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ABSTRACT 
 

Textual or unstructured data generated during the software development 

process contains a significant amount of useful information that captures design 

decisions and the rationale of developers. One of the ways to exploit this 

information in order to support various software engineering (SE) tasks (e.g., 

concept location, traceability link recovery, change impact analysis, etc.) is to use 

Information Retrieval (IR) techniques (e.g., Vector Space Model, Latent Semantic 

Indexing, Latent Dirichlet Allocation, etc.). 

Two of the most important steps in a typical process of applying IR 

techniques to support SE tasks are: (i) preprocessing the corpus (i.e., a set of 

documents associated with a software system) by removing special characters, 

splitting identifiers, removing stop words, stemming identifiers, etc. and (ii) 

configuring the IR technique (i.e., setting up its parameters) and applying it on the 

preprocessed corpus. 

In our previous work, we observed that the various options available for the 

preprocessing steps of the corpus (e.g., splitting identifiers), as well as the different 

parameter values for configuring IR techniques (e.g., configuring the parameters 

for LDA) can significantly influence the results produced by IR techniques on 

different datasets for various SE tasks. 

This dissertation proposes the use of Genetic Algorithms (GAs) to 

automatically configure and assemble an IR process to support software 

engineering tasks. The approach named IR-GA determines the (near) optimal 

solution to be used for each step of the IR process. For example, for the corpus 

preprocessing steps our IR-GA approach will determine which special characters 

to remove, will choose the method to split the identifiers, will decide whether or not 

to remove stop words and how to stem identifiers. In addition, for the chosen IR 

technique it will automatically determine its (near) optimal parameter values. In an 

extensive empirical study, we applied IR-GA on three different software 

engineering tasks: (i) traceability link recovery, (ii) feature location, and (iii) 

identification of duplicate bug reports. The results of the study indicate that IR-GA 

outperforms approaches previously used in the literature, and that it does not 

significantly differ from an ideal upper bound that could be achieved by a 

supervised approach (i.e., one that knows the results a priori) and a combinatorial 

approach (i.e., one that considers a large number of parameter combinations and 

knows the results beforehand). 
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1 Introduction 
Unstructured or semi-structured textual information generated during the software 

development process (e.g., source code, bug reports, documentation, diagrams, etc.) contains 

a significant amount of information that captures design decisions and the rationale of 

developers. One of the ways to exploit this information in order to support various software 

engineering (SE) tasks (e.g., concept location, traceability link recovery, change impact 

analysis, etc.) is to use Information Retrieval (IR) techniques (e.g., Vector Space Model (VSM) 

[160], Latent Semantic Indexing (LSI) [42], Latent Dirichlet Allocation (LDA) [22], etc.). 

Two of the most important steps in a typical process of applying IR techniques to 

support SE tasks are: (i) preprocessing the corpus (i.e., a set of documents associated with a 

software system) by removing special characters, splitting identifiers, removing stop words, 

stemming identifiers, etc. and (ii) configuring the IR technique (i.e., setting up its parameters) 

and applying it on the preprocessed corpus. 

In this dissertation, we investigate the effects of various factors, such as different 

preprocessing options, various IR techniques and their configurations, on their effectiveness to 

support SE tasks, and we illustrate that when improperly configured, these factors have a 

negative impact on supporting SE tasks. In order to address this problem, we introduce a 

technique that automatically determines the factors that can be used to configure an IR 

technique to produce near-optimal results when applied in the context of a SE task.  

In our previous work we observed that the various options available for the 

preprocessing steps of the corpus, as well as the different parameter values for configuring IR 

techniques can significantly influence the results produced by IR techniques on different 

datasets for various SE tasks. For example, for the preprocessing step, we investigated the 
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impact of three identifier splitting techniques for the concept (feature) location task. The results 

of our empirical study revealed that concept location using IR could benefit from advanced 

splitting algorithms in some cases. However, the results also show that basic splitting 

algorithms are sufficient when the textual information is combined with dynamic information 

(see Chapter 2). 

For configuring an IR technique, we illustrated the negative impact of configuring an 

advanced IR technique, namely Latent Dirichlet Allocation, with “ad-hoc” values that do not 

take into account the characteristics of the preprocessed corpus. To overcome the common 

issue of having to choose default values for using LDA on SE tasks, we proposed a technique 

that uses a Genetic Algorithm to identify the (near) optimal parameter values for LDA, by 

taking into account quality of the IR model generated from the preprocessed corpus (see 

Chapter 3). 

In addition to LDA, other IR approaches are widely used to support various SE tasks. 

However, previous studies (see Chapter 2 and Chapter 3) showed that inadequate instantiation 

of the IR technique and process could significantly affect the performance of such approaches 

in terms of accuracy and completeness. To overcome these shortcomings, we proposed the use 

of Genetic Algorithms (GAs) to automatically configure and instantiate IR process for software 

engineering tasks. The proposed approach, named IR-GA (see Chapter 4), determines the 

(near) optimal solution to be used for each stage of the IR process. For example, for the corpus 

preprocessing steps our IR-GA approach will determine which special characters to remove (if 

any), will determine which algorithm to use for splitting identifiers, will determine whether or 

not to remove stop words and which algorithms to use for stemming identifiers (if any). In 

addition, for the chosen IR technique it will automatically determine its (near) optimal 

parameter values. 
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To achieve its goal, IR-GA takes into account (i) the task specific components and data 

sources (i.e., software artifacts related to solving a particular SE task) as well as (ii) the internal 

properties of the IR model built from the underlying dataset using a large number of possible 

components and configurations. The search space of possible combinations of instances of IR 

process components (e.g., preprocessors, IR parameters) to select the candidates with the best 

expected performance for a given dataset used for a SE task are explored using Genetic 

Algorithms. More specifically, during the GA evolution, the quality of a solution (represented 

as a GA individual) is evaluated based on the quality of the clustering of the indexed software 

artifacts (i.e., the internal IR model). For this reason, the IR-GA approach is unsupervised and 

task-independent, whereas the resulting instantiated process is dataset-specific. Thus, IR-GA 

can be used to select and generate on demand an adequate IR-based solution given a dataset 

provided as input, which could potentially support any IR-based software engineering task 

(e.g., traceability link recovery, feature location, impact analysis, detection of duplicate bug 

reports, developer recommendations, source code search, bug triaging, clone detection, etc.). 

The results of an extensive empirical study indicate that by using IR-GA it was possible 

to automatically assemble a near-optimal configuration of an IR-based solution for datasets 

related to three software engineering tasks, namely (i) traceability link recovery, (ii) feature 

location, and (iii) duplicate bug reports identification. In addition, the results of the study 

indicate that IR-GA outperforms approaches previously used in the literature, and that it does 

not significantly differ from an ideal upper bound that could be achieved by a supervised 

approach (i.e., one that knows the results a-priori) and combinatorial approach (i.e., one that 

considers a large number of parameter combinations). 

A common problem in software engineering research is that studies are notoriously 

hard to reproduce due to lack of datasets, tools, implementation details and other factors. The 

progress in the field is hindered by the challenge of comparing new techniques against existing 
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ones, as researchers have to devote a large portion of their resources to the tedious and error-

prone process of reproducing previously introduced approaches. We address the problem of 

experiment reproducibility in software maintenance (SM) in Chapter 5. Moreover, with the 

proposed solution we facilitate the reproducibility and extensibility of LDA-GA and IR-GA 

techniques presented in Chapter 3 and Chapter 4 respectively. 

1.1 Research goals and contributions 

In this dissertation, we focus on improving the way IR-based solutions are configured 

and assembled in order to overcome the performance hits on SE tasks, which are imposed by 

an improper (or “ad-hoc”) configuration of these IR techniques. Our findings show that the 

performance of IR-based solution is impacted by various factors (e.g., preprocessing options, 

choice and configuration of IR techniques). Existing solutions are aimed at improving some of 

these factors in isolation, while ignoring the overarching context in which assembling an IR-

based solution requires a set of factors that have an influence on one another.  

Our proposed solution is aimed at considering all the influencing factors in the entire 

context of assembling an IR-based solution (i.e., from choosing the preprocessing steps to 

choosing and configuring the IR technique) and at suggesting the proper factors that can be 

used to configure and assemble an IR technique in order to produce improved results for SE 

tasks. 

The dissertation makes the following contributions: 

 Investigation of the impact of different preprocessing steps on feature 

location. We present a study of two feature location techniques utilizing three 

different strategies for splitting identifiers, namely: CamelCase, Samurai and 

manual splitting of identifiers (see Chapter 2). The main research question 

asked in this study is “if we had a perfect technique for splitting identifiers, 
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would it still help improve accuracy of feature location techniques applied in 

different scenarios and settings”? In order to answer this research question we 

investigate two feature location techniques, one based on Information Retrieval 

and the other one based on the combination of Information Retrieval and 

dynamic analysis, for locating bugs and features using various configurations 

of preprocessing strategies on two open-source systems, Rhino [127] and jEdit 

[85]. The results of an extensive empirical evaluation reveal that feature 

location techniques using Information Retrieval can benefit from better 

preprocessing algorithms in some cases, and that their improvement in 

effectiveness while using manual splitting over state-of-the-art approaches is 

statistically significant in those cases. However, the results for feature location 

technique using the combination of Information Retrieval and dynamic 

analysis do not show any improvement while using manual splitting, indicating 

that any preprocessing technique will suffice if execution data is available. 

Overall, our findings outline potential benefits of putting additional research 

efforts into defining more sophisticated source code preprocessing techniques 

as they can still be useful in situations where execution information cannot be 

easily collected. 

 Configuring Latent Dirichlet Allocation to support SE tasks: LDA-GA. 

We present a novel approach that automatically configures a topic models IR 

technique, namely LDA, to support SE tasks. IR techniques, and in particular 

topic models, have recently been used to support essential software engineering 

tasks, by enabling software textual retrieval and analysis. In all these 

approaches, topic models have been used on software artifacts in a similar 
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manner as they were used on natural language documents (e.g., using the same 

settings and parameters) because the underlying assumption was that source 

code and natural language documents are similar. However, applying topic 

models on software data using the same settings as for natural language text 

did not always produce the expected results. Recent research investigated this 

assumption and showed that source code is much more repetitive and 

predictable as compared to the natural language text. Chapter 3 builds on this 

new fundamental finding and proposes a novel solution to adapt, configure and 

effectively use a topic modeling technique, namely Latent Dirichlet Allocation, 

to achieve better (acceptable) performance across various SE tasks. The novel 

solution introduced, called LDA-GA, uses Genetic Algorithms to determine a 

near-optimal configuration of LDA’s parameters by taking into account the 

unique characteristics of the preprocessed corpus. We evaluated LDA-GA in 

the context of three different SE tasks: (i) traceability link recovery, (3) feature 

location, and (iii) software artifact labeling. The results of our empirical studies 

demonstrate that LDA-GA is able to identify robust LDA configurations, 

which lead to a higher accuracy and better results on all the datasets for these 

SE tasks as compared to (i) previously published results (which used “ad-hoc” 

or “default” values for configuring the LDA parameters), (ii) heuristics, and 

(iii) the results of a combinatorial search (i.e., trying a large number of 

combinations for LDA’s parameters). 

 Configuring and assembling IR-based solutions to support SE tasks: IR-

GA. We have developed a novel approach that automatically determines and 

assembles the (near) optimal solution for each stage of assembling and 
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instantiating an IR process that will be used to support a SE task. The proposed 

approach, called IR-GA, determines the (near) optimal solution to be used for 

each stage of the IR process, by taking into account the task specific 

components and data sources as well as the internal properties of the IR model 

built from the underlying dataset using a large number of possible components 

and configurations. For example, for the corpus preprocessing steps our IR-GA 

approach will determine which special characters to remove, will determine 

how to split identifiers, will determine whether or not to remove stop words 

and how to stem identifiers. In addition, for the chosen IR technique it will 

automatically determine its (near) optimal parameter values. In an extensive 

empirical study, we applied IR-GA on three different software engineering 

tasks: (i) traceability link recovery, (ii) feature location, and (iii) identification 

of duplicate bug reports. The results of the study indicate that IR-GA 

outperforms approaches previously used in the literature, and that it does not 

significantly differ from an ideal upper bound that could be achieved by a 

supervised approach (i.e., one that knows the results a-priori) and 

combinatorial approach (i.e., one that considers a large number of parameter 

combinations). 

 Supporting Reproducible Empirical Research using TraceLab 

Component Library. We present the details of a framework that supports the 

LDA-GA and IR-GA approaches that we present in Chapter 3 and Chapter 4. 

Moreover, the framework is designed to support other SE techniques and to 

facilitate the reproducibility of experiments in empirical research. The 

motivation for this work was that research studies are notoriously hard to 
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reproduce due to lack of datasets, tools, implementation details (e.g., parameter 

values, environmental settings) and other factors, and this is a major issue for 

the research community. For example, when applying an IR technique to 

address a SE tasks, lack of details about the exact preprocessing steps used, and 

configuration details about the IR technique are often overlooked or not 

specified properly. The progress in the field is hindered by the challenge of 

comparing new techniques against existing ones, as researchers have to devote 

a large portion of their resources to the tedious and error-prone process of 

reproducing previously introduced approaches. We address the problem of 

experiment reproducibility in software maintenance and provide a long-term 

solution towards ensuring that future experiments will be reproducible and 

extensible. We conducted a preliminary mapping study of a number of 

representative maintenance techniques and approaches and implemented them 

as a set of experiments and a library of components that we make publicly 

available with TraceLab, called the Component Library. The goal of these 

experiments and components is to create a body of actionable knowledge that 

would (i) facilitate future research and (ii) allow the research community to 

contribute to it as well. Moreover, we have provided all the components 

required to reproduce the LDA-GA and IR-GA techniques presented in 

Chapter 3 and Chapter 4. 

1.2 Bibliographical Notes 

This dissertation contains previously published material. This section details 

collaborations with other researchers. 
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The material from Chapter 2 is based on a collaboration with Dr. Latifa Guerrouj at 

École Polytechnique de Montréal (now at McGill University) and Dr. Giuliano Antoniol at 

École Polytechnique de Montréal. The results of the research project were originally published 

in the proceedings of the 19th IEEE International Conference on Program Comprehension 

(ICPC’11) [45]. 

Chapter 3 and Chapter 4 contains the results of a collaboration with Dr. Annibale 

Panichella and Dr. Andrea De Lucia at University of Salerno, Italy, Dr. Rocco Oliveto at 

University of Molise, Italy and Dr. Massimiliano Di Penta at University of Sannio, Italy. The 

findings from Chapter 3 were previously published in the proceedings of the 35th IEEE/ACM 

International Conference on Software Engineering (ICSE'13) [134] and in the proceedings of 

the in 7th International Workshop on Traceability in Emerging Forms of Software Engineering 

(TEFSE'13) [50]. The latter work published at TEFSE’13 [50] also included a collaboration 

with Evan Moritz from the College of William and Mary. 

The idea and findings presented in Chapter 5 appeared in the proceedings of the 29th 

IEEE International Conference on Software Maintenance (ICSM'13) [47] where it won the 

Best Paper Award. The publication was invited to a special issue of the Empirical Software 

Engineering, and an extended version was published at EMSE [48]. This project included a 

collaboration with Evan Moritz and Mario Linares-Vásquez from the College of William and 

Mary and Dr. Jane Cleland-Huang from DePaul University. 

The datasets and benchmarks presented in Appendix A were generated in collaboration 

with Dr. Huzefa Kagdi from Wichita State University and Andrew Holtzhauer from the College 

of William and Mary and were published in the proceedings of the 10th IEEE Working 

Conference on Mining Software Repositories [46]. 
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2 Preprocessing Techniques – 
Splitting Identifiers 

Early work on program comprehension and mental models [169, 179] highlighted the 

significance of textual information to capture and encode programmers’ intent and knowledge 

in software. Recent research efforts have studied how software developers capture and express 

their intent in natural language embodied in source code. Identifiers used by programmers as 

names for classes, methods, or attributes in source code or other artifacts contain vital problem 

domain information [6, 26, 43, 77, 98, 110, 154, 172] and account for approximately more than 

half the source code in software [43]. These names often serve as a starting point in many 

program comprehension tasks [26]; thus, it is imperative that these names clearly reflect the 

concepts that they are supposed to represent, since self-documenting identifiers reduce the time 

and effort to acquire a basic comprehension level for any maintenance task [6]. 

The magnitude of a program’s lexicon can hardly be underestimated. Identifiers and 

comments represent an important source of domain information that is used by (semi-) 

automated techniques to recover traceability links among software artifacts [5, 112] and locate 

features in source code [57, 105, 115, 143, 156, 157]. Prior work [79, 167] employed a natural 

language-based representation of source code, based on the conjecture that there is an intrinsic 

pattern in unstructured textual information, to support a range of program comprehension 

activities. Due to the large abstraction gap between the domain of a software system and the 

implementation mechanisms offered by programming languages, the mapping between domain 

concepts and their implementation in source code is frequently ambiguous, as these concepts 

are distorted and scattered in the code [154].  

The problem of extracting and analyzing the textual information in software artifacts 

was recognized by the software engineering research community only recently. Information 
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Retrieval methods were proposed and used effectively to support program comprehension 

tasks, such as feature (or concept) location and traceability link recovery. These IR-based 

approaches vary not only in their scope, but also in their underlying indexing mechanisms, 

corpus generation, or results analysis methods. Identifier splitting is one of the essential 

ingredients in any feature location or traceability recovery technique [5, 57, 105, 112, 143, 156] 

, since it helps disambiguate conceptual information encoded in compound (or abbreviated) 

identifiers. The widely adopted approach is based on the CamelCase splitting algorithm, with 

more sophisticated strategies, such as Samurai [60] and TIDIER [75], recently proposed in the 

literature. 

In this chapter we investigate the impact of three identifier splitting techniques 

(CamelCase, Samurai and manually built splitting (i.e., Oracle)) on the accuracy of feature 

location in presence and absence of execution information. The main research question that we 

ask in this study is if we had a perfect technique for splitting identifiers, such as a manually 

built oracle, would it still help improve accuracy of feature location techniques applied in 

different scenarios and settings? To answer this research question we investigate two feature 

location techniques (FLTs), one based on IR and the other one based on the combination of IR 

and dynamic analysis (IRDyn), for locating bugs and features using different configurations of 

preprocessing strategies on two open-source systems, Rhino [127] and jEdit [85]. Our findings 

reveal that feature location techniques using IR can benefit from better preprocessing 

algorithms, and that their improvement in effectiveness while using manual splitting over state-

of-the-art approaches is statistically significant. However, the results of the IRDyn FLT do not 

show any improvement while using manual splitting, indicating that any preprocessing 

technique will suffice if execution data is available. 
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2.1 Background on Preprocessing Unstructured Information in 
Software 

In this section we overview some of the existing work in the field of feature location 

and identifier splitting. In particular, we overview two feature location techniques and three 

approaches for splitting identifiers that are used in our empirical study. 

2.1.1 Feature Location in Software 

Unstructured textual information in software, found in identifiers and comments 

encodes important problem domain and design decisions about a software system.  This 

unstructured data lends itself for further analysis using IR techniques that can be leveraged to 

support feature location in source code.  Feature location is the activity of finding the source 

code elements (i.e., methods or classes) that implement a specific feature (e.g., “print page in 

a text editor” or “add bookmark in a web-browser”) [115, 143].  In this dissertation, we rely on 

two feature location approaches that use IR and a combination of IR and dynamic analysis.  

While there are several IR techniques that have been successfully applied in the context of 

feature location, such as the Vector Space Model [57], Latent Semantic Indexing [105, 143, 

156, 157], and Latent Dirichlet Allocation [108], this empirical study focuses on evaluating 

LSI for feature location, and the notation IR is used to denote that LSI is the default information 

retrieval method used in the study.  We also provide the details of these feature location 

approaches and explain the role of identifier splitting techniques in this process.  Feature 

location via LSI follows five main steps: generating a corpus, preprocessing the corpus, 

indexing the corpus using LSI, formulating a search query and generating similarities and 

finally, examining the results. 

Step one – generating the corpus.  The source code of a software system is parsed, 

and all the information associated with a method (i.e., comments, method declaration, signature 

and body) will become a document in the system corpus. In other words, we are using a 



 

13 

method-level granularity for the corpus, so each method from the source code has a 

corresponding document in the corpus. 

Step two – preprocessing the corpus.  The generated corpus is then preprocessed in 

order to normalize the text contained in the documents. This step includes removing operators, 

programming language keywords, or special characters. Additionally, compound identifiers 

are split using the algorithms that are explained in details in subsection 2.1.2, as these 

algorithms are at the core of this dissertation. The split identifiers are then stemmed (i.e., 

reduced to their root form) using the Porter stemmer [138], and finally the words that appear 

commonly in English (i.e., “a”, “the”, etc.) are eliminated. 

Step three - indexing the corpus using LSI.  The preprocessed corpus is transformed 

into a term-by-document matrix, where each document (i.e., method) from the corpus is 

represented as a vector of terms (i.e., identifiers). The values of the matrix cells represent the 

weights of the terms from the documents, which are computed using the term frequency – 

inverse document frequency (tf-idf) weight. The matrix is then decomposed using Singular 

Value Decomposition [42] which decrease the dimensionality of the matrix by exploiting 

statistical co-occurrences of related words across the documents.  

Step four – formulating a search query and generating similarities. The software 

developer chooses a set of words (i.e., a query) that describe the feature or bug being sought 

(e.g., “print page”).  The query is converted into a vector-based representation, and the cosine 

similarity between the query and every document in the reduced space is computed. In other 

words, the textual similarity between the bug description and every method from the software 

system is computed. 

Step five – examining the results.  The list of methods is ranked based on their cosine 

similarities with the user query. The developer starts investigating the methods in order, from 

the top of the list (i.e., most relevant methods first). After examining each method the developer 
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decides if that method belongs to the feature of interest or not. If it does, the feature location 

process terminates. Otherwise, the developer can continue examining other methods, or refine 

the query based on new information gathered from examining the methods and starting from 

Step 4 again. 

Feature location via LSI and dynamic information has one additional step, which can 

take place before the Step 4 described earlier. 

Step for collecting execution information. The software developer triggers the bug, 

or exercises the feature by running the software system and executing the steps to reproduce 

from the description of the feature or bug. This process invokes the methods that are 

responsible for the bug or feature and these methods are collected in an execution trace. The 

developer can take advantage of this information by formulating a query (Step 4) and 

examining the results (Step 5) produced by ranking only the methods found in the execution 

trace (as opposed to ranking all the methods of the software system). The advantage of using 

execution information is that it reduces the search space, thus increasing the performance of 

feature location. 

In this chapter, we consider the IR and IRDyn FLTs. While previous studies have 

shown that the IRDyn FLT outperforms its basic version (i.e., IR FLT) [105, 143, 156, 157], 

the goal of this work is to study the impact of the preprocessing techniques from Step 2 on the 

accuracy of feature location. 

2.1.2 Background on Identifier Splitting Techniques  

State-of-the-art approaches to split identifiers into separate words are the CamelCase 

splitter, the Samurai approach proposed by Enslen et al. [60], and the recent TIDIER approach 

[75]. 
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A. CamelCase Splitting Technique 

The de facto splitting algorithm is CamelCase. This simple, fast, and widely used 

preprocessing algorithm has been previously applied in multiple approaches to feature location 

and traceability link recovery [5, 105, 112, 115, 143, 156, 157]. This approach splits compound 

identifiers according to the following rules: 

RuleA: Underscore, structure and pointer access, as well as special symbols are 

replaced with the space character. 

RuleB: Identifiers are split where terms are separated using the CamelCase convention. 

For example, userId is split into user and Id while setGID is split into set and GID. 

RuleC: When two or more upper case characters are followed by one or more lower 

case characters, the identifier is split at the last-but-one upper-case character. For example, 

SSLCertificate is split into SSL and Certificate. 

Sometimes, a space is inserted before and after each sequence of digits. For example, 

print_file2device is split into print, file, 2, and device, while cipher128_code is split into cipher, 

128, and code.  Overall, a CamelCase splitting algorithm cannot split effectively same-case 

composite words, such as USERID, currentsize, into separate terms. 

B. Samurai Splitting Algorithm 

Samurai [60] is an automatic approach to split identifiers into sequences of terms by 

mining term frequencies in large source code bases. It relies on two assumptions. First, it 

assumes that a substring composing an identifier is also likely to be used in other parts of the 

program (or in other programs) alone or as a part of other identifiers. Second, given two 

possible splits, the split that most likely represents the developer’s intent partitions the 

identifier into terms occurring more often in the program. In other words, central to Samurai is 

the idea of using two tables of frequencies: one program specific and one mined out of a large 

corpus of programs, to find the most likely identifier split. Furthermore, the frequency tables 
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are used in conjunction with CamelCase rules. In fact, Samurai algorithm first tries to apply 

CamelCase split and then ranks possible splits according to its identifiers frequency tables. In 

this way Samurai overcomes the main limitation of CamelCase, by being able to correctly split 

same-case identifiers, such as USERID, currentsize, or mixed-case (e.g., DEFMASKBit). Refer 

to [60] for more details on Samurai and its evaluation. 

C. TIDIER: Term IDentifier RecognizER 

TIDIER [75] is a novel approach to split program identifiers using high-level and 

domain concepts captured into multiple dictionaries. The approach is based on a thesaurus of 

words and abbreviations and uses a modified string-edit distance [100] between terms and 

words as a proxy for the distance between the terms and the concepts they represent. The main 

assumption made by TIDIER is the fact that it is possible to mimic developers when creating 

an identifier relying on a set of transformation rules on terms/words.  

For example, to create an identifier for a variable that counts the number of software 

defects, the two words, number and defects, can be concatenated with or without an underscore, 

or following the CamelCase convention e.g., defects_number, defectsnumber or 

defectsNumber. Developers may drop vowels and (or) characters to shorten one or both words 

of the identifier, thus creating defectsNbr or nbrOfdefects. TIDIER uses contextual information 

in the form of specialized dictionaries (e.g., acronyms, contractions and domain specific terms) 

and mimics the process of transforming words via contraction rules; more details can be found 

in [75]. It is important to emphasize that TIDIER does not perform significantly better than 

Samurai on Java code and even though TIDIER and Samurai outperform CamelCase, Samurai 

is much faster than TIDIER. For this reason, TIDIER was only used as a reference in supporting 

the construction of the Oracle but not in the empirical study or to generate new terms as in [75]. 
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2.2 Empirical Study Design 

The goal of this study is to compare accuracy of two FLTs (i.e., IR and IRDyn), when 

utilizing three identifier splitting algorithms: CamelCase, Samurai and Oracle (i.e., manual 

splitting of identifiers). This study is done from the perspective of researchers who want to 

understand if existing approaches for splitting identifiers can improve accuracy of FLTs under 

different scenarios and settings, including best possible scenario where splitting is done by 

experts. In addition, we are interested to know if an advanced splitting algorithm would be still 

useful for enhancing the accuracy of feature location when execution information is used. 

The context consists of two Java applications: Rhino and jEdit where the main 

characteristics are described in Subsection 2.2.3. 

2.2.1 Variable Selection and Study Design 

The main independent variable of our study is the type of splitting algorithm used: 

CamelCase, Samurai and Oracle (i.e., manually split identifiers). 

The second independent variable is the use of dynamic information. Thus, we have two 

FLTs, and each has three configurations, which depend on the identifier splitting technique 

(see Table 2-1). For example, �����������, ���������, and �������� are the IR based feature 

location techniques that use LSI to compute similarities between queries and methods, after 

applying the CamelCase, the Samurai and the Oracle splitting algorithms on the identifiers 

from the methods and queries. Similarly ��������������, ������������ and ����������� were 

defined. 

Table 2-1 The configurations of the two FLTs (i.e., IR and IRDyn) based on the splitting 
algorithm 

Splitting Algorithm IR FLT IRDyn FLT 
CamelCase (Baseline) ����������� �������������� 
Samurai ��������� ������������ 
Oracle (Manual Split) �������� ����������� 
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In order to compare which configuration of the FLTs is more accurate than another 

(i.e., ����������� vs. ���������), we considered their effectiveness measure [105]. The 

effectiveness measure is the best rank (i.e., lowest rank) among all the methods from the gold 

set for a specific feature. Intuitively, the effectiveness measure quantifies the number of 

methods a developer has to examine from a list of ranked methods returned by the feature 

location technique, before she is able to locate a relevant method pertaining to the feature. 

Obviously, a technique that consistently places relevant methods towards the top of the ranked 

list (i.e., lower ranks) is more effective than a technique that contains relevant methods towards 

the middle or the bottom of the ranked list (i.e., higher ranks). In this analysis we focus on the 

scenario of finding just one relevant method, as opposed to finding all relevant methods from 

the gold set, for two reasons. First, we are focusing on concept location, rather than impact 

analysis. Second, once a relevant method has been identified, it is much easier to find other 

related methods by following program dependencies from the relevant method, or by using 

other heuristics. 

In literature, the identifiers that are split using CamelCase are referred as hard-words, 

whereas the identifiers split using Samurai or TIDIER are called soft-words. During our 

analysis, we treat the hard and soft words in the same way and we refer to them as split 

identifiers. 

The dependent variable considered in our study is the effectiveness measure of the 

FLTs. 

We aim at answering the following overarching question: if we had a perfect technique 

for splitting identifiers, would it still help improve accuracy of FLTs? We plan to answer this 

question by examining these more specific Research Questions (RQ): 

RQ1: Does ��������� outperform ����������� in terms of effectiveness? 



 

19 

RQ2: Does ������������ outperform �������������� in terms of effectiveness? 

RQ3: Does �������� outperform ����������� in terms of effectiveness? 

RQ4: Does ����������� outperform �������������� in terms of effectiveness? 

Previous work [60, 75] compared the CamelCase, Samurai and TIDIER splitting 

algorithms in terms of their accuracy for correctly splitting identifiers. However, in our study 

we are addressing the impact that splitting algorithms have on feature location. 

2.2.2 Building an Oracle – “Perfect Splitter” 

The aim of the Oracle is to provide an exact identifier splitting into terms, and possibly 

mapping acronyms and contractions into terms or English words, thus building a reference 

dictionary to be used in subsequent feature location phases. Application dictionaries, collected 

identifiers and terms from comments, may contain thousands of words. Hence, manual 

verification and splitting is a tedious and error prone task.  To simplify Oracle building we 

applied a multi-step strategy aiming at minimizing the manual effort. In the following 

subsections we report details of each step. 

Step one – building software application dictionary.  We parsed and extracted 

identifiers and comments from both Rhino and jEdit and created a dictionary for each system. 

During this step we also built an application specific identifier (or term) frequency table for 

Samurai. Following this preliminary step, we filtered some dictionary entries to reduce manual 

validation effort. 

