those systems.

RQ4 - RQ6 focus on three quality attributes: completeness,
conciseness, and expressiveness. For completeness, we exam-
ined whether the descriptions of UnitTestScribe contain
all important information (RQ4). For conciseness, we evalu-
ated whether the descriptions of UnitTestScribe contain
redundant information (RQ5). For expressiveness, the focus
was whether the descriptions of UnitTestScribe are easy
to read (RQ6). Since we asked participants to evaluate these
three attributes for five test case methods in each application,
the total number of answers that we collected for each attribute
by group 1 is 5 × 2 × 7 = 70 answers, while the collected
answers for each attribute by the group 2 is 5× 2× 19 = 190
answers. In addition, we answered RQ7 and RQ8 based on the
results shown in the preferences criteria in Table VI. Generated
descriptions and anonymized study results from open-source
developers are publicly available at our online appendix [6].

A. Demographic Background
The participants had on average 13.5 years (median = 15

years) of programming experience for group 1, and 7.1 years
(median = 7) for group 2. When considering only industri-
al/open source experience, the participants in group 1 had on
average 9 years (median = 5), and the participants in group 2
had on average 1.2 years (median = 0.5). Regarding the highest
academic degree achieved, group 1 had 4 participants with MS
and 3 participants with PhDs, and group 2 had 8 participants
with BS, 10 participants with MS, and 1 participant with PhD.

B. Completeness (RQ4)
For group 1, 47.14% of the answers indicate that

UnitTestScribe descriptions do not miss any important
information, while only 12.86% of the answers indicate that
the descriptions miss some important information to under-
stand the unit test case. For group 2, 69.47% of the answers
indicate that the descriptions do not miss any important
information, while only 4.21% of the answers indicate that
the descriptions miss important information. If we only focus
on the first two options, we have 89% and 96% answers
indicating that some or no important information is missing.
More importantly, this demonstrates that only a very few
answers indicated that some key information was missing.

We also observed that UnitTestScribe was evaluated
more positively on complex methods rather than simple meth-
ods. For example, most of the answers (66.7%, 6 out of 9) with
the lowest ratings by group 1 came from the first two methods
in two systems (based on our study design, the first two

methods in each system had fewer assertions and statements
than the other methods). We also examined the comments with
lower ratings. Participants’ comments included the following:
“The main problem is that DataAssert.StatementsAreEqual is
not recognized as an assert.” This comment is due to the
fact that “DataAssert.StatementsAreEqual” was not included
in any standard unit test framework assertions that we used
for detecting. We mentioned this in Section IV-D.

Summary for RQ4. Overall, the results suggest that
UnitTestScribe is able to generate descriptions for
test case methods that cover all essential information in
most of the cases.

C. Conciseness (RQ5)
For group 1, 51.43% of the answers indicate that

UnitTestScribe descriptions contain no redundant/use-
less information, while only 12.86% of the answers indicate
the description contain significant amount of redundant/useless
information. For group 2, 52.63% of the answers indicate the
descriptions contain no redundant/useless information, while
only 6.84% of the answers indicates otherwise. Most of the
responses with lower scores were from test case methods
with the number of assertions greater than four (based on our
study design, the last three methods in each system had more
statements and assertions than the other two). For example,
for the lowest rating in group 2, 84.6 % (11 out of 13)
came from complex test case methods. One corresponding
comment included the following: “As the same variable is
updated and used multiple times, this unit test description is
very redundant.” Our explanation is that the descriptions for
larger test case methods may appear rather verbose, since we
provided more descriptions for each assertion and slicing. The
descriptions are trying to cover all important information that
could also come at the expense of expressiveness. To overcome
the redundancy, UnitTestScribe does not describe the
assertions that are already described in the focal methods when
the assertions include the focal methods.

Summary for RQ5. Overall, the results support our claim
that our designed templates for the UnitTestScribe
generate descriptions with less redundant information.

