
Studying and Enabling Reuse in Android Mobile Apps

Andrew Steven Holtzhauer

Stafford, VA

Bachelor of Science, College of William and Mary, 2012

A Thesis presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Master of Science

Department of Computer Science

The College of William and Mary
August 2014

APPROVAL PAGE

This Thesis is submitted in partial fulfillment of
the requirements for the degree of

Master of Science

Andrew Steven Holtzhauer

Approved by the Committee, August 2014

Committee Chair
Assistant Professor Denys Poshyvanyk, Computer Science

The College of William and Mary

Associate Professor Peter Kemper, Computer Science
The College of William and Mary

Assistant Professor Collin McMillan, Computer Science
University of Notre Dame

ABSTRACT

In the recent years, studies of design and programming practices in mobile
development are gaining more attention from researchers. Several such
empirical studies used Android applications (paid, free, and open source) to
analyze factors such as size, quality, dependencies, reuse, and cloning. Most of
the studies use executable files of the apps (APK files), instead of source code
because of availability issues (most of free apps available at the Android official
market are not open-source, but still can be downloaded and analyzed in APK
format). However, using only APK files in empirical studies comes with some
threats to the validity of the results. In this paper, we analyze some of these
pertinent threats. In particular, we analyzed the impact of third-party libraries and
code obfuscation practices on estimating the amount of reuse by class cloning in
Android apps. When including and excluding third-party libraries from the
analysis, we found statistically significant differences in the amount of class
cloning 24,379 free Android apps. Also, we found some evidence that
obfuscation is responsible for increasing a number of false positives when
detecting class clones. Finally, based on our findings, we provide a list of
actionable guidelines for mining and analyzing large repositories of Android
applications and minimizing these threats to validity.

While in our initial work we studied different factors that impact reuse in Android
apps, we also designed and implemented an approach to help facilitate the
enabling of reuse in Android mobile applications. Although mobile app stores
may have a list of similar apps to present to the user, this list may not be
complete and/or accurate. Detecting similar applications is a notoriously difficult
problem, since it implies that similar highlevel requirements and their low-level
implementations can be detected and matched automatically for different
applications. We designed an approach for automatically detecting Closely
reLated applications in ANdroid (CLANdroid), which helps detect similar Android
applications based on a given Android mobile app. CLANdroid is an extension to
a novel approach by CLAN, which is a previously published approach that is
included in this thesis for completeness purposes. Our main contributions are an
extension to a framework of relevance and a novel algorithm that computes a
similarity index between Java and Android applications using the notion of
semantic layers that correspond to packages and class hierarchies. To evaluate
CLANdroid we extracted a goldset for each of the 14,450 apps in our dataset,
which consisted of apps that were deemed similar based on the app's page on
Google Play. We compared five different ranking methods: API calls, identifiers,
intents, permissions, and phone sensors. The results show that when
considering the whole dataset, the identifiers ranking method is most effective.

TABLE OF CONTENTS

Acknowledgments iii

Dedication iv

List of Tables v

List of Figures vii

1 Revisiting Android Reuse Studies 2

1.1 Related Work . 4

1.1.1 Reuse in the Android Market 5

1.1.2 Other studies using Android apps 7

1.2 Methodology . 8

1.2.1 Research Questions . 8

1.2.2 Data Extraction Process . 10

1.2.3 Analysis Method . 14

1.2.4 Replication Package . 16

1.3 Results . 16

1.3.1 Impact of third-party libraries 16

1.3.2 Impact of obfuscated apps 20

1.4 Threats to Validity . 24

1.5 Discussion . 26

2 Detecting Similar Android Applications 28

i

2.1 Introduction . 28

2.2 Hypothesis And the Problem . 32

2.2.1 A Motivationg Scenario . 32

2.2.2 Similarity Between Applications 34

2.2.3 Our Hypothesis . 35

2.2.4 Semantic Anchors in Software 36

2.2.5 Challenges . 36

2.3 Approach . 38

2.3.1 Latent Semantic Indexing (LSI) 40

2.3.2 CLANdroid Architecture and Workflow 41

2.3.3 Summary of CLAN study . 43

2.4 Finding Closely Related Android Applications 43

2.4.1 Study Design . 44

2.4.2 Data Extraction . 48

2.4.3 Analysis Method . 50

2.4.4 Replication Package . 53

2.4.5 Results . 53

2.4.6 Threats to Validity . 70

2.5 Related Work . 73

2.6 Summary . 77

3 Conclusion 79

ii

ACKNOWLEDGMENTS

My thanks go to my advisor, without whom this would not be possible. Dr. Denys
has always been supportive, and his tutelage for the past two years has helped
me to grow not only as a student, but as a person more than I have in the past
decade. I could not ask for a better leader, and will be forever grateful for his
kindness and teachings.

To my sister. The one person who somehow always knew when to call and
interrupt me when I was the most busy, and who never thought twice about
spamming me with nonsensical text messages. Nonetheless, I love you so
incredibly much, and even if we can't stand being around each other for more
than a week at a time, thank you for always being there for me, and I hope you
know that I'm always here for you - no matter what.

To Mario and Chris. I cannot even begin to imagine where I would be or how I
would have handled the challenges of both life and school without either of you.
I will never forget the memories and bonds we built together, whether it be in the
lab or at Sweet Frog. You both have helped me to understand the meaning of
what a wise man once said: "The more you do, the more expert you are." There
is only one thing I have left to say to the two of you: Vamos! A la! Playa!!

iii

To my mother and father, who have always supported me and provided me with

more love than I could ask for

iv

LIST OF TABLES

1.1 Recent studies of Android apps analyzed aspects or purpose, num-

ber of apps, and number of Android categories covered. 5

1.2 Characteristics of the apps (grouped by category) used in our study. 9

1.3 Summary of results for RQ1 and RQ2. The PCSR and the difference

between PCSR are listed by category. 20

2.1 Android apps used in the survey for RQ1 46

2.2 Number of apps per category . 50

2.3 Results of the user survey. The first column indicates what is being

measured (e.g., S for functional similarity), and the second column

indicates which set of similar apps were used (i.e., similar apps de-

tected with a specific approach). The next 16 columns represent the

16 questions presented to a user in the survey, and the last column

contains the average value of each row. The rows show the aver-

age values from all users that answered a question for a specific set

of similar apps . 55

2.4 Results of statistical tests for H03 and H04 when using the whole

dataset.With the Bonferroni correction the new alpha value for the

post-hoc tests is 0.005 (0.05/10). 60

v

2.5 Differences between TOPr andAV Gr when including and excluding

third-party libraries. Negative values in the Diff(mean) andDiff(median)

columns shows that when excluding third-party libraries the rankings

move in the direction of the top positions. 67

2.6 Number of obfuscated apps per category 68

2.7 Differences between TOPr and AV Gr when excluding obfuscated

apps. Negative values in the Diff(mean) and Diff(median) columns

shows that when excluding obfuscated apps the rankings move in

the direction of the top positions. 70

2.8 Recent studies of similar app detection, purpose of study, and in-

formation used in the study. For platform we use M for mobile and

D for desktop. The next column lists the number of apps in the

dataset, and the TPL column marks if the study considered the im-

pact of third-party libraries with a YES, NO, or NA (not applicable).

Finally, the market category states where the apps were acquired

from- MM : multiple markets, NR : not reported, GP : Google Play,

FB : FreeBSD, SF : SourceForge, E: Eclipse Plugins. 73

vi

LIST OF FIGURES

1.1 Class signature example for the class zz.zzz.ZzActivity in the An-

droid zz.zzz App. 11

1.2 Source code and JAR files extraction process from APK files 12

1.3 Distribution of obfuscated apps per category. 13

1.4 Boxplots for the change ratio of number of clones (signatures) when

(1) comparing the dataset with third-party libraries and without third-

party libraries (i.e., +TPL to -TPL); (2) comparing the dataset with

third-party libraries, and the dataset without obfuscated apps (i.e.,

+TPL to -OBF); and (3) comparing the dataset without third-party li-

braries, and the dataset without third-party libraries and without ob-

fuscated apps (i.e., -TPL to -(TPL, OBF)). Red diamonds represent

the mean (average). 17

1.5 Boxplots for the change ratio of number of signatures when (1) com-

paring the dataset with third-party libraries and without third-party

libraries (i.e., +TPL to -TPL); (2) comparing the dataset with third-

party libraries, and the dataset without obfuscated apps (i.e., +TPL

to -OBF); and (3) comparing the dataset without third-party libraries,

and the dataset without third-party libraries and without obfuscated

apps (i.e., -TPL to -(TPL, OBF)). Red diamonds represent the mean

(average). 19

2.1 CLANdroid architecture and workflow. 41

vii

2.2 Example of survey's question for the app com.rovio.angrybirdsspace

.ads . 46

2.3 Data extraction process from APK files. 49

2.4 Survey results: distribution of the precision (Pr) depicted by ap-

proach. Each boxplot was plotted using all the responses from the

participants for the similar-apps set generated with the considered

approaches. 56

2.5 Survey results: distribution of the average similarity (S) depicted by

approach. Each boxplot was plotted using all the responses from

the participants for the similar-apps set generated with the consid-

ered approaches. 57

2.6 Boxplots by ranking method, measured by the top ranked app in

goldset. 58

2.7 Boxplots by ranking method, measured by the average ranked app

in goldset. 59

2.8 Boxplots by ranking method, measured by the top ranked app in

goldset when excluding third-party libraries. 66

2.9 Boxplots by ranking method, measured by the average ranked app

in goldset when excluding third-party libraries. 67

viii

Studying and Enabling Reuse in Android Mobile Apps

Chapter 1

Revisiting Android Reuse Studies

Developing mobile applications differs from desktop and web applications in several di-

mensions. It is not only about the revenue models or the size of the applications, but also

about programming practices, hierarchy and structure of development teams, as well as

other factors. For example, testing mobile applications highly benefits from crowdsource-

based approaches that assume testing newly released applications (or updates) on dif-

ferent devices, operating systems, and under different connection modes (e.g., offline,

WiFi, cellular network). Also, reuse in mobile applications (hereinafter referred as apps)

is ongoing and widespread, in particular because the apps are highly dependent on the

APIs [56, 57, 72] and the distribution model in markets allows developers to sell the same

apps several times by (re)packaging them with different GUI elements.

As of today, only a handful of papers have analyzed mobile apps and their ecosystems

to understand the factors that distinguish mobile apps and their development processes

from desktop and web applications [12, 26, 36, 53, 56, 57, 72, 73]. For example, Minelli

and Lanza [53] and Syer et al. [73] suggest that practices for desktop and server-based

applications may not necessarily apply to mobile apps. Most of these related papers

used a similar approach that consists of analyzing the code or metadata available in pub-

lic markets. In the particular case of Android, APK (Application PacKage) files have been

analyzed. It should be noted that these studies use executable files of the apps (APK

2

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 3

files), instead of source code because of availability issues -- most of the free apps avail-

able at the Android official market are not open-source, but can still be downloaded and

analyzed in APK format. During the analysis, the APK files are converted to JAR files or

decompiled to Java source code. However, the building and packaging model of Android

apps (APK files) may introduce some threats to validity of the results of empirical studies.

Even in the case of open source apps, according to [53, 72] some apps include the source

code of third-party libraries.

As described in the Android developer guide [16], JAR libraries referenced by the

source code of Android apps are imported into APK files at build time. Therefore, when

the Android build system converts the .class files into a DEX file, a converter tool is called

to extract .class files from JAR libraries and consider them as local .class files compiled

from the application source code. Consequently, when converting APK files to JAR files

or to Java source code, all the files are under the same root directory (app classes and

third-party libraries), thus following the Java rules for organizing files under packages.

In addition, obfuscation is a common practice recommended in the Android developer

guide [18] to protect security protocols and other application components from reverse

engineering attacks. Also, obfuscation is used to hide illegal reuse and avoid licensing

issues [69].

Including the code of third-party libraries in the APK files and ignoring obfuscation

practices are threats to validity of empirical studies using APK files, in particular the ones

aimed at analyzing class cloning/reuse in Android apps. For example, because of the

build process, it is not possible to distinguish directly between code referenced as a li-

brary and code that was copied and modified from other applications or third-party li-

braries. Also, signature-based techniques for detecting class cloning, such as Software

Bertilonage [9, 8], are sensitive to obfuscation, mainly to transformations such as renam-

ing, ordering (e.g., changing order or methods, or changing order of parameters in meth-

ods), and aggregations (e.g., inline and outline methods, cloning methods) [6]. In general,

the study by Schulze and Meyer showed that obfuscation by renaming identifiers reduces

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 4

the effectiveness of text-based clone detectors [69].

Previous studies have not considered the impact of obfuscated code and third-party

libraries on the measurements of class cloning in Android apps. Only a recent study by

Mojica et al. [56] removed obfuscated classes from their dataset when computing the

amount of class cloning on Android apps. Therefore, in this thesis we provide empir-

ical evidence on how third-party libraries and obfuscated code can impact reuse mea-

surements. We computed the amount of classes reused on a large set of 24,379 free

apps downloaded from Google play, including/excluding third-party libraries, and includ-

ing/excluding obfuscated apps (that we detected using our algorithms). For detecting

clones we used a signature-based approach as in [56, 57]. For detecting apps with ob-

fuscated code we used a simple heuristic we defined after manually inspecting a large

sample of obfuscated apps in our dataset.

The results of this study show that there are significant and large differences, in terms

of statistical significance and effect size, between the amount of class signatures reused

in Android apps when including and excluding third-party libraries. Moreover, although

the impact of obfuscated code is negligible when detecting cloned classes in Android

apps, we found evidence of false positives declared as clones by the signature-based

approach. Therefore, researchers analyzing/mining APK files should consider carefully

when to include/exclude third-party libraries and obfuscated code, in particular for studies

that use lexical information extracted from the files (i.e., identifiers) and signatures, or

studies aimed at measuring similarities among apps.

1.1 Related Work

Several recent papers have analyzed software evolution- and maintenance-related as-

pects in Android apps. Most of these studies used apps downloaded from Google Play

and extracted bytecode from the APK files. The extraction process includes a transfor-

mation process from DEX to Java bytecode. This transformation process generates a set

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 5

Table 1.1: Recent studies of Android apps analyzed aspects or purpose, number of apps, and
number of Android categories covered.
Study Purpose #apps #cat. TPL OBF
Shabtai et al. [70] Apps categorization 2,285 2 NO NO
Syer et al. [72] Dependencies analysis 3 NR YES NI
Sanz et al. [67] Apps categorization 820 7 NO NO
Desnos [12] Detection of similar apps 2 1 NO NO
Mojica Ruiz et al. [57] Reuse by inheritance and code cloning 4,323 5 NO NO
Minelli and Lanza [53] Visualization based analysis 20 NR NI NI
Mojica Ruiz et al. [56] Reuse by inheritance and code cloning > 200K 30 NO YES
Syer et al. [73] Size, dependencies and defect fix time 15 NR NO NI
McDonnell et al. [41] API instability and adoption 10 7 NI NI
Linares-Vásquez et al.[36] Apps success and API change/bug proneness 7,097 30 NI NI

of .class files in a directory structure that follows the Java package guidelines. Therefore,

the files belonging to third-party libraries and to the app's main package are organized

using folders representing the packages hierarchy inside a single JAR file. In the fol-

lowing subsections we briefly describe the studies and summarize them in Table 1.1. In

Table 1.1, we use NR to distinguish the cases where the number of domain categories is

not reported. The last two columns list if the study considered the impact of third-party

libraries (TPL) or the impact of obfuscated code (OBF): YES means the study considered

the factor (NO is the opposite); NI stands for those cases where TPL and OBF factors do

not impact the results.

1.1.1 Reuse in the Android Market

Mojica Ruiz et al. [57] were the first to report on the volume of reuse in Android apps.

Two dimensions of reuse were analyzed: reuse by inheritance and class reuse (from

other applications). About 4,000 Android apps were manually downloaded from Google

Play to measure the percentage of classes that were totally reused (cloned) by other apps

and the top base classes that were inherited from third-party libraries and platform APIs

(Android and Java). Mojica Ruiz et al. [57] analyzed the reuse by class cloning in Android

apps, by using class signatures as proposed by Davies et al. [8, 9]. The main conclusion

of their study is that almost 50% of the classes in the apps inherit from a base class,

and most of the reused classes are in the Android APIs. The same study was recently

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 6

extended in [56] with more than 200K apps from GooglePlay. The results on the extended

study showed that about 84% of the classes are reused across all the categories of apps.

However, both studies included the code belonging to third-party libraries whenmeasuring

the percentage of class cloned in the apps; and only the latter [56] considered the impact

of obfuscated classes. Desnos [12] also used method signatures to detect similar Android

apps, where the signatures included string literals, API calls, exceptions, and control flow

structures. However, the study does not report on the impact of obfuscated code or third-

party libraries on their experiments.

Syer et al. [72] analyzed dependencies, source code, and churn metrics of three open

source apps (i.e., Wordpress, Google Authenticator, and Facebook SDK) in Android and

BlackBerry. Although they reported the findings in terms of apps dependency on pre-

defined categories (e.g., language, user interface, platform, third-party), they analyzed

different dimensions of reuse (i.e., inheritance, interface implementation, API calls) by

counting the number of dependencies on each category and the proportion of platform

and user interface dependencies out of the total number of dependencies. Their main

conclusions were that Android apps require less source code but have larger files than in

BlackBerry, and depend more on the Android APIs. During the analysis, the authors dis-

tinguished project-specific files from the source code of third-party libraries, and explicitly

mentioned that "apps often include, customize and maintain the source code of third party

libraries"[72].

Minelli and Lanza [53] proposed a visualization-based analysis for mobile apps using

Samoa, which is an interactive tool that uses historical and structural information from

the apps. Although the tool is not focused on a specific design aspect as reuse, the au-

thors used the Average Hierarchy Height (AHH) and Average Number of Derived Classes

(ANDC) metrics to study inheritance in Android apps. Moreover, they identified that some

apps reuse libraries by copying the entire code instead of referencing JAR files. Some

of the findings help to describe the programming model of Android apps (e.g., complexity

of mobile apps is mostly attributed to the dependency on third-party libraries), however,

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 7

only 20 open source apps were used in the study. Although the authors recognize the

fact that the source code of third-party libraries is copied in some cases into the apps,

they do not mention explicitly if the tool (Samoa) distinguishes between project-specific

and third-party library files.

1.1.2 Other studies using Android apps

Syer et al. [73] analyzed 15 open source apps to investigate the differences of mobile apps

with five desktop/server applications. The comparison was based on two dimensions: the

size of the apps and the time to fix defects. The study suggests that mobile apps are

similar to UNIX utilities in terms of size of the code and the development team. However,

it is not clear if the analyzed apps included the source code of third-party libraries. Also,

the findings suggest that mobile app developers are concerned with fixing bugs quickly:

over a third of the bugs are fixed within one week and the rest are fixed within one month.

Categorization of Android applications has been explored usingmachine-learning tech-

niques [67, 70]. Shabtai et al. [70] categorized APK files into two root categories of the

Android market (``Games'' and ``Applications'') using attributes extracted from DEX files

and XML data in the APK files. Sanz et al. [67] used string literals in classes, ratings,

application sizes, and permissions to classify 820 applications into several existing cate-

gories. In both cases [67, 70], some of the extracted features could be obfuscated and

could also belong to third-party libraries. Therefore it is possible that the results of the

study were impacted by the effect of obfuscated code and third-party libraries.

McDonnell et al [41] analyzed the evolution of Android APIs (i.e., frequency of changes)

and the reaction of client code to API evolution. For the latter purpose, they analyzed 10

open-source Android applications from 7 domains to investigate into: (i) degree of depen-

dency on Android APIs; (ii) lag time between a client API reference and its most recent

available version; (iii) adoption time of new APIs; (iv) the relation between API instabil-

ity and adoption; and (v) the relationship between API updates and bugs in client code.

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 8

Also, Linares-Vásquez et al. [36] analyzed the impact of the Android APIs change- and

fault-proneness on the success of 7,097 apps from Google Play. In both studies [36, 41],

because they analyzed calls to the Android API, there was not an impact on the results

by the effect of third-party libraries or obfuscated code.

1.2 Methodology

The goal of this study is to understand to what extent obfuscated code and third-party

libraries could affect the studies on reuse by class cloning. The context consists of 24,379

free Android apps from the Google Play Market, and the perspective is that of researchers

interested in defining guidelines for empirical studies based on Android apps. Table 1.2

reports characteristics of the apps that we analyzed. For each category considered in

our study (e.g., photography, medical, games, etc), the table lists (i) the number of apps

analyzed from the category (column #apps), (ii) the size range of the analyzed apps in

terms of number of classes (column #classes), and size in terms of thousands of lines of

code including third-party libraries (KLOC).

