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ABSTRACT

Mobile devices such as smartphones and tablets have become ubiquitous in today’s
computing landscape. These devices have ushered in entirely new populations of
users, and mobile operating systems are now outpacing more traditional “desktop”
systems in terms of market share. The applications that run on these mobile
devices (often referred to as “apps”) have become a primary means of computing
for millions of users and, as such, have garnered immense developer interest. These
apps allow for unique, personal software experiences through touch-based UIs and
a complex assortment of sensors. However, designing and implementing high
quality mobile apps can be a difficult process. This is primarily due to challenges
unique to mobile development including change-prone APIs and platform
fragmentation, just to name a few.

In this dissertation we develop techniques that aid developers in overcoming these
challenges by automating and improving current software design and testing
practices for mobile apps. More specifically, we first introduce a technique, called
Gvt, that improves the quality of graphical user interfaces (GUIs) for mobile apps
by automatically detecting instances where a GUI was not implemented to its
intended specifications. Gvt does this by constructing hierarchal models of mobile
GUIs from metadata associated with both graphical mock-ups (i.e., created by
designers using photo-editing software) and running instances of the GUI from the
corresponding implementation. Second, we develop an approach that completely
automates prototyping of GUIs for mobile apps. This approach, called ReDraw, is
able to transform an image of a mobile app GUI into runnable code by detecting
discrete GUI-components using computer vision techniques, classifying these
components into proper functional categories (e.g., button, dropdown menu) using
a Convolutional Neural Network (CNN), and assembling these components into
realistic code. Finally, we design a novel approach for automated testing of mobile
apps, called CrashScope, that explores a given Android app using systematic input
generation with the intrinsic goal of triggering crashes. The GUI-based input
generation engine is driven by a combination of static and dynamic analyses that
create a model of an app’s GUI and targets common, empirically derived root
causes of crashes in Android apps.

We illustrate that the techniques presented in this dissertation represent significant
advancements in mobile development processes through a series of empirical
investigations, user studies, and industrial case studies that demonstrate the
effectiveness of these approaches and the benefit they provide developers.
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Chapter 1

Introduction

1.1 Overview

“The essence of a software entity is a construct of interlocking concepts: data
sets, relationships among data items, algorithms, and invocations of functions.
This essence is abstract in that such a conceptual construct is the same un-
der many different representations. It is nonetheless highly precise and richly
detailed. I believe the hard part of building software to be the specification, de-
sign, and testing of this conceptual construct, not the labor of representing it
and testing the fidelity of the representation.”

– Fredrick Brooks, No Silver Bullet – Essence and Accident in Software Engineering (1986)

Software developers inherently reason about different abstractions of ideas. In fact, the

foundations of computer science more broadly are centered upon a hierarchy of abstrac-

tions (Fig. 1.1). This hierarchy begins at the lowest level with the physical representation

of computers as a complex assortment of electrical signals, moves toward representations

of ideas in code that are able to carry out logical processes, and culminates at the highest

level in mental models of programs for solving problems. Thus it can be observed that, at

its core, computer science is largely concerned with the interplay between the various levels

of this abstraction hierarchy. In his widely regarded “No Silver Bullet” essay [133] Fredrick

Brooks acknowledges two most common abstractions from this hierarchy that modern soft-

ware engineers must reason between: (i) conceptual constructs (i.e., mental models of a

2
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Conceptual Constructs of Programs

High-Level Programming
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Processor
Electrical
Signals

Figure 1.1: The Hierarchy of Abstraction in Computer Science

given software program), and (ii) representations of these conceptual constructs (i.e., their

concrete instantiation in a medium such as code). Brooks argues that the most critical

part of the software development process is the conceptualization of interlocking constructs

that inherently constitute a piece of software, not the transferral of these concepts into

a concrete representation in code. Although translating abstract mental models into a

tangible artifact like code is not a trivial process, Brooks recognized that the mental for-

mulation of what needs to be built is the most crucial step, as it is a distinctly abstract

process requiring intellectual acuity. This is logically evident, as a faithful instantiation of

ineffective ideas in code inevitably results in an unsuccessful program. This conceptualiza-

tion of the mental model of a program is ultimately what Brooks refers to as the essence

of software engineering.

With this view of the software development process in mind, there are evidently two

major courses of research for improving engineering practices. Namely, conducting studies

to understand, and designing techniques to aid and automate: (i) the derivation of a con-

ceptual model embodying the requirements, specifications, and design of a software system,

or (ii) the process of translating this conceptual model into a concrete representation that

can be understood, executed, and maintained by both humans and computers. However,

directly addressing this first course of research is exceedingly difficult, as it attempts to

directly operate upon the essence of software engineering. As Brooks argues, due to the

widely variable nature of software projects and the distinctly unique thought processes

of humans, there is unlikely a “silver bullet” that dramatically improves the process of

conceptualizing software.

3



Humans are likely to play a major role in the process of software development for the

foreseeable future, and as such the process of developing conceptual constructs of software

is likely to persist. Methods for reasoning about software at a conceptual level tend to

assume a multitude of different forms across varying development domains and teams,

and require an high level of ingenuity inherent in most skilled software engineers. Thus, as

Brooks suggests, it is difficult to develop any singular notable advancement that aids in this

conceptualization process. If this is the case, then how can software engineering researchers

help to push the field forward? In this dissertation, we posit that helping to make the in-

stantiation of conceptual software constructs as frictionless as possible can dramatically

improve the overall development process. The quicker and easier it is for an engineer to

move from concept to code, the faster that ideas can be proved out, and judgements made

about conceived programs, which we assert will lead to more effective and efficient cre-

ation and maintenance of software. In fact, this direction of work directly targets Brook’s

prescriptions for dealing with the difficulties that arise related to the essence of software

engineering namely, rapid prototyping and iteration and growing software organically [133].

The work presented in this dissertation attempts to facilitate the process of instan-

tiating conceptual software development concepts into accurate, effective representations

through automation. The hope is that by automating different parts of the software de-

sign, development and testing processes, we will be able to allow developers to focus more

effectively on the important task of conceptualizing the data, algorithms and functions

that underlie the problem or task to which the software will be applied; thus facilitating

the rapid iteration and organic evolution of intuitive, elegant programs.

1.2 Motivation - Language Dichotomies in Software

Engineering

As explained in the previous section, the work conducted in the presented dissertation

is aimed at designing techniques to automate various parts of the software development
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process. This automation is meant to facilitate the instantiation of conceptual constructs

of software into concrete representations. However, these concepts can be concretely rep-

resented in several different manners, such as code, natural language, or in graphical user

interfaces (GUIs). In this section, we further motivate the work conducted by examining

development challenges that surface as a result of the interplay between different represen-

tations of software.

When examining the current challenges that exist in software development, mainte-

nance, and testing one can observe a common trend throughout, contributing to a myriad

of interconnected difficulties related to instantiating mental models of software into various

functional representations. Incidentally, this thread stems from the hierarchy of abstrac-

tion discussed at the outset of this paper. In their text “Foundations of Computer Science"

Aho and Ullman state that “fundamentally, computer science is a science of abstraction –

creating the right model for thinking about a problem and devising the appropriate mecha-

nizable techniques to solve it." One could argue that software engineering is fundamentally

centered upon effectively navigating various levels of an abstraction hierarchy, more specif-

ically, the jump in abstraction between mental models and code. There is an inherent cost

in reasoning between different levels of abstraction, generally measured in time and mental

effort. In turn, the mental labor of such reasoning underlies many of the unique challenges

experienced by today’s developers.

However, it is not only effort in reasoning between levels of abstraction that can be

difficult, but also between representations of the same abstraction level. Namely, foun-

dational abstractions between languages that instantiate mental models of software can

prove to be particularly troublesome. Here when we refer to the notion of a language we

are not targeting programming languages specifically, but rather the broader definition of

language as a medium by which an idea or information is conveyed [222]. In this sense,

there are several different languages, or modalities, of information that developers must

navigate during the software development process, including natural language and code,

just to name a few. In essence, the bridging of the knowledge gap between these informa-
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tion modalities constitutes a set of principal challenges related to program comprehension

in software development.

Specific challenges in software engineering often stem from difficulties navigating dif-

ferent pairs of languages. For instance, when considering challenges related to software

traceability, developers must reason between program representations related to natural

language and code, interpreting how concepts and functional specifications dictated in

natural language are dispersed throughout a codebase. When designing the graphical user

interface of program, designers and developers must reason between the modalities of code

and pixel-based image representations of the app via the graphical user interface. These

pairs of contrasting information modalities have been labeled as language dichotomies [222].

Developing solutions to help developers more effectively reason between various language

dichotomies is a key factor in helping to overcome many program comprehensions chal-

lenges.

More specifically, a language dichotomy can be defined as a difficulty in program com-

prehension resulting from reasoning about different representations or modalities of in-

formation that describe a program [222]. There are several language dichotomies that

contribute to a varied set of problems. In the presented dissertation we focus on three

different modalities of information:

1. Natural Language: This modality represents languages that humans typically use

to convey ideas or information to one another, such as English.

2. Code: This modality represents the languages that humans utilize to construct a

program, such as Java or Swift.

3. Visual Software Artifacts (GUIs): Much of today’s user facing software is

graphical. This information modality is highly visual, consisting of pixel-based rep-

resentations of a program typically comprised of a logical set of building blocks often

referred to as GUI-widgets or GUI-components.
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Each of the representations described above have their own powerful uses, often serving

to represent a program according to certain goals. For example, a GUI is an extremely

powerful representation of program code that allows a user to carry out computing tasks,

abstracting away the complexity of the underlying algorithms. However, for a developer,

it is often critical to effectively understand and navigate how information represented in

one modality translates to another. This is, at its core, a program comprehension task.

For instance, a developer must reason about how different parts of the GUI correspond to

different sections of code in a mobile app. However, bridging this gap between representa-

tions can be an arduous task, and thus underlies many open problems in mobile software

development.

We assert that these language dichotomies can be effectively bridged through automa-

tion, thus helping to overcome several resulting software development problems. More

specifically, by building upon techniques related to program analysis, machine learning,

and computer vision, techniques can be derived to help automatically translate informa-

tion across modalities, or detect anomalies between corresponding program representations

in a single modality.

1.3 Research Context: Mobile Applications

In order to devise new approaches that automate the various components of the software

development lifecycle, we need a suitable domain within which we can instantiate and eval-

uate them. In the scope of this dissertation, we focus our efforts on mobile applications.

Mobile applications, often referred to colloquially as “apps”, are quite simply software ap-

plications that run on mobile hardware such as smartphones or tablets. Choosing mobile

applications as our research domain is beneficial for at least the following three reasons:

(i) there are open challenges unique to the software development process for mobile apps,

providing a fertile research landscape, (ii) mobile apps, and by extension mobile app de-

velopment, are extremely popular, giving our work a large potential for practical impact,
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and (iii) mobile platforms provide a wide array of frameworks and utilities that facilitate

varying types of program analysis. Background regarding mobile apps and mobile app de-

velopment are detailed in Chapter 2. It should be noted that the work carried out in this

dissertation is instantiated for the Android platform, mainly due to its open source nature

and the litany of supporting tools and frameworks surrounding the platform. However,

there are no substantial technical barriers that prevent the techniques presented in this

dissertation from being transferred to other platforms.

1.4 Contributions & Outline

The core thesis of this dissertation is as follows:

Automating the process of instantiating and reasoning about the representation
of conceptual software constructs in code, natural language, and visualizations
allows for more effective software development by enabling rapid prototyping,
swift iteration, and organic growth as abstract concepts evolve.

To investigate this thesis, we develop and empirically evaluate models and approaches

that aid in automating the design, implementation, and testing of mobile applications. In

particular, these approaches focus on automating (i) the verification of visual GUI prop-

erties for mobile app user interfaces, (ii) the construction of the code for mobile app GUIs

given a target mock-up, and (iii) GUI-based functional testing of mobile apps. The intel-

lectual merit of work presented in this dissertation lies in two interconnected contributions.

First, we derive and illustrate how to construct a set of novel models for representing vari-

ous attributes of mobile apps using information extracted via program analysis techniques.

Second, we demonstrate that these models and the underlying encoded information can be

utilized, both directly and in combination with machine learning techniques, to make the

development and testing process for mobile apps more effective and efficient. The work

conducted in this dissertation was of a collaborative nature and a summary of individual

research contributions for each of the presented projects can be found in Appendix A.

8



In Chapter 2 we provide background related to mobile software development practices,

and mobile graphical user interfaces. We also discuss related work related to (i) detecting

design violations in mobile apps, (ii) automatically prototyping mobile application GUIs,

and (iii) automated GUI-based testing of mobile apps.

In Chapter 3 we develop a new technique for detecting and reporting instances where

the GUI of a mobile application does not adhere to its intended design specifications as

stipulated in a mock-up. This technique receives as input two images with accompanying

metadata, one for the mock-up and one screenshot of the implemented GUI, and generates

a detailed report stipulating instances where the specifications of the mock-up were not

properly implemented. Our approach generates a hierarchal models of the mock-up and

implementation of a particular screen of an application’s GUI and relates this model to the

pixel-based images using coordinates. It then applies a computer vision technique called

perceptual image differencing (PID) modeled after the human visual system to measure

differences in images, and categorizes image differences according to an empirically derived

taxonomy of GUI implementation errors. The content of this chapter is based primarily

on the paper describing the Gvt approach [224].

In Chapter 4 we devise a technique to automate the process of translating an image-

based mock-up of a mobile application’s GUI into suitable code. Our approach decomposes

this translation process into three major steps: (i) detection of GUI elements, (ii) clas-

sification of these GUI elements into domain-specific, programmatic categories, and (iii)

the construction and assembly of these categorized GUI elements into hierarchical code

representation. Techniques from computer vision are utilized to detect GUI elements in

image-based representations of GUIs. A deep convolutional neural network (CNN) trained

on an automatically derived ground truth from tens of thousands applications screens

is utilized to generate a model that is capable of accurately classify GUI elements into

programmatic categories. Finally, we develop a data-driven k-nearest neighbors (KNN)

algorithm for constructing realistic hierarchical representations of an app’s GUI before

translating this representation into code. The content of this chapter is based primar-
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ily on work describing the ReDraw approach [220] for automatically prototyping mobile

application GUIs.

In Chapter 5 we present a novel approach for automated testing of mobile applications

that implements part of the vision outlined in Chapter 4. Our approach develops a new

technique for constructing an on-the-fly event flow model of an application using systematic

GUI exploration. Furthermore, our approach is capable of analyzing an application both

statically and dynamically, extracting program features more likely to induce crashes, and

stress-testing these features according to one of several strategies. This work described in

this chapter is based primarily on work on the CrashScope approach [219].

