
On Supporting Android Software Developers and Testers

Carlos Eduardo Bernal Cárdenas

Bogotá, Colombia

Master of Science, Universidad Nacional de Colombia, 2015
Bachelor of Engineering, Universidad Nacional de Colombia, 2012

A Dissertation presented to the Graduate Faculty of
The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
August, 2021



c© Copyright by Carlos Eduardo Bernal Cárdenas 2021



APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Carlos Eduardo Bernal Cárdenas

Approved by the Committee, August 2021

Committee Chair
Professor Denys Poshyvanyk, Computer Science

College of William & Mary

Professor Evgenia Smirni, Computer Science
College of William & Mary

Assitant Professor Adwait Nadkarni, Computer Science
College of William & Mary

Assitant Professor Oscar Chaparro, Computer Science
College of William & Mary

Professor Andrian Marcus, Computer Science
The University of Texas at Dallas

Assistant Professor Adwait Nadkarni, Computer Science

Assistant Professor Oscar Chaparro, Computer Science

Denys Poshyvanyk, Professor, Computer Science

 Evgenia Smirni, Professor, Computer Science

Adwait Nadkarni, Assistant Professor, Computer Science

Oscar Chaparro, Assistant Professor, Computer Science

Andrian Marcus, Professor, Computer Science



ABSTRACT
Users entrust mobile applications (apps) to help them with different tasks in their
daily lives. However, for each app that helps to finish a given task, there are a
plethora of other apps in popular marketplaces that offer similar or nearly identical
functionality. This makes for a competitive market where users will tend to favor
the highest quality apps in most cases. Given that users can easily get frustrated
by apps which repeatedly exhibit bugs, failures, and crashes, it is imperative that
developers promptly fix problems both before and after the release. However,
implementing and maintaining high quality apps is difficult due to unique
problems and constraints associated with the mobile development process such as
fragmentation, quick feature changes, and agile software development.

This dissertation presents an empirical study, as well as several approaches for
developers, testers and designers to overcome some of these challenges during the
software development life cycle. More specifically, first we perform an in-depth
analysis of developers’ needs on automated testing techniques. This included
surveying 102 contributors of open source Android projects about practices for
testing their apps. The major findings from this survey illustrate that developers:
(i) rely on usage models for designing test app cases, (ii) prefer expressive
automated generated test cases organized around use cases, (iii) prefer manual
testing over automation due to reproducibility issues, and (iv) do not perceive that
code coverage is an important measure of test case quality.

Based on the findings from the survey, this dissertation presents several
approaches to support developers and testers of Android apps in their daily tasks.
In particular, we present the first taxonomy of faults in Android apps. This
taxonomy is derived from a manual analysis of 2,023 software artifacts extracted
from six different sources (e.g., stackoverflow and bug reports). The taxonomy is
divided into 14 categories containing 262 specific types. Then, we derived 38
Android-specific mutation operators from the taxonomy. Additionally, we
implemented the infrastructure called MDroid+ that automatically introduces
mutations in Android apps.

Third, we present a practical automation for crowdsourced videos of mobile apps
called V2S. This solution automatically translates video recordings of mobile
executions into replayable user scenarios. V2S uses computer vision and adopts
deep learning techniques to identify user interactions from video recordings that
illustrate bugs or faulty behaviors in mobile apps.

Last but not least, we present an approach that aims at supporting the
maintenance process by facilitating the way users report bugs for Android apps. It
comprises the interaction between an Android and a web app that assist the
reporter by automatically collecting relevant information.
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Chapter 1

Introduction

1.1 Overview

The ubiquity of mobile devices has brought developers’ attention to build and publish

applications (apps) in marketplaces such as Google Play [17] and Apple store [9]. These

mobile apps must compete with many others to gain terrain and users. Thus, the impor-

tance of having high quality apps, yet with the pressure for frequent releases [97, 104] in

a constantly evolving platform [123, 52]. In this dissertation we focus our work on four

topics: (i) current in-field testing, (ii) Android mutation testing, (iii) bug reproduction &

crowdsourced testing, and (iv) bug reporting.

1.2 Motivation

The first goal of this dissertation is to understand developers’ and testers’ needs on auto-

mated testing techniques. The second goal is to devise a set of techniques that are able

to help developers and testers to improve quality of the apps and speed up the testing

process. This work is motivated primarily by the fact that literature’s landscape focuses

on creating new automated techniques without focusing on real developer needs on testing

practices. Moreover, there is a lack of tools that can help to improve, automate, and speed

up some software engineering tasks. This leaves developers and testers ending up relying
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on manual work or heuristics prone to human errors and inefficiencies.

1.2.1 Current In-field Testing

Currently, to write or record automated tests, developers must integrate a testing frame-

work into a target testing device and the app under development. This can add undue

complexity to the development process and the effort involved may cause developers to

abandon such testing practices altogether [114] and perform them manually [106]. More-

over, code coverage and fault detection are common metrics used to validate the effective-

ness of automated testing techniques [64]. However, there is some discussion [101, 109] on

whether these can be actionable metrics in an industry environment.

We aim to help researchers and practitioners to understand developers’ and testers’

practices in terms of automated testing techniques used in the wild. Also, we used all the

insights collected in the survey to structure this dissertation and motivate our work.

1.2.2 Android Mutation Testing

The purpose of mutation testing is to validate the robustness or quality of a test suite.

This involves the creation of mutated versions (i.e., mutants) of the same app with some

modifications applied based on rules called mutation operators. The purpose of the muta-

tion operators is to mimic apps faulty behaviors which are defined by experts derived from

the observation of real bugs. A state of the art mutation tool such as Pit [24] implements

29 mutation operators in its latest version. For instance, operators related to return state-

ments (e.g., empty returns, false returns, null returns) modify a random method in the

code by changing the return value. Other mutation operators related to conditionals (e.g.,

negate conditionals, and remove conditionals) change code statements that involve mostly

if statements. Currently there is no approach that supports Android-specific operators

that are representative of real Android faults. Therefore, we see the need to increase the

quality of test suites by developers. Thus, improving the quality of test suites directly

benefits the applications under test (AUT), users, and developers.
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We propose a framework that automatically seeds Android-specific mutation operators

based on a taxonomy with 14 categories derived from 2,023 software artifacts. The muta-

tion operators are a representative result from the taxonomy resulted from a very diligent

amount of manual work.

1.2.3 Bug Reproduction & Crowdsourced Testing

Mobile developers make decisions based on software artifacts such as user reviews, crash

reports, bug reports, and emails, among others. Moreover, recently there is a trend for

including graphical software artifacts such as screenshots and screen recordings. This is due

to the number of bug reporting frameworks that have built-in screen recording features to

help developers collect mobile application usage data and faults [36, 11, 10, 35]. However,

all these software artifacts can overwhelm developers with so much information that will

take huge amounts of time to go through all of them. We believe that the main effort of

developers should be focused on core software development tasks and therefore automation

for processing graphical software artifacts is required to help them with time consuming

and tedious tasks.

Additionally, relying upon the crowd to perform functional and usability testing of mo-

bile apps is becoming increasingly common as evidenced by a growing number of crowdtest-

ing platforms [8, 34, 22]. An added benefit of crowdsourced testing, illustrated by previous

work, is that integrating crowd-based app usage data and automated input generation

techniques can markedly increase their effectiveness [135, 142]. Currently, to collect crowd

data from users, developers typically must integrate a third-party library into their app,

which can be expensive both financially and in terms of added development effort.

Conversely, we aim to allow crowd workers to simply submit videos of application

usages depicting bugs or faulty behaviors that could be later automatically translated into

replayable scenarios.
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1.2.4 Bug Reporting

Current state of the art tools such as CrashScope [157, 153] and Sapienz [141] assist

developers in the generation of inputs to find faulty behaviors while creating detailed bug

reports. These bug reports are relatively robust for the apps they test. Nevertheless, they

fall into the oracle problem which might be successful at reporting crashes but might miss

bugs that are more subtle.

We present an approach that helps developers and testers to report faulty behaviors in

apps by recording sensors, actions, and screenshots data in a very detailed crash-report.

1.3 Outline

There is a large amount of research that seeks possible solutions for software mobile de-

velopment. However, there is a lack of understanding of testing practices by developers

and testers. Also, there is a need for facilitating the evaluation of robustness in Android

test cases that could potentially give developers advantage over other competitor apps.

Moreover, developers face different problems when trying to reproduce bug reports from

users such as incomplete descriptions, amount of feedback from multiple sources, lack of

steps to reproduce, and lack of time to validate video bug reports among other problems.

We seek to tackle these challenges in this dissertation.

In Chapter 2 we present a survey with an in-depth analysis of developers and testers

needs. More specifically, the purpose of this survey is to benefit the perspective of re-

searchers and practitioners interested in designing approaches and tools for automated

testing in mobile apps. This survey involves a total of 102 practitioners that contributed

to Android open source projects. As a result we concluded that developers: (i) rely on

usage models for designing test cases, (ii) prefer expressive automated generated test cases

organized around use cases, (iii) prefer manual testing over automation due to reproducibil-

ity issues, and (iv) do not perceive code coverage as an important measure of test case

quality. The content of this chapter is based primarily on the paper [130].
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In Chapter 3 we present a mutation testing framework to facilitate the evaluation of

Android test cases. Moreover, it includes a taxonomy of 14 categories of faults on Android

apps derived from a total of 2,023 artifacts. These artifacts were collected from sources for

Android such as: (i) bug reports from open source apps, (ii) bug-fixing commits of open

source apps, (iii) Android-related Stack Overflow discussions, (iv) exception hierarchy of

Android APIs, (v) bugs and crashes described in previous studies, and (vi) reviews posted

in the Google Play store. As a result of the taxonomy, we proposed 38 Android-specific

mutation operators implemented in an infrastructure called MDroid+. Additionally, we

executed a comparative analysis with previously proposed tools that are Java- and Android-

specific, leaving MDroid+ with more representative of Android faults. MDroid+ has a

better performance in terms of non-compilable and trivial mutants. The work described

in this chapter is based primarily on work on the MDroid+ framework [128].

In Chapter 4 we propose a new approach to automatically translate video bug reports

into replayable scenarios called V2S. This approach relies on deep learning (DL) techniques

to facilitate the detection and segmentation of users’ actions in video bug reports by

analyzing every single frame of the video. V2S is divided in three main phases: (i) the first

phase is touch detection that uses Faster R-CNN and AlexNet to detect and estimate

opacity of touch indicators respectively; (ii) the second phase is action classification that

takes the frames and opacity levels to segment and assign a type of action to the detected

events; (iii) the third phase is scenario generation that takes all the actions and locations

to accurately generate a low-level script that can be replayed in an Android device. As a

result of this research, V2S is capable of replaying actions with high accuracy (i.e., ≈ 89%)

and illustrates the potential usefulness in an industry setup. The work described in this

chapter is based primarily on work on the V2S approach [55].

In Chapter 5 we present an approach called ODBR to assist developers and testers

in reporting bugs. ODBR records per user interaction low level events as well as screen-

shots with the current state of the app to facilitate precise bug reporting. ODBR has

four major components which includes: Getevent manager to detect when new inputs are
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received, user-interface-hierarchy manager that captures the hierarchy and information

from graphical-user-interface-components, Event manager that samples a stream of sen-

sors (e.g., accelerometer, and GPS), and Screenshot manager that takes a screenshot of the

current app state. Then, ODBR Android app sends this information to a web application

that generates a fully expressive bug report in html. The work described in this chapter

is based primarily on work on the ODBR approach [150]

In addition to the contributions outlined in this dissertation, the author has worked

on a wide variety of research areas in software engineering over the course of his graduate

studies including publications on: (i) Android program analysis [132, 52], (ii) improving

energy consumption of Android apps [124, 125, 129, 126], (iii) improving Android bug

reporting [193, 155, 157, 153, 59, 152], (iv) automated testing of Android apps [135], (v)

improving GUI design and implementation of Android apps [151, 56], and (vi) security

and traceability in software [168, 154].
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Chapter 2

How do Developers Test Android

Applications?

2.1 Introduction

Mobile devices have quickly become the most accessible and popular computing devices

in the world [13] due to their affordability and intuitive, touch-based user interfaces. The

ubiquity of smartphones and tablets has led to sustained developer interest in creating

“apps" and releasing them on increasingly competitive marketplaces such as Apple’s App

Store [48] or Google Play [17]. Due to their highly gesture-driven nature, GUI-based test-

ing of mobile apps is paramount to ensuring proper functionality, performance, and an

intelligent user experience. However, GUI-based testing activities are typically costly, and

in the context of mobile apps, often performed manually [105, 114]. Given the additional

constraints on the mobile application development process including pressure for frequent

releases [97, 104], rapid platform evolution and API instability [52, 123], and parallel devel-

opment across different platforms [105, 40] it can be difficult for developers to budget time

for effective testing. Thus, the challenge of automating mobile app testing has captured

the interest of the software engineering and systems research communities, and has led

to the development different types of automated techniques that assist in various testing
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tasks.

Research-oriented tools aimed at improving mobile testing span a diverse range, from

record & replay approaches [82, 99], to bug reporting aids [155, 152], to automated input

generation techniques [6, 138, 181, 175, 43, 44, 50, 157, 15, 42, 50, 63, 197, 195, 135, 200,

102, 146, 140, 141]. Perhaps the most interesting and valuable of these techniques from a

developer’s or tester’s perspective are the automated input generation (AIG) techniques.

The high-level goal of such techniques is relatively simple: given a mobile application under

test (AUT), generate a series of program inputs according to a pre-defined testing goal. For

the vast majority of these techniques, the generated inputs are simulated touch events on

the screen of a device, and the testing goal is typically either achieving the highest possible

code-coverage or uncovering the highest number of faults (e.g., crashes).

However, despite the large amount of research effort dedicated to building AIG tech-

niques and other automated approaches, recent studies seem to indicate that these ap-

proaches are typically not used in practice [114]. Choudhary et al. offer a set of potential

reasons for this lack of adoption as part of an experience report analyzing several AIG

tools [64], and among the reasons reported are (i) lack of reproducible test cases, (ii) side

effects across different testing runs, and (iii) lack of debugging support. While this study

offers some insight, researchers and practitioners who aim to build these tools with the in-

tention of them gaining adoption and positively impacting developers do not have a clear

understanding of the testing needs and preferences of real developers.

This lack of guiding direction for this particular topic of mobile software engineering

research is somewhat troubling given the highly practical impact that such tools could

have on daily development and testing workflows. Conversely, it is unsurprising that many

tools have failed to make an impact without taking into account developer preferences,

as “Automation applied to an inefficient operation will magnify the inefficiency"1. If the

operation or goals of automation techniques do not match developer needs, preferences,

and expectations (and are thus inefficient), there is little chance that these will have a
1Bill Gates, co-founder of Microsoft, in reference to automation in business settings
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meaningful impact. Therefore, there is a very clear demand to align the goals of research

on automated testing techniques with the needs of developers in order to allow for practical

impact.

In this project, we aim to bridge this gap through a survey, that at its core, aims to

examine the testing preferences of open source developers with the intended purpose of

providing actionable information to researchers and practitioners working on approaches

to automate different aspects of mobile testing.

In summary, this project makes the following noteworthy contributions:

• To the best of our knowledge, this is the first work aimed at analyzing mobile testing

preferences of real open source developers with a focus on (i) typical preferences when

designing test cases for mobile apps, (ii) preferred characteristics for automatically

generated test cases, and (iii) preferred effectiveness metrics.

• This study complements previous work that has identified and speculated upon po-

tential reasons for lack of adoption of automated mobile testing approaches by col-

lecting information from open source developers and providing a set of learned lessons

to guide future research.

• Our general findings indicate that developers (i) rely heavily on usage models of

their applications when designing test cases, (ii) prefer high-level expressive auto-

matically generated test cases organized around use-cases, and (iii) prefer manual

testing over automation due factors including test case representation and issues

with reproducibility (iv) do not hold the perception that code coverage is an impor-

tant measure of test case quality, as indicated by a large portion (≈ 64%) of study

participants, instead citing other measures of quality such as feature coverage or

fault-detection as more useful.
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2.2 Design of Empirical Study

The main goal of this study is to identify and analyze practices and preferences of mobile

developers (MDs) toward testing related activities. To this end, we explored MDs (i)

practices in documenting requirements and designing test cases, (ii) preferences toward

features of automated testing approaches, (iii) use of existing automated tools, and (iv)

preferences for testing-realted quality measures. The study is intended to benefit the

perspective of researchers and practitioners interested in designing approaches and tools

for automated testing of mobile apps.

While common wisdom and best practices suggest that test cases should be derived

from requirements artifacts, to the best of our knowledge, previous studies focused on the

challenges and tools used for testing but without analyzing the details of the strategies

used by MDs for designing manual test cases or exploring preferences for automatically

generated test cases [105, 114]2. These aspects are important, as learning the preferences of

developers’ manual testing practices can inform automated techniques to best meet these

needs.

Consequently, we aim to fill this “gap” in recent work by surveying contributors of open

source Android apps hosted on GitHub. We are most interested in understanding testing

practices of mobile developers from the viewpoint of test case design, preferred testing

strategies, reasons for the prevalence of manual testing (as suggested by previous work

[105, 114]), and preferred information/features of ideal automatically generated test cases.

We also wanted to survey MDs about the usage of widely used techniques in the research

community such as random testing and coverage analysis.
2Kochhar et al [114] investigated also with a survey with 83 open source Android developers the tools

they use and challenges they face while testing Android apps. It is worth noting that our survey also
includes a question concerning the tools used for automated testing (See SQ8 in Table 2.1). Kochhar et
al [114] list a reduced set of tools (i.e., 10), however, we complement their findings with a list of 55 tools
used by our surveyed participants. We also complement their findings with a specific question designed
to understand experiences and issues of mobile developers when using random testing tools (See SQ9 in
Table 2.1)
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Table 2.1: Survey Questions for our Empirical Study

Id Question (Type)

SQ1
What type of documentation do you use for specifying the requirements in your
apps? (Multiple choice)

SQ2
How do you usually distribute your testing time among these different activities (e.g.,
manual testing 20%, Junit testing 50%, cloud testing 30%)? (Open question)

SQ3 Please provide rationale for your answers to SQ3. (Open question)
SQ4 How do you design the test cases for your apps? (Open question)
SQ5 What is the target of the test cases you design for your apps? (Multiple choice)

SQ6
If you are using (or intend to use) tools for automatic generation of test cases, what
format for the test cases do you prefer? (Single choice)

SQ7
Assuming you have test cases in natural language, what type of information would
you like to have in them? (Multiple choice)

SQ8 What tools do you use for automated testing? (Open question)

SQ9

What are your experiences with random testing tools such as Android Monkey? Are
random testing tools useful for your needs? Did you experience any issues with the
sequences of events generated by a random testing tool like Android Monkey? (Open
question)

SQ10

Do you use code coverage as a metric for measuring the quality of your test cases?
Why? (If you answer is No, please describe how else you measure or ensure the
quality of your test cases) (Open question)

2.2.0.1 Research Questions

In particular, we aimed at answering the following research questions (RQs):

• RQ1: What are the strategies used by MDs to design test cases?

• RQ2: What are the MDs’ preferences for automatically generated test cases?

• RQ3: What tools are used by MDs for automated testing?

• RQ4: Do MDs consider code coverage as a useful metric for evaluating test cases

effectiveness?

2.2.0.2 Data Collection

Table 2.1 lists the questions in the survey. SQ1-SQ5 were used to answer RQ1; SQ6 and

SQ7 aim at answering RQ2; SQ8 and SQ9 were designed to answer RQ3 ; and SQ10
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Figure 2.1: Results of demographic questions for the 102 survey participants

served to answer RQ4. We also collected demographic background information to filter

participants with short or over claimed experience in Android development, and to measure

the diversity of our sample.

The survey was hosted online on the Qualtrics platform [26], and the participants were

contacted via email. To select the potential participants, we followed the same procedure

from previous work [134] — that also surveyed open source developers — to extract con-

tributors’ emails from GitHub. After the extraction and filtering, we emailed the survey to

10,000 email addresses from which we got 485 survey responses. We discarded 5 responses

in which the participant reported 0 years of experience in Android programming, 3 with

invalid answers, and 370 unfinished surveys. In the end, we obtained 102 valid responses.

The demographics of the participants are depicted in Figure 2.1. Our sample (102) is

comparable to final numbers of mobile developers (with industrial experience) surveyed/in-

terviewed in previous studies investigating other software engineering phenomenon: 3

in [125], 9 in [145], 45 in [52], 83 in [114], 200 (188 developers + 12 experts) in [105],

and 485 in [134]. In addition, the claimed programming experience is diverse for the three

cases: general programming, Android programming, and industrial experience.

The answers to multiple/single-choice questions were analyzed using descriptive statis-
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Figure 2.2: Artifacts used by Android developers to document apps requirements. The
bar plots show the number of times each artifact was selected by the participants.

tics. In the case of open questions, we categorized the answers manually following a

grounded theory-based approach [69]. Three of the authors went through all of the free-

text answers and performed one round of open coding by independently creating categories

for the answers. After the round of open-coding, the codes were standardized. In the cases

of non-agreement between the three coders, corresponding answers were marked as “Un-

clear”.