1.2.1 Research Questions

In the context of our study, we formulated the following research questions:

• RQ1: Do third-party libraries impact the measurement of class cloning? This re-

search question aims at investigating if the amount of class cloning in Android apps

is mainly due to the dependability on the third-party libraries or the apps' classes.

Specifically, we test the following null hypothesis:

H01 : There is no significant difference between the amount of cloned classes in An-

droid apps when considering third-party libraries and when excluding those libraries

from the analysis.

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 9

Table 1.2: Characteristics of the apps (grouped by category) used in our study.
Category #apps Classes KLOC
Arcade 826 5-566 625-20K
Books and reference 719 5-73 7K-639K
Brain 1021 5-572 5K-16K
Business 2047 5-551 64K-105K
Cards 495 8-633 30K-60K
Casual 840 6-566 60K-77K
Comics 57 10-392 251-20K
Communication 479 5-11 419-667K
Education 1572 5-119 9K-58K
Entertainment 2809 2-11 850-61K
Finance 586 5-1583 220-9K
Health and fitness 310 6-104 8K-26K
Libraries and demo 244 1-499 32K-338K
Lifestyle 1621 2-572 7K-16K
Media and video 644 5-572 8K-35K
Medical 102 5-105 6K-26K
Music and audio 1562 3-683 8K-14K
News and magazines 1015 5-280 26K-96K
Personalization 1055 2-126 12K-54K
Photography 595 6-155 111-31K
Productivity 639 5-111 11K-34K
Racing 456 15-280 26K-169K
Shopping 200 5-7 138-151K
Social 522 5-318 48K-122K
Sports 1158 5-280 7K-16K
Sports games 498 6-572 26K-52K
Tools 1421 4-65 7K-58K
Transportation 149 6-57 10K-202K
Travel and local 681 5-257 6K-16K
Weather 56 16-30 2K-22K
Total 24,379 1-1583 111-667K

• RQ2: Does obfuscated code impact the measurement of class cloning? This re-

search question aims at investigating if obfuscated apps should be considered when

computing the amount of classes reused between Android apps. Specifically, we

test the following null hypothesis:

H02 : There is no significant difference between the amount of cloned classes in

Android apps when considering obfuscated apps and when excluding those apps

from the analysis.

The dependent variable for both research questions is represented by the amount of

reuse by class cloning, which is estimated as the Proportion of Class Signatures Reused

(PCSR) per category in our dataset (Section 1.2.3).

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 10

The independent variable for RQ1 is the set of .class files of the apps under study

including third-party libraries, and excluding those libraries. For RQ2 the independent

variable is the set of .class files of the apps under study including and excluding obfus-

cated apps.

1.2.2 Data Extraction Process

We downloaded free mobile apps from Google Play as APK files, then we converted the

APK files into JAR files using the following procedure: (i) unzip APK files by using the

apktool1 tool, which reveals the compiled Android application code file (note that an APK

is just a set of zipped DEX files); then (ii) translate DEX files from the Dalvik bytecode to

Java bytecode files (i.e., .class) using the dex2jar2 tool (see Figure 1.2).

Reuse by class cloning detection

For computing reuse via class cloning we relied on the Software Bertillonage technique

[8, 9] to identify when a class is cloned across several apps, by comparing the classes' sig-

natures. We built class signatures using the Apache Commons BCEL Java library3 as in

[8, 9]. Consequently, a class signature is a file with three parts: class header, attributes

signatures sorted alphabetically, and methods signatures sorted alphabetically. The

format of each part is as follows:

• The class header is defined by the following expression: <modifiers><class_name>

extends <base_class> implements <interfaces_separated_by_comma>. We av-

oided including the java.lang.Object class in the list of base classes.

• Each attribute signature is defined by the following expression: <modifiers>

<attribute_type> <attribute_ name>.
1http://code.google.com/p/android-apktool/
2http://code.google.com/p/dex2jar/
3http://commons.apache.org/proper/commons-bcel/

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 11

Figure 1.1: Class signature example for the class zz.zzz.ZzActivity in the Android zz.zzz App.

• Each method signature is defined by the following expression: <modifiers>

<return_type> <method_ name> (<argument_types>).

The parts corresponding to the base class and interfaces are optional in the class header,

and the names of types do not include the package in any of the parts. Figure 1.1 presents

an example of a class signature.

In order to detect reuse by class cloning, we needed to find if any signature file's

contents were exactly the same as the contents of another signature file. Even if we used

certain optimizations on our comparisons to prevent redundant comparisons, it would be

extremely time-consuming to repeatedly compare files directly. In order to overcome this

obstacle, we opted to read in each signature file, and created an MD5 hash from the

contents inside the signature. We created a large hash map which used the MD5 hash as

the key, and contained a list of signature names for the value. For every signature file, we

checked if the hash already existed as a key in the hash map. If it did, we appended the

name of the signature file to the end of the list in the respective value. If not, we added

the key/value pair to the hash map. Thus, once we finished adding every signature file's

hash and name to the map, we were able to distinguish the cloned files from the originals.

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 12

Google
Play!

dex2jarapktoolAPKs
APK files

JARs

JAR files

Error? 7zipJADsource
code

No

sensors
extractor

permissions

API calls

permissions
extractor

sensors

.class files

.class files

manifest files

JClassInfo

Figure 1.2: Source code and JAR files extraction process from APK files

Detecting obfuscated apps

One of the authors manually inspected the source code of 120 apps (i.e., two obfuscated

and two non-obfuscated apps per category) to identify patterns in the identifiers of obfus-

cated classes. To decompile the apps we extracted .class files from the JAR files by using

the 7zip4 tool and then we decompiled the .class files to Java source code using the JAD

decompiler5. During decompilation, we discarded any apps that did not decompile cor-

rectly (see Figure 1.2). At the end, we were able to decompile 24,379 apps successfully.

After decompiling and manually inspecting the apps, we found that all the apps with

obfuscated identifiers always have a class a.java, because of the renaming algorithm

of the obfuscation tool used for Android apps transforms identifiers using a lexicographic

order. Therefore, to detect apps with obfuscated identifiers we looked for apps with a class

a.java in the main package. We decided to use this simple heuristic because we were

interested only in the impact of identifier obfuscation in the class cloning estimation using
4http://www.7-zip.org/
5http://www.varaneckas.com/jad/

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 13

ARCADE
BOOKS_AND_REFERENCE

BRAIN
BUSINESS

CARDS
CASUAL

COMMUNICATION
EDUCATION

ENTERTAINMENT
FINANCE

HEALTH_AND_FITNESS
LIFESTYLE

MEDIA_AND_VIDEO
MEDICAL

MUSIC_AND_AUDIO
NEWS_AND_MAGAZINES

PERSONALIZATION
PHOTOGRAPHY
PRODUCTIVITY

RACING
SHOPPING

SOCIAL
SPORTS

SPORTS_GAMES
TOOLS

TRAVEL_AND_LOCAL

0 10 20 30 40 50

Figure 1.3: Distribution of obfuscated apps per category.

signatures. Using this method we found 415 apps with obfuscated code. The distribution

of apps with obfuscated code per category is depicted in Figure 1.3.

To validate the accuracy of the method, another author of the paper manually verified

the true positive rate (TPR) and false positive rate (FPR) of the heuristic for detecting

obfuscated classes, by using a validation set of apps. The validation set was built using

the following guidelines:

• The apps were sampled by one of the authors (not the same author performing the

validation)

• The validation set includes two apps classified as obfuscated and two apps classi-

fied as non-obfuscated for each category (i.e., 120 apps).

• The apps in the validation set were different from the ones inspected manually for

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 14

identifying patterns in the identifiers of obfuscated classes

For the validation we followed these definitions6:

• True positives (TP): number of obfuscated apps classified correctly by the heuris-

tic

• True negatives (TN): number of non-obfuscated apps classified correctly by the

heuristic

• False positives (FP): number of non-obfuscated apps classified incorrectly by the

heuristic (i.e., classified as obfuscated)

• False negatives (FN): number of obfuscated apps classified incorrectly by the

heuristic (i.e., classified as non-obfuscated)

• True positive rate (TPR), a.k.a., recall: TP/(TP + FN)

• True negative rate (TNR): TN/(FP/TN)

• Accuracy (ACC): (TP + TN)/(TP + TN + FP + FN)

The results of the manual validation were 60 true positives and 60 true negative which

accounts for a TPR equal to 1, a TNR equal to 1, and an ACC equal to 1. Therefore, our

simple heuristic for detecting obfuscated apps is accurate and correct in a sample of 120

apps, which ensures a confidence interval of 8.93% with a confidence level of 95%.

1.2.3 Analysis Method

For measuring the amount of reuse by class cloning we used the Proportion of Class

Signatures Reused (PCSR) proposed byMojica Ruiz et al. [56, 57]. PCSR calculates the

proportion of class signatures that are clones (i.e., they appear in multiple apps belonging
6We were interested in the correctness of the heuristic for classifying apps in the positive set (i.e., obfus-

cated), and in the negative set (i.e., non-obfuscated), and in the general accuracy of the heuristic. Therefore,
we used TPR, FPR, and ACC instead of precision

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 15

to a set of apps). Given a set of apps A, the number of Unique Class Signatures (UCS)

in an app ai ∈ a (a ⊂ A), and C the set of all class signatures of the apps in a, the PCSR

of a subset of apps a is defined as follows:

PCSR(a,A) = 1−
∑|a|

i=1 UCS(ai, {A− ai})
|C|

(1.1)

We defined a unique class signature in ai as a signature that does not appear in the rest

of apps in A ({A− ai} in equation 1.1). Thus, the higher the PCSR, the higher the reuse

in a subset of apps (e.g., apps in the category Arcade) when compared to all the apps

in A (e.g., all the apps in our dataset). Consequently, in order to compare the impact of

third-party libraries on the measurement of reuse by class cloning (RQ1) we computed the

PCSR per category (i.e., PCSR of class signatures of apps belonging to a specific cate-

gory that are cloned in all the 24,379 apps) including the class signatures of the third-party

libraries (PCSR+TPL); we also computed the PCSR per category excluding class signa-

tures of the third-party libraries (PCSR−TPL). To compare the impact of obfuscated apps

on the measurement of reuse by class cloning (RQ2) we computed PCSR per category

excluding obfuscated apps (PCSR−OBF), and excluding classes signatures of third-party

libraries and obfuscated apps (PCSR−(TPL,OBF)).

To validate that the results of our research questions are statistically significant in

the 30 categories of Google play we used the Mann-Whitney test [13]. We compared

PCSR+TPL to PCSR−TPL for H01 ; and PCSR−TPL to PCSR−OBF , and PCSR+TPL

to PCSR−(TPL,OBF)
7 for H02 . We also computed the Cliff's delta d effect size [25] to

measure the magnitude of the difference in the three cases. We followed the guidelines

in [25] to interpret the effect size values: negligible for |d|<0.147, small for 0.147 ≤ |d|<0.33,

medium for 0.33 ≤ |d|<0.474 and large for |d| ≥ 0.474. We are not assuming population

normality and homogeneous variances, therefore we choose non-parametric methods

(Mann-Whitney test and Cliff`s delta).
7Note that the apps used for computing PCSR+TPL and PCSR−TPL include obfuscated apps

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 16

1.2.4 Replication Package

The data set used in our study is publicly available at http://www.cs.wm.edu/semeru/data/

MSR14-android-reuse/. In particular we provide: (i) the list (and URLs) of the studied

24,379 apps; (ii) the list of apps labeled manually as obfuscated and non-obfuscated;

(iii) the dataset used for training the classifiers; and (iv) the results of the classification

process and the manual validation.

1.3 Results

This section reports the results aimed at answering the two research questions formu-

lated in Section 1.2.1. Table 1.3 summarizes the results for RQ1 and RQ2. In particu-

lar, the table lists the number of the proportion of class signatures reused (PCSR) in our

dataset per category, when considering third-party libraries (+TPL), excluding third-party

libraries (−TPL), excluding obfuscated apps (−OBF),and excluding third-party libraries

and obfuscated apps (i.e., -(TPL, OBF)); Table 1.3 also lists the differences between the

PCSR values (∆PCSR). In addition, Figure 1.4 depicts the change ratio (i.e., reduction)

of number of cloned signatures detected in the 30 categories, when comparing the ini-

tial dataset to the dataset without third-party libraries, and when comparing the dataset

without third-party libraries to the dataset without libraries and without obfuscated apps.

1.3.1 Impact of third-party libraries

Excluding the libraries from the PCSR computation reduces notoriously the number of

classes detected as clones. On average, 87.66% less signatures are detected as clones

(see Figure 1.4 boxplot +TPL to -TPL), with a median of 90.70%, a minimum reduction of

67.08% (in the category Health and fitness), and a maximum reduction of 97.48% (in the

categoryCasual). A similar behavior (i.e., reduction in all the categories) is reflected in the

PCSR computation (see Table 1.3). The average reduction of PCSR when comparing

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 17

+TPL to −TPL +TPL to −OBF −TPL to −(TPL,OBF)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
ha

ng
e

ra
tio

 (r
ed

uc
tio

n)
 o

f c
la

ss
es

 d
et

ec
te

d
as

 c
lo

ne
s

Figure 1.4: Boxplots for the change ratio of number of clones (signatures) when (1) comparing the
dataset with third-party libraries and without third-party libraries (i.e., +TPL to -TPL); (2) comparing
the dataset with third-party libraries, and the dataset without obfuscated apps (i.e., +TPL to -OBF);
and (3) comparing the dataset without third-party libraries, and the dataset without third-party
libraries and without obfuscated apps (i.e., -TPL to -(TPL, OBF)). Red diamonds represent the
mean (average).

PCSR+TPL to PCSR−TPL is 37.30%, with a median of 37.94%, a minimum reduction of

7.45% (in the category Business), and a maximum reduction of 71.82% (in the category

Finance).

That reduction in the number of class signatures detected as clones is large and

significant. The Mann-Whitney test applied to the PCSR of signatures including third-

party libraries (PCSR+TPL) and the PCSR of signatures excluding third-party libraries

(PCSR−TPL) reports a p-value= 9.123e-13, and the Cliff's delta was 0.9267 with a 95%

confidence interval [0.8083, 0.9730]. Therefore, we can reject our null hypothesis H01 ,

that is, there is statistically significant difference between the two groups, and the magni-

tude of the difference is large (Cliff's delta > 0.474).

The significant reduction of the PCSR and the number of clones when excluding the

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 18

signatures of third-party libraries from the analysis shows that most of the clones are

detected in the signatures of the libraries, and it suggests that most of the code in APK

files belongs to the libraries. Figure 1.5 depicts the change ratio (i.e., reduction) of the

number of class signatures when comparing the datasets including and excluding third-

party libraries. On average, 82% of the signatures are reduced when excluding third-party

libraries, with a median reduction of 81.23%, a minimum reduction of 63.82% (in the case

of apps in the Category Medical), and a maximum reduction of 93.13% of the signatures

(in the category Arcade).

We also analyzed which third-party library class signatures appeared most often,

and attributed them to their respective third-party libraries. By doing so, we found that

the most common third-party library class signature is com.goo-gle.ads.AdActivity

of the com.google.ads package. This class is found in 8,008 apps from our dataset,

and is by far the most common third-party library class. The second most common is

com.facebook.android.FacebookError, from the com.facebok.android package. This

class signature was found in 6,652 apps. Finally, the thirdmost common is org.mcsoxford

.rss.Dates (and 22 other classes from this same package), which all appeared 4,880

times each.

A significant number of apps in our dataset utilize the Google Ads third-party library,

potentially as a source of revenue due to all the apps in our dataset being free. Also free

apps have the option for Facebook integration. Finally, the commonality of

org.mcsoxford.rss demonstrates that many apps try to integrate with RSS feeds, and

this third-party library is described as a "lightweight Android library to read parts of RSS

2.0 feeds." 8

8https://github.com/ahorn/android-rss

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 19

+TPL to −TPL +TPL to −OBF −TPL to −(TPL,OBF)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
ha

ng
e

ra
tio

 (r
ed

uc
tio

n)
 o

f c
la

ss
 s

ig
na

tu
re

s
(fi

le
s)

Figure 1.5: Boxplots for the change ratio of number of signatures when (1) comparing the dataset
with third-party libraries and without third-party libraries (i.e., +TPL to -TPL); (2) comparing the
dataset with third-party libraries, and the dataset without obfuscated apps (i.e., +TPL to -OBF);
and (3) comparing the dataset without third-party libraries, and the dataset without third-party
libraries and without obfuscated apps (i.e., -TPL to -(TPL, OBF)). Red diamonds represent the
mean (average).

Summarizing, the results of our RQ1 shows that considering third-party libraries

when computing class cloning in Android apps impacts the results, in the sense

that because of the wide usage of third-party libraries, a significant number of

clones are detected between the apps. Therefore, an actionable guideline when

analyzing APK files is: consider carefully if third-party libraries should be included

or not in the specific analysis; in particular, when analyzing class cloning between

Android apps, researchers should expect the amount of clone detection to be

inflated if third-party libraries are included in the dataset, while the exclusion of

third-party libraries will lower this amount of clone detection.

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 20

Table 1.3: Summary of results for RQ1 and RQ2. The PCSR and the difference between PCSR
are listed by category.

Category PCSR ∆PCSR in percentage
(1) + TPL (2)− TPL (3)−OBF (4)− (TPL,OBF) (1)−(2)

(1)
(1)−(3)

(1)
(2)−(4)

(2)

Arcade 0.879688807 0.351430128 0.829749587 0.353 60.05% 5.68% -0.49%
Books and reference 0.902051778 0.764008747 0.865465015 0.766 15.30% 4.06% -0.32%
Brain 0.887832825 0.430272179 0.856644088 0.443 51.54% 3.51% -2.98%
Business 0.87552092 0.81029478 0.83328423 0.819 7.45% 4.82% -1.03%
Cards 0.839701923 0.383950449 0.803221733 0.394 54.28% 4.34% -2.52%
Casual 0.879285526 0.316837771 0.848328398 0.334 63.97% 3.52% -5.29%
Comics 0.920239358 0.569789675 0.895015907 0.570 38.08% 2.74% 0.00%
Communication 0.721917416 0.267079672 0.698035799 0.278 63.00% 3.31% -4.02%
Education 0.930289647 0.752647301 0.89829617 0.758 19.10% 3.44% -0.70%
Entertainment 0.926801039 0.778399296 0.890272919 0.782 16.01% 3.94% -0.45%
Finance 0.73930074 0.2083375 0.671912979 0.214 71.82% 9.12% -2.72%
Health and fitness 0.942137572 0.858483567 0.910759035 0.858 8.88% 3.33% 0.06%
Libraries and demo 0.945508264 0.58816772 0.906561089 0.588 37.79% 4.12% 0.00%
Lifestyle 0.895974257 0.670682596 0.854727031 0.673 25.14% 4.60% -0.39%
Media and video 0.82493961 0.350162866 0.778602469 0.356 57.55% 5.62% -1.57%
Medical 0.892509122 0.79831534 0.868709734 0.797 10.55% 2.67% 0.14%
Music and audio 0.876889856 0.772113587 0.872644424 0.782 11.95% 0.48% -1.30%
News and magazines 0.898420806 0.570090694 0.863682988 0.579 36.55% 3.87% -1.53%
Personalization 0.916485781 0.579639994 0.882627703 0.597 36.75% 3.69% -2.97%
Photography 0.841369352 0.488375841 0.802766729 0.493 41.95% 4.59% -0.93%
Productivity 0.760950939 0.372573998 0.697382465 0.386 51.04% 8.35% -3.65%
Racing 0.92630846 0.544961203 0.914853858 0.570 41.17% 1.24% -4.66%
Shopping 0.778630803 0.241201949 0.722952071 0.248 69.02% 7.15% -2.80%
Social 0.891405177 0.769676122 0.874447338 0.771 13.66% 1.90% -0.20%
Sports 0.913609539 0.70980359 0.8654784 0.721 22.31% 5.27% -1.52%
Sports games 0.928972353 0.515475313 0.900676647 0.520 44.51% 3.05% -0.81%
Tools 0.798852806 0.423019698 0.719613626 0.439 47.05% 9.92% -3.86%
Transportation 0.818652745 0.396924049 0.755777412 0.397 51.51% 7.68% 0.00%
Travel and local 0.913801067 0.727011219 0.859122395 0.727 20.44% 5.98% 0.06%
Weather 0.949381457 0.660390516 0.90783172 0.660 30.44% 4.38% 0.00%

1.3.2 Impact of obfuscated apps

Excluding obfuscated apps also reduced the number of signatures detected as clones,

and consequently PCSR. The Mann-Whitney test applied to the PCSR of signatures

including third-party libraries (PCSR+TPL) and the PCSR of signatures excluding obfus-

cated apps (PCSR−OBF) reports a p-value= 0.009604, and theCliff's delta was 0.3866667

with a 95% confidence interval [0.08998, 0.62031998]. Therefore, we can reject our null

hypothesis H02 , i.e. there is a statistically significant difference between the two groups,

and the magnitude of the difference is medium (0.33 ≤ |d| < 0.474).