In Chapter 6 we discuss three major avenues for future research motivated by the

outcomes of the work described in this dissertation. Finally, we offer general conclusions

that summarize the contributions of this dissertation.

In addition to the contributions outlined in this dissertation, the author has worked on

a wide array of research topics in software engineering over the course of his career as a

doctoral student including: (i) bug reporting [225, 226, 223], Test Case Prioritization [206,

207], Mutation Testing [201, 207, 228], and Mobile Security [130, 262].
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Chapter 2

Background & Related Work

In this chapter we first provide background related to mobile software development and

the makeup of mobile graphical user interfaces with a focus on the Android platform. We

then survey relevant work related to each of the three major projects presented in this

dissertation which were introduced in the previous chapter, namely Gvt, ReDraw, and

CrashScope.

2.1 A Brief Introduction to Mobile Software Development

Mobile computing has become a centerpiece of modern society. Smartphones and tablets

continue to evolve at a rapid pace and the computational prowess of these devices is

approaching parity with laptop and desktop systems for high-end mobile hardware. This

facilitates new categories of engaging software that aim to improve the ease of use and

utility of computing tasks. Currently, many modern mobile apps have practically the

same features as their desktop counterparts and range in nature from games to medical

apps. The global “app" economy is comprised of millions of apps and developers, and

billions of devices and users. Additionally, commodity smartphones are ushering in a

completely new population of users from developing markets, many of whom are using a

computer and accessing the internet for the first time. These factors, combined with the

ease of distributing mobile apps on marketplaces like Apple’s App Store [24] or Google
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Play [50] have made the development of mobile software a major focus of engineers around

the world. In fact, according to Stack Overflow’s 2018 survey of over 100,000 developers

[1], nearly a quarter of respondents identified themselves as mobile developers.

Mobile applications are typically developed on top of an existing mobile platform. These

platforms consist of several different parts and these parts can vary between platforms,

however at a minimum usually include: (i) a kernel and an operating system (OS) that

runs on mobile hardware such as a smartphone, (ii) an application framework consisting

of a set of platform specific APIs and libraries, and (iii) a set of tools and software to aid

in developing apps, including IDEs or user interface builders. Mobile apps are typically

written using a target programming language supported for a particular platform (e.g., Java

and Kotlin for Android, and Objective-C and Swift for iOS), in combination with the APIs

from the platform’s application framework. There are a shrinking set of platforms upon

which developers can create and publish their apps. These platforms include Android, iOS,

BlackBerry 101, Firefox OS, Ubuntu Touch, and Windows 10 Mobile1. However, currently

Android and iOS comprise the majority of the market, accounting for 87.7% and 12.1% of

the market share respectively for the 2nd quarter of 2017 [89].

2.1.0.1 Unique Aspects and Challenges of the Mobile Development Process

While the importance and prevalence of mobile in the modern software development ecosys-

tem is clear, many of the unique attributes that make mobile platforms attractive to both

developers and users contribute a varied set of challenges that serve as obstacles to pro-

ducing high-quality software.

Platform Evolution and Instability: Generally, the software development lifecycle typ-

ically follows a cyclic set of activities that include (i) requirement engineering, (ii) design,

(iii) development, (iv) testing, and (v) maintenance. Modern agile development practices

typically iterate quickly through these activities with the goal of delivering working soft-

ware in a continuous manner where features are added and bugs are fixed during each
1
Support will end at the end of 2019
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iterative development cycle. However, the rapid evolution of mobile platforms shapes the

mobile development process in unique ways. As mobile hardware evolves, platforms evolve

to keep pace with technological advancements, and new more convenient software features

and capabilities are included with each iteration. For instance, Android has had over 15

major version releases since its inception in 2008 that have dramatically reshaped the un-

derlying platform APIs [215], leading to support for advanced features such as Augmented

Reality (AR). This iterative process puts immense pressure on developers to evolve their

apps with the mobile hardware and platforms to satisfy the expectations of users that their

apps take advantage of the latest features [178, 170]. This pressure leads to accelerated de-

velopment cycles with a focus on adapting to changes in platform APIs. Adapting to these

changes can be difficult and may adversely affect app quality [200, 125]; because develop-

ers must cope with adding additional app functionality based on new platform features,

or on fixing bugs that arise due to changes in APIs currently used in an app. This may

detract from time that could be spent on other activities such as fixing general regressions,

refactoring, or improving the performance of an app, while also leading to undue technical

debt. Thus, platform evolution has a clear affect on mobile development.

GUI-Centric, Event Driven Applications: Perhaps one of the most important fea-

tures of mobile devices is the ease of use provided by high-fidelity, touch-enabled displays.

Users primarily interact with their smartphones, tablets, and wearable devices and by ex-

tension the apps that run on these devices, through a touchscreen interface. This means

that mobile apps are centered around the graphical user interface, and are driven by touch

events on this interface. While other types of apps such as web apps, are also heavily

event-driven, the unique touch based gestures and interactivity provided by mobile apps

help to shape the software design, development and testing processes in unique ways. For

example, the user interface (UI) and user experience in mobile apps must be well-designed

for an app to be successful in highly competitive marketplaces. As such design and de-

velopment tools for constructing UIs are a core part of IDEs such as Xcode and Android

Studio that to mobile developers.
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The event-driven nature of mobile apps also impacts testing. While developers can test

small pieces of their code using practices such as unit testing, ultimately, testing must be

done through the GUI. Manually testing applications is a time consuming practice that

is fundamentally at odds with the rapid pace of mobile development practices. Thus,

mobile developers and testers will often utilize automation frameworks that either allow

for reusable or fully automated test input generation.

Mobile App Marketplaces: The primary (and some cases only) method of distribution

for mobile apps is through “app marketplaces" such as Google Play or Apple’s App Store.

These digital storefronts are unique to mobile applications, in that they provide users with

easy access to purchase, download, and update apps, while providing mechanisms for users

to review apps and provide feedback to developers. In recent years, these marketplaces

have become increasingly competitive as the number of available apps numbers in the

millions. App marketplaces incentivize developers to ensure their apps are of the high-

est possible quality, and to take into account the feedback of users. Developers need to

ensure the quality of their apps by adhering to proper platform design principles and per-

forming extensive testing, or risk being passed over for competitors. Likewise developers

need to react to feedback communicated through user reviews by gathering and updating

requirements and subsequently improving their app’s implementation.

Market, Device, and Platform Fragmentation: The large and growing user base

of smartphones and tablets is one of the most alluring aspects for many developers and

companies hoping to reach users. Unfortunately, targeting these users can be difficult due

to multiple levels of fragmentation. The first level of fragmentation is at the market-level,

which is currently dominated by Android and iOS. Thus, developers hoping to reach the

maximum number of users must target both of these platforms. Second, there is fragmen-

tation at the device level [165], as there is a large and growing number of hardware options

for consumers to choose from with more devices being introduced each year. Finally, there

is platform fragmentation, as users on the same mobile platform may be running different

versions of mobile OSes. For instance, the latest version of iOS, iOS11, is currently run-
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ning on 65% of devices whereas iOS10 currently encompasses 28% of the install base [123].

However, in Android fragmentation is more severe, with the two latest versions of Google’s

OS, Android 8 and 7, make up only 1.1% and 28.5% of the Android install base respec-

tively. In order to create effective apps, developers must ensure that their applications

function properly across a wide combination of different platforms, devices, and platform

versions. This can make the process of developing and testing mobile apps challenging,

as developers need to maintain concurrent codebases and test across a dizzying array of

target configurations.

Naturally, these difficulties have led to creation of platform-independent development

tools such as Xamarin [113], where a single codebase can be compiled to multiple platforms,

eliminating the need for parallel codebases. Alternatively, there exist tools and frameworks

like Ionic [54] for creating hybrid applications which use a combination of web technologies

that interface with underlying platform APIs. In addition to hybrid applications, another

framework created by Facebook called React Native [79] facilitates the development of na-

tive mobile apps using javascript and React. Applications built using react native are fully

native to the target platform, the framework simply assembles the native code according to

the javascript written by a developer. All of these approaches can help ease the burden of

fragmentation when creating mobile apps. However, multi-platform development solutions

come with their own set of compromises. For instance, hybrid apps are known to suffer

from performance issues in terms of user interface interactivity, which can frustrate users.

Furthermore, frameworks like Xamarin or React Native require their own learning curve,

and developers are highly dependent upon the multi-platform framework keeping up with

the latest features of modern mobile platforms.

2.1.1 Android Development Tools and Frameworks

Due to the open-source nature of a majority of the code that underlies the Android plat-

form, and Google’s push towards making the platform an inviting one for developers, there

15



exists a wide range of development tools. These tools and frameworks underpin many of

the approaches presented in this dissertation, thus, we briefly introduce them here.

2.1.1.1 Virtual Android Devices

Given that applications developed for a mobile device typically will not run directly on

the desktop systems used to develop them, it is important to have a vehicle by which

developers can quickly test and preview their applications. This is primarily carried out

by virtual Android devices. Currently, the most popular solutions for running virtual

Android devices are the following: (i) the standard Android emulator officially supported

by Google [6], (ii) the Genymotion [45] emulator, and (iii) Virtual Machines based on the

androidx86 project [15]. These devices can be used to test apps against different device

and platform configurations to help combat the daunting fragmented market. Depending

upon the host hardware and the configuration of the virtual devices, several devices can

be instantiated concurrently to speed up testing.

2.1.1.2 Android Debugging Bridge

In order to test and verify different application properties, developers need a way to interact

with running devices in a programmatic manner. This is primarily accomplished through

the Android Debugging Bridge, also referred to as adb. The adb serves as a connection

to a device and facilitates a variety of different development actions such as installing or

uninstalling apps. It also allows for opening a unix-like shell on the device where a plethora

of device actions can be performed, such as capturing screenshots and manipulating files.

2.1.1.3 UI Automator Framework

Given that Android applications are largely driven by touch-based events performed on a

GUI, developers need a tool that lets them extract and analyze information about a device’s

screen. The Android UI Automator framework, often referred to as uiautomator [14],

facilitates this process by offering means to capture hierarchical representations of the
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GUI-components (i.e., widgets) displayed on a device’s screen by encoding this structure

into xml files. These xml files can then be parsed and analyzed to infer properties of the

GUI of an app running on a target device.

2.1.1.4 Android Logcat

The Android logcat [9] utility is a command-line tool that capture and is capable of

dumping a system log of an Android device, including stack traces for application errors

and system messages.

2.2 Fundamentals of Mobile Graphical User Interfaces

The first two projects presented in this dissertation are concerned with automating differ-

ent aspects related to the construction of Graphical User Interfaces of mobile apps. Thus,

to provide sufficient context to the reader, in this section we introduce the fundamental

concepts that underpin mobile graphical user interfaces. These concepts include the log-

ical building blocks that comprise modern mobile GUIs as well as the concepts of design

violations (DV s), and presentation failures.

2.2.0.1 GUI-Components, GUI-Containers, and Screens

There are three main logical constructs that define the concept of the GUI of a mobile

app: GUI-components (or GUI-widgets), GUI-containers, and Screens. A GUI-component

is a discrete object with a set of attributes (such as size and location among others)

organized according to GUI-containers associated with a particular Screen of an app. GUI-

Containers are logical constructs that group GUI-components and define relative spatial

properties. A Screen is an invisible canvas of a size corresponding to the physical screen

dimensions of a mobile device. We define two types of screens, those created by designers

using professional-grade tools like Sketch, and those collected from implemented apps at

runtime. Each of these two types of Screens has an associated set of GUI-components
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Figure 2.1: Illustration of the GUI Structure of the Pandora Android Application

(referred to interchangeably as components in this text). Each set of components associated

with a screen is structured as a cumulative hierarchy comprising a tree structure, starting

with a single root node, where the spatial layout of a parent always encompasses contained

child components. These various GUI building blocks are illustrated in a partial hierarchy

of the popular Pandora music application in Figure 2.1.

It is important to note that there are two parallel representations of mobile GUIs,

static representations, and dynamic representations. There are key differences between

these two representations that impact the definitions of key concepts described below.

Static representations of a mobile GUI are those that are represented in code, usually in

a domain specific language such as custom xml in Android, or nib files in iOS. Typically,

the spatial attributes of a static representation of a mobile GUI are defined in relative

terms, allowing for adaption to different screen sizes and device configurations. Dynamic

representations of mobile GUIs are those that are rendered on a target device screen, and

the spatial attributes of components are translated from their relative representation in

the code to tangible coordinates that exist within the bounds of a target device’s pixel-
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based screen dimensions. The definitions presented below are amenable to either of these

representations.

Definition 1 - GUI-Component: Atomic graphical elements with pre-defined function-

ality, displayed within a GUI of a software application.

More formally, a GUI-component is a discrete object GC with a corresponding set of at-

tributes a which can be represented as a six-tuple in the form (<x-position>, <y-position>,

<height>, <width>, <text>, <image>). Here the first four elements of the tuple describe

the location of the top left point for the bounding rectangle of the component, and the

height and width attributes describe the size of the bounding box. These spatial elements

can be represented either as relative values or as concrete pixel-based coordinates on a

target device. The text attribute corresponds to text displayed by the component. Fi-

nally, the image attribute represents an image of the component with bounds adhering to

the first four attributes. GUI-components have one of several domain dependent types,

with each distinct type serving a different functional or aesthetic purpose. For example,

common component types include dropdown menus and checkboxes, just to name a few.

The notion of atomicity is important in this definition, as it differentiates GUI-components

from containers. The third concept we define is that of a GUI-container :

Definition 2 - GUI-Container: A logical construct that groups member GUI-components

and typically defines spatial display properties of its members.

In modern GUI-centric apps, GUI-components are rarely rendered on the screen using pre-

defined coordinates. Instead, logical groupings of containers form hierarchical structures

(or GUI-hierarchies). These hierarchies typically define spatial information about their

constituent components, and in many cases react to changes in the size of the display area

(i.e., reactive design)[12]. For instance, a GUI-component that displays text may span the

text according to the dimensions of its container.
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Definition 3 - Screen: A canvas with a predefined height and width corresponding to

the physical display dimensions of a smartphone or tablet.