D. Expressiveness (RQ6)
For group 1, 61.43% of the answers indicate that

UnitTestScribe descriptions were easy to read and
understand, while only 15.71% of the answers indicated
the descriptions were hard to read and understand. In
group 2, we observed 60% of the answers indicating that
UnitTestScribe descriptions were easy to read and under-
stand, while only 12.11% of the answers indicated otherwise.
The distribution of ratings with the lowest rank is similar
to the conciseness question where descriptions for simple
test case methods were evaluated more positively than the
complex test case methods. Similar to conciseness, the reason
is that UnitTestScribe are attempting to cover all impor-
tant information for expressiveness. Hence, the conclusion is
supported by the following comment from our participants:
“Again, I think that for long unit test methods, the description
becomes difficult to read, perhaps summarizing the asser-
tions for longer methods to give at a glance information.”.

Summary for RQ6. Overall, the results support that
UnitTestScribe descriptions are easy to read and
understand.

TABLE VII
“WHAT SE TASKS WOULD YOU USE UnitTestScribe DESCRIPTIONS FOR?”

Category Subcategories
Bugs Bug reporting(1), Bug detection(1)
Software maintenance Program comprehension (7), Maintenance (4),

Code reviews (1)
Testing Test case changes (4), test case generation (3)
Others Commenting (2), Learning a library (2)

E. User Preferences (RQ7 - RQ8)
Seven participants (out of 7) in group 1 and 17 partici-

pants (out of 19) in group 2 answered that focal methods
were important to understand test case methods. In case of
usefulness of slices, 6 out of 7 answers in group 1, and 13 out
of 19 answers in group 2 indicated that slices were useful for
understanding the test case methods.

In the study, we also asked whether the generated de-
scriptions are useful for understanding the unit test cases.
For group 1, 4 out of 7 participants answered “Yes”, while
17 out of 19 participants also answered “Yes” in group 2.
Based on the participants’ responses, we also suggest that
the UnitTestScribe descriptions can be more useful for
developers who are not familiar with the source/test code (89%
of participants in group 2 agreed on that generated descriptions
were useful for understanding the unit test cases). Participants’
comments with this rationale included the following: “Once
I see the SrcML.NET system, I know what’s going on. Its
usefulness drops off if you’re talking to someone experienced
with the code base, though. So I suppose this depends on who
this is aimed at.” from a participant in group 1 and “It is useful
if I am not familiar with an application.” from a participant
in group 2.

In addition, we collected following comments that illustrate
some reasons why participants evaluated UnitTestScribe
descriptions positively in usefulness:

“I saw these as being good from the perspective of trying
to figure out if this method is of any real interest before
investigating further to see what the method actually does.
So if I were fixing a bug and wanted to know some quick
information about this method, sure, I could see these as
being helpful.”
“If I was quickly trying to understand what the code was

doing on a high level, then I could delve into the source
code with more understanding.”
“I think these types of descriptions would be really useful

in understand unit tests for the purpose of writing/rewriting
them for maintenance purposes as code evolves over time.”
Summary for RQ7 and RQ8. Overall, participants agreed
on that focal methods and program slicing for understand-
ing unit test cases are important. UnitTestScribe is
useful for understanding unit test methods.

F. Participants’ Feedback
In the interviews after the study, we also asked the par-

ticipants to indicate for which SE tasks they would use
UnitTestScribe. The answers and the categories are listed
in Table VII. Participants also pointed out some limitations of
our current implementation, which include the following:

“mock-style tests are not well described.”
“The description didn’t describe that the focal method or
assertions are inside a loop or not”
“slicing path is showing only the name of the variables
and not their types.”

We also collected suggestions from participants, which
include the following:

“Providing more context of the method would be helpful”
“Unit test can contain API usage examples. Perhaps this
approach can serve a purpose in showing relevant exam-
ples of how to use some API”

These are examples of very useful comments that we are
planning on incorporating in our future work.