On average (see Table 1.3) there is a reduction of 4.55% in the PCSR, with a median

of 4.09%, a minimum reduction of 0.48% (Music and Audio), and a maximum reduction

of 9.92% (Tools). This medium reduction (in terms of effect size) is explained due to the

number of signatures belonging to obfuscated apps (we found 415 obfuscated apps out of

24,415). When excluding obfuscated apps (see Figure 1.5) 8.25% of the signatures were

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 21

reduced on average (median = 7.31%, min. = 0%, max=21.38%), which represented an

average reduction in the number of signatures detected as clones (see Figure 1.4) of

12.40% (median = 11.43%, min. = 2.74%, max=23.98%).

However, when comparing the impact of obfuscated code in the PCSR excluding the

signatures of third-party libraries (i.e., -TPL to -(TPL, OBF)) the Mann-Whitney reports a p-

value=0.8187, and we obtained a Cliff's delta = -0.0356. In this case there is no significant

difference (p-value > 0.05) and the magnitude of the difference is negligible (|d| < 0.147).

When removing the obfuscated apps from the set of signatures that does not include

third-party libraries there is an average reduction in the number of signatures detected as

clones of 0.63% (median = 0%, min. = 0%, max=3%), and an average reduction in the

number of signatures of 2.23% (median = 1%, min. = 0%, max=8%). However, in most

of the categories (23 out of 30) removing the obfuscated apps increases the PCSR (see

Table 1.3). For example, there is a change in the PCSR of the category Casual from

0.3168 (PCSR−TPL) to 0.334 (PCSR−(TPL,OBF)), which accounts for an increment of

5.29%.

An explanation for those cases is the impact of the reduction of the signatures in

the PCSR computation. Equation 1.1 is equivalent to the ratio between the number of

signatures detected as clones and the total number of signatures. In the case of apps in

the category Casual for PCSR−TPL there were 11,851 signatures detected as clones out

of 37,404 signatures (PCSR−TPL = 11, 851/37, 404 = 0.3168), and for PCSR−(TPL,OBF)

there were 11,539 signatures detected as clones out of 34,589 signatures

(PCSR−(TPL,OBF) = 11, 539/34, 589 = 0.334). That increment of 5.29% in the PCSR is

explained in the fact that proportionally the reduction of the signatures is bigger compared

to the reduction of clones, whichmeans that most of the clones were detected between the

non-obfuscated apps. However, there were some signatures detected as clones between

the obfuscated apps.

Regarding detecting cloned classes in the dataset of apps tagged as obfuscated, we

inspected manually the signatures and we found that there are some false positives.

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 22

That is, there are classes that are marked as clones of other classes based on their

class signatures, but further analysis of the content of the class demonstrated that this

is not always true. We were able to find multiple examples of this occurring fairly eas-

ily, and we believe that there could be many more false clone detections in our obfus-

cated dataset as a result of this observation. The first example comes from the apps

with package names bagins.football and com.antivirus. In both apps we found two ob-

fuscated classes that were detected as cloned signatures: /bagins/football/c/c.java

and /com/antivirus/core/b/c.java. Both of these files have the same signatures and

thusmethod names, but thesemethods do different things. For instance, in bagins.football

the values() method creates a new array and performs a System.arraycopy into it, whereas

in com.antivirus themethod only has a statement returning a casted variable with .clone().

Another example we found is between the apps com.agilesoft resource and

com.ableon.team.barcelona. Both apps have a class called h.java inside their main

package, and both classes have a void run() method. However, the run function in

h.java of com.agilesoftresource is simply a one-line statement:

"AppManagerMain.a(AppManagerMain.e(g.a(a))). refreshPackList();"

whereas the run method of com.ableon.team.barcelona is 15 lines long and makes calls

to the javax.microedition.khronos.egl API and performs an obfuscated conditional:

"if(a.isVisible() && g.c(a).eglGetError() = 12302)"

Some cloned classes appear in more than two apps. One such example is the class

as.java, which appears in three apps: balofo.game.movie, com.application.fotodanz,

and com. advancedprocessmanager. For each app, this class has the onClick()method,

but the code it executes is unique in each case. For balofo.game.movie, the method sim-

ply performs a dialoginterface.cancel(); for com.application.fotodanz, the method ex-

ecutes no code; and for com.advancedprocess manager, we get an "obfuscated" one-line

of code:

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 23

"ak.a(aq.a(a)).a()"

The examples described before show how using class signatures to detect clones

between obfuscated classes is not accurate because it is prone to false positives. How-

ever, there are also cases of true positives. We have noted that if apps share a main

package or developer "keyword" in the app's package name then it is likely that the files

are indeed clones. For instance, com.appmakr.app247821 and com.appmakr.app153560

both have a class called c.java that were located within different directories inside each

main package respectively, but were still detected as clones. Due to each app's package

name sharing the term appmakr, we assume it's likely for these two files to be legitimate

clones; upon further inspection, each file is 43 lines long and both files are the exact

same, character for character, except for one line which references the main package

name (app247821 or app153560 respectively). Therefore, these files are correctly de-

tected as legitimate clones.

Finally, we should note that because we're only trying to find cloned classes that re-

side within the main package of the app, we've extracted the package name from the

AndroidManifest.xml file that resided with every application we downloaded. Thus,

sometimes a cloned class may appear to lie in a package different from the source di-

rectory, but is in fact within the proper main package. For instance, another cloned

class was q.java which appears in apps com.atomimbh.app, com.BeltzandRuth, and

com.bangladeshfreegoimbh.app. We noted that both the first and last apps in this list

seem to follow the trend of having a shared keyword (*imbh.app), but one of the apps

doesn't follow this pattern. However, for this app the actual location of this cloned class is

found in com.BeltzandRuth/src/ com/bemyvalentineimbh/app/, which does share the sim-

ilar keyword as the other two apps. Upon analyzing the Android manifest for this app, the

main package is indeed com.bemyvalentineimbh.app. Thus, upon further inspection of

the q.java class, we note that all three apps have a similar implementation of both meth-

ods inside the class, where both com.BeltzandRuth and com.bangladeshfreegoimbh.app

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 24

contained exactly the same implementations, and com.atomimbh. app contained the ex-

act implementation of one method and a functionally similar implementation of another

method (only a few lines had their order changed).

Summarizing, the results of our RQ2 shows that considering obfuscated apps

when computing class cloning in Android apps impacts the results, in the sense

that signatures in obfuscated classes introduce false positives in the cloned sig-

natures detection. Although the impact of obfuscated code is not as significant

as the impact of considering third-party libraries in the cloned signatures detec-

tion, researchers should be careful when considering obfuscated code in their

experiments using APK files. Therefore, an actionable guideline when analyzing

APK files is: consider carefully if obfuscated apps (or obfuscated code) should

be included or not in the specific analysis; in particular, when analyzing class

cloning between Android apps, researchers should expect the amount of clone

detection to be inflated if obfuscated apps are included in the dataset, while the

exclusion of obfuscated apps will lower this amount of clone detection.

1.4 Threats to Validity

Threats to construct validity concern the relationship between theory and observation,

and it is essentially due to the measurements/estimates on which our study is based. We

assumed that class signatures are representative of the actual source code files as in

previous studies [8, 9, 56, 57]. However, we cannot state that the code inside the source

files is exactly the same based solely on matching signatures. Instead, the methods may

have been named similarly or may have had the same parameters. Therefore, it is likely

that there is much more source code reuse occurring that we have been unable to detect

in the case of class cloning. As this is an initial study of reuse, for future work we plan to

obtain more exact results, by considering also the source code.

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 25

Threats to conclusion validity concern the relationship between treatment and out-

come. Our conclusions are supported by appropriate, non-parametric statistics (Mann-

Whitney test). In addition, the practical relevance of the observed differences is high-

lighted by effect size measures (Cliff's delta).

Threats to internal validity concern factors that can affect our results. Our heuristic for

identifying obfuscated apps could fail if the renaming strategy did not follow a lexicographic

order (i.e., the first letted used to obfuscate identifiers is a) or the obfuscation is different

to renaming transformation. However, we manually inspected a sample of apps classified

by the heuristic and we obtained a true positive and true negative rates equals to 1, which

represents an accuracy of 100%.

Threats to external validity concern the generalization of our findings. Our analysis is

limited to Android free apps that use a revenue model based on advertisements. Depen-

dency of commercial apps on third-party libraries could be different, for example, libraries

for advertisements might not be widely used in commercial apps. Also, it is possible that

the commercial apps have more obfuscated code. Therefore, our findings may not nec-

essarily hold for commercial apps. Regarding the size of our dataset (24,379 apps), the

set of analyzed apps is a small percentage of the existing apps in Google Play (more

than 1 million of apps reported by the AppBrain website9). However, our sample covers

all the domain categories in Google Play with a significant number of apps compared to

other studies using Android apps (see Table 1.1). In future studies, we are also planning

on using diversity measures to guide the selection of apps to maximize generalizability of

the case studies [59]. Finally, our conclusions may not be valid for apps developed for

other mobile platforms (e.g., iOS).
9http://www.appbrain.com/stats/number-of-android-apps

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 26

1.5 Discussion

Although APK files have been used in several studies for analyzing Android apps and

their development processes, the building process used to generate those files introduces

some threats to the validity of the results in the studies. In particular, we analyzed 24,379

APK files downloaded from Google Play to measure the impact of third-party libraries

and obfuscated code on class cloning measurement. We found that excluding third-party

libraries reduces on average 87.66% of the signatures detected as clones, and the dif-

ference is large and statistically significant when comparing the proportion of class sig-

natures reused (PCSR) in our dataset including and excluding the libraries. Concerning

the impact of obfuscated files, it is significantly different but the difference is medium on

the computation of the PCSR. We found a few of the obfuscated apps and evidence of

false positives detected as clones by the signature-based method (Software Bertilonage).

Future studies with significantly higher number of obfuscated apps should analyze the im-

pact of those apps on the results.

Our findings show that empirical studies using APK files should take into account

possible impacts of third-party libraries and obfuscated code. Therefore, we suggested

two actionable guidelines when analyzing/mining APK files:

1. Consider carefully if third-party libraries should be included or not in the specific anal-

ysis; in particular, when analyzing class cloning between Android apps, researchers

should justify the decision of including/excluding third-party libraries libraries in the

class cloning measurements. Researchers should expect the amount of clone de-

tection to be inflated if third-party libraries are included in the dataset, while the

exclusion of third-party libraries will lower this amount of clone detection.

2. Consider carefully if obfuscated apps (or obfuscated code) should be included or not

in the specific analysis; in particular, when analyzing class cloning between Android

apps, researchers should justify the decision of including/excluding obfuscated code

CHAPTER 1. REVISITING ANDROID REUSE STUDIES 27

in the class cloning measurements. Researchers should expect the amount of clone

detection to be inflated if obfuscated apps are included in the dataset, while the

exclusion of obfuscated apps will lower this amount of clone detection.

These actionable guidelines are also pertinent to studies/approaches on software cat-

egorization [31, 38, 43], in which the lexical information in bytecode or source code is used

to categorize the apps; given the widespread use of third-party libraries, such as Google

Ads or Facebook for Android using the identifiers extracted from those libraries can re-

duce the variance and consequently impact the categorization process. In addition, stud-

ies aimed at identifying similar apps [45], which use non-textual based detection, should

also consider the impact of third-party libraries and obfuscation practices.

Chapter 2

Detecting Similar Android

Applications

2.1 Introduction

NOTE: CLAN was previously published in ICSE 2012 [45] and as a part of Dr. Collin

McMillan's dissertation [44]. CLAN is presented for completeness and comprehensive

purposes, as CLANdroid extends this approach and evaluation to Android and is the con-

tribution of this thesis. Sections 2.1 to 2.3 contain some content that was previously

published as part of CLAN, but also contains new content related to CLANdroid.

Developers and end-users take advantage of code search engines, for browsing and

searching software systems that are relevant to their needs. In the case of developers, the

motivation could be opportunistic reuse, market analysis (i.e., finding similar applications

to a system under development), prototyping, or simply looking for a tool that supports

development processes. In the case of end-users, the motivation could be as simple as

looking for a tool that supports a daily activity, or from an economic viewpoint, users could

look for substitutes or complementary goods (i.e., similar tools, and tools that need to be

used complementary). These scenarios apply to systems with different sizes. For ex-

ample, users of mobile applications take advantage of mobile applications markets, (e.g.,

28

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 29

Google Play, iOS Market, Windows Phone Market, FDroid) for browsing and searching

apps.

Knowing similarity between applications plays an important role in assessing reusabil-

ity of these applications, improving understanding of source code, rapid prototyping, and

discovering code theft and plagiarism [33, 39, 51, 65, 68, 42, 61, 50]. Enabling program-

mers to compare automatically how different applications implement the same require-

ments greatly contributes to knowledge acquisition about these requirements and sub-

sequently to decisions that these developers make about code reuse. Retrieving a list

of similar applications provides a faster way for programmers to concentrate on relevant

aspects of functionality, thus saving time and resources for programmers. Programmers

can spend this time understanding specific aspects of functionality in similar applications,

and see the complete context in which the functionality is used.

Furthermore, having a list of similar applications has become especially relevant due

to the popularity of mobile devices and the distribution of mobile applications. In order to

keep users interested in applications, mobile application marketplaces, such as Google

Play and the Apple App Store, commonly display similar applications based on which

application the user is viewing. Thus, when a user is searching for an application to

accomplish some functionality, if this user finds a fitting application which achieves the

needed purpose, it is likely that this user would want to view a similar application in order

to choose the application that suits the needed functionality best.

In general, retrieving relevant applications and code snippets starts with a search

query submitted to a search engine, which displays the relevant code units (i.e., system,

package, method, class, etc). However, detecting similar applications is a notoriously

difficult problem, since it means automatically detecting that high-level requirements for

these applications match semantically [29, pages 74,80][40]. This situation is aggravated

by the fact that many application repositories are polluted with poorly functioning projects

[27]; a match between words in requirement documents with words in the descriptions or

in the source code of applications does not guarantee that these applications are relevant

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 30

to the requirements. Applications may be highly-similar to one another at a low-level of

the implementations of some functions even if they do not perform the same high-level

functionality [15]. One example of an app which has very few legitimately similar apps

on its app page is Star Solitaire1. This app is a card game with options to play different

forms of solitaire, and it is likely misclassified to the wrong category - it is currently in

Strategy when it should belong in Cards. Thus, because Google Play only lists similar

apps from the same category, we see "similar" apps such as Star Wars Force Collection2,

Star Colonies3, and Star Girl: Beauty Queen4.

A fundamental problem of detecting closely related applications is in the mismatch

between the high-level intent reflected in the descriptions of these applications and low-

level implementation details. This problem is known as the concept assignment problem

[3]. For any two applications it is too imprecise to establish their similarity by simply

matching words in the descriptions of these applications, comments in their source code,

and the names of program variables and types. Since programmers typically invest a

significant intellectual effort (i.e., they need to overcome a high cognitive distance [34]) to

understand whether retrieved applications are similar, existing code search engines do

not alleviate the task of detecting similar applications because they return only a large

number of different code snippets.

To overcome the concept assignment problem in the particular case of finding simi-

lar apps, we created an approach for detecting closely related Android applicatons. This

approach is based on CLAN, a previously published approach for detecting similar Java

applications. As our approach is a modification of CLAN, we name our approach CLAN-

droid. CLANdroid uses complete mobile Android applications as input, and outputs re-

lated Android applications. Although McMillan et al. [45] used Application Programming

Interface (API) calls and source code identifiers as two differing methods of detecting sim-
1https://play.google.com/store/apps/details?id=com.kiwifruitmobile.solitaire
2https://play.google.com/store/apps/details?id=jp.konami.swfc
3https://play.google.com/store/apps/details?id=com.blueplop.starcolonies
4https://play.google.com/store/apps/details?id=com.animoca.google.starGirlBeautyQueen

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 31

ilar applications, we extend these methods to attributes unique to Android applications:

Android intents, user permissions, and sensors usage.

In this thesis, we extend the CLAN approach to the Android ecosystem (CLANdroid).

Similarly to the intuition behind the concept of using API calls as semantic anchors to

compute similarities between software applications, we apply this same idea with unique

features of Android applications: explicit and implicit intents used in the apps, user per-

missions declared in the manifest files, and sensors used by the apps declared in the

source code. Therefore, for CLANdroid, we expand upon the new abstraction introduced

by CLAN by not only using APIs, but also features unique to Android applications such

as intents, user permissions, and sensors. In addition, following the guidelines presented

by Linares-Vásquez et al. [37], we analyzed the impact of third-party libraries and obfus-

cated apps when detecting similar apps using APK (Android PacKage) files. Results in

this thesis demonstrate that, conversely to Java systems, identifiers extracted from An-

droid apps outperforms Android-specific semantic anchors when detecting similar apps.

Our findings confirms the results in previous studies that suggest that Android apps are

highly dependent on the Android SDK [56, 53], in the sense that API calls should be com-

bined with other semantic anchors or attributes (e.g., identifiers) for detecting similar apps;

API calls in Android apps are not enough to identify variability across different apps. Also,

we found that third-party libraries and obfuscated code impacts significantly the detection

of similar Android apps.

This thesis makes the following contributions:

• An approach for detecting similar mobile Android applications, which is useful for

developers and users when browsing and searching applications. We implemented

this approach in CLANdroid and applied to a set of 14,450 free Android applications

that were downloaded from Google Play.

• To evaluate CLANdroid, we used a goldset of similar apps which we obtained from

the Google Play market. We then compared each relevancy ranking method (APIs,

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 32

identifiers, intents, etc.) to see which ranking method detects similar applications

the best. We found that when considering the whole dataset, the identifiers ranking

method is most effective.

• An online version of CLANdroid that can be used to list similar Android apps, using

different datasets (i.e., including third-party libraries and obfuscated apps, excluding

third-party libraries, and excluding obfuscated apps), and different approaches (i.e.,

identifiers, API calls, intents, sensors, user permissions).

2.2 Hypothesis And the Problem

In this section we use a conceptual framework for relevance to define the concept of

similarity between applications, formulate a hypothesis, and describe problems that we

should solve to test this hypothesis.

2.2.1 A Motivating Scenario5

Amotivating scenario for detecting similar application is based on a typical project lifecycle

in Accenture, a global software consulting company with over 250,000 employees as of

February, 2012. At any given time, company consultants are engaged in over 3,000

software projects. Since its first project in 1953, Accenture's consultants delivered tens

of thousand of projects, and many of these projects are similar in requirements and their

implementations. Knowing the similarity of these applications is important for preserving

knowledge, experience, winning bids on future projects, and successfully building new

applications.

A typical lifecycle of a large-scale project involves many stages that start with writing

a proposal in response to a bid from a company that needs an application. A major part

of writing a proposal and developing a prototype is to elicit requirements from different
5Some of the material in this section was previously published in ICSE 2012 [45] and as a part of Dr. Collin

McMillan's dissertation [44].

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 33

stakeholders. There are quite a few competing companies for each bid: IBM Corp, HP

Corp, Tata Consultancy Services to name a few. A winning bid proposal has many com-

ponents: well-elicited requirements, preliminary models and design documents, proof of

experience of building and delivering similar applications in the past. Clearly, a company

that submits a bid proposal that contains these components as closely matching a desired

application as possible, will win the bid.

It is important to reuse these components from successfully delivered applications in

the past - doing so will save time and resources and increase chances of winning the bid.

It is shown that over a dozen different artifacts can be successfully reused from software

applications [30, pages 3--5]. The process of finding similar applications starts with code

search engines that return code fragments and documents in response to queries that

contain key words from elicited requirements. However, returned code fragments are of

little help when many other non-code artifacts are required (e.g., different (non)functional

requirements documents, UML models, design documents).

Matching words in queries against words in documents and source code is a good

starting point, however, it does not help stakeholders to establish how applications are

similar at a bigger scale. In terms of the work presented in this thesis, we refer to an

application as a collection of all source code modules, libraries, sensors, permissions,

and programs that, when compiled, result in the final deliverable that customers install

and use to accomplish certain functions. Applications are usually accompanied by non-

code artifacts, which are important for the bidding process. Establishing their similarity at

large from different similar components of the source code is a goal of this thesis.

The concept of similarity between applications is integrated in the software lifecycle

process as follows. After obtaining the initial set of requirements, the user enters keywords

that represent these requirements into a search engine that returns relevant applications

that contain these keywords. In practice, it is unlikely that the user finds an application

that perfectly matches all the requirements - if it happens, then the rapid prototyping pro-

cess is finished. Otherwise, the user takes the returned applications and studies them to

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 34

determine how relevant they are to the requirements.

After examining some returned application, the user determines what artifacts are

relevant to requirements, and which ones are missing. At this point the user wants to

find similar applications that contain the missing artifacts while retaining similarity to the

application that the user has found. That is, using the previously found application, the

initial query is further expanded to include artifacts from this application that matched

some of requirements as the user determined, and similar applications would contain

artifacts that are similar to the ones in the found application.