Each Screen S contains a cumulative hierarchy of components, which can be represented

as a nested set such that:

S = {GC1{GC2{GCi}, GC3}} (2.1)

where each GC has a unique attribute tuple and the nested set can be ordered in either

depth-first (Exp. 2.1) or in a breadth-first manner. Each nesting level in the set corre-

sponds to a GUI-container, that logically groups these components. We are concerned

with two specific types of screens: screens representing mock-ups of mobile apps Sm and

screens representing real implementations of these apps, or Sr.

2.2.0.2 Design Violations & Presentation Failures

Now that we have introduced the fundamental building blocks of modern mobile GUIs, we

next introduce the concepts related to design violations and presentation failures.

Definition 4 - Mock-Up Artifact: An artifact of the software design and development

process which stipulates design guidelines for GUIs and its content.

In industrial mobile app development, mock-up artifacts typically come in the form of

high fidelity images (with or without meta-data) created by designers using software such

as Photoshop [4] or Sketch [86]. In this scenario, depending on design and development

workflows, metadata containing information about the constituent parts of the mock-up

images can be exported and parsed from these artifacts 2. Independent developers may also

use screenshots of existing apps to prototype their own apps. In this scenario, in addition

to screenshots of running applications, runtime GUI-information (such as the html DOM-

tree of a web app or the GUI-hierarchy of a mobile app) can be extracted to further aid in
2
For example, by exporting Scalable Vector Graphics (.svg) or html formats from Photoshop.
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Figure 2.2: Examples of Formal Definitions

the prototyping process. However, this is typically not possible in the context of mock-up

driven development, as executable apps do not exist.

Design violations correspond to visual symptoms of presentation failures, or differences

between the intended design and implementation of a mobile app screen. Presentation

failures can be made up of one or more design violations of different types.

Definition 5 - Design Violation: A mismatch between at least one of the attributes of

corresponding GUI-components existing in a mock-up artifact, and a dynamic representa-

tion of the implementation of that artifact.

As shown in Exp. 2.2 a mismatch between the attribute tuples of two corresponding leaf-

level (e.g., having no direct children) GUI-components GCim and GCjr of two screens Sm

and Sr imply a design violation DV associated with those components.

(GCim ⇡ GCjr) ^ (GCim 6= GCjr)

=) DV 2 {GCim, GCjr}
(2.2)

In this definition leaf nodes correspond to one another if their location and size on

a screen (e.g., <x-position>, <y-position>, <height>, <width>) match within a given

threshold. Equality between leaf nodes is measured as a tighter matching threshold across

all attributes. Inequalities between different attributes in the associated tuples of the GCs

lead to different types of design violations.
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Definition 6 - Presentation Failure: is a set of one or more design violations attributed

to a set of corresponding GUI-components existing in a mock-up artifact, and a dynamic

representation of the implementation of that artifact.

Presentation Failures are a set of one or more design violations attributed to a set of

corresponding GUI-components between two screens Sm and Sr, as shown in Exp. 3. For

instance, a single set of corresponding components may have differences in both the <x,y>

and <height,width> attributes leading to two constituent design violations that induce

a single presentation failure PF. Thus each presentation failure between two Screens S

corresponds to at least one mismatch between the attribute vectors of two corresponding

leaf node GUI-components GCim and GCir.

if {DV1, DV2, ...DVi} 2 {GCim, GCjr}

then PF 2 {Sm, Sr}
(2.3)

2.3 Work Related to Detection of GUI Design Violations in

Mobile Apps

2.3.1 Detecting Presentation Failures in Web Applications

The most closely related work to Gvt lies in approaches that aim at detecting, classifying

and fixing presentation failures in web applications [209, 210, 242, 211]. Mahajan et.

al. introduced WebSee aimed at this task. This approach leverages PID, clustering of

difference regions, and localization of faulty html elements by resolving areas with visual

discrepancies to content in an R-Tree representation of an html page. Mahajan et. al also

developed FieryEye, which builds upon the WebSee approach to identify faulty elements

and corresponding styling properties. In comparison, Gvt also performs detection and

localization of presentation failures, but is the first to do so for mobile apps. In addition

to the engineering challenges associated with building an approach to detect presentation

failures in the mobile domain (e.g., collection and processing of GUI-related data) Gvt is
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the first approach to leverage metadata from software mock-up artifacts (e.g., Marketch)

to perform GC matching based upon the spatial information collected from both mock-

ups and dynamic application screens, allowing for precise detection of the different types of

DVs delineated in our industrial DV taxonomy. Gvt is also the first to apply the processes

of CQ, CH analysis, and B-PID toward detecting differences in the content and color of

icons and images displayed in mobile apps. Gvt also identifies different faulty properties

(such as location, color, or image content).

2.3.2 Cross-Browser Testing

Other approaches for XBT (or cross browser testing) by Roy Choudhry et. al. [242,

143, 244] examine and automatically report differences in web pages rendered in multiple

browsers. These approaches are currently not directly applicable to mock-up driven de-

velopment or mobile apps. An analogous problem in the domain of mobile apps is cross

device testing for presentation failures (e.g., ensuring proper rendering of GUIs across de-

vices with different physical screen sizes and dimensions). However, this type of work is

out of scope for the Gvt approach, and left as a promising avenue for future work.

2.3.3 Other Approaches for GUI Verification

There are other approaches and techniques that are related to identifying problems or

differences with GUIs of mobile apps. Xie et al. introduced GUIDE [267], a tool for GUI

differencing that aims to describe discrepancies between successive releases of GUIs for an

app by matching components between GUI-hierarchies. Gvt utilizes a matching procedure

for leaf node components using a similarity function based on spatial information, as direct

tree comparisons are not possible in the context of mock-up driven development. Joorabchi

et. al built an approach for detecting inconsistencies in multi-platform apps, but this was

not related to mock-up driven development or GUIs specifically [179]. There has also been

both commercial and academic work related to graphical software built specifically for

creating high-fidelity mobile app mock-ups or mockups that encode information for auto-
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mated creation of code for a target platform [217, 65, 44, 75]. However, such tools tend to

either impose too many restrictions on designers who typically carry limited programming

experience or do not allow for direct creation of code, thus DVs still persist in practice.

Takashi [118] presented an approach for verifying GUI objects using the meta informa-

tion stored in Windows graphics APIs and expected output from a set of program actions

to verify GUI-objects. While this is a potentially useful approach, in the case of mobile

mock-up driven development, sufficient GUI information can be gleaned via uiautomator.

2.4 Work Related to Automated Prototyping of Graphical

User Interfaces for Mobile Apps

2.4.1 Reverse Engineering Mobile User Interfaces:

The most closely related research to the approach proposed in this paper is Remaui, which

aims to reverse engineer mobile app GUIs [232]. Remaui uses a combination of Optical

Character Recognition (OCR), CV, and mobile specific heuristics to detect components

and generate a static app. The CV techniques utilized in Remaui are powerful, and we

build upon these innovations. However, Remaui has key limitations compared to our work

including: (i) it does not support the classification of detected components into their native

component types and instead uses a binary classification of either text or images, limiting

the real-world applicability of the approach, and (ii) it is unclear if the GUI-hierarchies

generated by Remaui are realistic or useful from a developer’s point of view, as the GUI-

hierarchies of the approach were not evaluated.

In comparison, ReDraw (i) is not specific to any particular domain (although we imple-

ment our approach for the Android platform as well) as we take a data-driven approach for

classifying and generating GUI-hierarchies, (ii) is capable of classifying GUI-components

into their respective types using a CNN, and (iii) is able to produce realistic GUI-hierarchies

using a data-driven, iterative KNN algorithm in combination with CV techniques. In our
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evaluation, we offer a comparison of ReDraw to the Remaui approach according to differ-

ent quality attributes in Sections 4.3 & 4.4.

In addition to Remaui, an open access paper (i.e., non-peer-reviewed) was recently

posted that implements an approach called pix2code [127], which shares common goals with

ReDraw. Namely, the authors implement an encoder/decoder model that they trained on

information from GUI-metadata and screenshots to translate target screenshots first into a

domain specific language (DSL) and then into GUI code. However, this approach exhibits

several shortcomings that call into question the real-world applicability of the approach:

(i) the approach was only validated on a small set of synthetically generated applications,

and no large-scale user interface mining was performed; (ii) the approach requires a DSL

which will need to be maintained and updated over time, adding to the complexity and

effort required to utilize the approach in practice. Thus, it is difficult to judge how well

the approach would perform on real GUI data. In contrast, ReDraw is trained on a large

scale dataset collected through a novel application of automated dynamic analysis for user

interface mining. The data-collection and training process can be performed completely

automatically and iteratively over time, helping to ease the burden of use for developers. To

make for a complete comparison to current research-oriented approaches, we also include

a comparison of the prototyping capability for real applications between ReDraw and the

pix2code approach in Sections 4.3 & 4.4.

2.4.2 Mobile GUI Datasets

In order to train an accurate CNN classifier, ReDraw requires a large number of GUI-

component images labeled with their domain specific types. To construct an effective

classifier, we collect this dataset in a completely automated fashion by mining and auto-

matically executing the top-250 Android apps in each category of Google Play excluding

game categories, resulting in 14,382 unique screens and 191,300 labeled GUI-components

(after data-cleaning). Recently, a large dataset of GUI-related information for Android

apps, called RICO, was published and made available [151]. This dataset is larger than
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the one collected and described in this dissertation, containing over 72k unique screens

and over 3M GUI-components. However, the ReDraw dataset is differentiated by some

key factors specific to the problem domain of prototyping mobile GUIs:

1. Cropped Images of GUI-components: The ReDraw dataset of mobile GUI data

contains a set of labeled GUI-components cropped from larger screenshots that are

ready for processing by machine learning classifiers.

2. Cleaned Dataset: We implemented several filtering procedures at the app, screen,

and GUI-component level to remove “noisy" components from the ReDraw dataset.

This is an important factor for training an effective, accurate machine-learning clas-

sifier. These filtering techniques were manually verified for accuracy.

3. Data Augmentation: In the extraction of our dataset, we found that certain types

of components were used more often than others, posing problems for deriving a

balanced dataset of GUI-component types. To help mitigate this problem, we utilized

data-augmentation techniques to help balance our observed classes.

We expand on the methodology for deriving the ReDraw dataset in Section 4.2.2.4. The

RICO dataset does not exhibit the unique characteristics of the ReDraw dataset stipulated

above that cater to creating an effective machine-learning classifier for classifying GUI-

components. However, it should be noted that future work could adapt the data cleaning

and augmentation methodologies stipulated in this project to the RICO dataset to produce

a larger training set for GUI-components in the future.

2.4.3 Other GUI-Design and Reverse Engineering Tools:

Given the prevalence of GUI-centric software, there has been a large body of work ded-

icated to building advanced tools to aid in the construction of GUIs and related code

[146, 134, 188, 139, 250, 216, 190] and to reverse engineer GUIs [137, 154, 153, 168, 253, 248].
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While these approaches are aimed at various goals, they all attempt to reason logical, or

programatic info from graphical representations of GUIs.

However, the research projects referenced above exhibit one or more of the following

attributes: (i) they do not specifically aim to support the task of automatically translating

existing design mock-ups into code [154, 153, 168, 253, 248], (ii) they force designers or

developers to compromise their workflow by imposing restrictions on how applications are

designed or coded [250, 216, 188, 134, 146, 139] or (iii) they rely purely on reverse engineer-

ing existing apps using runtime information, which is not possible in the context of mock-up

driven development [137, 216]. These attributes indicate that the above approaches are ei-

ther not applicable in the problem domain which ReDraw aims to overcome (automatically

generating application code from a mock-up artifact) or represent significant limitations

that severely hinder practical applicability. Approaches that tie developers or designers

into strict workflows (such as restricting the ways mock-ups are created or coded) struggle

to gain adoption due to the competing flexibility of established image-editing software and

coding platforms. Approaches requiring runtime information of a target app cannot be

used in a typical mock-up driven development scenario, as implementations do not exist

yet. While our approach relies on runtime data, it is collected and processed independently

of the target app or mock-up artifact. Our approach aims to overcome the shortcomings

of previous research by leveraging MSR and ML techniques to automatically infer mod-

els of GUIs for different domains, and has the potential to integrate into current design

workflows as illustrated in Sec. 4.4.4.

In addition to research on this topic, there are several commercial solutions which aim

to improve the mock-up and prototyping process for different types of applications [65, 75,

44, 61, 73, 117, 64, 43, 56, 74, 55, 28]. These approaches allow for better collaboration

among designers, and some more advanced offerings enable limited-functionality prototypes

to be displayed on a target platform with support of a software framework. For instance,

some tools will display screenshots of mock-ups on a mobile device through a preinstalled

app, and allow designers to preview designs. However, these techniques are not capable of
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translating mock-up artifacts into GUI code, and tie designers into a specific, potentially

less flexible software or service. At the beginning of 2017, a startup has released software

called Supernova Studio [92] that claims to be able to translate Sketch files into native

code for iOS and Android. While this platform does contain some powerful features, such

as converting Sketch screen designs into GUI code with “reactive" component coordinates,

it exhibits two major drawbacks: (i) it is inherently tied to the Sketch application, and

does not allow imports from other design tools, and (ii) it is not capable of classifying GUI-

components into their respective types, instead relying on a user to complete this process

manually [91]. Thus, ReDraw is complementary in the sense that our GUI-component

classification technique could be used in conjunction with Supernova Studio to improve its

overall effectiveness.

2.4.4 Image Classification using CNNs:

Large scale image recognition and classification has seen tremendous progress mainly due

to advances in CNNs [186, 275, 255, 257, 167, 191]. These supervised ML approaches

are capable of automatically learning robust, salient features of image categories from

large numbers of labeled training images such as the ILSVRC dataset [246]. Building on

top of LeCun’s pioneering work [191], the first approach to see a significant performance

improvement over existing techniques (that utilized predefined feature extraction) was

AlexNet [186], which achieved a top-5 mean average error (MAE) of ⇡ 15% on ILSVRC12.

The architecture for this network was relatively shallow, but later work would show the

benefits and tradeoffs of using deeper architectures. Zeiler and Fergus developed the ZFNet

[275] architecture which was able to achieve a lower top-5 MAE than AlexNet (⇡ 11%)

and devised a methodology for visualizing the hidden layers (or activation maps) of CNNs.

More recent approaches such as GoogLeNet [257] and Microsoft’s ResNet [167] use deeper

architectures (e.g., 22 and 152 layers respectively) and have managed to surpass human

levels of accuracy on image classification tasks. However, the gains in network learning

capacity afforded by deeper architectures come with a trade off in terms of training data
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requirements and training time. In our expiermental evaluation of ReDraw, we show

that a relatively simple CNN architecture can be trained in a reasonable amount of time

on popular classes of Android GUI-components, achieving a top-1 average classification

accuracy of 91%.