2.3 Results and Discussion

In this section we report the responses by the participants and provide answers to the

aforementioned research questions. We describe the results using descriptive statistics and

through summaries and discussion of examples of free-text answers.

2.3.1 RQ1: What are the strategies used by MDs to design test cases?

2.3.1.1 Artifacts for documenting app requirements

Android developers use a diverse set of artifacts to document requirements, including

artifacts from disciplined and agile methods. Fig. 2.2 depicts the answers for each of

the options in our SQ1 (note that this was a multiple-choice question). Although there

is no large tendency towards a preferred artifact, feature lists are the top-used artifact.

Surprisingly, only six participants do not document requirements, and the usage of the
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other options (i.e., use cases, user stories, and informal natural language descriptions) is

balanced across the participants. When analyzing the most popular answers (including

combination of choices as a whole answer provided by participants), there is no clear

preference; however, we found that the most popular responses reporting the usage of only

a single type of artifact as the documentation practice are distributed as follows: user

stories (14 participants), feature lists (12), informal natural language descriptions (10),

use cases (9). Additionally some participants selected the combination of all 4 artifacts (8)

as a single answer.

2.3.1.2 Distribution of testing efforts

Previous studies have reported that manual testing is preferred over automated appraoches

[105, 114]. In the survey, we asked participants about how they distribute their testing

effort and time across different testing activities (SQ2). In particular we asked about the

following activities: manual testing, random testing using Monkey, JUnit testing, Record &

Replay-based (R&R) testing, GUI ripping-based tools, automated testing with automated

testing APIs (ATA), cloud testing services, and others. The answers provided by the

participants are depicted with boxplots in Fig. 2.3.

As expected, manual testing is the preferred testing activity with an average of 58.18%

of the testing efforts dedicated by the participants, an interquartile range (IQR) of [25%, 97.25%]

and a maximum of 100%; 96 out of 102 participants reported more than 5% of testing ef-

fort devoted to manual testing with 35 of them reporting more than 90% of dedication to

manual testing. The second most popular activity in which the developers dedicate their

testing efforts is JUnit-based testing with and average dedication of 18.96%, an IQR of

[0%, 30%] and a maximum of 90%; 58 participants reported more than 5% of testing effort

devoted to unit testing. The third most popular testing activity is automated testing with

APIs such as Expresso and Robotium, with an average dedication of 8.29%, an IQR of

[0%, 10%] and a maximum of 80%; 34 participants reported more than 5% of effort devoted

to manual testing.
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different activities  (e.g., manual testing 20%,

Junit testing 50%, cloud testing 30%)?

Figure 2.3: Distribution of testing activities reported by our participants. *ATA means
Automated Testing APIs, and R.R means Record & Replay.

Fuzz/Random testing with Android Monkey is widely used as the baseline for compar-

ing new automated testing tools proposed by the research community [138, 135, 64, 157].

However, responses from our participants suggest that fuzz/random testing is not widely

used in-the-wild. Only 11 participants reported more than 10% of testing effort with An-

droid Monkey with an average of 16.36% (for those 11 participants) and a maximum of

35%. One automated strategy that is widely used in the research community and serves

as the foundation for multiple methods of AIG is GUI ripping [43, 50, 42, 159]; however,

it seems that developers in-the-wild are not aware of such tools or do not find them useful.

Only two participants reported the usage of automated ripping tools with 5% and 10% of

their testing efforts. Concerning the case of Record & Replay, five participants reported

this technique with more than 5% of testing effort and a maximum of 30%.

Despite of the availability of services such as Xamarin test cloud [194], Saucelabs [31],

and Perfecto [23], only 14 participants mentioned the usage of cloud services for testing

with an average effort of 12.57% (for those 14 participants) and a maximum of 30%.
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Finally, under the “Others” option, we got 14 answers in which the participants claimed

more than 10% of testing effort with an average of 29.29% and maximum of 95%. The

participants further explained in the answer to SQ3 that this is mostly because they use

customized tools or strategies, instrumentation-based testing, or beta testing with users.

Regarding the rationale provided by the participants for their choices, the preference

for manual testing is supported by several reasons such as (i) changing requirements, (ii)

lack of time for testing and process decisions, (iii) size of the apps, (iv) lack of knowledge

of automated tools and techniques, (v) usability and learning curve of available tools

for automated testing, and (vi) the cost of maintaining automated testing artifacts. For

instance, the following rationale provided by some participants illustrate their preference

for manual testing as a consequence of changing requirements:

“ our app changes very frequently and we can’t afford unit testing and automated testing

”

“ it’s hard to right the useful test case for current project, because the requirement is

changed very often, and the schedule is very tiny. So we still prefer hire some tester to do

manually testing. In the other hand, the android test framework is not good enough yet, I

tried study roboeletric, it’s a little bit hard to understand. ”

“ A lot of what I do is related to how the app looks and feels. Therefore a lot of my

testing is done manually. When I have complexity in my classes I use junit. Sometimes

I use the Instrumentation testing classes from Android, but not much as manually testing

feels faster. Also the requirements tend to change a lot so manually testing unfortunately

is the best option for me. ”

The survey participants also justified the usage of manual testing because of time-

related issues and project management decisions. For example:

“ Usually customers doesn’t provide enough time for development of automated tests. ”

“ Too much time required in configuring the components for automated testing. Partly

because I was working in a consultancy firm so there was no incentive to spend time on

automated testing (not chargable). ”
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“ I do not agree about this method but this is management decision. I repeatedly ex-

pressed by disconformity with this methodology. ”

“ Although I strongly disagree with this: the institution I work at does not provide the

atmosphere to make testing a vital part of our development. ”

“ My previous work didn’t have any testing requirements for the apps, and writing tests

takes time that the budget didn’t account for. ”

Cost, in terms of money and time, for creating and maintaining automated testing

artifacts is also another reason for preferring manual testing. This case is illustrated by

the following examples of rationale provided by the survey participants:

“ I’m faster by testing the app and all it’s possibilities on the device itself, instead of

writing separate Test Cases. ”

“ Quickly testing the product is important and writing automated tests can’t be done

quick enough. So a majority of my time is spent making sure the product works manually,

then spending time automating what I can. jUnit is wrote by developers, so I’ve added a

couple of tests, but not much. Have just played around with Android Monkey. Our product

uses the Cloud, but another person takes care of the majority of the testing. ”

“ We prioritize feature work over automated testing. Automated tests have done little

to prevent bugs, but incur significant overhead when creating new features or refactoring

old. ”

“ For Android traditionally it has been very difficult to write tests for. Also UI tests can

be brittle and take significant effort to maintain. In an environment where development

resources are constrained and features / bug fixes works takes priority, it is very difficult

to have sufficient tests. Manual testing with a dedicated QA team is more practical to

maintain. ”

“ I’m skeptical of UI testing because I’ve found that the tests are fragile, require a lot

of maintenance, and are generally more work than worth. ”

The survey participants also claimed a general lack of knowledge of existing automated

testing techniques, along with difficulties related to the usability of the tools as factors for
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not performing automated testing:

“ We don’t really know how to use other tools. ”

“ I did not know about Android Monkey prior to this survey. I will try it out. ”

“ I have not found any easy-to-use testing solutions for Android ”

Finally, the size and maturity of the apps is also a factor that influences the preference

for manual testing:

“ I never got involved in an Android project big enough to require unit testing, it wasn’t

worth investing in that. ”

“ I mostly do manual testing due to the limited size of my apps. I sometimes use a

custom replay system (built into the app) to duplicate bugs after I come across them. This

method is usually combined with manual testing (printing debug information to the log) to

pinpoint the cause. ”

“ I’m mostly just building toys or research prototypes, never built Android apps profes-

sionally. So I test pretty informally (and poorly) because I just want to build a thing quick

and don’t care if it’s robust. ”

2.3.1.3 Test case design strategies

After the open coding for the responses to SQ4, 34 answers were not considered because

(i) the participants explicitly mentioned they do not perform testing or do not design

test cases, and (ii) for some answers we were not able to understand/codify the textual

answer. From the valid/accepted answers, the top strategy reported by the participants

to design test cases is follow the usage model of the app as a guide (30 answers). The

next in the list is designing unit tests for individual components/methods (10 answers),

followed by negative testing and edge cases (9 answers), and testing expected outputs (6

answers). Bugs, changes in the last version, and regression account for 9 answers. Three

participants claimed they follow the Behavior-Driven-Development philosophy (BDD). In

addition, three participants mentioned they perform ad-hoc testing. Finally, two of the

participants combine the usage model with feedback from the end users.
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Non-functional requirements were mentioned only in few cases as the drivers for de-

signing test cases: robustness (2 answers), performance (1 answer), usability (1 answer),

and different device configurations (1 answer). Other strategies mentioned by only one

participant each are: code coverage, defining assertions in code, dependencies, testing the

GUI model, and testing the business logic.

We also found that developers tend to prefer a single criteria for designing test cases,

as very few respondents reported more than one preference. Only 15 participants reported

mixed strategies, as those described in the following responses:

“ l look for boundary conditions - i try to work out what happens in the Grey Areas -

i look for ways of breaking it. i also test a range of use cases, how Can the user interact

with the app? when combinations are possible? i try to test the most probable Scenarios

and some strange ones. ”

“ 1) specific tests depending on what the app should do. For instance: schedule should

be as precise as is required for a scheduling app. 2) robustness: find the limits on the app

by constantly changing the aspect ratio of the screen or switching app on and off. 3) look

at CPU utilization while testing the app... app should not drain battery unnecessary ”

“ Based on the user stories or Use cases. Define initial state (local data). Perform

scenario (call a rest service / perform an activity, etc). Validate final screen or rest service

result. ”

The answers to SQ4 were complemented by participants reporting the testing goals

they have when designing test cases (SQ5). Fig. 2.4 depicts the responses for SQ5. As

shown in Fig. 2.4, the developers prefer to design test cases that target individual uses

cases/features (77 answers), or combinations of multiple uses cases/features (49 answers).

Random events were mentioned only by 16 participants. The option “Other" was selected

by nine participants; four of the “Other” answers were “none”, two participants mentioned

non-functional attributes (i.e., performance and robustness), one participant responded

“corner cases”, and one mentioned “unit test”.
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Figure 2.4: Target of test cases designed by the survey participants. The bar plots show
the number of times each target was selected by the participants. *UC means Use Case,
and F means Feature.

Answer to RQ1. Mobile developers (as represented by our survey sample) heavily

rely on usage models to document and design test cases. First, requirements are

documented using different artifacts such as feature lists, informal natural language

descriptions, user stories and use cases; only six out of 102 participants reported they

do not use any artifact to document requirements. Second, the surveyed participants

mostly rely on manual testing and unit testing for their testing strategies. The

rationale provided by the participants for their preference and effort dedication to

manual testing is supported by several reasons such as (i) changing requirements,

(ii) lack of time for testing and process decisions, (iii) size of the apps, (iv) lack of

knowledge of the tools and techniques, (v) usability and learning curve of available

tools, and (vi) the cost of maintaining automated testing artifacts. Finally, the

surveyed developers mostly focus on the usage model to design test cases, and use

one or a combination of use cases/features as the target for their test cases.

2.3.2 RQ2: What are MDs preferences for automatically generated test

cases?

Concerning SQ6, natural language is the format preferred by the survey participants

(See Figure 2.5) for automated test cases, with 33 out of 102 participants selecting this
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Figure 2.5: Automatically generated test cases format preferred by the survey partici-
pants. NL means Natural Language, ATA means Automated Test API, and ADB-input
means input commands generated via the Android Debug Bridge (ADB).
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Figure 2.6: Information preferred by survey participants in automatically generated test
cases. UC means Use Case and F means Feature.

option. The second most popular answer was the “Other” option (30 participants), which

represented mostly the lack of participant knowledge about tools for automatic generation

of test cases or the lack of preference for any format. Unfortunately, the option “Other” did

not provide us with actionable knowledge; 17 textual answers for the “Other” option are

empty or claim no preference for any format; ten participants reported that they do not

use/do not like/are not aware of tools for automatic generation of test cases; one answer

was unclear; one answer mentioned scripts augmented with comments; and one participant

responded “Replayable event streams, starting from a known good state”.

The third most popular option for SQ6 was test cases written with automated testing

APIs such as Espresso and Robotium (22 participants), and the least selected choice was
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ADB input commands (18 participants). Therefore by combining the number of partici-

pants voting for natural language test cases and test cases written with ATAs, the results

suggest that Android developers prefer expressive test cases over low level scripts with

input commands.

Concerning the preferred information that developers would like to have in an ideal au-

tomatically generated test case (SQ7), expected outputs and reproduction steps organized

by use case or feature are preferred over the other options. The answers for SQ7 are de-

picted in Fig. 2.6. 82 out of 102 participants (80.39%) selected either “Expected outputs” or

“Reproduction steps grouped by use case/feature”. Only 21.7% of the participants agreed

on having screenshots as part of test cases. And, the textual answers to the “Other" op-

tion include: reason/motivation for the test case, device and contextual information (e.g.,

Android OS version, display dimension, internet connection status), malicious user inputs,

and specifications like in the RSpec framework for Ruby [30].

Answer to RQ2. Automatically generated test cases in natural language or ex-

pressed using automated testing APIs (e.g., Robotium or Espresso) are preferred by

the participants. This suggest a preference for high-level languages instead of low

level events (e.g., using ADB input commands). In addition, the surveyed develop-

ers prefer to have test cases that include expected outputs and reproduction steps

organized/grouped by use cases/features.

2.3.3 RQ3: What tools are used by MDs for automated testing?

2.3.3.1 Tools for automated testing

55 different tools have been used by our survey participants (SQ8); the tools and fre-

quencies are depicted as a word cloud in Fig. 2.7. The most used tool is JUnit [20] (45

participants), followed by Roboelectic [27] with 16 answers, and Robotium [28] with 11

answers. 28 participants explicitly mentioned they have not used any automated tool for

22



Figure 2.7: Tools used by the participants for automated testing of Android apps.

testing mobile apps. 39 out of 55 tools were mentioned only by one participant each, which

suggests that mobile developers do not use a well established set of tools for automated

testing. In addition, surprisingly, Monkey [86], the state-of-the-art tool for fuzz/random

testing, was mentioned only by three out of 102 participants, and the results are similar

for other tools designed/promoted by Google: Espresso [85] (eight participants), Mon-

keyRunner [84](one participant), Lint [83] (one participant), and UIAutomator [7] (one

participant). None of the mentioned tools allow for automatic derivation of test cases from

source code, real app usages, or requirements specifications3

2.3.3.2 Experiences with random testing tools

60.78% (62 out of 102) of the participants reported no experience with Monkey or tools for

random testing (SQ9). 15 participants (14.71%) provided no-rationale/unclear answers.

Concerning usefulness, 13 participants (12.75%) consider Monkey and random testing as

useful tools for corner cases or stress testing, and in some cases for finding performance

issues. For instance:
3It is worth nothing that the Android Monkey tool generates random sequences of events, however, the

sequences are not easy to document or describe in terms of use cases.
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“ Yes, it’s useful to detect minor/stability issues. For instance it sometimes finds issues

happened when tapping buttons many times quickly. ”

“ Monkey is very useful for stress testing the application or to verify that there are no

leaks (typically memory leaks) that build up over time. Sometimes, it also catches the odd

bug as well. ”

However, eight of those 15 participants pointed out that some issues or limitations are

related to low impact of the discovered bugs and reproducibility:

“ They can be useful in finding memory leaks, ANRs, bad navigation flows and the like.

They can be problematic in doing unexpected things, e.g. exiting your application during a

test run. ”

“ Good for stress testing, not very consistent results. ”

“ They add a lot of noise for very little signal. They are good at finding some really

weird cases, but mostly it seems like the cases they find wouldn’t normally be hit by a user

and that time could be better spent adding features. ”

“ I used it long time ago and find that it works as a solution only for low-quality fragile

code. It’s rarely helps to improve overall quality of the app. ”

11 participants (10.78%) provided answers in which the main message is that Mon-

key/Random testing tools are not useful because of reproducibility issues, maintenance

costs of the scripts, and lack of tangible benefits: “ hard to reproduce bugs, steps hardly

reproducible by human beings ” “ I’ve ran Android Monkey and it found some defects, but

the developers said "that barely happens" or "that never happens". So the defects weren’t

looked into. ” “ I don’t think random tests provide any value. The ideal is to have a tool

able to perform an entire session (run several scenarios) / without having the test-runner

to kill and initialize the app before running each scenario. ”

Although random testing has been proven to be “useful" by the research community [76,

49, 65, 41], available random testing tools for mobile apps (e.g., Monkey) have issues such

as lack of expressiveness. For instance, the Android Monkey tool allows for reproducibility

of event streams (by using the same seed), but it does not have log capabilities for creating
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a higher level representation of the streams. In addition, it seems to be the only tool

available for the community for random testing of mobile apps.

Researchers have also designed tools for mobile random testing (e.g., Dynodroid [138]),

however those tools are still only known by the research community or have impediments

for industrial usage (e.g., applicability only under certain conditions). In general, the main

finding here is the lack of experience with and lack of usage of random testing tools by the

surveyed participants. Regarding the usefulness, few participants reported cases in which

the tools are useful for finding corner cases and stress testing; and few participants reported

that the tools are not useful at all. However, common complaints in both cases (from both

participants who saw benefits and those who didn’t) are lack of reproducibility of the event

sequences. These results suggest, that current tools used by Android developers need to be

improved to allow expressiveness of the generated streams. Also more effort in the research

community should be dedicated to promote the usage of random testing tools generated

as part of research, and to deliver tools that can be easily adopted by the industry.

Answer to RQ3. The surveyed participants rely on a diverse set of tools for sup-

porting automated testing of mobile apps. In particular, 55 different tools were

reported showing a preference for APIs such as JUnit, Roboelectric and Robotium.

Compared to the study by Kochhar et al. [114], we report a larger set of tools

answered by a larger set of participants. However, both studies agree on listing

JUnit, Roboelectric and Robotium as part of the top-4 used tools. Record & replay,

and random testing tools are used only by few participants. In the case of random

testing tools, few participants claimed some benefits such as stress testing, execu-

tion/discovery of corner cases, and execution of events that are hard to generate

by humans. However, impediments for increased adoption of random testing tools

(e.g., the Android Monkey tool) are the lack of expressiveness of the generated event

streams, and difficulty reproducing scenarios.
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2.3.4 RQ4: Do MDs consider code coverage as a useful metric for eval-

uating test cases quality?

14 out of 102 participants reported they do not use code coverage, do not use automation

tools, or were unaware of code-coverage as a quality metric (SQ10); and six out of 102

participants provided no valid answers. From the remaining 82 participants, 51 answered

“No” (i.e., code coverage is not useful), 29 answered “Yes” (i.e., code coverage is useful),

and two participants provided a “yes-no” answer. In the case of the “No” answers, 19 out of

51 augmented the answer claiming that code coverage is not a good metric for measuring

quality of test cases because there are other useful and better methods/metrics such as

code (test cases) reviews, number of faults detected by the test cases (fault-detection

capability), features covered by the test cases (feature coverage), or the “works for me”

criteria4. Examples of the answers claiming that code coverage is not a useful metric for

evaluating test case quality include the following:

“ No. We measure the number of uncaught bugs and regressions over time that devs

had to spend time fixing ”

“ No, calculate total coverage based on features, covered elements etc. ”

“ I don’t usually participate in the testing side of things, but I wouldn’t use code coverage

as a metric for quality as the two are completely distinct and different things. ”

“ Code coverage categorically does not measure the quality of tests. It is useful to

show that code is not currently tested but it says nothing further about the code that is

already under test. Many people – probably most – are quite skilled at writing useless tests.

Education is the only tool for producing high-quality tests and code review is the only tool

for ensuring that quality. That said, fuzz testing, for instance, is a very powerful tool

for certain kinds of testing. Knowing how to use the tools available to us is part of that

education. ”

29 out of 102 participants found code coverage a useful metric for measuring test cases
4Note that the effectiveness of code coverage for measuring the quality of test suites has been already

questioned by the software engineering community [101, 109, 202].
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quality, in particular for identifying code entities that have not been tested. Examples of

their answers are as in the following:

“ I use code coverage mainly as a tool to ensure I haven’t forgotten any major areas of

testing. Most of my projects have a minimum coverage requirement of 75-80% ”

“ Yes, I try to keep code coverage at an acceptable level. This is definitely not the only

thing that matters, but I think it does matter. ”

“ We use code coverage because it’s easy to measure, it’s a good enough metric, and

because if developers feel they are being measured they are more likely to write more tests,

thus generally producing the desired outcome. ”

Finally, the “Yes-no” answers claim code coverage is not useful at all, but they help to

identify parts of the code that have not been tested:

“ Yes and no. It’s an indication if something is tested, not that the test is correct. ”

“ No. We use code coverage more as a guide to which part of the code base might

need more attention in terms of writing more tests. We don’t really have other metric for

measuring quality of the test cases. ”

Answer to RQ4. Code coverage is not used or not considered as useful for mea-

suring the quality of test cases by 63.73% (i.e., 65 out of 102) of the surveyed

participants. Some of the reasons explaining the lack of confidence in the metric

is that they prefer fault-detection or feature-coverage capabilities of test cases as a

measure of quality, or they prefer to measure test cases quality by performing code

reviews. On the other side, some participants consider that code measure is a useful

metric because it helps to identify parts of the code that are not tested.