2.2.2 Similarity Between Applications6

We define the meaning of similarity between applications by using Mizzaro's well-

established conceptual framework for relevance [54, 55]. In Mizzaro's framework, similar

documents are relevant to one another if they share some common concepts. Once

these concepts are known, a corpus of documents can be clustered by how documents

are relevant to these concepts. Subsequently all documents in each cluster will be more

relevant to one another when compared to documents that belong to different clusters.

This is the essence of the cluster hypothesis that specifies that documents that cluster

together tend to be relevant to the same concept [75].

Two applications are similar to each other if they implement some features that are

described by the same abstraction. For example, if some applications use cryptographic

services to protect information then these applications are similar to a certain degree,

even though they may have other different functionalities for different domains. Another

example is text editors that are implemented by different programmers, but share many

features: copy and paste, undo and redo, saving data in files using standard formats. A

straightforward approach for measuring similarity between applications is to match the

names of their program variables and types. The precision of this approach depends
6Some of the material in this section was previously published in ICSE 2012 [45] and as a part of Dr. Collin

McMillan's dissertation [44].

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 35

highly on programmers choosing meaningful names that reflect correctly the concepts or

abstractions that they implement, but this compliance is generally difficult to enforce [1].

2.2.3 Our Hypothesis7

In Mizzaro's framework, a key characteristic of relevance is how information is repre-

sented in documents. We concentrate on semantic anchors, which are elements of doc-

uments that precisely define the documents' semantic characteristics. Semantic anchors

may take many forms. For example, they can be expressed as links to web sites that

have high integrity and well-known semantics (e.g., cnn.com or whitehouse.gov) or they

can refer to elements of semantic ontologies that are precisely defined and agreed upon

by different stakeholders.

This is the essence of paradigmatic associations where documents are considered

similar if they contain terms with high semantic similarities [64]. Our hypothesis is that by

using semantic anchors it is possible to compute similarities between documents with a

higher degree of accuracy when compared to documents that have no commonly defined

semantic anchors in them.

Without semantic anchors, documents are considered as bags of words with no se-

mantics, then the relevance of these documents to user queries and to one another can

be determined by matches between these words. This is the essence of syntagmatic

associations where documents are considered similar when terms (i.e., words) in these

documents occur together [64]. For example, the similarity engine MUDABlue uses syn-

tagmatic associations for computing similarities among applications [32]. Although the

original CLAN approach found this approach to be relatively imprecise, we find that this

approach surprisingly works well in regards to Android applications as seen in Section

2.4.5.
7Some of the material in this section was previously published in ICSE 2012 [45] and as a part of Dr. Collin

McMillan's dissertation [44].

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 36

2.2.4 Semantic Anchors in Software8

Since programs contain code elements (e.g., API calls, user permissions) with precisely

defined semantics, these code elements can serve as semantic anchors to compute the

degree of similarity between applications by matching the semantics of these applica-

tions that is expressed with these elements. Programmers routinely use API calls from

third-party packages (e.g., the Java Development Kit (JDK)) to implement various require-

ments [4, 11, 22, 24, 46, 23, 71]. API calls from well-known and widely used libraries have

precisely defined semantics unlike names of program variables and types and words that

programmers use in comments. In this thesis, we use API calls as semantic anchors to

compute similarities among mobile applications. However, we extend upon CLAN by not

only using API calls as semantic anchors, but also using Android intents, user permis-

sions, and sensors. Android intents are a unique part of the API provided by the Android

OS for developers, which are used for declaring and reusing operations. According to the

official reference guide for intents, an intent is "basically a passive data structure holding

an abstract description of an action to be performed" [17]. A permission for an Android

app is the "mechanism that enforces restrictions on the specific operations that a partic-

ular process can perform" [20]. The sensors for a phone can utilize the "built-in sensors

that measure motion, orientation, and various environmental conditions" [19].

2.2.5 Challenges9

Our hypothesis is based on our idea that it is better to compute similarity between pro-

grams by utilizing semantic anchors that come from the JDK and Android SDK, and that

programmers use to implement various requirements. This idea has advantages over us-

ingVector SpaceModel (VSM)where documents are represented as vectors of words and

a similarity measure is computed as the cosine between these vectors [66]. One main
8Some of the material in this section was previously pufblished in ICSE 2012 [45] and as a part of Dr.

Collin McMillan's dissertation [44].
9Some of the material in this section was previously published in ICSE 2012 [45] and as a part of Dr. Collin

McMillan's dissertation [44].

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 37

problem with VSM is that different programmers can use the same words to describe

different requirements (i.e., the synonymy problem) and they can use different words to

describe the same requirements (i.e., the polysemy problem). This problem is a variation

of the vocabulary problem, which states that "no single word can be chosen to describe

a programming concept in the best way'' [14]. This problem is general to Information

Retrieval (IR), but somewhat mitigated by the fact that different programmers who par-

ticipate in the projects use coherent vocabularies to write code and documentation, thus

increasing the chance that two words in different applications may describe the same

requirement.

The sheer number of API calls suggests that many of these calls are likely to be shared

by different programs that implement completely different requirements leading to signif-

icant imprecision in calculating similarities. We found that, for CLANdroid, over 95% of

the apps in our dataset made use of the String object. Our dataset also shows that the

View intent alone was instantiated 363,141 times, which is enough to appear in every app

in our dataset 25 times.

If similarity scores are computed based on common API calls or intents such as these,

most Android programs would be similar to one another. On top of that, it is not computa-

tionally feasible to compute similarity scores with high precision for hundreds of thousands

of API calls. It is an instance of a problem known as the curse of dimensionality, which is

a problem caused by the exponential increase in processing by adding extra dimensions

to a representational space [63].

Graphically, programs are represented as dots in a multidimensional space where

dimensions are semantic anchors and coordinates in this space reflect the numbers of

these semantic anchors in programs. The JDK contains close to 115,000 API calls that

are exported by a little more than 13,000 classes and interfaces that are contained in

721 packages. For CLANdroid, we note that the Android SDK encompasses over 3,500

classes that are contained in 200 packages. Furthermore, the Android SDK can also use

the JDK. Computing similarity scores between programs using VSM in a space with hun-

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 38

dreds of thousands of dimensions is not always computationally feasible, it is imprecise,

and difficult to interpret. We need to reduce the dimensionality of this space while simul-

taneously revealing similarities between implemented latent high-level requirements.

2.3 Approach10

Our key idea is threefold. First, if two applications share some semantic anchors (e.g.,

API calls), then their similarity index should be higher than for applications that do not

share any semantic anchors. Sharing semantic anchors means more than the exact syn-

tactic match between the same two API calls; it also means that two different API calls

will match semantically if they come from the same class. This idea is rooted in the

fact that classes in JDK contain semantically related API calls; for example, the class

java.security.KeyStore contains nested classes and API calls that enable program-

mers to implement requirements related to managing keys and certificates. For CLAN-

droid we must also consider the Android SDK. While classes such as the previously men-

tioned ones are also available in the Android SDK, one Android unique class would be

android.hardware.Sensor which contains API calls to allow developers to provide sup-

port for hardware features, such as the phone's camera and other sensors. Another class

is the android.graphics.Canvas class, which provides developers with the ability to dis-

play images or text on the screen. Thus, we exploit relationships between inheritance

hierarchies in the JDK and Android SDK to improve the precision of computing similarity.

This idea is related to semantic spaces where concepts are organized in structured layers

and similarity scores between documents are computed using relations between layers

[28]. Moreover, recent work has shown that API classes and packages can be used to

categorize software applications using those classes and packages [48, 47, 49, 38].

Second, different API calls have different weights. Recall that many applications have
10Some of the material in this section was previously published in ICSE 2012 [45] and as a part of Dr. Collin

McMillan's dissertation [44].

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 39

many API calls that deal with collections and string manipulations. Our idea is to auto-

matically assign higher weights to API calls that are encountered in fewer applications

and, conversely to assign lower weights to API calls that are encountered in a majority of

applications. There is no need to know what API calls are used in applications -- this task

should be done automatically. Doing it will improve the precision of our approach since

API calls that come from common packages like java.lang will have less impact to skew

the similarity index.

Finally, we observed that a requirement is often implemented using combinations of

different API calls rather than a single API call; and in Android apps is often a combination

of different API calls, intents, user permission declarations, and sensors usage. It means

that co-occurrences of API calls in different applications form patterns of implementing

different requirements. For example, a requirement of efficiently and securely exchanging

XML data is often implemented using API calls that read XML data from a file, compress

and encrypt it, and then send this data over the network. Even though different ways of

implementing this requirement are possible, detecting patterns in co-occurrences of API

calls and using these patterns to compute the similarity index may lead to higher precision

when compared with competitive approaches.

Because CLANdroid uses not only API calls as semantic anchors but also Android

intents, sensors, and permissions, and because Android intents are similar to APIs in that

they are designed to enable the reuse of commonly sought functionality, we expect that

the usage of Android intents as semantic anchors should follow the same ideas outlined

above as API calls. That is, Android applications that share intents should have a higher

similarity index than applications that do not share intents. While intents do not have

different inheritance hierarchies as API calls do, different intents do have different weights.

Thus, if all applications use an intent such as ACTION_DIAL (which displays the phone

dialer with a provided number filled in), this intent would have a low weight, compared to

a perhaps rarer intent like ACTION_CREATE_DOCUMENT (which allows the user to create a

document). Also, similar to how combinations of API calls fulfill requirements as opposed

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 40

to a single API call, combinations of intents are used to provide an Android application

with all of its functionality, not a single intent.

2.3.1 Latent Semantic Indexing11

To implement our key idea we rely on an IR technique called Latent Semantic Indexing

(LSI) that reduces the dimensionality of the similarity space while simultaneously revealing

latent concepts that are implemented in the underlying corpus of documents [10]. In LSI,

terms are elevated to an abstract space, and terms that are used in similar contexts are

considered similar even if they are spelled differently. LSI automatically makes embedded

concepts explicit using Singular Value Decomposition (SVD), which is a form of factor

analysis used to reduce dimensionality of the space to capture most essential semantic

information.

The input to SVD is an m × n term document matrix (TDM). Each of m rows corre-

sponds to a unique term, which in our case is a class name that contains a corresponding

API call that is invoked in a corresponding application (i.e., document). Columns corre-

spond to unique documents, which in our case are Android mobile applications. Each

element of the TDM contains the weight that shows how frequently this API call is used

in this application when compared to its usage in other applications12. We cannot use a

simple metric such as the API call count since it is biased -- it shows the number of times

a given API call appears in applications, thus skewing the distribution of these calls to-

ward large applications, which may have a higher API call count regardless of the actual

importance of that API call.

SVD decomposes TDM into three matrices using a reduced number of dimensions, r,

whose value is chosen experimentally. The number of dimensions for LSI is commonly

chosen r = 300 [10, 62, 60]. One of these matrices contains document vectors that de-
11Some of the material in this section was previously published in ICSE 2012 [45] and as a part of Dr. Collin

McMillan's dissertation [44].
12Note that we do not consider the number of times each API call is executed, e.g., in a loop. Instead, we

count occurrences of API calls in source code.

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 41

scribe weights that documents (i.e., mobile apps) have for different dimensions. Each

column in this matrix is a vector whose elements specify coordinates for a given appli-

cation in the r--dimensional space. Computing similarities between applications means

computing the cosines between vectors (i.e., rows) of this matrix.

Apps
archive

API
archive

metadata
extractor

applications
metadata

TDM
builder

similarity
matrix

search
engine

LSI
algorithm

1

2 3

4

5

6
7

8

9

Figure 2.1: CLANdroid architecture and workflow.

2.3.2 CLANdroid Architecture and Workflow

The main elements for CLANdroid are the Android Applications, the App Decompiler,

the Metadata Extractor (for extracting APIs, identifiers, etc.), the Term Document Ma-

trix builder, and the LSI algorithm. In the TDM for CLANdroid, each row represents an

application and and each column represents a different metadata value: API classes,

identifiers, intents, permissions, or sensors. For CLANdroid, we only considered class-

level similarities regarding API calls - we did not compute package-level similarities. While

CLAN combines both package-level and class-level similarities and weights them evenly,

we opted to compute only class-level similarities which utilize the full class name (e.g.

package.class) because there are multiple packages in the Android SDK which have

classes with the same name. For instance, both the packages android.hardware and

android.graphics have a class called Camera. The class belonging to the former pack-

age allows the developer to utilize the camera built-in to the mobile device. However,

the class belonging to the latter package allows the developer to compute 3D transfor-

mations and generate a matrix that could be used on a Canvas. By only using the class

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 42

name (i.e. Camera) we introduce potential fuzz and mismatches into the data. By using

the fully qualified class name we prevent this from occurring.

CLANdroid works as follows. First, all the apps must be obtained and downloaded -

we downloaded 14,450 free Android apps from Google Play. We then had to decompile

these apps, so that we may extract the different information used to compute similarities

from the source code. Once each app had been decompiled to source code, we ran

scripts to extract various data: identifiers, APIs, sensors, and intents from the source

code, and permissions were extracted from the AndroidManifest.xml file that is in every

app. For each application, we also extracted a goldset: this goldset was the list of apps

that were displayed as similar apps from the app page on Google Play. We describe this

data acquisition and extraction in detail in Section 2.4.

Once all the data is extracted, we first created a co-occurrence matrix which simply

listed how many occurrences of a particular piece of unique metadata was found. For

instance, the co-occurrence matrix for identifiers would have each row representing a

document, and each column representing a unique identifier. The value would be the

amount of times that unique identifier occurred in that particular application. Thus, we had

five co-occurrence matrices in total: one for API calls at the class-level, one for identifiers,

one for Android intents, one for permissions, and one for sensors.

We then converted these matrices to their TFIDF equivalents. We applied the LSI al-

gorithm to each of these five TFIDF matrices and computed the cosine similarity between

each application. The construction of the TDMs took anywhere between 20 minutes to 3

hours depending on the ranking method - the TDM generation for sensors was the fastest

and the TDM generation for identifiers was the slowest. The running of SVD on these

TDMs took anywhere between an hour to five hours, with the sensors TDM running the

fastest and the identifiers TDM running the slowest. All of these computations were done

on an Intel Xeon CPU X5672, 3.20 GHz with over 100 GB of RAM available. For each

TDM, we found the following amount of unique metadata values: 981,945 identifiers,

469,552 APIs, 1,575 permissions, 309 intents, and 10 sensors.

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 43

2.3.3 Summary of CLAN study

McMillan et al. created an approach for detecting Closely reLated ApplicatioNs

(CLAN) to help users detect similar related software applications given a Java applica-

tion. CLAN was the first approach to use API calls as semantic anchors in order to find

applications that functioned similarly. CLAN was used on 8,310 Java applications, and

an experiment with 33 participants was conducted to evaluate the performance of CLAN.

CLAN is compared againstMUDABlue, which is the closest competitive approach. MUD-

ABlue uses identifiers instead of API calls to compute similarities between applications.

With strong statistical significance, CLAN has been shown to automatically detect similar

applications with a higher precision than MUDABlue.

2.4 Finding Closely Related Android Applications

We conducted a study to determine how effective CLAN is when finding similar mobile

apps, in particular Android apps. This study was driven by the following goals: (i) we

wanted to evaluate whether the results of CLAN hold also in the context of Android apps

(i.e., using APIs outperforms identifiers when using them for detecting similar applica-

tions); (ii) we wanted to evaluate other semantic anchors that are available for Android

apps (i.e., intents, user permissions, and sensors) besides API calls; and (iii) because of

the impact of third-party libraries and obfuscated code when using APK files in empiri-

cal studies [37], we also analyzed the impact of these two factors when detecting similar

Android applications.

The context of the study is of 14,450 free Android applications that were downloaded

from Google Play. The quality focus is the goldset of similar apps provided by Google

Play13 and the similarity of the apps as perceived by users. Besides the attributes eval-
13In addition to metadata and app store reviews, for a specific app, Google Play provides a list of similar

apps in the same category.

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 44

uated with CLAN, we used other semantic anchors than can be extracted from Android

apps (user permissions, intents, and sensors).

2.4.1 Study Design

To validate the accuracy of CLANdroid, in the context of this study we formulated the

following research questions:

• RQ1: Does CLANdroid produce better results than MUDABlue? This research

question aims at validating if using APIs to detect similar applications outperforms

identifiers as in the case of Java systems. Android apps are highly dependent on

the Android SDK [57, 56, 52, 53]. Android apps use a considerable number API

calls in common, and it is possible that API calls are not enough to identify variabili-

ties across several apps and domain categories. Thus, we wanted to validate if the

same results of CLAN in Java systems (i.e., API calls outperforms identifiers) hold

on Android apps.

• RQ2: What semantic anchors used in CLANdroid produce better results when com-

pared to the others? The purpose of this research question is to explore other se-

mantic anchor that are specific of Android apps such as user permissions declared

in the manifest files, sensors used by the application, and Android intents. Specif-

ically, we evaluated whether these Android-specific semantic anchors outperform

API calls.

• RQ3: Do third-party libraries and obfuscated apps impact the accuracy of CLAN-

droid?. Linares-Vásquez et al. [37] found that using APK files in empirical studies

could introduce threats to the validity of the results because of the impact of third-

party libraries and obfuscated code. In this study we used APK files to extract API

calls, identifiers, user permissions, sensors, and intents. Thus, it is possible that

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 45

third-party libraries embedded in the APKs and obfuscated code impact the detec-

tion of similar apps.

The independent variable in the three research questions is the approach used for

detecting similar apps (CLANDroidAPI ,MUDABlue, CLANdroidInt,

CLANdroidPerm, CLANdroidSens, Combined). The dependent variable in RQ1 is the

similarity between a source app and a set of potentially-similar apps perceived by users.

The dependent variable in RQ2 and RQ3 is the similarity ranking of the apps in the

goldset when using a specific approach.

To analyze whether the results of CLAN also hold for CLANdroid (RQ1), we designed

a survey of 20 users aimed at comparing how similar are similar apps detected by CLAN-

droid (i.e., using API calls), a MUDABlue base approach (i.e., using identifiers), a Com-

bined approach (i.e., API calls + identifiers), and the Google Play's goldset. In particular

we asked participants to rank the similarity between a source app and a set of potentially

similar apps by using the following Likert scale:

1. Completely dissimilar: The participant is highly confident that the app is dissimilar

to the source app.

2. Mostly dissimilar: It is unclear if the app is similar to the source app.

3. Mostly similar: There are some similarities between the app and the source app.

4. Highly similar: The participant is highly confident that the app is similar to the

source app.

For the survey we selected randomly 16 apps belonging to different domain categories

(See Table 2.1), and for each app we built a pool of 4 sets of potentially-similar-apps;

each set contains the top 5 similar apps detected by a specific approach (i.e., Goldset,

CLANdroid, MUDABlue, Combined). Then, the survey was designed using theQualtrics14

14http://www.qualtrics.com/

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 46

Table 2.1: Android apps used in the survey for RQ1

App (category) App (category)
com.rovio.angrybirds (Arcade) air.BasketballDoodFree (Sports)
cn.wps.moffice_eng (Business) cn.menue.barcodescanner (Tools)
com.virtual.guitar (Music & Audio) com.adobe.psmobile (Photography)
com.e_gadget.MindFireF (Cards) com.joey.video.player (Media & Video)
com.juandroidev.livecube (Personalization) com.kangaroo.logic (Brain)
com.oanda.fxtrade (Finance) com.officedepot.mobile.ui.bsd.us.prod (Shopping)
com.protecmedia.newsApp (News & Magazines) com.rm.android.facewarp (Entertainment)
com.rs.autokiller (Productivity) com.enlightenedapps.bubbleblaster (Casual)

Figure 2.2: Example of survey's question for the app com.rovio.angrybirdsspace .ads

software in such a way that the participants had to answer 16 questions (i.e., one per app),

and each question should have a set of similar apps selected randomly from the respective

pool. For each app in the potentially-similar-set we asked the participants to rank the

similarity to the source app using the Likert scale described before15. The package name

of the apps (source and potentially-similar-set) and links to Google Play were provided

with each question as in Figure 2.2. The results of the survey are presented and analyzed

in Section 2.4.5.

To identify which approach (including Android-specific semantic anchors) produces

better results (RQ2), we used 14,450 free Android apps, and the list of similar apps listed
15The decision of 16 apps is based on the fact the we estimated that participants would spend no more

than 3.5 minutes answering a question, and the time answering the survey should not be more than 1 hour.

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 47

by Google Play (i.e., goldset). Given an app ai ∈ A, and A the context of our study,

we used the five CLANdroid-based approaches (i.e., API calls, sensors, intents, user

permissions, API calls+identifiers) and MUDABlue to detect similar apps to all the ai ∈ A.