Step two – filtering concordant identifier split.  For each dictionary entry we ran the 

CamelCase, Samurai and TIDIER splitters to locate the identifiers for which these three 

splitting algorithms were in agreement. TIDIER was configured with WordNet1 dictionary, as 

well as with acronyms and abbreviations known to the authors.  We used the Samurai global 

                                                           
1 http://wordnet.princeton.edu/ 
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frequency table made available by Samurai authors [60], as well as a local frequency table 

estimated from the software application under analysis (see Step 1). Whenever the three 

splitting algorithms agreed on the identifier term subdivision, we considered this as a strong 

indication that the resulting split was actually correct. This assumption divided the dictionary 

into two sub-dictionaries: one on which the algorithms disagree and one where there is 

agreement among them. The sub-dictionary where the tools agreed was then manually 

inspected to make sure that no errors were present. For example, out of about 6,000 dictionary 

entries (or words) for Rhino, about 2,500 words were split in this phase with a minimum 

manual effort. 

Step three – filtering discordant identifier split.  We manually inspected the 

identifiers for which the three splitting algorithms did not agree, in order to provide the best 

splitting. Examples of identifiers from the Rhino dictionary are words such as DToA, DCMPG 

or impdep2. Most of identifiers were manually split in this step (including careful inspection 

of the source code to understand the exact context of those identifiers), but there was a reduced 

set where it was unfeasible to assign any evident meaning even after inspecting the source 

code. For example, about 120 Rhino dictionary entries fell into this category. Examples of such 

identifiers include short strings (e.g., DT, i3 or m5) and cryptic identifiers (e.g., P754, u00A0 

or zzz). 

Table 2-2 Summary of the four datasets used in the evaluation: name (number of 
features/issues), source of the queries and gold sets, and the type of execution information 

Dataset (Size) Queries Gold Sets Execution Information 

RhinoFeatures (241) 
Sections of 

ECMAScript 
Eaddy et al. [58] Full Execution Traces 

RhinoBugs (143) 
Bug title and 
description 

Eaddy et al. [58] 
(CVS) 

N/A 

jEditFeatures (64) 
Feature (or Patch) 

title and description 
SVN Marked Execution Traces 

jEditBugs (86) 
Bug title and 
description 

SVN Marked Execution Traces 
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During the Oracle building process, the authors validated the split identifiers following 

a consensus approach (i.e., Latifa Guerrouj proposed an identifier split, which was then verified 

and validated by Bogdan Dit – see Section 1.2). In a few cases, disagreements were discussed 

among all the authors. We adapted this approach in order to minimize the bias and the risk of 

producing erroneous results. This decision was motivated by the complexity of identifiers, 

which capture developers’ domain and solution knowledge, experience, personal preference, 

etc., thus, it is difficult to decode the true meaning of identifiers in some cases. 

2.2.3 Systems 

We conducted our evaluation on two open source Java systems, Rhino and jEdit, and 

we constructed four datasets from these two systems. The first system considered is Rhino 

[127], an open-source implementation of JavaScript written in Java. Rhino version 1.6R5 has 

138 classes, 1,870 methods and 32K lines of code. Rhino implements the specifications of the 

European Computer Manufacturers Association (ECMA) Script2. We constructed two datasets 

from Rhino.  

The first dataset is RhinoFeatures and contains 241 features extracted from the 

specifications. Each feature has a textual description that was used as a query in the evaluation. 

These descriptions correspond to sections of the ECMAScript specifications. Each feature also 

has a set of methods, which are associated with the features (i.e., gold set). The gold sets were 

constructed using the mappings between the source code and the features, which were made 

available by Eaddy et al. [58]. These mappings3 were produced by considering the sections of 

the ECMAScript specification as features, and associating them with software artifacts using 

the following prune dependency rule, created by Eaddy et al. [58]: “A program element is 

relevant to a concern if it should be removed, or otherwise altered, when the concern is pruned.” 

                                                           
2 http://www.ecmascript.org/ 
3 http://www.cs.columbia.edu/~eaddy/concerntagger/ 
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These mappings were used in other research papers, such as [57, 58, 156].  Rhino is distributed 

with a suite of test cases, and each test case has a correspondence in the ECMAScript 

specification. We used these test cases to collect full traces for each of the features. 

The second dataset collected is RhinoBugs and contains 143 issue reports (i.e., bugs) that 

were collected from Bugzilla, the issue tracking system of Rhino4. Each bug from Bugzilla has 

a title and a description, and we used this information as queries in the evaluation. As in the 

RhinoFeatures dataset, we used the information made available by Eaddy et al. [58] to associate 

each bug with a set of methods from Rhino which are responsible for the bug (i.e., the gold 

set). Eaddy et al. [58] extracted the mappings between bugs and source code by analyzing CVS 

commits. However, there was no association between the 143 issue reports and the test cases, 

hence, we did not collect any execution traces for this dataset. 

                                                           
4 https://bugzilla.mozilla.org/ 

Table 2-3 Descriptive statistics from datasets: number of methods in the gold set, number of 
methods in traces, and number of identifiers from corpora 

# of … Measure RhinoFeatures RhinoBugs jEditFeatures jEditBugs 

methods in 
gold set 

min 1 1 1 1 
median 4 1 5 2 
average 12.82 2.24 6.3 4.01 

max 280 15 19 41 
st. deviation 28.8 2.39 5.33 5.63 

Total 3,089 320 403 345 

unique 
methods 

from traces 

Min 777 N/A 227 227 
median 917 N/A 1.1K 1.1K 
average 912 N/A 1.1K 1.1K 

Max 1.1K N/A 1.9K 1.9K 
st. deviation 54 N/A 310 310 

identifiers 
in the 
corpus 
(with 

queries) 

split by 
CamelCase 

3,318 
(4,154) 

3,318 
(4,223) 

4,227 
(4,361) 

4,227 
(4,596) 

split by 
Samurai 

2,642 
(3,416) 

2,642 
(3,411) 

3,439 
(3,552) 

3,439 
(3,751) 

Split by 
Oracle 

2,030 
(2,921) 

2,030 
(2,718) 

2,758 
(2,852) 

2,758 
(3,051) 
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The second system considered is jEdit [85], a popular open-source text editor written 

in Java. jEdit version 4.3 has 483 classes, 6.4K methods and 109K lines of code. We 

constructed two datasets from this system. For more details about how we generated the jEdit 

dataset refer to our Appendix A. 

The first dataset is jEditFeatures and consists of 64 issues (34 features and 30 patches) 

extracted from jEdit’s issue tracking system5. The second dataset is jEditBugs and consist of 86 

bug reports. We now describe some steps used for collecting additional information for these 

two datasets. We used the changes associated with the SVN commits between releases 4.2 and 

4.3 to construct the gold sets. In addition, the SVN logs were parsed for issue identifiers which 

were matched against the issues from the tracking system. Similarly to the RhinoBugs dataset, 

the title and description of these issues were used in the evaluation as queries. We used a tracer 

to generate marked traces, by executing jEdit and following the steps to reproduce from the 

issue description. For more details about the process of generating this dataset, and for the 

complete dataset, which includes queries and execution traces, please refer to our online 

appendix [1]. 

The four datasets, extracted from Rhino and jEdit, which were used in the evaluation, 

are summarized in Table 2-2. We also present additional information about the datasets used 

in the evaluation in Table 2-3. First, we present details about the number of methods from the 

gold sets of each dataset. Each data point (i.e., a feature or a bug) from the RhinoFeatures dataset 

has on average 12 methods, whereas the RhinoBugs dataset has only two methods on average. 

For jEdit there are on average four to six methods associated with each issue. The features from 

the RhinoFeatures dataset have many gold set methods in common, hence the total number of 

methods is much higher than for the other datasets.  

                                                           
5 http://sourceforge.net/tracker/?group_id=588 
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Second, we present information about the number of methods extracted from the traces. 

For both systems, the average number of unique methods extracted from each trace was about 

one thousand. Third, we present information about the size of the corpora in terms of the 

number of identifiers, after applying the CamelCase, Samurai and Oracle splitting techniques. 

As expected, the more accurately we split the identifiers, the more we reduce the number of 

unique identifiers. For example, the corpus for RhinoFeatures has 3,318 identifiers after applying 

the CamelCase splitting technique, and has only 2,030 identifiers after using the Oracle 

splitting technique. This is explained by the fact that identifiers that could not be split by 

CamelCase formed an unique identifier, whereas the Oracle split the identifier into two or more 

(common) terms that already appear in the corpus, hence reducing the number of unique 

identifiers. 

2.2.4 Analysis 

For each dataset, every FLT will produce a list of ranks (i.e., effectiveness measures) 

that has the size of the number of features in the dataset. For example, the dataset RhinoFeatures 

produces 241 ranks for �����������, 241 ranks for ��������� and 241 ranks for ��������, and 

each of those ranks represents the best position (i.e., lowest rank) of a method from the gold 

set associated with that feature. These lists of ranks are used as an input for the following 

comparison techniques: descriptive statistics, side by side comparisons, and statistical tests. 

First, we compare the ranks using descriptive statistics, such as minimum, first quartile, 

median, third quartile, maximum, and average. We present all these descriptive statistics 

graphically, using box plots (i.e., whisker charts). Although this technique provides a quick 

and intuitive view of the data, it only presents a high level perspective. 

The second comparison technique examines the data in more details and works as 

follows. Given two lists of ranks produced by two different FLTs, we compare the ranks side 
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by side and we count the number of cases the first technique produces lower ranks than the 

other, as well as the number of cases the second technique produces lower ranks (i.e., better 

results) than the other. We report these values as percentages. 

The third comparison of the ranks is a statistical analysis. We use the Wilcoxon signed-

rank test [31] to test whether the difference in terms of effectiveness for two measures is 

statistically significant or not. This test is non-parametric and it takes as an input two lists of 

ranks produced by two different feature techniques. In the test we used a significance level � =

0.05, and the output of the test is a p-value, which can be interpreted as follows. If the p-value 

is less than �, then the difference in ranks produced by one feature location technique is 

statistically significantly lower than the ranks produced by the other technique. Otherwise, if 

the p-value is larger than �, then we conclude that the two techniques produce almost 

equivalent results. 

2.2.5 Hypotheses 

We formulate several null hypotheses in order to test whether an improved splitting 

algorithm has a higher effectiveness measure than a simple splitting algorithm. For example: 

H0,IRSamurai There is no statistical significant difference in terms of effectiveness 

between ��������� and �����������. 

H0,IRSamuraiDyn There is no statistical significant difference in terms of effectiveness 

between ������������ and ��������������. 

We also define several alternative hypotheses for the case when a null hypothesis is 

rejected with high confidence. These alternative hypotheses state that an improved identifier 

splitting technique (e.g., Samurai, Oracle) would produce higher effectiveness than the baseline 

splitting technique (i.e., CamelCase). The following alternative hypotheses correspond to the 

null hypotheses defined above. 
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HA,IRSamurai ��������� has statistically significantly higher effectiveness than 

�����������. 

HA,IRSamuraiDyn ������������ has statistically significantly higher effectiveness than 

��������������. 

The corresponding null and alternative hypotheses for the Oracle splitting technique 

are defined analogously. 

2.3 Results and Discussion 

This section presents the effectiveness measures of the FLTs presented in Table 2-1, 

which were applied on the four datasets (see Table 2-2) extracted from Rhino and jEdit. Please 

refer to our online appendix for complete data. 

 
(a) RhinoFeatures 

 
(b) RhinoBugs 

 
(c) jEditFeatures 

 
(d) jEditBugs 

Figure 2-1 Box plots of the effectiveness measure of the three IR-based FLTs (�����������, 
��������� and ��������) for the four datasets: a) RhinoFeatures, b) RhinoBugs, c) jEditFeatures and 

d) jEditBugs 
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Figure 2-1 presents the box plots of the effectiveness measures of the three IR based 

FLTs applied on the four datasets. For each dataset, all the instances of the IR feature location 

technique produce very similar results in terms of lower quartile, median, mean, upper quartile, 

etc. For example, Figure 2-1 (a) shows that for the RhinoFeatures dataset, using the CamelCase 

splitting (�����������) we obtain a median of 23 and an average of 86, and if we use the Oracle 

splitting (��������), we obtain a median of 20 and an average of 86. The same small differences 

between the descriptive statistics measures are observed among all the IR instances, and in all 

the four datasets. 

Similarly to Figure 2-1, Figure 2-2 presents the box plots of the effectiveness measure 

of the three IRDyn FLTs which were applied on the following three datasets: RhinoFeatures 

(Figure 2-2 (a)), jEditFeatures (Figure 2-2 (b)) and jEditBugs (Figure 2-2 (c)). For all the datasets, 

the three FLTs produce almost identical results, regardless of the technique used for splitting 

the identifiers. For example, Figure 2-2 (a) shows that for the RhinoFeatures dataset, using 

CamelCase splitting (��������������), the median and average are 9 and 30 respectively, 

whereas for Oracle splitting (�����������) the median and average are 8 and 32 respectively. 

The small differences observed on the IR based instances are also observed here. Even more 

so, for the other datasets, when incorporating dynamic information the differences produced 

by the feature location techniques seem to be less noticeable than the differences produced by 

IR-based feature location techniques. This fact may suggest that dynamic information has some 

influence and the splitting techniques used for identifiers may not be as important. It is also 

interesting to observe that feature location techniques applied on the datasets that use features 

as queries (i.e., RhinoFeatures and jEditFeatures) have lower effectiveness measures than the feature 

location techniques applied on the datasets that use bug descriptions as queries. For example, 

for Rhino, the median effectiveness when using feature descriptions as queries is about 21 (see 
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Figure 2-1 (a)), whereas the median effectiveness when using bug descriptions as queries is 

about 110 (see Figure 2-1 (b)). The same observation is valid for the jEdit when only textual 

information is used (see Figure 2-1 (c)(d)) as well as when textual and execution information 

are combined (see Figure 2-2 (b)(c)). 

The results illustrated in Figure 2-1 and Figure 2-2 provide only a high level picture of 

the effectiveness measure. We now present results from a case by case comparison of the 

effectiveness measure. Table 2-4 presents the percentage of times an instance of the IR based 

FLT produces lower ranks than another instance of the IR based FLT. The first cell value 

represents the percentage of times the FLT from the corresponding row produces lower ranks 

than �����������, whereas the number in parenthesis represents the percentage of times 

����������� produces lower ranks than the technique from the row (in the remaining 

percentages, the two techniques produce identical ranks). In this case, a higher percentage 

denotes a more effective technique. In addition, Table 2-4 shows the percentage of times the 

FLT form the row produces better results than ��������������. 

We observe from Table 2-4 that comparing the effectiveness measures of �������� and 

����������� side by side, �������� produces lower ranks in 49% of cases, whereas ����������� 

produces better results in 33% of cases. In the remaining 18% of cases (i.e., 100%-49%-33%) 

the two techniques produce identical ranks. 

Similarly, from Table 2-4 we observe that when dynamic information is taken into 

account, for the RhinoFeatures dataset, ����������� produces lower ranks (i.e., better results) in 

42% of cases, whereas �������������� produces better results in 35% of cases. In the 

remaining 23% of cases (i.e., 100%-42%-35%) the techniques produce the same results. 

It is interesting to observe that for both systems, �������� and ����������� produce a 

higher percentage of good results than ����������� and �������������� respectively, when 
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these techniques are applied on the datasets that use features as queries (see columns two and 

four and rows two and four Table 2-4). However, when these techniques are applied on the 

datasets that use bug description as queries, the opposite phenomenon is observed. In other 

words ����������� and �������������� produce higher percentage of good results than �������� 

and ����������� respectively (see columns three and five of and rows two and four Table 2-4). 

The effectiveness measures presented as box plots and percentages are statistically 

analyzed using the Wilcoxon signed-rank test. Table 2-5 presents the p-values of the Wilcoxon 

signed-rank test for all the instances of the IR-based FLTs. The results that are statistically 

significant (i.e., the p-value is lower than � = 0.05) are highlighted in bold. The table shows 

that there is only one instance when the Oracle splitting technique (i.e., ��������) produces 

results that are statistically significantly better than the technique that uses CamelCase splitting 

(i.e., �����������). This is for the RhinoFeatures dataset and the p-value is equal to 0.005. We 

performed the same analysis between �������� and ��������� and the results show that only for 

the RhinoFeatures dataset �������� produces results that are statistically significantly better than 

��������� (p-value=0.009). Refer to our online appendix for the data. 

 
(a) RhinoFeatures 

 
(b) jEditFeatures 

 
(c) jEditBugs 

Figure 2-2 Box plots of the effectiveness measure of the three FLTs 
(��������������	(�������), ������������	(��������) and �����������	(��������)) 

for the 3 datasets: a) RhinoFeatures, b) jEditFeatures and c) jEditBugs
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Similarly, Table 2-5 shows the p-values of the Wilcoxon signed-rank test applied on 

the effectiveness measures produced by the IRDyn FLTs. The results show that no technique 

produces statistically better results than any other technique. This observation helps in 

answering the research questions RQ2 and RQ4, that the splitting technique used is not as 

important if dynamic information is considered. Refer to our online appendix for the results 

comparing ����������� and ������������. When dynamic information is involved, no 

technique produces statistically significant results than the other for any of the datasets. 

If we look at the same results (i.e., the effectiveness measure) from three different 

points of view (i.e., box plots, percentages and statistical analysis), we derive the following 

conclusions. First, there are instances where a better identifier splitting technique (i.e., Oracle) 

improves feature location. This has been the case for the Rhino, for the RhinoFeatures dataset. 

Second, there are cases when even a perfect identifier splitting technique cannot help in the 

process of feature location. Such an example is given by the jEditFeatures dataset, when the 

effectiveness measure is improved for a few cases, but the difference is not statistically 

significant. Moreover, there are instances where the perfect splitting technique can have 

negative impact on feature location, as it was the case for the jEditBugs dataset. In this case, the 

original CamelCase splitting technique produced better results than the Oracle in terms of 

percentages (see Table 2-4), but the difference is still not statistically significant. Finally, there 

is one instance, RhinoFeatures, where splitting helps when textual information is used. However, 

when dynamic information is used, all the splitting techniques produce equivalent results from 

a statistical point of view. 
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2.3.1 Qualitative Results 

This section presents some observations after examining the results produced by the 

splitting techniques and after examining the queries. 

One of the problems that we encountered using Samurai was that it tended to split 

certain types of identifiers into many meaningless terms, some of them having between one-

three characters. Examples of identifiers from Rhino, where Samurai split them incorrectly 

were: debugAccelerators, tolocale, imitating, imlementation, etc. Their incorrect Samurai 

splitting was: debug Ac ce le r at o rs, tol ocal e, imi ta ting, i ml eme n tat ion (see Table 2-6). 

For these examples, CamelCase performed better, as it correctly split the first identifier (debug 

accelerators), but it left the other ones unaltered. Please refer to our online appendix for more 

information. 

One of the benefits of using Samurai was that it accurately split same-case identifiers 

composed of multiple words. For these cases, CamelCase left the identifiers unmodified. 

Examples of such identifiers from Rhino include SHORTNUMBER, readadapterobject, 

Table 2-4 Percentages of times the effectiveness of the FLT from the row is higher than 
����������� (first two rows) and higher than �������������� (last two rows), and vice-versa 

(see percentages from parenthesis) 

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs 
���������	��	����������� 39 (40) 36 (48) 33 (36) 41 (41) 

��������	��	����������� 49 (33) 45 (48) 44 (38) 40 (55) 
������������	��	�������������� 33 (36) N/A 27 (22) 28 (41) 

�����������	��	��������������  42 (35) N/A 34 (22) 35 (50) 

 

Table 2-5 The p-values of the Wilcoxon signed-rank test for the FLT from the row compared 
with ����������� (first two rows) and �������������� (last two rows); statistical significance 

values are highlighted in bold 

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs 
���������	��	����������� 0.692 0.890 0.742 0.479 
��������	��	����������� 0.005 0.497 0.202 0.785 

������������	��	�������������� 0.713 N/A 0.307 0.928 
�����������	��	��������������  0.265 N/A 0.095 0.937 
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GETPROP which are correctly split by Samurai as SHORT NUMBER, read adapter object, 

and GET PROP, and are left unchanged by CamelCase (see Table 2-6). 

However, there were some cryptic identifiers that were almost impossible to split using 

CamelCase or Samurai. Examples of such identifiers from Rhino include ldbl, njm, pun, rve, 

wbdry, etc. In these cases, inferring the meaning from the context in which these identifiers 

appeared was the only way to split or expand them correctly. 

We observed a vocabulary mismatch problem, which produced inconsistencies 

between the identifiers used in the queries, and the identifiers used in the code.  

This problem seemed to be less noticeable for features, and more severe for bugs. For 

jEdit, the issues that described features often contained terms that were later used in the code 

as identifiers for classes, methods, variables, etc. For example, jEdit’s feature #16084866  

(“Support ‘thick’ caret”), contained in its description many identifiers that were also found in 

the name of the methods (e.g., thick, caret, text, area, etc.). For features, their queries were 

expressive, and more consistent with the source code vocabulary, so they benefitted less from 

an Oracle splitting. Hence, when using feature descriptions as queries for both Rhino and jEdit, 

the median effectiveness of the FLTs, regardless of splitting, were about 20 for Rhino (see 

Figure 2-1 (a)) and about 10 for jEdit (see Figure 2-1 (c)). 

                                                           
6 http://sourceforge.net/tracker/index.php?func=detail&aid=1608486&group_id=588&atid=300588 

Table 2-6 Examples of splitted identifiers from Rhino using CamelCase and Samurai. The 
identifiers which are split correctly are highlighted in bold 

Original Identifier CamelCase Samurai 
GETPROP getprop GET PROP 

readadapterobject readadapterobject read adapter object 
SHORTNUMBER shortnumber SHORT NUMBER 
debugAccelerators debug accelerators debug Ac ce le r at o rs 

tolocale tolocale tol ocal e 
imitating imitating imi ta ting 
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On the other hand, the vocabulary of the queries extracted from bug reports was less 

consistent with the source code vocabulary, and a splitting technique, helped bridge this gap. 

For example, jEdit’s bug #15755057 (“C+j bug”) reported a problem with the “join lines” 

implementation, yet nowhere in its description were the words join or lines mentioned. In 

general, the identifiers from the bug descriptions were less consistent with the code, and this 

issue was reflected in terms of the effectiveness measures produced by the FLTs, when these 

bug descriptions were used as queries. For example, in Figure 2-1 (b) the median effectiveness 

for Rhino system was about 110 (as opposed to a median of 20 when features were used as 

queries). Also, Figure 2-1 (d), shows that the median effectiveness of the techniques that used 

bugs as queries was around 67, as opposed to 10, which was the median effectiveness when 

features were used as queries. 

Another problem with the queries is that some identifiers were used just for 

communication between developers, and no matter what splitting technique was used, these 

identifiers provided no useful information, because they appeared only in the query vocabulary, 

and did not appear at all in the source code vocabulary. Examples of such identifiers included 

words that are common in communication, such as btw (i.e., by the way), thanks, hate, rant, 

greetings, fly, annoying, etc., name of developers, ApeHanger, Slava, Carlos, etc. 

2.3.2 Threats to Validity 

In this section we present several threats to validity associated with the evaluation. 

Threats to construct validity concern the relation between the theory and the 

observation. This threat is mainly due to mistakes in the Oracle and gold set. We cannot 

guarantee that no errors are present in the Oracle. As the intent of the Oracle is to explain 

identifier semantics, we cannot guarantee that some identifiers could have been split in 

                                                           
7 http://sourceforge.net/tracker/index.php?func=detail&aid=1575505&group_id=588&atid=100588 
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different ways by developers that originally created them. This problem is difficult and it 

relates to guessing the developers’ intent. To limit this threat, different sources of information 

such as comments, source code context, and online documentation were used when producing 

the Oracle. To minimize the risk on the accuracy of the gold set, we used data produced by 

other researchers, which was used in previous studies and made available to the research 

community. 

Threats to internal validity concern any confounding factors that could have influenced 

our study results. In particular, these threats are due to the subjectivity of the manual building 

of the Oracle and to the possible biases introduced by manually splitting identifiers. To limit 

this threat, the Oracle was produced by a joint work among Latifa Guerrouj and Bogdan Dit 

(see Section 1.2), using CamelCase, Samurai and TIDIER. In addition, inconsistencies in 

splitting/mapping to dictionary words were discussed. 

Threats to conclusion validity concern the relations between the treatment and the 

outcome. Proper tests were performed to statistically reject the null hypotheses. In particular, 

we used a non-parametric test (i.e., Wilcoxon signed-rank test), which does not make any 

assumptions on the underlying distributions of the data. Furthermore, as the only significant p-

value is 0.005 (see Table 2-5), even with the conservative Bonferroni correction, it will remain 

significant as the limit in such case is equal to �-value/number of tests (i.e., 
�.��

�
= 0.01666	 <

	0.05). 

Threats to external validity concern the possibility of generalizing our results. To make 

our results as generalizable as possible, we used two Java applications from two different 

application domains but we cannot be sure that our findings will be valid for other domains, 

applications, programming languages or software engineering tasks (i.e., different from feature 

location). More case studies are needed to confirm the results presented and to verify if indeed, 
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in the general case, dynamic information reduces the gain of more sophisticated identifier split 

techniques. 

2.4 Related Work on Source Code Identifiers 

Given the paramount role of source code identifiers in maintenance tasks such as 

traceability link recovery or feature and concept location, a large body of relevant work is 

available in this area. We divided this section into the related work on the role of unstructured 

information in program comprehension and approaches to feature location. 

2.4.1 The Role of Unstructured Information in Program Comprehension 

Takang et al. [172] attempted to determine the informativeness of identifiers. They 

conducted experiments to compare abbreviated identifiers to full-word identifiers and 

uncommented code to commented code. Their study results showed that commented programs 

are more understandable than non-commented programs and that programs containing full-

word identifiers are more understandable than those with abbreviated identifiers.  

Lawrie et al. [97, 98] have performed an empirical study to assess the quality of source 

code identifiers. Their study with over 100 programmers indicated that full words as well as 

recognizable abbreviations lead to better comprehension. Lawrie et al. [96] introduced 

GenTest, a splitting algorithm which by incorporating vocabulary normalization is able to 

outperform Samurai. 

Binkley et al. [19] have investigated the use of different identifier separators in program 

comprehension. They found that the CamelCase convention led to better understanding than 

underscores and, when subjects are properly trained, they performed faster with identifiers in 

the CamelCase style rather than identifiers built using underscores. Binkley et al.’s study was 

replicated by Sharif and Maletic [165] using an eye tracking system. Their results indicate that 
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there was no difference in terms of accuracy between the CamelCase and underscore style, and 

that subjects recognized identifiers that used the underscore notation more quickly. 

Caprile and Tonella [26] have analyzed the internal structure of identifiers. Their in-

depth analysis showed that identifiers are one of the most important source of information 

about system concepts, and that the information carried by identifiers is often the starting point 

for program comprehension. 

Deißenböck and Pizka [43] have provided guidelines for the production of high-quality 

identifiers. With such guidelines, identifiers should contain enough information for an engineer 

to understand the program concepts. 

2.4.2 Related Work on Feature Location 

Marcus et al. introduced LSI-based feature location technique [115]. This approach 

was later extended to include the Rocchio algorithm for relevance feedback [63] by allowing 

developers to reformulate search queries. Grant et al. [71] used Independent Component 

Analysis for feature location, by separating the features (modeled as input signals) into 

independent components and estimating the relevance to each source code method. Shepherd 

et al. [167] proposed an approach to feature location that is based on the program model that 

captures action-oriented relations between identifiers in a program.  

There are several FLTs that use more than one type of information (or underlying 

analysis). For example, SITIR [105] and PROMESIR [143] both utilize textual and execution 

information. Eisenbarth et al. [59] proposed a technique that applies formal concept analysis 

to traces to generate a mapping between features and methods. Cerberus [57] is another hybrid 

technique which combines static, dynamic and textual analysis. Revelle et al. [156] 

incorporated the information resulting from web mining algorithms applied on execution traces 
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and combined it with textual information to support feature location. A recent survey 

summarizing feature location approaches can be found in [52]. 

2.5 Discussion 

Perfecting splitting techniques can improve the accuracy of feature location, easing 

program comprehension and thus, software evolution. In situations where execution 

information cannot be collected (e.g., mission critical and time critical applications), the 

benefits of using advanced splitting techniques can be mostly visible. In fact, by splitting source 

code identifiers and mapping them to domain concepts, the localization of entities contributing 

to implementing some user observable functionality may be easier, which could minimize 

feature location effort. 

In this chapter, we presented an exploratory study of two FLTs (i.e., IR and IRDyn) for 

locating bugs and features, utilizing three strategies for splitting identifiers: CamelCase, 

Samurai and manual splitting of identifiers. These FLTs and their preprocessing techniques 

were evaluated on two open-source systems, Rhino and jEdit, and compared in terms of their 

effectiveness measure. 

The results of the IR-based FLT reveal that Samurai and CamelCase produce similar 

results. However, the �������� outperforms ����������� in terms of the effectiveness measure, 

on the RhinoFeatures dataset. This supports our conjecture that when only textual information is 

available, an improved splitting technique can help improve effectiveness of feature location. 

The results also show that when both textual and execution information are used, any splitting 

algorithm will suffice, as FLTs produce equivalent results. In other words, because execution 

information helps pruning the search space considerably, the benefit of an advanced splitting 

algorithm is comparably smaller than the benefit obtained from execution information; hence 

the splitting algorithm will have little impact on the final results. Overall, our findings outline 
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potential benefits of creating advanced preprocessing techniques as they can be useful in 

situations where execution information cannot be easily collected. 
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3 Configuring Latent Dirichlet 
Allocation: LDA-GA 

A significant amount of research on applying Information Retrieval methods for 

analyzing textual information in software artifacts [21] has been conducted in the SE 

community in recent years. Among the popular and promising IR techniques used, we 

enumerate Latent Semantic Indexing [42] and Latent Dirichlet Allocation [22]. The latter is a 

probabilistic statistical model that estimates distributions of latent topics from textual 

documents. It assumes that these documents have been generated using the probability 

distribution of these topics, and that the words in the documents were generated 

probabilistically in a similar manner. A number of approaches using LSI and LDA have been 

proposed to support software engineering tasks: feature location [52], change impact analysis 

[64], bug localization [108], clone detection [171], traceability link recovery [9, 111], expert 

developer recommendation [89], code measurement [106, 148], artifact summarization [39], 

and many others [11, 81, 159]. In all these approaches, LDA and LSI have been used on 

software artifacts in a similar manner as they were used on natural language documents (i.e., 

using the same settings, configurations and parameters) because the underlying assumption 

was that source code (or other software artifacts) and natural language documents exhibit 

similar properties. More specifically, applying LDA requires setting the number of topics and 

other parameters specific to the particular LDA implementation. For example, the fast 

collapsed Gibbs sampling generative model for LDA requires setting the number of iterations 

� and the Dirichlet distribution parameters � and � [137]. Even though LDA was successfully 

used in the IR and natural language analysis community, applying it on software data, using 

the same parameter values used for natural language text, did not always produce the expected 

results [132]. As in the case of machine learning and optimization techniques, a poor parameter 
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calibration or wrong assumptions about the nature of the data could lead to poor results [7]. 