2.4 Threats to Validity

Threats to construct validity concern the relationship between theory and observation,

and relate to possible measurement imprecision when extracting data used in a study. To
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minimize this threat we filtered out incomplete surveys, participants with zero years of ex-

perience, and surveys with invalid answers. Moreover, to minimize a source of inexactitude

in our study on the open questions, we followed a grounded theory-based approach [69].

In particular three of the authors performed an open coding by independently creating

categories, then the codes were standardized and in case of no-agreement the answers were

marked as “Unclear".

Threats to external validity concern the generalizability of our findings. The results

in our study may not be generalizable to developers on other platforms, moreover our

study only focuses on developers from open source projects on Github and we can not

guarantee that all participants are commercial developers (although the average industrial

experience for participants is between 5-10 years). In addition, the testing practices and

automated tools used by our sample set may not generalize across all mobile developers.

However, despite this fact, we believe the information provided by our respondent pool

can be used to effectively provide guidelines for the research community towards devising

more practical automated testing approaches.

Another threat related to generalizability is that the results of our study are based on

102 respondents which might not be representative of the global community of Android

developers. However, this study surveys a comparable number of Android developers to

other studies [105, 114, 39].

2.5 Related Work

In this section we present the related work and we differentiate the outcomes of our study

on how developers test android applications compared to other studies concerned with

investigating the topic of mobile testing.
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2.5.1 Surveys on Android Testing

Erfani et al. [105] performed a study to understand the challenges that developers face

during the life cycle of mobile software development. The study comprises interviews and

a semi-structured survey targeted to 12 experts on mobile development and 188 people

from the general mobile community respectively. Therefore, the findings can be catego-

rized in four main topics: (i) general challenges such as fragmentation, testing support,

open/closed platforms, data intensive, and frequent code changes; (ii) development across

multiple platforms with problems such as native vs. hybrid apps, capabilities of platforms,

code reuse vs. writing from scratch, behavioral consistency cross platform, and effort on

migration across platform; (iii) current testing practices like manual testing, developers

as testers, platform specific testing, levels of testing, beta testers; and finally (iv) testing

challenges including limited unit test support for mobile specific features, better monitor-

ing support, crash reports, emulators, missing platform-supported tools, rapid changes,

multiple scenarios to validate, app stores and usability testing.

The study concluded that one of the most important challenges for developers is having

to deal with multiple platforms, since the knowledge of one platform typically can’t be

transferred to another. In addition, tools to monitor and measure the performance of

mobile apps are important for developers as are testing frameworks and tools. Our study

differs from the goals of this paper in that we focus on examining the testing practices

and preferences of open source developers whereas Erfani et al. [105] analyzed a variety of

aspects of the entire software development process.

Kochhar et al. [114] conducted an empirical investigation into open source apps and two

different surveys, the first one comprising three questions asked to 83 android developers,

and the second comprising five questions as an improved version of the first study, posed

to 127 windows app developers at Microsoft. The study includes questions to investigate

techniques used to test apps, frameworks used, types of testing used, reasons for using

testing tools, and challenges encountered during testing process. The authors concluded
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that Android apps are not properly tested since around 86% of the apps do not contain any

test cases. In addition, existing automated tools are not able to reach certain parts of code

in mobile apps and are typically prohibitively difficult to use. Finally, the study found that

developers are not aware of many existing testing tools. Our study differentiates itself in

the fact that we attempted to distill developer’s testing preferences and practices for both

manual and automated practices in order to inform the development of more practical

automated tools, and our participants were Android developers.

Choudhary et al. [64] presented a comparison between test input generation techniques

for Android applications. Choudhary et al. studied these tools applied to 60 real-world

applications considering four different criteria: (i) ease of use, (ii) android framework com-

patibility, (iii) code coverage achieved, and (iv) fault detection. The authors concluded

that random testing (specifically Android Monkey) surpasses all other automated tech-

niques. In contrast to this study we surveyed developers to investigate trends on usage of

automated testing tools and experiences with random testing tools.

Linares-Vásquez et al. [133], recently conducted a survey of current tools, frameworks,

and services available to support mobile testing practices. This survey draws comparisons

between different testing techniques and solutions, describing the benefits, and delineating

drawbacks and trade-offs between different approaches/tools. Additionally, the work offers

a forward-thinking vision for effective mobile testing along three principles: Continuous,

Evolutionary, and Large-Scale. While this work offers a valuable perspective on the current

state and potential future of mobile app testing, it does not survey developers to understand

current mobile testing trends.

Aho et al. [39], presented an industrial evaluation of the Murphy tool that models the

graphical user interface to support several testing tasks during the software development

cycle. The experiences presented in the paper were based on the evaluation of three

software systems and three test engineers from industry. The Murphy tool decreased the

time and effort of generating test cases from the model. The authors concluded that

Murphy helped to minimize the tedious and repetitive work while creating manual test
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cases that involves analysis and verification from the tester. Compared to this study, we

do not focus on the evaluation of one particular approach rather we surveyed open source

developers about the usage of different automated testing tools, and preferences for ideal

automated testing techniques.

2.6 Lessons Learned

In this work we presented the results of an empirical study with 102 contributors of open

source mobile apps hosted at GitHub. In particular, the study was conducted with a

survey aimed at gathering information about their practices in-the-wild and preferences

for (i) designing and generating test cases, (ii) using automated approaches, and (iii)

assessing the quality of test suites.

Our survey reveals highly relevant opinions of open source developers such as they

rely primarily on usage models (e.g, use cases, user stories) of their applications when

designing test cases, and they prefer high-level expressive automatically generated test

cases organized around use-cases. As of today, little effort has been devoted to include

usage models [188, 135, 115] during automated test cases generation for mobile apps; thus,

usage models and expressive test cases should be considered as an important goal for

automated approaches/tools for mobile testing. The survey results support the need for

multi-models in model-based testing as suggested by Linares-Vásquez et al. [133].

Another result we would like to highlight is the fact that code coverage is not perceived

by the survey participants as an important measure of test cases quality. While code

coverage has been widely used by researchers to validate automated approaches for testing

mobile apps, this result could be used as an insight that reinforce the discussion regarding

code coverage utility [101, 109]. Additionally, this should spur the discussion and creation

of new evaluation models — for new testing approaches/tools — that consider other criteria

such as relevant fault detection capability (e.g. faults along heavily traversed parts of the

app) and feature coverage.
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Finally, our survey confirms the fact that despite the plethora of tools proposed by

the research community, the state-of-the-practice for automated testing are automation

APIs; manually written test cases with automation APIs are very fragile to changes in the

GUI of the app under test [105, 133]; even the official Google tool for random/fuzz testing

(i.e., Monkey) has a low usage rate. In order to aid in technology transfer, researchers

should consider developer preferences and workflows when designing and evaluating their

approaches. Such preferences can be gleaned from the developer responses in this work,

and include among others: (i) A need for automatically generated test cases to co-evolve

with apps and features, (ii) low-overhead tools that tightly integrate into current (ag-

ile) development workflows, (iii) expressive test cases that allow for easier debugging and

traceability between test cases and features, and (iv) alternative metrics and techniques to

validate effectiveness and robustness of test suits. By taking such preferences into consid-

eration, researchers should be able to design approaches that make a meaningful impact

during real mobile testing practices.
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Chapter 3

Enabling Mutation Testing for

Android Apps

3.1 Introduction

In the last few years mobile apps have become indispensable in our daily lives. With

millions of mobile apps available for download on Google Play [88] and the Apple App

Store [48], mobile users have access to an unprecedentedly large set of apps that are

not only intended to provide entertainment but also to support critical activities such as

banking and health monitoring. Therefore, given the increasing relevance and demand for

high quality apps, industrial practitioners and academic researchers have been devoting

significant effort to improving methods for measuring and assuring the quality of mobile

apps. Manifestations of interest in this topic include the broad portfolio of mobile testing

methods ranging from tools for assisting record and replay testing [82, 99], to automated

approaches that generate and execute test cases [138, 64, 135, 157, 141], and cloud-based

services for large-scale multi-device testing [23].

Despite the availability of these tools/approaches, the field of mobile app testing is still

very much under development; as evidenced by limitations related to test data generation

[64, 133], and concerns regarding effective assessment of the quality of mobile apps’ test
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suites. One way to evaluate test suites is to seed small faults, called mutants, into source

code and asses the ability of a suite to detect these faults [92, 71]. Such mutants have been

defined in the literature to reflect the typical errors developers make when writing source

code [136, 113, 147, 166, 199, 161, 178].

However, existing literature lacks a thorough characterization of bugs exhibited by

mobile apps. Therefore, it is unclear whether such apps exhibit a distribution of faults

similar to other systems, or if there are types of faults that require special attention. As a

consequence, it is unclear whether the use of traditional mutant taxonomies [136, 113] is

enough to asses test quality and drive test case generation/selection of mobile apps.

In this paper, we explore this topic focusing on apps developed for Android, the most

popular mobile operating system. Android apps are characterized by GUI-centric de-

sign/interaction, event-driven programming, Inter Processes Communication (IPC), and

interaction with backend and local services. In addition, there are specific characteristics

of Android apps—such as permission mechanisms, Software Development Kit (SDK) ver-

sion compatibility, or features of target devices—that can lead to a failure. While this set

of characteristics would demand a specialized set of mutation operators that can support

mutation analysis and testing, there is no available tool to date that supports mutation

analysis/testing of Android apps, and relatively few (eight) mutation operators have been

proposed by the research community [72]. At the same time, mutation tools for Java apps,

such as Pit [24] and Major [107, 111] lack any Android-specific mutation operators, and

present challenges for their use in this context, resulting in common problems such as triv-

ial mutants that always crash at runtime or difficulties automating mutant compilation

into Android PacKages (APKs).

Paper contributions. This paper aims to deal with the lack of (i) an extensive

empirical evidence of the distribution of Android faults, (ii) a thorough catalog of Android-

specific mutants, and (iii) an analysis of the applicability of state-of-the-art mutation tools

on Android apps. We then propose a framework, MDroid+, that relies on a catalog of

mutation operators inspired by a taxonomy of bugs/crashes specific for Android apps, and
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a profile of potential failure points automatically extracted from APKs.

As a first step, we produced a taxonomy of Android faults by analyzing a statistically

significant sample of 2,023 candidate faults documented in (i) bug reports from open source

apps, (ii) bug-fixing commits of open source apps; (iii) Stack Overflow discussions, (iv)

the Android exception hierarchy and APIs potentially triggering such exceptions; and (v)

crashes/bugs described in previous studies on Android [138, 175, 201, 197, 120, 38, 64, 155,

157]. As a result, we produced a taxonomy of 262 types of faults grouped in 14 categories,

four of which relate to Android-specific faults, five to Java-related faults, and five mixed

categories (Fig. 3.1). Then, leveraging this fault taxonomy and focusing on Android-

specific faults, we devised a set of 38 Android mutation operators and implemented a

platform to automatically seed 35 of them. Finally, we conducted a study comparing

MDroid+ with other Java and Android-specific mutation tools. The study results indicate

that MDroid+, as compared to existing competitive tools, (i) is able to cover a larger

number of bug types/instances present in Android app, (ii) is highly complementary to the

existing tools in terms of covered bug types, and (iii) generates fewer trivial and stillborn

mutants.

3.2 Related Work

This section describes related literature and publicly available, state-of-the-art tools on

mutation testing. We do not discuss the literature on testing Android apps [43, 94, 140,

138, 64, 135, 157, 141, 133], since proposing a novel approach for testing Android apps is

not the main goal of this work. For further details about the concepts, recent research,

and future work in the field of mutation testing, one can refer to the survey by Jia and

Harman [103].

Mutation Operators. Since the introduction of mutation testing in the 70s [92, 71],

researchers have tried not only to define new mutation operators for different programming

languages and paradigms (e.g., mutation operators have been defined for Java [136] and
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Python [73]) but also for specific types of software like Web applications [173] and data-

intensive applications [47, 203] either to exercise their GUIs [165] or to alter complex,

model-defined input data [74]. The aim of our research, which we share with prior work, is

to define customized mutation operators suitable for Android applications, by relying on

a solid empirical foundation.

To the best of our knowledge, the closest work to ours is that of Deng et al., [72], which

defined eight mutant operators aimed at introducing faults in the essential programming

elements of Android apps, i.e., intents, event handlers, activity lifecycle, and XML files

(e.g., GUI or permission files). While we share with Deng et al. the need for defining

specific operators for the key Android programming elements, our work builds upon it by (i)

empirically analyzing the distribution of faults in Android apps by manually tagging 2,023

documents, (ii) based on this distribution, defining a mutant taxonomy—complementing

Java mutants—which includes a total of 38 operators tailored for the Android platform.

Mutation Testing Effectiveness and Efficiency. Several researchers have proposed

approaches to measure the effectiveness and efficiency of mutation testing [163, 45, 89, 110]

to devise strategies for reducing the effort required to generate effective mutant sets [37,

108, 90], and to define theoretical frameworks [103, 185]. Such strategies can complement

our work, since in this paper we aim at defining new mutant operators for Android, on

which effectiveness/efficiency measures or minimization strategies can be applied.

Mutation Testing Tools. Most of the available mutation testing tools are in the form

of research prototypes. Concerning Java, representative tools are µJava [137], Jester [148],

Major [107], Jumble [189], PIT [24], and javaLanche [182]. Some of these tools operate on

the Java source code, while others inject mutants in the bytecode. For instance, µJava,

Jester, and Major generate the mutants by modifying the source code, while Jumble, PIT,

and javaLanche perform the mutations in the bytecode. When it comes to Android apps,

there is only one available tool, namely muDroid [196], which performs the mutations

at byte code level by generating one APK (i.e., one version of the mobile app) for each

mutant.
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The tools for mutation testing can be also categorized according to the tool’s capabil-

ities (e.g., the availability of automatic tests selection). A thorough comparison of these

tools is out of the scope of this paper. The interested reader can find more details on PIT’s

website [68] and in the paper by Madeysky and Radyk [139].

Empirical Studies on Mutation Testing. Daran and Thévenod-Fosse [70] were

the first to empirically compare mutants and real faults, finding that the set of errors and

failures they produced with a given test suite were similar. Andrews et al. [45, 46] studied

whether mutant-generated faults and faults seeded by humans can be representative of real

faults. The study showed that carefully-selected mutants are not easier to detect than real

faults, and can provide a good indication of test suite adequacy, whereas human-seeded

faults can likely produce underestimates. Just et al. [109] correlated mutant detection and

real fault detection using automatically and manually generated test suites. They found

that these two variables exhibit a statistically significant correlation. At the same time,

their study pointed out that traditional Java mutants need to be complemented by further

operators, as they found that around 17% of faults were not related to mutants (i.e., due

to algorithmic changes and code deletion).

3.3 A Taxonomy of Crashes/Bugs in Android apps

To the best of our knowledge there is currently no (i) large-scale study describing a taxon-

omy of bugs in Android apps, or (ii) comprehensive mutation framework including opera-

tors derived from such a taxonomy and targeting mobile-specific faults (the only framework

available is the one with eight mutation operators proposed by Deng et al. [72]). In this

section, we describe a taxonomy of bugs in Android apps derived from a large manual

analysis of (un)structured sources. Our work is the first large-scale data driven effort to

design such a taxonomy. Our purpose is to extend/complement previous studies analyzing

bugs/crashes in Android apps and to provide a large taxonomy of bugs that can be used to

design mutation operators. In all the cases reported below the manually analyzed sets of
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sources—randomly extracted—represent a 95% statistically significant sample with a 5%

confidence interval.

3.3.1 Design

To derive such a taxonomy we manually analyzed six different sources of information

described below:

1. Bug reports of Android open source apps. Bug reports are the most obvious source

to mine in order to identify typical bugs affecting Android apps. We mined the issue

trackers of 16,331 open source Android apps hosted on GitHub. Such apps have been

identified by locally cloning all Java projects (381,161) identified through GitHub’s

API and searching for projects with an AndroidManifest.xml file (a requirement for

Android apps) in the top-level directory. We then removed forked projects to avoid

duplicated apps and filtered projects that did not have a single star or watcher to

avoid abandoned apps. We utilized a web crawler to mine the GitHub issue trackers.

To be able to analyze the bug cause, we only selected closed issues (i.e., those having

a fix that can be inspected) having “Bug” as type. Overall, we collected 2,234 issues

from which we randomly sampled 328 for manual inspection.

2. Bug-fixing commits of Android open source apps. Android apps are often developed

by very small teams [105, 158]. Thus, it is possible that some bugs are not docu-

mented in issue trackers but quickly discussed by the developers and then directly

fixed. This might be particularly true for bugs having a straightforward solution.

Thus, we also mined the versioning system of the same 16,331 Android apps consid-

ered for the bug reports by looking for bug-fixing commits not related to any of the

bugs considered in the previous point (i.e., the ones documented in the issue tracker).

With the cloned repositories, we utilized the git command line utility to extract the

commit notes and matched the ones containing lexical patterns indicating bug fixing

activities, e.g.,“fix issue”, “fixed bug”, similarly to the approach proposed by Fischer
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et al. [78]. By exploiting this procedure we collected 26,826 commits, from which

we randomly selected a statistically significant sample of 376 commits for manual

inspection.

3. Android-related Stack Overflow (SO) discussions. It is not unusual for developers to

ask help on SO for bugs they are experiencing and having difficulty fixing [131, 58,

112, 179]. Thus, mining SO discussions could provide additional hints on the types

of bugs experienced by Android developers. To this aim, we collected all 51,829

discussions tagged “Android” from SO. Then, we randomly extracted a statistically

significant sample of 377 of them for the manual analysis.

4. The exception hierarchy of the Android APIs. Uncaught exceptions and statements

throwing exceptions are a major source of faults in Android apps [201, 67]. We

automatically crawled the official Android developer JavaDoc guide to extract the

exception hierarchy and API methods throwing exceptions. We collected 5,414 items

from which we sampled 360 of them for manual analysis.

5. Crashes/bugs described in previous studies on Android apps. 43 papers related to

Android testing1 were analyzed by looking for crashes/bugs reported in the papers.

For each identified bug, we kept track of the following information: app, version,

bug id, bug description, bug URL. When we were not able to identify some of this

information, we contacted the paper’s authors. In the 43 papers, a total of 365 bugs

were mentioned/reported; however, we were able (in some cases with the authors’

help) to identify the app and the bug descriptions for only 182 bugs/issues (from

nine papers [138, 175, 201, 197, 120, 38, 64, 155, 157]). Given the limited number,

in this case we considered all of them in our manual analysis.

6. Reviews posted by users of Android apps on the Google Play store. App store re-

views have been identified as a prominent source of bugs and crashes in mobile
1The complete list of papers is provided with our online appendix [127].
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apps [167, 100, 112, 172, 170, 134]. However, only a reduced set of reviews are in fact

informative and useful for developers [62, 170]. Therefore, to automatically detect

informative reviews reporting bugs and crashes, we leverage CLAP, the tool devel-

oped by Villarroel et al. [191], to automatically identify the bug-reporting reviews.

Such a tool has been shown to have a precision of 88% in identifying this specific

type of review. We ran CLAP on the Android user reviews dataset made available

by Chen et al. [61]. This dataset reports user reviews for multiple releases of ∼21K

apps, in which CLAP identified 718,132 reviews as bug-reporting. Our statistically

significant sample included 384 reviews that we analyzed.

The data collected from the six sources listed above was manually analyzed by the

eight authors following a procedure inspired by open coding [144]. In particular, the 2,007

documents (e.g., bug reports, user reviews, etc.) to manually validate were equally and

randomly distributed among the authors making sure that each document was classified by

two authors. The goal of the process was to identify the exact reason behind the bug and

to define a tag (e.g., null GPS position) describing such a reason. Thus, when inspecting

a bug report, we did not limit our analysis to the reading of the bug description, but we

analyzed (i) the whole discussion performed by the developers, (ii) the commit message

related to the bug fixing, and (iii) the patch used to fix the bug (i.e., source code diff).

The tagging process was supported by a Web application that we developed to classify the

documents (i.e., to describe the reason behind the bug) and to solve conflicts between the

authors. Each author independently tagged the documents assigned to him by defining a

tag describing the cause behind a bug. Every time the authors had to tag a document,

the Web application also shows the list of tags created so far, allowing the tagger to select

one of the already defined tags. Although, in principle, this is against the notion of open

coding, in a context like the one encountered in this work, where the number of possible

tags (i.e., cause behind the bug) is extremely high, such a choice helps using consistent

naming and does not introduce a substantial bias.
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In cases for which there was no agreement between the two evaluators (∼43% of the

classified documents), the document was automatically assigned to an additional evaluator.

The process was iterated until all the documents were classified by the absolute majority

of the evaluators with the same tag. When there was no agreement after all eight authors

tagged the same document (e.g., four of them used the tag t1 and the other four the tag t2),

two of the authors manually analyzed these cases in order to solve the conflict and define

the most appropriate tag to assign (this happened for ∼22% of the classified documents).

It is important to note that the Web application did not consider documents tagged as

false positive (e.g., a bug report that does not report an actual bug in an Android app)

in the count of the documents manually analyzed. This means that, for example, to reach

the 328 bug reports to manually analyze and tag, we had to analyze 400 bug reports (since

72 were tagged as false positives).