2.5 Work Related to Automated Mobile Testing

In this subsection, we give an overview of the frameworks, tools, and services that are

currently available to support mobile application testing, hinting at current limitations.

In order to provide an “at-a-gance" overview of the current state of mobile testing, we

summarize solutions currently available to developers (see Table 2.1). We focus on the use

cases and existing problems and challenges with the state of the art.

We limit our analysis to research generally concerned with functional testing of mobile

applications, and to popular commercial testing services and tools as gleaned from our

previous research experience and industrial collaborations. The 7 categories of tools pre-

sented were derived in different ways. The first three categories (Automation Frameworks

& APIs, Record & Replay Tools, and Automated Input Generation tools) have generally

been defined by prior work [219, 142, 214], and we expand upon these past categorizations.

The other four categories were derived by examining commercial software and service offer-

ings available to mobile developers, as informed from our past experience. We delineated

the features of these offerings, and it was clear that some tools shared common dimensions,

thus forming the categories we present in this section.

2.5.1 Automation APIs/Frameworks

One of the most basic, yet most powerful testing tools available to developers on several

mobile platforms are GUI-Automation Frameworks and APIs [14, 42, 25, 22, 82, 32, 38, 78,

84]. These tools often serve as interfaces for obtaining GUI-related information such as the

hierarchy of components/widgets that exist on a screen and for simulating user interactions

with a device. Because these frameworks and APIs provide a somewhat universal interface
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Table 2.1: This Table Surveys the current state of tools, frameworks, and services that
support activities related to mobile testing, originating from both Academic and Industrial
backgrounds.

Automation Frameworks & APIs
Name GUI-Automation OS API Automation Black Box Test-Case Recording Cross-Device Support Natural Language Test Cases Open Source
UIAutomator [14] Yes No Either No Limited No Yes
UIAutomation (iOS) [25] Yes No No Yes Yes No Yes
Espresso [42] Yes No No No Limited No Yes
Appium [22] Yes No Yes Yes Limited No Yes
Robotium [84] Yes No Yes Yes Limited No Yes
Roboelectric [82] No Yes No No Yes No Yes
Ranorex [78] Yes No Yes Yes Yes No No
Calabash [32] Yes No No No No Yes Yes
Quantum [77] Yes N/A No N/A N/A Yes No
Qmetry [76] Yes N/A No N/A N/A Yes No

Record & Replay Tools
GUI Support Sensor Support Root Access Required Cross-Device High-Level Test Cases Open Source

RERAN [159] Yes No Yes No No Yes
VALERA [171] Yes Yes Yes No No No
Mosaic [164] Yes No Yes Limited Yes Yes
Barista [155] Yes No No Yes Yes No
Robotium Recorder [83] Yes No No Limited Yes No
Xamarin Test Recorder [114] Yes No No Yes Yes No
ODBR [223] Yes Yes Yes Limited Yes Yes
SPAG-C [195] Yes No N/A N/A No No
Espresso Recorder [41] Yes No No Limited Yes Yes

Automated GUI-Input Generation Tools
Tool Name Instrumentation GUI Exploration Types of Events Replayable Test Cases NL Crash Reports Emulators, Devices Open Source

Random-Based Input Generation
Monkey [13] No Random System, GUI, Text No No Both Yes
Dynodroid [208] Yes Guided/Random System, GUI, Text No No Emulators Yes
Intent Fuzzer [249] No Guided/Random System (Intents) No No N/A No
VANARSena [239] Yes Random System, GUI, Text Yes No N/A No

Systematic Input Generation
AndroidRipper [121] Yes Systematic GUI, Text No No N/A Yes
ACTEve [122] Yes Systematic GUI No No Both No
A3E Depth-First [124] Yes Systematic GUI No No Both Yes
CrashScope [219] No Systematic GUI, Text, System Yes Yes Both No
Google RoboTest [48] No Systematic GUI,Text No Yes Devices No

Model-Based Input Generation
MobiGUItar [120] Yes Model-Based GUI, Text Yes No N/A Yes
A3E Targeted [124] Yes Model-Based GUI No No Both No
Swifthand [141] Yes Model-Based GUI, Text No No Both Yes
QUANTUM [273] Yes Model-Based System, GUI Yes No N/A No
ORBIT [268] No Model-Based GUI No No N/A No
MonkeyLab [203] No Model-based GUI, Text Yes No Both No
Zhang & Rountev [278] No Model-based GUI, Text N/A N/A Both Yes

Other Types of Input Generation Strategies
PUMA [166] Yes Programmable System, GUI, Text No No Both Yes
JPF-Android [260] No Scripting GUI Yes No N/A Yes
CrashDroid [265] No Manual Rec/Replay GUI, Text Yes Yes Both No
Collider [175] Yes Symbolic GUI Yes No N/A No
SIG-Droid [218] No Symbolic GUI, Text Yes No N/A No
Thor [119] Yes Test Cases Test Case Events N/A No Emulators Yes
AppDoctor [170] Yes Multiple System, GUI2, Text Yes No N/A No
EvoDroid [212] No System/Evo GUI No No N/A No
Sapienz [214] Yes Search-Based GUI,Text,System Yes Yes Both Yes
Jabbarvand et al. [173] Yes Search-Based GUI,Text,System Yes Yes Both Yes

Bug & Error Reporting/Monitoring Tools
Video Recordings App & GUI Analytics Automatic Crash Reporting Replayable Test Scripts Open Source

Airbrake [5] No No Yes No No
TestFairy [99] Yes No Yes No No
Appsee [26] Yes Yes Yes No No
BugClipper [31] Yes No No No No
WatchSend [111] Yes Yes Yes No No
ODBR [223] No No No Yes Yes
FUSION [225, 226, 221] No No No Yes Yes

Testing Services
CrowdSourced Testing Expert Testers UX Testing Functional Testing Security Testing Localization Testing Open Source

Pay4Bugs [70] Yes N/A No Yes No N/A No
TestArmy [97] Yes Yes Yes Yes Yes N/A No
CrowdSourcedtesting [36] Yes Yes Yes Yes No Yes No
CrowdSprint [37] Yes Yes Yes Yes Yes No No
MyCrowdQA [67] Yes Yes Yes Yes No Yes No
99Tests [3] Yes Yes Yes Yes Yes Yes No
Applause [23] Yes Yes Yes Yes Yes Yes No
Test.io [102] Yes Yes Yes Yes N/A N/A No
Userlytics [104] Yes Yes Yes No No No No
TestFlight [100] Yes No No Yes No N/A No
SWRVE [93] Yes N/A Yes (A/B Testing) No No No No
Loop11 [59] Yes No Yes No No No No
Azetone [30] Yes No Yes No No No No
UserZoom [105] Yes Yes Yes No No No No
Apperian [20] No No No No Yes No No
MrTappy [66] N/A N/A Yes N/A N/A N/A N/A
LookBack [58] Yes No Yes No No No No
Apptimize [27] Yes No Yes (A/B Testing) No No No No

Cloud Testing Services
Automated Test Case Generation Real Devices Emulators Remote Device Control Test Reports Open Source

Xamarin Test Cloud [113] No Yes No No Yes No
AWS Device Farm [29] No Yes No Yes Yes No
Google Firebase [47] Yes Yes No No Yes No
SauceLabs [85] No No Yes N/A N/A Partially
TestGrid [101] Yes Yes No No Yes No
Keynote [57] No Yes No Yes Yes No
Perfecto [77] No Yes No Yes Yes No
Bitbar (TestDroid) [98] Yes Yes No No Yes No

Device Streaming Tools
Streaming Over Internet Streaming to Desktop from Conected Device Recording Open Source

Vysor [109] No Yes Yes (Screenshots) No
OpenSTF [90] Yes Yes Yes (Screenshots) Yes
Appetize.io [21] Yes No Yes (Video & Screenshots No
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to the GUI or underlying system functionality of a mobile platform, they typically underlie

the functionality of many of the other input generation approaches and services discussed

in this section. Typically these frameworks offer developers and testers an API for writing

GUI-level tests for mobile apps through hand-written or recorded scripts. These scripts

typically specify a series of actions that should be performed on different GUI-components

(identifying them using varying attributes) and test for some state information via assertion

statements. These frameworks are generally a good place to start for researchers who are

interested in breaking into the mobile testing, as they are typically well documented and

can offer a wealth of GUI and system related information which can be valuable for building

tools or performing studies.

While useful for developers, these tools are not without their shortcomings. While these

frameworks typically provide cross-device compatibility of scripts in most cases, there may

be edge cases (e.g., differing app states or GUI attributes) where scripts fail, highlighting

the fragmentation problem. Also, they typically support only a single testing objective, as

few tools offer support for complex user actions such as scrolling, pinching, or zooming

or interfaces to simulate contextual states, which is required for effectively carrying out

complex testing scenarios. More problematic, however, is that GUI level tests utilizing

these frameworks are very expensive to maintain as an app evolves, discouraging many

developers from adopting them in the first place. In the remainder of this subsection,

we briefly outline the capabilities, pros, and cons of various Automation Frameworks and

APIs for Android.

Both Google and Apple offer official “first-party" GUI-testing frameworks and APIs to

allow developers to write tests to ensure their GUI is functioning as expected. Google’s

open source uiautomator framework [14] allows for developers to write Junit-style GUI

tests for Android multiple Android applications. The testing library makes use of the

uiautomator framework included in the Android platform after version 4.3, and exposes

APIs that developers and testers can use to write GUI-tests interacting with components

identified by attributes such as the text they display. The uiautomator framework on an
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Android device can also be accessed independently of GUI-tests. By interfacing with the

framework through the adb shell /system/bin/uiautomator dump command, develop-

ers can access the view hierarchy of the currently displayed screen on a device or emulator.

While uiautomator is a powerful tool, test scripts still suffer from issues such as expensive

maintenance and limited cross-device compatibility. Google’s espresso testing framework

[42] allows for finer grained GUI-tests of a single target application, as opposed to the ap-

plication independent tests provided by uiautomator. Additionally, the framework allows

for the recording of test cases using the espresso test case recorder, and offers the ability for

limited ui-control over web-views, leveraging the web-driver API. Espresso trades general-

ity in the types of views that can be tested (e.g., they must exist within your application)

for finer grained control over the GUI views for tests, making it a better tool for testing

a single app, whereas uiautomator’s flexibility allows for integration testing with multiple

apps. iOS has a similar framework called uiautomation [25] that also allows for scripting

and record-replay based GUI tests, that brings with it similar limitations. It should be

noted that tests for these frameworks typically need to be compiled and bundled with an

application to function properly, which can be prohibitive exercise for efficient development

workflows.

In addition to the official frameworks described above their are also several third party

solutions that for testing that offer deeper integrations with other services, or attempt to

address shortcomings of the official solutions. Appium [22] is a cross-platform testing tool

built on top of the Selenium WebDriver API that allows for the construction of UI-tests

without modifying a subject application. This brings with it several advantages, including

tests that can be written in a language of a developer or tester’s choice, and a single

ui-automation API that can be used across Android, iOS and hybrid applications. The

Robotium [84] framework shares a similar design philosophy to Appium, but is Android

specific. Robotium allows for black-box ui-tests that are more readable and robust due

to run-time component binding [84], and it also integrates with popular Android build

tools like Ant [17] and Gradle [51]. Roboelectric [82] is an Android specific tool that
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allows for unit testing APIs included with the AndroidSDK without launching an app

on an emulator. This is an attractive tool for developers as it allows for much faster

testing, lending itself towards increasingly agile development practices. Calabash [32] is

a testing framework for mobile apps maintained by Xamarin, and tightly coupled with

Cucumber [38]. This framework allows for the creation of highly descriptive ui-acceptance

tests without heavy modification of the underlying app. Xamarin also provides several

cloud testing services around Calabash test cases. Ranorex [78] Is a UI test automation

framework for mobile, web and desktop applications. It boasts several attractive features

such as ease of use for non developers, advanced GUI object recognition and record replay

functionality. Quantum [77] & QMetry [76] are testing frameworks that combines TestNG,

Selenium WebDriver, Appium, and Perfecto (for cloud testing).

2.5.2 Record and Replay Tools

Manually writing test scripts for mobile GUI or system tests can be tedious, time consum-

ing, and error prone. For this reason both academic and industrial solutions for Record

& Replay (R&R) based testing have been devised. R&R is an attractive alternative to

manually writing test scripts from an ease of use viewpoint, as it enables testers with very

limited testing knowledge to create meaningful test scripts for apps. Additionally, some of

the R&R approaches offer very fine grained (e.g., millisecond accuracy) capture and replay

of complex user actions, which can lend themselves well to testing scenarios which require

such accuracy (e.g., deterministically testing games) or portions of apps that require fined

grained user input (e.g., panning over a photo or a map).

However, despite the advantages and ease of use these types of tools afford, they ex-

hibit several limitations. Most of these tools suffer from a trade-off between the timing and

accuracy of the recorded events and the representative power and portability of recorded

scripts. For context, some R&R-based approaches leverage the /dev/input/event stream

situated in the linux kernel that underlies Android devices. While this allows for extremely

accurate R&R, the scripts are usually coupled to screen dimensions and are agnostic to
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the actual GUI-components with which the script interacts. This limits the possibility

of cross-device R&R which would help alleviate the issue of testing across many different

mobile devices. On the other hand, other R&R approaches may use higher-level represen-

tations of user actions, such as information regarding the GUI-components upon which a

user acts. While this type of approach may offer more flexibility in easily recording test

cases, it is limited in the accuracy and timing of events. An ideal R&R approach would

offer the best of both extremes, both highly accurate and portable scripts, suitable for

recording test cases or collecting crowdsourced data. R&R requires oracles that need to be

defined by developers, by manually inserting assertions in the recorded scripts or using tool

wizards. Thus, it is clear that this problematic dichotomy exacerbates more general mobile

testing challenges including flaky tests, history agnostic test scripts, and fragmentation,

and support for limited testing goals.

The first well-known mobile R&R approach, RERAN [159], came from academia. This

approach records and translates actions captured from the linux kernel event stream at

/dev/input/event and translates them events that can be re-injected into the event stream

to replay the same series of actions later using Android’s getevent and sendevent tools.