Recent research has challenged this assumption and showed that text extracted from source 

code is much more repetitive and predictable as compared to natural language text [80]. 

According to recent empirical findings, “corpus-based statistical language models capture a 

high level of local regularity in software, even more so than in English” [80]. This fundamental 

new research finding explains in part why these fairly sophisticated IR methods showed rather 

low performance when applied on software data using parameters and configurations that were 

generally applicable for and tested on natural language corpora. This dissertation builds on the 

finding that text in software artifacts has different properties, as compared to natural language 

text, thus, we need new solutions for calibrating and configuring LDA and LSI to achieve better 

(acceptable) performance on software engineering tasks. In addition, this chapter introduces 

LDA-GA, a novel solution that uses a Genetic Algorithm [82] to determine the near-optimal 

configuration for LDA in the context of three different software engineering tasks, namely (1) 

traceability link recovery, (2) feature location, and (3) software artifacts labeling. Our 

contributions are summarized as follows. 

We introduced LDA-GA, a novel and theoretically sound approach for calibrating 

LDA on software text corpora using a GA, and we show that it can be applied successfully on 

three software engineering tasks: traceability link recovery, feature location and software 

artifact labeling. 

We conducted several experiments to study the performance of LDA configurations 

based on LDA-GA with those previously reported in the literature; to perform such a 

comparison we replicated previously published case studies. 

We compared LDA-GA with existing heuristics for calibrating LDA; the empirical 

results demonstrate that our proposed approach is able to identify LDA configurations that lead 

to better accuracy as compared to existing heuristics. 



 

41 

We make publicly available in our online appendix [1] all the data, results and 

algorithms used in our studies, for replication purposes and to support future studies.  

3.1 Background and Related Work 

This section provides background information on (i) LDA and (ii) its applications to 

software engineering tasks, as well as (iii) discussions about related approaches aimed at 

determining the best configuration for LDA. 

3.1.1 Latent Dirichlet Allocation 

Latent Dirichlet Allocation [22] is an IR model that allows to fit a generative 

probabilistic model from the term occurrences in a corpus of documents. Specifically, given a 

collection of documents, the IR process generates a �× � term-by-document matrix �, where 

� is the number of terms occurring in all artifacts, and � is the number of artifacts in the 

repository. A generic entry ��� of this matrix denotes a measure of the weight (i.e., relevance) 

of the ��� term in the ��� document [10]. One of the most used weighting schemas, which we 

also applied in this dissertation, is the tf-idf since it gives more importance to words having 

high frequency in a document and appearing in a small number of documents [21]. Then, the 

term-by-document matrix is taken as an input by LDA, which identifies the latent variables 

(topics) hidden in the data and generates as output a � × � matrix �, called topic-by-document 

matrix, where � is the number of topics and � is the number of documents. A generic entry ��� 

of such a matrix denotes the probability of the ��� document to belong to the ��� topic. Since 

typically � ≪ �, LDA is mapping the documents from the space of terms (�) into a smaller 

space of topics (�). The latent topics allow us to cluster them on the basis of their shared topics. 

More specifically, documents having the same relevant topics are grouped in the same cluster, 

and documents having different topics belong to different clusters. 
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LDA requires as input a set of hyper-parameters (i.e., a set of parameters that have a 

smoothing effect on the topic model generated as output). In this dissertation we used the fast 

collapsed Gibbs sampling generative model for LDA because it provides the same accuracy as 

the standard LDA implementation, yet it is much faster [137]. For such an implementation, the 

set of hyper-parameters are:  

 �, which is the number of topics that the latent model should extract from the 

data. To some extent this is equivalent to the number of clusters in a clustering 

algorithm;  

 �, which denotes the number of Gibbs iterations, where a single iteration of the 

Gibbs sampler consists of sampling a topic for each word;  

 �, which influences the topic distributions per document. A high � value results 

in a better smoothing of the topics for each document (i.e., the topics are more 

uniformly distributed for each document);  

 �, which affects the term’s distribution per topic. A high � value results in a 

more uniform distribution of terms per topic.  

Note that �, �, and � are the parameters of any LDA implementation, while � is an 

additional parameter required by the Gibbs sampling generative model.  

3.1.2 LDA Applications to Software Engineering 

Some recent applications of LDA to SE tasks operate on models of software artifacts 

(e.g., source code) rather than directly on those artifacts. Approaches that generate these 

models require as input a corpus (i.e., a document collection) that represents the software 

artifacts being analyzed. The corpus is constructed from textual information embedded in the 

artifacts, including identifiers and comments. While a number of different SE tasks have been 

supported using advanced textual retrieval techniques, such as LDA, the common problem 
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remains: the way LDA is commonly configured is based on the assumption that the underlying 

corpus is composed of natural language text. In our survey of the literature, the following SE 

tasks have been supported using LDA and all of these papers and approaches used ad-hoc 

heuristics to configure LDA, perhaps resulting in suboptimal performance in virtually all the 

cases: feature location [17], bug localization [108], impact analysis [130], source code labeling 

[39], aspect identification [11], expert identification [104], software traceability [9, 35, 65, 67, 

161], test case prioritization [177], refactoring [14, 15, 131], mining API usage examples [126] 

and discussion forums [103], and evolution analysis [81, 176].  

3.1.3 Approaches for Estimating the Parameters of LDA  

Finding an LDA configuration that provides the best performance is not a trivial task. 

Although heuristics have been proposed [70, 74], these approaches focus only on identifying 

the number of topics that would result in the best performance of a task, while ignoring all the 

other parameters that are required to apply LDA in practice. Moreover, such approaches have 

not been evaluated on real SE applications or have been defined for natural language 

documents only, thus, they may not be applicable for software corpora.  

One such technique is based on a heuristic for determining the “optimal” number of 

LDA topics for a source code corpus of methods by taking into account the location of these 

methods in files or folders, as well as the conceptual similarity between methods [70],. 

However, the utility of this heuristic was not evaluated in the context of specific SE tasks.  

On a more theoretical side, a non-parametric extension of LDA called Hierarchical 

Dirichlet Processes [175] tries to infer the optimal number of topics automatically from the 

input data. Griffiths and Steyvers [74] proposed a method for choosing the best number of 

topics for LDA among a set of predefined topics. Their approach consists of (i) choosing a set 

of topics, (ii) computing a posterior distribution over the assignments of words to topics 
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�(�|�, �), (iii) computing the harmonic mean of a set of values from the posterior distribution 

to estimate the likelihood of a word belonging to a topic (i.e., �(�|�)), and (iv) choosing the 

topic with the maximum likelihood. In their approach, the hyper-parameters � and � are fixed, 

and only the number of topics is varied, which in practice, is not enough to properly calibrate 

LDA. In our approach, we vary all the parameters (i.e., �, �, �  and �), to find a (near) optimal 

configuration for LDA.  

3.2 Finding a (near) Optimal LDA Configuration 

As explained in Section 3.1, LDA (and in particular its implementation based on fast 

collapsed Gibbs sampling generative model) requires the calibration of four parameters, �, �, 

�  and �. Without a proper calibration, or with an ad-hoc calibration of these parameters, 

LDA’s performance may be sub-optimal. Finding the best configuration of these parameters 

poses two problems.  

First, we need a measure that can be used to assess the performances of LDA before 

applying it to a specific task (e.g., traceability link recovery). This measure should be 

independent from the supported SE task. In other words, we cannot simply train an LDA model 

on the data for one particular task, since obtaining such data means solving the task. For 

example, for traceability link recovery, if we identify all the links to assess the quality of the 

LDA model for extracting the links themselves, then there is no need to have an LDA-based 

model to recover these links anymore. In other words, we need to build such a model on raw 

data (e.g., source code and documentation) without having additional information about the 

links.  

Second, we need an efficient way to find the best configuration of parameters, as an 

exhaustive analysis of all possible combinations is impractical due to (i) the combinatorial 

nature of the problem (i.e., the large number of possible configuration values for the LDA 
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parameters), as well as (ii) the large amount of computational time required for even such a 

configuration. In the next subsections, we present our approach that addresses these problems, 

called LDA-GA, which is able to find a near-optimal configuration for the parameters of LDA. 

3.2.1 Assessing the Quality of an LDA Configuration 

LDA can be considered as a topic-based clustering technique, which can be used to 

cluster documents in the topics space using the similarities between their topics distributions. 

Our conjecture is that there is a strong relationship between the performances obtained by LDA 

on software corpora and the quality of clusters produced by LDA. Thus, measuring the quality 

of the produced clusters could provide some insights into the accuracy of LDA when applied 

to software engineering tasks. Indeed, if the quality of the clusters produced by LDA is poor, 

it means that LDA was not able to correctly extract the dominant topics from the software 

 

Figure 3-1 Example of Silhouette coefficient. 
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corpus, because the documents, which are more similar to each other, are assigned to different 

clusters (i.e., LDA assigns different dominant topics to neighboring documents).  

In this dissertation, we use the concept of a dominant topic to derive the textual 

clustering generated by a particular LDA configuration applied on a term-by-document matrix. 

Formally, the concept of a dominant topic can be defined as follows:  

Definition 1. Let � be the topic-by-document matrix generated by a particular LDA 

configuration � = [�, �, �, �]. A generic document �� has a dominant topic ��, if and only if 

��,� = max���,�, ℎ = 1…��. 

Starting from the definition of the dominant topic, we can formalize how LDA clusters 

documents within the topic space (the number of clusters is equal to the number of topics) as 

follows:  

Definition 2. Let � be the topic-by-document matrix generated by a particular LDA 

configuration � = [�, �, �, �]. A generic document �� belongs to the ��� cluster, if and only if 

�� is the dominant topic of ��.  

Thus, we can define a cluster as a set of documents in which each document is closer 

(i.e., shares the same dominant topic) to every other document in the cluster, and it is further 

from any other document from the other clusters. It is worth noting that the concept of a 

dominant topic is specific to software documents only. Collections of natural language 

documents are usually heterogeneous, meaning that documents can contain information related 

to multiple topics. In source code artifacts, heterogeneity is not always present, especially when 

considering single classes. More specifically, a class is a crisp abstraction of a domain/solution 

object, and should have a few, clear responsibilities. Hence, software documents should be 

clustered considering only the dominant topic, assuming that each document is related to only 

one specific topic.  
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Different LDA configurations provide different clustering models of the documents. 

However, not all clustering models that can be obtained by configuring LDA are good. There 

are two basic ways to evaluate the quality of a clustering structure: internal criteria, based on 

similarity/dissimilarity between different clusters and external criteria, which uses additional 

and external information (e.g., using judgment provided by users) [95]. Since the internal 

criterion does not require any manual effort and it is not software engineering task dependent, 

in this dissertation we use the internal criteria for measuring the quality of clusters. More 

specifically, we use two types of internal quality metrics: cohesion (similarity), which 

determines how closely related the documents in a cluster are, and separation (dissimilarity), 

which determines how distinct (or well-separated) a cluster is from other clusters [95].. Since 

these two metrics are contrasting each other, we use a popular method for combining both 

cohesion and separation in only one scalar value, called Silhouette coefficient [95]. The 

Silhouette coefficient is computed for each document using the concept of centroids of clusters. 

Formally, let � be a cluster; its centroid ��������(�) is equal to the mean vector of all 

documents belonging to �:  

��������(�) = �
��

|�|
��∈�

 

Starting from the definition of centroids, the computation of the Silhouette coefficient 

consists of the following three steps:  

1. For document ��, calculate the maximum distance from �� to the other 

documents in its cluster. We call this value �(��).  

2. For document ��, calculate the minimum distance from �� to the centroids of 

the clusters not containing ��. We call this value �(��).  

3. For document ��, the Silhouette coefficient �(��) is: 
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�(��) =
	�(��) 	− 	�(��)

max	��(��), �(��)�
 

The value of the Silhouette coefficient ranges between [−1…1]. A negative value is 

undesirable, because it corresponds to the case in which �(��) > �(��), i.e., the maximum 

distance to other documents in the cluster is greater than the minimum distance to other 

documents in other clusters. For measuring the distance between documents we used the 

Euclidean distance, since it is one of the most commonly used distance functions for data 

clustering [95]. Figure 3-1 provides a graphical interpretation of the Silhouette coefficient 

computed for a document ��. In particular, it represents an example of a good Silhouette 

coefficient, since �� is close to the furthest document situated in its cluster, and far from the 

centroid of the nearest cluster. In the end, the overall measure of the quality of a clustering � =

{��, . . . , ��} can be obtained by computing the mean Silhouette coefficient of all documents. 

Let � = {��, . . . , ��} be the clustering obtained using a particular LDA configuration, and let 

� be a �× � term-by-document matrix. The mean Silhouette coefficient is computed as:  

�(�) =
1

�
��(��)

�

���

 

In this dissertation, we used the mean Silhouette coefficient as the measure for 

predicting the accuracy of LDA in the context of specific software engineering tasks.  

3.2.2 Finding a (Near) Optimal LDA Configuration 

Based on the conjecture that the higher the clustering quality produced by LDA, the 

higher the accuracy of LDA when used for software engineering tasks, we present an approach 

to efficiently identify the LDA configuration � = [�, �, �, �] that maximizes the overall quality 

(measured using the mean Silhouette coefficient) of the clustering produced by LDA. For 

solving such an optimization problem we applied Genetic Algorithms (GA) which is a 

stochastic search technique based on the mechanism of a natural selection and natural genetics. 
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Since the introduction of GA by Holland [82] in the 1970s, this algorithm has been used in a 

wide range of applications where optimization is required and finding an exact solution is NP-

Hard. The advantage of GA with respect to the other search algorithm is its intrinsic 

parallelism, i.e., having multiple solutions (individuals) evolving in parallel to explore different 

parts of the search space.  

The GA search starts with a random population of solutions, where each individual 

(i.e., chromosome) from the population represents a solution of the optimization problem. The 

population evolves through subsequent generations and, during each generation, the 

individuals are evaluated based on the fitness function that has to be optimized. For creating 

the next generation, new individuals (i.e., offsprings) are generated by (i) applying a selection 

operator, which is based on the fitness function, for the individuals to be reproduced, (ii) 

recombining, with a given probability, two individuals from the current generation using the 

crossover operator, and (iii) modifying, with a given probability, individuals using the 

mutation operator. More details about GA can be found in a book by Goldberg [68]. 

Table 3-1 Characteristics of the systems used in the three evaluation scenarios: Traceability 
Link Recovery (top), Feature Location (middle) and Software Artifact Labeling (bottom) 

 

Scenario I – Traceability Link Recovery 

System KLOC Source Artifacts (#) Target Artifacts (#) 
Correct 
Links 

EasyClinic 20 Use Case (30) Code Class (47) 93 
eTour 45 Use Case (58) Code Class (174) 366 

     
Scenario II – Feature Location 

System KLOC # Classes # Methods # Features 
jEdit v4.3 104 503 6,413 150 

ArgoUML v0.22 149 1,439 11,000 91 
     

Scenario III – Software Artifact Labeling 
System KLOC # Classes Sampled Classes 

JHotDraw 29 275 10 
eXVantage 28 348 10 
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In this dissertation, we used a simple GA [68] with elitism of two individuals (i.e., the 

two best individuals are kept alive across generations). Individuals (solutions) are represented 

as an array with four floats, where each element represents �, �, �  and �, respectively. Thus, 

an individual (or chromosome) is a particular LDA configuration and the population is 

represented by a set of different LDA configurations. The selection operator is the Roulette 

wheel selection, which assigns to the individuals with higher fitness a higher chances to be 

selected. The crossover operator is the arithmetic crossover, which creates new individuals by 

performing a linear combination (with random coefficients) of the two parents. The mutation 

operator is the uniform mutation, which randomly changes one of the genes (i.e., one of the 

four LDA parameter values) of an individual, with a different parameter value within a 

specified range. The fitness function that drives the GA evolution is the Silhouette coefficient 

described in Section 3.2.1.  

Our GA approach can be briefly summarized as (i) generating LDA configurations, (ii) 

using them to cluster documents, (iii) evaluating the cluster quality using the Silhouette 

coefficient, and (iv) using that value to drive the GA evolution.  

3.3 Empirical Study Design 

This section describes the design of the empirical studies that we conducted in order to 

evaluate LDA-GA in the context of three software engineering tasks. The studies aim at 

answering the following research questions: 

RQ1: What is the impact of the configuration parameters on LDA’s performance in the 

context of software engineering tasks? This research question aims at justifying the need for 

an automatic approach that calibrates LDA’s settings when LDA is applied to support SE tasks. 

For this purpose, we analyzed a large number of LDA configurations for three software 
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engineering tasks. The presence of a high variability in LDA’s performances indicates that, 

without a proper calibration, such a technique risks being severely under-utilized. 

RQ2: Does LDA-GA, our proposed GA-based approach, enable effective use of LDA 

in software engineering tasks? This research question is the main focus of our study, and it is 

aimed at analyzing the ability of LDA-GA to find an appropriate configuration for LDA, which 

is able to produce good results for specific software engineering tasks.  

We address both research questions in three different scenarios, representative of SE 

tasks that can be supported by LDA: traceability link recovery, feature location, and software 

artifact labeling. LDA was previously used in some of these tasks [9, 39, 176]. For our data 

and results please visit our online appendix. 

3.3.1 Scenario I: Traceability Links Recovery  

In this scenario, we used LDA to recover links between documentation artifacts (e.g., 

use cases) and code classes. The experiment has been conducted on software repositories from 

two projects, EasyClinic and eTour. EasyClinic is a system used to manage a doctor’s office, 

while eTour is an electronic touristic guide. Both systems were developed by the final year 

Master’s students at the University of Salerno (Italy). The documentation, source code 

identifiers, and comments for both systems are written in Italian. The top part of Table 3-1 

reports the characteristics of the considered software systems in terms of type, number of 

source and target artifacts, as well as Kilo Lines of Code (KLOC). The table also reports the 

number of correct links between the source and target artifacts. These correct links, which are 

derived from the traceability matrix provided by the original developers, are used as an oracle 

to evaluate the accuracy of the proposed traceability recovery method.  

To address RQ1, we compared the accuracy of recovering traceability links using 

different configurations for LDA. Specifically, we varied the number of topics from 10 to 100 
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with step 10 on EasyClinic, and from 10 to 200 with step 10 on eTour. We varied � and � from 

0 to 1 with 0.1 increments, and we exercised all possible combinations of such values. We 

fixed the number of iterations to 500, which resulted to be a sufficient number of iterations for 

the model to converge. Thus, the total number of trials performed on EasyClinic and eTour 

were 1,000 and 2,000, respectively. Clearly, although combinatorial, such an analysis is not 

exhaustive, as it considers a discrete set of parameter values and combinations. For RQ2, we 

compared the accuracy achieved by LDA when the configuration is determined using LDAGA 

with (i) the best accuracy achieved by LDA (determined when answering RQ1) and (ii) the 

accuracy achieved by LDA on the same system in the previously published studies where an 

“ad-hoc” configuration was used [65]. While the former comparison is more of a sanity check 

aimed at analyzing the effectiveness of the GA in finding a near-optimal solution, the latter 

comparison was aimed at analyzing to what extent LDA-GA is able to enrich the effectiveness 

and usefulness of LDA in the context of traceability link recovery when properly calibrated.  

When addressing RQ1, we evaluated LDA’s recovery accuracy using the average 

precision metric [10], which returns a single value for each ranked list of candidate links 

provided. For RQ2, we used two well-known IR metrics: precision and recall [10]. The 

precision values achieved for different configurations (over different levels of recall) are then 

pairwise-compared using the Wilcoxon rank sum test. Since this requires performing three tests 

for each system, we adjusted the p-values using Holm’s correction procedure [83]. This 

procedure sorts the p-values resulting from � tests in ascending order, multiplying the smallest 

by �, the next by � − 1, and so on. 

3.3.2 Scenario II: Feature Location  

In this scenario, we used LDA to locate features within the textual corpus of source 

code. The context of this scenario is represented by two software systems, jEdit v4.3 [85] and 



 

53 

ArgoUML v0.22 [8]. jEdit is an open-source text editor for programmers, while ArgoUML is 

a well-known UML editor. Table 3-1 (middle) reports the characteristics of the considered 

software systems in terms of number of classes, number of methods, as well as KLOC and the 

number of features to be located. These software systems have been used in previous studies 

on feature location [17, 53]. For more information about how the datasets were generated refer 

to [46, 52] and Appendix A. 

 
(a) Traceability 

 
(b) Feature Location 

 
(c) Artifact Labeling 

 

Figure 3-2 Variability of performance achieved by LDA configurations for (a) traceability 
link recovery, (b) feature location, and (c) software artifact labeling 
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To answer RQ1, we compared the effectiveness measure of LDA using different 

configurations. Specifically, we varied the number of topics from 50 to 500 with step 50 for 

both ArgoUML and jEdit. We varied � and � from 0 to 1 with 0.1 increments. Similarly to the 

traceability task, we fixed the number of iterations to 500. We exercised all possible 

combinations of such values. Thus, the total number of trials performed on both software 

systems consisted of 1,000 different LDA combinations. For RQ2, similarly to the previous 

scenario, we compared the performance achieved by LDA-GA with (i) the best performance 

achieved by LDA when answering RQ1 and (ii) the performance obtained by LDA using the 

source locality heuristic proposed by Grant and Cordy for the feature location task [70]. The 

performance of LDA in this scenario was analyzed using the effectiveness measure (EM) [143]. 

Given a feature of interest, this measure estimates the number of methods a developer needs to 

inspect before finding a method relevant to that feature (the list of methods are ranked by their 

similarity to the description of the feature). A lower value for the EM indicates less effort (i.e., 

fewer methods to analyze before finding a relevant one). The EM computed for different 

configurations on different queries (i.e., feature descriptions) were then pairwise-compared 

using a Wilcoxon rank sum test, similarly to the evaluation from Scenario I and, also in this 

case, the p-values were adjusted using Holm’s procedure.  

3.3.3 Scenario III: Software Artifact Labeling  

In this scenario, we used LDA to automatically “label” source code classes using 

representative words. Specifically, we extracted topics from a single class (using LDA), and 

then we ranked all the words characterizing the extracted topics according to their probability 

in the obtained topic distribution. The top ten words belonging to the topic with the highest 

probability in the obtained topic distribution were then used to label the class [39].  
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The study was conducted on ten classes from JHotDraw and ten classes from 

eXVantage. The former is an open-source drawing tool, and the latter is a novel testing and 

generation tool. Their characteristics are summarized in the bottom part of Table 3-1. For the 

sampled classes, we had user-generated labels from a previously published work [39], and 

these represented our “ideal” labels. After obtaining the LDA labels we compared them to the 

user-generated ones and computed the overlap between them. The overlap was measured using 

the asymmetric Jaccard measure [10]. Formally, let �(��) = {��, . . . , ��} and ���
(��) =

{��, . . . , ��}  be the sets of keywords identified by subjects and the technique ��, respectively, 

to label the class ��. The overlap was computed as follows: 

���������
(��) =

��(��) ∩ ���
(��)�

���
(��)

 

Note that the size of �(��) might be different from the size of ���
(��). In particular, 

while the number of keywords identified by LDA is always ten (by construction we set ℎ =

10), the number of keywords identified by subjects could be more or less than ten (generally 

it is ten, but there are few cases where the number is different). For this reason, we decided to 

use the asymmetric Jaccard to avoid penalizing too much the automatic method when the size 

of �(��) is less than ten.  

Also in this scenario, in order to address RQ1 we compared the recovery accuracy of 

LDA using different settings. Specifically, we varied the number of topics from 10 to 50 with 

step 10 for both JHotDraw and eXVantage. As for � and �, we varied them between 0 and 1 

by increments of 0.1. We fixed the number of iterations to 500 as in the previous two tasks. 

We exercised all possible combinations of such values. Thus, the total number of trials 

performed on JHotDraw and eXVantage was 500 on both systems. For RQ2, we compared the 
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accuracy achieved by LDA-GA with (i) the best accuracy achieved by LDA while iterating 

through the parameters and (ii) the accuracy achieved by LDA reported by De Lucia et al. [39].  

 

 
(a) EasyClinic 

 
(b) eTour 

Figure 3-3 Precision and Recall graphs for traceability link recovery systems: (a) EasyClinic 
and (b) eTour
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3.3.4 LDA-GA Settings and Implementation  

The LDA-GA has been implemented in R [174] using the topicmodels and GA 

libraries. The former library provides a set of routines for computing the fast collapsed Gibbs 

sampling generative model for LDA, while the latter is a collection of general purpose 

functions that provide a flexible set of tools for applying a wide range of GA methods. For GA, 

we used the following settings: a crossover probability of 0.6, a mutation probability of 0.01, 

a population of 100 individuals, and an elitism of two individuals. As a stopping criterion for 

the GA, we terminated the evolution if the best results achieved did not improve for ten 

generations; otherwise we stopped after 100 generations. All the settings have been calibrated 

using a trial-and-error procedure, and some of them (i.e., elitism size, crossover and mutation 

probabilities) were the values commonly used in the community. To account for GA’s 

randomness, for each experiment we performed 30 GA runs, and then we took the 

configuration achieving the median final value of the fitness function (i.e., of the Silhouette 

coefficient).  

3.4 Empirical Study Results 

This section discusses the results of our experiments conducted in order to answer the 

research questions stated in Section 3.3. We report the results for each LDA application 

scenario.  

3.4.1 Scenario I: Traceability Link Recovery  

As for RQ1, Figure 3-2(a) shows boxplots summarizing the average precision values 

obtained using the 1,000 and 2,000 different LDA configurations (described in Section 3.3) on 

EasyClinic and eTour, respectively. We used these boxplots to highlight the variability of the 

average precision values across different configurations. As shown, the variability of LDA’s 

performance is relatively high: the average precision ranges between 11% and 52% on 
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EasyClinic and between 7% and 43% on eTour. For EasyClinic, more than 75% of the different 

LDA configurations obtained an average precision lower than 45% (see first three quartiles in 

Figure 3-2(a)). Moreover, only a small percentage of the configurations executed in the 

combinatorial search (about 3.6%) obtained an average precision greater than 50%. In the end, 

only one of them achieved the highest value, 52%. Similarly for eTour, the configurations 

placed in the first three quartiles (about 75% of the set) obtained an average precision lower 

than 40%, while less than 1% of the total amount of executed configurations in the 

combinatorial search (2,000 configurations) achieved an average precision greater than the 

40%. Only one configuration achieved the highest average precision (43%).  

In summary, for RQ1we can assert that for traceability recovery, LDA shows high 

variability. Thus, LDA’s efficiency for establishing links between software artifacts depends 

on the particular configuration � = [�, �, �, �] used to derive latent topics. Indeed, “bad” 

configurations can produce poor results while “optimal” configurations (which represent a 

small portion of all possible LDA configurations) can lead to very good results.  

Regarding RQ2, Figure 3-3 reports the precision/recall graphs obtained by LDA using 

(i) the best configuration across 1,000 and 2,000 different configurations executed in the 

combinatorial search; (ii) the configuration identified by LDA-GA; and (iii) an “ad-hoc” 

configuration used in a previous study where LDA was used on the same repositories [132]. 

For both EasyClinic and eTour, LDA-GA was able to obtain a recovery accuracy close to the 

accuracy achieved by the optimal configuration across 1,000 and 2,000 different configurations 

Table 3-2 The results of the Wilcoxon test for Traceability Link Recovery 

Comparison EasyClinic eTour 
LDA-GA < Combinatorial 1 1 
LDA-GA < Oliveto et al. [132] < 0.01 < 0.01 
Combinatorial < Oliveto et al. [132] < 0.01 < 0.01 
Combinatorial < LDA-GA 1 < 0.01 
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executed in the combinatorial search. In particular, for EasyClinic LDA-GA returned exactly 

the configuration identified by the combinatorial search (i.e., the two curves are perfectly 

overlapped) while on eTour the two curves are comparable. Moreover, the average precision 

achieved by the configuration provided by LDA-GA is about 41%, which is comparable with 

the average precision achieved with the optimal configuration, which is about 43% (only a 

small difference of 2%). Among 2,000 different configurations tried for the combinatorial 

search, only five configurations obtained an average precision comparable or greater than the 

one achieved by LDA-GA, i.e., the configurations obtained by LDA-GA belong to the 99% 

percentile for the distribution reported in Figure 3-2(a). Finally, comparing the performance 

achieved by LDA-GA with the performance reached by other LDA configurations used in 

previous work [132], we can observe that the improvement is very substantial for both software 

systems.  

Table 3-2 reports the results of the Wilcoxon test (i.e., the adjusted p-values) for all 

combinations of the techniques (statistically significant results are highlighted in bold face). 

As observed, there is no statistically significant difference between the performance obtained 

by LDA-GA and the combinatorial search for EasyClinic. However, for eTour the 

combinatorial search performs significantly better than LDA-GA. However, considering the 

precision/recall graph reported in Figure 3-3, we can observe that the difference is relatively 

small.  

3.4.2 Scenario II: Feature Location  

Figure 3-2(b) shows the boxplots summarizing the variability of the average 

effectiveness measure (EM) values obtained using 1,000 different LDA configurations, as 

explained in Section 3.3. As in the previous task, the feature location results show high 

variability in their EM, which ranges between 472 and 1,416 for ArgoUML and between 145 
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and 600 for jEdit. For ArgoUML, we observed that more than 90% of different configurations 

produced an average EM ranging between 600 and 1,200, while only a small percentage (about 

3%) produced an optimal average EM lower than 600. Within this small number of optimal 

configurations only one configuration obtains the lowest (i.e., the best) EM of 472. Similarly, 

for jEdit, 95% of different configurations produced an average EM that ranges between 200 

and 1,600, while only one achieved the smallest average EM of 145. These results for RQ1 

suggest that without a proper calibration, the performance of LDA risks of being unsatisfactory.  