It is important to point out that, during the tagging, we discovered that for user

reviews, except for very few cases, it was impossible (without internal knowledge of an

app’s source code) to infer the likely cause of the failure (fault) by only relying on what

was described in the user review. For this reason, we decided to discard user reviews from

our analysis, and this left us with 2,007-384=1,623 documents to manually analyze.

After having manually tagged all the documents (overall, 2,023 = 1,623 + 400 addi-

tional documents, since 400 false positives were encountered in the tagging process), all

the authors met online to refine the identified tags by merging similar ones and splitting

generic ones when needed. Also, in order to build the fault taxonomy, the identified tags

were clustered in cohesive groups at two different levels of abstraction, i.e., categories and

subcategories. Again, the grouping was performed over multiple iterations, in which tags

were moved across categories, and categories merged/split.

Finally, the output of this step was (i) a taxonomy of representative bugs for Android

apps, and (ii) the assignment of the analyzed documents to a specific tag describing the

reason behind the bug reported in the document.
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Activities and Intents [37] Android programming [107] API and Libraries [86]

Back-end Services [22]

Collections and Strings [34]

Connectivity [19]

Data/Objects Parsing and Format [187]

Database [87]

Device/Emulator [51]

General Programming [283]

GUI [129]

I/O [105]

Non-functional Requirements [47]

Threading [36]

Invalid data/uri [19]
   Invalid activity name [1]
   ActivityNotFoundException, Invalid intent [18]

Issues with manifest file [3]
   Invalid activity path in manifest [1]
   Missing activity definition in manifest [2]

Bad practices [11]
   API misuse (improper call activity methods) [1]
   Errors implementing Activity lifecycle [6]
   Invalid context used for intent [2]
   Call in wrong activity lifecycle method [2]

Other [4]
   Bug in Intent implementation [3]
   Issues in onCreate methods [1]

Invalid data/uri [7]
   Invalid GPS location [4]
   Invalid ID in findView [2]
   Package name not found [1]

Issues with app’s folder structure [5]
   Android app folder structure [4]
   Executable/command not in right folder [1]

Issues with manifest file [23]
   Android app permissions [11]
   Issues with high screen resolution [1]
   Other [11]

Issues with peripherals/ports [2]
   Controller quirk on android games [1]
   Resting value of analog channel [1]

Bad practices [13]
   Argument/Object is not parcelable [1]
   Component decl. before call setContentView [2]
   Declaring loader fragment inside the fragment [1]
   Missing override isValidFragment method [1]
   Multiple instantiation of a resource [1]
   OpenGL issues [1]
   Parcelable not implement for intent call [1]
   Service unbinding is missing [1]
   System service invoked before creating activity [1]
   Wake lock misuse [1]
   Wakelock on WIFI connection [1]
   65K methods limitation in a single dex file [1]

Resources [10]
   Invalid Drawable [1]
   Invalid Path to Resources [1]
   Invalid resource id [5]
   Missing String in Resources Folder [1]
   Resources.NotFoundException [1]
   Wrong version number of OBB file [1]

Other [36]
   Call restricted method in accessibility service [11]
   Google API key configuration/setup [1]
   Invalid Application package [2]
   Using Context.MODE_PRIVATE to open file [1]
   Issues with Preferences [2]
   Issues with Timers [2]
   Miss return in listener/event implementation [1]
   Stale data in app [2]
   Timeout values for location services [1]
   Running out of loopback devices [1]
   Errors in managing the apps fragments [3]
   Internationalization [4]
   Unregistered Receivers Errors [1]
   Missing 3G interfaces [1]
   State not saved [1]

App change and fault proneness [16]
   Generic API bug [4]
   Impact of API change [10]
   Operation on deprecated API [2]

Device/Emulator with different API [18]
   Android compatibility APIs [11]
   Build.VERSION.SDK_INT unavailable in Andr. x.y [1]
   Image viewer bug in Android x.y and below [1]
   Invalid TPL version [1]
   Invalid/Lower SDK version [2]
   Unsupported Operation at run-time [2]

Bad practices [30]
   API misuse (general) [25]
   API misuse (bluetooth) [1]
   API misuse (camera) [2]
   Web API misuse [2]

Other [22]
   Errors with API/Library linking [14]
   Meta-data tag for play services [1]
   Conflicts between libraries [1]
   Library bug [6]

Authentication [3]
   Invalid auth token for back-end service [1]
   Invalid certificate for back-end service [2]

Invalid data/uri [2]
   Return from back-end service not well formed [1]
   Special characters in HTTP post [1]

Other [17]
   Back-end service not available/returns null [7]
   Error while invoking back-end service [10]

Size-related [24]
   Miss check for IndexOutOfBoundException [14]
   Operation on empty string [1]
   Issues with collections size [1]
   Operations on empty collections [8]

Other [10]
   ArrayStoreException [1]
   Missing implementation of comparable [3]
   Accessing TypedArray already recycled [1]
   Invalid operation on collection [4]
   Invalid string comparison in condition [1]

   UDP 53 bypass [1]
   SMTPSendFailedException (Authent. Failure) [1]
   Network connection is off/lost [6]
   Data loss in network operations  [1]
   HTTP request issue [2]
   HttpClient usage [1]
   Network errors during authentication [1]
   Using infinite loop to check WIFI connection [1]
   Player crashes on slow connection [1]
   Network timeout [1]
   SipException (VoIP) [3]

Missing checks [147]
   Missing null check [10]
   Null/Uninitialized object [40]
   Null Parameter [42]
   NullPointerException (general) [55]

URI/URL [7]
   Error parsing URL in HTML website [1]
   Invalid URI used internally [4]
   Invalid URI provided by the user [1]
   URL UnsupportedEncodingException [1]

XML-related [11]
   Invalid SAX transformer configuration [1]
   SAXException [4]
   XML Format Error [1]
   XmlPullParserException [1]
   DOMException [1]
   Data Parsing Errors [3]

Numeric-data [5]
   NumberFormatException [4]
   Parsing numeric values [1]

Other [17]
   DataFormatException [1]
   JSON Parsing Errors [13]
   Invalid user input [3]

SQL-related [67]
   DB table/column not found [3]
   SQL Injection [1]
   Invalid field type retrieval [1]
   Query syntax error [62]

Cursor [7]
   Closing null/empty cursor [2]
   Issues when using DB cursors [5]

Other [13]
   Database file cannot be opened [1]
   Bug in database access on SD card [1]
   Database locked [2]
   Wrong database version code [4]
   Database connection error [4]
   Bug in database descriptor [1]

   Device/Android ROM-specific issues [12]
   Emulator-specific issues [8]
   Keyboard not showing up in webview [1]
   Directories/Space missing in filesystem [7]
   Device rotation [23]

   Bugs in application logic [106]
   Invalid Parameter [70]
   Error in numerical operations [1]
   ClassCastException [4]
   GenericSignatureFormatError [1]
   Missing precondition check [8]
   Empty constructors are missed [1]
   Errors implementing inner class [3]
   Override method missing [2]
   Super not called [1]
   Date issues [2]
   Error in loop limit [1]
   Exception/Error handling [3]
   Invalid constant [2]
   Missing break in switch [1]
   Syntax Error [18]
   Regex error [1]
   Wrong relational operator [1]
   Uncaught exception [14]
   Error in console command invoked from app [3]
   Issues executing telnet commands [1]
   Data race [26]
   Bug in loading resources [8]
   IllegalStateException [5]

Components and Views [30]
   Component with wrong dimensions [1]
   Invalid component/view focus [6]
   Text in input/label/view disappears [1]
   View/Component is not displayed [4]
   Component with wrong fonts style [1]
   Wrong text in view/component [6]
   Issues in component animation [8]
   FindViewById returns null [3]

Issues with manifest file [4]
   Button should not be clickable [1]
   Component undefined in XML Layout files [3]

Layout [23]
   Issues in layout files [3]
   Visual appearance (layout issues) [19]
   Unsupported theme [1]

Bad practices [21]
   ViewHolder pattern is not used [9]
   Improper call to getView [1]
   Inappropriate use of ListView [6]
   Inappropriate use of ViewPager [2]
   Inflating too many views [1]
   Large number of fragments in the app [1]
   setContent before content view is set [1]

Message/Dialog [5]
   Error messages are not descriptive [1]
   Notification/Warning message missing [3]
   Notification/Warning message re-appear [1]

Other [30]
   Issues in GUI logic (general) [14]
   Multi line text selection is not allowed [1]
   Bug in GUI listener [7]
   Bug in webViewClient listener [1]
   Dismiss progress dialog before activity ends [1]
   GUI refresh issue [1]
   Tab is missing listener [1]
   Wrong onClickListener [2]
   Fragm. without implement. of onViewCreated [1]
   Fragment not attached to activity [1]

Visual appearance [16]
   Data is not listed in the right sorting/order [2]
   Showing data in wrong format [3]
   Texture error [4]
   Invalid colors [7]

Buffer [9]
   Buffer overflow [3]
   BufferUnderflowException [2]
   ShortBufferException [1]
   Mutation operation on non-mutable buffer [2]
   InvalidMarkException [1]

Channel/Socket connection [12]
   AsynchronousCloseException [1]
   ClosedChannelException [1]
   ErrnoException [6]
   NonWritableChannelException [1]
   SocketException [3]

File [72]
   File I/O error [56]
   File metadata issue [1]
   File permissions [1]
   Operation with invalid file [5]
   Using symbolic link in backup [1]
   Issue creating file/folder in device system [1]
   FileNotFoundException/Invalid file path [7]

Streams [12]
   Closing unverified writer [1]
   Connect PipedWriter to closed/connected reader [2]
   File operation on closed reader [2]
   File operation on closed stream/scanner [2]
   KeyException [1]
   Release stream without verifying if still busy [1]
   Next token cannot translate to expected type [1]
   Flush of decoder at the end of the input [1]
   Operations on closed Formatter [1]

Memory [15]
   OOM (canvas texture size) [1]
   OOM (general) [1]
   OOM (large arrays) [2]
   OOM (large bitmap) [3]
   OOM (loading too many images) [3]
   OOM (resizing multiple images) [1]
   OOM (saving JSON to SharedPreferences) [1]
   Uncaught OOM exception [3]

Responsiveness/Battery Drain [25]
   Expensive operation in main thread (GUI lags) [16]
   ANR (unnecessary computation in Handler) [1]
   Performance (lengthy operation creating db) [1]
   Performance (unnecessary computation) [1]
   GUI updated unnecessarily often [1]
   Lengthy operations on background thread [1]
   Network request in the GUI thread [4]

Security [7]
   KeyChainException [1]
   PrivilegedActionException [1]
   SecurityException [4]
   Invalid signed public key [1]

   Callback/message not removed from handler [1]
   Data race (threads synchronization) [3]
   GUI operation out of main thread [1]
   Inappropriate use of threads/async tasks [7]
   Instantiating Handler without looper [1]
   Synchronized access to methods [1]
   Wrong GUI update from async task [3]
   Wrong GUI update from thread [1]
   Wrong handler import [1]
   Bug in threading implementation [7]
   Runnable does not stop [1]
   Invalid operation on AsynkTaskLoader [1]
   Invalid operation on interrupted thread [6]
   Invalid operation on Phaser [1]
   Set thread as deamon when it already runs [1]

Media [3]
   Bad call of SyncParams.getAudioAdjustMode [1]
   Flush on initialized player [1]
   Getting token from closed media browser [1]

Discarded [793]

   False positive [400]
   Unclear [393]

Images [8]
   Failed binder transaction (bitmaps) [1]
   Images without default dimensions [2]
   Inducing GC operations because of images [1]
   Large bitmaps [2]
   Persisting images as strings in DB [1]
   Resizing images in GUI thread [1]

Figure 3.1: The defined taxonomy of Android bugs.
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3.3.2 The Defined Taxonomy

Fig. 3.1 depicts the taxonomy that we obtained through the manual coding. The black

rectangle in the bottom-right part of Fig. 3.1 reports the number of documents tagged

as false positive or as unclear. The other rectangles—marked with the Android and/or

with the Java logo—represent the 14 high-level categories that we identified. Categories

marked with the Android logo (e.g., Activities and Intents) group together Android-specific

bugs while those marked with the Java logo (e.g., Collections and Strings) group bugs

that could affect any Java application. Both symbols together indicate categories featur-

ing both Android-specific and Java-related bugs (see e.g., I/O). The number reported in

square brackets indicates the bug instances (from the manually classified sample) belonging

to each category. Inner rectangles, when present, represent sub-categories, e.g., Respon-

siveness/Battery Drain in Non-functional Requirements. Finally, the most fine-grained

levels, represented as lighter text, describe the specific type of faults as labeled using our

manually-defined tags, e.g., the Invalid resource ID tag under the sub-category Resources,

in turn part of the Android programming category. The analysis of Fig. 3.1 allows to note

that:

1. We were able to classify the faults reported in 1,230 documents (e.g., bug reports,

commits, etc.). This number is obtained by subtracting from the 2,023 tagged doc-

uments the 400 tagged as false positives and the 393 tagged as unclear.

2. Of these 1,230, 26% (324) are grouped in categories only reporting Android-related

bugs. This means that more than one fourth of the bugs present in Android apps

are specific of this architecture, and not shared with other types of Java systems.

Also, this percentage clearly represents an underestimation. Indeed, Android-specific

bugs are also present in the previously mentioned “mixed” categories (e.g., in Non-

functional requirements 25 out of the 26 instances present in the Responsiveness/-

Battery Drain subcategory are Android-specific—all but Performance (unnecessary

computation)). From a more detailed count, after including also the Android-specific
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bugs in the “mixed" categories, we estimated that 35% (430) of the identified bugs

are Android-specific.

3. As expected, several bugs are related to simple Java programming. This holds for 800

of the identified bugs (65%).

Take-away. Over one third (35%) of the bugs we identified with manual inspection

are Android-specific. This highlights the importance of having testing instruments, such

as mutation operators, tailored for such a specific type of software. At the same time,

65% of the bugs that are typical of any Java application confirm the importance of also

considering standard testing tools developed for Java, including mutation operators, when

performing verification and validation activities of Android apps.

3.4 Mutation Operators for Android

Given the taxonomy of faults in Android apps and the set of available operators widely

used for Java applications, a catalog of Android-specific mutation operators should (i)

complement the classic Java operators, (ii) be representative of the faults exhibited by

Android apps, (iii) reduce the rate of still-born and trivial mutants, and (iv) consider

faults that can be simulated by modifying statements/elements in the app source code and

resources (e.g., the strings.xml file). The last condition is based on the fact that some

faults cannot be simulated by changing the source code, like in the case of device specific

bugs, or bugs related to the API and third-party libraries.

Following the aforementioned conditions, we defined a set of 38 operators, trying to

cover as many fault categories as possible (10 out of the 14 categories in Fig. 3.1), and com-

plementing the available Java mutation operators. The reasons for not including operators

from the other four categories are:

1. API/Libraries: bugs in this category are related to API/Library issues and API

misuses. The former will require applying operators to the APIs; the latter requires
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a deeper analysis of the specific API usage patterns inducing the bugs;

2. Collections/Strings: most of the bugs in this category can be induced with classic

Java mutation operators;

3. Device/Emulator: because this type of bug is Device/Emulator specific, their imple-

mentation is out of the scope of source code mutations;

4. Multi-threading: the detection of the places for applying the corresponding mutations

is not trivial; therefore, this category will be considered in future work.

The list of defined mutation operators is provided in Table 3.1 and these operators

were implemented in a tool named MDroid+. In the context of this paper, we define a

Potential Failure Profile (PFP) that sipulates locations of the analyzed apps—which can

be source code statements, XML tags or locations in other resource files—that can be the

source of a potential fault, given the faults catalog from Sec. 3.3. Consequently, the PFP

lists the locations where a mutation operator can be applied.

In order the extract the PFP, MDroid+ statically analyzes the targeted mobile app,

looking for locations where the operators from Table 3.1 can be implemented. The loca-

tions are detected automatically by parsing XML files or through AST-based analysis for

detecting the location of API calls. Given an automatically derived PFP for an app, and

the catalog of Android-specific operators, MDroid+ generates a mutant for each location

in the PFP. Mutants are initially generated as clones (at source code-level) of the orig-

inal app, and then the clones are automatically compiled/built into individual Android

Packages (APKs). Note that each location in the PFP is related to a mutation operator.

Therefore, given a location entry in the PFP, MDroid+ automatically detects the corre-

sponding mutation operator and applies the mutation in the source code. Details of the

detection rules and code transformations applied with each operator are provided in our

replication package [127].
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Table 3.1: Proposed mutation operators. The table lists the operator names, detection strat-
egy (AST or TEXTual), the fault category (Activity/Intents, Android Programming, Back-
End Services, Connectivity, Data, DataBase, General Programming, GUI, I/O, Non-Functional
Requirements), and a brief operator description. The operators indicated with * are not imple-
mented in MDroid+ yet.

Mutation Operator Det. Cat. Description
ActivityNotDefined Text A/I Delete an activity <android:name=“Activity”/> entry in the

Manifest file
DifferentActivityIntentDefinition AST A/I Replace the Activity.class argument in an Intent instantiation
InvalidActivityName Text A/I Randomly insert typos in the path of an activity defined in the

Manifest file
InvalidKeyIntentPutExtra AST A/I Randomly generate a different key in an Intent.putExtra(key,

value) call
InvalidLabel Text A/I Replace the attribute “android:label” in the Manifest file with a

random string
NullIntent AST A/I Replace an Intent instantiation with null
NullValueIntentPutExtra AST A/I Replace the value argument in an Intent.putExtra(key, value)

call with new Parcelable[0]
WrongMainActivity Text A/I Randomly replace the main activity definition with a different

activity
MissingPermissionManifest Text AP Select and remove an <uses-permission /> entry in the Manifest

file
NotParcelable AST AP Select a parcelable class, remove“implements Parcelable” and the

@override annotations
NullGPSLocation AST AP Inject a Null GPS location in the location services
SDKVersion Text AP Randomly mutate the integer values in the SdkVersion-related

attributes
WrongStringResource Text AP Select a <string /> entry in /res/values/strings.xml file and

mutate the string value
NullBackEndServiceReturn AST BES Assign null to a response variable from a back-end service
BluetoothAdapterAlwaysEnabled AST C Replace a BluetoothAdapter.isEnabled() call with“tru”
NullBluetoothAdapter AST C Replace a BluetoothAdapter instance with null
InvalidURI AST D If URIs are used internally, randomly mutate the URIs
ClosingNullCursor AST DB Assign a cursor to null before it is closed
InvalidIndexQueryParameter AST DB Randomly modify indexes/order of query parameters
InvalidSQLQuery AST DB Randomly mutate a SQL query
InvalidDate AST GP Set a random Date to a date object
InvalidMethodCallArgument* AST GP Randomly mutate a method call argument of a basic type
NotSerializable AST GP Select a serializable class, remove “implements Serializable”
NullMethodCallArgument* AST GP Randomly set null to a method call argument
BuggyGUIListener AST GUI Delete action implemented in a GUI listener
FindViewByIdReturnsNull AST GUI Assign a variable (returned by Activity.findViewById) to null
InvalidColor Text GUI Randomly change colors in layout files
InvalidIDFindView AST GUI Replace the id argument in an Activitity.findViewById call
InvalidViewFocus* AST GU IRandomly focus a GUI component
ViewComponentNotVisible AST GUI Set visible attribute (from a View) to false
InvalidFilePath AST I/O Randomly mutate paths to files
NullInputStream AST I/O Assign an input stream (e.g., reader) to null before it is closed
NullOutputStream AST I/O Assign an output stream (e.g., writer) to null before it is closed
LengthyBackEndService AST NFR Inject large delay right-after a call to a back-end service
LengthyGUICreation AST NFR Insert a long delay (i.e., Thread.sleep(..)) in the GUI creation

thread
LengthyGUIListener AST NFR Insert a long delay (i.e., Thread.sleep(..)) in the GUI listener

thread
LongConnectionTimeOut AST NFR Increase the time-out of connections to back-end services
OOMLargeImage AST NFR Increase the size of bitmaps by explicitly setting large dimen-

sions
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It is worth noting that from our catalog of Android-specific operators only two operators

(DifferentActivityIntentDefinition and MissingPermissionManifest) overlap with the eight

operators proposed by Deng et al., [72]. Future work will be devoted to cover a larger

number of fault categories and define/implement a larger number of operators.

3.5 Applying Mutation Testing Operators to Android Apps

The goal of this study is to: (i) understand and compare the applicability of MDroid+

and other currently available mutation testing tools to Android apps; (ii) to understand

the underlying reasons for mutants—generated by these tools—that cannot be consid-

ered useful for the mutant analysis purposes, i.e., mutants that do not compile or cannot

be launched. This study is conducted from the perspective of researchers interested in im-

proving current tools and approaches for mutation testing in the context of mobile apps.

The study addresses the following research questions:

• RQ1: Are the mutation operators (available for Java and Android apps) representa-

tive of real bugs in Android apps?

• RQ2: What is the rate of stillborn mutants (e.g., those leading to failed compilations)

and trivial mutants (e.g., those leading to crashes on app launch) produced by the

studied tools when used with Android apps?