VI. RELATED WORKS

A. Approaches and studies on unit test cases

Kamimura and Murphy [36] presented an approach for
automatically summarizing JUnit test cases. The approach
identified the focal method based on how many times the test
method invokes the function. The least occurring invocations
are the most unique function calls for the test case. Xuan and
Monperrus [61] split existing test cases into multiple frac-
tions for improving fault localization. Their test case slicing
approach has also influence on code readability. Recently,
Pham et al. [53] presented an approach for automatically
recommending test code examples when programmers make
changes in the code. Panichella et al. [52] presented an
approach for automatically generating test case summaries
for JUnit test cases. Runeson [56] conducted a survey to
understand how unit testing is perceived in companies. Some
researchers focused on other aspects of testing, which include
unit test case minimization [39, 40], prioritization [21, 55],
automatic test case generation [20, 26, 29], test templates
[65], data generation [41, 45]. However, none of the existing
approaches focuses on generating unit test case documentation
as NL summaries. Our approach, UnitTestScribe, is the
first to describe unit test cases by combining different
description granularities: i) general description in NL, and
ii) detailed descriptions by highlighting focal methods and
showing relevant program slices.

B. Studies on automatically summarizing software artifacts

There are several related techniques for automatically sum-
marizing and documenting different software artifacts. Srid-
hara et al. [57] presented an approach for automatically gen-
erating summary comments for Java methods. They demon-
strated how to identify important lines of code, depending
on various characteristics of methods, and convert them into
NL phrases. McBurney and McMillan [46] presented a novel
approach for method summarization by considering contextual
information. As far as class level granularity is concerned,
Moreno et al. [47, 50] focused on documenting content and
responsibilities of the Java classes. Their descriptions are
based on superclass, stereotypes of the class, and behavior
of the blocks. Another group of the studies focused on
summarizing differences between system versions [18, 19, 33,
37, 38, 43, 48]. Linares-Vásquez et al. [19, 43] implemented
a tool, namely ChangeScribe, to automatically summarize
commit messages between two arbitrary program versions.
Moreno et al. [48] introduced ARENA for generating release
nodes. Buse and Weimer [18] used symbolic execution for
synthesizing documentation for program changes. Automatic
summarization techniques have also been applied to exceptions
[17], bug reports [54], developer discussions [51, 58, 60],
loops [59] and code examples [62, 63].

C. Studies on classifying stereotypes

A program entity (method or class) stereotype reflects a high
level description of the role of the program entity [23, 25].
Dragan et al. [23] first conducted an in-depth study of stereo-
types at method level. They presented a well-defined taxonomy
of method stereotypes. Then, Dragan et al. [25] extended
the stereotype classification to class level granularity. A class
stereotype is computed based on method stereotypes in the
class by considering frequency and distribution of the method
stereotypes. Later, Dragan et al. [22] presented commit level
stereotypes based on the types of the changing methods/classes
in the commits. Moreno and Marcus [49] implemented a
tool, JStereoCode, for automatically identifying method
and class stereotypes in Java systems.

A group of techniques apply stereotype identification for
other goals. Dragan et al. [24] showed that method stereo-
types could be an indicator of a system’s design. Moreno
et al. [47, 50] utilized class stereotypes to summarize the
responsibilities of classes. Linares-Vásquez et al. [19, 43]
relied on commit stereotypes for generating commit messages.
Abid et al. [13] presented an approach that automatically
generates NL documentation summaries for C++ methods
based on stereotypes. Overall, none of the existing approaches
(but UnitTestScribe) apply stereotype identification for
generating unit test case documentation.

VII. CONCLUSION

We presented a novel approach UnitTestScribe that
combines static analysis, natural language processing, back-
ward slicing, and code summarization techniques in or-
der to automatically generate expressive NL descriptions
concisely documenting the purpose of unit test methods.
UnitTestScribe is motivated by a study in which we
surveyed 212 developers to understand their perspective to-
wards unit test cases. We found that developers believe that
maintaining good unit test cases is important for the quality
of a software system. We also mined changes of 1,414 open-
source projects and found that 3.56% of unit test cases had
preceding comments and 14.02% of those had inner comments
and both were not frequently updated between the releases.