For RQ2, Figure 3-4(b) shows boxplots for ArgoUML of the EM values achieved by 

three different configurations: (i) the best configuration obtained by a combinatorial search 

across 1,000 different LDA configurations (combinatorial search); (ii) the configuration 

obtained using LDA-GA; and (iii) the best configuration obtained using the source locality 

heuristic [70]. First, we can note that the configuration obtained via LDA-GA is exactly the 

same as the one obtained from the combinatorial search, thus LDA-GA was able to find the 

best configuration (i.e., with the lowest average EM). Comparing the performance of LDA-GA 

 
(a) jEdit 

 
(b) ArgoUML 

Figure 3-4 Box plots of the effectiveness measure for the feature location task for systems: 
(a) jEdit and (b) ArgoUML
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with the source locality heuristic, we can observe that for the first two quartiles, there is no 

clear difference (the median values are 107 and 108 for LDA-GA and source locality heuristic 

respectively). Considering the third and fourth quartiles, the difference becomes substantial: 

the third quartile is 467 for LDA-GA and 689 for the previous heuristic, while for the fourth 

quartiles we obtained 4,603 for LDA-GA and 7,697 for source locality heuristic. Overall, LDA-

GA reached an average EM equal to 473, as opposed to EM equal to 707 obtained using the 

source locality heuristic. The same trend is observed for the jEdit system illustrated in Figure 

3-4(a). 

Table 3-3 reports the results of the Wilcoxon test (i.e., the adjusted p-values) for all 

combinations of the techniques (statistically significant results are shown in bold face). As we 

can see, there is no statistical difference between the performance obtained by LDA-GA and 

the combinatorial search. Based on the results of the statistical tests, we can assert that LDA-

GA is able to find the optimal or the near-optimal configurations. Moreover, LDA-GA 

significantly outperforms the previously published source locality heuristic (p-value< 0.02).  

3.4.3 Scenario III: Software Artifact Labeling  

For RQ1, Figure 3-2(c) shows boxplots for the average percentage overlap (AO) values 

obtained using 500 different LDA configurations, as explained in Section 3.3. Even if in this 

case the corpus of documents (the total number of classes and the vocabulary size) is really 

small, as compared to the size of the repository considered for the other tasks, LDA also shows 

a high variability of performances, ranging between 18% and 66% on JHotDraw, and between 

13% and 77% on eXVantage. For JHotDraw, it can be noted that more than 72% of the different 

Table 3-3 Results of the Wilcoxon test for Feature Location 

Comparison jEdit ArgoUML 
LDA-GA < Combinatorial 0.09 1 
LDA-GA < Source Locality Heuristic [70] 0.02 0.02 
Combinatorial <  Source Locality Heuristic [70] 0.02 0.02 
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configurations obtained an AO value ranging between 25% and 55%, while only a small 

percentage (about 1%) obtains an optimal AO greater than 60%. Within this small number of 

optimal configurations, only one achieves the highest AO of 64%. Similarly, for eXVantage 

the majority (about 79%) of the different configurations obtained an AO ranging between 10% 

and 70%, while only one configuration achieved the highest AO of 77%.  

For RQ2, Table 3-4 reports the statistics of the overlap between the user-based labeling 

and the automatic labeling obtained using (i) LDA-GA; (ii) the best configuration achieved 

using the combinatorial search, i.e., the configuration which has the higher percentage overlap 

among 500 different configurations; and (iii) the LDA configuration used in the previous work 

[39] for the same task. For both systems, LDAGA obtains a percentage overlap with the user 

labeling that is close to the combinatorial search, with a difference from the best LDA 

configuration (obtained by the combinatorial search) of about 3% for eXVantage and 1% for 

Table 3-4 Average Overlap between Automatic and Manual Labeling for the two systems: 
eXVantage (top) and JHotDraw (bottom) 

eXVantage 

Descriptive Statistics 
LDA De Lucia et al.[39] 

LDA-GA Combinatorial � = � � = �/� � = � 
Max 100% 100% 100% 100% 100% 
3rd Quartile 95% 95% 71% 70% 69% 
Median 67% 70% 59% 60% 54% 
2nd Quartile 60% 67% 34% 50% 41% 
Min 50% 50% 0% 0% 40% 
Mean 74% 77% 52% 56% 60% 
St. Deviation 19% 17% 31% 34% 23% 

      
JHotDraw 

Descriptive Statistics 
LDA De Lucia et al.[39] 

LDA-GA Combinatorial � = � � = �/� � = � 
Max 100% 100% 100% 100% 100% 
3rd Quartile 81% 82% 73% 70% 66% 
Median 71% 75% 65% 61% 56% 
2nd Quartile 47% 50% 46% 45% 41% 
Min 14% 14% 0% 38% 29% 
Mean 65% 66% 59% 60% 59% 
St. Deviation 28% 26% 28% 20% 24% 
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JHotDraw. For eXVantage, among the 500 different LDA configurations computed in the 

combinatorial search, only 12 configurations have an average overlap greater or equal to 

74.33%. We can also observe that there are only small differences for the median and second 

quartile between LDA-GA and the global optimum, while for the other quartiles there is no 

difference. Similarly, among 500 different configurations evaluated for JHotDraw, only one 

configuration is comparable with LDAGA. By comparing the quartile values obtained for 

JHotDraw, we can note that the difference between LDA-GA and the combinatorial search 

optimum is about 2%-3% on average. Finally, we can observe how the performances of LDA 

configured using LDA-GA are significantly better than those reported in the previous work 

[39] (where � and �	were set to default of 50/� and 0.1 respectively). For eXVantage we obtain 

an improvement in terms of mean overlap of about 14-20%, while for JHotDraw we get an 

improvement of about 5-6%.  

3.5 Threats to Validity  

Threats to construct validity concern the relationship between theory and observation. 

For tasks such as traceability link recovery and feature location, we used well-established 

metrics (i.e., precision, recall and effectiveness) and oracles used in previous studies [17, 53, 

65, 66], thereby ensuring that the error-proneness is limited. For the labeling task, we compared 

LDA-based labeling with a user-generated labeling, using, again, the dataset previously 

verified and published [39].  

Threats to internal validity can be related to co-factors that could have influenced our 

results. We limited the influence of GA randomness by performing 30 GA runs and considering 

the configuration achieving the median performance. We also observed that the configuration 

that we obtained did not substantially vary across GA runs.  
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Threats to conclusion validity concern the relationship between treatment and outcome. 

Wherever appropriate, we used non-parametric statistical tests (the Wilcoxon test rank sum test 

in particular) to support our claims.  

Threats to external validity concern the generalization of our results. Firstly, it is highly 

desirable to replicate the studies carried out on three scenarios on other datasets. Secondly, 

although the proposed approach can be applied in principle to other LDA-based solutions to 

support SE tasks, specific studies are needed to evaluate their feasibility and performances.  

3.6 Discussion 

In this chapter we proposed LDA-GA, an approach based on Genetic Algorithms that 

determines the near-optimal configuration for LDA in the context of three important software 

engineering tasks, namely (1) traceability link recovery, (2) feature location, and (3) software 

artifact labeling. We also conducted several experiments to study the performance of LDA 

configurations based on LDA-GA with those previously reported in the literature (i.e., existing 

heuristics for calibrating LDA) and a combinatorial search. The results obtained indicate that 

(i) applying LDA to software engineering tasks requires a careful calibration due to its high 

sensitivity to different parameter settings, that (ii) LDA-GA is able to identify LDA 

configurations that lead to higher accuracy as compared to alternative heuristics, and that (iii) 

its results are comparable to the best results obtained from the combinatorial search.  

Overall, our empirical results warn the researchers about the dangers of ad-hoc 

calibration of LDA on software corpora, as was predominantly done in the SE research 

community, or using the same settings and parameters applicable only to natural language 

texts. Without a sound calibration mechanism for LDA on software data, which might require 

using approaches such as the one proposed in this chapter, the potential of such a rigorous 

statistical method as LDA can be seriously undermined, as shown in our empirical study.  
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4 Configuring and Assembling IR 
Techniques: IR-GA 

Prior research in software engineering (SE) highlighted the usefulness of conceptual 

(or textual) unstructured information to capture the knowledge and design decisions of 

software developers. Identifiers and comments encoded in class names, method names, or 

attributes in source code or other artifacts contain information often indispensable for program 

understanding [6, 25, 43, 77, 98, 154] and account for approximately half of the source code 

in software systems [43]. This conceptual information plays a paramount role as a data source, 

which is used by (semi-) automatic techniques to support software maintenance and evolution 

tasks. 

In the last decade a lot of effort in the SE community has been devoted to the problem 

of extracting, representing, and analyzing conceptual information in software artifacts. 

Specifically, Information Retrieval methods were proposed and used to support practical tasks. 

Early approaches aimed at constructing software libraries [109] and supporting reuse tasks 

[125, 187], while more recent work focused on addressing software maintenance and 

development tasks including feature location (e.g., [16, 141, 142, 143, 145, 146, 147, 149, 150, 

151, 162, 186]), traceability link recovery (e.g., [5, 41, 94, 99, 112, 123]), change impact 

analysis (e.g., [54, 64, 87, 88]), source code search [72, 119, 120, 121, 122], detecting similar 

applications [73, 118], code measurement [13, 66, 113, 114, 144], identification of duplicate 

bug reports (e.g., [159, 182]) among many other applications [20, 51, 140].  

All these IR-based techniques that support SE tasks, such as Latent Semantic Indexing  

[42] or Latent Dirichlet Allocation [22], require configuring different components and their 

respective parameters, such as type of pre-processors (e.g., splitting compound or expanding 

abbreviated identifiers; removing stop words and/or comments), stemmers (e.g., Porter [139] 
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or Snowball [170]), indexing schemata (e.g., term frequency - inverse document frequency), 

similarity computation mechanisms (e.g., cosine, dot product, entropy-based), etc.. 

Nevertheless, despite this overwhelming popularity of IR methods in SE research, most of the 

proposed approaches are based on ad-hoc methods and guidelines to choosing, applying, and 

configuring IR techniques. Moreover, recent studies demonstrate that effectiveness of these IR-

based approaches not only depends on the design choices behind the IR techniques and their 

internals, but also on the type of software artifacts used in the specific SE tasks and more in 

general on the project datasets. [132, 134].  

Most of existing approaches to SE tasks using IR methods rely on ad-hoc methods to 

configure these solutions, components, and their configurations, thus resulting oftentimes in 

suboptimal performance of such promising analysis methods to deal with unstructured software 

data. Moreover, a SE literature analysis (reported in the Related Work on choosing the different 

phases on an IR process – Section 4.6) has shown that a large number of papers do not even 

provide the details on how certain IR-based techniques have been instantiated; whereas the 

remaining set of papers use ad-hoc configurations, component settings, thus, significantly 

underachieving potential of IR methods to solve SE tasks. All in all, our conjecture is that 

existing methods for designing IR-based solutions for SE tasks is currently based on art, rather 

than science. This also makes the practical use of IR-based processes quite difficult and 

undermines the technology transfer to software industry.  

In this chapter we propose a novel approach to solve the problem of assembling IR-

based solutions for a given SE task and accompanying dataset. Our underlying assumption, 

which is supported by a large body of empirical research in the field, is that it is not possible 

to build a set of guidelines for assembling IR-based solutions for a given set of tasks as some 

of these solutions are likely to underperform on previously unseen datasets.  
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Our solution, named IR-GA, aims at enabling automatic search and assembly of 

parameterized IR-based solutions for given SE tasks that take into account not only task 

specific components and data sources (i.e., different parts of software artifacts related to 

solving a particular SE task), but also internal properties of the IR model built from the 

underlying dataset using a large number of possible components and configurations. We use 

Genetic Algorithms to effectively explore the search space of possible combinations of 

instances of IR process components (e.g., pre-processors, stemmers, indexing schemata, 

similarity computation mechanisms) to select the candidates with the best expected 

performance for a given dataset used for a SE task. Noticeably, during the GA evolution, the 

quality of a solution (represented as a GA individual) is evaluated based on the quality of the 

clustering of the indexed software artifacts. For this reason, our approach is unsupervised and 

task-independent, whereas the instantiated process is dataset-specific. Thus, it can be used to 

select and generate on demand an adequate IR-based solution given a dataset provided as 

input. Moreover, IR-GA could potentially support any IR-based software engineering task 

(e.g., traceability link recovery, feature location, impact analysis, detection of duplicate bug 

reports, developer recommendations, source code search, bug triaging, clone detection, etc.). 

We empirically show that using IR-GA it is possible to automatically assemble a near-

optimal configuration of an IR-based solution for datasets related to three kinds of software 

engineering tasks, namely (i) traceability link recovery, (ii) feature location, and (iii) duplicate 

bug report identification. The evaluation shows that IR processes instantiated by IR-GA 

outperform previously published results related to the same tasks and the same datasets, and 

that the performances of IR-GA do not significantly differ from an “ideal” upper bound, 

obtained by means of a combinatorial search, and with the availability of an oracle (which is 

not required by our approach).  
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4.1 Background  

This section provides some backgrounds on a generic IR process for solving SE 

problems, and how such a process can be instantiated for solving three problems that we believe 

are relevant IR applications to SE: traceability link recovery, feature location, and 

identification of duplicate bug reports.  

4.1.1 A generic IR process  

Let us consider a generic IR process, as the one shown in Figure 4-1. The next 

paragraphs describe in details each of these steps.  

Step 1. Term extraction This step consists of removing elements (e.g., special 

characters) that are not relevant to the IR process, and extracting portions of software artifacts 

that are considered relevant for the task at hand. For example, when performing requirement-

to-source traceability recovery or feature location, one may or may not decide to consider 

source code comments [5], may or may not decide to split compound identifiers [45], or may 

decide to consider only certain parts-of-speech (e.g., nouns [24]). Similarly, when comparing 

bug reports for duplicate detection, contributor comments’ (other than the initial description), 

stack traces, and source code fragments may (or may not) be considered. 

Figure 4-1 Outline of a generic IR Process to solve SE problems
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Step 2. Stop word removal This step aims at removing common terms that often do 

not contribute to discern one document from another. This can be done using list-based stop 

word removals, e.g., by removing English (or other languages) stop words (e.g., articles, 

prepositions, common use verbs), programming language keywords, or recurring domain-

specific terms.  

Step 3. Morphological analysis This step is often performed to bring back words to 

the same root (e.g., by removing plurals to nouns, or verb conjugations). The simplest way to 

do morphological analysis is by using a stemmer (e.g., Porter [138], Snowball [170]). 

Step 4. Term weighting The information extracted in the previous phase is stored in 

a � × �	matrix, called term-by-document matrix (TDM), where � is the number of terms 

occurring in all the artifacts, and � is the number of artifacts (i.e., documents) in the repository. 

A generic entry ��� of this matrix denotes a measure of the weight (i.e., relevance) of the ��� 

term in the ��� document [10]. Different measures of relevance can be used: the simplest one 

is the Boolean weighting, which just indicates whether a term appears in a document or not; 

other measures are the term frequency, which accounts for the term frequency (tf) in a 

document, or the tf-idf (term frequency-inverse document frequency), which gives more 

importance to words having high frequency in a document (high tf) and appearing in a small 

number of documents, thus having a high discriminating power (high idf). In general, one can 

use a combination of a local weight of the term in a specific document (e.g., tf) and a global 

weight of the term in the whole document collection (e.g., idf). A more sophisticated weighting 

schema is represented by tf-entropy [56], where the local weight is represented by the term 

frequency scaled by a logarithmic factor, while the entropy of the term within the document 

collection is used for the global weight. 
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Applying one of these term weighting schemas (e.g., Boolean, tf, tf-idf, log, tf-entropy) 

on the TDM results in a weighted term-by-documents matrix (WTDM), which has the same size 

as the TDM. The WTDM will be used as input for the algebraic model as illustrated in the next 

step. 

Step 5. Application of an algebraic model After having built a WTDM, different 

algebraic models (e.g., Vector Space Model [160], Latent Semantic Indexing [42], Latent 

Dirichlet Allocation [22]) can be applied on this matrix in order to build a corresponding IR 

model. 

The simplest approach would require analyzing the WTDM “as is” using the traditional 

Vector Space Model [160]. In VSM, artifacts (i.e., documents) are represented as vectors of 

terms (i.e., columns of the TDM) that occur within artifacts in a repository [10]. Textual 

similarities between documents can be computed using distance metrics between vectors (see 

next step). It is important to know that VSM does not take into account relations between terms 

of the artifacts vocabulary. For instance, having “automobile” in one artifact and “car” in 

another artifact does not contribute to the similarity measure between these two documents.  

Alternatively, one can use Latent Semantic Indexing [42], which is an extension of the 

VSM. It was developed to overcome the synonymy and polysemy problems, which occur with 

VSM model. LSI explicitly takes into account the dependencies between terms and between 

artifacts, in addition to the associations between terms and artifacts. For example, both “car” 

and “automobile” are likely to co-occur in different artifacts with related terms, such as 

“motor” and “wheel”. To exploit information about co-occurrences of terms, LSI applies 

Singular Value Decomposition (SVD) [42] to project the original WTDM into a reduced space 

of concepts, and thus limit the noise that the terms may cause. A crucial factor that determines 
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the performances of LSI is the choice of the number of “concepts” known as dimensionality 

reduction factor (i.e., the � parameter).  

More advanced methods, such as Latent Dirichlet Allocation [22] or Jensen–Shannon 

[32], treat documents as probability distributions of terms. LDA requires a calibration of 

different parameters, such as number of topics and the Dirichlet distribution parameters � and 

�. For a detailed description of LDA and its parameters please refer to Chapter 3.1.1. 

Step 6. Use of a distance (or similarity) measure The last step of the IR process aims 

at comparing documents (e.g., requirements and source code in traceability recovery, queries 

and source code in feature location, bug report pairs in duplicate bug report detection, etc.). 

This can be done using different similarity measures. For example, one can use the cosine 

similarity, Euclidian distance, the Jaccard similarity, or the Dice (symmetric or asymmetric 

similarity) coefficient. 

4.1.2 Traceability Link Recovery  

For traceability link recovery tasks, the typical artifacts used for generating the corpus 

consist of documentation artifacts, such as requirements, use cases or class diagrams and source 

code components, such as classes or methods. These artifacts depend on the traceability 

recovery task. For example, for recovering traceability links between use cases and source code 

classes the use cases are used as queries (or source artifacts) and the classes are used as target 

artifacts. All these artifacts are typically preprocessed by (i) removing special characters, (ii) 

splitting identifiers, (iii) removing stop words that are common in language as well as words 

that appear frequently in the templates of the source artifacts (e.g., “use case number”, “actor”, 

etc.) and (iv) stemming. The most used weighting schema for the TDM is the standard tf-idf, 

while VSM and LSI are among the most used IR techniques. The cosine similarity between all 

the source artifacts and all the target artifacts is used to rank the potential candidate links. The 
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list of candidate links is presented to the developer for investigation to decide if they are correct 

or not.  

4.1.3 Feature Location  

The process of applying IR techniques to support feature location is similar to 

traceability link recovery. The artifacts used for generating the corpus are typically short textual 

descriptions (e.g., queries) of the bug or the change request (i.e., the source artifacts) and 

program elements, such as classes or methods (i.e., the target artifacts). The queries can be 

Table 4-1 IR-GA chromosome representation (left) and values of the genes (i.e., steps of the 
IR process) for IR-GA 

Gene Type Possible Values for Gene Type 

Character 
Pruning 

No Removing 
Remove Special Characters, but Keep Digits 
Remove Special Characters and Remove Digits 

Identifier 
Splitting 

No Splitting 
Camel Case Split 
Camel Case Split and Keep Original Compound Identifiers 

Stop Word 
Removing 

No Stop Word Removal 
Removal of Standard Stop Words 
Removal of Standard Stop Words; Remove ≤ 2 characters words 
Removal of Standard Stop Words; Remove ≤ 3 characters words 

Morphologic 
Analysis  

(Stemming) 

No Stemming 
Snowball Stemming 
Porter Stemming 

Term 
Weighting 

Boolean 
tf 
tf-idf 
log 
tf-entropy 

IR 
Technique 

VSM 
LSI 
LDA 

LSI Settings �, the dimensionality reduction factor, where 10 ≤ � ≤ ����(����) 

LDA 
Settings 

�, the number of topics, where 10 ≤ � ≤ ����(����) 
�, the number of Gibbs iterations, where 10 ≤ � ≤ 2000 
�, which influences the topic distributions per document; 0 ≤ � ≤ 5 
�, which influences the term’s distribution per topic; 0 ≤ � ≤ 5 

Metric To 
Compute 

Documents 
Similarities 

Cosine 
Euclidian 
Jaccard 
Dice 
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formulated manually by the developer, or they can be extracted from issue tracking systems, 

such as Bugzilla. For the latter case, the query can consist of the title (e.g., short summary), or 

the combination of the title and the description of the issue. For the target artifacts, the typical 

information associated with a method consists of comments, type, name, signature and body 

and the information associated with a class consists of all the comments, methods and fields. 

The corpus is preprocessed using the standard steps (e.g., removing special characters, splitting 

compound identifiers, removing stop words and stemming), and weighting schemata (e.g., tf-

idf). Also for feature location, LSI is one of the most used techniques. The similarity measure 

is also in this case the cosine similarity. Using such a similarity measure, the list of target 

artifacts is ranked descending and presented to the developer, which manually investigates 

these methods and decides if they are relevant or not to the query.  

4.1.4 Identification of Duplicate Bug Reports  

For the task of detecting duplicate bug reports, the primary source of information for 

constructing the corpus consists of the information extracted from issue tracking systems. Each 

document of the corpus (i.e., each bug) typically consists of the title (e.g., short description of 

the issue), the description, and in some cases by the project name, component name, severity, 

priority, etc. In these documents, different weights could be assigned to the previously 

enumerated elements (e.g., title could be weighted more than description). The source artifacts 

are new, unassigned bugs for which the developer is trying to find similar bugs, and the target 

artifacts are existing bugs, which were assigned to developers or resolved. Similarly to the 

other tasks, the corpus is preprocessed using the standard steps (e.g., removing any sentence 

punctuation marks, splitting identifiers, removing stop words and stemming). The cosine 

similarity of an IR technique (e.g., VSM) between the source (i.e., new) bugs and the target 



 

74 

(i.e., existing) bugs is used to rank the list of bugs presented to the developer for the manual 

inspection.  

4.2 The Proposed Approach: IR-GA 

Genetic Algorithms [82] are a stochastic search technique inspired by the mechanism 

of a natural selection and natural evolution. A GA search starts with a random population of 

solutions, where each individual (i.e., chromosome) of a population represents a solution of the 

optimization problem. The population is evolved toward better solutions through subsequent 

generations and, during each generation, the individuals are evaluated based on the fitness 

function that has to be optimized. For creating the next generation, new individuals (i.e., 

offsprings) are generated by (i) applying a selection operator, which is based on the fitness 

function of the individuals to be reproduced, (ii) recombining, with a given probability, two 

individuals from the current generation using the crossover operator, and (ii) modifying, with 

a given probability, individuals using the mutation operator.  

In this dissertation we propose to use a GA to automatically assemble and instantiate 

parameterized IR-based solutions for SE tasks. Specifically, we use GA to (i) instantiate the IR 

process represented in the chromosome of an individual, (ii) executing it (i.e., processing the 

documents using that IR process), and (iii) computing the GA fitness function by clustering the 

processed documents and evaluating the clustering quality.  

4.2.1 Use GA to instantiate IR processes  

The first choice in the design of a GA for an optimization problem is the representation 

of candidate solutions that must be encoded in a suitable form, known as chromosome 

representation. As explained in Section 4.1, an IR process (see Figure 4-1) consists of a 

sequence of given steps or components, thus it naturally lends itself to be represented as a 

chromosome. In IR-GA, the chromosome (see Table 4-1) is a vector, where each cell (gene) 
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represents a phase of the IR process, and can assume as a possible value any of the techniques 

(or approaches) available for that phase. For example, for the morphological analysis we could 

have “no stemming”, “Porter” stemmer [139], or “Snowball” stemmer [170]. Note that, since 

some steps require multiple decisions, they are represented as two genes. In particular, the term 

extraction has two genes, one related to what kind of characters to prune, another related to 

how splitting compound identifiers. In principle, further, more complex configurations can be 

foreseen. The right-side of the chromosome encodes the parameter settings for the used IR 

methods. While in principle an approach like IR-GA could also search for the IR method (e.g., 

LSI, LDA or VSM) achieving the best performances (see Section 4.2.2), the fitness function 

we defined requires at the moment the use of an IR method that clusters documents. For 

example, LSI [42] and LDA [22] are two such techniques that represent documents using a 

fixed number of concepts or topics respectively. For this reason, we only considered LSI, which 

already proves to be very successful for investigated software engineering tasks [65, 143]. In 

terms of calibration, LSI requires to set the number of concepts (�) to which the term-by-

document space will be reduced.  

IR-GA is based on a simple GA with elitism of two individuals (i.e., the two best 

individuals are kept alive across generations). The GA’s initial population is randomly 

generated (i.e., by randomly choosing the value of each gene of each individual). The selection 

of the individuals to be reproduced is performed using the Roulette Wheel selection operator, 

which elects individuals to reproduce pseudo-randomly, giving higher chances to individuals 

with higher fitness. The crossover operator is the single-point crossover, which, given two 

individuals (parents) �� and ��, randomly selects a position in the chromosome, and then 

creates two new individuals (the offspring) �� composed of the left-side of ��, and the right-

side of ��, and �� composed of the left-side of �� and the right-side of ��. The mutation 
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operator is the uniform mutation, which randomly changes one of the genes with one of the 

admissible values. The GA terminates after a fixed number of generations or when the fitness 

function cannot be improved further (i.e., GA converged to a local or global 

maximum/minimum).  

4.2.2 Measuring the quality of IR processes  

Another important step in the design of a GA is the definition of the fitness function. 

In IR-GA we need to define a fitness function able to estimate the performances of an IR 

process. Thus, the fitness function evaluation is unsupervised (i.e., it does not require a labeled 

training set or an oracle), making it task-independent.  

When applying IR methods such as LSI or LDA to extract textual information from 

software artifacts, such techniques implicitly cluster the software documents on the basis of 

their textual similarities. Such different clusterings can be obtained by using various numbers 

of latent concepts/topics used for modeling the concept/topic space, independently from the 

used pre-processing techniques. We conjecture that there is a strong relationship between the 

performances obtained by an IR process on software corpora and the quality of produced 

clusters. Indeed, if the quality of the clusters produced by an IR-process is poor, this means 

that the IR process was not able to correctly extract the most important concepts from the 

software corpus and the documents (i.e., the documents which are more similar to each other, 

are assigned to different clusters). Similarly to what has been done in previous work when 

calibrating LDA [134] (see Chapter 3), we use the Silhouette coefficient [95] to measure the 

quality of clusters, since it provides only one scalar value combining cohesion and separation 

of clusters. In particular, the Silhouette coefficient is computed for each document using the 

concept of centroids of clusters. Let � be a cluster; its centroid ��������(�) is equal to the 

mean vector of all documents belonging to �:  
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��������(�) = �
��

|�|
��∈�

 

Starting from the definition of centroids, the Silhouette coefficient is computed for each 

document �� as:  

�(��) =
	�(��) 	− 	�(��)

max	��(��), �(��)�
 

where �(��) is the separation (measured as the maximum distance from �� to the 

centroid of its cluster) and �(��) is the cohesion (represented as the minimum distance from 

�� to the centroids of the clusters not containing ��). The value of the Silhouette coefficient 

ranges between [−1…1].  

A good cluster has a positive Silhouette coefficient because it corresponds to the case 

in which �(��) > �(��), i.e., the maximum distance to other documents in the cluster is greater 

than the minimum distance to other documents in other clusters. We used the cosine of the 

angle between vectors for measuring the distance between documents, since in LSI the 

documents are represented as vectors in the concepts space. In the end, the overall measure of 

the quality of clustering � = {��, . . . , ��}, that is our fitness function, is computed by the mean 

Silhouette coefficient of all the documents.  

4.3 Empirical Evaluation Design 

The goal of our study is to investigate whether IR-GA it is able to instantiate IR 

processes that are able to effectively solve SE tasks, while the quality focus is represented by 

the performances of the IR-based processes in terms of accuracy and completeness. The 

perspective is of researchers interested in developing an automatic approach to assemble IR 

processes for solving specific SE tasks. The context of the study consists of (i) three SE tasks, 

namely traceability links recovery, feature location, and identification of duplicate bug reports, 

and (ii) their corresponding objects (i.e., datasets on which the tasks are experimented). 
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Specifically, the study aims at addressing the following research questions (RQs) that have 

been addressed in the context of the three different SE tasks considered in our study. 

RQ1: How do the processes instantiated by IR-GA compare with those previously used 

in literature for the same tasks? This research question aims at justifying the need for an 

automatic approach that calibrates IR processes for SE tasks. Specifically, we analyzed to what 

extent the process instantiated by IR-GA for solving a specific task is able to provide better 

performances than a process with an ad-hoc setting. Our conjecture is that, with a proper 

setting, the performances could be sensibly improved because in many cases, the IR-based 

techniques have been severely under-utilized in the past.  

RQ2: How do the processes instantiated by IR-GA compare with an “ideal” 

configuration? We empirically identified the configuration that provided the best results as 

compared to a specific oracle. For instance, in the case of traceability recovery, we identified 

the configuration that provided the best performances in terms of correct and incorrect links 

recovered. Clearly, one can build such a configuration only with the availability of a labeled 

data set, by using a combinatorial search among different treatments and by evaluating each 

combination against the oracle in terms of precision and recall. We call such a configuration 

ideal, because it is not possible to build a priori (i.e., without the availability of a labeled 

training set) a configuration providing better performances than that. The “ideal” configuration 

will be identified by means of a combinatorial search on discretized values of the search space 

of the parameters. The performances achieved by the process instantiated by IR-GA are then 

compared with those achieved by the combinatorial search, to investigate how far off is the IR-

GA configuration from the best possible performances that one can achieve. 

RQ3: Does a higher Silhouette coefficient value correlate with better performance for 

the maintenance tasks? Our underlying assumption is that an IR model with a higher Silhouette 

coefficient will return a better result for a maintenance task, and subsequently, an IR model 
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with a low Silhouette coefficient will yield poor results. In order to evaluate the relation 

between the Silhouette coefficient and the maintenance task performance, we evaluated 1,000 

different IR models using random values for the preprocessing steps, IR technique and IR 

settings. The performance of these IR models were evaluated in the context of a maintenance 

task. 