The similar apps were detected in the complement set of each ai (i.e., A− ai). Instead of

using a survey as in the case of CLAN and the RQ1 of this study, we used the goldsets

as a reference for evaluating the accuracy of the approaches. Our decision is motivated

by the fact that comparing six different approaches requires a complicated survey design

that requires a large number of participants and time; in addition the goldsets availability

provided us with a ground truth for evaluating the approaches automatically. Therefore,

after detecting similar apps for each ai we looked for the ranking of the apps belonging to

ai goldset and evaluated the rankings using two metrics: the top rank (TOPR) of any app

in the goldset, and the average rank (AV Gr) of all the apps in the goldset. Given and app

ai, aj ∈ Goldset(ai), TOPR(ai) and AV Gr(ai) are computed as in Equations 2.1 and 2.2.

TOPr(ai) = min(rank(aj)) (2.1)

AV Gr(ai) =
1

|Goldset(ai)|

|Goldset(ai)|∑
j=1

rank(aj) (2.2)

For instance, given app X, if app X has apps A, B, and C in its goldset, we will check

each of the five approaches to see the top rank (i.e., position closer to 1) of the apps A,

B, C. Thus, app C may be detected at rank 20 for APIs, app A may be detected at rank

5 for identifiers, etc. For the average rank, we computed the average of the rankings for

each app in the goldset (e.g., average of rank(A), rank(B), and rank(C) when using API

calls). The results for RQ2 are provided and analyzed in Section 2.4.5.

For RQ3 we computed the top rank and average rank of the goldset as in RQ2. How-

ever, we considered only project-specific classes (i.e., excluding third-party libraries), and

we removed obfuscated apps. For considering only the project-specific code (and de-

tecting obfuscated apps we followed the same procedure in [37]. The approach based

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 48

on user permissions is not impacted by third-party libraries because user permissions

are extracted from manifest files. The results and corresponding analysis for RQ3 are

presented in Section refsec-clandroid-results3.

2.4.2 Data Extraction

We downloaded 14,450 free mobile apps from Google Play as APK files, so that we may

decompile them and extract information from the source code. When downloading an

app, we also crawled goldset for the app (i.e., a set of apps listed by Google Play as

similar) and domain category. Once we had the APK files, we converted them into .java

source files using the following procedure: (i) unzip the APK files by using the apktool16

tool, which reveals the compiled Android application code file (note that an APK is just a

set of zipped DEX files); then (ii) translate the DEX files from the Dalvik bytecode to JAR

files using the dex2jar17 tool; then (iii) extract the .class files from the JAR files by using

the 7zip18 tool; and finally (iv) decompile the .class files to .java files by using the JAD19

decompiler tool (Figure 2.3).

In order to extract the amount of APIs used for each app, we used the JClassInfo20

tool. To acquire the permissions used by each app, we extracted this information from

the AndroidManifest.xml file that is present with every app. We extracted the

AndroidManifest.xml file by also using the aforementioned apktool. The Android man-

ifest file contains information such as the Java package for the application, which pro-

cesses will host application components, and also which permissions the application must

have so that it may access protected parts of the API. To obtain the intents from each app,

we used a recursive grep command that pattern-matched only on intents that started

with new Intent("android.intent and .setAction("android.intent so that we only
16http://code.google.com/p/android-apktool/
17http://code.google.com/p/dex2jar/
18http://www.7-zip.org/
19http://www.varaneckas.com/jad/
20http://jclassinfo.sourceforge.net/

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 49

Google
Play!

dex2jarapktoolAPKs
APK files

JARs

JAR files

Error? 7zipJADsource
code

No

sensors
extractor

permissions

API calls

permissions
extractor

sensors

.class files

.class files

manifest files

JClassInfo

Figure 2.3: Data extraction process from APK files.

collected new instantiations of Android intents. By using this method, we included both

implicit and explicit Android intents.21 To extract the identifiers from the source code we

applied a splitting pre-processing technique to this corpus. The splitting is done on under-

scores and on capital letters - all other non-literals are removed. So, the string FileWriter

out_writer becomes the four identifiers file writer out writer. However, we did not

use stemming or the removal of stop words, to be consistent with the design of CLAN.

To extract the sensors used by each app, we looked into the .class files extracted from

the APKs (Figure 2.3). We searched for the string "Landroid/hardware/SensorManager;

->getDefaultSensor(I)Landroid/hardware/Sensor;", which is the definition of the sen-

sor manager. If this string is found, then we knew that the app is using sensors. Each

instance of the string starts with "invoke-virtual <Var1>, <Var2>", where Var2 is a

variable. For each instance of this string we found, we search above the line of code that
21An implicit Android intent only specifies the action to be performed, while an explicit Android intent spec-

ifies both the action to be performed and which component to perform it with.

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 50

Table 2.2: Number of apps per category
Category #apps Category #apps
Arcade 636 Medical 50
Books and reference 315 Music and audio 639
Brain 830 News and magazines 574
Business 517 Personalization 909
Cards 463 Photography 454
Casual 689 Productivity 490
Comics 27 Racing 351
Communication 340 Shopping 137
Education 913 Social 172
Entertainment 1367 Sports 562
Finance 455 Sports games 394
Health and fitness 140 Tools 1101
Libraries and demo 100 Transportation 102
Lifestyle 890 Travel and local 345
Media and video 450 Weather 38

the instance was found for the declaration of this variable. One example of this variable

declaration is this: "const/4 v10, 0x1" where v10 is the variable and 0x1 is the value.

We took this value and compare dit to the Google source code for Android22 to detect

which sensor is being used. We extracted the sensors information this way instead of

from the manifest file from an app because it is not mandatory to list all used sensors in

the manifest. The information in the manifest is only used to filter apps in Google Play

based on those declared sensors.

Our distribution of apps by category is listed in Table 2.2. Thus, we used five types of

attributes, with each type of attributing representing an approach. The five attributes are

APIs, identifiers, intents, permissions, sensors, and represent the approaches we used

for detecting similar Android apps: CLANDroidAPI ,MUDABlue, CLANdroidInt,

CLANdroidPerm, CLANdroidSens. In addition, we included a combined approach, simi-

larly to CLAN, which combines API calls and identifiers (Combined).

2.4.3 Analysis Method

Aimed at answering the research questions, we tested the following null hypotheses:
22https://android.googlesource.com/platform/frameworks/base/+/android-4.3_r2.1/core/

java/android/hardware/Sensor.java

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 51

• H01 : there is no significant difference in the values of similarity (S) per app between

participants who use MUDABlue, CLANdroid, and Combined

• H02 : there is no significant difference in the values of precision (Pr) per app between

participants who use MUDABlue, and CLANdroid.

• H03 : there is no difference in the average ranking of the goldset AV Gr when using

MUDABlue, CLANdroid, and Combined.

• H04 : there is no difference in the top ranking of the goldset TOPr when using MUD-

ABlue, CLANdroid, and Combined.

• H05 : there is no difference between the AV Gr values collected for H03 and the

AV Gr values collected when excluding third-party libraries from the context.

• H06 : there is no difference between the TOPr values collected forH04 and the TOPr

values collected when excluding third-party libraries from the context.

• H07 : there is no difference between the AV Gr values collected for H03 and the

AV Gr values collected when excluding obfuscated apps from the context.

• H08 : there is no difference between the TOPr values collected forH04 and the TOPr

values collected when excluding obfuscated apps from the context.

HypothesesH01 andH02 were used to validate RQ1. The survey results for RQ1 were

analyzed differently to CLAN's; CLAN tasks were designed with a reuse scenario in mind.

In the case of CLANdroid we are assuming a more general scenario which includes users

looking for substitutes or complementary apps23. Moreover, although some open source

apps are distributed as APK files through Google Play, we were not interested in analyzing

source code. Our context is of Android free apps distributed as APK files. Consequently,

instead of measuring the confidence C we measured functional similarity as perceived by

users that inspect Google Play. However, similarly to the CLAN study (Section 2.3.3), we
23End-users do not search/browse the source code of Android apps; they look for APK files

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 52

also computed Pr via the fraction of the top r ranked target applications that are relevant

to the source application, where r = 5 in this experiment, which means that each similarity

engine returned the top five similarity matches. We selected apps with at least 5 apps in

their goldset that are in our dataset in order to represent each engine fairly, as there could

be potential cases where only the top 2 apps are similar, or where the fourth ranked app

is the only similar app. Along with the values of similarity S and precision Pr, we also

examined the values of the first app returned by each set S1 and the highest similarity

ranking given to any app within the five apps returned by each set ST .

To validate that the results of H01 and H02 are statistically significant we used the

Kruskal-Wallis test [13]. Once we tested the null hypotheses H0,1 and H0,2, in case of

accepting the alternative hypotheses, we followed a post-hoc test procedure aimed to

compare the effectiveness of each approach when compared to other (e.g., MUDABlue

vs CLANdroidAPI , CLANdroidAPI vs Combined). We used the Mann-Whitney test [13]

for pairwise comparisons.

HypothesesH03 andH04 were used to validateRQ2. In this case we followed the same

procedure for H01 and H02 ; all the approaches were compared initially using Kruskal-

Wallis tests; then post-hoc test procedures were done for pairwise comparisons. Hy-

potheses H05 to H08 were used to validate RQ3. For RQ3, we only used pairwise com-

parisons without Bonferroni correction between the values of TOPr and AV Gr collected

for H0,3/H0,4 and the values collected for H05 to H08 . For example, to measure if there

is an impact of third-party libraries when using CLANdroidAPI , we compared the TOPr

values when using CLANdroidAPI on the study context, to the TOPr values when using

CLANdroidAPI and excluding third-party libraries from the context.

In all the tests we looked for statistical significance at an alpha level = 0.05 and be-

cause of the multiple comparisons we applied a Boferroni Correction to the p-values

when required (i.e., hypotheses H01 − H04). We also computed the Cliff's delta d ef-

fect size [25] to measure the magnitude of the difference in all the tests. We followed the

guidelines in [25] to interpret the effect size values: negligible for |d| < 0.147, small for

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 53

0.147 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474 and large for |d| ≥ 0.474.). We are

not assuming population normality and homogeneous variances, therefore we choose

non-parametric methods (Kruskal-Wallis test, Mann-Whitney test, and Cliff`s delta).

2.4.4 Replication Package

The data set used in our study is publicly available at http://www.cs.wm.edu/semeru/

data/clandroid. Specifically, we provide:(i) online implementation of CLANdroid; (ii) the

list (and URLs) of the studied 14,450 free Android applications; (iii) the questions used

for the survey; and (iv) the list of similar apps detected by each one of the analyzed

approaches

2.4.5 Results

In this Section we present the results we got in this study aimed at answering the research

questions in 2.4.1. We also include a list of cases we manually inspected to support our

quantitative findings.

RQ1: Do CLAN Results Hold on Android Apps?

The results are summarized in Figures 2.4 and 2.5, and Table 2.3. In our evaluation, the

higher the values of precision Pr and functional similarity S are, the more effective a set

was at displaying similar applications. When examining the average functional similarity

for the four sets, Google Play was the highest with S = 3.03. This means that, on average,

users ranked each app recommended by Google Play as mostly similar. MUDABlue

followed next with S = 2.52. Although less than Google Play, this S value is still closest

to mostly similar. The remaining two sets, CLANdroidAPI and Combined, returned

S = 2.24 and S = 2.15 respectively. Therefore, users ranked each app on average from

these sets as mostly dissimilar.

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 54

We then analyze the precision Pr, which is the fraction of retrieved instances that

are similar. Essentially, the higher the value of Pr, the better the set of apps was at

returning more apps that were more similar than dissimilar. Google Play's set had the

highest average precision with Pr = 0.705, thus on average 70% of the apps returned by

Google Play were considered more similar than dissimilar. Following Google Play again

is MUDABlue, which resulted with an average precision of Pr = 0.516. Therefore, on

average for MUDABlue, about 52% of the apps returned were deemed more similar than

dissimilar by the users. Thus, both Google Play and MUDABlue returned more apps that

were similar to the given app than dissimilar. CLANdroidAPI and the Combined sets,

however, do not follow this pattern. They both contained lower precisions: Pr = 0.409

and Pr = 0.393, respectively. Thus we make an important observation: Google Play and

MUDABlue were the only sets to return more apps that were ranked more similar than

dissimilar (Pr > 0.5). We also note that the values of Pr and S share the same ranking

of sets in terms of effectiveness: Google Play (best), MUDABlue, CLANdroidAPI , and

Combined (worst).

However, we also investigated two other metrics in order to further understand the

results: how well the first app performed in terms of similarity ranking (which we denote

S1), and how well the most similar app out of the r = 5 (as ranked by users) performed

on average in terms of similarity ranking (which we denote ST). The ranking of sets

when examining S1 remained unchanged from the previous results of Pr and S. However,

all similarity values increased, which is likely a result of taking into consideration only

the top ranked app by each engine and Google Play. The S1 values for Google Play,

MUDABlue, CLANdroidAPI , and Combined are S1 = 3.204, S1 = 2.971, S1 = 2.898,

and S1 = 2.866. Although the ranking of sets remains unchanged, this brings to light

an important observation: when taking into consideration only the first app returned by

each engine or Google Play, on average, all apps are ranked mostly similar. However,

when we take into account the similarity ranking ST for the most similar app on average

out of the five apps displayed by each set, the ranking of sets changes slightly. The

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 55

Table 2.3: Results of the user survey. The first column indicates what is being measured (e.g., S
for functional similarity), and the second column indicates which set of similar apps were used (i.e.,
similar apps detected with a specific approach). The next 16 columns represent the 16 questions
presented to a user in the survey, and the last column contains the average value of each row.
The rows show the average values from all users that answered a question for a specific set of
similar apps
Var Approach 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg
S Goldset 2.142 2.17 3.332 3.178 3.572 3.136 2.67 3.652 3.67 2.64 3.228 1.8 3.5 3.134 3.15 3.546 3.033
S CLANdroidAPI 2.5 2.65 2.228 1.9 1.84 1.878 2.45 2.5 3.778 1.95 1.934 2.058 2.858 1.75 1.7 1.866 2.24
S MUDABlue 1.9 2.92 2.266 1.334 2.268 3.45 2.232 3.198 3.67 2.57 2.56 2.95 3.45 1.234 1.954 2.398 2.522
S Combined 1.6 2.8 2.2 1 2.04 2.12 2.4 2.4 3.134 2.05 2.35 3.05 2.598 1.314 1.532 1.734 2.145
Pr Goldset 0.4 0.2 0.833 0.822 0.857 0.8 0.5 0.925 1 0.68 0.75 0.2 1 0.733 0.65 0.927 0.705
Pr CLANdroidAPI 0.54 0.65 0.429 0.233 0.2 0.3 0.5 0.55 1 0.25 0.267 0.4 0.629 0.2 0.2 0.2 0.409
Pr MUDABlue 0.3 0.64 0.4667 0.133 0.2 0.9 0.4 0.933 0.833 0.571 0.68 0.65 0.75 0 0.333 0.467 0.516
Pr Combined 0.2 0.6 0.3 0 0.28 0.44 0.6 0.52 0.8 0.3 0.35 0.8 0.6 0.029 0.2 0.267 0.393
S1 Goldset 2.86 1.71 3.5 3.78 4 3.67 2.67 3.75 3.67 3.2 3.88 2.25 3.5 2.67 3.25 2.91 3.204
S1 CLANdroidAPI 4 3.5 4 1.33 4 2.13 2.5 2 3.75 2.5 2 2.29 2.86 2.25 3.25 4 2.898
S1 MUDABlue 3.5 3.8 3.33 1.67 3.67 2 2.83 3.33 3.67 2.43 2.2 3.25 3.25 1.5 3.11 4 2.971
S1 Combined 3 4 4 1 4 2 3.25 1.8 2.67 2 2.5 3.5 3.71 1.43 3.33 3.67 2.866
ST Goldset 2.86 4 3.5 3.78 4 3.67 2.67 3.88 3.67 3.2 4 2.25 3.5 4 3.5 3.91 3.524
ST CLANdroidAPI 4 3.5 4 4 4 2.63 3.25 4 3.88 2.5 2 2.75 3.29 2.25 3.25 4 3.331
ST MUDABlue 3.5 3.8 3.33 1.67 3.67 4 2.83 3.33 3.67 3 3.2 3.25 4 1.5 3.11 4 3.241
ST Combined 3 4 4 1 4 2.8 3.25 2.8 3.67 2.75 2.5 3.75 3.71 1.71 3.33 3.67 3.121

set for Google Play returned with the similarity value ST = 3.524. Thus, we notice that

when taking into account this value, that Google Play, on average, will return at least

one app out of the five in the set that is marked highly similar. The next ranked set is

CLANdroidAPI , which has interchanged positions with MUDAblue. CLANdroidAPI has

the similarity value ST = 3.331, and therefore on average will return at least one out of

its top five ranked apps that ismostly similar. MUDABlue and the Combined sets return

with the similarity values ST = 3.24 and ST = 3.12 respectively, and thereby are similar to

CLANdroidAPI with the result that they will on average return at least one out their top

five ranked apps that will be deemed mostly similar.

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 56

MUDABlue APIS Combined Goldset

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

ci
si

on
 (

P
r)

●

●

●

●

Figure 2.4: Survey results: distribution of the precision (Pr) depicted by approach. Each boxplot
was plotted using all the responses from the participants for the similar-apps set generated with
the considered approaches.

Summarizing, the results of our RQ1 show that the results of CLAN do not hold on

Android mobile apps. We found that when looking at both the average functional

similarity of the top five apps returned by each set and the average precision of

the top five apps returned by each set, the Google Play set returns the highest

values and thus outperforms the other sets. MUDABlue outperforms the remain-

ing sets CLANdroidAPI and Combined, of which CLANdroidAPI outperforms

Combined. These results are also mirrored when measuring the average re-

ported functional similarity of the top returned app from each set. However, when

measuring the top average reported functional similarity of the five returned apps,

CLANdroidAPI outperforms MUDABlue.

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 57

●
●●

MUDABlue APIS Combined Goldset

0
1

2
3

4
5

A
ve

ra
ge

 S
im

ila
rit

y
(S

)

●

●
●

●

Figure 2.5: Survey results: distribution of the average similarity (S) depicted by approach. Each
boxplot was plotted using all the responses from the participants for the similar-apps set generated
with the considered approaches.

RQ2: Accuracy of CLANdroid Semantic Anchors

The results are summarized in Figures 2.6 and 2.7, and Table 2.4. The figures depict the

distribution of the rankings provided by the different methods to the apps in the goldset;

the table lists the results of the statistical tests for the hypotheses H03 and H04 .

On average, using APIs and Intents delivers the worst rankings when analyzing TOPr.