To validate UnitTestScribe, we conducted a second
study with two groups of participants (the original developers
on two industrial and graduate students on the other two
open-source systems). In the study, we evaluated three quality
attributes: completeness, conciseness, and expressiveness. The
results of the second study showed that UnitTestScribe
descriptions are useful for understanding test cases. In general,
developers determined that our approach generated descrip-
tions that did not miss important information (87% and 96%),
did not contain redundant information (87% and 93%), and
were both readable and understandable (84% and 88%).

ACKNOWLEDGMENT

We would like to acknowledge the researchers from ABB
Corporate Research Center, Vinay Augustine and Patrick Fran-
cis, for their contributions to SrcML.NET and SWUM.NET.
We would like to thank the anonymous reviewers for their
insightful comments that helped us to significantly improve
this paper. We also thank all the students, developers, and re-
searchers who responded to our survey. This work is supported
in part by the NSF CCF-1218129 and CNS-1510239 grants.

REFERENCES

[1] “GitHub API. https://developer.github.com/v3/. Last ac-
cessed: 2015/01/15.”

[2] “Glimpse. https://github.com/Glimpse/Glimpse.”
[3] “Google-api-dotnet. https://github.com/google/

google-api-dotnet-client.”
[4] “Msdn. https://msdn.microsoft.com/.”
[5] “Nunit. http://nunit.org/.”
[6] “Online appendix. http://www.cs.wm.edu/semeru/data/

ICST16-UnitTestScribe/.”
[7] “qualtrics. http://www.qualtrics.com.”
[8] “Sando. https://github.com/abb-iss/Sando.”
[9] “Srcml. http://www.srcml.org/.”

[10] “Srcml.net. https://github.com/abb-iss/SrcML.NET.”
[11] “Swum.net. https://github.com/abb-iss/Swum.NET/.”
[12] “Unit Test Basics. https://msdn.microsoft.com/en-us/

library/hh694602.aspx#BKMK Writing your tests. Last
accessed: 2015/10/15.”

[13] N. J. Abid, N. Dragan, M. L. Collard, and J. I. Maletic,
“Using stereotypes in the automatic generation of natural
language summaries for c++ methods,” in Proc. ICSME.
IEEE, 2015, pp. 561–565.

[14] K. Beck, Test Driven Development: By Example, 1st ed.
Addison-Wesley Professional, 2002.

[15] ——, Test-driven development: by example. Addison-
Wesley Professional, 2003.

[16] K. Beck and E. Gamma, “Test infected: Programmers
love writing tests,” Java Report, vol. 3, no. 7, pp. 37–50,
1998.

[17] R. P. Buse and W. R. Weimer, “Automatic documentation
inference for exceptions,” in Proceedings of the 2008 in-
ternational symposium on Software testing and analysis.
ACM, 2008, pp. 273–282.

[18] ——, “Automatically documenting program changes,” in
Proceedings of the IEEE/ACM international conference
on Automated software engineering. ACM, 2010, pp.
33–42.

[19] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and
D. Poshyvanyk, “On automatically generating commit
messages via summarization of source code changes,” in
Source Code Analysis and Manipulation (SCAM), 2014
IEEE 14th International Working Conference on. IEEE,
2014, pp. 275–284.

[20] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer,
“Modeling readability to improve unit tests,” in European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
ESEC/FSE, 2015.

[21] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche,
“Coverage-based test case prioritisation: An industrial
case study,” in Software Testing, Verification and Valida-
tion (ICST), 2013 IEEE Sixth International Conference
on. IEEE, 2013, pp. 302–311.

[22] N. Dragan, M. L. Collard, M. Hammad, J. Maletic et al.,
“Using stereotypes to help characterize commits,” in
Software Maintenance (ICSM), 2011 27th IEEE Inter-
national Conference on. IEEE, 2011, pp. 520–523.

[23] N. Dragan, M. L. Collard, J. Maletic et al., “Reverse en-
gineering method stereotypes,” in Software Maintenance,
2006. ICSM’06. 22nd IEEE International Conference on.
IEEE, 2006, pp. 24–34.

[24] ——, “Using method stereotype distribution as a signa-

ture descriptor for software systems,” in Software Mainte-
nance, 2009. ICSM 2009. IEEE International Conference
on. IEEE, 2009, pp. 567–570.