4.3.1 Task 1: Traceability Link Recovery  

For this task, we used IR-GA to recover traceability links between high level artifacts 

(e.g., use cases) and source code classes. The experiment has been conducted on the software 

repositories of three projects, EasyClinic, eTour and iTrust. EasyClinic is a system used to 

manage a doctor’s office, while eTour is an electronic touristic guide. The documentation, 

source code identifiers, and comments for both systems are written in Italian. Both EasyClinic 

and eTour have been developed by final year Master students at the University of Salerno 

(Italy). iTrust is a medical application used as a class project for Software Engineering courses 

Table 4-2 Characteristics of the systems used in the three evaluation tasks: Traceability Link 
Recovery (top), Feature Location (middle) and Detecting Duplicate Bug Reports (bottom) 

Task 1 – Traceability Link Recovery 
System KLOC Source Artifacts (#) Target Artifacts (#) Correct Links 

EasyClinic 20 Use Case (30) Code Class (47) 93 
eTour 45 Use Case (58) Code Class (174) 366 
iTrust 10 Use Case (33) Java Server Page (47) 58 

     
Task 2 – Feature Location 

System KLOC # Files # Methods # Features 
jEdit v4.3 104 503 6,413 150 

JabRef v2.6 74 579 4,607 39 
     

Task 3– Detecting Duplicate Bug Reports 

System Period # Bugs & Traces 
Duplicate 

Pairs 
Traces 
Type 

Method 
Signature 

Eclipse 3.0 June 2004 225 44 Marked No 
Eclipse 3.0 [182] June 2004 220 44 Full Yes 
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at the North Carolina State University8. All artifacts consisting of use cases and Java Server 

Pages are written in English. Table 4-2 (top) summarizes the characteristics of the considered 

software systems: the number and type of source and target artifacts, the source code size in 

Kilo Lines of Code (KLOC), and the number of correct links between the source and target 

artifacts. These correct links are derived from the traceability matrix built and validated by the 

original developers. We consider such a matrix as the oracle to evaluate the accuracy of the 

different traceability recovery processes.  

To answer RQ1, we compared the accuracy of recovering traceability links achieved 

by the IR process assembled by IR-GA with the accuracy achieved by a baseline (or reference) 

in which LSI was applied on the same systems using an “ad-hoc” corpus pre-processing and 

LSI configuration [37, 40]. We also compared the accuracy of recovering traceability links 

using different combinations of pre-processing steps (�ℎ����������	 × ���������	 ×

���������������� × �������� × ��������ℎ���� = 3 × 3 × 3 × 3 × 5 = 405, see 

Table 4-1). In addition, we used considered three IR techniques, namely VSM, LSI and LDA 

with different configurations, while considering four metrics to compute the similarities 

between documents (see Table 4-1). 

Specifically, for LSI we varied the number of concepts from 10 to maximum number 

of topics, which is 77 for EasyClinic, 176 for eTour and 80 for iTrust. For VSM we fixed the 

number of concepts to the maximum number of topics. For LDA we varied the number of 

concepts from 10 to maximum number of topics in increments of 10. In addition, for LDA we 

varied � and � from 0 to 5 with 0.1 increments. 

 We also exercised all possible combinations of preprocessing steps with such values. 

Thus, the total number of trials performed on EasyClinic were 405 × 4 × (77 − 10) =

                                                           
8 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=tracing 
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108,540 for LSI, 405 × 4 × 1 = 1,620 for VSM and 405 × 4 × �
(�����)

��
� × 10 × 10 =

1,134,000, for a total number of 108,540 + 1,620 + 1,134,000 = 1,244,160 trails. 

Similarly, for eTour and iTrust there were 3,024,540 and 1,249,020 trails respectively.  

Using this combinatorial search, we are able to identify the configuration that provides 

the best recovery accuracy (as compared with our oracle) among a large sample of possible 

configurations aiming at estimating the “ideal” configuration of the IR-based traceability 

recovery process. We then compared the performances achieved with the best configuration 

(identified with this combinatorial search) with the performances achieved with the 

configuration identified by IR-GA in order to answer RQ2.  

For both RQ1 and RQ2, the performances of the IR-GA approach, of the baseline 

approach, and of the combinatorial approach are evaluated and compared by using two well-

known metrics in the IR filed, namely precision and recall [10]. The precision values achieved 

for different levels of recall (for each correct link) by the different IR processes are then 

pairwise-compared using the Wilcoxon rank sum test. Since this requires performing three tests 

for each system, we adjusted the p-values using Holm’s correction procedure [83]. Finally, we 

use the average precision and f-measure metrics [10] for comparing the performances of the 

different IR processes. We used the average precision since it provides a single value that is 

proportional to the area under precision-recall curve achieved for each ranked list of candidate 

links, and the f-measure since it encapsulates the harmonic mean between precision and recall. 

This average precision is the mean of the precision over all the correct links. Hence, it combines 

both precision and recall into a single performance scalar value.  

4.3.2 Task 2: Feature Location  

For this task, we used IR-GA to locate bugs and features in a corpus consisting of 

source code methods. The experiment has been conducted on two Java software systems, 
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namely jEdit v4.3 [85], an open-source text editor for programmers, and JabRef v2.6 [84], a 

bibliography reference manager. Table 4-2 (middle) reports the system size (in KLOC), the 

number of source files and methods, and the number of bugs and features to be located. These 

systems have been used in previous studies on feature location [17, 53]. For more details about 

how we generated the datasets for these systems refer to our Appendix A. 

Regarding RQ1, for the same systems we compared the performances obtained by the 

IR process assembled by IR-GA with the performances achieved by LSI in a previously 

published study, where an “ad-hoc” IR technique was used with a default (or standard) 

configuration [105]. The latter is used as a baseline. To address RQ2, we compare the process 

instantiated by IR-GA with an “ideal” process, which was determined by using a 

combinatorial search similar to the one from Task 1 (see Section 4.3.1). The obtained 

similarities are then evaluated using the effectiveness measure (EM) [143]. The EM estimates 

the number of methods a developer needs to analyze before finding the first relevant method. 

More specifically, the EM is computed as the lowest rank of a relevant method that was found 

in the list of methods that were sorted in a descending order based on their textual similarity to 

the description of the feature of interest. A high EM value suggests sub-optimal performance 

for the IR technique and indicates a greater effort from the part of the developer, due to the 

large number of false positive methods to be analyzed before finding a relevant one. The EM 

computed for different IR process on different feature descriptions were then pairwise-

compared using the Wilcoxon rank sum test, and similarly to the evaluation from Task 1, the 

p-values were adjusted using Holm’s correction procedure. 

4.3.3 Task 3: Duplicate Bug Report Identification  

For this task, we used IR-GA to identify duplicate bug reports from a set of existing 

reports. More specifically, we used IR-GA to compute the textual similarity between new bug 
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reports and existing bug reports using their description. The textual corpora is the one 

composed of (i) the title of the bug, and (ii) the double weighted title and the description of the 

bug. We used these corpora in order to compare our results with the results of the experiment 

introduced by Wang et al. [182], which we use as a baseline.  

Based on the study by Wang et al. [182], in addition to the textual similarity, for each 

bug report in the analyzed corpus, we also generated an execution trace by following the steps 

to reproduce the bug. These steps to reproduce were available in the bug description. Using the 

information from the traces we build a bug-to-method matrix, where each bug represents a 

column, and each method represents a row. The matrix has binary values, where an entry ��,� 

represents whether or not the ��� method in the corresponding row appears in the execution 

trace of the ��� bug report. 

The bug-to-method matrix can be used to identify bugs having similar execution traces 

and can complement the textual similarity information (identified with an IR process) in order 

to identify duplicate bug reports. The intuition behind this process is that bugs having similar 

execution traces are more likely to be duplicates. We then apply IR-GA on the bug-to-method 

matrix as well and we compute the similarity between each bug (in terms of execution trace) 

using the Execution-information-based Similarity. The final similarity between each pair of 

bug report is given by averaging the textual similarity and the similarity of the execution traces 

of the two bugs. 

The design of our study is based on the study introduced by Wang et al. [182], but is 

different in several important aspects. First, the IR technique is potentially different: we used 

IR-GA which instantiates LSI, VSM and LDA, while the evaluation of Wang et al. used VSM. 

Second, the datasets used are different, including the type of execution traces and method 

signatures. For example, Wang et al. used 220 bug reports related to Eclipse 3.0 posted on June 
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2004 and 44 duplicate pairs of bug reports. Moreover, their execution traces corresponding to 

the bug reports were full execution traces9 and they also contained method signatures. For our 

evaluation, we used 225 bugs for the same system (i.e., Eclipse 3.0) that were posted in the 

same period (i.e., June 2004) with 44 duplicate pairs, and marked execution traces10 without 

method signatures. For collecting the data, even though we strictly followed the methodology 

described in their approach, we did not have the exact set of bug reports used in their evaluation. 

Moreover, since the process of collecting the traces was manual, it is likely that the content of 

our traces will be different than the content of their traces. In addition, since collecting data is 

manual, collecting two separate traces for the same bug will likely produce different results, 

even if they are collected by the same user. In addition, our JPDA [133] instrumentation did 

not record the method signatures for the executed methods. In summary, we followed the 

design by Wang et al. to generate the dataset that we can use for comparison with their approach 

for Task 3, however our dataset does not fully correspond to the one by Wang et al. (see Table 

4-2 (bottom)). 

For each duplicate pair of bugs, we compute the similarity between the oldest submitted 

bug (among those two) and the remaining 224 bug report in the corpus. We computed the 

accuracy of detecting all the pairs of bugs using the Recall Rate (RR) [159, 182]. To address 

RQ1, we compare the RR of the configuration produced by IR-GA against the RR of a 

“baseline” configuration produced by using the preprocessing steps described by Wang et al., 

and by applying LSI with an “ad-hoc” number of concepts used in traceability link recovery 

(i.e., � = 50% of total number of documents [40]). For RQ2, we compared the RR generated 

                                                           
9 A full execution trace is an execution trace that records all executed methods from the start of the 
application until the application is closed. Full traces usually capture more information than marked traces. 
10 A marked execution trace is a trace where the user has control over the beginning and the end of the trace 
recording process. Usually the user starts the trace before exercising the feature of interest and stops the 
trace immediately after exercising the scenario associated with the feature of interest 
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by the configuration suggested by IR-GA against the RR of the best configuration produced by 

performing a combinatorial search on the preprocessing steps, IR techniques, and their 

parameter values (similar to the combinatorial search for Task 1, traceability link recovery and 

Task 2, feature location). Similarly to the other two tasks, the RR values at different cut points 

(i.e., suggested list sizes) are pairwise-compared using the Wilcoxon rank sum test, adjusting 

the corresponding p-values using Holm’s correction procedure. 

4.3.4 IR-GA Implementation and Settings  

IR-GA has been implemented in R [174] using the GA library. Every time an individual 

needs to be evaluated, we process documents using features available in the lsa package which 

allows applying all the pre-processing steps, while for computing the SVD decomposition we 

used the a fast procedure provided by the slam package for large and sparse matrices. We used 

the topicmodels package for LDA, and the GA package for the genetic algorithm.  

As for the GA settings, we use a crossover probability of 0.8, a uniform mutation with 

probability of 1/�, where � is the chromosome size. We set the population size equals to 50 

individuals with elitism of two individuals. As stop condition for GA, we terminate the 

evolution if the best fitness function value does not improve for 10 consecutive generations or 

when reaching the maximum number of generations equals to 100 (which was never reached 

in our experiments).  

We want to emphasize that we choose these parameter values, as these settings are 

commonly used in the genetic algorithm community. We acknowledge the fact that there is no 

“silver bullet” configuration for a search algorithm that would work well on all types of 

optimization problems, as stated by the no free lunch theorem [185]. In other words, the same 

set of parameters have the potential to provide different results (e.g., optimal vs. sub-optimal) 

for different search spaces.  
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When developing IR-GA our focus was to create a technique that identifies a good IR 

configuration for a dataset from a software maintenance task. Moreover, IR-GA was designed 

to be general enough to be applied on a wide range of maintenance tasks that have their 

particular characteristics, which in turn will generate a specific search space for the genetic 

algorithm. Thus, our IR-GA approach focuses on generality (i.e., it could be applied on a 

various number of maintenance tasks) rather than specificity (i.e., it was not designed to be 

(a) 

(b) 

(c) 

Figure 4-2 Mean of average precision (aggregated over thirty runs) that was obtained by 
running IR-GA on the EasyClinic, eTour and iTrust traceability link datasets while 

considering different values for the genetic algorithm parameters, namely: (a) crossover 
probability, (b) mutation probability and (c) population size. 
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applied on a particular maintenance task, and it was not optimized for a specific maintenance 

task), and fine tuning the parameters of the genetic algorithm to obtain better results for one 

specific set of problems is beyond the scope of this dissertation. 

Our IR-GA approach relies on a search heuristic provided by a genetic algorithm to 

identify a set of parameters (i.e., the configuration parameters for an IR solution) over a search 

space (i.e., the search space denoted by the available IR configurations that can be instantiated 

to create an IR based solution). Since genetic algorithms are typically instantiated with some 

specific parameter values, we investigated the impact of a subset of these parameters on the 

results produced by IR-GA. More specifically, we investigate the influence on the results for 

three important genetic algorithms parameters, namely the crossover probability, the mutation 

probability and the population size. Figure 4-2 illustrates the mean of average precision (that 

was aggregated over thirty runs) that was obtained by running IR-GA on the EasyClinic, eTour 

and iTrust traceability link datasets (see Table 4-2) while considering different values for the 

genetic algorithm parameters, namely: crossover probability (Figure 4-2 (a)), mutation 

probability (Figure 4-2 (b)) and population size (Figure 4-2 (c)). 

The results indicate a variability in the results produced using different genetic 

algorithms values. For example, in Figure 4-2 (a), which analyzes the variability of the 

mutation probability, for the EasyClinic system, we observe a difference between the 

maximum and minimum value of the mean of average precision of about 30% (i.e., at 40% 

crossover probability the mean average precision is 28%, whereas at 10% crossover probability 

the mean average precision is at 58%). This difference of 30% is the most pronounced for the 

EasyClinic dataset, and for eTour and iTrust the difference between the maximum and 

minimum mean average precision is about 17% and 18%, respectively. When considering the 

mutation probability (see Figure 4-2 (b)), the differences between the maximum and minimum 

values of the mean average precision is approximately 12%, 13% and 15% for EasyClinic, 
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eTour and iTrust respectively. Finally, when varying the population size from 5 to 50 in 

increments of 5 for the genetic algorithm parameter, we obtain a difference for the mean of 

average precision values of approximately 26% for EasyClinic, 14% for eTour and 15% for 

iTrust. 

It is clear from Figure 4-2 that the stochastic nature of the genetic algorithm, combined 

with variations on the genetic algorithm parameters will produce results that will vary. While 

this is an expected outcome, in order to address this intrinsic problem of genetic algorithms, 

for each task and for each dataset we perform 30 independent runs, storing the best 

configuration and the relative best fitness function value (i.e., the Silhouette coefficient) for 

each run. Among the obtained configurations, we consider the one that achieves the median 

fitness function across the 30 independent runs for the best individual in the last generation. 

Table 4-1 summarizes the possible values for each gene of the chromosome used in our 

experimentation. Clearly, the number of possible values can easily be extended (e.g. different 

stemming, different weighting schemas, etc.). 

4.4 Empirical Evaluation Results 

This section describes the results of our experiments conducted in order to answer the 

research questions stated in Section 4.3. The results are reported in different subsections for 

each SE task.  

4.4.1 Task 1: Traceability Link Recovery  

Figure 4-3 reports the precision/recall graphs obtained using (i) the combinatorial IR 

configuration; (ii) the IR configuration identified by IR-GA; and (iii) an “ad-hoc” configuration 

(i.e., reference) used in a previous study, where LSI was used on the same dataset and for the 

same traceability recovery task. For all three systems, namely EasyClinic, eTour and iTrust, 

IR-GA was able to obtain a precision and recall rate close to the one obtained by the 
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combinatorial configuration. It is important to emphasize that the configuration identified by 

IR-GA used no information about the oracle for computing the result, whereas the 

combinatorial search used 1,244,160 different configurations for EasyClinic, 3,024,540 for 

eTour and 1,249,020 for iTrust to identify the best configuration, and its performance was 

evaluated based on the oracle. In other words, among those >1 million configurations, the one 

that produced the best results based on the oracle was chosen for comparison.  

Based on Figure 4-3, when comparing the performance achieved by IR-GA with those 

of the reference configuration, we can observe a significant improvement in all cases. These 

results are also confirmed by the average precision and f-measure obtained by the three 

different treatments (see Table 4-3). Indeed, the average precision and f-measure obtained by 

IR-GA is very close to the “ideal” (combinatorial) one. For example, for EasyClinic the average 

(a) EasyClinic (b) eTour 

(c) iTrust 

 

Figure 4-3 Traceability recovery: precision/recall graphs for (a) EasyClinic, (b) eTour and (c) 
iTrust
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precision obtained with IR-GA is 66.92% (f-measure of 46.37%) , which is slightly lower than 

the average precision obtained by the combinatorial search, which is 67.47% (f-measure 

46.48%). The same can be observed for eTour and iTrust. Moreover, the difference in terms of 

average precision and f-measure with respect to the combinatorial configuration is lower than 

1%. However, the improvement obtained with respect to the reference configuration is of about 

20% in terms of average precision and between 9%-13% in terms of f-measure. For example, 

for EasyClinic the average precision obtained by IR-GA is 66.92% (f-measure of 46.37%), 

whereas the average precision obtained by the reference configuration (i.e., the one that used 

an “ad-hoc” configuration of LSI) is 46.78% (f-measure of 37.95%). The findings presented in 

Figure 4-3 and Table 4-3 are also confirmed by our statistical analysis test (see Table 4-4), 

which illustrate that for all three systems, there is no statistical difference between the results 

produced by IR-GA and the combinatorial search, but there is a statistical difference between 

the results produced by IR-GA and the reference (baseline). In other words, IR-GA 

outperforms the baseline, and the difference is statistically significant.  

4.4.2 Task 2: Feature location  

Figure 4-4 reports the boxplots of the effectiveness measure values for feature location 

that were computed using (i) the combinatorial IR configuration (middle box-plot); (ii) the IR 

Table 4-3 Comparison of the average precision values and f-measures (in parenthesis) for 
the traceability link recovery approaches: Combinatorial, IR-GA and Reference 

System Combinatorial IR-GA Reference [37, 40] 
EasyClinic 67.47% (46.48%) 66.92% (46.37%) 46.78% (37.95%) 
eTour 50.48% (32.58%) 49.02% (31.27%) 30.93% (19.53%) 
iTrust 68.84% (42.70) 68.13% (42.65%) 45.47% (29.25%) 

 

 

Table 4-4 Results of the Wilcoxon test for the Traceability Link Recovery task 

Comparison EasyClinic eTour iTrust 
IR-GA > Combinatorial 0.99 1 0.99 
IR-GA > Reference [37, 40] <0.001 <0.001 <0.001 
Combinatorial > Reference [37, 40] <0.001 <0.001 <0.001 
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configuration identified and assembled by IR-GA (left box-plot); and (iii) the “ad-hoc” IR 

configuration that was used in a previous study [105], which also served as a reference point 

(right box-plot). For both systems, namely jEdit and JabRef, our IR-GA technique was able to 

produce an effectiveness measure that was close to the one identified in the combinatorial 

search. Moreover, as illustrated in Figure 4-4, when comparing the results achieved by IR-GA 

with the results produced by the reference configuration, we observe an improvement for both 

systems for all the quartiles. More specifically, for jEdit (see Figure 4-4 (a)) the median and 

mean values of IR-GA for the effectiveness measure are 36 and 196, whereas the corresponding 

median and mean values achieved by the reference configuration are 69 and 244, respectively. 

A similar trend is observed for the first and third quartiles where IR-GA obtains an 

effectiveness measure of 7 (vs. 10.25 for the reference) and 139 (vs. 211 for the reference) 

respectively.  

Similarly, for JabRef (see Figure 4-4 (b)) the median and mean values of IR-GA for 

the effectiveness measure are 35 and 80, whereas the corresponding median and mean values 

(a) jEdit (b) JabRef 

Figure 4-4 Box plots of the effectiveness measure for feature location 

on (a) jEdit and (b) JabRef 
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achieved by the reference configuration are 58 and 130, respectively. In terms of the first and 

third quartiles, IR-GA obtains an effectiveness measure of 6 (vs. 8.5 for the reference) and 122 

(vs. 134 for the reference) respectively. 

For both jEdit and JabRef, IR-GA produced results that are very close to the ones 

obtained using a combinatorial search that iterated through more than one million 

configurations of preprocessing techniques, IR techniques (i.e., LSI, VSM and LDA) and their 

corresponding parameters. Among these configurations, the one that produced the best results 

in terms of the oracle was used as comparison with IR-GA and the reference. From Figure 4-4 

we observe that distribution of the effectiveness measure provided by IR-GA is comparable to 

the distribution obtained by the combinatorial search. Moreover, for jEdit, the first quartile, 

median, third quartile and mean of the effectiveness measure obtained using the combinatorial 

search are 4.25 (vs. 7 for IR-GA), 27 (vs. 36.5 for IR-GA), 115 (vs. 139 for IR-GA) and 178 

(vs. 195 for IR-GA) respectively. Similarly for JabRef, the combinatorial search and IR-GA 

produced very similar results. More specifically, the first quartile, median, third quartile and 

mean of the effectiveness measure obtained using the combinatorial search are 7 (vs. 6 for IR-

GA), 29 (vs. 35 for IR-GA), 94.5 (vs. 122 for IR-GA) and 78 (vs. 80 for IR-GA) respectively. 

In fact, for the first quartile IR-GA had a better effectiveness measure than the combinatorial 

search (six as opposed to seven). 

Table 4-5 reports the results of the Wilcoxon test (i.e., the adjusted p-values) for all 

combinations of the evaluated techniques. For jEdit IR-GA and the combinatorial search 

achieve statistically significantly better results than the reference, while at the same time we 

Table 4-5 Results of the Wilcoxon test for the Feature Location task 

Comparison jEdit JabRef 
IR-GA < Combinatorial 1 0.83 
IR-GA < Reference [105] <0.001 0.37 
Combinatorial < Reference [105] <0.001 0.37 
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observe that there is no significant difference between IR-GA and the combinatorial search. 

For JabRef, even if the boxplots from Figure 4-4 (b) reveal a better effectiveness measure 

distribution for both IR-GA and the combinatorial search as compared to the reference (which 

are backed up by values of the mean, median, and the quartiles), the results of the Wilcoxon 

tests indicate that these differences are not statistically significant. This suggests that the “ad-

hoc” configuration (that was used a reference [105]) applied on the JabRef system is providing 

results very close to the ones obtained from the combinatorial search. However, the same 

reference approach did not provide the same level of accuracy on jEdit. In other words, the ad-

hoc configuration was not able to reach the same level of accuracy achieved by both the 

combinatorial search and IR-GA configurations. 

4.4.3 Task 3: Duplicate Bug Report Identification  

For the identification of duplicate bug reports, we used two different corpora, referred 

as Short and 2ShortLong (as suggested by [182]). In the former case, each bug is characterized 

by the bug title only (also known as short description), while in the latter we used both the title 

and the bug description (the title is weighted twice as much as the bug description). Note that 

in both cases we combined the textual information with dynamic information extracted from 

execution traces.  

 
(a) Short Corpus 

 
(b) 2ShortLong Corpus 

Figure 4-5 Recall Rate graphs for Eclipse, with suggested list size raging between 1 and 25 
for the: (a) Short Corpus and (b) 2ShortLong Corpus 
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Figure 4-5 reports the recall rate for the results produced by using three different IR 

configurations that were identified using (i) IR-GA, (ii) a combinatorial search using various 

preprocessing steps, IR techniques and IR parameters, and (iii) a reference configuration which 

we used as a baseline. The reference configuration was instantiated using LSI where (i) � (i.e., 

the dimensionality reduction factor for LSI) was set to half the number of documents [40]; and 

(ii) by applying a standard corpus preprocessing that is typical to bug duplicates [182] and 

other SE tasks [105]. 

For both the Short and 2ShortLong corpora, IR-GA achieved virtually the same recall 

rate values as the combinatorial search. Moreover, IR-GA produced better results in terms of 

recall rate as compared to the reference (see Figure 4-5). In particular, when the corpus consists 

of bug report titles only (i.e., the Short corpus), the recall rate for IR-GA is significantly higher 

than the recall rate of the reference. For a cut point equal to 1, IR-GA has 59% recall rate (same 

as the combinatorial search) which is 18% greater than the reference recall rate of 41%. For 

cut points ranging from 2 to 5, the IR-GA recall rate is approximately 9-14% higher than the 

reference recall rate, whereas for cut points ranging from 6 to 24, IR-GA’s recall rate is 

approximately 2-7% higher than the reference recall rate. The only case where both IR-GA’s 

and reference’s recall rates are the same is for cut point 25 (i.e., the last one) as observed from 

the graph in Figure 4-5 (a). 

When the textual corpus is represented by the bug reports titles and their descriptions 

(i.e., the 2ShortLong corpus), IR-GA is slightly better than the reference configuration. More 

specifically, the IR-GA recall rate is either equal to the reference rate, slightly higher by 

Table 4-6 Results of the Wilcoxon test for the Detection of Duplicate Bug Reports task 

Comparison Short Corpus 2ShortLong Corpus 
IR-GA < Combinatorial 1 0.68 
IR-GA < Reference [182] <0.001 0.20 
Combinatorial < Reference [182] <0.001 0.64 
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approximately 2-5%. The gap between IR-GA and the reference is much higher for the Short 

corpus as opposed to the 2ShortLong corpus, and one explanation for this finding could be the 

fact that when additional information is added to the corpus (i.e., a long description), the 

benefits of properly calibrating the an IR technique (i.e., using IR-GA) on a corpus with limited 

information are mitigated by the richness of additional textual information that is introduced, 

which could be sufficient even on an IR technique using ad-hoc configuration (i.e., as it was in 

the case of the reference). A similar phenomenon was observed in Chapter 2.3, when the 

benefits of utilizing a better splitting techniques were mitigated by the introduction of an 

additional source of information, namely dynamic information from execution traces. 

It is worth emphasizing that the results produced when applying a properly calibrated 

IR process (such as the one assembled by IR-GA) on the Short corpus, are approximately the 

same results as the ones obtained using the 2ShortLong corpus on an IR technique without 

calibration. Moreover, IR-GA produced approximately the same results on both the Short and 

2ShortLong corpora. 

Table 4-6 reports the adjusted p-values of the Wilcoxon test for all combinations of the 

techniques. The results indicate that for the Short corpus IR-GA statistically outperforms the 

reference. However, for the 2ShortLong corpus the small improvement introduced by IR-GA 

over the reference configuration (see Figure 4-5 (b)) is not statistically significant. When 

comparing IR-GA with the combinatorial search, we observe no significant difference for both 

Short and 2ShortLong corpora. 

4.4.4 Detailed description of the experimented IR Processes  

In Sections 4.4.1, 4.4.2 and 4.4.3 we presented the results of our evaluation for the 

maintenance tasks of traceability link recovery, feature location and identification of duplicate 

bug reports, respectively. More specifically, we detailed the results of comparing the 
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performances achieved by IR-GA, with the ones generated by a combinatorial search (over 

different preprocessing steps, IR techniques and parameters), and a baseline (or reference). In 

this section, we discuss the specific IR-configurations (i.e., the preprocessing steps, IR 

technique and IR-technique parameter values) that were identified by IR-GA, the 

combinatorial search and the reference. The IR-configurations of these approaches are 

presented in Table 4-7, where the rows are grouped by task (i.e., traceability link recovery, 

feature location and identification of duplicate bug reports), dataset (or systems) and approach 

(i.e., IR-GA, combinatorial, and reference), and the columns represent the steps of the IR-

process, or the gene type as discussed in Section 4.2.1 and illustrated in Table 4-1. 

Table 4-7 Comparison of different IR processes provided by IR-GA, combinatorial and 
reference. Table abbreviations: Rem. = Remove; CC = Camel Case; CC & KC = Camel Case 

& Keep-Compound Identifier; SL = remove stop words using standard list; ≤ � chars = 
remove words with less than (or equal to) � characters; Cos. = Cosine 

Task 
System 

Method 
LSI 

k 
Special 
Chars. 

Digits 
Term 

Splitting 
Remove Stop 

Words 
Stemmer 

Weight 
Schema 

Doc. 
Sim. 

Task 1: Traceability Link Recovery 

EasyClinic 
Combinatorial 

IR-GA 
Reference 

60 
53 
37 

Rem. 
Rem. 
Rem. 

Include 
Remove 
Remove 

CC 
CC 
CC 

SL 
SL & ≤ 2 chars. 

SL 

Snowball 
Snowball 
Snowball 

tf-idf 
tf-idf 
tf-idf 

Cos. 
Cos. 
Cos. 

eTour 
Combinatorial 

IR-GA 
Reference 

170 
149 
87 

Rem. 
Rem. 
Rem. 

Include 
Remove 
Remove 

CC 
CC 
CC 

SL 
SL 
SL 

Snowball 
Porter 

Snowball 

tf-entropy 
tf-idf 
tf-idf 

Cos. 
Cos. 
Cos. 

iTrust 
Combinatorial 

IR-GA 
Reference 

75 
79 
40 

Rem. 
Rem. 
Rem. 

Include 
Include 
Remove 

CC & KC 
CC 
CC 

SL & ≤ 2 chars. 
SL & ≤ 3 chars. 

SL 

Snowball 
Porter 

Snowball 

tf-idf 
log 

tf-idf 

Cos. 
Cos. 
Cos. 

 

Task 2: Feature Location 

jEdit 
Combinatorial 

IR-GA 
Reference 

1,150 
1,028 
300 

Rem. 
Rem. 
Rem. 

Remove 
Remove 
Remove 

CC & KC 
CC & KC 

CC 

SL & ≤ 3 chars. 
SL & ≤ 3 chars. 

SL 

Snowball 
Snowball 

Porter 

tf-idf 
tf-idf 
tf-idf 

Cos. 
Cos. 
Cos. 

JabRef 
Combinatorial 

IR-GA 
Reference 

416 
402 
300 

Rem. 
Rem. 
Rem. 

Remove 
Remove 
Remove 

CC 
CC 
CC 

SL & ≤ 3 chars. 
SL & ≤ 2 chars. 

SL 

Snowball 
Snowball 

Porter 

tf-idf 
tf-idf 
tf-idf 

Cos. 
Cos. 
Cos. 

 

Task 3: Detecting Duplicate Bug Reports 

Eclipse  
Short 

Combinatorial 
IR-GA 

Reference 

169 
174 
112 

Rem. 
Rem. 
Rem. 

Include 
Include 
Remove 

CC 
CC & KC 

CC 

SL 
SL 
SL 

Porter 
Snowball 

Porter 

tf-idf 
tf-idf 
tf-idf 

Cos. 
Cos. 
Cos. 

Eclipse  
2ShortLong 

Combinatorial 
IR-GA 

Reference 

180 
182 
112 

Rem. 
Rem. 
Rem. 