• RQ3: What are the major causes for stillborn and trivial mutants produced by the

mutation testing tools when applied to Android apps?

To answerRQ1, we measured the applicability of operators from seven mutation testing

tools (Major [107], PIT [24], µJava [137], Javalanche [182], muDroid [196], Deng et al.

[72], and MDroid+) in terms of their ability of representing real Android apps’ faults

documented in a sample of software artifacts not used to build the taxonomy presented

in Sec. 3.3. To answer RQ2, we used a representative subset of the aforementioned tools

to generate mutants for 55 open source Android apps, quantitatively and qualitatively
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examining the stillborn and trivial mutants generated by each tool. Finally, to answer

RQ3, we manually analyzed the mutants and their crash outputs to qualitatively determine

the reasons for trivial and stillborn mutants generated by each tool.

3.5.1 Study Context and Data Collection

To answer RQ1, we analyzed the complete list of 102 mutation operators from the seven

considered tools to investigate their ability to “cover ” bugs described in 726 artifacts2

(103 exceptions hierarchy and API methods throwing exceptions, 245 bug-fixing commits

from GitHub, 176 closed issues from GitHub, and 202 questions from SO). Such 726

documents were randomly selected from the dataset built for the taxonomy definition

(see Sec. 3.3.1) by excluding the ones already tagged and used in the taxonomy. The

documents were manually analyzed by the eight authors using the same exact procedure

previously described for the taxonomy building (i.e., two evaluators per document having

the goal of tagging the type of bug described in the document; conflicts solved by using a

majority-rule schema; tagging process supported by a Web app—details in Sec. 3.3.1). We

targeted the tagging of ∼150 documents per evaluator (600 overall documents considering

eight evaluators and two evaluations per document). However, some of the authors tagged

more documents, leading to the considered 726 documents. Note that we did not constrain

the tagging of the bug type to the ones already present in our taxonomy (Fig. 3.1): The

evaluations were free to include new types of previously unseen bugs.

We answer RQ1 by reporting (i) the new bug types we identified in the tagging of the

additional 726 documents (i.e., the ones not present in our original taxonomy), (ii) the

coverage level ensured by each of the seven mutation tools, measured as the percentage of

bug types and bug instances identified in the 726 documents covered by its operators. We

also analyze the complementarity of MDroid+ with respect to the existing tools.

Concerning RQ2 and RQ3, we compare MDroid+ with two popular open source

mutation testing tools (Major and PIT), which are available and can be tailored for Android
2With “cover” we mean the ability to generate a mutant simulating the presence of a give type of bug.
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apps, and with one context-specific mutation testing tool for Android called muDroid [72].

We chose these tools because of their diversity (in terms of functionality and mutation

operators), their compatibility with Java, and their representativeness of tools working

at different representation levels: source code, Java bytecode, and smali bytecode (i.e.,

Android-specific bytecode representation).

To compare the applicability of each mutation tool, we need a set of Android apps that

meet certain constraints: (i) the source code of the apps must be available, (ii), the apps

should be representative of different categories, and (iii) the apps should be compilable

(e.g., including proper versions of the external libraries they depend upon). For these

reasons, we use the Androtest suite of apps [64], which includes 68 Android apps from 18

Google Play categories. These apps have been previously used to study the design and

implementation of automated testing tools for Android and met the three above listed

constraints. The mutation testing tools exhibited issues in 13 of the considered 68 apps,

i.e., the 13 apps did not compile after injecting the faults. Thus, in the end, we considered

55 subject apps in our study. The list of considered apps as well as their source code is

available in our replication package [127].

Note that while Major and PIT are compatible with Java applications, they cannot be

directly applied to Android apps. Thus, we wrote specific wrapper programs to perform

the mutation, the assembly of files, and the compilation of the mutated apps into runnable

Android application packages (i.e., APKs). While the procedure used to generate and

compile mutants varies for each tool, the following general workflow was used in our study:

(i) generate mutants by operating on the original source/byte/smali code using all possible

mutation operators; (ii) compile or assemble the APKs either using the ant, dex2jar, or

baksmali tools; (iii) run all of the apps in a parallel-testing architecture that utilizes

Android Virtual Devices (AVDs); (iv) collect data about the number of apps that crash

on launch and the corresponding exceptions of these crashes which will be utilized for a

manual qualitative analysis. We refer readers to our replication package for the complete

technical methodology used for each mutation tool [127].
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To quantitatively assess the applicability and effectiveness of the considered mutation

tools to Android apps, we used three metrics: Total Number of Generated Mutants

(TNGM), Stillborn Mutants (SM), and Trivial Mutants (TM). In this paper,

we consider stillborn mutants as those that are syntactically incorrect to the point that

the APK file cannot be compiled/assembled, and trivial mutants as those that are killed

arbitrarily by nearly any test case. If a mutant crashes upon launch, we consider it as

a trivial mutant. Another metric one might consider to evaluate the effectiveness of a

mutation testing tool is the number of equivalent and redundant mutants the tool produces.

However, in past work, the identification of equivalent mutants has been proven to be

an undecidable problem [164], and both equivalent and redundant mutants require the

existence of test suites (not available for the Androtest apps). Therefore, this aspect is not

studied in our work.

After generating the mutants’ APKs using each tool, we needed a viable methodology

for launching all these mutants in a reasonable amount of time to determine the number of

trivial mutants. To accomplish this, we relied on a parallel Android execution architecture

that we call the Execution Engine (EE). EE utilizes concurrently running instances of

Android Virtual Devices based on the android-x86 project [87]. Specifically, we configured

20 AVDs with the android-x86 v4.4.2 image, a screen resolution of 1900x1200, and 1GB

of RAM to resemble the hardware configuration of a Google Nexus 7 device. We then

concurrently instantiated these AVDs and launched each mutant, identifying app crashes.

3.5.2 Results

RQ1: Fig. 3.2 reports (i) the percentage of bug types identified during our manual tagging

that are covered by the taxonomy of bugs we previously presented in Fig. 3.1 (top part

of Fig. 3.2), and (ii) the coverage in terms of bug types as well as of instances of tagged

bugs ensured by each of the considered mutation tools (bottom part). The data shown in

Fig. 3.2 refers to the 413 bug instances for which we were able to define the exact reason

behind the bug (this excludes the 114 entities tagged as unclear and the 199 identified as
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103 out of 119 bug types (87%) covered 
by the bug taxonomy in Figure 1.

392 out of the 413 tagged bug 
instances are covered by one of the 
bug types in Figure 1 (95%).

87%

Bug taxonomy coverage

Mutation tools coverage

             

13%
13%
8%
9%

10%
15%
38%

60 out of the 119 bug types (50%) are not covered by 
any of the considered mutation tools.

Major               
PIT                    
MuDroid           
MuJava             
javaLanche     
Deng et al.      
MDroid+ 

Bug type coverage              

35%
33%
26%
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Major               
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MDroid+                   

All tools U 
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24%
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All tools U 
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73%

Figure 3.2: Mutation tools and coverage of analyzed bugs.

false positives).

87% of the bug types are covered in our taxonomy. In particular, we identified 16

new categories of bugs that we did not encounter before in the definition of our taxonomy

(Sec. 3.3). Examples of these categories (full list in our replication package) are: Issues

with audio codecs, Improper implementation of sensors as Activities, and Improper usage

of the static modifier. Note that these categories just represent a minority of the bugs we

analyzed, accounting all together for a total of 21 bugs (5% of the 413 bugs considered).

Thus, our bug taxonomy covers 95% of the bug instances we found, indicating a very good

coverage.
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Moving to the bottom part of Fig. 3.2, our first important finding highlights the limi-

tations of the experimented mutation tools (including MDroid+) in potentially unveiling

the bugs subject of our study. Indeed, for 60 out of the 119 bug types (50%), none of the

considered tools is able to generate mutants simulating the bug. This stresses the need for

new and more powerful mutation tools tailored for mobile platforms. For instance, no tool

is currently able to generate mutants covering the Bug in webViewClient listener and the

Components with wrong dimensions bug types.

When comparing the seven mutation tools considered in our study, MDroid+ clearly

stands out as the tool ensuring the highest coverage both in terms of bug types and

bug instances. In particular, mutators generated by MDroid+ have the potential to

unveil 38% of the bug types and 62% of the bug instances. In comparison, the best

competitive tool (i.e., the catalog of mutants proposed by Deng et al. [72]) covers 15%

of the bug types (61% less as compared to MDroid+) and 41% of the bug instances

(34% less as compared to MDroid+). Also, we observe that MDroid+ covers bug

categories (and, as a consequence, bug instances) missed by all competitive tools. Indeed,

while the union of the six competitive tools covers 24% of the bug types (54% of the bug

instances), adding the mutation operators included in MDroid+ increases the percentage

of covered bug types to 50% (73% of the bug instances). Examples of categories covered

by MDroid+ and not by the competitive tools are: Android app permissions, thanks to

the MissingPermissionManifest operator, and the FindViewById returns null, thanks to

the FindViewByIdReturnsNull operator.

Finally, we statistically compared the proportion of bug types and the number of bug

instances covered by MDroid+, by all other techniques, and by their combination, using

Fisher’s exact test and Odds Ratio (OR) [184]. The results indicate that:

1. The odds of covering bug types using MDroid+ are 1.56 times greater than other

techniques, although the difference is not statistically significant (p-value=0.11).

Similarly, the odds of discovering faults with MDroid+ are 1.15 times greater than
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Figure 3.3: Stillborn and trivial mutants generated per app.

other techniques, but the difference is not significant (p-value=0.25);

2. The odds of covering bug types using MDroid+ combined with other techniques

are 2.0 times greater than the other techniques alone, with a statistically signifi-

cant difference (p-value=0.008). Similarly, the odds of discovering bugs using the

combination of MDroid+ and other techniques are 1.35 times greater than other

techniques alone, with a significant difference (p-value=0.008).

RQ2: Figure 3.3 depicts the achieved results as percentage of (a) Stillborn Mutants

(SM), and (b) Trivial Mutants (TM) generated by each tool on each app. On average, 167,

904, 2.6k+, and 1.5k+ mutants were generated by MDroid+, Major, PIT, and muDroid,
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respectively for each app. The larger number of mutants generated by PIT is due in part to

the larger number of mutation operators available for the tool. The average percentage of

stillborn mutants (SM) generated by MDroid+, Major and muDroid over all the apps

is 0.56%, 1.8%, and 53.9%, respectively, while no SM are generated by PIT (Figure 3.3a).

MDroid+ produces significantly less SM than Major (Wilcoxon paired signed rank test

p-value< 0.001 – adjusted with Holm’s correction [96], Cliff’s d=0.59 - large) and than

muDroid (adjusted p-value< 0.001, Cliff’s d=0.35 - medium).

These differences across the tools are mainly due to the compilation/assembly process

they adopt during the mutation process. PIT works at Java bytecode level and thus can

avoid the SM problem, at the risk of creating a larger number of TM. However, PIT is

the tool that required the highest effort to build a wrapper to make it compatible with

Android apps. Major works at the source code level and compiles the app in a “traditional"

manner. Thus, it is prone to SM and requires an overhead in terms of memory and CPU

resources needed for generating the mutants. Finally, muDroid operates on APKs and smali

code, reducing the computational cost of mutant generation, but significantly increasing

the chances of SM.

All four tools generated trivial mutants (TM) (i.e., mutants that crashed simply

upon launching the app). These instances place an unnecessary burden on the devel-

oper, particularly in the context of mobile apps, as they must be discarded from analy-

sis. The mean of the distribution of the percentage of TM over all apps for MDroid+,

Major, PIT and muDroid is 2.42%, 5.4%, 7.2%, and 11.8%, respectively (Figure 3.3b).

MDroid+ generates significantly less TM than muDroid (Wilcoxon paired signed rank

test adjusted p-value=0.04, Cliff’s d=0.61 - large) and than PIT (adjusted p-value=0.004,

Cliff’s d=0.49 - large), while there is no statistically significant difference with Major (ad-

justed p-value=0.11).

While these percentages may appear small, the raw values show that the TM can

comprise a large set of instances for tools that can generate thousands of mutants per

app. For example, for the Translate app, 518 out of the 1,877 mutants generated by PIT
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were TM. For the same app, muDroid creates 348 TM out of the 1,038 it generates. For

the Blokish app, 340 out of the 3,479 mutants generated by Major were TM. Conversely,

while MDroid+ may generate a smaller number of mutants per app, this also leads to

a smaller number of TM, only 213 in total across all apps. This is due to the fact that

MDroid+ generates a much smaller set of mutants that are specifically targeted towards

emulating real faults identified in our empirically derived taxonomy, and are applied on

specific locations detected by the PFP.

RQ3: In terms of mutation operators causing the highest number of stillborn and

TM we found that for Major, the Literal Value Replacement (LVR) operator had the

highest number of TM, whereas the Relational Operator Replacement (ROR) had the

highest number of SM. It may seem surprising that ROR generated many SM, however,

we discovered that the reason was due to improper modifications of loop conditions. For

instance, in the A2dp.Vol app one mutant changed this loop: for (int i = 0; i <

cols; i++) and replaced the condition “i < cols" with “false", causing the compiler

to throw an unreachable code error. For PIT, the Member Variable Mutator (MVM)

is the one causing most of the TM; for muDroid, the Unary Operator Insertion (UOI)

operator has the highest number of SM (although all the operators have relatively high

failure rates), and the Relational Value Replacement (RVR) has the highest number of

TM. For MDroid+, the WrongStringResource operator had that highest number of SM,

whereas the FindViewByIdReturnsNull operator had the highest number of TM.

To qualitatively investigate the causes behind the crashes, three authors manually

analyzed a randomly selected sample of 15 crashed mutants per tool. In this analysis,

the authors relied on information about the mutation (i.e., applied mutation operator and

location), and the generated stack trace.

Major. The reasons behind the crashing mutants generated by Major mainly fall in

two categories. First, mutants generated with the LVR operator that changes the value

of a literal causing an app to crash. This was the case for the wikipedia app when chang-

ing the “1” in the invocation setCacheMode(params.getString(1)) to “0”. This passed
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Table 3.2: Number of Generated, Stillborn, and Trivial Mutants created by MDroid+
operators.

Mutation Operators GM SM TM Mutation Operators GM SM TM
WrongStringResource 3394 0 14 NullInputStream 61 0 4
NullIntent 559 3 41 WrongMainActivity 56 0 0
InvalidKeyIntentPutExtra 459 3 11 InvalidColor 52 0 0
NullValueIntentPutExtra 459 0 14 NullOuptutStream 45 0 2
InvalidIDFindView 456 4 30 InvalidDate 40 0 0
FindViewByIdReturnsNull 413 0 40 InvalidSQLQuery 33 0 2
ActivityNotDefined 384 1 8 NotSerializable 15 7 0
InvalidActivityName 382 0 10 NullBluetoothAdapter 9 0 0
DifferentActivityIntentDefinition 358 2 8 LengthyBackEndService 8 0 0
ViewComponentNotVisible 347 5 7 NullBackEndServiceReturn 8 1 0
MissingPermissionManifest 229 0 8 NotParcelable 7 6 0
InvalidFilePath 220 0 1 InvalidIndexQueryParameter 7 1 0
InvalidLabel 214 0 3 OOMLargeImage 7 4 0
ClosingNullCursor 179 13 5 BluetoothAdapterAlwaysEnabled 4 0 0
LengthyGUICreation 129 0 1 InvalidURI 2 0 0
BuggyGUIListener 122 0 2 NullGPSLocation 1 0 0
LengthyGUIListener 122 0 0 LongConnectionTimeOut 0 0 0
SDKVersion 66 0 2
Total 8847 50 213

a wrong asset URL to the method setCacheMode, thus crashing the app. Second, the

Statement Deletion (STD) operator was responsible for app crashes especially when it

deleted needed methods’ invocations. A representative example is the deletion of invo-

cations to methods of the superclass when overriding methods, e.g., when removing the

super.onDestroy() invocation from the onDestroy() method of an Activity. This re-

sults in throwing of an android.util.SuperNotCalledException. Other STD mutations

causing crashes involved deleting a statement initializing the main Activity leading to a

NullPointerException.

muDroid. This tool is the one exhibiting the highest percentage of stillborn and TM.

The most interesting finding of our qualitative analysis is that 75% of the crashing mutants

lead to the throwing of a java.lang.VerifyError. A VerifyError occurs when Android

tries to load a class that, while being syntactically correct, refers to resources that are not

available (e.g., wrong class paths). In the remaining 25% of the cases, several of the crashes

were due to the Inline Constant Replacement (ICR) operator. An example is the crash

observed in the photostream app where the “100” value has been replaced with “101” in

bitmap.compress(Bitmap.CompressFormat.PNG, 100, out). Since “100” represents the
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quality of the compression, its value must be bounded between 0 and 100.

PIT. In this tool, several of the manually analyzed crashes were due to (i) the RVR

operator changing the return value of a method to null, causing a NullPointerException,

and (ii) removed method invocations causing issues similar to the ones described for Major.

MDroid+. Table 3.2 lists the mutants generated by MDroid+ across all the systems

(information for the other tools is provided with our replication package). The overall

rate of SM is very low in MDroid+, and most failed compilations pertain to edge cases

that would require a more robust static analysis approach to resolve. For example, the

ClosingNullCursor operator has the highest total number of SM (across all the apps) with

13, and some edge cases that trigger compilation errors involve cursors that have been

declared Final, thus causing the reassignment to trigger the compilation error. The small

number of other SM are generally other edge cases, and current limitations of MDroid+

can be found in our replication package with detailed documentation.

The three operators generating the highest number of TM are NullIntent(41), Find-

ViewByIdReturnsNull(40), and InvalidIDFindView(30). The main reason for the NullIntent

TM are intents invoked by the Main Activity of an app (i.e., the activity loaded when the

app starts). Intents are one of the fundamental components of Android apps and function

as asynchronous messengers that activate Activities, Broadcast Receivers and services. One

example of a trivial mutant is for the A2dp.Vol app, in which a bluetooth service, inteneded

to start up when the app is launched, causes a NullPointerException when opened due to

NullIntent operator. To avoid cases like this, more sophisticated static analysis could be

performed to prevent mutations from affecting Intents in an app’s MainActivity. The story

is similar for the FindViewViewByIdReturnsNull and InvalidIDFindView operators: TM

will occur when views in the MainActivity of the app are set to null or reference invalid

Ids, causing a crash on startup. Future improvements to the tool could avoid mutants to

be seeded in components related to the MainActivity. Also, it would be desirable to allow

developers to choose the activities in which mutations should be injected.
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Summary of the RQs. MDroid+ outperformed the other six mutation tools by

achieving the highest coverage both in terms of bug types and bug instances. How-

ever, the results show that Android-specific mutation operators should be combined

with classic operators to generate mutants that are representative of real faults in

mobile apps (RQ1). MDroid+ generated the smallest rate of both stillborn and

trivial mutants illustrating its immediate applicability to Android apps. Major and

muDroid generate stillborn mutants, with the latter having a critical average rate

of 58.7% stillborn mutants per app (RQ2). All four tools generated a relatively low

rate of trivial mutants, with muDroid again being the worst with an 11.8% average

rate of trivial mutants (RQ3). Our analysis shows that the PIT tool is most ap-

plicable to Android apps when evaluated in terms of the ratio between failed and

generated mutants. However, MDroid+ is both practical and based on Android-

specific operations implemented according to an empirically derived fault-taxonomy

of Android apps.

3.6 Threats to Validity

This section discusses the threats to validity of the work related to devising the fault

taxonomy, and carrying out the study reported in Sec. 3.5.

Threats to construct validity concern the relationship between theory and observation.

The main threat is related to how we assess and compare the performance of mutation

tools, i.e., by covering the types, and by their capability to limit stillborn and trivial

mutants. A further, even more relevant evaluation would explore the extent to which

different mutant taxonomies are able to support test case prioritization. However, this

requires a more complex setting which we leave for our future work.

Threats to internal validity concern factors internal to our settings that could have

influenced our results. This is, in particular, related to possible subjectiveness of mistakes
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in the tagging of Sec. 3.3 and for RQ1. As explained, we employed multiple taggers to

mitigate such a threat.

Threats to external validity concern the generalizability of our findings. To maximize

the generalizability of the fault taxonomy, we have considered six different data sources.

However, it is still possible that we could have missed some fault types available in sources

we did not consider, or due to our sampling methodology. Also, we are aware that in our

study results of RQ1 are based on the new sample of data sources, and results of RQ2 on

the set of 68 apps considered [64].
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Chapter 4

Translating Video Recordings of

Mobile App Usages into Replayable

Scenarios

Mobile application developers rely on a diverse set of software artifacts to help them make

informed decisions throughout the development process. These information sources include

user reviews, crash reports, bug reports, and emails, among others. An increasingly com-

mon component of these software artifacts is graphical information, such as screenshots

or screen recordings. This is primarily due to the fact that they are relatively easy to

collect and, due to the GUI-driven nature of mobile apps, they contain rich information

that can easily demonstrate complex concepts, such as a bug or a feature request. In fact,

many crowd-testing and bug reporting frameworks have built-in screen recording features

to help developers collect mobile application usage data and faults [36, 11, 10, 35]. Screen

recordings that depict application usages are used by developers to: (i) help understand

how users interact with apps [183, 21]; (ii) process bug reports and feature requests from

end-users [57]; and (iii) aid in bug comprehension for testing related tasks [142]. However,

despite the growing prevalence of visual mobile development artifacts, developers must still

manually inspect and interpret screenshots and videos in order to glean relevant informa-
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tion, which can be time consuming and ambiguous. The manual effort required by this

comprehension process complicates a development workflow that is already constrained by

language dichotomies [149] and several challenges unique to mobile software, including: (i)

pressure for frequent releases [97, 104], (ii) rapidly evolving platforms and APIs [123, 52],

(iii) constant noisy feedback from users [66, 75, 171, 169, 170], and (iv) fragmentation in

the mobile device ecosystem [93, 192, 4] among others [133]. Automation for processing

graphical software artifacts is necessary and would help developers shift their focus toward

core development tasks.