The mean values in Figure 2.6 in ascending order are: 858.2 for CLANdroidSens (me-

dian 1), 1996 for MUDABlue (median 974.5), 2143 for CLANdroidPerm (median 940),

2183 for Combined (median 1128), 2524 for CLANdroidInt (median 1404), and 2638

for CLANdroidAPI (median 1763). This result is also reflected in the case of AV Gr

(Figure 2.7). From best AV Gr to worst, based on the average value in the boxplot, we

get: CLANdroidSens (mean=3424, median=2531), MUDABlue (mean = 4844, median

=4733), CLANdroidPerm (mean =4948, median = 4747), Combined (mean=5165, me-

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 58

●

●
●
●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●●●●●●

●

●

●

●

●●
●

●

●
●●

●

●●●

●
●

●

●

●●●●●
●
●●●●

●

●

●●

●●●

●

●

●●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●●

●

●

●●

●●
●

●●
●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●
●

●
●
●

●
●

●

●●

●

●
●
●

●

●

●

●●
●●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●●●●●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●●
●

●
●
●

●

●●

●

●
●
●

●
●●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●
●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●●

●

●

●

●

●
●
●

●●●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●
●
●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●
●●●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●
●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●●●

●

●
●
●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●●
●

●●

●

●

●

●
●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●●
●
●
●

●

●
●●●
●

●

●

●
●
●

●

●●●

●
●●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●
●

●
●

●●●

●

●

●

●

●●
●

●
●

●

●●●

●

●●
●

●
●●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●
●

●
●

●●

●●

●

●
●

●●●

●

●
●
●●

●

●●●
●

●●●●

●●

●

●

●

●

●●●

●●
●

●

●●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●●●
●
●

●
●

●

●

●●

●●●

●

●●

●

●

●

●

●●
●
●●●●

●

●

●

●

●
●●

●

●

●
●●●
●

●●

●
●

●
●

●

●
●

●●

●
●

●●●

●

●

●

●

●

●
●
●●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●
●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●
●

●

●
●
●●●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●
●

●

●
●

●
●

●

●

●

●

●
●●●●●●●●●

●

●●●●●

●
●

●

●

●

●

●
●

●●
●
●

●

●
●

●

●
●
●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●
●

●
●
●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●
●

●●●

●

●
●

●●●●

●

●

●●●
●

●

●●

●

●
●
●

●●●●

●

●
●

●

●

●●

●●

●

●
●
●

●●

●●●●
●

●

●●

●

●●●

●

●

●●

●●
●●

●

●●

●●

●

●●●●

●

●

●

●
●●●
●●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●
●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●
●●●

●

●●●●

●

●●●

●●
●

●●●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●
●●

●●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●
●

●
●●●
●●

●●

●

●
●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●●

●
●

●
●

●

●●●●●
●

●●

●

●

●●●●

●

●

●●

●

●

●
●

●●

●
●●

●

●

●

●●●

●●●●●●

●

●

●

●●●●●●●●●●●

●●●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●

●●●●
●●●

●●

●●

●
●●

●

●●

●

●

●●●●

●●

●

●

●

●●●

●

●●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●
●
●
●

●●

●
●
●●

●●

●

●

●

●

●
●●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●
●●

●●

●

●●

●

●●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●●●●●●●●

●●

●

●●

●

●

●

●

●

●●●

●●

●●
●●●

●

●●

●
●
●

●

●●●

●
●

●

●

●

●●●●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●●●

●
●

●

●

●
●
●

●

●

●
●
●●
●●
●

●

●

●

●
●

●

●●

●●●●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●
●
●●●
●
●

●

●●

●

●●

●
●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●●

●
●

●●

●
●

●

●

●

●●

●

●●●

●

●●

●●

●

●●●

●
●

●●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●●

●

●●●

●

●●●●●●●

●●

●
●●●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●
●

●

●
●
●●●●●

●

●

●
●

●

●●

●●●●

●

●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●●●●
●

●●●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●●●●
●

●●●●

●●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

●●●●●

●

●●

●●

●

●

●

●

●

●●●●●

●

●●

●
●

●●●

●
●

●●●●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●●●

●

●●

●●●

●

●●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●

●●●

●
●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●●

●

●●

●

●●

●

●●●●

●
●

●●●●●

●●
●

●

●

●

●

●

●

●
●
●

●●

●●●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●●●●●●

●

●

●

●●●●

●

●●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●●
●●●

●

●●

●●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●●●

●●●

●
●
●●

●●

●

●

●

●

●●

●

●

●

●●●

●●

●
●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●
●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●●●

●●●

●

●●

●

●●●●●

●

●●

●

●●●

●●

●

●●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●●●

●

●

●●

●

●●

●

●
●

●●

●

●

●●●●●

●●

●●

●●

●

●

●

●●●●●
●

●

●

●●
●

●●●●●●●●●●●●●●●●

●
●●

●●●

●
●
●

●●●

●

●●●

●●
●

●

●

●●●

●●●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●●

●●●●●●●●●

●

●●

●

●
●●

●●

●
●●
●
●●
●●●
●
●
●
●●●
●
●●
●●

●

●●●

●●
●●●●
●
●
●●●●●●●
●

●●

●●●●
●●

●

●●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●

●●

●

●●●●●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●●●●●●●

●

●●●●●

●
●●

●
●

●

●

●●

●●

●

●●
●

●

●

●●●

●

●
●●●

●

●

●●●
●●●
●
●●●●●

●

●●●●●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●●
●
●

●

●

●●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●●●●●●

●●

●●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●

●●

●

●

●●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●●
●

●

●

●●

●

●

●

●

●●●
●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●●●●●●●●●
●

●
●

●

●
●

●●

●
●●●
●
●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●
●

●●

●●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●
●

●●

●

●●

●

●

●●

●●●

●
●
●

●

●

●

●

●

●●

●

●●

●

●
●●
●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●

●●

●
●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●
●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

API Identifiers Intents Permissions Sensors Combined

0
50

00
10

00
0

15
00

0

Attribute

To
p

ra
nk

ed
 s

im
ila

r
ap

p

●

●
●

●

●

●

Figure 2.6: Boxplots by ranking method, measured by the top ranked app in goldset.

dian = 5075), CLANdroidInt (mean = 5597, median = 5467), and finally CLANdroidAPI

(mean = 5837, median = 5818).

Regarding the null hypotheses (H03 andH04), we found that the p-value for the Kruskal-

Wallis is less than 0.05 when using both metrics (which means that there are significant

differences between the rankings when analyzing AV Gr and TOPr. The post-hoc pro-

cedures with the Mann-Whitney confirm the initial results, showing statistical significant

difference in all the cases (Table 2.4) except for the comparison between MUDABlue

and CLANdroidPerm, and CLANdroidInt and Combined. However, when looking into

the magnitude of the differences, (i.e., Cliff's delta) in most of the comparisons the differ-

ences are negligible (i.e., |d| < 0.147) and small (i.e., 0.147 ≤ |d| < 0.33). The magnitudes

are only medium and large when comparing the results of using Sensors as semantic an-

chors against the others; this case is confirmed with the boxplots, which show that the

best rankings are provided when using Sensors (i.e., CLANdroidSens).

The values suggest thatCLANdroidSens is the best approach, followed byMUDABlue

and CLANdroidPerm. However, CLANdroidSens only appears to be the best approach

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 59

●

●

●●●●●

●
●
●

●
●

●●

●●
●●

●

●●
●
●
●

●●●●●●●●●●

●●

●
●●●
●●●
●●●●
●
●

●●●
●●●
●
●

●●
●●
●●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●●

●

●
●●

●●

●

●●

●
●

●
●

●
●

●

●
●●

●

●●

●

●

●
●

●
●

●

●

●●
●
●
●

●

●
●
●

●●
●●

●●

●

●

●●●

●

●●●●
●
●●
●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●
●
●●

●

●
●

●

●

●

●

●●

●●

●●

●●

●

●

●
●
●

●●
●

●

●

●

●

●●
●
●
●●

●●

●

●●
●
●

●

●

●
●

●
●●

●●
●●
●
●

●

●

●
●●
●

●
●

●●

●

●

●●

●●

●
●

●●
●●

●●●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●
●
●

●
●

●●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●●
●●●
●
●●●●●
●●●●●●
●
●●●●●●●●●●
●
●●●●
●●●●

●●●●●

●●

●●

●

●●

●
●
●

●●●●●●●●●●
●
●

●●

●●●
●

●●
●

●

●●●●●
●●
●
●
●
●
●●
●●●●●●●●
●●●●●
●

●●
●
●●

●
●
●

●●

●●

●●

●

●
●

●
●

●
●

●
●●●●●●●●●●●

●●

●
●
●
●●
●●●

●

●

●
●●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●
●
●

●●●●

●●●
●
●
●
●●

●
●

●
●

●●●●

●
●

●●

●

●

●●

●
●●

●

●

●

●

●

●●●

●

●

API Identifiers Intents Permissions Sensors Combined

0
50

00
10

00
0

15
00

0

Attribute

A
ve

ra
ge

 r
an

ki
ng

 o
f s

im
ila

r
ap

ps

●

●

●

●

●

●

Figure 2.7: Boxplots by ranking method, measured by the average ranked app in goldset.

because sensors are not widely used in our dataset, and there are only 13 types of sen-

sors than can be used by Android apps24. CLANdroid ranks applications with the exact

same similarity values at the same rank, therefore, the sensors attribute may not be as

useful for detecting similar apps. For instance, if app A has three apps in its goldset (apps

B, C, and D), and apps B and C both utilize the exact same sensors as app A, then they

will both have a similarity value of 1.0 when compared to app A. Thus, both apps will be

ranked at position 1, and app D will be ranked at position 3, as it is the third-most similar

app to app A.

This is most noticeable when finding apps that are similar based on the phone sensors

used by the application, due to both the low number of unique sensors and that sensors

function as a boolean value. Due to the low number of unique sensors used in our dataset

(10), it can be common for apps to use the same combination of sensors, especially if the

app only uses one or two sensors. This also means that all apps that do not use any

phone sensors have a perfect similarity value as well. 11,385 of the apps in our dataset
24http://developer.android.com/guide/topics/sensors/sensors_overview.html

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 60

Table 2.4: Results of statistical tests for H03 and H04 when using the whole dataset.With the
Bonferroni correction the new alpha value for the post-hoc tests is 0.005 (0.05/10).
Var Approach 1 Approach 2 P-value post-hoc W-statistic Cliff's delta
AV Gr CLANdroidAPI MUDABlue 0.0000 100438216.0 0.2647
AV Gr CLANdroidAPI CLANdroidInt 0.0000 86803527.5 0.0712
AV Gr CLANdroidAPI CLANdroidPerm 0.0000 97981639.5 0.2288
AV Gr CLANdroidAPI CLANdroidSens 0.0000 121952415.0 0.4820
AV Gr CLANDROIDAPI Combined 0.0000 94502214.0 0.1856
AV Gr MUDABlue CLANdroidInt 0.0000 68309631.5 -0.2600
AV Gr MUDABlue CLANdroidPerm 0.1080 80944464.5 -0.0306
AV Gr MUDABlue CLANdroidSens 0.0000 109780235.0 0.3189
AV Gr MUDABlue Combined 0.0000 76145791.0 -0.1023
AV Gr CLANdroidInt CLANdroidPerm 0.0000 93580421.0 0.1716
AV Gr CLANdroidInt CLANdroidSens 0.0000 118726949.0 0.4445
AV Gr CLANDROIDInt Combined 0.0000 89644271.0 0.1227
AV Gr CLANdroidPerm CLANdroidSens 0.0000 109068917.0 0.3259
AV Gr CLANDROIDPerm Combined 0.0000 77524323.5 -0.0643
AV Gr CLANDROIDSens Combined 0.0000 50314473.0 -0.5945
TOPr CLANdroidAPI MUDABlue 0.0000 94197008.5 0.1739
TOPr CLANdroidAPI CLANdroidInt 0.0000 88554034.5 0.0310
TOPr CLANdroidAPI CLANdroidPerm 0.0000 95336872.5 0.1316
TOPr CLANdroidAPI CLANdroidSens 0.0000 144147643.5 0.4008
TOPr CLANDROIDAPI Combined 0.0000 90559271 0.1245
TOPr MUDABlue CLANdroidInt 0.0000 77848027.5 -0.1637
TOPr MUDABlue CLANdroidPerm 0.0000 84608427.5 -0.0449
TOPr MUDABlue CLANdroidSens 0.0000 142883538.5 0.2892
TOPr MUDABlue Combined 0.0000 78135817.5 -0.0588
TOPr CLANdroidInt CLANdroidPerm 0.0000 87974000.0 0.0998
TOPr CLANdroidInt CLANdroidSens 0.0000 135735336.5 0.3709
TOPr CLANDROIDInt Combined 0.1796 82687393.5 0.0917
TOPr CLANdroidPerm CLANdroidSens 0.0000 134783209.0 0.3091
TOPr CLANDROIDPerm Combined 0.0000 75896398.5 -0.0116
TOPr CLANDROIDSens Combined 0.0000 20171738.5 -0.4775

make no use of any of the sensors, and thus all of these apps are deemed similar when

ranked by sensors alone. However, while the sensors ranking method alone may not be

the most effective, it can be combined with other ranking methods to help detect similar

applications more accurately.

Without considering CLANdroidSens, detecting the goldset apps as similar by using

identifiers (i.e., MUDABlue) appears to be the best approach, as it consistently has a lower

average and lower median when compared to the other methods. Ranking by permissions

is second best, beating out both APIs and intents. Although there is a list of 145 official

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 61

Android permissions25, we detected over 10 times this amount of unique permissions in

our dataset. This is possible due to apps being able to create custom permissions, such

as com.motorola.launcher.permission.READ_SETTINGS. This permission is a part of the

StartApp SDK26, which is a third-party SDK that "contains code necessary to have `out of

App' monetization channels for your application."

Permissions are a unique way of detecting similar apps due to its wide variance in

ranking apps. Thus, the more permissions an app has, the likelier the top ranked apps by

CLANdroid are functionally similar. The opposite also holds true: if an app has a single

permission such as android.permission.INTERNET, then every app which has only this

permission will be marked with a perfect similarity. For this reason, we recommend using

permissions in conjunction with another measurement attribute, but not using permissions

alone.

One example that demonstrates the ineffectiveness of permissions is when consid-

ering the app Slots Royale - Slot Machines27. This app has four Android standard per-

missions: READ_PHONE_STATE, ACCESS_COARSE_LOCATION, ACCESS_NETWORK_STATE, and

INTERNET. The app Tennis Score28 has these exact same permissions, and thus is marked

as a perfectly similar app in CLANdroidPerm (and because it is perfectly similar, it must

be at rank 1). However, the app Slots Free (5 Slot Machines)29 is a similar app part of the

goldset, and while it contains the four permissions that Slots Royale has, it also has an

additional five different permissions. Simply adding these additional permissions pushes

the similarity ranking of this app down from a perfect similarity (rank 1) to rank 1,550.

On average, rankings of the goldset apps are far from the top-positions in all the ap-

proaches. When using TOPr, there were only 471 apps in our dataset that had an app in

their goldset ranked at position 1 for any ranking method (e.g., app A may have an app

from its goldset ranked at position 1 for identifiers, while app B may have an app from its
25http://developer.android.com/reference/android/Manifest.permission.html
26http://developers.startapp.com/Resource/SDK/Startapp%20SDK%20integration%20manualV1.5.pdf
27https://play.google.com/store/apps/details?id=com.mw.slotsroyale
28https://play.google.com/store/apps/details?id=RobotMoose.TennisScore
29https://play.google.com/store/apps/details?id=com.viaden.slotsfree

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 62

goldset ranked at position 1 for sensors). When using TOPr but only taking into consider-

ation apps from our dataset that are of the same category as the queried app, this number

increases to 1,134. This shows that at least 663 apps had an app of a different category

being ranked higher than an app in the queried app's goldset for any ranking method.

To find an explanation to this we manually inspected the results. One explanation is

that the goldsets only include apps in the same category, however, CLANdroid detects

similar applications across different categories. Also, we found evidence of apps ranked

by CLANdroid at top positions, which do not belong to the goldset, but are still closely

related. For example, when we checked the rankings for the popular game app Angry

Birds30, the top ranked app for each approach was Angry Birds Space31. The second

ranked app by APIs and identifiers was Amazing Alex Free32, which is also developed by

Rovio. The second ranked app by intents was Hamster: Attack!33 (by Backflip Studios),

an app in the Casual category. The third ranked app by APIs and identifiers is also the

same, with the app being The Sims FreePlay34. The apps in the goldset do not appear

to be functionally similar to Angry Birds, where the goldset contains apps such as Angry

Monkey35 and NinJump36.

Another example are the apps Home Architecture and Design37 and The Social Busi-

ness38; both apps were likely developed using the AppMakr tool according to their pack-

age name. AppMakr is a "what you see is what you get" editor that allows users to build

apps with no coding knowledge39. Although these apps belong to different categories

(Lifestyle and Business respectively) and authors, they make the exact same API calls

and have almost the exact same identifiers. The intents, permissions, and sensors used
30https://play.google.com/store/apps/details?id=com.rovio.angrybirds
31https://play.google.com/store/apps/details?id=com.rovio.angrybirdsspace.ads
32https://play.google.com/store/apps/details?id=com.rovio.amazingalex.trial
33https://play.google.com/store/apps/details?id=com.backflipstudios.android.hamsterattack
34https://play.google.com/store/apps/details?id=com.ea.games.simsfreeplay_na
35https://play.google.com/store/apps/details?id=com.tgb.kingkong
36https://play.google.com/store/apps/details?id=com.bfs.ninjump
37https://play.google.com/store/apps/details?id=com.appmakr.app346687
38https://play.google.com/store/apps/details?id=com.appmakr.app166847
39http://www.appmakr.com/

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 63

are also identical. However, while these apps are ranked similarly, there are also in-

stances of AppMakr apps which don't rank similar to apps created the same way. For in-

stance, comparing the Home Architecture and Design app to All Design40(an Education

app), all of the rankings are at least 80 or higher, except for the intents ranking attribute,

where the rank is 11. In fact, out of the 10 AppMakr-based apps in our dataset, when

using one as a query app for CLANdroid, the other nine always rank within the top 20

similar apps based on intents. This may demonstrate that although certain apps created

via the same program (such as AppMakr) may have different API calls and identifiers,

they may still be very similar when compared based on intents.

A representative app from the Books category is called The Bible,The Qur'an & Sci-

ence41. This app is simply a book discussing religion and science. Google Play has the

app The Holy Quran - English42 listed as a related app. When using CLANdroid consid-

ering only apps in the Books category, this app ranked in positions 76, 163, 104, 201,

and 1 (APIs, identifiers, intents, permissions, and sensors respectively) in regards to the

former app. However, when we look at the top ranked apps by CLANdroid, another app

(Islam in Brief 43) by the same developer ranks at number 1 in both APIs and identifiers

(with APIs having a perfect similarity ranking), while the other three ranking attributes

have multiple apps ranked at number 1. Thus, we observe that there are apps in which

both appear to have similar content, but are implemented differently. Furthermore, we

recognize that apps from the same developer are ranked highly similar, analogous to the

scenario between Angry Birds and Amazing Alex.

Upon querying the Finance app Money Notes Lite44, we found that the top 3 apps

ranked by identifiers not only belong to the Finance category, but all help the user man-

age expenses. These three apps are T2Expense - Money Manager45, Home Budget with
40https://play.google.com/store/apps/details?id=com.appmakr.app120673
41https://play.google.com/store/apps/details?id=com.smartersoft.smarterbooks.en.book8
42https://play.google.com/store/apps/details?id=com.verypositive.Quran
43https://play.google.com/store/apps/details?id=com.smartersoft.smarterbooks.en.book7
44https://play.google.com/store/apps/details?id=app.moneynoteslite
45https://play.google.com/store/apps/details?id=com.t2.t2expense

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 64

Sync Lite46, and HardCash Tracker47. Although none of these apps appear in the goldset

for Money Notes Lite, the apps appear to blend in well with the goldset, thus demonstrat-

ing that they are similar. For this app, the apps ranked by the semantic anchors varied

wildly in functionality. The top app by CLANdroidAPI is a News & Magazines app and

is dissimilar from the queried app. The top results for CLANdroidCombined seem to be

somewhat related to the queried app as they are financial calculators (e.g. CalcPack Fi-

nancial Calculators48), but are not completely related in the functionality that they provide.

The remaining three semantic anchors have at least 60 apps marked with a perfect sim-

ilarity ranking (thus are at rank 1), and they also vary largely in functionality from apps

that utilize the camera to games. This example not only demonstrates the effectiveness

of identifiers when detecting similar apps, but also that when either CLANdroidAPI or

MUDABlue detect apps that are not functionally similar, combining them can help attempt

to detect similar apps that are more relevant than just one engine alone, as seen with

CalcPack Financial Calculators.

Another interesting example comes from an app called Babanev Kereso Fiu49 and the

app Babanev Kereso Lany50 in its goldset. These are both Hungarian apps which were

designed to help parents choose a name for their child by providing information about the

name such as the origin, meaning, and any other information. When running CLANdroid

on Babanev Kereso Fiu, we found that the goldset app Babanev Kereso Lany is ranked

number one in all the approaches, and has a perfect similarity score in every ranking

method except identifiers. This is to be expected, as both apps function exactly the same,

except with the former having information onmale names and the latter having information

on female names, which would change the identifiers in the source code. This example

shows how similar apps from the same developer use both similar semantic anchors and

also identifiers, although the identifiers are not a perfect match (i.e., the similarity score is
46https://play.google.com/store/apps/details?id=com.anishu.homebudget.lite
47https://play.google.com/store/apps/details?id=de.maxmaurer.hardcashtracker
48https://play.google.com/store/apps/details?id=pack.calc.calcpack
49https://play.google.com/store/apps/details?id=com.origo.babyname
50https://play.google.com/store/apps/details?id=com.origo.babynamegirl

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 65

less than 1.0).

We queried the app 250+ Solitaire Collection51 which is an app that contains 253

different solitaire games for a user to play. After inspecting the apps in its goldset, we

found Solitaire Free Pack52 as the most similar to 250+ Solitaire Collection. We believe

this app to be the most similar as it contains multiple forms of solitaire for the user to play.

Although this app ranked at positions 543 and 14 for APIs and identifiers respectively, it

ranked at the top position (i.e., rank 1) when combining these twomeasurement attributes.

Thus, we observe that combining identifiers and API calls can improve the results when

using only API calls.

Summarizing, the results of our RQ2 show that the while the semantic anchors

used in CLANdroidSens and CLANdroidPerm appear to detect similar apps bet-

ter than the other semantic anchors, this is not the case. Due to the way these

anchors function as binary values (either they are present or not), they create

many false positives as they match with a large quantity of apps. Between the

remaining two semantic anchors CLANdroidAPI and CLANdroidInt, we con-

clude that the intent semantic anchor slightly outperforms API calls when used

for detecting similar Android apps.