Include 
Include 
Remove 

CC 
CC 
CC 

SL 
SL & ≤ 3 chars. 

SL 

Porter 
Snowball 

Porter 

tf-idf 
tf-idf 
tf-idf 

Cos. 
Cos. 
Cos. 
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From the third column of Table 4-7 we notice that for all tasks, datasets and approaches 

LSI was the IR-technique that was chosen by IR-GA and the combinatorial search, which tested 

LSI, VSM and LDA. For most baselines, LSI was the suggested technique and was configured 

with the dimensionality reduction factor � of either 300 (for feature location tasks), or half the 

number of documents from the corpus (for traceability link recovery and identification of 

duplicate bug reports). Since LSI was identified to be the technique that produced the best 

results, the other IR techniques were not included in the Table 4-7. It is important to mention 

that there were other IR-configurations that used VSM and produced results close to the ones 

presented in Sections 4.4.1, 4.4.2 and 4.4.3, however, in the end LSI-based configurations 

outperformed them. On the other hand, IR-configurations that used LDA generated results that 

were not as close to the ones produced by LSI-based configurations. We identify two 

implications based on these observations. First, it is possible that there are other maintenance 

techniques or other datasets where LDA configurations will outperform LSI configurations, 

however, we did not observe this phenomenon in our experiments. Second, from a practical 

point of view, as LDA computations are in general more CPU and time consuming, the IR-GA 

technique could be configured to search through all the viable LSI and VSM configurations 

first, and then include searching through LDA configurations if necessary. This is a decision 

that is left to the researcher or practitioner. 

When comparing LSI’s dimensionality reduction factor � for all three approaches we 

observe a clear pattern. For all tasks and dataset, the reference configuration uses a much lower 

� value than the combinatorial or IR-GA. For example, for jEdit, the system with the highest 

number of documents in our experiments, the reference used � = 300, which is much lower 

than � = 1,150 (for combinatorial) or � = 1,028 (for IR-GA). Since the reference k is lower 

than the combinatorial and IR-GA � value, and since in most cases IR-GA and the 
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combinatorial approach produced better results than the reference configuration, our findings 

suggest that a higher value for � will produce better results. In terms of comparing the � values 

for the combinatorial and IR-GA approaches, we observe that these values are very close to 

each other. This would indicate that IR-GA allows us to instantiate an IR process that is close 

to the one identified by the combinatorial one. 

When comparing the preprocessing steps for character pruning (see Table 4-7 columns 

four and five), we observe that in all cases the special characters were removed, and in some 

cases, the combinatorial and IR-GA approaches chose to include the digits in the corpus. The 

reference always removed the digits because the assumption was that their contribution to 

providing meaning to the IR model that analyzes a corpus from source code was limited. This 

configuration step of removing digits was adapted to corpora that did not include source code. 

The assumption of removing digits from source code and the implication of always removing 

the digits from corpora that is not composed only of source code is illustrated in our findings. 

For the feature location datasets, where the corpus is composed of source code, all approaches 

removed the digits, which seems to enforce the assumption that digits do not carry enough 

information to warrant their inclusion. However, for the traceability link recovery and 

identification of duplicate bug report tasks, which include in their corpora use cases and bug 

descriptions respectively, the combinatorial and IR-GA approaches often choose the option to 

include the digits, as they might carry some meaning, which in turn would help improve the 

results over the baseline (which always removed the digits). 

For the choice of splitting identifiers, in the majority of cases (i.e., 17 out of 21), the 

standard Camel Case splitting algorithm was applied (see Table 4-7 column six). For jEdit, 

both IR-GA and the combinatorial search chose the option to split identifiers using Camel Case, 

as well as keeping the original (compound) identifier, which has the potential to carry an 
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important meaning especially in the cases of large systems such as jEdit. For example if 

identifier �� is always split into � and �, some if its meaning is lost in a large system where 

there is a potential to be numerous �’s and �’s. However if the original compound identifier 

�� is kept, it can be easily matched, because odds are that �� appears less often (thus has more 

discriminative power) than � and �. 

If we compare the preprocessing steps of removing stop words and stemming (see 

Table 4-7 columns seven and eight) we observe that in all cases a standard list of stop words 

was used (i.e., no approach was configured by keeping programming language keywords or 

identifiers frequently used in English, such as a, the, in, etc.). In addition, in some cases IR-

GA and the combinatorial search choose to also remove identifiers with less than two or three 

characters, in order to reduce the noise from the IR model. In terms of stemmers, every 

approach used either the Snowball or Porter stemmer (i.e., no approach was configured with 

no stemming at all).  

For all approaches the chosen metric to compute the document to document similarity 

was the cosine similarity (see Table 4-7 last column). Moreover, for the majority of cases (i.e., 

19 out of 21) the tf-idf measure was chosen as the preferred weighting schema (see Table 4-7 

column nine). However, the combinatorial approach chose tf-entropy as the weighting schema 

for eTour, and IR-GA choose the log weighting schema for iTrust. Previous studies [33] 

proposed sophisticated techniques to search for adequate indexing schemas, and our results 

reflect that by showing that in most cases tf-idf is the preferred one, but there are also cases 

where other weighting schemas are most suited. 

Although we can identify some patterns when analyzing each preprocessing step 

individually, we cannot determine a clear pattern when we take all the preprocessing steps and 

the configuration of the IR techniques as a whole, but we can observe a clear variation in the 
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choices. The fact that not all the tasks and/or datasets require the same preprocessing steps 

confirm the findings of Falessi et al. [61] that there is no unique IR configuration that can be 

efficiently applied to all the tasks and all the datasets. Thus, IR-GA plays a key role into 

considering all the potential configurations of an IR-technique, and all their potential 

interactions as a whole (i.e., as opposed to considering them individually) and recommends the 

configuration that is most suited for a dataset, as each dataset is unique. We observed that 

besides recommending the preprocessing steps, IR-GA was able to recommend the 

dimensionality reduction factor �, and the overall IR configuration was able to produce better 

results than the baseline. Moreover, our comparison between IR-GA and the combinatorial 

search indicate that IR-GA was able to find a suitable configuration (using the Silhouette 

coefficient of the underlying model) that is close to the configuration identified by the 

combinatorial search, which used the oracle to identify the best configuration. 

4.4.5 Relation between the Silhouette coefficient and performance of maintenance 
tasks 

Figure 4-6 presents scatter plots that illustrate the relation between the Silhouette 

coefficient and the average precision for the three traceability link recovery systems, namely 

EasyClinic, eTour and iTrust. Each point in the graph corresponds to one IR configuration that 

was generated by randomly selecting its preprocessing options, IR technique and IR settings. 

The search space for choosing this random configuration is the same search space of parameters 

that IR-GA uses to find the configuration with the highest Silhouette coefficient. In each graph, 

the x-axis corresponds to the value of the Silhouette coefficient (which is between -1 and 1) 

and the y-axis corresponds to the value of the average precision generated by the IR model. 

For each graph, there are 1,000 points corresponding to random IR instances. 

For each system in Figure 4-6, we can observe around three “clusters” forming 

approximately in the lower-left (i.e., low Silhouette and low average precision), lower-center 
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(i.e., medium Silhouette and low-medium average precision) and upper-right (i.e., high 

Silhouette and high average precision) of the graph. 

The first cluster is in the lower-left corner of the graph and captures instances of IR 

models where the Silhouette coefficient is low (e.g., less than -0.6 for EasyClinic and less than 

-0.4 for eTour and iTrust) and the average precision is low as well (e.g., less than 15% for all 

three systems). These finding aligns with one of our initial hypotheses that a lower Silhouette 

coefficient leads to lower performance in results. 

The second cluster is located approximately in the lower-center portion of the graph 

and corresponds to IR models where the Silhouette coefficient has a medium value (e.g., 

between -0.4 and 0.2 for EasyClinic, between -0.1 and 0.2 for eTour and between -0.2 and 0.1 

 
 (a) EasyClinic

 
(b) eTour 

 
(c) iTrust

 

Figure 4-6 Scatter plots that illustrate the relation between the Silhouette coefficient and the 
average precision for (a) EasyClinic, (b) eTour and (c) iTrust
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for iTrust) and the average precision is in general low (e.g., less than 20% for EasyClinic and 

less than 15% for eTour). However, for all three systems we also observe instances where for 

a small range of Silhouette coefficient values we have low to medium average precision values. 

For example, for EasyClinic we have an average precision of about 5%-50% for a Silhouette 

coefficient ranging between 0 and 0.2. In addition, for eTour the average precision ranges 

between 5%-30% for Silhouette values between 0.1 and 0.2. Finally, for iTrust we observe a 

range of average precision values between 0%-30% that correspond to a Silhouette coefficient 

value of approximately 0 value. For all three systems, the high variation in the average 

precision for a small range of Silhouette values could be attributed to the property of the 

Silhouette coefficient, which characterizes the cohesiveness and separation of clusters. A 

medium Silhouette value (e.g., around 0) will correspond to clusters that are not well defined, 

meaning that they are not very cohesive and not well separated from one another. This could 

explain the high variability in average precision for IR models with Silhouette coefficient close 

to 0 (i.e., the medium value). 

The third cluster is located in the upper-right corner and concentrates values where the 

silhouette coefficient is high (e.g., more than 0.3 for EasyClinic, more than 0.4 for eTour and 

more than 0.2 for iTrust) and the average precision is also consistently high (e.g., more than 

50% for EasyClinic, more than 30% for eTour and iTrust). We can observe that although a 

high Silhouette value corresponds to a high average precision, there is also a variability in the 

results and there is no clear linear relationship between the Silhouette and the average 

precision. In other words, the IR model with the highest, second highest, third highest, etc. 

Silhouette coefficient does not correspond to the highest, second highest, third highest, etc. 

average precision. However, considering all the results, a high Silhouette coefficient (see 

upper-right corner) corresponds to a high average precision as compared to a medium or low 

Silhouette coefficient. We acknowledge that the lack of a clear linear relation between the 
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Silhouette coefficient and the performance in a maintenance task is a limitation of the presented 

approach. 

4.5 Threats to Validity 

Threats to construct validity concern the relationship between theory and observation. 

For the three tasks investigated, we evaluated the performances of IR-GA and of alternative 

approaches using well-established metrics, namely precision, recall, f-measure, effectiveness 

measure and Recall Rate, and oracles already used and validated in previous studies [17, 53, 

65, 66, 182]. Finally, we used as baseline of comparison performances achieved using IR 

processes and calibrations used in previous papers. As for detecting duplicate bug reports, it 

was not possible to fully replicate the approach of Wang et al. [182] due to the unavailability 

of all the required information. However, Section 4.3.3 explains the details and the rationale 

for using a baseline for comparison for such a task.  

Threats to internal validity are related to co-factors that could have influenced our 

results. As discussed in Section 4.3.4, different values of the GA parameter were shown to 

produce different results. We limited the influence of GA randomness by performing 30 GA 

runs, and considering the configuration achieving the median performance.  

Threats to conclusion validity concern the relationship between treatment and outcome. 

To support our claims, we used non-parametric statistical tests (i.e., Wilcoxon rank sum test). 

In terms of the relation between the Silhouette coefficient and the performance in a 

maintenance task (see Section 4.4.5), although our experiments indicate high performance for 

high values of the Silhouette (and vice-versa), this relation is not clearly linear.  

Threats to external validity concern the generalization of our results. First, we consider 

only a subset of the possible treatments for the various phases such as term extraction, stop 

words removal, stemming, and term weighting. Although the chosen treatments are well 
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representative of most of the ones used in literature, it is worthwhile to investigate further 

possibilities. Second, we applied IR-GA to calibrate IR processes for artifacts to be used in 

three tasks that we believe are crucial in many SE activities, however it would be worthwhile 

to experiment it on further tasks.  

4.6 Related Work on Configuring IR Techniques for SE Tasks 

This section describes related work concerning the importance of choosing the right 

treatments for different phases of an IR process when applied to SE tasks. It also reports 

approaches aimed at suggesting calibrations for specific IR techniques and IR phases.  

Falessi et al. [61] empirically evaluated the performance of IR-based duplicate 

requirement identification on a set of over 983 requirement pairs coming from industrial 

projects. To this aim, they instantiated 242 IR processes, using various treatments for 

stemming, term weighting, IR algebraic method, and similarity measure. Their study shows 

how the performances of the duplicate requirement identification significantly vary for 

different processes. The work by Falessi et al. motivates our research, as it empirically shows 

that instantiating an appropriate IR process is crucial to achieving good performances. 

However, while they do not propose an approach to choose the most suitable process, our IR-

GA approach searches for a (near) optimal IR process using GAs, and above all, it is able to 

do it without the availability of an oracle.  

Previously we proposed LDA-GA [134] (see Chapter 3), a GA approach to 

automatically calibrate the parameters of LDA in the context of three software engineering 

tasks, namely traceability link recovery, feature location and software artifact labeling. In 

contrast with LDA-GA, in the approach introduced in this chapter we leveraged GAs to 

instantiate the entire IR process, rather than just tuning the parameters of a specific IR algebraic 

method. More specifically, our results are in concordance with the findings of Falessi et al. 
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[61], which illustrate that performances of IR processes depend on the choices made for the 

various phases of IR processing, rather than on the appropriate choice and calibration of the IR 

algebraic model.  

Lohar et al. [107] introduced a traceability link recovery approach that is configured at 

runtime for a particular dataset. Their approach utilizes machine learning to identify the best 

configuration for traceability link recovery (among a set of traceability link recovery 

techniques and their specific configurations) using a training set of validated traceability links. 

The main difference between our proposed approaches, namely LDA-GA and IR-GA, and 

Lohar et al.’s [107] approach is that our techniques are unsupervised and they do not require 

a-priori knowledge of the oracle. In other words, our techniques will generate a configuration 

based on the input dataset set alone, whereas their technique requires knowledge of part of the 

oracle to be used as input for training their approach. 

The literature also reports approaches for calibrating specific stages of an IR process, 

or parameters of specific algebraic IR techniques. Cordy and Grant have proposed heuristics 

for determining the “optimal” number of LDA topics for a source code corpus of methods, by 

taking into account the location of these methods in files or folders, as well as the conceptual 

similarity between methods [70]. Cummins [33] proposed to use genetic programming (GP) to 

automatically build term weighting formulae, using different combinations of tf and idf that 

can be altered using functions such as logarithm. The similarity between our approach and 

Cummins’ approach is the use of search-based optimization techniques to calibrate IR 

processes. Their approach was evaluated on a set of 35,000 textual documents, for a document 

search task. In contrast to our technique, their approach (i) focuses on term weighting only 

(whereas we focus on the whole process), and (ii) their approach is supervised, as the fitness 

function evaluation requires the availability of a training set (e.g., labeled traceability links). 

Griffiths and Steyvers [74] propose a method for choosing the best number of topics for LDA 
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among a set of predefined topics. Their approach consists of (i) choosing a set of topics, (ii) 

computing a posterior distribution over the assignments of words to topics, (iii) computing the 

harmonic mean of a set of values from the posterior distribution to estimate the likelihood of a 

word belonging to a topic, and (iv) choosing the topic with the maximum likelihood.  

In the context of clone detection, Wang et al. [181] introduced EvaClone (and 

CloudEvaClone) an approach that uses a genetic algorithm to identify a suitable configuration 

for a clone detection tool, which produces better results that the default settings of clone tools. 

Similarly to our work, their approach also aims at addressing the confounding configuration 

choice problem (i.e., the problem of not knowing apriori which values to choose for the 

parameters of clone detection tools). 

With respect to the previously described approach, we claim this is the first approach 

to propose an automatic calibration of an entire IR process. Also, with respect to many other 

approaches, IR-GA is task independent and does not require any oracle or training set to 

perform the calibration. In addition, the outcome of the calibration only depends on the specific 

artifacts provided as inputs, while it does not depend on the specific task.  

4.7 Discussion 

The application of IR techniques to software engineering problems requires a careful 

construction of a process consisting of various phases, i.e., term extractions, stop word 

removal, stemming, term weighting, and application of an algebraic IR method. Each of these 

phases can be implemented in various ways, and requires careful choice and settings, because 

the performances significantly depend on such choices [61].  

This chapter proposes the use of Genetic Algorithms to assemble a (near) optimal IR 

process to be applied to given software artifacts, e.g., when processing such artifacts to solve 

problems such as traceability link recovery or feature location. Noticeably, the proposed 
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approach is unsupervised and task independent, as it evaluates the extent to which the artifacts 

can be clustered after being processed.  

We applied the proposed approach IR-GA to three software engineering tasks, namely 

traceability link recovery, feature location, and detection of duplicate bug reports. Results of 

our empirical evaluation indicate that for traceability recovery and feature location, the IR 

processes assembled by IR-GA significantly outperform those assembled according to what 

previously done in literature. For duplicate bug report detection, the obtained results do not 

always significantly improve the performances of the baseline approach, as such a baseline is 

already close to the “ideal” optimum, which was identified by a combinatorial search over a 

discretized search space for the configuration parameters. However, in most cases, the 

performances achieved by IR-GA are not significantly different from the performances of an 

“ideal” IR process that can be combinatorially built by considering all possible combinations 

of treatments for the various phases of the IR process, and by having a labeled training set 

available (i.e., by using a supervised approach). The raw data used for the three tasks and 

working data sets used for the statistical analysis are available in a replication package [1]. 
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5 Supporting Reproducible 
Empirical Research using 

TraceLab Component Library 
In the previous chapters we introduced LDA-GA (Chapter 3) and IR-GA (Chapter 4), 

which are two examples of approaches that were designed to support software maintenance 

tasks, that contain numerous implementation details, and that were evaluated in large empirical 

studies. In software maintenance, oftentimes research is driven by empirical studies, and 

advancing this field requires researchers not only to come up with new, more efficient and 

effective approaches that address software maintenance problems, but most importantly, to 

compare their new approaches against existing ones in order to demonstrate that they are 

complementary or superior and under which scenarios. We address this problem by facilitating 

the reproducibility of the approaches presented in this dissertation, and we present the details 

of a framework that was specifically designed to support creating, running and sharing 

empirical research across various software engineering tasks. Before providing the details of 

this framework, we emphasize the current problem of comparing an approach against existing 

ones, which is a requirements for advancing the field. Comparing approaches is not only time 

consuming but also error-prone. For instance, existing approaches may be hard to reproduce 

because the datasets used in their evaluation, the tools and implementation, or the 

implementation details (e.g., specific parameter values, environmental factors) are not 

available [12, 23, 34, 52, 69, 129, 158].  

These problems are illustrated through a survey on feature location (FL) techniques by 

Dit et al. [52], which revealed that only 5% of the papers surveyed (i.e., three out of 60 papers) 

evaluated their approach using the same dataset used to evaluate other techniques, and that 
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only 38% of the papers surveyed (i.e., 23 out of 60 papers) compared their proposed feature 

location technique against any previously introduced feature location techniques. In addition, 

these findings are consistent with the ones from the study by Robles [158], which determined 

that among the 154 research papers analyzed, only two made their datasets and implementation 

available, and the vast majority of the papers describe evaluations that cannot be reproduced, 

due to lack of data, details, and tools. Furthermore, a study by González-Barahona and Robles 

[69] identified the factors affecting the reproducibility of results in empirical software 

engineering research and proposed a methodology for determining the reproducibility of a 

study. Similarly, Borg et al. [23] conducted a mapping study investigating the relationship 

between evaluation criteria and results for traceability link recovery approaches based on 

information retrieval. Their findings revealed that most studies were evaluated against datasets 

with fewer than 500 artifacts and, as a result, they identified the need for performing case 

studies on industrial-size datasets. They encouraged researchers to publicly provide the 

datasets and tools used in their evaluations and also provided a set of guidelines to raise the 

quality of publications in the field of software engineering research. In another study, 

Mytkowicz et al. [129] investigated the influence of the omitted-variable bias (i.e., a bias in 

the results of an experiment caused by omitting important causal factors from the design) in 

compiler optimization evaluation. Their study showed that factors such as the environment size 

and the link order, which are often not reported and are not explained properly in the research 

papers, are very common, unpredictable, and can influence the results significantly. Moreover, 

D'Ambros et al. [34] argued that many approaches in bug prediction have not been evaluated 

properly (i.e., they were either evaluated in isolation, or they were compared against a limited 

set of other approaches), and highlighted the difficultness of comparing results.  

This issue of the reproducibility of experiments and approaches has been discussed and 

investigated in different areas of software maintenance research [12, 23, 34, 52, 69, 129, 158, 
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168], and some initial steps have been taken towards solving this problem. For example, efforts 

for establishing datasets or benchmarks that can be used uniformly in evaluations have resulted 

in online benchmark repositories such as PROMISE [124, 163], Eclipse Bug Data [188], 

SEMERU feature location dataset [52], Bug Prediction Dataset [34], SIR [55], and others. In 

addition, different infrastructures for running experiments in SM and other fields were 

introduced, such as TraceLab [28, 30, 91], RapidMiner [153], Simulink [117], Kepler [92], and 

others.  However, among these, a good candidate framework for facilitating and advancing 

research in software engineering and maintenance is TraceLab (see Section 5.2.2 for an in-

depth comparison and discussion of TraceLab's features with other tools). More specifically, 

unlike the other frameworks, TraceLab is a plug-and-play framework that was specifically 

designed for facilitating creating, evaluating, comparing, and sharing experiments in software 

engineering and maintenance (see Section 5.2.1 for a detailed description of its features). These 

characteristics ensure that TraceLab makes experiments reproducible.  

The goal of this chapter is to ensure that a large portion of existing and future 

experiments in software maintenance research that are designed and implemented with 

TraceLab will be reproducible. To accomplish this, we analyzed the approaches presented in 

27 SM research papers, identified their common building blocks, and we implemented them as 

components in a well-organized, structured, documented and comprehensive Component 

Library for TraceLab. In addition, we used the Component Library to assemble and replicate 

a subset of the existing SM techniques, and exemplified how these components and 

experiments could be used as starting points for creating new and reproducible experiments. 

Moreover, we illustrate how the Component Library can be used to reproduce LDA-GA or IR-

GA experiments. 
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5.1 Motivating Example 

When new approaches are introduced, in general, authors rightfully focus more on 

describing the important details of the new techniques, and due to various reasons (e.g., space 

limitations) they may present only in passing the details of applying well-known and popular 

techniques (e.g., VSM), as they rely on the conventional wisdom and knowledge (or references 

to other papers for more details) about applying these techniques [52, 158]. 

However, for a researcher who tries to reproduce the results exactly, it might be 

difficult to infer all the assumptions the original authors took for granted and did not explicitly 

state in their publication. Therefore, the reproducer's interpretation of applying the approach 

could have a significant impact on the results.  

 

Figure 5-1 Precision-Recall curves for EasyClinic for recovering traceability links between 
use cases and classes using a VSM-based traceability technique and different preprocessing 
techniques (raw – gray color, preprocessed – black color) and weighting schemes (no weight 

– dash line, tf-idf – solid line) 
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To illustrate this point with a concrete example, we applied the popular IR technique 

Vector Space Model [160] on the EasyClinic system from TEFSE 200911 challenge to recover 

traceability links between use cases and class diagrams. We configured the VSM technique 

using four treatments consisting of all the possible combinations of two corpus preprocessing 

techniques and two VSM weighting schemes. The preprocessing techniques were raw 

preprocessing (i.e., only the special characters were removed) and basic preprocessing (i.e., 

special characters were removed, identifiers were split and stemmed). The weighting schemes 

used were no weighting and term frequency-inverse document frequency (tf-idf) weighting 

[160].  

Figure 5-1 shows the precision and recall curves for recovering traceability links 

between use cases and classes on the EasyClinic dataset, using a VSM-based traceability 

technique and different preprocessing techniques (i.e., raw preprocessing in gray color and 

basic preprocessing in black color) and weighting schemes (i.e., no weighting in dash line and 

tf-idf weighting in solid line). The results in Figure 5-1 show a high variety in the precision and 

recall values, based on the type of preprocessing and weighting schemes used. Assuming these 

details are not clearly specified in the paper, any of these configurations or variations of these 

configurations can be chosen while reproducing an experiment, potentially yielding completely 

unexpected and drastically different results. It is worth emphasizing that in our example we 

picked a small subset of the large number of weighting schemes and preprocessing techniques 

that can be found in the literature, and these options were deliberately picked to illustrate an 

example, as opposed to conducting a rigorous experiment to identify the configuration of 

factors that could produce the best results. 

                                                           
11 http://web.soccerlab.polymtl.ca/tefse09/Challenge.htm 
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The main point of this example is that even in this simple scenario of using VSM for a 

typical traceability task, there are many options on how we can instantiate and use this 

technique, which leads to completely different results. However, all these problems could be 

eliminated if all these details are encoded in the experiment description, for example, by 

designing an experiment in TraceLab. 

5.2 Background and Related Work 

This section provides the background details about TraceLab as an environment for 

SM research and compares and contrasts TraceLab to other research tools specific to other 

domains. 

5.2.1 TraceLab 

TraceLab [28, 30, 91] is a framework designed to support the reproducibility of 

experiments in software engineering and software maintenance. More specifically, it provides 

a visual workbench (see Figure 5-2) that allows researchers to create, evaluate, compare, and 

most importantly share experiments in SM research. TraceLab was developed at DePaul 

University in collaboration with researchers at the College of William and Mary, Kent State 

University, and University of Kentucky, and it is already being used by numerous users 

throughout the world. 

The heart of a TraceLab experiment lies in its workflow of components (see Figure 5-2 

(1)). Components are reusable user-defined code units that are designed to accomplish a very 

specific task. They exchange data with other components through their inputs and outputs via 

shared memory. The components are represented in TraceLab as ovals (see examples from 

Figure 5-2 (1) and Figure 5-3). 

An experiment is a collection of components (or nodes) connected in the form of a 

precedence graph. The execution of an experiment begins at the “Start” node and continues 
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along every path until the “End” node is reached, thus completing the experiment. Since it is a 

precedence graph, unless otherwise specified, each node must wait for all of the incoming 

edges to complete before executing. This ensures that the previous techniques have completed 

their execution and the correct data is available. The execution of components in TraceLab was 

designed to be parallelizable. Each component is given its own copy of the data and is run in a 

separate thread. The main reason for this design decision was to ensure that running 

experiments will not encounter any errors caused by nondeterministic behavior triggered by 

race conditions, which means that developers do not have to worry about race conditions when 

designing their own custom components. Therefore, when two components branch out from a 

parent component (e.g., components "Import Use Cases" and "Import Code Classes" in Figure 

5-2 (1)) they each will run concurrently and independently. This feature is built into the 

TraceLab framework, and it will be automatically applied to all execution paths of an 

experiment.  

TraceLab was designed to run experiments fully automatically and without any 

interaction from the user. Moreover, the same experiment can be applied to multiple datasets, 

making it a great tool for batch experiment processing. A TraceLab experiment essentially 

takes as input (i) data (which, depending on the type of experiment was extracted from software 

systems, version control systems, issues tracking systems, execution traces, etc.) and (ii) an 

oracle (or ground truth) that was also generated using external tools or human support. Next, 

this data is typically imported, converted to appropriate internal TraceLab datatypes, 

processed, and the evaluated based on a set of predefined metrics and the oracle. The results of 

an experiment could be visualized or exported for further analysis. 



 

115 

5.2.1.1 TraceLab Features 

TraceLab provides many control elements that allow flexibility when designing an 

experiment. For example, Goto decisions (see Figure 5-3 (a)) allow execution redirection to 

any of the outgoing nodes based on a given condition. If statement decisions (see Figure 5-3 

(b)) provide additional control, by allowing execution of one of a number of sub-graphs (called 

scopes) based on a given condition. Scopes provide independent experiment sub-graphs that 

execute in their own namespace and once completed, provide control to the parent graph. 

 

Figure 5-2 The four "quadrants" of TraceLab in clockwise order from top-right are (1) the 
sample TraceLab experiment that implements our motivating example in Section 0; (2) an 

output window for reporting execution status of an experiment; (3) the Workspace containing 
the data and the values of the experiment; and (4) the Component Library  
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Similarly, While loops (see Figure 5-3 (c)) repeatedly execute the scope as long as the given 

condition is true. 

The workspace (see Figure 5-2 (3)) is the data-sharing interface that allows components 

to communicate with the preceding and following nodes. Components can load and store data 

to and from the workspace only for their declared inputs and outputs. Data may also be read 

from the workspace for use in a control-flow node. Any information in the workspace may be 

serialized to disk as an XML file for later use or debugging purposes. Additionally, any data 

type with a viewer (including all standard types) can be viewed from the workspace by clicking 

on their workspace entry. There are already a large number of predefined datatypes and 

components to handle these datatypes (e.g., importers, exporters, etc.), but if needed, 

researchers can adapt existing datatypes or create custom ones to fit their needs. Some of the 

predefined data types include TLArtifact (i.e., a generic data type that can represent any 

textual software artifact, such as requirements, design specifications, UML diagrams and 

defect logs, test cases, or software code; it has two fields, namely ID and textual information), 

TLArtifactsCollection (i.e., a collection of TLArtifacts), TLSimilarityMatrix 

(i.e., a datatype that represents the set of links from source artifacts to target artifacts with 

assign probability score of their relationship; this matrix can be used either as standard 

similarity matrix, an answer matrix, a traceability matrix, etc.). Moreover, the predefined data 

types include Lists, HashTables, Dictionaries, etc., which can be used for various tasks 

ranging from representing stop words to storing different values for the Box Plot points used 

to represent the results. In our experiments, we used a Program Dependence Graph (PDG), 

which stores basic information about the nodes and dependencies in the graph. However, since 

most applications that use a PDG require various types of information, practitioners are free (i) 

to use our PDG as is, (ii) to customize it for their unique needs (i.e., refining it), or (iii) to create 



 

117 

a brand new PDG data type. In either case, an existing experiment that was exported and shared 

through TraceLab’s packaging feature will still reference the correct component, regardless of 

the existence of other versions of the component. In other words, a shared experiment will still 

reference the “old” PDG (i.e., the one that was used for creating the experiment), and will not 

be affected by the newly created PDG (which can be part of future experiments). 

The status of an executing experiment is reported in the Output view (see Figure 5-2 

(2)) in the form of messages displayed to the user. The messages have different levels of 

severity, such as info, trace, debug, warning, and error. Each message displays the component 

name, severity, custom message provided by the author of the component (if any), and 

optionally an exception dialogue describing an uncaught exception and a stack trace.  

A major contribution of this chapter is a Component Library, designed to implement a 

wide range of SM techniques that can be easily accessed from TraceLab (see Figure 5-2 (4)) 

to build and execute experiments. The Component Library is included in the distribution of the 

official TraceLab release. 