To improve and automate the analysis of video-related mobile development artifacts,

we introduce Video to Scenario (V2S), a lightweight automated approach for translating

video screen recordings of Android app usages into replayable scenarios. We designed V2S

to operate solely on a video file recorded from an Android device, and as such, it is based

primarily on computer vision techniques. V2S adapts recent Deep Learning (DL) models

for object detection and image classification to accurately detect and classify different types

of user actions performed on the screen. These classified actions are then translated into

replayable scenarios that can automatically reproduce user interactions on a target device,

making V2S the first purely graphical Android record-and-replay technique.

In addition to helping automatically process the graphical data that is already present

in mobile development artifacts, V2S can also be used for improving or enhancing addi-

tional development tasks that do not currently take full advantage of screen-recordings,

such as: creating and maintaining automated GUI-based test suites; and crowdsourcing

functional and usability testing.

We conducted a comprehensive evaluation of V2S using both videos collected from users

reproducing bugs as well as general usage videos from the top-rated apps of 32 categories

in the Google Play market. As part of this evaluation, we examined the effectiveness of the

different components that comprise V2S as well as the accuracy of the generated scenarios.

Additionally, we assessed the overhead of our technique and conducted a case study with

three industrial partners to understand the practical applicability of V2S. The results of
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our evaluation indicate that V2S is accurate, and is able to correctly reproduce 89% of

events across collected videos. The approach is also robust in that it is applicable to a

wide range of popular native and non-native apps currently available on Google Play. In

terms of efficiency, we found that V2S imposes acceptable overhead, and is perceived as

potentially useful by developers.

In summary, the main contributions of our work are as follows:

• V2S, the first record-and-replay approach for Android that functions purely on

screen-recordings of app usages. V2S adapts computer vision solutions for object

detection, and image classification, to effectively recognize and classify user actions

in the video frames of a screen recording;

• An automated pipeline for dataset generation and model training to identify user

interactions from screen recordings;

• The results of an extensive empirical evaluation of V2S that measures the accuracy,

robustness, and efficiency across 175 videos from 80 applications;

• The results of a case study with three industrial partners, who develop commercial

apps, highlighting V2S’s potential usefulness, as well as areas for improvement and

extension;

• An online appendix [54], which contains examples of videos replayed by V2S, ex-

perimental data, source code, trained models, and our evaluation infrastructure to

facilitate reproducibility of the approach and the results.

4.1 The V2S Approach

This section outlines the V2S approach for automatically translating Android screen

recordings into replayable scenarios. Fig. 4.1 depicts V2S’s architecture, which is divided

into three main phases: (i) the Touch Detection phase, which identifies user touches in
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each frame of an input video; (ii) the Action Classification phase that groups and classifies

the detected touches into discrete user actions (i.e., tap, long-tap, and swipe), and (iii)

the Scenario Generation phase that exports and formats these actions into a replayable

script. Before discussing each phase in detail, we discuss some preliminary aspects of our

approach, input specifications, and requirements.

4.1.1 Input Video Specifications

In order for a video to be consumable by V2S, it must meet a few lightweight requirements

to ensure proper functioning with our computer vision (CV) models. First, the video frame

size must match the full-resolution screen size of the target Android device, in order to

be compatible with a specified pre-trained object-detection network. This requirement is

met by nearly every modern Android device that has shipped within the last few years.

These videos can be recorded either by the built-in Android screenrecord utility, or

via third-party applications [16]. The second requirement is that input videos must be

recorded at least 30 “frames per second” (FPS), which again, is met or exceeded by a

majority of modern Android devices. This requirement is due to the fact that the frame-

rate directly corresponds to the accuracy with which “quick” gestures (e.g., fast scrolling)

can be physically resolved in constituent video frames. Finally, the videos must be recorded

with the “Show Touches” option enabled on the device, which is accessed through an

advanced settings menu [5], and is available by default on nearly all Android devices
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since at least Android 4.1. This option renders a touch indicator, which is a small semi-

transparent circle, that gives a visual feedback when the user presses her finger on the

device screen. The opacity of the indicator is fully solid from the moment the user first

touches the screen and then fades from more to less opaque when a finger is lifted off the

screen (Fig. 4.2).

4.1.2 Phase 1: Touch Detection

The goal of this phase is to accurately identify the locations where a user touched the device

screen during a video recording. To accomplish this, V2S leverages the DL techniques

outlined in Sec. 4.2 to both accurately find the position of the touch indicator appearing in

video frames, and identify its opacity to determine whether a user’s finger is being pressed

or lifted from the screen. More specifically, we adapt an implementation of Faster R-

CNN [176, 177], which makes use of VGGNet [186] for feature extraction of RPs in

order to perform touch indicator detection. To differentiate between low and high-opacity

detected touch indicators, we build an Opacity CNN, which is a modified version of

AlexNet [117]. Given that we adapt well-known DL architectures, here we focus on

describing our adaptions, and provide model specs in our appendix [54].

The Touch Detection Phase begins by accepting as input a video that meets the specifi-

cations outlined in Sec. 4.1.1. First, the video is parsed and decomposed into its constituent

frames. Then the Faster R-CNN network is utilized to detect the presence of the touch

indicator, if any, in every frame. Finally, the Opacity CNN classifies each detected touch
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indicator as having either low or high-opacity. The output of this phase is a structured

JSON with a set of touch indicator bounding boxes in individual video frames wherein each

detected touch indicator is classified based on the opacity.

4.1.2.1 Parsing Videos

Before V2S parses the video to extract single frames, it must first normalize the frame-

rate for those videos where it may be variable, to ensure a constant FPS. Certain Android

devices may record variable frame-rate video for efficiency [32]. This may lead to incon-

sistencies in the time between frames, which V2S utilizes in the classification phase to

synthesize the timing of touch actions. Thus, to avoid this issue, we normalize the frame

rate to 30fps and extract individual frames using the FFmpeg [14] tool.

4.1.2.2 Faster R-CNN

After the individual frames have been parsed from the input video, V2S applies its object

detection network to localize the bounding boxes of touch indicators. However, before

using the object detection, it must be trained. As described in Sec. 4.2 the DL models

that we utilize typically require large, manually labeled datasets to be effective. However,

to avoid the manual curation of data, and make the V2S approach practical, we designed

a fully automated dataset generation and training process. To bootstrap the generation of

V2S’s object detection training dataset, we make use of the existing large-scale ReDraw

dataset of Android screenshots [156]. This dataset includes over 14k screens extracted from

the most popular Android applications on Google Play using a fully-automated execution

technique.

Next, we randomly sample 5k unique screenshots of different apps and programmati-

cally superimpose an image of the touch indicator at a random location in each screenshot.

During this process, we took two steps to ensure that our synthesized dataset reflects ac-

tual usage of the touch indicator: (i) we varied the opacity of the indicator icon between

40%-100% to ensure our model is trained to detect instances where a finger is lifted off
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the screen; (ii) we placed indicator icons on the edges of the screen to capture instances

where the indicator may be occluded. This process is repeated three times per screenshot

to generate 15k unique images. We then split this dataset 70%/30% to create training

and testing sets respectively. We performed this partitioning such that all screenshots

expect one appear only in the testing set, wherein the one screenshot that overlapped had

a different location and opacity value for the touch indicator. During testing, we found

that a training set of 15k screens was large enough to train the model to extremely high

levels of accuracy (i.e., > 97%). To train the model we use the TensorFlow Object Detec-

tion API [33] that provides functions and configurations of well-known DL architectures.

We provide details regarding our training process for V2S’s object detection network in

Sec. 4.3.1. Note that, despite the training procedure being completely automated, it needs

to be run only once for a given device screen size, after which it can be re-used for in-

ference. After the model is trained, inference is run on each frame, resulting in a set of

output bounding box predictions for each screen, with a confidence score.

4.1.2.3 Opacity CNN

Once V2S has localized the screen touches that exist in each video frame, it must then

determine the opacity of each detected touch indicator to aid in the Action Classification

phase. This will help V2S in identifying instances where there are multiple actions in con-

secutive frames with very similar locations (e.g., double tapping). To differentiate between

low and high-opacity touch indicators, V2S adopts a modified version of the AlexNet

[117] architecture as an Opacity CNN that predicts whether a cropped image of the touch

indicator is fully opaque (i.e., finger touching screen) or low opacity (i.e., indicating a fin-

ger being lifted off the screen). Similar to the object detection network, we fully automate

the generation of the training dataset and training process for practicality. We again make

use of the ReDraw dataset and randomly select 10k unique screenshots, randomly crop

a region of the screenshot to the size of a touch indicator, and an equal number of full

and partial opacity examples are generated. For the low-opacity examples, we varied the
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Figure 4.3: Illustration of the graph traversal problem for splitting discrete actions. Faded
nodes with dotted lines represent touches where a finger is being lifted off the screen.

transparency levels between 20%-80% to increase the diversity of samples in the training

set. During initial experiments, we found that our Opacity CNN required fewer training

samples than the object detection network to achieve a high accuracy (i.e., > 97%). Simi-

lar to the Faster R-CNN model, this is a one-time training process, however, this model

can be re-used across varying screen dimensions. Finally, V2S runs the classification for all

the detected touch indicators found in the previous step. Then V2S generates a JSON file

containing all the detected bounding boxes, confidence levels, and opacity classifications.

4.1.3 Phase 2: Action Classification

The JSON file generated by the Touch Detection phase contains detailed data about the

bounding boxes, opacity information, and the frame of each detected touch indicator (note

we use the term “touch indicator” and “touch” interchangeably moving forward). This

JSON file is used as input into the Action Classification phase where single touches are

grouped and classified as high-level actions. The classification of these actions involves

two main parts: (i) a grouping algorithm that associates touches across subsequent frames

as a discrete action; and (ii) action translation, which identifies the grouped touches as a

single action type. The output of this step is a series of touch groups, each corresponding

to an action type: (i) Tap, (ii) Long Tap, or (iii) Gesture (e.g., swipes, pinches, etc).
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4.1.3.1 Action Grouping

The first step of V2S’s action grouping filters out detected touches where the model’s

confidence is lower than 0.7. The second step groups touches belonging to the same atomic

action according to a tailored heuristic and a graph connection algorithm. This procedure

is necessary because discrete actions performed on the screen will persist across several

frames, and thus, need to be grouped and segmented accordingly.

Grouping Consecutive Touches. The first heuristic groups touch indicators present in

consecutive frames into the same group. As a measure taken to avoid (the rare occurrence

of) a falsely detected touch indicator, touches that exist across two or fewer frames are

discarded. This is due to the fact that, we observed in practice, even the quickest of

touchscreen taps last across at least five frames.

Discrete Action Segmentation. There may exist successive touches that were carried

out extremely fast, such that there is no empty frame between two touches. In other cases,

the touch indicator of one action may not fully disappear before the user starts a new

action, leading to two or more touch indicators appearing in the same frame. These two

situations are common when a user is swiping a list and quickly tapping an option, or

typing quickly on the keyboard, respectively. However, it can be hard to determine where

one action ends and another begins.

V2S analyzes groups of consecutive or overlapping touches and segments them into

discrete actions using a heuristic-based approach. We model the grouping of touch indica-

tors as a graph connectivity problem (see Fig. 4.3). In this formulation, touch indicators

are represented as nodes, vertical lines separate consecutive frames, and edges are possible

connections between consecutive touches that make up a discrete action. The goal is to

derive the proper edges for traversing the graph such all touches for action A are in one

group and all touches for action B are in another group (illustrated in green in Fig. 4.3).

Our algorithm decomposes the lists of consecutive touches grouped together into a graph.

Starting from the first node, our algorithm visits each subsequent node and attempts to
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link it to the previous node. If there is only one node in a subsequent frame, then two

successive nodes are linked. If there is more than one node in a subsequent frame, our

algorithm looks at the spatial distance between the previous node and both subsequent

nodes, and groups previous nodes to their closer neighbors (as shown between frame t and

t + 1). However, if multiple nodes in one frame are at similar distance from the previous

node (as between frames t+ 1 and t+ 2 in Fig. 4.3), then the opacity of the nodes is used

to perform the connection. For example, it is clear that node A in frame t+ 2 is a finger

being lifted off the screen. Thus, it must be connected to the previously occurring action

A (i.e., in t+ 1), and not the action B that just started.

Finally, after this process, the opacity of all linked nodes are analyzed to determine

further splits. There exist multiple actions with no empty frame between them. Therefore,

if a low-opacity node is detected in a sequence of successively connected nodes, they are

split into distinct groups representing different actions.

4.1.3.2 Action Translation

This process analyzes the derived groups of touches and classifies them based on the

number and touch locations in each group. For touches that start and end in the same

spatial location on the screen (e.g., the center of subsequent touch indicator bounding

boxes varies by less than 20 pixels) the action is classified as a Tap or a Long Tap. Taps

are recognized if the action lasts across 20 or fewer frames, and Long-Taps otherwise.

Everything else is classified as a Gesture.

4.1.3.3 Filtering

V2S removes actions that have touch indicators with low average opacity (e.g., < 0.1%)

across a group, as this could represent a rare series of misclassified touch indicators from

the Faster R-CNN. V2S also removes groups whose size is below or equals a threshold

of two frames, as these might also indicate rare misclassifications. The result of the Action
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Classification phase is a structured list of actions (i.e., Tap, Long Tap, or Gesture), where

each action is a series of touches associated to video frames and screen locations.

4.1.4 Phase 3: Scenario Generation

After all the actions have been derived by the Action Classification phase, V2S proceeds

by generating commands using the Android Debug Bridge (adb) that replay the classified

actions on a device. To accomplish this, V2S converts the classified, high-level actions

into low-level instructions in the sendevent command format, which is a utility included

in Android’s Linux kernel. Then, V2S uses a modified RERAN [82] binary to replay the

events on a device.

Generating the Scenario Script. The sendevent command uses a very limited instruc-

tion set in order to control the UI of an Android device. The main instructions of interest

are the start_event, end_event, x and y coordinates where the user’s finger touched

the screen, and certain special instructions required by devices with older API levels. To

create the script, each action is exported starting with the start_event command. Then,

for actions classified as a Tap, V2S provides a single (x, y) coordinate pair, derived from

the center of the detected bounding box of the Tap. For Gestures, V2S iterates over

each touch that makes up the Gesture action and appends the (x, y) pairs of each touch

indicator to the list of instructions. For Long Taps, V2S performs similar processing to

that of Gestures, but instead uses only a single (x, y) pair from the initial detected touch

indicator bounding box.

Then, V2S ends the set of instructions for an action with the appropriate end_event

command. For Gestures and Long Taps the speed and duration of each instruction is

extremely important in order to accurately replay the user’s actions. To derive the speed

and duration of these actions, V2S adds timestamps to each (x, y) touch location based

on the timing between video frames (i.e., for 30fps, there is a 33 millisecond delay between

each frame), which will temporally separate each touch command sent to the device. The

same concept applies for Long Tap, however, since this action type uses a single (x, y)
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touch location, the timing affects the duration that the touch event lasts on the screen.

Finally, in order to determine the delays between successive actions, the timing between

video frames is again used. Our required 30fps frame-rate provides V2S with millisecond-

level resolution of event timings, whereas higher frame-rates will only increase the fidelity

of replay timing.

Scenario Replay. Once all the actions have been converted into low-level sendevent

instructions, they are written to a log file. This log file is then fed into a translator which

converts the file into a runnable format that can be directly replayed on a device. This

converted file along with a modified version of the RERAN engine [82] is pushed to the

target device. We optimized the original RERAN binary to replay event traces more

efficiently. Finally, the binary is executed using the converted file to faithfully replay the

user actions originally recorded in the initial input video. We provide examples of V2S’s

generated sendevent scripts, alongside our updated version of the RERAN binary in our

online appendix [54].

4.2 Background

We briefly discuss DL techniques for image classification and object detection that we

adapt for touch/gesture recognition in V2S. Additionally, we briefly discuss how GUI-

based events (i.e., touchscreen interactions) from users are collected on the wild throughout

record an replay tools to generate replayable traces.

4.2.1 Image Classification

Recently, DL techniques that make use of neural networks consisting of specialized layers

have shown great promise in classifying diverse sets of images into specified categories. The

increasingly high accuracy of these techniques has been largely driven by three main factors:

(i) the curation of large-scale, manually annotated datasets such as ImageNet [180] and

MSCOCO [122], (ii) rapid advancement in parallel computing power and GPUs, and (iii)
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advancements in neural architectures using convolutional layers, which allow for automated

learning of abstract hierarchical features [119]. One of the first end-to-end approaches to

leverage for highly precise image recognition was AlexNet [117]. The success of AlexNet

spurred a series of follow up work on more complex architectures [186, 198, 187, 95] that

have reached human levels of accuracy for image classification tasks.

Typically, each layer in a CNN performs some form of computational transformation

to the data fed into the model. The initial layer usually receives an input image. This

layer is typically followed by a convolutional layer that extracts features from the pixels

of the image, by applying filters (a.k.a. kernels) of a predefined size, wherein the contents

of the filter are transformed via a pair-wise matrix multiplication (i.e., the convolution

operation). Each filter is passed throughout the entire image using a fixed stride as sliding

window to extract feature maps. Convolutional layers are used in conjunction with “max

pooling” layers to further reduce the dimensionality of the data passing through the net-

work. The convolution operation is linear in nature. Since images are generally non-linear

data sources, activation functions such as Rectified Linear Units (ReLUs) are typically

used to introduce a degree of non-linearity. Finally, a fully-connected layer (or series of

these layers) are used in conjunction with a Softmax classifier to predict an image class.

The training process for CNNs is usually done by updating the weights that connect the

layers of the network using gradient descent and back-propagating error gradients.

V2S implements a customized CNN for the specific task of classifying the opacity of

an image to help segment GUI-interactions represented by a touch indicator (see Section

4.1.2).

4.2.2 Object Detection

In the task of image classification, a single, usually more general label (e.g., bird or per-

son) is assigned to an entire image. However, images are typically multi-compositional,

containing different objects to be identified. Similar to image classification, DL models

for object detection have advanced dramatically in recent years, enabling object tracking
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Figure 4.4: Illustration of the Faster R-CNN Architecture

and counting, as well as face and pose detection among other applications. One of the

most influential neural architectures that has enabled such advancements is the R-CNN

introduced by Girshick et al. [80]. The R-CNN architecture combines algorithms for image

region proposals (RPs), which aim to identify image regions where content of interest is

likely to reside, with the classification ability of a CNN. An R-CNN generates a set of RP

bounding-boxes using a selective search algorithm [190]. Then, all identified image regions

are fed through a pre-trained AlexNet [117] (i.e., the extractor) to extract image fea-

tures into vectors. These vectors are fed into a support vector machine (i.e., the classifier)

that determines whether or not each image region contains a class of interest. Finally,

a greedy non-maximum suppression algorithm (i.e., the regressor) is used to select the

highest likelihood, non-overlapping regions, as classified objects.

Finally, it runs the bounding box through a linear regression to retrieve the coordinates

(regressor). Unfortunately, R-CNN is very slow due to the fact that it must run AlexNet

through 2000 images taken from the RPs which presents a bottle neck for the approach.

Two notable version of the R-CNN architecture have been devised since the initial

architecture’s introduction. The Fast R-CNN [81] partially improved the training and

inference speed of its predecessor by combining the three R-CNN steps outlined above

into a single model. In this new architecture, only the initial image, as opposed to each
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RP, runs through a single CNN to produce a feature map. Fast R-CNN then classifies

each RP using Region of Interest (RoI) pooling to extract a fixed-length RoI feature vector.

From this vector it generates two outputs: (i) a class using a fully connected layer and a

softmax, and (ii) a linear regression layer to refine the bounding box coordinates.

In V2S, we utilize the Faster R-CNN [176] architecture (Fig. 4.4), which improves

upon R-CNN architecture through the introduction of a separate NN to predict image

region proposals. By integrating the training of the region proposal network into the end-

to-end training of the network, both the speed and accuracy of the model increase. In

V2S, we adapt the Faster R-CNN model to detect a touch indicator representing a user

action in video frames.

4.2.3 GUI-events for Android

Testing frameworks for Android provide an API to send and execute actions to devices.

These frameworks execute wrapped high-level events that hide the complexity of producing

low-level events generating an issue while trying to faithfully reproduce a trace in some

cases. Record and replay tools like RERAN [82] use low-level events to accurately repro-

duce a trace recorded by users. This tool uses the getevent Linux command to record a

trace and a modified version of sendevent to send multiple events at the same time. Using

low-level events allows for the reproduction to be very accurate by considering every single

location, tap pressure, and timestamp between the moment a finger touches the screen and

when it is released.