This approach is extremely accurate and precise, both in terms of reproducing actions and

the timing of those actions. However, it suffers from poor representativeness in that scripts

are coupled to screen locations and are not suitable for cross-device or non-deterministic

R&R scenarios. RERAN, was later extended in a tool called Mosaic [164] that claims to

offer cross-device R&R for Android apps by mapping events to a normalized virtual screen

and then scaling inputs linearly according to screen size. However, this approach will

not work for all applications, as components do not always scale linearly with screen size,

particularly for apps that run on both tablets and phones. The author’s behind the RERAN

approach also propose VALERA [171] tool which adopts a stream oriented approach for

R&R and adds support for additional sensors such as the GPS. The approach essentially

uses lightweight bytecode instrumentation to record events on the Android platform and

replays them using an event log and injection into a particular Android app. Barista
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[155], is a recently published tool that allows for device independent R&R of espresso test

scripts, complete with assertion/oracle recording. However, currently this tool exhibits

limitations in terms of the types of events it can record (e.g., taps and long taps), and may

fail to distinguish components under certain circumstances where components have similar

attributes (e.g., text, type). ODBR [223] is a recently proposed approach that run directly

on an Android device and is capable of both fine grained user event recording and high-

level script representation, making it highly suitable for bug recording and reproduction;

however, it requires a rooted device or emulator to function properly. SPAG-C, is a R&R

approach that uses the Sikuli [195] image recognition-based testing framework for R&R,

and uses screenshots as image-based state-defining oracles. Each of these approaches has

certain advantages and drawbacks and developer adoption of such tools is typically limited

due to their inherent drawbacks.

In addition to these academic tools, there are several commercial solutions to mobile

test-case R&R. The Robotium Recorder [83] allows for recording of test scripts in the

Robotium testing language, with limited support for cross-device R&R. The Espresso Test

Recorder [41] is a tool created by Google to allow for easy recording of espresso test scripts,

complete with assertions, similar to Barista. It also shares the same limitations regarding

the types of events that can be recorded. However, unlike Barista, it requires a device

or emulator connected to a computer, rather than running as an app on the device itself.

The Xamarin Test Recorder [114] is perhaps the most powerful and complete R&R tool

available today, allowing for easy recording of test scripts and cross-device replay across

devices in the Xamarin test cloud. However, this tool is currently in beta and is closed

source, and ties developers into the Xamarin environment.

2.5.3 Automated Test Input Generation Techniques

Perhaps the most active area of mobile software testing research has been in the form of

the Automated Input Generation (AIG) techniques. The premise behind such techniques

is the following: Because manually writing or recording test scripts is a difficult, manual
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practice, the process of input generation can be automated to dramatically ease the burden

on developers and testers. Such approaches are typically designed with a particular goal,

or set of goals in mind, such as achieving high code coverage, uncovering the largest

number of bugs, reducing the length of testing scenarios or generating test scenarios that

mimic typical use cases of an app. AIG approaches have generally been classified into

three categories[142, 219]: random-based input generation [13, 208, 249, 239], systematic

input generation [121, 122, 124, 219, 48], and model-based input generation [120, 124, 141,

273, 268, 203, 278]. Additionally, other input generation approaches have been explored

including search-based and symbolic input generation [175, 218, 212, 214]. Nearly all of

these approaches can trace their origins back to academic research, with companies like

Google just recently entering the market with software-based automated testing services

[48]. We provide at-a-glance information about these categories of approaches in Table

2.1.

Research on this topic has made significant progress, particularly in the last few years,

however, there are still persistent challenges. Recent work by Choudhary et. al. [142]

illustrated the relative ineffectiveness of many research tools when comparing program

coverage metrics against a naive random approach and highlighted many unsolved chal-

lenges including generation of system events, the cost of restarting an app, the need for

manually specified inputs for certain complex app interactions, adverse side affects between

different runs, a need for reproducible cases, mocking of services and inter-app communi-

cation, and a lack of support for cross-device testing scenario generation. While headway

has been made regarding some of these challenges in recent work [219, 214], many have not

been fully addressed. The specific limitations of these tools again fail to address broader

challenges, including flaky tests, fragmentation, limited support for diverse testing goals,

and inadequate developer feedback mechanisms.
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2.5.3.1 Random/Fuzz Testing

Random input generation techniques, also commonly known as “fuzz testing" approaches

rely on selecting arbitrary GUI or contextual events to generate input sequences that

can be used for testing purposes. The most basic, and popular, form of this type of

testing is using Google’s Android Monkey [13] tool. The tool allows for generation of

a pseudo-random sequence of events to be generated for a connected device from the

command line. Additionally developers can configure options such as the type of events to

be generated, and the relative frequency of such events. However, while this is a good tool

for fuzz/tress testing an application, the generated events are typically not replayable in a

deterministic manner, the sequences generated are not indicative of how a human would

use an app, and information about problems encountered are limited to stack traces. One

of the first research-derived approaches for automated input generation, Dynodroid [208],

maintains a history of event execution frequencies in a context-sensitive manner, and can

more effectively generate new event sequences by biasing the generation algorithm toward

or away from already executed events. Intent Fuzzer [249] is an approach that relies on

static analysis to generate Android app intents, however, the approach has difficulty scaling

with large apps due to the path-explosion problem. VanarSena [239] is a tool developed for

Windows Phones that instruments application binaries to in order to test apps for faults

caused by the injection of adverse contextual features. While these approaches can be

effective in uncovering crashes, they are typically best suited for a single testing goal of

“destructive-testing" [39] of applications, uncovering crashes along edges cases.

2.5.3.2 Ripping/Systematic Exploration

Another popular form of AIG approaches is that of systematic techniques. Tools employing

this type of AIG strategy typically employ a hierarchal or tree representation of a GUI

and exercise executable components that exist in this hierarchy according to a systematic

traversal algorithm, such as depth or breadth-first search (BFS/DFS). While these testing
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approaches can be effective at exploring significant portions of an application, they typically

do not generate sequences typical of user-driven input and do not address many of the

limitations pointed out at the beginning of this section.

Android Ripper [121] one of the first tools to employ this technique, dynamically de-

rives a list of fireable event sequences for varying screens of an app, and then systemati-

cally executes the events in the generated lists if available. A3E [124] uses a combination

of model-based and systematic-based input generation by employing static taint analysis

to construct a high-level event-flow graph of an app complete with allowable transitions

between screens. Using its systematic strategy, the tool performs a DFS over this event

graph. ACTEve [122] is a concolic-based testing approach for Android that symbolically

tracks events, but helps mitigate the path explosion problem by identifying subsuming

event sequences. CrashScope [219] is a systematic-based AIG for Android that uses several

combinations of execution strategies to elicit crashes from apps and generate expressive

readable crash reports. Google’s Robo-Test [48] a recently released black-box tool that

allows developers to upload their applications to be automatically tested by a system-

atic input generation approach. The exact exploration technique that Robo-Test uses is

unknown, as the tool is not currently open source.

2.5.3.3 Model-Based Testing

Model-Based AIG approaches [120, 141, 273, 268, 203, 278] strive to derive a detailed,

stateful model for an application under test and then generate input sequences allowing

for most thorough coverage of that model. The models built by these approaches typically

utilize static or dynamic analysis (or a combination of both) in order to properly construct

the an application’s state and event-flow. The state of an application can consist of a

variety of different parameters the GUI state and internal application state (e.g., values

of variables on the stack or heap). Most commonly in model-based AIG approaches, the

state consists of several GUI-based attributes that identify unique screens. While test case

generation based on these models can be a powerful tool, these models are rarely complete,
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often only accounting for a small fraction of a an app’s code coverage or feature set limiting

their utility. Additionally, save for a few exceptions [203], model-based approaches tend

not to closely emulate user behavior, and the models must be updated continually as the

app changes, making maintenance expensive.

The event-flow of an app is typically defined as the allowable transitions between differ-

ent states. including MobiGUItar [120] is an extension of Android Ripper that dynamically

rips and models the the current state of an application through an observe-model-exercise

paradigm. A3E targeted attempts to steer input generation toward targeted, unseen areas

in an app’s statically derived event flow graph. Swifthand [141] uses an active learning

approach to construct a model and generate inputs while striving to minimize app restarts

by exploring all states accessible from the initial screen. QUANTUM [273] is a testing tool

that generates Junit/Robotium test sequences for a specific app that include oracles. The

authors of this paper defined several app agnostic oracles based on a study of common root

causes of Android applications. ORBIT [268] uses static analysis to extract declared GUI

components and link them to event-handlers to derive executable actions. It then con-

structs a hybrid model of an app using information from the previously performed static

analysis and dynamic analysis to generate the model and input sequences. MonkeyLab

[203] is an approach capable of mining application usages from users, modeling these ap-

plication usages, and subsequently generating new events sequences based on the model.

An approach by Zhang and Rountev [278] recently devised a model approach for testing

notifications on Android Wear applications that typically run on smart watches or other

wearable smart-devices.

2.5.3.4 Other Types of Input Generation Approaches

Additional types of AIG approaches are either geared toward input generation for a specific

task (other than simply coverage or bug-finding capability) or utilize emerging underlying

techniques for the task of input generation. These approaches include programmable au-

tomation frameworks like PUMA [166] and JPF android [260], approaches implementing
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symbolic execution such as SIG-Droid [218] or Collider [175], and search-based approaches

such as EvoDroid[212] or Sapienz [214]. Building advanced automation frameworks from

the ground up is a difficult task, particularly in the context of research, and thus frame-

works like PUMA and and JPF-Android, typically lose out to the support of first-party

automation libraries like uiautomator. Approaches employing symbolic and concolic exe-

cution are a promising development, however, they have typically only been demonstrated

to enable robust test case generation on small applications, due to the curse of dimension-

ality in apps with many potential event sequences. Search-based techniques (both multi

and single objective) have appeared as some of the most promising candidates for test

generation thus far, however, still have challenges including generating tests for various

tasks such as regression or use-case based testing.

PUMA [166] exposes high-level GUI-event to developers an testers, allowing for a pro-

grammable GUI-automation framework for which developers can implement their own

exploration strategies. JPF-Android [260] is an extension of the Java PathFinder (JPF)

tool to allow for running android-specific code directly on the JVM, similar to Roboelectric.

It accomplishes this using stack manipulation, listeners and various logging techniques, but

is limited in terms of the overhead these modifications cause and in the types of events

it can properly execute. CrashDroid [265] is capable of translating a stack-trace from an

Android application crash into expressive steps to reproduce a bug using a captured stack

trace and manual annotated traces from users. Collider [175] is an approach for gener-

ating input event sequences that reach a targeted line of code in an Android application

using a combination of concolic execution and a GUI model of an application. SIG-Droid

[218] generates test inputs using symbolic execution combining inputs with a GUI-model

extracted statically from the source code of an application. Thor [119] leverages existing

test cases for an application and triggers adverse conditions for contextual features during

the execution of these tests to simulate different environments in which an app may be

used. AppDoctor [170] introduces an approach called “approximate execution" which relies

on a side-loaded instrumentation app to execute event handlers associated with different
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GUI-components, instead of triggering user-level actions on the components themselves.

This approach speeds up execution time by sacrificing accuracy of the generated event se-

quences (as some sequences of triggered event handlers are impossible from the user-facing

GUI of an app). EvoDroid and Sapienz [212, 214] introduce search-based approaches to

automated input generation for Android applications. EvoDroid constructs a call-graph

and GUI-model (denoted as “Interface" in the paper) and then uses an evolutionary genetic

algorithm with a fitness function that attempts to maximize code coverage. Sapienz em-

ploys a multi-objective genetic algorithm capable of optimizing for code-coverage, sequence

length, and number of crashes uncovered. Additionally, Sapienz uses an input generation

approach based upon the idea of motif patterns that collect patterns of lower-level events

that achieve higher coverage for longer event sequence generation. The approach devised

by Jabbarvand et al. [173] allows for the dramatic minimization of existing test cases for

Android applications while maintaining their ability to uncover energy bugs.

2.5.4 Bug and Error Reporting/Monitoring Tools

These types of tools have grown to become an integral part of many mobile testing work-

flows. There are two types of tools in this category: (i) tools for supporting bug reporting

(a.k.a., issue trackers), and (ii) tools for monitoring crashes and resource consumption at

run-time (e.g., New relic[68] and Crashlytics [34]). Classic issue trackers only allow re-

porters to describe the bugs using textual reports and by posting additional files such as

screenshots; but, real users can only report the bugs when an issue tracker is available

for the app, as is the case of open source apps. In the case of tools for monitoring, if

developers do not choose to include third-party error monitoring in their application (or

employ a crowd-based approach), typically, the only user-feedback or in-field bug reports

they receive are from user reviews or limited automated crash reports. Unfortunately,

many user reviews or stack traces without context are unhelpful to developers, as they do

not adequately describe issues with an application to the point where the problem can be

reproduced and fixed. In order to mitigate these issues regarding visibility into applica-
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tion bugs and errors, several tools and services exist that aim to help developers overcome

this problem. These tools typically employ features that give developers more detailed

information, such as videos [99, 26, 31, 111] or test scripts [223], on failures with concrete

reproduction steps or stack traces (e.g., crashes); however, to collect that information, the

apps need to include API calls to the methods provided by the services. Additionally,

they may provide analytic information about how users typically interact with an app, or

assist end-users in constructing useful bug reports for apps [225, 226, 221]. Unfortunately,

the automated error monitoring tools are limited to crash reporting (i.e., exceptions and

crashes), restricting their utility.

Airbrake [5] is a service for organizing and aggregating crash reports for an application.

It helps developers and testers by grouping similar bugs into common groups and helps

tracks the code quality of an app according the number and type of crashes reported

against different versions. TestFairy [99], Appsee[26], BugClipper [31], and WatchSend

[111] are services that allow a developer to include a third party library that reports logs,

bug reports and video recordings which allow for better debugging of an app . In addition,

Appsee offers developer UI-analytics (e.g., touch heat-maps) that allows for insight into

user behavior which can help improve the UI/UX experience as the app evolves. The

On-Device Bug Reporting (ODBR) tool [223] allows for fine grained recording of end-

user bug reports, complete with sensor streams. Unlike the services listed above, this

app utilizes the fine-grained event collection of the /dev/input/event stream, similar

to RERAN, but then translates these actions to higher-level representations of events,

similar to MonkeyLab, with contextual information regarding UI-components with which

the user interacted. This allows for replayable bug reports which can be captured by a

user completely on a device. Fusion’s [225, 226, 221] is an approach for off-device bug

reporting that utilizes a combination of both static and dynamic analysis in order to help

guide users through constructing useful bug reports by automatically suggesting steps for

reproduction and including contextual information like screenshots.
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2.5.5 Mobile Testing Services

Due to the sheer number of different technical challenges associated with automated input

generation, and the typically high time-cost of manually writing or recording test scripts

for mobile apps, Mobile Testing Services have become a popular alternative that utilize

groups of human testing experts, or more general crowd-based workers. This allows the

cost of test case generation or bug finding to be amortized across a larger group of workers

compensated for their time devoted to testing. There are typically four different types

of testing services offered including: (i) Traditional Crowd-Sourced Functional Testing

[70, 97, 36, 37, 67, 3, 23, 102, 104, 100, 93, 59, 30, 105, 58, 27] which employs both experts

and non-experts from around the world to submit bug reports relating to problems in apps,

and who are compensated for the number of true bugs that are uncovered; (ii) Usability

testing [36, 97, 37, 67, 105, 3, 102, 59, 30, 27] aims to the measure the UX/UI design of an

app with a focus on ease of use and intuitiveness; (iii) Security Testing [97, 23, 37, 3, 20],

which aims to uncover any design flaws in an app that might compromise user security,

and (iv) Localization Testing [36, 67, 3, 23], which aims to ensure that an app will function

properly in different geographic regions with different languages across the world.