The component library provides a set of tools and techniques to researchers for using 

in experiments. Components may be categorized by multiple tags, both by component 

developers and users. In order to use a component in an experiment, the user only needs to 

drag-and-drop the component from the component library into the experiment (see Figure 5-2 

(1)) and connect it with the other components. Each component has a set of metadata that 

uniquely identifies it within TraceLab. The primary identifier is the component’s name, which 

appears in the component library and on the component node within the experiment. 

Components contain additional information such as a description, author, versioning 

information (see Figure 5-4), inputs and outputs. For example, if a component takes in two sets 

of artifacts and produces a ranked list of similarities between the two, it must explicitly declare 
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two TLArtifactsCollection objects as input and declare a TLSimilarityMatrix as 

output (see Figure 5-4). This allows TraceLab to evaluate the experiment graph before running 

it, checking for valid inputs and control-flow errors. For example, if a component declares an 

input that is not an output of any preceding components, TraceLab will catch the error before 

the experiment starts. In addition to inputs and outputs, a component can allow the 

configuration of specific settings (e.g., weighting scheme for the Vector Space Model – see 

Figure 5-4). 

An important feature of TraceLab consists of generating composite components. More 

specifically, a group of individual components that are often used together as a group to 

accomplish a specific task can be combined to form composite components. This feature 

provides an additional level of abstraction for common functionality, it improves the reusability 

of components in the same experiment and across different experiments, and it improves the 

readability of the graph experiment. An example of such a composite component is the node 

with rectangular edges labeled Compute Metrics in Figure 5-2 (1), which evaluates the 

performance of several techniques by encapsulating the functionality of various components, 

such as computing the precision and computing the recall.  

In addition to all these features, arguably the most important and distinctive feature 

provided by TraceLab is the packaging feature for encapsulating and sharing experiments. In 

order to share a TraceLab experiment, all of the necessary information (i.e., data, components 

and settings) must be included. Therefore, the packaging feature of TraceLab allows a user to 

encapsulate all the datasets and custom components used in the experiment, including all the 

dependencies and specific versions of datasets and components. The resulting self-contained 

experiment can be shared with the research community. The original experiment along with 

exact data and settings can be run by other researchers by unpacking and installing the original 
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package experiment, using the associated functionality in TraceLab. Paths are relative to the 

package and they reference the data “inside” the package. Therefore, a shared package can be 

used as is by other researchers regardless of the location on their machine, because the paths 

are relative to the content of the package.  The packaging feature not only allows to include 

data, but it can also reference existing packages which contain experiments and/or data. In 

other words, a researcher does not have to include the same data in different experiments, 

because she can choose to reference them. Once an experiment has been imported from a 

package, prior to running the experiment, one can change the configuration of the components 

that load/save data (i.e., if they want to use the same workflow on different data), or one can 

add/remove components to alter the workflow of the experiment if needed. In fact this one of 

the strengths of TraceLab.  It ships with multiple importers, capable of importing data from 

multiple formats and converting it into standard data structures, while, at the same time, 

allowing the creation of new customized data importers. As a result, experiments can easily be 

run against different datasets. We would like to emphasize that there are two major reasons we 

include datasets in the packages. First, it ensures that the experiments are executable “out of 

the box”, and we have observed that new users find it far easier to change a data source of an 

experiment that actually runs correctly, rather than having to find and configure the data to run 

the experiment. Second, one of the goals of TraceLab is to help new researchers get started, 

which implies providing them not only with the experiments, but also with the data. 

It is important to highlight that researchers can create as many component types as they 

want (although we encourage reuse of components if possible). Each experiment consists of a 

particular dataset (which has a particular format and version), and a specific set of components 

(with their own version, configuration options) and dependencies between components. Once 

an experiment is created, and shared, it will reference specific versions of components and data 
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types, even though some components may have evolved in the meanwhile. Therefore, the 

evolution of existing techniques will not affect the reproducibility of existing experiments.  

We also note that our philosophy in creating TraceLab was to allow flexibility in the 

way components are designed, and we illustrated this with an example. We recently developed 

a new Weka component for a series of experiments, and this component is in effect a wrapper 

for the underlying Weka library. We needed to choose between (i) creating multiple TraceLab-

Weka components to perform specific classification functions (e.g., a J48 component, a Bayes 

Regression Classifier, etc.) or (ii) creating one generic component, which served as a general 

Weka wrapper. We opted for the second choice, which means that the component can be 

configured to run any classifier. This reduced the proliferation of components, but at the same 

time placed more onus on the component user to understand Weka’s configuration parameters. 

The point is that TraceLab allows the experimenter to make such choices, and this was a 

deliberate design decision on our part. 

5.2.1.2 Supported Languages 

 
(a) 

 

 
(c) 

 
(b) 

Figure 5-3 Control flow options provided by TraceLab: (a) Goto decision, (b) If statement 
and (c) While loop 
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TraceLab ships with a software development kit (SDK) that allows users to define their 

own custom components and types in .NET languages, Java, and via plugins, R [152], Matlab 

[116] and Weka [180]. 

Any .NET language that compiles to a Dynamic Linked Library (DLL) may be used to 

create user-defined components and types. This includes Visual Basic, C++, C#, and F#. 

Developers can create user-defined TraceLab components and types in Java using 

IKVM.NET12. After compiling the Java components, the JAR file is converted to a DLL 

through IKVM. Thus, when called in TraceLab, the Java code is actually run in the IKVM 

virtual machine.  

In addition to .NET and Java, TraceLab components can execute R code. Although 

tools like R.NET13 exist for running R code in .NET languages, they impose additional external 

dependencies on TraceLab and the development environment. Moreover, TraceLab has no 

                                                           
12 http://www.ikvm.net/ 
13 https://rdotnet.codeplex.com/ 

 

Figure 5-4 Information pane for the Vector Space Model TraceLab component (left). The 
information pane shows the inputs and outputs, settings (e.g., weighting scheme) and other 

metadata information. 
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built-in mechanism for recognizing components written in R. To overcome this issue, we have 

created a lightweight language plugin for R (named RPlugin) that allows R scripts to be run 

from TraceLab. The component classes are written normally in .NET, and any R scripts that 

need to be run interface with the plugin. RPlugin makes calls to an existing implementation of 

R and has a framework for passing data and running scripts in R. RPlugin is included with the 

TraceLab Component Library described section 5.4.  

The developers of TraceLab have created a Matlab plugin similar to RPlugin that can 

run Matlab scripts from .NET.  

5.2.2 Comparing TraceLab with Other Tools 

There are many other frameworks and tools that have been designed to support research 

in other domains, such as information retrieval, machine learning, data mining, and natural 

language processing, among others. Consequently, reuse of third party tools or APIs is a 

common practice for constructing experiments and building research infrastructure in software 

evolution and maintenance. For example, a common scenario is to reuse WEKA for 

implementations of machine learning classifiers, R for statistical analysis, or MALLET for 

topic modeling. However, these tools/APIs were not built to support research on software 

evolution and maintenance. Moreover, most of the tools were conceived as extensible APIs 

and only few of them provide features such as experiment composition by using a data-flow 

GUI, new components implementation, or easy sharing/publishing of experiments; moreover, 

not all of them can be used across multiple platforms. Table 5-1 compares TraceLab to some 

similar tools that also use a data-flow oriented GUI. 

The R Project [152] is a programming language and environment designed to perform 

statistical computing tasks on large-scale data. The tool is primarily command based, with the 

ability to produce charts and graphs. There are a multitude of user-contributed libraries for 
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performing specialized tasks, including a variety of common software engineering research 

tasks. However, R does not feature an environment for designing experiments using a GUI-

based workflow and can be difficult to reproduce when shared due to dependencies on a large 

number of libraries and different versions. Additionally, researchers must learn a new 

programming language when performing experiments in R.  

Matlab [116] offers a programming language in an interactive environment geared 

towards numerical computation, data analysis, visualization (e.g., 2D and 3D visualization) 

and programming. Matlab was designed to be used in diverse areas, ranging from signal 

processing, image processing, testing and measuring, computational finance and many others.  

Simulink [117] is a Matlab-based tool for simulation and model-based design of 

embedded systems. In Simulink, a model is composed of subsystems (i.e., a group of blocks) 

or individual blocks, and the blocks can be implemented using Matlab, C/C++, or Fortran. 

Building the model can be accomplished using drag-and-drop of blocks and making 

connections between them, which is similar to the way TraceLab allows to build experiments. 

WEKA [180] is a collection of machine learning algorithms that are packaged as an 

open source Java library that also allows running the algorithms using a graphical user interface 

(GUI). One of the WEKA modules is the KnowledgeFlow, which provides the user with a data-

flow oriented GUI for designing experiments. As in TraceLab, the components in the 

KnowledgeFlow are categorized by tasks (DataSources, DataSinks, Filters, Classifiers, 

Clusterers, Associations, Evaluation, Visualization), and there is a layout canvas for designing 

experiments by dragging, dropping, and connecting components. New components can be 

added to WEKA by extending or modifying the library using Java, and the experiments can be 

saved and loaded for being executed in the WEKA Experimenter module.  
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RapidMiner [153] is a data mining application that provides an improved GUI for 

designing and running experiments. It includes a reusable library for designing experiments 

and running them and it fully integrates WEKA as the machine learning library. 

GATE [166] provides an environment for text processing that includes an IDE with 

components for language processing, a web application for collaborative annotation of 

document collections, a Java library, and a cloud solution for large scale text processing. 

Kepler [92] is a tool that follows the same philosophy as TraceLab. By using Kepler, 

it is possible to build, save, and publish experiments/components using a data-flow oriented 

GUI. It is also possible to extend Kepler because of its collaborative-project nature. However, 

Table 5-1 Comparison of TraceLab with other related tools (columns). The features (rows) 
are as follows: 1) data-flow oriented GUI [Yes / No]; 2) Type of application [Desktop / Web 

/ API]; 3) License type [Commercial / Open source / Free online access]; 4) Tool allows 
saving and loading experiments [Yes / No]; 5) Tool allows creating composite components 

[Yes / No / Programmatically]; 6) Tool has a component "market" where developers can 
contribute with their own components [Yes / No]; 7) Programming language that can be used 

to build new components; 8) The platforms were the tool could be used [Software As A 
Service, Windows, Linux, Mac] 

                  Tool 
 
Feature 

R 
Project 

Matlab 
Simuli
nk 

Weka/ 
Rapid. 
Miner 

Gate Kepler FETCH
Taver
na 

TraceLab 

GUI N Y Y Y N Y N Y Y 

Type API, D API, D D API, D 
API, 
D 

API, D D D, W API, D 

License O C C O O O O O O 
Save/Load exp. Y Y Y Y Y Y N Y Y 
Composite 
component 

P P Y N P Y N Y Y 

Component 
Market 

Y Y Y N Y Y N Y Y 

Programming 
Language 

R 
Matlab 
Java 
C 

C/C++ 
Matlab
. 
Fortran 

Java Java 

R 
C 
Matlab 
Java 

RML 
(Other) 

Any 

Java 
R 
.NET 
(e.g., C#) 
Matlab 

Platforms 
W, L, 
M 

W, L, 
M 

W, L, 
M 

W, L, M 
W, 
L, M 

W, L, 
M 

W, L 
W, L, 
M 

W, L, M 
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the main difference with TraceLab is that Kepler was conceived as a tool for experiments in 

sciences such as Math or Physics. 

FETCH [62] is a set of third-party open source tools linked in a pipeline to support 

program analysis of large C/C++/Java software systems. Fetch does not allow researchers to 

design experiments or extend components. Instead, it is a command-line based tool that applies 

several analyses to a software system and generate reports (i.e., charts, tables, files) describing 

the results of the analysis. 

Taverna [173] is a workflow-based tool for designing experiments, by connecting 

components deployed as web services. The components are imported into Taverna through the 

web service’s WSDL (Web Service Description Language).  Therefore, Taverna is independent 

of the programming language, and researchers have to write their components on any language 

and publish them as a discoverable web service. However, Taverna does not provide an IDE 

for implementing/publishing web services. Taverna has a workbench for designing the 

workflows, a server for the remote execution of workflows when required, and a command line 

tool for workflow execution from a terminal. 

Table 5-2 List of Journals and Conferences for which we identified at least one paper in our 
mapping study 

Abbreviation Venue Name # papers 
ASE Automated Software Engineering 1 
CSMR European Conference on Software Maintenance and 

Reengineering 
2 

EMSE Empirical Software Engineering 1 
ICSE International Conference on Software Engineering 6 
ICPC International Conference on Program Comprehension 9 
ICSM International Conference on Software Maintenance 3 
MSR Working Conference on Mining Software Repositories 2 
TEFSE International Workshop on Traceability in Emerging Forms of 

Software Engineering 
1 

TSE Transactions in Software Engineering 1 
WCRE Working Conference on Reverse Engineering 1 
 Total 27 
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Although TraceLab is not specialized on simulation, natural language processing, or 

machine learning, it was specifically designed to allow software engineering and maintenance 

researchers the possibility to (i) develop and share their own components/experiments, and (ii) 

to ensure the reproducibility of their results. During the design of TraceLab, a traditional 

desktop application was preferred over a Service-Oriented Architecture solution because we 

believed that the overhead of services (i) may not suit the kinds of experiments that might be 

conducted in SE, and (ii) could have introduced an additional burden for the user to create and 

maintain services. Furthermore, service composition adds additional overheads, which are not 

suited to some experiments in the traceability domain as well as other SE domains. Hence, our 

goal was to create a local solution (to avoid confidentiality issues) to allow users to quickly 

and easily create and compose components. Although TraceLab was initially implemented in 

C# and supported only Windows, the latest version of TraceLab is cross-platform and supports 

all major OS platforms (e.g., Window, MacOS and Linux). However, we made publicly 

available on GitHub the Windows version of TraceLab, and we will open-source the cross-

platform version of TraceLab after it goes through the incubation stage. In order to achieve this 

support for all OS platforms, TraceLab was compiled using Mono14, the open source, cross 

platform .NET framework. 

To implement the TraceLab components, researchers can use Java, any .NET language 

(e.g., C#, VB, C++), R or Matlab. For the .NET languages, either Microsoft Visual Studio or 

Mono can be used. 

5.3 Mapping Study of Software Maintenance Techniques 

In this section we present the methodology, analysis, and results of a mapping study 

[93] aimed at identifying a set of techniques from particular areas of SM, which could be 

                                                           
14 www.mono-project.com/ 
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implemented as TraceLab experiments in order to constitute an initial practical body of 

knowledge that would benefit the SM research community. Moreover, these identified 

techniques were reverse engineered into basic modules that we implemented as TraceLab 

components, in order to generate a Component Development Kit (see Section 0) and a 

Component Library (see Section 5.4.2) that serves as a starting point for any interested 

researcher to implement new techniques or build upon existing ones. 

For our study, we used the systematic mapping process described by Petersen et al. 

[136]. The process consists of five stages: 1) defining the research questions of the study, 2) 

searching for papers in different venues, 3) screening the papers based on inclusion and 

exclusion criteria in order to find relevant ones, 4) classifying the papers, and 5) extracting data 

and then generating the systematic map. 

A mapping study is different from a systematic literature review in that literature 

reviews aim to answer a specific research question by extracting and analyzing the results of 

primary studies [93], for example, a review of studies analyzing development effort estimation 

techniques to see which ones work the best [86]. In contrast, mapping studies attempt to address 

more abstract research topics by classifying the methodologies and findings into general 

categories. Mapping studies are useful to the research community in that they provide an 

overview of trends within the search space [136]. Furthermore, they may be used as a starting 

point by researchers looking to improve the field by describing common methodologies and 

perhaps discovering untapped areas that others have missed. 

5.3.1 Defining the Research Question 

Our goal is to identify a set of representative techniques from specific areas of SM, and 

then use them to generate TraceLab components and experiments to accelerate and support 
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research in SM. Thus, we defined the following research questions (RQs) for the mapping 

study: 

RQ1: What types of techniques are common to experiments in software evolution and 

maintenance research? 

RQ2. What individual techniques are used across many SM experiments? 

RQ3. How do experiments in SM research differ across different sub-domains? 

RQ1 attempts to identify high-level categories containing groups of techniques 

designed to perform similar research tasks. RQ2 focuses on individual techniques and aims to 

identify the most common techniques used in experiments in the mapping study. RQ3 is 

intended to compare and contrast how techniques are used in different high-level research 

tasks, such as traceability link recovery or feature location. 

These three RQs can be reformulated into a single main research question as follows: 

RQ: Which SM techniques are suitable to form an initial actionable body of knowledge 

that other researchers could benefit from?  

In particular, we focused on a subset of SM areas in which Bogdan Dit, Evan Moritz, 

Mario Linares-Vásquez and Denys Poshyvanyk (see Section 1.2) have expertise.  This allowed 

us to generate an initial and extensible body of knowledge that could support the research 

community.  The SM research community, can contribute to the body of knowledge by 

continually adding new techniques and components. 

5.3.2 Conducting the Search 

In order to find these techniques, we narrowed the search space to the publications from 

the last ten years of a subset of journals and software engineering conferences. In addition, in 

our search we incorporated the "snowballing" discovery technique (i.e., following references 

in the related work) discussed by Kitchenham et al. [93]. The list of journals and conferences 
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from which we selected at least one paper in our mapping study is presented in Table 5-2. 

Additional information can be found in our online appendix. 

5.3.3 Screening Criteria 

The primary inclusion criterion consisted of identifying whether the research paper 

described a technique that addressed one of the following maintenance tasks: traceability link 

recovery, feature location, program comprehension and duplicate bug report identification. In 

most cases, this information was determined by reading the title, abstract, keywords, and if 

necessary the introduction and the conclusion of the investigated paper. 

The exclusion criteria were as follows. First, we discarded techniques that could not 

have been implemented effectively in TraceLab due to various reasons, such as (i) lack of 

sufficient implementation details, (ii) lack of tool availability or (iii) the technique was not 

fully automated, and would require interaction with the user. Second, we did not implement 

complex techniques that would have required a lengthy development time, or techniques that 

are outside the expertise of the authors. Third, we discarded techniques with numerous 

dependencies to deprecated libraries or other techniques, as our goal was to implement the 

most popular techniques that can be incorporated or built upon. 

5.3.4 Classification 

In our mapping study we used two independent levels of classification. The first one 

consisted of categorizing the papers based on the SM task (e.g., traceability link recovery, 

feature location, program comprehension and detecting duplicate bug reports) they presented 

(see Section 5.3.3). This classification was targeted at answering RQ3. 

The second level of classification was identifying common functionality between the 

basic building blocks used in an approach (e.g., all the functionality related to identifier 
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splitting, stemming, stopword removal and others, were grouped under "preprocessing"). This 

level of classification is necessary for answering RQ1 and RQ2. 

5.3.5 Data extraction 

The list of papers that we identified in our study is presented in Table 5-3 in the first 

column along with the Google Scholar citation count as of December 1, 2013 (second column). 

The papers are grouped by the primary SM tasks they address, and are sorted chronologically.  

The remaining columns constitute the individual building blocks and components we 

identified in each approach, grouped by their common functionality. A checkmark (✓) denotes 

that we implemented the component in the CL. An X denotes that the code related to the 

components appears in the approach, but is not implemented in the CL at this time (see Section 

5.4.2 and Section 5.7). 

Table 5-3 shows only a subset of the information. For the complete information, we 

refer the interested reader to our online appendix. 

5.4 Component Library and Development Kit 

From the 27 papers identified in the mapping study, we reverse engineered their 

techniques in order to create a comprehensive library of components and techniques with the 

aim of providing the necessary functionality that SM researchers would need to reproduce 

experiments and create new techniques. 

This process resulted in generating (i) a Component Development Kit (CDK) that 

contains the implementation of all the SM techniques from the study, (ii) a Component Library 

(CL) that adapts the CDK components to be used in TraceLab and (iii) the associated 

documentation and usage examples for each. 
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5.4.1 Component Development Kit 

The Component Development Kit (CDK) is a multi-tiered library of common tools and 

techniques used in SM research. These tools are organized in a well-defined hierarchical 

structure and exposed through a public API. The intent of this compilation is to aid researchers 

in reproducing existing approaches and creating new techniques for software maintenance and 

evolution. Therefore, the appropriate name for this CDK would be Component Development 

Kit-Software Maintenance and Evolution (CDK-SME), in order to distinguish it from other 

CDKs (e.g., related to requirements engineering) that will be developed in the near future by 

other groups in the research community surrounding TraceLab. However, for brevity, and 

because in this chapter we are only discussing the CDK for software maintenance and 

evolution, throughout this chapter we will refer to CDK-SME as CDK. 

By providing access to tools and techniques related to software maintenance and 

evolution tasks, the Component Development Kit facilitates the research evaluation process, 

and researchers no longer have to start from scratch or spend time adapting their pre-existing 

tools to a new project. Furthermore, researchers can use combinations of these tools to create 

new techniques and drive new research.  

At the top level, the CDK is separated into categories of high-level tasks, such as I/O, 

preprocessing techniques, artifact comparison techniques, and metrics calculations (see Figure 

 

Figure 5-5 Diagram of the hierarchy of the CDK in the context of TraceLab. CDK and CL are 
part of TraceLab. Researchers can contribute to the CDK and the datasets (gray arrow), and 

reviewers and researchers (green arrow) can use TraceLab to verify details of existing 
experiments 
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5-5). Those categories are then further broken down as needed into more specific tasks. This 

design aids technique developers in locating relevant functionality quickly and easily, as well 

as providing base points for integrating new functionality in the future. The high-level 

categories are described as follows: 

Data preprocessing techniques primarily convert the raw data into a different form that 

will be used in other steps of the approach. For text-based approaches, preprocessing typically 

involves extracting comments and identifiers from source code, removing stop-words, 

stemming, as well as other methods for text manipulation. For structural approaches, 

preprocessing could involve parsing an execution trace or calculating a static dependency 

graph. The preprocessing techniques are usually the first to run, before any other steps of the 

approach. 

Artifacts comparison techniques encapsulate all the techniques that implement any 

kind of comparison between software artifacts to determine relationships between them. These 

techniques usually take in a set of software artifacts (such as source code or requirements 

documents) as input and produce a set of suggested relationships between documents. These 

suggestions may include a confidence score, textual similarity scores, etc., which are useful for 

ranking the set of input artifacts based on various criteria. 

The metrics category encapsulates the measures by which an approach is evaluated. 

These are used to determine the accuracy (or performance) of a technique and to compare it 

with other techniques. Examples of such metrics include precision, recall, effectiveness, etc.  

Guided by findings from the mapping study, we evaluated each technique based on 

coverage, usefulness, and perceived difficulty and effort in implementation. In addition to our 

design goals of providing a clean and easy to use API, another goal was to minimize the number 

of external dependencies necessary to implement the technique. As such, some techniques that 

have numerous external dependencies were left out.  
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5.4.2 Component Library 

The Component Library (CL) is comprised of metadata and wrapper classes registering 

certain functionality as components in TraceLab. It acts as a layer in between TraceLab and 

the CDK, adapting the functionality of the CDK to be used within TraceLab. A typical 

component will import data from TraceLab's data sharing interface (the Workspace), call 

various functions on the data using the CDK, and then store the results back to the Workspace. 

To register a component in TraceLab, a class must inherit from the BaseComponent 

abstract class defined in the TraceLab SDK. All components must override the Compute() 

method which contains the desired functionality of the component within the context of a 

TraceLab experiment. Component classes may also override PreCompute() and 

PostCompute() to pre-allocate and dispose of resources (these methods are called 

immediately before and after the Compute() method).  

Furthermore, all components have a component declaration attribute (or annotation in 

Java terminology) that describes information about the component. For example, the 

[Component] attribute specifies information about the component's name, description, 

author, version, and optional configuration object. The configuration object is responsible for 

all the settings associated with the component (e.g., weighting schema for Vector Space Model, 

input path for a component loading a corpus, etc.).  Any inputs and outputs from and to the 

workspace must be declared with individual [IOSpec] attributes describing the input or 

output name and data type. Lastly, components may optionally declare [Tag] attributes for 

automatic categorization in the component library. The declaration of all these attributes serve 

two purposes, namely to (i) allow the class to be registered in TraceLab as a component, and 

(ii) to ensure that a component can only be connected with a compatible component. Figure 

5-4 shows an example of a component that used three [IOSpec] attributes (two for input and 

one for output) to define the name (e.g., TargetArtifacts, SourceArtifacts and Similarities) and 
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data type (e.g., TLArtifactsCollection and TLSimilarityMatrix) of inputs and 

outputs. In addition, the metadata specific to the component, which was defined using the 

[Component] attribute, is presented in the lower right corner of the figure. 

After compiling, libraries containing components should be placed in a registered 

component directory, in order to allow TraceLab to recognize them and make them available 

in the Component Library (see Figure 5-2 (1)). These directories are defined in TraceLab's 

settings menu and user-defined directories can be added or removed as needed. 

In addition to custom components, the TraceLab SDK allows users to define custom 

data types. These user-defined data types must declare a [WorkspaceType] attribute in order 

for TraceLab to recognize them as workspace types that can be used in the workspace. These 

types must also declare a [Serializable] attribute to allow data to be transferred between 

the workspace, components, and disk. It is important to note that any custom data types that do 

not need to be used in the workspace (e.g., intermediate data used within a component) do not 

need to be registered with TraceLab. Libraries containing types must also be placed in a 

registered directory containing types, which is usually separate from the components library. 

Workspace types may also provide custom visualizations for inspecting the data after an 

experiment has run.  

The Component Library uses the same structure as the CDK (see Figure 5-5), providing 

a mapping from TraceLab to the CDK. Components can be organized in TraceLab through the 

use of hierarchically organized developer and user Tags, another feature of the TraceLab SDK. 

Components are grouped via Tags into the same high-level tasks as the CDK. 

From the building blocks of the CDK identified in the mapping study, we implemented 

25 out of 51 as TraceLab components. In many cases, this was done as a one-to-one mapping 

from the CDK to the CL. However, some techniques could be broken down into more general 
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ones, which were desirable for component re-use. For example, the Vector Space Model is a 

straightforward technique, but there can be many variations on its implementation (see Section 

0). We implemented a few weighting schemes (e.g., binary term frequency, tf-idf, and log-idf) 

and similarity functions (e.g., cosine, Jaccard), so that a component developer could pick and 

choose from the desired schemes. 

Table 5-3 Mapping study results (first column) and implementation of these techniques in the 
CDK (✓means that the component from the first row is implemented in CDK and X means is 

not yet implemented in CDK)  

Technique 
Year / Venue / Name / Ref 
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Traceability Link Recovery                         
2008.ICPC.Abadi [2] 58 ✓ ✓ ✓ . . . . . . . ✓ ✓ . ✓ . . ✓ . . . . . . 

2009.ICPC.Capobianco [24] 26 ✓ ✓ ✓ ✓ . . . . . ✓ ✓ . . ✓ . . ✓ . . . . . . 

2010.ICPC.Oliveto [132] 71 ✓ ✓ ✓ . . . . . . . ✓ ✓ ✓ ✓ . . ✓ . ✓ . . . . 

2010.ICSE.Asuncion [9] 87 ✓ ✓ ✓ . . . . . . . ✓ . ✓ . . . ✓ . . . . . . 

2011.ICPC.DeLucia [38] 15 ✓ ✓ ✓ ✓ . . . ✓ . . ✓ ✓ . . . . ✓ . . . . . . 

2011.ICSE.Chen [27] 5 ✓ . . . . . . . . . . ✓ . . . . ✓ . . . . . . 

2011.ICSM.Gethers [65] 30 ✓ ✓ ✓ ✓ . . . . . . . ✓ . ✓ ✓ . ✓ . ✓ . ✓ . . 

2013.CSMR.Panichella [135] 5 ✓ ✓ . . . ✓ . . . . . ✓ . ✓ . . ✓ . . . . ✓ . 

2013.ICSE.Panichella [134] 10 ✓ . . . . . . . . . . . ✓ . . . ✓ ✓ . . . . ✓ 
2013.TEFSE.Dit [50] 3 ✓ . . . . . . . . . . . ✓ . . . ✓ . . . . . ✓ 
Feature Location                         
2004.WCRE.Marcus [115] 277 ✓ . . ✓ . . . . . . ✓ . . . . . ✓ . . . . . . 

2007.ASE.Liu [105] 104 ✓ ✓ . ✓ X . . . . . ✓ . . . . . . ✓ . ✓ ✓ . . 

2007.TSE.Poshyvanyk [143] 212 ✓ ✓ . ✓ . . . . . . ✓ . . . . . . ✓ . . ✓ . . 

2009.ICPC.Revelle [157] 37 ✓ . . . X ✓ . . . . ✓ . . . . . . . . ✓ . . . 

2009.ICSM.Gay [63] 48 ✓ ✓ ✓ ✓ . . . . . . . ✓ . . . . . . . . . . . 

2011.ICPC.Dit [45] 29 ✓ ✓ ✓ ✓ X . X . . . ✓ . . . . . . ✓ . ✓ . . . 

2011.ICPC.Scanniello [164] 13 ✓ ✓ ✓ ✓ . ✓ . . . . . ✓ . . . . . ✓ . . . . . 

2011.ICSM.Wiese [184] 6 ✓ . ✓ . . . . . ✓ . . ✓ . . . . . . . . . . . 

2012.ICPC.Dit [49] 11 ✓ ✓ ✓ ✓ X . . . . . ✓ ✓ . . . . . ✓ . ✓ . . . 

2013.EMSE.Dit [53] 9 ✓ ✓ ✓ ✓ X ✓ . . . . ✓ . . . . ✓ . ✓ . ✓ . . . 

Program Comprehension                         
2009.MSR.Enslen [60] 65 ✓ . . ✓ . . X . . . . . . . . . . . . . . . . 

2009.MSR.Tian [178] 38 ✓ ✓ . ✓ . . . . . . . . ✓ . . . ✓ . . . . . . 

2010.ICSE.Haiduc [76] 32 ✓ ✓ ✓ ✓ . . . . . . ✓ . . . . . . . . . . . . 

2012.ICPC.DeLucia [39] 7 ✓ ✓ ✓ ✓ . . . . . . ✓ ✓ ✓ . . . . . . . . . . 

Identify Duplicate Bug Rep.                         
2007.ICSE.Runeson [159] 185 ✓ ✓ ✓ . . . . . . . . ✓ . . . . ✓ . . . . . . 

2008.ICSE.Wang [182] 188 ✓ ✓ ✓ . X . . . . . . ✓ . . . . ✓ . . . . . . 

2012.CSMR.Kaushik [90] 9 ✓ ✓ ✓ . . . . . . . ✓ ✓ ✓ . . . ✓ . . . . . . 

Total: 1,580 27 20 17 14 6 4 2 1 1 1 14 14 7 5 1 1 14 7 2 5 3 1 2 
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Another example is the precision and recall metrics in traceability link recovery. 