[25] ——, “Automatic identification of class stereotypes,” in
Software Maintenance (ICSM), 2010 IEEE International
Conference on. IEEE, 2010, pp. 1–10.

[26] F. Ensan, E. Bagheri, and D. Gašević, “Evolutionary
search-based test generation for software product line
feature models,” in Advanced Information Systems En-
gineering. Springer, 2012, pp. 613–628.

[27] B. Fluri, M. Wursch, and H. Gall, “Do code and com-
ments co-evolve? on the relation between source code
and comment changes,” in WCRE’07, 2007, pp. 70–79.

[28] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Ana-
lyzing the co-evolution of comments and source code,”
Software Quality Journal, vol. 17, no. 4, pp. 367–394,
2009.

[29] G. Fraser and A. Arcuri, “Evosuite: automatic test suite
generation for object-oriented software,” in Proceedings
of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engi-
neering. ACM, 2011, pp. 416–419.

[30] M. Ghafari, C. Ghezzi, and K. Rubinov, “Automatically
identifying focal methods under test in unit test cases,”
in SCAM’15, 2015, p. 10 pages.

[31] E. Hill, Integrating natural language and program struc-
ture information to improve software search and explo-
ration. University of Delaware, 2010.

[32] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically
capturing source code context of nl-queries for software
maintenance and reuse,” in Proceedings of the 31st In-
ternational Conference on Software Engineering. IEEE
Computer Society, 2009, pp. 232–242.

[33] D. Jackson, D. Ladd et al., “Semantic diff: A tool for
summarizing the effects of modifications,” in Software
Maintenance, 1994. Proceedings., International Confer-
ence on. IEEE, 1994, pp. 243–252.

[34] R. Jhala and R. Majumdar, “Path slicing,” in ACM
SIGPLAN Notices, vol. 40, no. 6. ACM, 2005, pp. 38–
47.

[35] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian, “The promises
and perils of mining github,” in Proceedings of
the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA:
ACM, 2014, pp. 92–101. [Online]. Available: http:
//doi.acm.org/10.1145/2597073.2597074

[36] M. Kamimura and G. C. Murphy, “Towards generating
human-oriented summaries of unit test cases,” in Pro-
gram Comprehension (ICPC), 2013 IEEE 21st Interna-
tional Conference on. IEEE, 2013, pp. 215–218.

[37] M. Kim and D. Notkin, “Discovering and representing
systematic code changes,” in Proceedings of the 31st In-
ternational Conference on Software Engineering. IEEE
Computer Society, 2009, pp. 309–319.

[38] M. Kim, D. Notkin, D. Grossman, and G. Wilson Jr,
“Identifying and summarizing systematic code changes
via rule inference,” Software Engineering, IEEE Trans-
actions on, vol. 39, no. 1, pp. 45–62, 2013.

[39] Y. Lei and J. H. Andrews, “Minimization of randomized
unit test cases,” in Software Reliability Engineering,
2005. ISSRE 2005. 16th IEEE International Symposium

on. IEEE, 2005, pp. 10–pp.
[40] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer,

“Efficient unit test case minimization,” in Proceedings of
the twenty-second IEEE/ACM international conference
on Automated software engineering. ACM, 2007, pp.
417–420.

[41] B. Li, M. Grechanik, and D. Poshyvanyk, “Sanitizing
and minimizing databases for software application test
outsourcing,” in Software Testing, Verification and Vali-
dation (ICST), 2014 IEEE Seventh International Confer-
ence on. IEEE, 2014, pp. 233–242.

[42] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspec-
tives on the role of naming in computer programs,” in
Proceedings of the 18th annual psychology of program-
ming workshop, 2006.

[43] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and
D. Poshyvanyk, “Changescribe: A tool for automatically
generating commit messages,” in 37th IEEE/ACM Inter-
national Conference on Software Engineering (ICSE’15),
Formal Research Tool Demonstration, 2015.