While these services do partially address some of the broader challenges of mobile

testing such as fragmentation and support for limited testing goals, there are still several

notable remaining challenges. None of these frameworks are open source or free, restrict-

ing developers from freely collecting critical usage data from the field which could improve

general challenges such as test flakiness or history agnosticism by modeling collected infor-

mation. Additionally, due to the time cost required of such crowdsourced services, they are

typically not scalable in agile development scenarios where an app is constantly changing

and released to customers.

In this section, rather than describing each service on its own, we summarize the

benefits and challenges offered by each sub-type of service offered by popular companies.
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2.5.5.1 CrowdSourced Functional Testing

Crowdsourced functional testing is the most popular type of service offered with most

companies offering some form of the service [70, 97, 36, 37, 67, 3, 23, 102, 104, 100, 93, 59,

30, 105, 58, 27]. This type of service typically falls into one of two categories, expert-based

or non-expert based. Expert-based testing services [97, 36, 37, 67, 3, 23, 102, 104, 105]

typically employ developers or testers with general knowledge of the software testing and

validation process, who are able to accurately report useful bug reports to developers before

an app release. Other services recruit what development teams would generally classify as

end-users [70, 100, 59, 30, 20, 58, 27] who may use the app in a fashion more representative

of how a general population may use it, however because they are less experienced in the

software testing process, may report many incomplete or unhelpful bug reports. Challenges

presented by such services include dealing with large numbers of incomplete or duplicate

bug reports submitted by testers, and limited communication or dialogue with testers after

bug reports have been submitted.

2.5.5.2 Usability Testing

Testing the user experience and GUI-design is a particularly important facet of mobile app

testing in general given the highly tactile and event driven nature of mobile platforms.

Poor user experience can lead to decreased market share, or users abandoning an app in

favor of similar alternatives. Mobile Usability Testing services are offered in a variety of

forms. Some firms that offer these types of testing services will employ UX and design

experts who offer feedback similar to a consultant [36, 97, 37, 67, 105]. Other services allow

for one-on-one live conversations between developers and end-users or UX experts, that

allow for feedback in the from of conversations or semi-structured interviews[58]. Other

services and tools [3, 102, 59, 30, 105, 27] allow for recording of user sessions or UX specific

crowd feedback of apps, including A/B testing, that allow development and design teams

to understand user tendencies, and asses the design of their app accordingly.
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2.5.5.3 Security Testing

In an age where privacy and security is at the forefront of many users minds given uncertain

political climates and emerging legislation governing consumer electronics privacy, security

testing and assurance will likely become a higher prioritized quality attribute for mobile

developers. Several service offer solutions for security testing [97, 23], generally in the form

of "security auditing" that examines different aspects of mobile app security including

Improper platform usage, insecure communication between apps or the web, or potential

authentication vulnerabilities. Additionally, services can employ “ethical hackers" that

attempt to compromise an app and provide solutions to fix found vulnerabilities [37, 3].

Other services provide security features through APIs such as VPN or authentication

services [20].

2.5.5.4 Localization Testing

Given the relatively low-cost of mobile smart devices, and the rapid rate at which they are

gaining adoption across the world, it is unsurprising that when developing an app, it is

important for developers to deploy their app to international marketplaces and ensure that

it functions as expected across different locales. Testing of this type is typically referred to

as "Localization Testing" and typically ensures app compatibility across different languages

in terms of appearance and usability. Additionally, these services can provide insight into

customs or tendencies specific to different locales so that developers can adjust features

or functionalities of their app to cater accordingly. Several companies offer this service in

the form of global groups of crowd-testers who are multilingual and accustomed to local

tendencies of users [36, 67, 3, 23].

2.5.6 Cloud-Based Testing Frameworks

Due in part to the success of cloud providers who offer Software-as-a-Service (SaaS) prod-

ucts, several companies have launched Cloud-Based Mobile Testing Services [113, 101, 85,
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98] that allow developers to access hundreds of physical mobile devices arranged in “device

farms" connected to cloud servers. Additionally, these services offer integration into devel-

opment workflows such as running GUI-tests in a continuous integration fashion. This can

help developers who have the means to pay for the often expensive services the ability to

overcome the device fragmentation problem. Unfortunately, none of these services is open

source and thus they are often out of reach for independent mobile developers or small

teams.

Xamarin Test Cloud [113] integrates tightly into Xamarin’s suite of mobile development

and testing tools and allows for the testing of applications on a large number of popular

physical devices. It also supports playback of tests created in Xamarin’s integrated de-

velopment environment. However, it does not allow for manual control of cloud-based

physical devices. Amazon Web Services’ (AWS) device farm [29] is a similar offering, al-

lowing developers direct access and manual control over cloud devices as well as automated

fuzz testing with error reports. Google Firebase [47] offers remote execution of espresso

and uiautomator test cases on physical devices attached to cloud servers. Testgrid [101]

offers a large variety of end-to-end tools for effective mobile testing, ranging from a Test

Case Writer, automated exploration, and a cloud device farm. Keynote [57] offers services

that allow for both testing and monitoring of a mobile app, offering manual control of

cloud-based physical devices. SauceLabs [85] and Perfecto Mobile [] offer similar testing

and data aggregation services that allow for remote testing of mobile apps on real devices,

and aggregated information relating to the executed tests. TestDroid [98] offers a variety of

services ranging from remote test script execution to mobile-game testing based on Image

Recognition techniques. While these services tend to exhibit attractive features, few offer

easy to use, open source solutions accessible to independent developers.

2.5.7 Device Streaming Tools

Tools for Device Streaming can facilitate the mobile testing process by allowing a devel-

oper to mirror a connected device to their personal PC, or access devices remotely over the
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internet. These tools can support use cases such as streaming secured devices to crowd-

sourced beta testers, or providing Q/A teams with access to a private set of physical or

virtual devices hosted on company premises. They range in capabilities from allowing a

connected device to be streamed to a local PC (Vysor [109]) to open source frameworks

and paid services that can stream devices over the internet with low-latency (OpenSTF

[90] & Appetize.io [21]) These tools, particularly OpenSTF, could support a wide range

of important research topics that rely on collecting user data during controlled studies or

investigations or tools related to crowdsourced testing.
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Chapter 3

Automatically Reporting GUI Design

Violations for Mobile Applications

Intuitive, elegant graphical user interfaces (GUIs) embodying effective user experience

(UX) and user interface (UI) design principles are essential to the success of mobile apps.

In fact, one may argue that these design principles are largely responsible for launching the

modern mobile platforms that have become so popular today. Apple Inc’s launch of the

iPhone in 2007 revolutionized the mobile handset industry (heavily influencing derivative

platforms including Android) and largely centered on an elegant, well-thought out UX

experience, putting multitouch gestures and a natural GUI at the forefront of the platform

experience. A decade later, the most successful mobile apps on today’s highly competitive

app stores (e.g., Google Play [50] and Apple’s App Store [24]) are those that embrace this

focus on ease of use, and blend intuitive user experiences with beautiful interfaces. In fact,

given the high number of apps in today’s marketplaces that perform remarkably similar

functions [63], the design and user experience of an app are often differentiating factors,

leading to either success or failure [112].

Given the importance of a proper user interface and user experience for mobile apps,

development usually begins with UI/UX design experts creating highly detailed mock-ups

of app screens using one of several different prototyping techniques [254, 187]. The most
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popular of these techniques and the focus of this project, is referred to as mock-up driven

development where a designer (or group of designers) creates pixel perfect representations

of app UIs using software such as Sketch [86] or PhotoShop [4]. Once the design artifacts (or

mock-ups) are completed, they are handed off to development teams who are responsible for

implementing the designs in code for a target platform. In order for the design envisioned

by the UI/UX experts (who carry domain knowledge that front-end developers may lack)

to be properly transferred to users, an accurate translation of the mock-up to code is

essential.

Yet, implementing an intuitive and visually appealing UI in code is well-known to be

a challenging undertaking [259, 231, 232]. As such, many mobile development platforms

such as Apple’s Xcode IDE and Android Studio include powerful built-in GUI editors.

Despite the ease of use such technologies are intended to facilitate, a controlled study

has illustrated that such interface builders can be difficult to operate, with users prone to

introducing bugs [274]. Because apps under development are prone to errors in their GUIs,

this typically results in an iterative workflow where UI/UX teams will frequently manually

audit app implementations during the development cycle and report any violations to the

engineering team who then aims to fix them. This incredibly time consuming back-and-

forth process is further complicated by several underlying challenges specific to mobile

app development including: (i) continuous pressure for frequent releases [170, 178], (ii)

the need to address user reviews quickly to improve app quality [237, 238, 144, 152], (iii)

frequent platform updates and API instability [125, 200, 202, 215] including changes in

UI/UX design paradigms inducing the need for GUI re-designs (e.g., material design), and

(iv) the need for custom components and layouts to support complex design mock-ups.

Thus, there is a practical need for effective automated support to improve the process of

detecting and reporting design violations and providing developers with more accurate and

actionable information.

The difficulty that developers experience in creating effective GUIs stems from the

need to manually bridge a staggering abstraction gap that involves reasoning concise and
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accurate UI code from pixel-based graphical representations of GUIs. The GUI errors that

are introduced when attempting to bridge this gap are known in literature as presentation

failures. Presentation failures have been defined in the context of web applications in

previous work as “a discrepancy between the actual appearance of a webpage [or mobile

app screen] and its intended appearance" [210]. We take previous innovative work that

aims to detect presentation errors in web applications [209, 210, 242, 143] as motivation to

design equally effective approaches in the domain of mobile apps. Presentation failures are

typically comprised of several visual symptoms or specific mismatches between visual facets

of the intended GUI design and the implementation of those GUI-components [210] in an

app. These visual symptoms can vary in type and frequency depending on the domain

(e.g., web vs. mobile), and in the context of mock-up driven development, we define them

as design violations.

In this chapter, we present an approach, called Gvt (Gui Verification sysTem), devel-

oped in close collaboration with Huawei. Our approach is capable of automated, precise

reporting of the design violations that induce presentation failures between an app mock-

up and its implementation. Our technique decodes the hierarchal structure present in both

mockups and dynamic representations of app GUIs, effectively matching the corresponding

components. Gvt then uses a combination of computer vision techniques to accurately

detect design violations. Finally, Gvt constructs a report containing screenshots, links

to static code information (if code is provided ), and precise descriptions of design viola-

tions. GVT was developed to be practical and scalable, was built in close collaboration with

the UI/UX teams at Huawei, and is currently in use by over one-thousand designers and

engineers at the company.

To evaluate the performance and usefulness of Gvt we conducted three complementary

studies. First, we empirically validated Gvt’s performance by measuring the precision and

recall of detecting synthetically injected design violations in popular open source apps.

Second, we conducted a user study to measure the usefulness of our tool, comparing

Gvt’s ability to detect and report design violations to the ability of developers, while also
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measuring the perceived utility of Gvt reports. Finally, to measure the applicability of

our approach in an industrial context, we present the results of an industrial case study

including: (i) findings from a survey sent to industrial developers and designers who use

Gvt in their development workflow and (ii) semi-structured interviews with both design

and development team managers about the impact of the tool. Our findings from this

wide-ranging evaluation include the following key points: (i) In our study using synthetic

violations Gvt is able to detect design violations with an overall precision of 98% and recall

of 96%; (ii) Gvt is able to outperform developers with Android development experience

in identifying design violations while taking less time; (iii) developers generally found

Gvt’s reports useful for quickly identifying different types of design violations; and (iv)

Gvt had a meaningful impact on the design and development of mobile apps for our

industrial partner, contributing to increased UI/UX quality.

This chapter’s contributions can be summarized as follows:

• We formalize the concepts of presentation failures and design violations for mock-up

driven development in the domain of mobile apps, and empirically derive common

types of design violations in a study on an industrial dataset;

• We present a novel approach for detecting and reporting these violations embodied in

a tool called Gvt that uses hierarchal representations of an app’s GUI and computer

vision techniques to detect and accurately report design violations;

• We conduct a wide-ranging evaluation of the Gvt studying its performance, useful-

ness, and industrial applicability ;

• We include an online appendix [52] with examples of reports generated by Gvt and

our evaluation dataset. Additionally, we make the Gvt tool and code available upon

request.
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3.1 Problem Statement & Origin

In this section we formalize the problem of detecting design violations in GUIs of mo-

bile apps and discuss the origin of the problem rooted in industrial mobile app design &

development.

3.1.1 Problem Statement

At a high level, our goal is to develop an automated approach capable of detecting, classi-

fying, and accurately describing design violations that exist for a single screen of a mobile

app to help developers resolve presentation failures more effectively. In this section we for-

malize this scenario in order to allow for an accurate description and scope of our proposed

approach. While this section focuses on concepts, Sec. 3.3 focuses on the implementation

details.