Although this component consists of only one column in the mapping study, the CDK covers 

many of the commonly used metrics in the literature (e.g., precision, recall, average precision, 

mean average precision, F-measure, and precision-recall curves). Component developers could 

choose from any of these measures in their experiments. 

5.4.3 Documentation 

Documentation of the CDK and CL plays a key role in assisting researchers and 

component developers new to TraceLab. In addition to code examples and API references, 

documentation provides vital information about a program's functionality, design, and intended 

use. This adds a wealth of knowledge to someone who wants to use TraceLab and start 

designing new experiments from components. We provide this information in a wiki format on 

our website15,16, which includes a developer guide, the CDK API reference, release notes, and 

code examples. 

5.4.4 Extending the CDK and CL 

The CL and CDK themselves are not the definitive collection of all the SM tools that 

researchers will ever need. However, their design and implementation in conjunction with 

TraceLab's framework provide a foundation for extending SM research in the future. 

Both the CL and CDK are released under an Open Source license (GPL) in order to 

facilitate collaboration and community contribution. As new techniques are invented, they can 

be added to the existing hierarchy and thus into TraceLab. 

                                                           
15 http://coest.org/coest-projects/projects/semeru/wiki 
16 https://github.com/CoEST 
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In creating the CL and CDK, we leveraged TraceLab's ability to modify existing 

components or to create custom (i.e., user made) components that will fit the need of a 

researcher, through the TraceLab SDK. Researchers can also create adapt or modify existing 

datatypes or create new ones if needed. It is important to know that multiple versions of the 

same datatypes can exist, but once a particular version of a datatype or component is referenced 

in a particular experiment, that version of the datatype or component will be exported and 

shared with the community (using TraceLab’s packaging feature – see Section 0), to ensure the 

reproducibility of an experiment even in the case of having multiple versions of the same 

datatype or component. As the body of SM techniques grows, researchers can utilize our 

components and extend them to new ones via the same process. Part of our future work will be 

 

Figure 5-6 TraceLab experiment described in Section 3.3.1, which evaluates the performance 
of LDA-GA on the EasyClinic dataset and compares it with the baseline [132] 
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dedicated to ensuring that existing components would be easier to discover and understand by 

other researchers (e.g., through proper documentation), to encourage reuse and reduce the 

number of overlapping components. Moreover, we will focus on establishing a process of 

incorporating user-made components into the CL and CDK, by establishing a standard of 

quality that each proposed component must satisfy. 

5.5 Reproducing LDA-GA and IR-GA Experiments 

This section presents the details of reproducing an experiment using the CDK and the 

CL proposed in this chapter. The reproduced experiment is the one described in Section 3.3.1, 

which evaluates the performance of LDA-GA on the EasyClinic dataset and compares it with 

the baseline [132]. The original results of this experiment are presented in Section 3.4.1. 

The reproduced experiment (see Figure 5-6) is instantiated using a set of components 

included in the CL. Since part of this experiment is implemented as an R script, the RPlugin - 

Setup component allows configuring the R environment. The data is loaded using the Source 

Artifacts and Target Artifacts components and preprocessed using the Cleanup Preprocessor 

component. The LDA-GA configuration component allows configuring specific parameters for 

LDA-GA, as illustrated in Figure 5-7. For example, we can setup the search space for the LDA 

 

Figure 5-7 Setup window for the LDA-GA Configuration component for the experiment in 
Figure 5-6 
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parameters �, �, number of iterations and number of topics, and we can also setup specific GA 

parameters (e.g., population size, mutation rate, elitism, etc.). The results of LDA-GA will be 

stored in the Configured LDA component and they will be compared against the Baseline LDA. 

Using the Oracle, the precision and recall values for LDA-GA and the baseline will be 

computed using the LDA Metrics and Baseline metrics components, which in turn will be 

compared using the Results Collection component and presented as a graph (see Figure 5-8) 

using the (UI) Results component. 

Figure 5-8 shows the precision and recall curve for the Experiment results (i.e., LDA-

GA) and the baseline [132]. These results are the same as the ones presented in Figure 3-3 (a), 

which were originally computed without TraceLab. 

 This section showed one example of using the CL to reproduce an LDA-GA 

experiment in TraceLab. The existing components from the CDK and CL (see Table 5-3) can 

be used to reproduce LDA-GA experiments for other datasets or to reproduce IR-GA 

experiments. 

5.6 TraceLab: Alternative Uses 

The community surrounding TraceLab, the Component Development Kit and the 

Component Library enables the replication of experiments, helps new researchers to become 

productive more quickly, and encourages innovation through equipping researchers with the 

means to synthesize techniques and to rigorously explore and evaluate new ideas across 

different domain. In addition, we argue that the curriculum for software engineering classes 

could be positively impacted as well.  
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First, class assignments and projects could be designed to support their submission 

using TraceLab. Students can be given a partial TraceLab experiment (e.g., loading data, saving 

data), and could be asked to implement one or more components that compute the results for a 

technique that supports a maintenance task. Alternatively, students can be given a complete 

experiment (which implements a technique for traceability link recovery, feature location, or 

any other maintenance tasks) and asked to improve on the existing techniques by writing new 

components, and compare the results to the original technique (which can be used as a 

baseline). The benefit of using TraceLab is that (i) it provides students the flexibility to 

implement code in some of the most popular languages (Java, C++, C#) on any OS (e.g., 

Windows, Linux, Mac), and it provides the instructor with a uniform method for evaluating 

and grading the assignments or projects (i.e., the instructor has to run an experiment that will 

be used as a ground truth alongside the experiment submitted by the student).  

 

Figure 5-8 Precision and Recall curves for Experiment Results (LDA-GA) and Baseline 
[132] that was generated by executing the TraceLab experiment presented in Figure 5-6. 
These results are the same as the ones presented in Figure 3-3 (a), which were originally 

computed without TraceLab 
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Second, class assignments or projects can be assigned to students as part of a 

customized Challenge, using TraceLab’s challenge feature. Instructors can define the 

challenge (i.e., the problem), provide the necessary datasets, metrics, an experimental harness 

(in the form of a TraceLab experiment) in which student’s solutions can be “plugged”, and ask 

students to implement their solutions and submit them to an online portal supporting 

leaderboards, where challenge results will be compared and ranked. In the research community, 

one of these TraceLab Challenges made its debut during the 7th Traceability of Emerging Forms 

of Software Engineering (TEFSE) workshop in 2013, and will continue for the TEFSE 

workshops in 2015 and 2017. 

5.7 Limitations 

This section discusses some potential limitations for conducting research using 

TraceLab, the Component Development Kit and the Component Library. 

For example, the current infrastructure does not support collecting metrics (e.g., LOC, 

cyclomatic complexity, depth of inheritance tree, coupling between objects, etc.) from different 

software systems. However, these metrics could be computed with external tools and imported 

into TraceLab and used in experiments. 

Running experiments in TraceLab from code hosted in a .NET process is in general 

slower than running the code associated with experiments natively. For example, for typical 

experiments the code would require a few seconds more to run on TraceLab, but for 

computationally expensive experiments (which could take hours, or days on native code) 

TraceLab experiments could take from minutes to hours longer to run than experiments ran in 

native code. Therefore, the time or speed factors in evaluating an approach would need to be 

considered. 
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We attempted to identify papers that covered a number of topics in SM, which we were 

familiar with or had expertise with. Within the papers we covered, in some cases we were 

unable to obtain exact implementations due to lack of specific details or availability of tools. 

Additionally, many experiments cannot be reproduced directly because the datasets under 

study were undisclosed or unavailable.  

The CL and CDK do not implement every technique and building block found in the 

mapping study. The amount of time, manpower, and testing required to do so would be far 

beyond the resources available. That being said, we tried to implement as many of the 

techniques that we could in order to show the efficacy and usefulness of TraceLab as a research 

tool in the domain of software evolution and maintenance. We are continuously working on 

driving new research projects with TraceLab [3, 29, 44, 50, 78, 101, 155, 183] and encourage 

others to do so as well. 

A major issue that prevented us from using or implementing certain tools was their 

copyright licensing. In some cases they do not use permissive licenses, and even if the source 

code was available its license did not permit distribution. TraceLab is released under the open 

source license GPL, which we follow as well with the CL and CDK. Developers may release 

their own components under any license they wish, but if they wish to extend or modify the 

CL or CDK, they must also release under GPL. 

With any new technology or framework, as is the case with TraceLab and the CL/CDK, 

there is an inherent learning curve that needs to be overcome before researchers can take 

advantage of this infrastructure in order to support their research and contribute to the 

community as well. To facilitate this learning process and to make it easier for new users to 

create new experiments and components, we provide numerous online tutorials (e.g., wikis and 

videos) to help new users get started.  In fact, most of our early adopters have viewed a selection 

of tutorials prior to adoption. 
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5.8 Conclusions 

This chapter is an extension of our previous work [47] and addressed the 

reproducibility problem associated with experiments in SM research. Our goal was to support 

and accelerate research in SE by providing a body of actionable knowledge in the form of 

reproduced experiments and a Component Library and Component Development Kit that can 

be used as the basis to generate novel, and most importantly reproducible techniques. 

After conducting a mapping study of SM techniques in the areas of traceability link 

recovery, feature location, program comprehension and duplicate bug report detection, we 

identified 27 papers and techniques that we used to generate a library of TraceLab components. 

We implemented a subset of these techniques as TraceLab experiments to illustrate TraceLab's 

potential as a research framework and to provide a basis for implementing new techniques.  

It is obvious that our effort does not cover the entire range of SM papers or techniques. 

Therefore, in the future, we are determined to continually expand the TraceLab Component 

Library and Development Kit by including more techniques and expanding it to other areas of 

SM (e.g., impact analysis, developer recommendation, software categorization, etc.). In 

addition, we are expanding our online tutorials to make it easier for newcomers to get started 

with TraceLab, and we encourage other researchers to contribute to this body of knowledge 

for the benefit of conducting reproducible research, which in turn, will benefit the entire 

research community. 
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6 Conclusions 
The dissertation proposes an approach to automatically configure and assemble IR-

based solutions in order to support various SE tasks, such as traceability link recovery, feature 

location, software artifact labeling and detecting duplicate bug reports. Our empirical findings 

for this work showed that various factors (e.g., preprocessing steps, preprocessing options, IR 

technique, configuration of IR technique, etc.) that form an IR-based solution have a significant 

impact on the results when the IR-based solution is applied in the context of a SE task. 

Moreover, we also observed that the impact of these factors is often considered in isolation in 

the existing literature, and it is not approached as a whole. Our proposed approach is 

considering all the factors that can influence an IR-based solution (i.e., all the factors ranging 

from choosing the preprocessing steps, to choosing and configuring the IR technique with its 

(near) optimal parameters for the given dataset), and recommends the ones that would produce 

near optimal results. 

The main contributions of this dissertation include: 

 We presented the results of an empirical study of two feature location 

techniques utilizing three different strategies during preprocessing, and more 

specifically during the process of splitting identifiers. Our main research 

question was formulated as follows: “does splitting identifiers have an impact 

on the accuracy of feature location techniques”. In order to answer this 

research question we investigate two feature location techniques (one based on 

IR and the other one based on the combination of IR and dynamic analysis) on 

two open-source systems, namely Rhino and jEdit. The results of an extensive 

empirical evaluation revealed that feature location techniques using IR can 
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benefit from better splitting algorithms in some circumstances, and that various 

splitting algorithms can produce results that are statistically significant. 

 We present a novel approach that automatically configures the parameters of 

LDA, a topic modeling IR technique, to support SE tasks. Topic modeling IR 

techniques have been used to support SE tasks, but these techniques have been 

used on software artifacts in a similar manner as they were used on natural 

language documents (i.e., using the same settings and parameters) because the 

underlying assumption was that source code and natural language documents 

are similar. However, applying topic models on software data using the same 

settings as for natural language text produced sub optimal results. Our proposed 

solution, LDA-GA, automatically configures LDA to achieve improved 

performance across various SE tasks. LDA-GA uses Genetic Algorithms to 

determine a near-optimal configuration of LDA’s parameters by taking into 

account the unique characteristics of the input corpus. We evaluated LDA-GA 

in the context of three different SE tasks (e.g., traceability link recovery, feature 

location, and software artifact labeling) and the results demonstrate that LDA-

GA is able to identify robust LDA configurations, which lead to a higher 

accuracy and better results on all the datasets for these SE tasks as compared 

to previously published results (which used “ad-hoc” or “default” values for 

configuring the LDA parameters). 

 We have developed IR-GA, a novel approach that automatically determines 

and assembles the (near) optimal solution for each stage of assembling and 

instantiating an IR process that will be used to support a SE task. More 

specifically, IR-GA considers the task specific components and data sources, 
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as well as the internal properties of the IR model built from the underlying 

dataset to determine the specific configuration or parameter to be used for each 

stage of assembling the IR process. In an extensive empirical study, we applied 

IR-GA on three different software engineering tasks, namely traceability link 

recovery, feature location, and identification of duplicate bug reports. The 

results of the study indicate that IR-GA outperforms approaches previously 

used in the literature, and that it does not significantly differ from an ideal upper 

bound that could be achieved by a supervised approach (i.e., one that knows 

the results a-priori) and combinatorial approach (i.e., one that considers a large 

number of configurations and parameter combinations). 

 We addressed the issue of research reproducibility by providing the details of 

a framework aimed at supporting it. Research studies in software maintenance 

are notoriously hard to reproduce due to lack of datasets, tools, implementation 

details and other factors (e.g., when applying an IR technique to address a SE 

tasks, details about the exact preprocessing steps and parameters used are 

missing or are not specified properly). The progress in the field is hindered by 

the challenge of comparing new techniques against existing ones, as 

researchers have to devote a large portion of their resources to the tedious and 

error-prone process of reproducing previously introduced approaches. We 

addressed the issue of experiment reproducibility in software maintenance and 

provided a long-term solution towards ensuring that future experiments will be 

reproducible and extensible. We conducted an initial mapping study of a 

number of representative maintenance techniques and approaches and 

implemented them as a set of experiments and a library of components that we 
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make publicly available with TraceLab, called the Component Library. The 

goal of these experiments and components is to create a body of actionable 

knowledge that would facilitate future research and allow the research 

community to contribute to it as well. Moreover, we have provided all the 

components required to reproduce the LDA-GA and IR-GA techniques 

presented in this dissertation. 

In summary, our proposed approach considers the interaction of all the factors that can 

potentially influence the results, and determines which combination of those factors can 

produce (near) optimal results, as opposed to focusing on improving only one of these factors 

in isolation. Moreover, our findings indicate that our proposed approaches (also reproducible 

in TraceLab) can be used to outperform approaches previously used in the literature.  
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Appendix A 

Generating Benchmarks for 
Feature Location 

This appendix describes a set of benchmarks from Java applications, which were used 

in the evaluation of the feature location tasks described in Chapter 2, Chapter 3 and Chapter 4. 

In addition, these dataset can be used for evaluating other software engineering tasks such as 

impact analysis, developer recommendation and traceability link recovery. These datasets 

consist of textual description of change requests and locations in the source code where the 

change requests were addressed. These datasets are designed for evaluating techniques based 

on Information Retrieval. In addition, we provide execution traces that were collected based 

on the description of the change requests. These traces could be used in techniques that 

combine IR and dynamic information [105]. Some of these datasets were already evaluated in 

a number of research papers related to feature location [17, 18, 36, 45, 53, 134], impact analysis 

[64], developer recommendations [102] and traceability link recovery [4]. In addition, we 

describe in detail the methodology used for generating these datasets from the historical data 

of the software systems, as well as any limitations associated with the process of generating 

this data. We also provide a suite of Java tools that instantiate some steps of the methodology, 

which were used to generate these datasets, and can be used to generate datasets for new 

software systems. More information can be found in our online appendix [1].  

A.1 Datasets 

These datasets contain static, textual, and dynamic information about the software 

systems, which were generated by analyzing two primary sources of information: (i) issue 

tracking systems (ITSs) and (ii) source code repositories.  
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A.1.1 Glossary of Software Artifacts 

Dataset (or benchmark): is a collection of artifacts derived from the ITS and source 

code repositories and is referred by the name and version of the system (e.g., jEdit 4.3). 

Issue: is the generic term given to change requests, such as bug reports, feature 

requests, or any other type of tasks submitted to an ITS (e.g., Bugzilla, Trac, etc.) 

IssueID: is the ID (i.e., numerical value, such as 123) of an issue, which is 

automatically assigned by the ITS. 

GoldSetIssueID: is the set of unique method names that were modified when the issue 

IssueID was implemented in the system. In other words, it contains the names of the methods 

that were changed when a bug was fixed, or when a feature was added to the system. The 

method names in the gold set are fully qualified (i.e., they contain the package name, class 

name, method name and signature). 

TraceIssueID (or Execution Trace for IssueID): represents an execution trace that was 

collected by exercising the scenario presented in the description of the issue IssueID. The 

execution trace is characterized by a list of methods that were executed when the user attempted 

to (i) reenact the steps that lead to the buggy behavior described in IssueID or (ii) exercise a 

feature described in IssueID. 

Marked Trace: is a trace where the user has control over the beginning and the end of 

the trace recording process. 

Full Trace: is an execution trace that records executed methods from the start of the 

application until the application is closed. Full traces usually capture more information than 

marked traces. 

QueryIssueID: represents the textual description of the issue IssueID, and consists of the 

title and description of the IssueID. 
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Corpus: is a collection of textual documents (e.g., contents of files, classes or 

methods). For our datasets, we refer to a corpus as the collection of all the method contents for 

a particular version of the software system. 

A.1.2 Description of the Datasets 

The datasets contain in total 633 issues, 633 execution traces and 4,363 gold set 

methods and are summarized in Table A-1. 

The first three datasets (ArgoUML0.22, 0.24 and 0.26.2) are generated from ArgoUML 

[8], a popular UML editor. The other three datasets (JabRef 2.6 [84], jEdit 4.3 [85] and 

muCommander 0.8.5 [128]) were generated from JabRef, a manager for BibTeX references, 

jEdit, a popular text-editor for programmers, and muCommander, a cross-platform file 

manager. jEdit 4.3 was used in the evaluations from Chapter 2, Chapter 3 and Chapter 4, 

ArgoUML 0.22 was used in the evaluation from Chapter 3, and JabRef 2.6 was used in the 

evaluation from Chapter 4. 

The columns from Table A-1 are enumerated and described next, and exemplified on 

the first dataset. The first column represents the name and version of the dataset (e.g., 

ArgoUML 0.22), which was generated by analyzing the SVN commits of ArgoUML submitted 

between version 0.20 and 0.22 (see column 2). For this dataset, there were 91 issues identified 

Table A-1 Description of the datasets. The columns represent the dataset name (system and 
version number), the major releases corresponding to the interval for analyzing the SVN data, 
the number of issues, the type of execution traces (marked or full), the total number of gold 

set methods in the entire dataset, the number of lines of code, files and methods for the 
system used to build the corpus 

Dataset Period Issues 
Trace 
Type 

# Gold 
Set 

Methods 
KLOC Files Methods 

ArgoUML 0.22 0.20-0.22 91 Full 701 149 1,439 11,000 
ArgoUML 0.24 0.22-0.24 52 Full 357 155 1,480 11,464 
ArgoUML 0.26.2 0.24-0.26.2 209 Full 1,560 186 1,752 14,597 
JabRef 2.6 2.0-2.6 39 Full 280 74 579 4,607 
jEdit 4.3 4.2-4.3 150 Marked 748 104 503 6,413 
muCommander 0.8.5 0.8.0-0.8.5 92 Full 717 77 1,069 8,187 
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(see column 3), which contain a total of 701 gold set methods (see column 5). The type of 

execution traces collected is full traces (see column 4). Version 0.22 of ArgoUML has 149 

KLOC (lines of code) spreading across 1,439 files and 11,000 methods (see columns 6, 7 and 

8 respectively). 

A.2 Methodology for generating the datasets 

This section describes the methodology used for generating the datasets. The steps are 

as follows: 

A.2.1 Choose the Software System 

The first step consists of choosing a Java software system (e.g., jEdit) with the 

following characteristics: (i) uses SVN as the source code repository, (ii) has an ITS that keeps 

track of the change requests, (iii) a subset of SVN log messages are referencing IssueIDs, and 

optionally, (iv) the system allows collecting execution traces (i.e., the system is not a library 

that would make it difficult for a user to interact with it in order to collect execution traces). 

The last requirement is optional, and is only needed for generating datasets that contain 

dynamic information in the form of execution traces. 

Note that the choice of Java systems was restricted by the fact that our tools for (i) 

generating gold sets, (ii) generating the corpus, and (iii) collecting traces work only with Java 

systems. 

A.2.2 Choosing the SVN Commits 

Choose the period of time between two major releases for the system (e.g., jEdit v4.2 

and jEdit v4.3). In the following, we will refer to the earlier version of the system as the 

previous release (e.g., jEdit version 4.2), and to the older version as the current release (e.g., 

jEdit version 4.3).  
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For each SVN commit submitted between the previous and current release, we 

analyzed its log message (see Section 0) and its change set (see Section 0). 

A.2.3 Choosing the Issues 

For each SVN Commit, its SVN log message was parsed in order to identify the 

IssueIDs. The subset of SVN commits that contained IssueIDs in their SVN log message 

(called SVNCommitsMapped) were mapped to the issue IssueID from the ITS. For example, if 

SVN commit #123 contained the log message “fix for bug #45678”, the issue #45678 (from 

the ITS) was mapped to the SVN commit #123. We manually verified each mapping to ensure 

the correctness of the data and to discard SVN commits that contain numbers that do not 

represent IssueIDs (e.g., "Eliminated a small code duplication found in r10817", "[...] 

viewtopic.php?f=4&t=413"). In addition, we also included the cases where an IssueID was 

mapped to multiple SVN commits (i.e., the change request represented by the IssueID was 

implemented across multiple SVN commits).  

A.2.4 Generating the Gold Sets 

For each SVN commit from SVNCommitsMapped (e.g., #123), we analyzed its 

associated source code files. More specifically, the version of each modified file (e.g., #123) 

was compared against the previous version of the file (e.g., #122 or earlier) in order to identify 

the methods that were modified during the SVN commit. These methods are part of the gold 

set associated with the IssueID (e.g., #45678) the SVN commit is mapped to (i.e., #123). The 

details of the tool used for generating these gold sets are presented in Section 0. 

A.2.5 Generating the Corpus 

The corpus of the current release was generated using the CorpusGenerator tool (see 

Section 0), which parses all the Java files associated with that release and extracts as documents 



 

153 

all the contents associated with a method (i.e., javadoc comments, modifies, type, name, 

signature and body). 

A.2.6 Generating the Execution Traces 

For each issue generated in Section 0, we identified the candidates suitable for 

generating execution traces on the current release. We generated the execution traces by 

reproducing the scenario presented in the description of the issue. In some cases, the steps to 

reproduce the bug or feature are enumerated in a straightforward way, whereas in other cases 

these steps had to be inferred from the description (because they are not explicitly stated). 

Issues for which we could not collect an execution trace (i.e., the symptoms to reproduce the 

buggy behavior are not described or cannot be inferred) were discarded. The execution traces 

were collected using either the Java Platform Debugger Architecture (JPDA) [133] or the 

Eclipse Test & Performance Tools Platform (TPTP). The traces collected with JPDA (e.g., for 

jEdit) did not contain any method signatures and they are marked traces. The traces collected 

using TPTP contained the method signatures and they are full traces. Section 0 discusses the 

decision of choosing the current release for generating the execution traces. 

A.2.7 Cleanup 

Not all the issues and gold sets generated in the previous steps became part of the final 

dataset. Some of the artifacts that did not adhere to a set of standards were discarded. For 

example, we only kept issues for which their gold sets had at least one method in the corpus of 

methods, and at least one method in the execution trace. 

Methods that appear in the gold set may not necessarily appear in the corpus, due to 

the inherent process of refactoring that a software system undergoes between two consecutive 

releases. For example, a method foo.A.a() that was modified in an SVN commit (e.g., #123), 

and appears in the gold set of issue #45678, may not necessarily appear in the corpus, if the 
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system experienced refactorings, such as the method name was renamed, its signature was 

changed, the class name was renamed, the class was moved in other packages, or the method 

was deleted or merged with other methods. Our tools do not automatically keep track of all the 

changes to the fully qualified name of methods and this is left for future work.  

In an initial attempt to address these limitations, we used a simple process, where we 

manually modified the fully qualified name from the gold set to reflect the name from the 

corpus. For example, if a large number of methods from the gold set (e.g., foo.A.a(), foo.A.b(), 

foo.A.c(), foo.A.d(), etc.) did not appear in the corpus because the class foo.A was renamed to 

foo.ARenamed, we manually renamed the methods in the gold set to foo.ARenamed.a(), 

foo.ARenamed.b(), and so on. This manual process was applied only on a handful of gold sets 

that were identified during quality control of ensuing that at least one gold set method appears 

in the corpus. We acknowledge that this anecdotal manual process should have been replaced 

with a more thorough automatic approach, one which keeps track of all the refactorings during 

two software releases, but this endeavor is left for future work. 

A.3 Tools for Generating the Datasets 

This section describes a suite of Java tools that were used for generated these datasets, 

and these tools could be used by other researchers to generate new datasets, by following the 

methodology described in Section 0. In addition, we provide Matlab implementations for two 

IR techniques, namely VSM and LSI. 

DownloadSVNCommits is a tool based on the SVNKit library, which extracts all the 

pertinent information related to the SVN commits between the specified previous and current 

releases: (i) the SVN log message (which will be parsed for issues) and (ii) the content of the 

files at SVN revision N and N-1 (these files will be analyzed for extracting the gold set). 
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ConvertJPDATraces and ConvertTPTPTraces are two tools that extract the list of 

methods that were executed for each type of execution trace. 

GoldSetGeneratorFromSVNCommits uses the Eclipse Abstract Syntax Tree (from 

Eclipse's Java Development Tools) to automatically generate a list of methods that were 

changed between two versions of a java file (i.e., the version associated with the current SVN 

commit and its previous version). The tool only takes into account semantic changes to the 

code, and does not add to the gold sets methods that experienced formatting changes (e.g., 

indentation, adding blank lines, formatting comments). 

CorpusGenerator uses the same underlying technology as 

GoldSetGeneratorFromSVNCommits to generate a corpus consisting of all the methods of a 

software system. In addition, this tool can also generate corpora for software systems at class 

or file-level granularity. 

CorpusPreprocessor preprocesses a corpus produced by CorpusGenerator, by 

eliminating non-literals, splitting identifiers, stop word removal and stemming. 

CorpusConverter converts a preprocessed corpus generated by CorpusPreprocessor 

to a term by document matrix that can be used as input for IR techniques, such as VSM and 

LSI. 

VSM and LSI are two Matlab scripts that use VSM and LSI to compute the similarities 

between a query and the methods of a system (i.e., the corpus). 

A.4 Description of schema of the datasets 

This section describes the format of the data. Each dataset contains the following files 

and folders: 
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GoldSets: a folder with files named GoldSet[IssueID].txt. Each file contains the gold 

set methods, one per line. A gold set method is the fully qualified name of a method (e.g., 

foo.A.a(int)). 

Traces: a folder with files named trace[IssueID].trcxml (TPTP format) or 

Trace[IssueID].log (JPDA format). Each file represents an execution trace collected for issue 

[IssueID]. The online appendix contains more details about the trace format. 

Queries: a folder where each issue [IssueID] has two files named 

ShortDescription[IssueID].txt (i.e., title) and LongDescription[IssueID].txt (i.e., the 

description). 

listOf[IssueType]IssueIDs.txt: is a file containing the list of IssueIDs for the dataset, 

one per line. The [IssueType] represents the type (e.g., bug, feature, patch) that was assigned 

to the issue in the ITS. The IssueIDs correspond to the [IssueIDs] from file names from the 

GoldSets, Traces and Queries folders. 

CorpusMethods-<dataset>.corpusRaw and CorpusMethods-<dataset>-

AfterSplitStopStem.txt: are two files containing the un-preprocessed and preprocessed 

corpora respectively. Each line of these files is a document representing the content of a 

method. 

CorpusMethods-< dataset >.mapping: is a file containing the fully qualified names 

of the methods that have a correspondence in the preprocessed corpus file (i.e., the method 

name from line i corresponds to the method on line i from the file CorpusMethods-<dataset>-

AfterSplitStopStem.txt). 

IssuesToSVNCommitMapping.txt: is a file containing the IssueID and the list of 

SVN commits that map to it.  
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A.5 Discussion 

Some of the methods from the gold sets do not have a correspondence in the corpus. 

This is due to the methodology for generating the data and the refactoring process between two 

consecutive software releases (see Section 0). In addition, the SVN commits that do not 

explicitly include in their log messages the IssueIDs they addressed (i.e., the log messages lack 

the link to the ITS), are not included in the dataset.  

In our datasets, we do not exclude from the gold sets the methods that were modified 

at one point between two releases, which due to subsequent refactorings did not appear in the 

these releases. This information might be useful for evaluating some tasks that would not 

require a corpus for the evaluation. Moreover, the solution that requires minimum effort to 

bypass this discrepancy between the gold set methods and the methods corpus requires filtering 

the gold set methods from the results, as was done in previous evaluations (see Chapter 2, 

Chapter 3 and Chapter 4). 

Due to the refactorings between two consecutive software releases, some methods may 

not appear in the previous release (e.g., if they were added or renamed) or the current release 

as well (e.g., if they were renamed). We chose the current release for generating the corpus 

and the execution traces because even though the methods that were changed in order to fix 

the bugs submitted between these releases have similar chances of being present in the previous 

release or current release (i.e., due to refactorings), the methods that were added in order to 

implement the features introduced in the current release have zero chance of being present in 

the previous release but have a very high chance of being present in the current release. Thus 

we used one release to capture both the added features and the locations of the methods 

responsible for the buggy behavior as described in the bug description. If other researchers 

would require the use of the previous release in their evaluation, they could generate the corpus 
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for the previous release using the CorpusGenerator tool, and filter from the gold sets the 

methods that do not appear in that corpus. 

The quality of the execution traces might have been impacted by the quality of the steps 

to reproduce. For some issues, the steps to reproduce the bug or feature are described in an 

unambiguous way, whereas in other cases the description is open to interpretation. Due to the 

stochastic nature of the process of manually collecting execution traces, other researchers could 

generate different traces. 

Some of these datasets were used in the evaluations from Chapter 2, Chapter 3 and 

Chapter 4 and were used to support various software maintenance tasks, such as feature 

location [17, 18, 36, 45, 53, 134], impact analysis [64], developer recommendations [102] and 

traceability link recovery [4]. 
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