4.3 Design of the Experiments

In this section, we describe the procedure we used to evaluate V2S. The goal of our

empirical study is to assess the accuracy, robustness, performance, and industrial utility

of the approach. The context of this evaluation consists of: (i) sets of 15,000 and 10,000

images, corresponding to the evaluation of V2S’s Faster R-CNN and Opacity CNN
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respectively; (ii) a set of 83 Android applications including 68 of the top-rated apps from

Google Play, five open source apps with real crashes, five open source apps with known

bugs, and five open source apps with controlled crashes; (iii) two popular target Android

devices (the Nexus 5 and Nexus 6P)1. The main quality focus of our study is the extent

to which V2S can generate replayable scenarios that mimic original user GUI inputs. To

achieve our study goals, we formulated the following five research questions:

• RQ1: How accurate is V2S in identifying the location of the touch indicator?

• RQ2: How accurate is V2S in identifying the opacity of the touch indicator?

• RQ3: How effective is V2S in generating a sequence of events that accurately mimics

the user behavior from video recordings of different applications?

• RQ4: What is V2S’s overhead in terms of scenario generation?

• RQ5: Do practitioners perceive V2S as useful?

4.3.1 RQ1: Accuracy of Faster R-CNN

To answer RQ1, we first evaluated the ability of V2S’s Faster R-CNN to accurately

identify and localize the touch indicators present in screen recording frames with bounding

boxes. To accomplish this, we followed the procedure to generate training data outlined in

Sec. 4.1.2 complete with the 70%–30% split for the training and testing sets, respectively.

The implementation of the Faster R-CNN object detection used by V2S is coupled to the

size of the images used for training and inference. Thus, to ensure V2S’s model functions

across different devices, we trained two separate Faster R-CNN models (i.e., one for the

Nexus 5 and one for the Nexus 6P), by resizing the images from the ReDraw dataset to

the target device image size. As we show in the course of answering other RQs, we found

that resizing the images in the already large ReDraw dataset, as opposed to re-collecting

natively sized images for each device, resulted in highly accurate detections in practice.
1It should be noted that V2S can be used with emulators via minor modifications to the script gener-

ation process
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We used the TensorFlow Object Detection API [33] to train our model. Moreover,

for the training process, we modified several of the hyper-parameters after conducting an

initial set of experiments. These changes affected the number of classes (i.e., 1), maximum

number of detections per class or image (i.e., 10), and the learning rate after 50k (i.e., 3×

10−5) and 100k (i.e., 3×10−6) iterations. The training process was run for 150k steps with

a batch size of 1, and our implementation of Faster R-CNN utilized a VGGNet [186]

instance pre-trained on the MSCOCO dataset [122]. We provide our full set of model

parameters in our online appendix [54].

To validate the accuracy of V2S’s Faster R-CNN models we utilize Mean Average

Precision (mAP) which is commonly used to evaluate techniques for the object detection

task. This metric is typically computed by averaging the precision over all the categories

in the data, however, given we have a single class (the touch indicator icon), we report

results only for this class. Thus, our mAP is computed as mAP = TP/(TP + FP ) where

TP corresponds to an identified image region with a correct corresponding label, and FP

corresponds to the identified image regions with the incorrect label (which in our case

would be an image region that is falsely identified as a touch indicator). Additionally,

we evaluate the Average Recall of our model in order to determine if our model misses

detecting any instances of the touch indicator. This is computed by AR = TP/k where

TP is the same definition stated above, and the k corresponds to the total number of

possible TP predictions.

During preliminary experiments with Faster R-CNN using the default touch indica-

tor (see Fig. 4.5a), we found that, due to the default touch indicator’s likeness to other

icons and images present in apps, it was prone to very occasional false positive detections

(Fig. 4.5b). Thus, we analyzed particular cases in which the default touch indicator failed

and replaced it with a more distinct, high-contrast touch indicator. We found that this cus-

tom touch indicator marginally improved the accuracy of our models. It should be noted

that replacing the touch indicator on a device, requires the device to be rooted. While

this is an acceptable option for most developers, it may prove difficult for end-users. How-
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ever, even with the default touch indicator, V2S’s Faster R-CNN model still achieves

extremely high levels of accuracy.

Default Custom

(a) Touch indicators (b) False positive detections

Figure 4.5: Touch indicators and failed detections

4.3.2 RQ2: Accuracy of Opacity CNN

To answer RQ2, we evaluated the ability of V2S’s Opacity CNN to predict whether

the opacity of the touch indicator is solid or semi-transparent. To accomplish this, we

followed dataset generation procedure outlined in Sec. 4.1.2, where equal number of full

and partial opacity examples are generated. Thus, the generated dataset contains equal

numbers of full and partial opacity examples for a total of 10k, which are evenly split into

70%–30% training and testing sets. We used the TensorFlow framework in combination

with Keras to implement the Opacity CNN. In contrast to the Faster R-CNN model

used previously, we do not need to create a separate model for each device. This is due

to the touch indicator being resized when fed into the Opacity CNN. Similarly to the

Faster R-CNN, we evaluate Opacity CNN using mAP across our two classes.

4.3.3 RQ3: Accuracy on Different Scenarios

To answer RQ3, we carried out two studies designed to assess both the depth, and breadth of

V2S’s abilities to reproduce user events depicted in screen recordings. The first, Controlled

Study, measures the depth of V2S’s abilities through a user study during which we collected

real videos from end users depicting: bugs, real crashes, synthetically injected crashes, and

normal usage scenarios for 20 apps. Next in the Popular Applications Study we measured

the breadth of V2S’s abilities by recording scenarios for a larger, more diverse set of 64
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most popular apps from the Google Play. We provide the full details of these apps in our

online appendix [54].

4.3.3.1 Controlled Study

In this study we, considered four types of recorded usage scenarios depicting: (i) normal

usages, (ii) bugs, (iii) real crashes, and (iv) controlled crashes. Normal usage scenarios

refer to video recordings exercising different features on popular apps. Bug scenarios refer

to video recordings that exhibit a bug on open source apps. Finally, controlled crashes

refer to injected crashes into open source apps. This allows us to control the number of

steps before the crash is triggered.

For this study, eight participants including 1 undergraduate, 3 masters, and 4 doctoral

students were recruited from William & Mary (approved by the Protection of Human

Subjects Committee (PHSC) at W&M under protocol PHSC-2019-01-22-13374) to record

the videos, with each participant recording eight separate videos, two from each of the

categories listed above. Four participants recorded videos on the Nexus 5 and four used

the Nexus 6P. This accounts for a total of 64 videos, from 20 apps evenly distributed across

all scenarios. Before recording each app, participants were either asked to use the app to

become familiar with it, or read a bug/crash report before reproducing the fault. All of

the real bugs and crashes were taken from established past studies on mobile testing and

bug reporting [157, 155, 59].

4.3.3.2 Popular Applications Study

For the next study, we considered a larger more diverse set of apps from Google Play. More

specifically we downloaded the two highest-rated apps from each non-game category (i.e.,

32) for a total of 64 applications.

Two of the authors then recorded two scenarios per app accounting for 32 apps each,

one using the Nexus 5 and the other using a Nexus 6P. The authors strived to use the apps

as naturally as possible, and this evaluation procedure is in line with past evaluations of
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Android record-and-replay techniques [174, 82]. The recorded scenarios represented specific

use cases of the apps that exercise at least one of the major features, and were independent

of one another. During our experiments, we noticed certain instances where our recorded

scenarios were not replicable, either due to non-determinism or dynamic content (e.g.,

random popup appearing). Thus, we discarded these instances and were left with 111 app

usage scenarios from 60 apps. It is worth noting that it would be nearly impossible for

existing techniques such as RERAN [82] or Barista [77] to reproduce the scenarios due to

the nondeterminism of the dynamic content, hence our decision to exclude them.

To measure how accurately V2S replays videos, we use three different metrics. To

compute these metrics, we manually derived the ground truth sequence of action types

for each recorded video. First, we use Levenshtein distance, which is commonly used to

compute distances between words at character level, to compare the original list of action

types to the list of classified actions generated by V2S. Thus, we consider each type of

action being represented as a character, and scenarios as sequences of characters which

represent series of actions. A low Levenshtein distance value indicates fewer required

changes to transform V2S’s output to the ground truth set of actions. Additionally,

we compute the longest common subsequence (LCS) to find the largest sequence of each

scenario from V2S’s output that aligns with the ground truth scenario from the video

recording. For this LCS measure, the higher the percentage, the closer V2S’s trace is to

a perfect match of the original trace. Moreover, we also computed the precision and recall

for V2S to predict each type of action across all scenarios when compared to the ground

truth. Finally, in order to validate the fidelity of the replayed scenarios generated by V2S

compared to the original video recording, we manually compared each original video to

each reproduced scenario from V2S, and determined the number of actions for each video

that were faithfully replayed.
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4.3.4 RQ4: Performance

To investigate RQ4, we evaluated V2S by calculating the average time it takes for a video

to pass through each of the three phases of the V2S approach on commodity hardware (i.e.,

a single NVIDIA GTX 1080Ti). We see this as a worst case scenario for V2S performance,

as our approach could perform substantially faster on specialized hardware. Note that

since our replay engine is an enhancement of the RERAN engine, we expect our scripts to

have similar or better overhead as reported in its respective paper [82].

4.3.5 RQ5: Perceived Usefulness

Ultimately, our goal is to integrate V2S into real-world development environments. Thus,

as part of our evaluation, we investigated V2S’s perceived usefulness with three developers

who build Android apps (or web apps for mobile) for their respective companies.

The developers (a.k.a. participants) were contacted through direct contact of the au-

thors. Participant #1 (P1) was a front-end developer on the image search team of the

Google Search app [18], participant #2 (P2) is a developer of the 7-Eleven Android app [1],

and participant #3 (P3) is a backend developer for the Proximus shopping basket app [25].

We interviewed the participants using a set of questions organized in two sections. The

first section aimed to collect information on participants’ background, including their role

at the company, the information used to complete their tasks, the quality of this informa-

tion, the challenges of collecting it, and how they use videos in their every-day activities.

The second section aimed to assess V2S’s potential usefulness as well as its accuracy in

generating replayable scenarios. This section also asked the participants for feedback to

improve V2S including likert scale questions. We provide the complete list of interview

questions used in our online appendix [54], and discuss selected questions in Sec. 4.4.5.

The participants answered questions from the second section by comparing two videos

showing the same usage scenario for their respective app: one video displaying the sce-

nario manually executed on the app, and the other one displaying the scenario executed

80



Table 4.1: Touch Indicator Detection Accuracy
Model Device mAP mAP@.75 AR
Faster R-CNN-Original Nexus 5 97.36% 99.01% 98.57%
Faster R-CNN-Original Nexus 6P 96.94% 99.01% 98.19%
Faster R-CNN-Modified Nexus 5 97.98% 99.01% 99.33%
Faster R-CNN-Modified Nexus 6P 97.49% 99.01% 99.07%

automatically via V2S’s generated script. Specifically, we defined, recorded, and man-

ually executed a usage scenario on each app. Then, we ran V2S on the resulting video

recordings. To define the scenarios, we identified a feature on each app involving any of

the action types (i.e., taps, long taps, and gestures). Then, we generated a video showing

the original scenario (i.e., video recording) and next to it the replayed scenario generated

when executing V2S’s script. Both recordings highlight the actions performed on the app.

We presented the video to participants as well as V2S’s script with the high-level actions

automatically identified from the original video.

4.4 Empirical Results

4.4.1 RQ1: Accuracy of Faster R-CNN

Table 4.1 depicts the precision and recall for V2S’s Faster R-CNN network for touch

indicator detection on different devices and datasets. The first column identifies the usage

of either the default touch indicator or the modified version. The second column describes

the target device for each trained model. The third column provides the mAP regardless of

the Intersection Over Union (IoU) [176] between the area of the prediction and the ground

truth. The forth column presents the AP giving the proportion of TP out of the possible

positives. All models achieve ≈97% mAP, indicating that V2S’s object detection network

is highly accurate. The mAP only improves when we consider bounding box IoUs that

match the ground truth bounding boxes by at least 75%, which illustrates that when the

model is able to predict a reasonably accurate bounding box, it nearly always properly

detects the touch indicator (≈99%). As illustrated by the last column in Table 4.1, the

model also achieves extremely high recall, detecting at least ≈98% of the inserted touch
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Table 4.2: Confusion Matrix for Opacity CNN. Low Opacity Original (L-Op.-Orig.),
High Opacity Original (H-Op.-Orig.), Low Opacity Custom (L-Op.-Cust.), High Opacity
Custom (H-Op.-Cust.)

Total L-Op.-Orig. H-Op.-Orig. L-Op.-Cust. H-Op.-Cust.
Low Op 5000 97.8% 2.2% 99.7% 0.3%
High Op 5000 1.4% 98.6% 0.8% 99.2%

indicators.

Answer to RQ1: V2S benefits from the strong performance of its object detection

technique to detect touch indicators. All Faster R-CNN models achieved at least

≈ 97% precision and at least ≈ 98% recall across devices.

4.4.2 RQ2: Accuracy of the Opacity CNN

To illustrate the Opacity Network’s accuracy in classifying the two opacity levels of

touch indicators, we present the confusion matrix in Table 4.2. The results are presented

for both the default and modified touch indicator. The overall top-1 precision for the

original touch indicator is 98.2% whereas for the custom touch indicator is 99.4%. These

percentages are computed by aggregating the correct identifications for both classes (i.e.,

Low/High-Opacity) together for the original and custom touch indicators. Hence, it is

clear V2S’s Opacity CNN is highly effective at distinguishing between differing opacity

levels.

Answer to RQ2: V2S benefits from the CNNs accuracy in classifying levels of

opacity. Opacity CNN achieved an average precision above 98% for both touch

indicators.

4.4.3 RQ3: Scenario Replay Accuracy

Levenshtein Distance. Fig. 4.6a and 4.6b depict the number of changes required to

transform the output event trace into the ground truth for the apps used in the controlled

study and the popular apps study, respectively. For the controlled study apps, on average
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Table 4.3: Detailed Results for RQ3 popular applications study. Green cells indicate fully
reproduced videos, orange cells >50% reproduced, and Red Cells <50% reproduced. Blue
cells show non-reproduced videos due to non-determinism/dynamic content.

AppName Actions AppName Actions App Name Actions App Name Actions
Ibis Paint X 11/11 36/36 Firefox 22/22 N/A Tasty 20/20 14/36 SoundCloud 12/12 13/13
Pixel Art Pro 20/20 9/9 MarcoPolo 12/12 30/30 Postmates 26/26 12/12 Shazam 12/15 20/20
Car-Part.com 20/20 16/16 Dig 13/13 N/A Calm 9/9 11/16 Twitter 14/14 19/19
CDL Practice 8/8 13/13 Clover 15/15 19/19 Lose It! 36/36 N/A News Break 1/18 9/9
Sephora 4/9 13/13 PlantSnap 39/39 18/24 U Remote 14/14 18/18 FamAlbum 19/19 8/26
SceneLook 14/14 16/16 Translator 20/20 28/28 LEGO 52/52 24/24 Baby-Track 14/14 12/12
KJ Bible 16/16 19/19 Tubi 2/19 30/30 Dev Libs 35/35 22/22 Walli 8/8 N/A
Bible App 12/12 15/15 Scan Radio 24/27 N/A Horoscope 24/24 19/19 ZEDGE 9/9 18/18
Indeed Jobs 15/15 19/19 Tktmaster 30/30 14/14 Waze 17/17 19/19 G-Photo 18/18 18/18
UPS Mobile 16/16 19/24 Greet Cards 23/23 N/A Transit 26/26 18/18 PicsArt 18/18 39/39
Webtoon 17/17 15/21 QuickBooks 47/47 28/28 WebMD 7/34 7/26 G-Docs 3/26 N/A
MangaToon 16/16 28/28 Yahoo Fin 23/23 N/A K-Health 10/10 15/24 M. Outlook 27/27 21/26
LetGo 17/17 15/15 CBSSports 25/25 16/16 G-Podcast 9/9 15/15 DU Record 15/15 9/9
TikTok 14/14 11/11 MLBatBat 11/13 N/A Airbnb 9/9 14/14 AccuWeath 13/13 21/21
LinkedIn 18/18 13/13 G-Translate 14/17 15/15 G-Earth 8/13 1/30 W. Radar 14/14 13/13

it requires 0.85 changes per user trace to transform V2S’s output into ground truth event

trace, whereas for the popular apps it requires slightly more with 1.17 changes. Overall,

V2S requires minimal changes per event trace, being very similar to the ground truth.

Longest Common Subsequence. Fig. 4.6c and 4.6d presents the percentage of events

for each trace that match those in the original recording trace for the controlled study

and popular apps study respectively. On average V2S is able to correctly match 95.1% of

sequential events on the ground truth for the controlled study apps and 90.2% for popular

apps. These results suggest that V2S is able to generate sequences of actions that closely

match the original trace in terms of action types.

Precision and Recall. Fig. 4.7 and 4.8 show the precision and recall results for the

controlled study and popular apps study, respectively. These plots were constructed by

creating an order agnostic “bag of actions” for each predicted action type, for each scenario

in our datasets. Then the precision and recall are calculated by comparing the actions to a

ground truth “bag of actions” to compute precision and recall metrics. Finally, an overall

average precision and recall are calculated across all action types. The results indicate

that on average, the precision of the event traces is 95.3% for the controlled study apps
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and 95% for popular apps. This is also supported for each type of event showing also a

high level of precision across types except for the precision on Long Taps for the popular

apps. This is mainly due to the small number (i.e., 9 Long Taps) of this event type across

all the popular app traces. Also, Fig. 4.7 and 4.8 illustrate that the recall across action

types is high with an average of 99.3% on controlled study apps and 97.8% on the popular

apps for all types of events. In general, we conclude that V2S can accurately predict the

correct number of event types across traces.

0

5

10

15

Study Apps

C
ha

ng
es

(a) LD-Study

0

5

10

15

Popular Apps

C
ha

ng
es

(b) LD-Popular

0.00

0.25

0.50

0.75

1.00

Study Apps

P
er

ce
nt

ag
e

(c) LCS-Study

0.00

0.25

0.50

0.75

1.00

Popular Apps

P
er

ce
nt

ag
e

(d) LCS-Popular

Figure 4.6: Effectiveness Metrics

Success Rate. Finally, we also evaluated success rate of each replayed action for all

scenarios across both RQ3 studies. The 175 videos were analyzed manually and each action

was marked as successful if the replayable scenario faithfully exercised the app features

according to the original video. This means that in certain cases videos will not exactly

match the original video recording (e.g., due to a single keyboard keystroke error that

still led to the same feature result). Thus, after validating all 64 videos for the controlled

study, V2S fully reproduces 93.75% of the scenarios, and 94.48% of the consecutive actions.

V2S fully reproduced 96.67% of the scenarios for bugs and crashes and 91.18% of apps

usages. Detailed results for the popular apps study are shown in Table 4.3, where each app,

scenario (with total number of actions), and successfully replayed actions are displayed.

Green cells indicate a fully reproduced video, Orange cells indicate more than 50% of events

reproduced, and Red cells indicate less than 50% of reproduced events. Blue cells show
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Figure 4.7: Precision and Recall - Controlled Study
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Figure 4.8: Precision and Recall - Popular Apps

non-reproduced videos due to non-determinism/dynamic content. For the 111 scenarios

recorded for the popular apps, V2S fully reproduced 81.98% scenarios, and 89% of the

consecutive actions. Overall, this signals strong replay-ability performance across a highly

diverse set of applications. Instances where V2S failed to reproduce scenarios are largely

due to minor inaccuracies in Gesture events due to our video resolution of 30fps. We

discuss potential solutions to this limitation in Sec. 4.5.

Answer to RQ3: V2S is capable of generating event traces that require on average

≈ 1 change to match original user scenarios. Moreover, at least 90.2% of events

match the ground truth, when considering the sequence of event types. Overall,

precision and recall are ≈95% and ≈98% respectively for event types produced

by V2S. Finally, in 96.67% and 91.18% of the cases, V2S successfully reproduces

bugs/crashes- and app-usage-related videos, respectively.
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4.4.4 RQ4: Approach Performance

To measure the performance of V2S, we measured the average time in seconds/frame (s/f)

for a single video frame to be processed across all recorded videos for three components:

(i) the frame extraction process (0.045 s/f), (ii) the touch indicator detection process (1.09

s/f), and (iii) the opacity classification process (0.032 s/f). The script generation time is

negligible compared to these other processing times, and is only performed once per video.

This means that an average video around 3 mins in length would take V2S ≈105 minutes

to fully process and generate the script. However, this process is fully automated, can run

in the background, and can be accelerated by more advanced hardware. We expect the

overhead of our replayed scripts to be similar or better than RERAN since V2S replay

engine is essentially an improved version of RERAN’s.

Answer to RQ4: V2S is capable of fully processing an average 3-min screen record-

ing in ≈105 mins.

4.4.5 RQ5: Perceived Usefulness

The three industry participants agreed that further tool support is needed for helping

QA members and other stakeholders with generating video recordings. For example, P3

mentions that while videos are "more useful than images" (in some cases), they “may be

difficult to record” because of “time constraints”. All participants also (strongly) agreed

that the scenarios produced by V2S (in the generated scripts) are accurate with respect

to the scenarios that were manually executed.