3.1.1.1 Problem Statement

Taking into consideration the definitions introduced in Chapter 2.2, we can define mthe

problem we aim to solve in this project more formally: Given two screens Sm and Sr

corresponding to the mock-up and implementation screens of a mobile application, we aim

to detect and describe the set of presentation failures {PF1, PF2, ...PFi} 2 {Sm, Sr}. We

aim to report all design violations on corresponding GC pairs:

{DV1, DV2, ...DVk} 2

{{GCi1m, GCj1r}, {GCi2m, GCj2r}, ...{GCixm, GCjyr}}
(3.1)

3.1.2 Industrial Problem Origins

A typical industrial mobile development process includes the following steps (as confirmed

by our collaborators at Huawei): (i) First a team of designers creates highly detailed

mockups of an app’s screens using the Sketch [86] (or similar) prototyping software. These

mock-ups are typically “pixel-perfect" representations of the app for a given screen dimen-
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sion; (ii) The mock-ups are then handed off to developers in the form of exported images

with designer added annotations stipulating spatial information and constraints. Devel-

opers use this information to implement representations of the GUIs for Android using

a combination of Java and xml; (iii) Next, after the initial version of the app has been

implemented, compiled Android Application Package(s) (i.e., apks) are sent back to the

designers who then install these apps on target devices, generate screenshots for the screens

in question, and manually search for discrepancies compared to the original mock-ups; (iv)

Once the set of violations are identified, these are communicated back to the developers

via textual descriptions and annotated screenshots at the cost of significant manual effort

from the design teams. Developers must then identify and resolve the DVs using this

information. The process is often repeated in several iterations causing substantial delays

in the development process.

The goal of our work is to drastically improve this iterative process by: (i) automating

the identification of DVs on the screens of mobile apps - saving both the design and

development teams time and effort, and (ii) providing highly accurate information to the

developers regarding these DVs in the form of detailed reports - in order to reduce their

effort in resolving the problem.

3.2 Design Violations in Practice

In order to gain a better understanding of the types of DVs that occur in mobile apps in

practice, we conducted a study using a dataset from Huawei. While there do exist a small

collection of taxonomies related to visual GUI defects [192, 172] and faults in mobile apps

[169, 201], we chose to conduct a contextualized study with our industrial partner for the

following reasons: (i) existing taxonomies for visual GUI defects were not detailed enough,

containing only general faults (e.g., “incorrect appearance”), (ii) existing fault taxonomies

for mobile apps either did not contain visual GUI faults or were not complete, and (iii)

we wanted to derive a contextualized DV taxonomy for apps developed at Huawei. The
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findings from this study underscore the existence and importance of the problem that our

approach aims to solve in this context. Due to an NDA, we are not able to share the

dataset or highlight specific examples, in order to avoid revealing information about future

products at Huawei. However, we present aggregate results in this section.

3.2.1 Study Setting & Methodology

The goal of this study is to derive a taxonomy of the different types of DVs and examine

the distribution of these types induced during the mobile app development process. The

context of this study is comprised of a set of 71 representative mobile app mock-up and

implementation screen pairs from more than 12 different internal apps, annotated by design

teams from our industrial partner to highlight specific instances of resolved DVs. This set

of screen pairs was specifically selected by the industrial design team to be representative

both in terms of diversity and distribution of violations that typically occur during the

development process.

In order to develop a taxonomy and distribution of the violations present in this dataset,

we implement an open coding methodology consistent with constructivist grounded theory

[138]. Following the advice of recent work within the SE community [256], we stipulate our

specific implementation of this type of grounded theory while discussing our deviations from

the methods in the literature. We derived our implementation from the material discussed

in [138] involving the following steps: (i) establishing a research problem and questions,

(ii) data-collection and initial coding, and (iii) focused coding. We excluded other steps

described in [138], such as memoing because we were building a taxonomy of labels, and

seeking new specific data due to our NDA limiting the data that could be shared. The study

addressed the following research question: What are the different types and distributions

of GUI design violations that occur during industrial mobile app development processes?

During the initial coding process, three of the authors were sent the full set of 71 screen

pairs and were asked to code four pieces of information for each example: (i) a general

category for the violation, (ii) a specific description of the violation, (iii) the severity of the
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Figure 3.1: Distribution of Different Types of Industrial DVs

violation (if applicable), and (iv) the Android GC types affected (e.g., button). Finally,

we performed a second round of coding that combined the concepts of focused and axial

coding as described in [138]. During this round two of the authors merged the responses

from all three types of coding information where at least two of the three coders agreed.

During this phase similar coding labels were merged (e.g., “layout violation" vs. “spatial

violation"), conflicts were resolved, two screen pairs were discarded due to ambiguity, and

cohesive categories and subcategories were formed. The author agreement for each of the

four types of tags is as follows: (i) general violation category (100%), (ii) specific violation

description (96%), (iii) violation severity (100%), and (iv) affected GC types (84.5%).

3.2.2 Grounded Theory Study Results

Our study revealed three major categories of design violations, each with several specific

subtypes. We forgo detailed descriptions and examples of violations due to space limi-

tations, but provide examples in our online appendix [52]. The derived categories and

subcategories of DVs, and their distributions, are illustrated in Fig. 3.1. Overall 82 DVs

were identified across the 71 unique screen pairs considered in our study. The most preva-
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lent category of DVs in our taxonomy are Layout Violations (⇡ 40%), which concern either

a translation of a component in the x or y direction or a change in the component size, with

translations being more common. The second most prevalent category (⇡ 36%) consists

of Resource Violations, which concern missing components, extra components, color dif-

ferences, and image differences. Finally, about one-quarter (⇡ 24%) of these violations are

Text Violations, which concern differences in components that display text. We observed

that violations typically only surfaced for “leaf-level" components in the GUI hierarchy.

That is, violations typically only affected atomic components & not containers or back-

grounds. Only 5/82 of examined violations (⇡ 6%) affected backgrounds or containers.

Even in these few cases, the violations also affected “leaf-level" components.

The different types of violations correspond to different inequalities between the at-

tribute tuples of corresponding GUI-components defined in Sec. 2.2. This taxonomy shows

that designers are charged with identifying several different types of design violations, a

daunting task, particularly for hundreds of screens across several apps.

3.3 The Gvt Approach

3.3.1 Approach Overview

The workflow of Gvt (Fig. 3.2) proceeds in three stages: First in the GUI-Collection

Stage, GUI-related information from both mock-ups and running apps is collected; Next,

in the GUI-Comprehension Stage leaf-level GCs are parsed from the trees and a KNN-

based algorithm is used to match corresponding GCs using spatial information; Finally, in

the Design Violation Detection Stage DVs are detected using a combination of methods

that leverage spatial GC information and computer vision techniques.
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3.3.2 Stage 1: Mock-Up GUI Collection

3.3.2.1 Mock-Up GUI Collection

Software UI/UX design professionals typically use professional-grade image editing soft-

ware (such as Photoshop [4] or Sketch [86]) to create their mock-ups. Designers employed

by our industrial partner utilize the Sketch design software. Sketch is popular among mo-

bile UI/UX designers due to its simple but powerful features, ease of use, and large library

of extensions [87]. When using these tools designers often construct graphical representa-

tions of smartphone applications by placing objects representing GCs (which we refer to

as mock-up GCs) on a canvas (representing a Screen S ) that matches the typical display

size of a target device. In order to capture information encoded in these mock-ups we

decided to leverage an export format that was already in use by our industrial partner, an

open-source Sketch extension called Marketch [60] that exports mock-ups as an html page

including a screenshot and JavaScript file.

Thus, as input from the mock-up, Gvt receives a screenshot (to be used later in the

Design Violation Detection Phase) and a directory containing the Marketch information.

The JavaScript file contains several pieces of information for each mock-up GC including,

(i) the location of the mock-up GC on the canvas, (ii) size of the bounding box, and (iii)
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the text/font displayed by the mock-up GC (if any). As shown in Figure 3.2-1.1 , we built

a parser to read this information. However, it should be noted that our approach is not

tightly coupled to Sketch or Marketch files.1 After the Marketch files have been parsed,

Gvt examines the extracted spatial information to build a GC hierarchy. The result can

be logically represented as a rooted tree where leaf nodes contain the atomic UI-elements

with which a typical user might interact. Non-leaf node components typically represent

containers, that form logical groupings of leaf node components and other containers. In

certain cases, our approximation of using mock-up GCs to represent implementation GCs

may not hold. For instance, an icon which should be represented as a single GC may

consist of several mock-up GCs representing parts of the icon. Gvt handles such cases in

the GUI-Comprehension stage.

3.3.2.2 Dynamic App GUI-Collection

In order to compare the the mock-up of an app to its implementation Gvt must ex-

tract GUI-related meta-data from a running Android app. Gvt is able to use Android’s

uiautomator framework [14] intended for UI testing to capture xml files and screenshots for

a target screen of an app running on a physical device or emulator. Each uiautomator

file contains information related to the runtime GUI-hierarchy of the target app, in-

cluding the following attributes utilized by Gvt: (i) The Android component type (e.g.,

android.widget.ImageButton), (ii) the location on the screen, (iii) the size of the bounding

box, (iv) text displayed, (v) a developer assigned id. The hierarchal structure of compo-

nents is encoded directly in the uiautomator file, and thus we built a parser to extract

GUI-hierarchy using this information directly (see Fig. 3.2-1.2 ).
1
Similar information regarding mock-up GCs can be parsed from the html or Scalable Vector Graphics

(.svg) format exported by other tools such as Photoshop[4].
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3.3.3 Stage 2: GUI Comprehension

In order for Gvt to find visual discrepancies between components existing in the mock-

up and implementation of an app, it must determine which components correspond to

one another. Unfortunately, the GUI-hierarchies parsed from both the Marketch, and

uiautomator files tend to differ dramatically due to several factors, making tree-based

GC matching difficult. First, since the hierarchy constructed using the Marketch files

is generated using information from the Sketch mock-up of app, it is using information

derived from designers. While designers have tremendous expertise in constructing visual

representations of apps, they typically do not take the time to construct programmatically-

oriented groupings of components. Furthermore, designers are typically not aware of the

correct Android component types that should be attributed to different objects in a mock-

up. Second, the uiautomator representation of the GUI-hierarchy contains the runtime

hierarchal structure of GCs and correct GC types. This tree is typically far more complex,

containing several levels of containers grouping GCs together, which is required for the

responsive layouts typical of mobile apps.

To overcome this challenge, Gvt instead forms two collections of leaf-node components

from both the mock-up and implementation GUI-hierarchies (Fig. 3.2- 2 ), as this infor-

mation can be easily extracted. As we reported in Sec. 3.2, the vast majority of DVs

affects leaf-node components. Once the leaf node components have been extracted from

each hierarchy, GVT employs a K-Nearest-Neighbors (KNN) algorithm utilizing a similar-

ity function based on the location and size of the GCs in order to perform matching. In

this setting, an input leaf-node component from the mock-up would be matched against it

closest (e.g., K=1) neighbor from the implementation based upon the following similarity

function:

� = (|xm � xr|+ |ym � yr|+ |wm � wr|+ |hm � hr|) (3.2)

Where � is a similarity score where smaller values represent closer matches. The x, y, w

and h variables correspond to the x & y location of the top and left-hand borders of
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the bounding box, and the height and width of the bounding boxes for the mock-up

and implementation GCs respectively. The result is a list of GCs that should logically

correspond to one another (corresponding GCs).

It is possible that there exist instances of missing or extraneous components between

the mock-up and implementation. To identify these cases, our KNN algorithm employs a

GC-Matching Threshold (MT ). If the similarity score of the nearest neighbor match for a

given input mock-up GC exceeds this threshold, it is not matched with any component,

and will be reported as a missing GC violation. If there are unmatched GCs from the

implementation, they are later reported as extraneous GC violations.

Also, there may be cases where a logical GC in the implementation is represented

as small group of mock-up GCs. Gvt is able to handle these cases using the similarity

function outlined above. For each mock-up GC , Gvt checks whether the neighboring GCs

in the mockup are closer than the closest corresponding GC in the implementation. If this

is the case, they are merged, with the process repeating until a logical GUI-component is

represented.

3.3.4 Stage 3: Design Violation Detection

In the Design Violation Detection stage of the Gvt workflow, the approach uses a combi-

nation of computer vision techniques and heuristic checking in order to effectively detect

the different categories of DVs derived in our taxonomy presented in Section 3.2.

3.3.4.1 Perceptual Image Differencing

In order to determine corresponding GCs with visual discrepancies Gvt uses a technique

called Perceptual Image Differencing (PID) [270] that operates upon the mock-up and im-

plementation screenshots. PID utilizes a model of the human visual system to compare

two images and detect visual differences, and has been used to successfully identify visual

discrepancies in web applications in previous work [209, 210]. We use this algorithm in

conjunction with the GC information derived in the previous steps of Gvt to achieve ac-
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curate violation detection. For a full description of the algorithm, we refer readers to [270].

The PID algorithm uses several adjustable parameters including: F which corresponds

to the visual field of view in degrees, L which indicates the luminance or brightness of

the image, and C which adjusts sensitivity to color differences. The values used in our

implementation are stipulated in Section 3.3.5.

The output of the PID algorithm is a single difference image (Fig. 3.2- 3 ) containing

difference pixels, which are pixels considered to be perceptually different between the two

images. After processing the difference image generated by PID, Gvt extracts the imple-

mentation bounding box for each corresponding pair of GCs, and overlays the box on top of

the generated difference image. It then calculates the number of difference pixels contained

within the bounding box where higher numbers of difference pixels indicate potential visual

discrepancies. Thus, Gvt collects all “suspicious" GC pairs with a % of difference pixels

higher than a Difference Threshold DT . This set of suspicious components is then passed

to the Violation Manager (Fig. 3.2- 3 ) so that specific instances of DVs can be detected.

3.3.4.2 Detecting Layout Violations

The first general category of DVs that Gvt detects are Layout Violations. According the

taxonomy derived in Sec. 3.2 there are six specific layout DV categories that relate to

two component properties: (i) screen location (i.e., <x,y> position) and (ii) size (i.e.,

<h,w> of the GC bounding box). Gvt first checks for the three types of translation DVs

utilizing a heuristic that measures the distance from the top and left-hand edges of matched

components. If the difference between the components in either the x or y dimension is

greater than a Layout Threshold (LT ), then these components are reported as a Layout

DV . Using the LT avoids trivial location discrepancies within design tolerances being

reported as violations, and can be set by a designer or developer using the tool. When

detecting the three types of size DVs in the derived design violation taxonomy, Gvt utilizes

a heuristic that compares the width and height of the bounding boxes of corresponding
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components. If the width or height of the bounding boxes differ by more than the LT ,

then a layout violation is reported.