RQ3 On the Impact of Third Party Libraries and Obfuscated Apps

The results are summarized in Figures 2.8 and 2.9, and Table 2.5. The figures depict the

distribution of the rankings provided by the different methods to the apps in the goldset

when excluding the third-party libraries from the analysis; the table lists the results of

the statistical tests for the hypotheses H03 and H04 . We did not include the results of

CLANdroidPerm because user permissions were extracted frommanifest files, therefore,

excluding third-party libraries from the analysis does not change the results.

In terms of AV Gr, again, MUDABlue is the best approach and CLANdroidAPI the
51https://play.google.com/store/apps/details?id=com.anoshenko.android.solitaires
52https://play.google.com/store/apps/details?id=com.tesseractmobile.solitairefreepack

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 66

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●
●
●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●
●
●
●●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●●●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●●
●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●
●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●

●●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●●
●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●
●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●●●●●●
●●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●
●

●

●●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●●
●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●
●●

●

●

●

●

●

●

●●

●

●●

●●

●
●

●●
●
●

●

●●●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●●
●
●

●●

●●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●●●
●
●●●

●

●

●

●●●●
●

●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●

●●

●

●
●●●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●
●●

●●

●

●●

●
●●●
●
●●●●●
●
●●

●

●

●●●●●

●

●●

●

●

●

●

●
●●●

●

●
●
●●
●
●●●●
●●●●●

●●●●●●●●●●

●
●
●
●●

●

●
●●●●●●●
●

●

●●●●●

●

●●●●●●●
●

●

●●●
●
●●●
●

●

●●●●●●●●
●
●
●
●●

●●●

●●●

●

●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●●●
●
●
●●
●
●●
●
●●●●●●●●●
●●
●●●●
●
●●●●●●●●●
●
●
●
●●●●●●
●
●●●●●●●●●●
●
●●●●●●
●

●●

●●●●

●

●

●●

●

●

●●
●

●

●
●

●

●
●

●●

●●
●
●●●
●●●●●●●
●
●●

●

●●
●

●

●●●

●

●●

●
●

●
●

●

●

●

●

●●●●

●

●

●

●
●●

●

●
●
●●●

●

●

●
●
●

●

●●
●

●
●

●

●●●

●

●
●

●

●●●

●
●
●●
●●
●●●●●

●●

●

●

●

●

●
●

●

●
●●●●●

●

●●

●

●

●
●

●●●●

●

●●●

●

●
●●
●
●
●●●●●
●
●●

●

●

●

●

●

●

●
●●
●●
●
●●●

●

●
●●

●

●●●●

●

●●

●

●
●●●●

●

●●

●

●
●
●

●

●

●

●
●
●●

●●

●●●●
●
●
●
●●●●●●●●
●●●

●

●●●●●

●●

●

●

●
●
●
●
●●

●

●
●

●

●

●●●
●

●

●●●
●●
●●●
●

●

●●
●●

●

●●●

●

●●

●

●
●
●

API Identifiers Intents Sensors

0
50

00
10

00
0

15
00

0

Attribute

To
p

ra
nk

ed
 s

im
ila

r
ap

p

●
● ●

●

Figure 2.8: Boxplots by ranking method, measured by the top ranked app in goldset when ex-
cluding third-party libraries.

worst: CLANdroidSens (mean = 1058, median = 1), MUDABle (mean = 4350 , median

= 3991), CLANdroidInt (mean = 4740, median = 4860), CLANdroidAPI (mean = 5253,

median = 5040); in terms of TOPr the results also hold: CLANdroidSens (mean = 120.4,

median = 1), MUDABle (mean = 1569 , median = 430.5), CLANdroidInt (mean = 1775,

median = 11), CLANdroidAPI (mean = 2044, median = 830.5). However, there are sig-

nificant differences between the values of TOPr and AV Gr produced by the CLANDroid

approaches when including and excluding third-party libraries. Table 2.5 lists the differ-

ences in the means and medians of TOPr and AV Gr after excluding third-party libraries

from the analysis. The negative differences (columns Diff(mean) and Diff(average)) con-

firm that on average, the ranking of the goldset apps were improved.

The app Night Vision Cam53 experiences a large increase in its average and top gold-

set rankings when removing third-party libraries from the data. One app in the goldset for

Night Vision Cam is LiveKey Camera54. When using the whole dataset including third-
53https://play.google.com/store/apps/details?id=androix.com.android.NightVisionCam
54https://play.google.com/store/apps/details?id=com.sonyericsson.androidapp.appkey

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 67

●

●●

●

●●
●
●

●
●
●●
●●●
●●

●
●
●●●
●
●●
●●
●

●●●

●

●●
●●●●●
●
●●
●
●

●●

●

●
●●

●●
●●
●●●

●
●
●●●
●
●●
●
●●●●●●
●
●

●●●
●
●

●

●●●

●
●●●●●●
●●
●

●
●●
●

●

●
●

●

●

●●
●●●
●●
●●

●

●

●●
●
●●●

●
●●
●
●
●

●●●●

●●

●●

●

●
●

●

●●

●
●●●
●
●

●
●●

●

●

●
●

●

●●

●●●

●

●●

●

●
●●
●
●

●

●●
●
●

●

●●
●●
●●
●●

●●

●
●
●●●●●●
●
●
●
●
●●

●
●
●
●

●

●

●●●

●
●

●●

●●
●●
●●●

●

●

●

●●

●

●●

●
●

●●
●
●

●

●

●●
●
●

●●●●

●

●
●●●
●

●

●
●●

●

●●
●
●

●●
●
●●●●
●

●

●●●
●
●●●●●●●
●

●●

●●
●●
●●●

●

●
●

●

●

●
●●●
●●

●

●●●●

●●●
●

●

●

●●●●
●
●
●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●
●

●●●●

●●●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●●

●

●

●

●

●

●●

●●

●

●●●●●

●

●●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●
●
●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●●●●●

●
●

●

●●●

●

●

●

●

●

●●●
●

●●

●

●

●●
●
●

●

●●

●●●

●

●
●

●

●

●

●

●

●●

●●

●●●

●

●●●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●●

●
●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●

●

●

●

●
●
●

●

●

●●●●

●

●●●●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●●
●
●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●●●●

●
●●

●

●
●

●●

●
●

●●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●
●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●●

●

●
●
●

●

●●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●●

●

●●●
●
●●

●

●

●

●

●

●●

●

●

●

●●●●●●●●

●
●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●●●

API Identifiers Intents Sensors

0
50

00
10

00
0

15
00

0

Attribute

A
ve

ra
ge

 r
an

ki
ng

 o
f s

im
ila

r
ap

ps

●

●
●

●

Figure 2.9: Boxplots by ranking method, measured by the average ranked app in goldset when
excluding third-party libraries.

Table 2.5: Differences between TOPr and AV Gr when including and excluding third-party li-
braries. Negative values in the Diff(mean) and Diff(median) columns shows that when excluding
third-party libraries the rankings move in the direction of the top positions.
Var Approach Diff (mean) Diff (median) P-value Man-Whitney W-statistic Cliff's delta
TOPr CLANDROIDAPI -594.0856 -932.5000 0 97812782.5 0.1532
TOPr MUDABlue -426.7505 -544.0000 0 96957040.5 0.1243
TOPr CLANDROIDInt -749.5034 -1393.0000 0 106958259.5 0.1878
TOPr CLANDROIDSens -737.8482 0.0000 0 93014599.5 0.2414
AV Gr CLANDROIDAPI -584.3896 -777.7333 0 93204770.5 0.1561
AV Gr MUDABlue -494.0487 -741.6250 0 92403260 0.1319
AV Gr CLANDROIDInt -857.6693 -606.4805 0 96283253.5 0.2400
AV Gr CLANDROIDSens -2365.6368 -2530.0000 0 122227310.0 0.5011

party libraries, the similarity rankings of Night Vision Cam were 4928 for CLANdroidAPI

and 6852 for MUDABlue. However, when excluding third-party libraries, these rankings

improved tremendously to 50 and 266 respectively, with the other attributes also reflecting

this change. Upon further investigation, we found that while LiveKey Camera contained

only app-specific code (i.e., no third-party libraries), Night Vision Cam utilized Google Ads.

We observed that Night Vision Cam had only 21 classes in its main package, whereas the

Google Ads library had 156 classes. This example demonstrates the large impact that

TPLs can have when detecting similar apps, particularly in cases such as this where the

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 68

Table 2.6: Number of obfuscated apps per category
Category #apps Category #apps
Arcade 49 Medical 0
Books and reference 30 Music and audio 67
Brain 108 News and magazines 33
Business 45 Personalization 191
Cards 42 Photography 79
Casual 115 Productivity 86
Comics 0 Racing 44
Communication 41 Shopping 9
Education 54 Social 8
Entertainment 68 Sports 28
Finance 57 Sports games 44
Health and fitness 4 Tools 149
Libraries and demo 5 Transportation 4
Lifestyle 42 Travel and local 8
Media and video 44 Weather 4

TPL "outweighs" the app-specific code due to size and amount of classes.

Table 2.7 summarizes the results of the comparison of TOPr and AV Gr when includ-

ing and excluding obfuscated apps. There are significant differences, but the magnitudes

of the differences are negligible, in most of the cases, according to the Cliff's delta. The

negligible values, in terms of effect size, could be explained by the fact that only 1,458 ob-

fuscated apps were identified in our dataset (Table 2.6 lists the distribution of obfuscated

apps per category).

In the case of AV Gr, the columns Diff(mean) and Diff(median) show an improvement

in the average rating of the goldset apps. This is not a surprising result because remov-

ing the obfuscated apps reduces the size of the dataset, and obfuscated apps ranked in

top positions are removed from the ranking list. Therefore, AV Gr results after remov-

ing obfuscated apps suggest that CLANdroid is able to find similar apps even including

obfuscated apps because API calls, sensors, user permissions, and Intents are part of

the Android SDK (i.e., their calls/declarations in Android apps can not be obfuscated).

There is an interesting example between the apps Flip Clock NicePink Widget 4x255 and

FlipClock NiceAll Pink Widget56. While at first glance these two apps appear extremely

similar except for a small graphical change, the latter app actually contains obfuscated
55https://play.google.com/store/apps/details?id=factory.widgets.FlipClockNicePink
56https://play.google.com/store/apps/details?id=factory.widgets.FlipClockNiceAllPink

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 69

code inside its main package. Furthermore, both of these apps contain the app Live Wall-

paper Clock Trial57 in their goldset. When examining how well this app ranks compared

to both the obfuscated and non-obfuscated app, the non-obfuscated one has this app at

ranking 9 for identifiers, while the former has the app ranked at position 65. Thus, we

see a direct observation of how obfuscation can impact the similarity rankings between

an obfuscated app and a non-obfuscated app when using identifiers.

However, the behavior of TOPr is different. The values in Table 2.5 for TOPr are pos-

itive, which means that the top ranked apps from the goldset, on average, lost positions

in the ranking list. This behavior is not evident when analyzing the AV Gr, and is opposite

to the improvement of AV Gr. Upon manual inspection of the apps, we found a possible

explanation for the case of TOPr when excluding obfuscated apps. For instance, in our

dataset we have four goldset apps for the Smart AppLock (App Protector)58 app. How-

ever, when we removed obfuscated apps there were only two goldset apps remaining as

the other two were marked as obfuscated apps. We noticed that in MUDABlue for Smart

AppLock, an obfuscated app (AppLock59) is ranked at the top position of 134, while the

next highest ranked goldset app known as App Lock (Smart App Protector)60 is at position

7220. However, after removing obfuscated apps from the dataset, App Lock (Smart App

Protector) becomes the top-ranked app with its position changing to 4460.

We noticed a similar case when detecting similar apps to Infinite Racing61. We found

four apps in our dataset which are in the goldset, and when we removed the obfuscated

apps we had two goldset apps remaining (thus there were two obfuscated apps and non-

obfuscated apps in the original goldset for this app). Similarly to the previous example, the

ranking of the two non-obfuscated apps improved after the removal of obfuscated apps.

However, the new ranking of the non-obfuscated apps is not as good as the obfuscated-

apps ranking.
57https://play.google.com/store/apps/details?id=sgolovanov.GSFlipClockWallpaperTrial
58https://play.google.com/store/apps/details?id=com.thinkyeah.smartlockfree
59https://play.google.com/store/apps/details?id=com.domobile.applock
60https://play.google.com/store/apps/details?id=com.sp.protector.free
61https://play.google.com/store/apps/details?id=com.Sailfish.InfinityRacing

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 70

Table 2.7: Differences between TOPr and AV Gr when excluding obfuscated apps. Negative
values in the Diff(mean) and Diff(median) columns shows that when excluding obfuscated apps
the rankings move in the direction of the top positions.
Var Approach Diff (mean) Diff (median) P-value Man-Whitney W-statistic Cliff's delta
TOPr CLANDROIDAPI 204.6992 261.0000 0.0000 67904601 -0.0589
TOPr MUDABlue 170.5645 161.5000 0.0000 67767769 -0.0542
TOPr CLANDROIDInt 15.4483 234.0000 0 68528932 -0.0043
TOPr CLANDROIDPerm 193.0679 131.0000 0.0000 66996707 -0.0565
TOPr CLANDROIDSens 123.8036 0.0000 0.0000 69275605.5 -0.0360
AV Gr CLANDROIDAPI -427.9498 -464.0333 0.0000 77995659 0.1246
AV Gr MUDABlue -316.2017 -319.2500 0.0000 75946584 0.0923
AV Gr CLANDROIDInt -884.3345 -1028.9881 0.0000 84753555.5 0.2462
AV Gr CLANDROIDPerm -240.3167 -116.7857 0.0000 73796354.5 0.0661
AV Gr CLANDROIDSens -370.2851 -229.2000 0.0000 76106276 0.0872

Summarizing, the results of our RQ3 show that the accuracy of CLANdroid is sig-

nificantly impacted by the inclusion of third-party libraries. Excluding third-party

libraries moved the average rankings (AV Gr) up by, on average, a minimum of

490 positions. We found that without including third-party libraries, each engine

improved both its top app rankings (TOPr) and average rankings significantly.

However, while we also found that there are differences in the rankings when

excluding apps we detected as obfuscated, the magnitudes of these differences

are negligible in most cases. We also found that while the average rankings im-

proved when we removed the obfuscated apps, the top rankings worsened due

to obfuscated apps occupying the top ranks.

2.4.6 Threats to Validity

In this section, we discuss threats to the validity of the experimental design for CLANdroid

and how we address and minimize these threats.

Internal Validity

Goldsets. It is important to note that similarity between applications in the goldsets for

CLANdroid are not symmetrical. Thus, if app B is found in the goldset for app A, this does

not mean that app A will be in the goldset for app B. Because we reduce the goldset so that

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 71

it only contains apps we have in our dataset (for practical reasons we cannot continuously

download goldset apps), this means that app B may have no apps in our dataset that are

also in its goldset. However, although app B may not have relevant goldset apps to be

ranked, we cannot discard app B from the dataset as any apps that have app B in their

dataset will then suffer, or even worse, remove the last app in their own goldset, thus

turning them into an "outlier" app like app B.

We also assume that the goldsets provided by Google Play are "perfect." That is, each

app listed as similar is most definitely similar. However, upon observation this may not be

the case. If one goes to the page for an app on Google Play, if the app is a popular app and

has many downloads, the apps listed similar are very likely to also be somewhat popular.

Yet, if one were to navigate to the page for a more obscure app (for instance C-Marbles 1

[falls]62), it appears that the similar apps are selected based on identifiers in the app's

name. So, just because an app in the goldset might have a low ranking in our similarity

scores, it may be because the apps above it are actually more similar and relevant.

Application Categories. Regarding our similarity rankings based on the category of

the app used as a query, we must remember that the similarity score is already affected

by the other apps in the dataset even if they are of a different category. That is, even if we

only rank apps that are of the same category as the app queried, due to the way TFIDF

is computed, the TDM for LSI is affected, and thus the similarity scores are changed.

However, if we decided to run LSI for each app only using the apps from each category,

we would have to run both the TDM Builder and LSI computations 155 times (five times

regardless of category for the different ranking methods, and 150 times for those five

times for each category).

Main Package Extraction. When we extracted the main package from the manifests

of each app in order to compute similarities between apps without including any infor-

mation from third-party libraries (TPLs), we found that some apps did not specify a main

package in their manifest. In these cases, we chose to use the name of the app's package
62https://play.google.com/store/apps/details?id=info.ryuojima.android.cfalls

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 72

as the main package, as the majority of the apps in our dataset followed this design. How-

ever, we also detected 649 apps that specified a main package in their manifest that did

not exist in the decompiled source code. For instance, the app Race, Stunt, Fight, Lite!63

has the package name ac.lite, thus the non-TPL information should be decompiled to

the /ac/lite/ directory, but this directory does not exist within this app.

We investigated this by examining the first activity to be launched in the manifest (the

first class to be executed), which we detected by searching for the Launcher Android in-

tent also within the manifest. For this app, we found that the first class to be executed was

com.unity3d.player.UnityPlayerProxyActivity. Unity3D64 is a game engine that can

be used to generate cross-platform apps, thus we know that this app used this game en-

gine to generate some of the code for this app. However, due to the use of a third-party

engine such as Unity3D, we are unable to distinguish parts of classes or even entire

classes that were created solely by the developers. Some of the other 649 apps use vari-

ous libraries and engines, such as MonoGame65 or even the developers own library used

for multiple apps. However, because these classes and code weren't written specifically

for a single app, we opted to exclude this code to prevent high similarities between apps

simply because they relied on the same library or engine. Thus, we were unable to extract

any information from the source code of these 649 apps due to the inability to distinguish

what code did and did not belong to a TPL because the specified main package did not

exist.

External Validity

ApplicationDataset. Althoughwe downloadedmany apps for our experiment, we cannot

guarantee these results to be the same for the entirety of Google Play. However, the apps

we downloaded covered all the domain categories, and thus we believe that this dataset
63https://play.google.com/store/apps/details?id=ac.lite
64https://unity3d.com/
65http://www.monogame.net/

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 73

Table 2.8: Recent studies of similar app detection, purpose of study, and information used in the
study. For platform we use M for mobile and D for desktop. The next column lists the number
of apps in the dataset, and the TPL column marks if the study considered the impact of third-
party libraries with a YES, NO, or NA (not applicable). Finally, the market category states where
the apps were acquired from- MM : multiple markets, NR : not reported, GP : Google Play, FB :
FreeBSD, SF : SourceForge, E: Eclipse Plugins.
Study Purpose Information Type Platform #apps TPL Market
Michail and Notkin [51] Detecting similar libraries Library source code D NA NA NR

Kawaguchi et al. [32] Automatic Categorization Source code identifiers D 41 NA SF

Crussell et al. [7] Detecting cloned and rebranded apps Java bytecode M >265K YES MM

Li et al. [35] Using similarities to address security File directories M >58K NO MM

Bajracharya et al. [2] Source code retrieval API calls from source D 346 NA E

Chen et al. [5] Detecting cloned apps to address security Methods from SMALI code M >150K YES MM

Cubranic et al. [76] Recommending Software Artifacts Issue-tracking D 1 NA E

Moritz et al. [58] API search engine API methods D 13K NA NR

Gorla et al. [21] Finding unadvertised behavior in apps API invocations from SMALI M >22K YES GP

Desnos et al. [12] Detection of similar apps Custom method signatures M 2 NO GP

Ye et al. [77] Context-aware Browsing Component repository D NR NA NR

McMillan et al. [48, 47, 49] Finding relevant functions Function call graph D > 18K NA FB

Thung et al. [74] Detecting similar applications Collaborative tagging D >100K NA SF

is a sufficient representative of Google Play.

2.5 Related Work

Several recent papers have used various methods in an attempt to accurately detect simi-

lar software and Android applications. The motivations for this have varied from detecting

clones to prevent the plagiarism of app developers, to finding apps injected with malware.

Other recent papers have utilized different techniques to creating helpful code source

search engines. Table 2.8 summarizes related work which we describe in the following

paragraphs.

Michail and Notkin [51] presented the tool CodeWeb, which is an automated approach

for comparing and contrasting software libraries based on matching similar classes and

functions cross libraries (via name and similarity matching). This work was inspirational for

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 74

us in extending the relevance framework with semantic anchors. In contrast to CodeWeb,

CLANdroid also uses advanced dimensionality reduction techniques based on LSI and

SVD and computes similarities among applications in the context of the complete software

repository. Kawaguchi et al. [32] created MUDABlue, which is also closely related to both

CLANdroid and CodeWeb. MUDABlue is the closest competitor to CLANdroid, and as

mentioned in Section 2.2.3, uses syntagmatic associations in order to compute similarities

between applications.

Bajracharya et al. [2] developed a technique known as Structural Semantic Indexing

(SSI), which was used to retrieve API usage examples from source code repositories.