Regarding V2S’s usefulness, P1 remarked that the QA team could use V2S to help

them create videos more optimally. P2 supported this claim as he mentions that V2S

could help “the QA team write/provide commands or steps, then the tool would read and

execute these while recording a video of the scenario and problem. This solution could

be integrated in the continuous integration pipeline”. In addition, P3 mentions that V2S

could be used during app demos: V2S could “automatically execute a script that shows
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the app functionality and record a video. In this way, the demo would focus on business

explanation rather than on manually providing input to the app or execute a user scenario”.

P2 also indicated that V2S could be used to analyze user behavior within the app,

which can help improve certain app screens and navigation. He mentions that V2S “could

collect the type of interactions, # of taps, etc. to detect, for example, if certain screens are

frequently used or if users often go back after they go to a particular screen”. He mentions

that this data “could be useful for marketing purposes”. P3 finds V2S potentially useful

for helping reproduce hard-to-replicate bugs.

The participants provided valuable and specific feedback for improving V2S. They

suggested to enrich the videos produced when executing V2S’s script with a bounding

box of the GUI components or screen areas being interacted with at each step. They also

mention that the video could show (popup) comments that explain what is going on in the

app (e.g., a comment such as “after 10 seconds, button X throws an error”), which can help

replicate bugs. They would like to see additional information in the script, such as GUI

metadata that provides more in-depth and easy-to-read information about each step. For

example, the script could use the names or IDs of the GUI components being interacted

with and produce steps such as “the user tapped on the send button” instead of “the

user tapped at (10.111,34.56)”. P3 mentioned that “it would be nice to change the script

programmatically by using the GUI components’ metadata instead of coordinates, so the

script is easier to maintain”. They suggest to include an interpreter of commands/steps,

written in a simple and easy-to-write language, which would be translated into low-level

commands.

Answer to RQ5: Developers find V2S accurate in replicating app usage scenarios

from input videos, and potentially useful for supporting several development tasks,

including automatically replicating bugs, analyzing usage app behavior, helping

users/QA members generate high-quality videos, and automating scenario execu-

tions.
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4.5 Limitations & Threats to Validity

Limitations. Our approach has various limitations that serve as motivation for future

work. One current limitation of the Faster R-CNN implementation our approach utilizes

is that it is tied to the screen size of a single device, and thus a separate model must be

trained for each screen size to which V2S is applied. However, as described in Sec. 4.1.2, the

training data process is fully automated and models can be trained once and used for any

device with a given screen size. This limitation could be mitigated by increasing dataset

size including all type of screen sizes with a trade-off on the training time. To facilitate

the use of our model by the research community, we have released our trained models for

the two popular screen sizes of the Nexus 5 and Nexus 6P in our online appendix [54].

Another limitation, which we will address in future work, is that our replayable traces

are currently tied to the dimensions of a particular screen, and are not easily human

readable. However, combining V2S with existing techniques for device-agnostic test case

translation [77], and GUI analysis techniques for generating natural language reports [157]

could mitigate these limitations.

Finally, as discussed in Sec. 4.4.3, one limitation that affects the ability of V2S to

faithfully replay swipes is the video frame-rate. During the evaluation, our devices were

limited to 30fps, which made it difficult to completely resolve a small subset of gesture

actions that were performed very quickly. However, this limitation could be addressed

by improved Android hardware or software capable of recording video at or above 60fps,

which, in our experience, should be enough to resolve nearly all rapid user gestures.

Internal Validity. In our experiments evaluating V2S, threats to internal validity may

arise from our manual validation of the correctness of replayed videos. To mitigate any

potential subjectivity or errors, we had at least two authors manually verify the correctness

of the replayed scenarios. Furthermore, we have released all of our experimental data and

code [54], to facilitate the reproducibility of our experiments.

Construct Validity. The main threat to construct validity arises from the potential
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bias in our manual creation of videos for the popular apps study carried out to answer

RQ3. It is possible that the author’s knowledge of V2S influenced the manner in which we

recorded videos. To help mitigate this threat, we took care to record videos as naturally

as possible (e.g., normal speed, included natural quick gestures). Furthermore, we carried

out an orthogonal controlled study in the course of answering RQ3, where users unfamiliar

with V2S naturally recorded videos on a physical device, representing an unbiased set

of videos. Another potential confounding factor concerns the quality of the dataset of

screens used to train, test, and evaluate V2S’s Faster R-CNN and Opacity CNN. To

mitigate this threat, we utilize the ReDraw dataset [156] of screens which have undergone

several filtering and quality control mechanisms to ensure a diverse set of real GUIs. One

more potential threat concerns our methodology for assessing the utility of V2S. Our

developer interviews only assess the perceived usefulness of our technique, determining

whether developers actually receive benefit from V2S is left for future work.

External Validity. Threats to the generalizability of our conclusions are mainly related

to: (i) the number and diversity apps used in our evaluation; (ii) the representativeness

of usage scenarios depicted in our experimental videos; and (iii) the generalizability of

the responses given by the interviewed developers. To help mitigate the first threat, we

performed a large-scale study with 64 of the top applications on Google Play mined from

32 categories. While performing additional experiments with more applications is ideal,

our experimental set of applications represents a reasonably large number of apps with

different functionalities, which illustrate the relatively applicability of V2S. To mitigate

the second threat, we collected scenarios illustrating bugs, natural apps usages, real crashes,

and controlled crashes from eight participants. Finally, we do not claim that the feedback

we received from developers generalizes broadly across industrial teams. However, the

positive feedback and suggestions for future work we received in our interviews illustrate

the potential practical usefulness of V2S.

89



4.6 Related Work

In this section we survey research that investigates: (i) approaches that use video screen

recording/capture, (ii) record and replay approaches that collect low level event traces, and

(iii) crowdsourcing input data collection approaches that leverages user data to generate

test scenarios.

4.6.1 Analysis of Video and Screen Captures

Lin et al. [121] proposed an approach called Screenmilker to automatically extract screen-

shots of sensitive information (e.g., user entering a password) by using the Android Debug

Bridge (adb). This technique focuses on the extraction of keyboard inputs from“real-

time” screenshots. Screenmilker is primarily focused upon extracting sensitive information,

whereas V2S analyzes every single frame of a video to generate a high fidelity replay script

from a sequence of video frames.

Krieter et al. [116] use video analysis to extract high-level descriptions of events from

user video recordings on Android apps. Their approach generates log files that describe

what events are happening at the app level. Compared to our work, this technique is

not able to produce a script that would automatically replay the actions on a device,

but instead simply describe high-level app events (e.g., “WhatsApp chat list closed”). On

the other hand, our work focuses on video analysis to help with bug reproduction and

generation of test scenarios, rather than describing usage scenarios at a high level.

Bao et al. [51] and Frisson et al. [79] focus on the extraction of user interactions to

facilitate behavioral analysis of developers during programming tasks using CV techniques.

In our work, rather than focusing on understanding user actions on mobile apps, we instead

focus on generating high-fidelity replay scripts that closely match users’ interactions from

a screen recorded video.

Other researchers have proposed approaches that focus on the generation of source

code for Android applications from screenshots or mock-ups. These approaches rely on
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techniques that vary solely from CV-based [160] to DL-based [53, 156, 60].

The most related work to V2S is the AppFlow approach introduced by Hu et al. [98].

AppFlow leverages machine learning techniques to analyze Android screens and categorize

types of test cases that could be performed on them (i.e., a sign in screen whose test case

would be a user attempting to sign in). However, this technique is focused on the generation

of semantically meaningful test cases in conjunction with automated dynamic analysis. In

contrast, V2S is focused upon the automated replication of any type of user interaction

on an Android device, whether this depicts a usage scenario or bug. Thus, V2S could be

applied to automatically reproduce crowdsourced mobile app videos, whereas AppFlow is

primarily concerned with the generation of tests rather than the reproduction of existing

scenarios.

4.6.2 Record and Replay

Many tools assist in recording and replaying tests for mobile platforms [82, 3, 12, 150].

However, many of these tools require the recording of low-level events using adb, which

usually requires rooting of a device, or loading a custom operating system (OS) to capture

user actions/events that are otherwise not available through standard tools such as adb.

While our approach uses RERAN [82] to replay system-level events, we rely on video frames

to transform touch overlays to low-level events. This facilitates bug reporting for users by

minimizing the requirement of specialized programs to record and replay user scenarios.

Hu et al. [99] developed VALERA for replaying device actions, sensor and network

inputs (e.g., GPS, accelerometer, etc.), event schedules, and inter-app communication.

This approach requires a rooted target device and the installation of a modified Android

runtime environment. These requirements may lead to practical limitations, such as de-

vice configuration overhead and the potential security concerns of rooted devices. Such

requirements are often undesirable for developers [118]. Conversely, our approach is able

to work on any unmodified Android version, requiring just a screen recording.

Nurmuradov et al. [162] introduced a record and replay tool for Android applications
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that captures user interactions by displaying the device screen in a web browser. This

technique uses event data captured during the recording process to generate a heatmap

that facilitate developers’ understanding on how users are interacting with an application.

This approach is limited in that users must interact with a virtual Android device through

a web application, which could result in unnatural usage patterns. This technique is more

focused towards session-based usability testing, whereas V2S is focused upon replaying

“in-field” app interactions from users or crowdsourced testers collected from devices via

screen recordings.

Other work has focused on capturing high-level interactions in order to replay events

[91, 3, 143, 85]. For instance Mosaic [91], uses an intermediate representation of user

interactions to make replays device agnostic. This intermediate representation is high level

which uses a virtual screen to map coordinates into actions that can later be replayed.

Our work is different due to the fact that for our replay engine we rely on RERAN,

which uses low level events. This has the issue of not being directly device agnostic.

However, replays are more accurate since exact events are being replayed instead of a

high level representations. Additional tools including HiroMacro [19] and Barista [77] are

Android applications that allow for a user to record and replay interactions. They require

the installation or inclusion of underlying frameworks such as replaykit [12], or AirTest

[3]. Android Bot Maker [29] is an Android application that allows for the automation of

individual device actions, however, it does not allow for recording high-level interactions,

instead one must enter manually the type of action and raw (x, y) coordinates. In contrast

to these techniques, one of V2S’s primary aims is to create an Android record and replay

solution which an inherently low barrier to usage. For instance, there are no frameworks to

install, or instrumentation to add, the only input is an easily collectable screen recording.

This makes V2S suitable for use in crowd- or beta-testing scenarios, and improves the

likelihood of its adoption among developers for automated testing, given its ease of use

relative to developer’s perceptions of other tools [130].
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4.6.3 Crowdsourcing Input Data Collection

As crowdsourcing information from mobile app users has become more common with the

advent of a number of testing services [8, 34, 22], researchers have turned to utilizing

usage data recorded from crowd-testers to enhance techniques related to automated test

case generation for mobile apps. Linares-Vásquez et al. first introduced the notion of

recording crowd-sourced data to enhance input generation strategies for mobile testing

through the introduction of the MonkeyLab framework [135]. This technique adapted

N-gram language models trained on recorded user data to predict event sequences for

automated mobile test case generation. Mao et al. developed the Polariz approach which

is able to infer “motif” event sequences collected from the crowd that are applicable across

different apps [142]. The authors found that the activity-based coverage of the Sapienz

automated testing tool can be improved through a combination of crowd-based and search-

based techniques. The two approaches discussed above require either instrumented or

rooted devices (MonkeyLab), or interaction with apps via a web-browser (Polariz).

Thus, V2S is complementary to these techniques as it provides a frictionless mechanism

by which developers can collect user data in the form of videos.
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Chapter 5

On-Device Bug Reporting for

Android Applications

In order to aid in the difficult process of reproducing and fixing bugs related to mobile apps,

in this paper we present a tool that enables developers to effectively carry out the process

of On-Device Bug Reporting. Our prototype ODBR app is capable of running on a

standalone physical or virtual Android device and recording precise user touch interactions

coupled to specific GUI-components as well as sensor data streams for a target app. Then,

this information is sent to a Java web application that displays a detailed, actionable bug

report including screenshots, and series of user events that can be replayed on a target

device allowing developers and testers to debug the app.

ODBR Android App Running on 
Physical or Virtual Android Device

ODBR Application Overview

GetEvent 
Manager

SensorEvent 
Manager

ScreenShot 
Manager

Service that reads
from dev/input/

Samples Sensor
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Screenshot
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Collects UI Info
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Figure 5.1: On-Device Bug Reporting Tool Architecture
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5.1 Background & Related Work

Given that effective bug and error reporting is a problem faced by nearly all Android de-

velopers, there are several existing commercial and research-oriented tools geared toward

improving the reporting process. Several commercial bug reporting and analytics plat-

forms are available to support Android apps including Airbrake [2], TestFairy [35], Appsee

[10], and Bug Clipper[11]. Typically, these solutions consist of an external library that a

developer can include when writing their app. This library then enables the collection of

information, such as device logs, performance information, screenshots and video record-

ings. To the best of the authors’ knowledge, none of these services is capable of collecting

fine-grained user input and GUI information capable of being replayed on a target device

as ODBR does. This precise collection methodology could capture critical information

that a developer needs to successfully reproduce and fix an incoming bug report.

Two recent automated input generation tools for mobile devices, CrashScope [157, 152]

and Sapienz [141] are capable of producing detailed crash reports. CrashScope uses a

combination of static and dynamic analysis to perform targeted testing of application

features according several touch, text, and contextual feature input generation strategies

and is capable of producing an html crash report with images, and a replayable script.

Sapienz formulates the process of automated input generation as a multi-objective search

problem, and is capable of producing videos and replayable scripts. While these automated

tools are able to provide relatively robust crash-reports for apps they test, they are plagued

by the oracle problem, in that while they can recognize and report when an app has crashed,

they may miss user facing bugs that are more subtle. Additionally, Fusion [155, 152] is an

off-device bug reporting system for Android applications that leverages static and dynamic

analysis performed before the reporting process to help guide users through reporting

detailed reproduction steps for an application. ODBR is complimentary to Fusion in

that it provides another avenue for developers and testers to create detailed bug reports

with minimal effort. Finally, previous Record & Replay approaches for Android apps have
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been proposed including RERAN [82], VALERA [99], and MobiPlay [174]. While each of

these solutions offers the ability to record user actions and replay them later, none of the

tools offers the ability to record user actions on a standalone device without a connection

to a host machine or server. ODBR leverages the highly efficient and accurate event

stream recording introduced by RERAN and VALERA and combines this with detailed

GUI-hierarchy information collected via the uiautomator tool to enable the capture of

precise information to aid in the debugging process.

5.2 The ODBR Bug Reporting Tool

The ODBR Workflow: The overall architecture of our ODBR tool is illustrated in

Figure 5.1. The entry point for a tester or developer using this tool is the ODBR Android

Application, which is available as an open source project accessible from our tool’s webpage1

along with further information about the project and demo videos. To use our tool, a

reporter simply needs to install the ODBR app on their target virtual or physical device2

select the app for which they wish to report a bug from the list of installed applications,

hit the record button and perform the actions on the device that manifest a bug. After

the ODBR app (which is running in the background) detects that no touch-based inputs

have been entered after a certain period of time, it asks the user if they have finished the

report or if they wish to continue. Once the user has finished, they will have a chance to

enter additional information about the bug, including a natural language description of the

expected and actual behavior, and a title for the report. Additionally, the user can view

the screenshots and sensor data traces from the device and even replay the touch events to

ensure they were properly captured. This replay feature relies on a custom written Java

implementation of the sendevent utility3. Once the report has been created, a BugReport

is translated to a JSON document where it is sent over the web to a CouchDB server instance.
1https://www.android-dev-tools.com/odbr
2Our tool’s app currently requires a rooted target device, a requirement for accessing the /dev/input event

stream
3https://goo.gl/EEUSfu
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A Java web-application then reads the bug report information from the JSON file and

converts the information into a fully expressive html report. From the java web app, a

developer can view the reproduction steps of the report, complete with screenshots and

action descriptions, as well as download a replayable script that will reproduce the actions

via adb or sendevent commands.

ODBR App components: The ODBR Application has 4 major components that

aid in the collection of information during the bug reporting process. These include: (i)

the GetEvent Manager, (ii) the UI-Hierarchy Manager, (iii) the Sensor Event

Manager and (iv) the Screenshot Manager. The GetEvent Manager is responsible

for precisely and efficiently reading in the user event stream. To accomplish this, during

the reporting process the app creates threads that read from the underlying Linux input

event streams at /dev/input/... These input events provide highly detailed information

about the user’s interaction with the phone’s physical devices, including (where applicable)

the touch screen, power button, keyboard, etc. This information is identical to what

is gathered using the Android getevent utility as used by RERAN [82]. Next, these

low-level input event streams are parsed into higher level user interactions (e.g. swipe

from (a,b) to (c,d)). The low-level input events are retained to support precise analysis

and replayability, while the higher level interactions are used to summarize the report

in natural language. Whenever the GetEvent Manager detects the user is taking a

new action, it notifies the applicable managers to take a screenshot and dump of the

UI-hierarchy, associating these with the new interaction. The UI-Hierarchy Manager

interfaces with the Android uiautomator framework to capture dumps of the Android

view hierarchy in ui-dump.xml files for each new user action. Because these dump files

contain information about the screen location of each UI-component, we can use the event

information obtained from the previous component to precisely infer the UI-component

that the user interacted with at each step in the bug reporting process. This component

also extracts attributes of the various components on the screen including information

such as the type (e.g., button, spinner) and whether the component is clickable. The
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Sensor Event Manager is responsible for efficiently sampling the sensor input streams

(e.g., accelerometer, GPS) during the bug reporting process. This component accomplishes

this by registering SensorEventListener instances for each sensor which sample the sensor

values at appropriate rates. Finally, the Screenshot Manager is responsible for capturing

an image of the screen for each new user interaction using the screencap utility included

in Android.
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Chapter 6

Conclusion and Future Work

In this dissertation, we have presented a study and several approaches to support Android

software developers and testers. Here, we summarize all conclusions and future work for

each chapter.

6.1 Mutation Testing in Android

The survey in Chapter 2 helps us to take other directions to improve quality of test cases in

Android app. Although these apps rely on the Java language as a programming platform,

they have specific elements that make the testing process different than other Java apps.

In particular, the type and distribution of faults exhibited by Android apps may be very

peculiar, requiring, in the context of mutation analysis, specific operators.

In Chapter 3, we presented the first taxonomy of faults in Android apps, based on a

manual analysis of 2,023 software artifacts from six different sources. The taxonomy is

composed of 14 categories containing 262 types. Then, based on the taxonomy, we have

defined a set of 38 Android-specific mutation operators, implemented in an infrastructure

called MDroid+, to automatically seed mutations in Android apps. To validate the

taxonomy and MDroid+, we conducted a comparative study with Java mutation tools.

The study results show that MDroid+ operators are more representative of Android

faults than other catalogs of mutation operators, including both Java and Android-specific
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operators previously proposed. Also MDroid+ is able to outperform state-of-the-art tools

in terms of stillborn and trivial mutants.

The obtained results make our taxonomy and MDroid+ ready to be used and possibly

extended by other researchers and practitioners. To this aim, MDroid+ and the wrappers

for using Major and Pit with Android apps are available as open source projects [127].

Future work could consider extending MDroid+ by implementing more operators,

and extending the framework for mutation analysis of Android apps by considering other

type of devices. For instance, mutation testing could be applied in the context of Internet

of Things (IoT) devices that can potentially benefit users in daily activities during the

day. It could facilitate tasks and provide better security for the final user with a well-

tested environment of IoT devices. Also, future work could contemplate to experiment

with MDroid+ in the context of test case prioritization.

6.2 Bug Reporting Reproducibility

In Chapter 4, we presented V2S, an approach for automatically translating video recordings

of Android app usages into replayable scenarios. A comprehensive evaluation including

175 videos from over 80 apps indicates that V2S: (i) accurately identifies touch indicators

and it is able to differentiate between opacity levels, (ii) is capable of reproducing a high

percentage of complete scenarios related to crashes and other bugs, with promising results

for general user scenarios as well, and (iii) is potentially useful to support real developers

during a variety of tasks. V2S can potentially save hundreds of hours per month to

developers by letting them to focus their attention on bug triaging and fixing.

Future work can make V2S applicable to different software maintenance tasks, such as:

(i) producing scripts with coordinate-agnostic actions, (ii) generating natural language user

scenarios, (iii) improving user experience via behavior analysis, (iv) facilitating additional

maintenance tasks via GUI-based information, and (v) increasing number of test cases

with small perturbations to the main flow of the test scenario.
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6.3 Facilitating Bug Reporting

In Chapter 5 of this dissertation, we presented an approach for facilitating recording bug

reports. It records user events and GUI information in an Android app that sends the

information over a web application capable of displaying and managing bug reports. This

facilitates users to send feedback to developers presenting relevant information such screen-

shots and a set of actions. It provides a fully expressive html report with a step by step

granularity detail.

As future work the bug reporting application could be further built out to incorporate

system level performance information, such as CPU or memory usage. Additionally, the

Java web application could be further developed to support additional features commonly

found in modern day issue trackers such as issue labels, discussions, and references to code

and design artifacts.
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