[44] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshy-
vanyk, “How do developers document database usages in
source code?” in ASE’15 - New Ideas Track, 2015, pp.
36–41.

[45] R. Malhotra and M. Garg, “An adequacy based test data
generation technique using genetic algorithms,” Journal
of information processing systems, vol. 7, no. 2, pp. 363–
384, 2011.

[46] P. W. McBurney and C. McMillan, “Automatic docu-
mentation generation via source code summarization of
method context,” in Proceedings of the 22nd Interna-
tional Conference on Program Comprehension. ACM,
2014, pp. 279–290.

[47] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pol-
lock, and K. Vijay-Shanker, “Automatic generation of
natural language summaries for java classes,” in Program
Comprehension (ICPC), 2013 IEEE 21st International
Conference on. IEEE, 2013, pp. 23–32.

[48] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Mar-
cus, and G. Canfora, “Automatic generation of release
notes,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 484–495.

[49] L. Moreno and A. Marcus, “Jstereocode: automatically
identifying method and class stereotypes in java code,”
in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM,
2012, pp. 358–361.

[50] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker,
“Jsummarizer: An automatic generator of natural lan-
guage summaries for java classes,” in Program Compre-
hension (ICPC), 2013 IEEE 21st International Confer-
ence on. IEEE, 2013, pp. 230–232.

[51] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and
G. Canfora, “Mining source code descriptions from de-
veloper communications,” in Program Comprehension
(ICPC), 2012 IEEE 20th International Conference on.
IEEE, 2012, pp. 63–72.

[52] S. Panichella, A. Panichella, M. Beller,
A. Zaidman, and H. Gall, “The impact of test
case summaries on bug fixing performance: An
empirical investigation,” PeerJ PrePrints 3:e1833
https://dx.doi.org/10.7287/peerj.preprints.1467v2, 2015.

[53] R. Pham, Y. Stoliar, and K. Schneider, “Automatically
recommending test code examples to inexperienced de-
velopers,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. ACM, 2015,
pp. 890–893.

[54] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic
summarization of bug reports,” Software Engineering,
IEEE Transactions on, vol. 40, no. 4, pp. 366–380, 2014.

[55] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” Software
Engineering, IEEE Transactions on, vol. 27, no. 10, pp.
929–948, 2001.

[56] P. Runeson, “A survey of unit testing practices,” Software,
IEEE, vol. 23, no. 4, pp. 22–29, 2006.

[57] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker, “Towards automatically generating
summary comments for java methods,” in Proceedings
of the IEEE/ACM international conference on Automated
software engineering. ACM, 2010, pp. 43–52.

[58] C. Vassallo, S. Panichella, M. Di Penta, and G. Canfora,
“Codes: mining source code descriptions from developers
discussions,” in Proceedings of the 22nd International
Conference on Program Comprehension. ACM, 2014,
pp. 106–109.

[59] X. Wang, L. Pollock, and K. Vijay-Shanker, “Developing
a model of loop actions by mining loop characteristics
from a large code corpus,” in International Conference on
Software Maintenance and Evolution (ICSME). IEEE,
Sep 2015.

[60] E. Wong, J. Yang, and L. Tan, “Autocomment: Min-
ing question and answer sites for automatic comment
generation,” in ASE 2013 IEEE/ACM 28th International
Conference on. IEEE, 2013, pp. 562–567.

[61] J. Xuan and M. Monperrus, “Test case purification for
improving fault localization,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2014, pp. 52–63.

[62] A. T. Ying and M. P. Robillard, “Code fragment summa-
rization,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013,
pp. 655–658.

[63] ——, “Selection and presentation practices for code
example summarization,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2014, pp. 460–471.

[64] A. Zaidman, B. Van Rompaey, S. Demeyer, and
A. Van Deursen, “Mining software repositories to study
co-evolution of production & test code,” in Software Test-
ing, Verification, and Validation, 2008 1st International
Conference on. IEEE, 2008, pp. 220–229.

[65] B. Zhang, E. Hill, and J. Clause, “Automatically gener-
ating test templates from the test names,” 2015.