SSI was designed to be an effective retrieval scheme which used no documents other

than source code. Bajracharya et al. measured three different forms of usage-based

similarity: term frequency-inverse document frequency (TF-IDF) and two measurements

which used feature vectors - Hamming Distance and Tanimoto Coefficient. Finally, the

authors presented a technique to dynamically generate API usage snippets to provide

helpful information to developers. CLAN and CLANdroid are different from SSI for three

reasons: 1) CLAN/CLANdroid locate the applications similar to a given application, and

does not require a natural-language query, 2) CLAN/CLANdroid are independent of the

keywords chosen in the code, and 3) CLAN/CLANdroid have been evaluated using a stan-

dard methodology with programmers against a state-of-the-art approach (MUDABlue).

Crussell et al. [7] created the tool AnDarwin, which is a scalable approach for detect-

ing similar Android apps using semantic information. AnDarwin uses the methods of an

app to create a semantic block, and then creates a semantic vector to represent each of

these semantic blocks. If two semantic blocks are code clones, then the semantic vectors

representing these blocks will be similar. AnDarwin uses multiple techniques to attain its

efficiency, such as Locality Sensitive Hashing (which allows the efficient detection of ap-

proximate near-neighbors in large quantities of vectors) and grouping the vectors based

on their magnitudes (which improves scalability). AnDarwin was able to detect almost

4.3K apps cloned out of over 265K apps in their dataset, which was acquired through

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 75

downloading apps from multiple markets along with the official Google Play market.

Cubranic et al. [76] designed the tool Hipikat that forms an implicit memory from

the information stored in a project's archives, and then recommends artifacts from the

archives that are relevant to the task that the developer is trying to perform. Hipikat is

formed from two parts: the first being the groupmemory, and the second being the artifacts

presented to the developer. There are four types of artifacts represented in the implicit

group memory: bug and feature descriptions, source file revisions, messages posted on

forums (e.g., mailing lists), and other project documents. Thus, Hipikat implements three

distinct functions: identifying artifacts as they are added to a project's history, selecting

relevant artifacts in response to a query, and updating the implicit group memory to reflect

additions and changes to the project's archives.

Another similar paper is by Ye et al. [77] which proposes the software agent Code-

Broker. CodeBroker is designed to automatically locate and present a list of software

components that could be potentially useful for a developer during the current develop-

ment situation. CodeBroker consists of three subsystems: the Listener, the Fetcher, and

the Presenter. The Listener is constantly running and formulates queries by monitoring

the activities of the software developer. The Fetcher finds and retrieves matching compo-

nents from these queries. Finally, the Presenter displays the retrieved components that

it deems related based on the background knowledge of the targeted developer. The

components are retrieved from a large component repository. Thus, the authors present

the idea of context-aware browsing to help present a list of contextualized components to

developers without requiring direct operations from them.

Li et al. [35] created the tool DStruct, which is used to determine similarity among

Android apps by utilizing the directory structures of the apps' archive formats. After ex-

tracting the APK, DStruct walks through the directories and files of the app to construct

a tree which represents the directory structure. In this tree, the leaves represent files

and non-leaves are directories. Note that this tree isn't walking through the decompiled

source code and files, but instead just the extracted APK - which includes files such as

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 76

AndroidManifest.xml, classes.dex, and the META-INF directory. Li computes the per-

cent difference between two trees to represent the similarity between two applications.

Thus, the smaller the percent difference the more similar the apps are based on their

directory structures. DStruct was used to find 3 instances of piracy and 9 instances of

known malware from a dataset of 58,000 applications downloaded from Google Play and

the Anzhi market66.

Chen et al. [5] used a characteristic of geometry known as a centroid to achieve both

accuracy and scalability in the detection of cloned apps. This centroid is created from

dependency graphs and is used to measure the similarity between methods of two apps.

However, these similarity measures are used to draw a boolean value conclusion on the

app's core functionality cloning. That is, either two apps aremarked to be clones or are not

clones, which prevents partial similarity detection. Chen et al. evaluated their approach

across mutliple different Android markets, but did not use Google Play.

Mortiz et al. [58] created the interactive code search tool ExPort. ExPort allows a user

to select API methods as queries, to which the search engine will return usage examples

related to the task. The authors use Relational Topic Modeling to compute similarities

between APIs. Thus, when the user selects an API relevant to his or her task, the relevant

APIs are shown in a call graph, and the call graph displays other functions that call the

APIs. The user may then select functions from this call graph to further investigate API

usage examples. ExPort used 13K open source Java systems in its dataset, and future

work will include a user study to evaluate how effective the tool is.

Gorla et al. [21] created CHABADA, which is a tool that aims to accurately detect if

an app does what it claims to do. Topic modeling using Latent Dirichlet Allocation is used

on the descriptions of over 32K apps. The K-means algorithm is used to cluster the apps

and thus provide the authors with the ability to identify groups of applications with similar

descriptions. Once the apps are clustered based on the similarity of their description

topics, the APIs for each app are extracted from the APK. The authors then choose to
66http://www.anzhi.com/

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 77

select a subset of sensitive APIs which are governed by an Android permission setting.

Finally, the CHABADA uses a support vector machine to identify API outliers.

Desnos [12] used method signatures to detect similar Android apps, where the signa-

tures were composed of string literals, API calls, control flow structures, and exceptions.

However, this approach was only applied to two apps, so it is unknown if the approach

would work for a larger dataset. Thung et al. [74] used an approach based on CLAN to de-

tect similar software applications, but instead of using API calls the authors used the tags

for applications in SourceForge67. However, this requires applications to be tagged prop-

erly, and thus applications without tags or tagged improperly will be tough to find similar

applications for. Nonetheless, this approach could be used on the descriptions of apps in

Google Play, and even potentially combine similarity rankings between descriptions and

other attributes for measurements (such as APIs or identifiers).

McMillan et al. [48, 47, 49] created a code search system known as Portfolio, which

is designed to assist programmers in finding definitions of functions. Portfolio uses the

idea of a call graph, with functions as nodes and the directed edges which specify usages

of these functions. By combining natural language processing and indexing techniques

with a modified PageRank algorithm as well as a modified spreading activation network,

Portfolio is able to assist programmers in the reusing of retrieved code as functional ab-

stractions.

2.6 Summary

We created a search system for finding closely related Android applications (CLANdroid)

that helps users find similar or related mobile apps. Our main contribution is an expansion

upon the novel approach of CLAN by using features unique to Android applications as se-

mantic anchors, and computing similarity scores between these Android applications. We

extracted similar apps for our dataset from Google Play and performed two measures of
67http://sourceforge.net/

CHAPTER 2. DETECTING SIMILAR ANDROID APPLICATIONS 78

effectiveness on each of five different attributes. We also conducted a survey of 20 users

who ranked the similarity of returned apps of different sets. The results show that when

using a dataset that spans all domain categories in Google Play, identifiers are the most

effective attribute at ranking apps in the goldset provided by Google Play. The survey

results show that while Google Play suggests more similar apps than when compared

to CLANdroid and other engines, the engine using identifiers (MUDABlue) outperforms

CLANdroid. This is likely due to the fact that while Android apps have differing func-

tionality, they all must perform certain similar actions such as drawing on the screen or

displaying text to the user, and these things are all part of the Android SDK which there-

fore makes identifiers more prominent. In the certain cases where the app returned by

CLANdroidAPI is the most similar or ranked the best, it is likely that the both the app

queried and returned utilize a rare API call.

Chapter 3

Conclusion

In conclusion, this thesis is composed of two major studies: the first being an examination

of the impact of third-party libraries and obfuscated apps on the detection of class reuse

and class cloning, and the second being a search engine which utilizes an Android mobile

application as a query in order to return similar mobile Android applications. Thus, we

have studied and enabled reuse in Android mobile applications.

In Chapter 1, we challenged the validity of previous empirical studies that have ana-

lyzed various factors within a dataset built of Android applications. We analyzed these

threats to validity by investigating the impact of both third-party libraries and code obfus-

cation practices when estimating the amount of reuse by class cloning. We found statisti-

cally signifianct results that the inclusion and exclusion of third-party libraries impacts the

amount of class cloning detected, and also found that the inclusion and exclusion of ob-

fuscated apps impacts the amount of class cloning and can introduce false positives into

the cloned signatures detection. Finally, we provided two actionable guidelines for future

researchers: the first being that researchers should expect the amount of clone detection

to be inflated if third-party libraries are included in the dataset, and the second being that

researchers should expect the amount of clone detection to be inflated if obfuscated apps

are included in the dataset.

In Chapter 2, we created CLANdroid, an extension to the approach known as CLAN,

79

CHAPTER 3. CONCLUSION 80

in which we used various different attributes related to Android applications in order to

detect similar apps. We considered API calls, Android intents, permissions declared, and

sensors usage as semantic anchors, and compared the results of these search engine to

MUDABlue - a competitive approach that uses identifiers instead of semantic anchors to

detect similar applications. We evaluated CLANdroid using both goldsets obtained from

Google Play and a conducted survey with 20 users. We found that while Google Play

returned more apps that were deemed similar to users than the other search engines,

MUDABlue consistently outperformed the CLANdroid engine which used APIs in the

survey. We also found that MUDABlue consistently had higher rankings for the apps in

the goldset as opposed to any of the CLANdroid engines which used semantic anchors.

We recognize that this likely occurs because of the Android programming model - all apps

must perform actions like displaying text to the user and drawing on the screen. As these

actions are all part of the Android SDK, we recognize that identifiers then become more

prominent when detecting similar Android applications.

Bibliography

[1] Nicolas Anquetil and Timothy C. Lethbridge. Assessing the relevance of identifier

names in a legacy software system. In CASCON, page 4, 1998.

[2] Sushil K. Bajracharya, Joel Ossher, and Cristina V. Lopes. Leveraging usage simi-

larity for effective retrieval of examples in code repositories. In FSE, pages 157--166,

2010.

[3] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Program under-

standing and the concept assigment problem. Commun. ACM, 37(5):72--82, 1994.

[4] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. Sniff: A search engine

using free-form queries. In FASE, pages 385--400, 2009.

[5] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scalability simul-

taneously in detecting application clones on android markets. In ICSE'14, 2014.

[6] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscat-

ing transformations. Technical Report 148, Department of Computer Science, The

University of Auckland, 1997.

[7] Jonathan Crussell, Clint Gibler, and Hao Chen. Scalable semantics-based detection

of similar android applications. In ESORICS'13, 2013.

81

BIBLIOGRAPHY 82

[8] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle. Software bertillonage de-

termining the provenance of software development artifacts. Empirical Software En-

gineering, 2012.

[9] J. Davies, D. M. German, M. W. Godfrey, and A. J. Hindle. Software bertillonage:

Finding the provenance of an entity. In MSR'11, 2011.

[10] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,

and Richard A. Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391-

-407, 1990.

[11] Uri Dekel and James D. Herbsleb. Improving api documentation usability with knowl-

edge pushing. In ICSE, 2009.

[12] A. Desnos. Android : Static analysis using similarity distance. In 45th Hawaii Inter-

national Conference on System Sciences, pages 5394--5403, 2012.

[13] Sheskin D.J. Handbook of Parametric and Nonparametric Statistical Procedures.

Chapman & All, 2007.

[14] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Du-

mais. The vocabulary problem in human-system communication. Commun. ACM,

30(11):964--971, 1987.

[15] Mark Gabel and Zhendong Su. A study of the uniqueness of source code. In Pro-

ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations

of software engineering, FSE '10, pages 147--156, New York, NY, USA, 2010. ACM.

[16] Google. Building and running, available at http://developer.android.com/tools/

building/index.html.

[17] Google. Intent api reference guide, available at http://developer.android.com/

reference/android/content/Intent.html.

BIBLIOGRAPHY 83

[18] Google. Security and design, available at http://developer.android.com/

google/play/billing/billing_best_practices.html.

[19] Google. Sensors overview, available at http://developer.android.com/guide/

topics/sensors/sensors_overview.html.

[20] Google. System permissions, available at http://developer.android.com/guide/

topics/security/permissions.html.

[21] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking app

behavior against app descriptions. In ICSE'14, 2014.

[22] Mark Grechanik, Kevin M. Conroy, and Katharina Probst. Finding relevant applica-

tions for prototyping. In MSR, page 12, 2007.

[23] Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshyvanyk, and Chad

Cumby. Exemplar: Executable examples archive. In Proc. of 32nd ACM/IEEE Inter-

national Conference on Software Engineering (ICSE'10), pages 259--262, 2010.

[24] Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshyvanyk, and

Chad M. Cumby. A search engine for finding highly relevant applications. In ICSE

(1), pages 475--484, 2010.

[25] R.J. Grissom and J.J. Kim. Effect sizes for research: Univariate and multivariate

applications. Taylor & Francis, New York, NY, 2012.

[26] Mark. Harman, Yue. Jia, and Yuanyuan Zhang. App store mining and analysis: Msr

for app stores. In MSR'12, pages 108--112, 2012.

[27] James Howison and Kevin Crowston. The perils and pitfalls of mining Sourceforge.

In MSR, 2004.

[28] X. Hu, Z. Cai, A. C. Graesser, and M. Ventura. Similarity between semantic spaces.

In CogSci'05, 2005.

BIBLIOGRAPHY 84

[29] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineering.

SpringerVerlag, 2004.

[30] Capers Jones. Applied software measurement: assuring productivity and quality.

McGraw-Hill, Inc., 3rd edition, 2008.

[31] S. Kawaguchi, P. Garg, M. Matsushita, and K. Inoue. MUDABlue: An automatic

categorization system for open source repositories. International Journal of Systems

and Software, 79(7):939--953, 2006.

[32] Shinji Kawaguchi, Pankaj K. Garg, Makoto Matsushita, and Katsuro Inoue. Mud-

ablue: an automatic categorization system for open source repositories. J. Syst.

Softw., 79(7):939--953, 2006.

[33] Kostas Kontogiannis. Program representation and behavioural matching for localiz-

ing similar code fragments. In CASCON '93, pages 194--205. IBM Press, 1993.

[34] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131--183, 1992.

[35] Saung Li, Steve Hanna, Ling Huang, Edward Wu, Charles Chen, and Dawn Song.

Juxtapp and dstruct: Detection of similarity among android applications. Technical

Report UCB/EECS-2012-111, Department of Computer Science, The University of

Auckland, 2012.

[36] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano Di

Penta, Rocco Oliveto, and Denys Poshyvanyk. Api change and fault proneness: A

threat to the success of android apps. In ESEC/FSE'13, pages 477--487, 2013.

[37] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto,

Massimiliano Di Penta, and Denys Poshyvanyk. Revisiting android reuse studies in

the context of code obfuscation and library usages. In 11th IEEEWorking Conference

on Mining Software Repositories (MSR'14), page to appear, 2014.

BIBLIOGRAPHY 85

[38] Mario Linares-Vásquez, Collin McMillan, and Denys Poshyvanyk. On using machine

learning to automatically classify software applications into domain categories. Em-

pirical Software Engineering (EMSE), 2012.

[39] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: Detection of software

plagiarism by program dependence graph analysis. In KDD'06, pages 872--881.

ACM Press, 2006.

[40] Wei Liu, Ke-Qing He, Jiang Wang, and Rong Peng. Heavyweight semantic in-

ducement for requirement elicitation and analysis. Semantics, Knowledge and Grid,

0:206--211, 2007.

[41] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of api stability

and adoption in the android ecosystem. In ICSM'13, 2013.

[42] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and B. Mobasher. Rec-

ommending source code for use in rapid software prototypes. In 34th IEEE/ACM

International Conference on Software Engineering (ICSE'12), pages 848--858, 2012.

[43] C. McMillan, M. Linares-Vásquez, D. Poshyvanyk, and M. Grechanik. Categorizing

software applications for maintenance. In ICSM'11, pages 343--352, 2011.

[44] Collin McMillan. Searching, Selecting, and Synthesizing Source Code Components.

Doctoral dissertation, 2012.

[45] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. Detecting similar software

applications. In ICSE'12, pages 364--374, 2012.

[46] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie. Ex-

emplar: A source code search engine for finding highly relevant applications. IEEE

Transactions on Software Engineering (TSE), 38(5):1069--1087, 2012.

[47] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.

Portfolio: A search engine for finding functions and their usages. In Proc. of

BIBLIOGRAPHY 86

33rd IEEE/ACM International Conference on Software Engineering (ICSE'11), pages

1043--1045, 2011.

[48] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. Port-

folio: Finding relevant functions and their usages. In ICSE'11, 2011.

[49] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.

Searching for relevant functions and their usages in millions of lines of code. ACM

Transactions on Software Engineering and Methodology (TOSEM), 22(4), 2013.

[50] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. Recommending source

code examples via api call usages and documentation. In Proc. of 2nd ICSE2010

International Workshop on Recommendation Systems for Software Engineering

(RSSE'10), 2010.

[51] Amir Michail and David Notkin. Assessing software libraries by browsing similar

classes, functions and relationships. In ICSE '99, pages 463--472, New York, NY,

USA, 1999. ACM.

[52] Roberto Minelli. Software Analytics for Mobile Applications. Master's thesis, 2012.

[53] Roberto Minelli and Michelle Lanza. Software analytics for mobile applications: In-

sights and lessons learned. In CSMR, 2013.

[54] Stefano Mizzaro. Relevance: The whole history. JASIS, 48(9):810--832, 1997.

[55] Stefano Mizzaro. How many relevances in information retrieval? Interacting with

Computers, 10(3):303--320, 1998.

[56] Israel Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst, Thorsten Berger,

and Ahmed Hassan. A large scale empirical study on software reuse in mobile apps.

IEEE Software Special Issue on Next Generation Mobile Computing, 2013.

BIBLIOGRAPHY 87

[57] I.J. Mojica Ruiz, M. Nagappan, B. Adams, and A.E. Hassan. Understanding reuse

in the Android market. In ICPC'12, pages 113--122, 2012.

[58] Evan Moritz, Mario Linares-Vaśquez, Denys Poshyvanyk, Mark Grechanik, Collin

McMillan, and Malcom Gethers. Export: Detecting and visualizing api usages in

large source code repositories. In ASE'13, 2013.

[59] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Diversity in soft-

ware engineering research. In ESEC/FSE'13. ACM, August 2013.

[60] D. Poshyvanyk and D. Marcus. Combining formal concept analysis with information

retrieval for concept location in source code. In Proc. of 15th IEEE ICPC, pages

37--48, Banff, Alberta, Canada, 2007. IEEE CS Press.

[61] Denys Poshyvanyk and Mark Grechanik. Creating and evolving software by search-

ing, selecting and synthesizing relevant source code. In Proceedings of the 31st

IEEE/ACM International Conference on Software Engineering (ICSE 2009), pages

283--286, 2009.

[62] Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus, Giuliano Antoniol, and

Václav Rajlich. Feature location using probabilistic ranking of methods based on

execution scenarios and information retrieval. IEEE Trans. Software Eng., 33(6):420-

-432, 2007.

[63] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Di-

mensionality (Wiley Series in Probability and Statistics). Wiley-Interscience, 2007.

[64] Reinhard Rapp. The computation of word associations: comparing syntagmatic and

paradigmatic approaches. In 19th ICCL, pages 1--7, Morristown, NJ, USA, 2002.

[65] Tobias Sager, Abraham Bernstein, Martin Pinzger, and Christoph Kiefer. Detecting

similar java classes using tree algorithms. In MSR '06, pages 65--71, New York, NY,

USA, 2006. ACM.

BIBLIOGRAPHY 88

[66] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, Inc., 1986.

[67] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, and P.G. Bringas. On the auto-

matic categorization of Android applications. In CCNC, pages 149--153, 2012.

[68] David Schuler, Valentin Dallmeier, and Christian Lindig. A dynamic birthmark for

java. In ASE '07, pages 274--283.

[69] S. Schulze and D. Meyer. On the robustness of clone detection to code obfuscation.

In IWSC, pages 62--68, 2013.

[70] A. Shabtai, Y. Fledel, and Y. Elovici. Automated static code analysis for classifying

Android applications using machine learning. In CIS, pages 329--333, 2010.

[71] Jeffrey Stylos and Brad A. Myers. A web-search tool for finding API components and

examples. In IEEE Symposium on VL and HCC, pages 195--202, 2006.

[72] D.M. Syer, B. Adams, Y. Zou, and A.E. Hassan. Exploring the development of micro-

apps: A case study on the blackberry and android platforms. In SCAM'11, pages

55--64, 2011.

[73] Mark Syer, Meiyappan Nagappan, Bram Adams, and Ahmed Hassan. Revisiting

prior empirical findings for mobile apps: An empirical case study on the 15 most

popular open-source android apps. In CASCON 2013, 2013.

[74] Ferdian Thung, David Lo, and Lingxiao Jiang. Detecting similar applications with

collaborative tagging. In ICSM'12, 2012.

[75] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

[76] Davor Čubranić and Gail C. Murphy. Hipikat: recommending pertinent software de-

velopment artifacts. In ICSE '03, pages 408--418, 2003.

BIBLIOGRAPHY 89

[77] Yunwen Ye and Gerhard Fischer. Supporting reuse by delivering task-relevant and

personalized information. In ICSE '02, pages 513--523, New York, NY, USA, 2002.

ACM.