3.3.4.3 Detecting Text Violations

The next general type of DV that Gvt detects are Text Violations, of which there are

three specific types: (i) Font Color, (ii) Font Style, and (iii) Incorrect Text Content. These

detection strategies are only applied to pairs of text-based components as determined by

uiautomator information. To detect font color violations, Gvt extracts cropped images

for each pair of suspicious text components by cropping the mock-up and implementation

screenshots according to the component’s respective bounding boxes. Next, Color Quanti-

zation (CQ) is applied to accumulate instances of all unique RGB values expressed in the

component-specific images. This quantization information is then used to construct a Color

Histogram (CH) (Fig. 3.2- 3 ). Gvt computes the normalized Euclidean distance between

the extracted Color Histograms for the corresponding GC pairs, and if the Histograms do

not match within a Color Threshold (CT) then a Font-Color DV is reported and the top-3

colors (i.e, centroids) from each CH are recorded in the Gvt report. Likewise, if the colors

do match, then the PID discrepancy identified earlier is due to the Font-Style changing

(provided no existing layout DVs), and thus a Font-Style Violation is reported. Finally, to

detect incorrect text content, Gvt utilizes the textual information, preprocessed to remove

whitespace and normalize letter cases, and performs a string comparison. If the strings do

not match, then an Incorrect Text Content DV is reported.

3.3.4.4 Detecting Resource Violations

Gvt is able to detect the following resource DVs: (i) missing component, (ii) extraneous

component, (iii) image color, (iv) incorrect images, and (v) component shape. The de-

tection and distinction between Incorrect Image DVs and Image Color DVs requires an

analysis that combines two different computer vision techniques. To perform this analysis,

cropped images from the mock-up and implementation screenshots according to corre-
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sponding GCs respective bounding boxes are extracted. The goal of this analysis is to

determine when the content of image-based GCs differ, as opposed to only the colors of

the GCs differing. To accomplish this, Gvt leverages PID applied to extracted GC im-

ages converted to a binary color space (B-PID) in order to detect differences in content

and CQ and CH analysis to determine differences in color (Sec. 3.3.4.3). To perform the

B-PID procedure, cropped GC images are converted to a binary color space by extracting

pixel intensities, and then applying a binary transformation to the intensity values (e.g.,

converting the images to intensity independent black & white). Then PID is run on the

color-neutral version of these images. If the images differ by more than an Image Differ-

ence Threshold (IDT ), then an Incorrect Image DV (which encompasses the Component

Shape DV ) is reported. If the component passes the binary PID check, then Gvt utilizes

the same CQ and CH processing technique described above to detect image color DVs.

Missing and extraneous components are detected as described in Sec. 3.3.3

3.3.4.5 Generating Violation Reports

In order to provide developers and designers with effective information regarding the de-

tected DVs, Gvt generates an html report that, for each detected violation contains the

following: (i) a natural language description of the design violation(s), (ii) an annotated

screenshot of the app implementation, with the affected GUI-component highlighted, (iii)

cropped screenshots of the affected GCs from both the design and implementation screen-

shots, (iv) links to affected lines of application source code, (v) color information extracted

from the CH for GCs identified to have color mismatches, and (vi) the difference image

generated by PID. The source code links are generated by matching the ids extracted

from the uiautomator information back to their declarations in the layout xml files in the

source code (e.g., those located in the /res/ directory of an app’s source code). We provide

examples of generated reports in our online appendix [52].
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3.3.5 Industrial Collaboration Methodology

Our implementation of Gvt was developed in Java with a Swing GUI. In addition to

running the Gvt analysis the tool executable allows for one-click capture of uiautomator

files and screenshots from a connected device or emulator. Several acceptance tests of mock-

up/implementation screen pairs with pre-existing violations from apps under development

within our industrial partner were used to guide the development of the tool. 12 Periodic

releases of binaries for both Windows and Mac were made to deploy the tool to designers

and developers within the company. The authors of this paper held regular bi-weekly

meetings with members of the design and development teams to plan features and collect

feedback.

Using the acceptance tests and feedback from our collaborators we tuned the various

thresholds and parameters of the tool for best performance. The PID algorithm settings

were tuned for sensitivity to capture subtle visual inconsistencies which are then later

filtered through additional CV techniques: F was set to 45�, L was set to 100cdm2, and C

was set to 1. The GC -Matching Threshold (MC) was set to 1/8th the screen width of a

target device; the DT for determining suspicious GCs was set to 20%; The LT was set to 5

pixels (based on designer preference); the CT which determines the degree to which colors

must match for color-based DVs was set to 85%; and finally, the IDT was set to 20%.

Gvt allows for a user to change these settings if desired, additionally users are capable of

defining areas of dynamic content (e.g., loaded from network activity), which should be

ignored by the Gvt analysis.

3.4 Design of the Experiments

To evaluate Gvt’s performance, usefulness and applicability, we perform three complimen-

tary studies answering the following RQs:
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• RQ1: How well does Gvt perform in terms of detecting and classifying design vio-

lations?

• RQ2: What utility can Gvt provide from the viewpoint of Android developers?

• RQ3: What is the industrial applicability of Gvt in terms of improving the mobile

application development workflow?

RQ1 and RQ2 focus on quantitatively measuring the performance of Gvt and the utility

it provides to developers through a controlled empirical and a user study respectively. RQ3

reports the results of a survey and semi-structured interviews with our collaborators aimed

at investigating the industrial applicability of Gvt .

3.4.1 Study 1: Gvt Effectiveness & Performance

The goal of the first study is to quantitatively measure Gvt in terms of its precision and

recall in both detecting and classifying DVs.

3.4.1.1 Study Context

To carry out a controlled quantitative study, we manually reverse engineered Sketch mock-

ups for ten screens for eight of the most popular apps on Google Play. To derive this set,

we downloaded the top-10 apps from each category on the Google-Play store removing the

various categories corresponding to games (as these have non-standard GUI-components

that Gvt does not support). We then randomly sampled one app from each of the re-

maining 33 categories, eliminating duplicates (since apps can belong to more than one

category). We then manually collected screenshots and uiautomator files from two screens

for each application using a Nexus 5, attempting to capture the “main” screen that a user

would typically interact with, and one secondary screen. Using the uiautomator files, we

generated cropped screenshots of all the leaf nodes components for each screen of the app.

From these we were able generate 10 screens from 8 applications that successfully ran

through Gvt without any reported violations.
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3.4.1.2 Synthetic DV Injection

With a set of correct mock-ups corresponding to implementation screens in an app, we

needed a suitable method to introduce DVs into our subjects. To this end, we constructed

a synthetic DV injection tool that modifies the uiautomator xml files and corresponding

screenshots in order to introduce design violations from our taxonomy presented in Sec.

3.2. The tool is composed of two components: (i) an XML Parser that reads and extracts

components from the screen, then (ii) a Violation Generator that randomly selects com-

ponents and injects synthetic violations. We implemented injection for the following types

of DVs:

Location Violation: The component is moved either horizontally, vertically, or in both

directions within the same container. However, the maximum distance from the original

point is limited by a quarter of the width of the screen size. This was based on the severity

of Layout Violations in our study described in Section 3.2. In order to generate the image

we cropped the component and moved it to the new location replacing all the original

pixels by the most prominent color from the surroundings in the original location.

Size Violation: The component size either increases or decreases by 20% of the original

size. For instances where the component size decreases, we replaced all the pixels by the

most prominent color from the surroundings of the original size.

Missing Component Violation: This violation removes a leaf component from the

screen, replacing the original pixels by the most prominent color from the surrounding

background.

Image Violation: We perturb 40% of the pixels in an image by randomly generating an

RGB value for the pixels affected.

Image Color Violation: This rule perturbs the color of an image by shifting the hue of

image colors by 30°.

Component Color Violation: This uses the same process as for Image Color Violations

but we change the color by 180°.
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Font Violation: This violation randomly selects a font from the set of: Arial, Comic

Sans MS, Courier, Roboto, or Times Roman and applies it to a TextView component.

Font Color Violation: changes the text color of a TextView component. We extracted

the text color using CH analysis, then we changed the color using same strategy as for

Image Color Violations.

3.4.1.3 Study Methodology

In injecting the synthetic faults, we took several measures to simulate the creation of

realistic faults. First, we delineated 200 different types of design violations according to

the distribution defined in our DV taxonomy in Sec. 3.2. We then created a pool of 100

screens by creating random copies of the both the uiautomator xml files and screenshots

from our initial set of 10 screens. We then used the synthetic DV injection tool to seed faults

into the pool of 100 screens according to the following criteria: (i) No screen can contain

more than 3 injected DVs, (ii) each GC should have a maximum of 1 DV injected, and (iii)

Each screen must have at least 1 injected DV . After the DVs were seeded, each of the 100

screens and 200 DVs were manually inspected for correctness. Due to the random nature

of the tool, a small number of erroneous DVs were excluded and regenerated during this

process (e.g., color perturbed to perceptually similar color.). The breakdown of injected

DVs is shown in Figure 3.3, and the full dataset with description is included in our online

appendix [52].

Once the final set of screens with injected violations was derived, we ran Gvt across

these subjects and measured four metrics: (i) detection precision (DP ), (ii) classification

precision (CP ), (iii) recall (R), and (iv) execution time per screen (ET ). We make a

distinction between detection and classification in our dataset because it is possible that

Gvt is capable of detecting, but misclassifying a particular DV (e.g., an image color DV

misclassified as an incorrect image DV ). DP , CP and R were measured according to the

following formulas:

DP,CP =
Tp

Tp + Fp
R =

Tp

Tp + Fn
(3.3)
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where for DP , Tp represent injected design violations that were detected, and for CP ,

Tp represents injected violations that were both detected and classified correctly. In each

case Fp correspond to detected DVs that were either not injected or misclassified. For

Recall, Tp represents injected violations that were correctly detected and Fn represents

injected violations that were not detected. To collect these measures, two authors manually

examined the reports from Gvt in order to collect the metrics.

3.4.2 Study 2: Gvt Utility

Since the ultimate goal of an approach like Gvt is to improve the workflow of developers,

the goal of this second study is to measure the utility (i.e., benefit) that Gvt provides to

developers by investigating two phenomena: (i) The accuracy and effort of developers in

detecting and classifying DVs, and (ii) the perceived utility of Gvt reports in helping to

identify and resolve DVs.

3.4.2.1 Study Context

We randomly derived two sets of screens to investigate the two phenomena outlined above.

First, we randomly sampled two mutually exclusive sets of 25, and 20 screens respectively

from the 100 used in Study 1, ensuring at least one instance of each type of DV was included

in the set. This resulted in both sets of screens containing 40 design violations in total. The

correct mockup screenshot corresponding to each screen sampled from the study were also

extracted, creating pairs of “correct" mockup and “incorrect" implementation screenshots.

10 participants with at least 5 years of Android development experience were contacted

via email to participate in the survey.

3.4.2.2 Study Methodology

We created an online survey with four sections. In the first section, participants were

given background information regarding the definition of DVs, and the different types

of DVs derived in our taxonomy. In the second section, participants were asked about
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demographic information such as programming experience and education level. In the

third section, each participant was exposed to 5 mock-up/ implementation screen pairs

(displayed side by side on the survey web page) and asked to identify any observed design

violations. Descriptions of the DVs were given at the top of this page for reference. For

each screen pair, participants were presented with a dropdown menu to select a type for an

observed DV , and a text field to describe the error in more detail. For each participant, one

of the 5 mock-up screens was a control, containing no injected violations. The 25 screens

were assigned to participants such that each screen was observed by two participants and

the order of the screens presented to each participant was randomized to avoid bias. To

measure the effectiveness of participants in detecting and describing DVs, we leverage the

DP , CP and R metrics introduced in Study 1. In the fourth section, participants were

presented with two screen pairs from the second set of 20 sampled from the user study,

as well as the Gvt reports for these screens. Participants were then asked to answer 5

user-preferences (UP) and 5 user experience (UX) questions about these reports which are

presented in the following section. The UP questions were developed according to the user

experience honeycomb originally developed by Morville [229] and were posed to participants

as free form text entry questions. We forgo a discussion of the free-form question responses

due to space limitations, but we offer full anonymized participant responses in our online

appendix [52]. We derived the Likert scale-based UX questions using the SUS usability

scale by Brooke [132].

3.4.3 Study 3: Industrial Applicability of Gvt

The goal of this final study is determine industrial applicability of Gvt . To investigate

this, we worked with Huawei to collect two sources of information: (i) the results of a

survey sent to designers and developers who used Gvt in their daily development/design

workflow, and (ii) semi-structured interviews with both design and development managers

whose teams have adopted the use of Gvt.
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Figure 3.3: Study 1 - Detection Precision (DP ), Classification Precision (CP ), Recall(R)

3.4.3.1 Study Context & Methodology

We created a survey posing questions related to the applicability of Gvt to industrial

designers and developers. These questions are shown in Fig. 3.6. The semi-structured

interviews were conducted in Chinese, recorded, and then later translated. During the

interview, managers were asked to respond to four questions related to the impact and

performance of the tool in practice. We include discussions of the responses in Section 3.5

and stipulate full questions in our appendix.

3.5 Empirical Results

3.5.1 Study 1 Results: GVT Performance

The results of Study 1, are shown in Figure 3.3. This figure shows the average DP , CP ,

and R for each type of seeded violation over the 200 seeded faults and the number of

faults seeded into each category (following the distributions of our derived taxonomy) are

shown on the x-axis. Overall, these results are extremely encouraging, with the overall DP

achieving 99.4%, the average CP being 98.4%, and the average R reaching 96.5%. This

illustrates that Gvt is capable of detecting seeded faults designed to emulate both the type
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Figure 3.4: Study 2 - Developer CP, DP, and R

I found these reports unnecessarily complex

I found these reports very cumbersome to read.

I think that I would like to use these reports 
frequently for Identifying Presentation Issues

I thought these reports were very useful for 
accurately identifying Presentation Errors

These reports are easy to read/understand

SD D N A SA

Figure 3.5: Study 2 - UX Question Responses. SD=Strongly Disagree, D=Disagree,
N=Neutral, A=Agree, SA=Strongly Agree

and distribution of DVs encountered in industrial settings. While Gvt achieved at least

85% precision for each type of seeded DV , it performed worse on some types of violations

compared to others. For instance, Gvt saw its lowest precision values for the Font-Style

and Font-Color violations, typically due to the fact that the magnitude of perturbation

for the color or font type was not large enough to surpass the Color or Image Difference

Thresholds (CT & IDT ). Gvt took 36.8 mins to process and generate reports for the

set of 100 screens with injected DVs, or 22 sec per screen pair. This execution cost was

generally acceptable by our industrial collaborators.

3.5.2 Study 2 Results: GVT Utility

The DP , CP and R results, representing the Android developers ability to correctly detect

and classify DVs is shown in Figure 3.4 as box-plots across all 10 participants. Here we

found CP=DP , as when a user misclassified violations, they also did not detect them. As
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this figure shows, the Android developers generally performed much worse compared to

Gvt achieving an average CP of under ⇡ 60% and an average R of ⇡ 50%. The sources

of this performance loss for the study participants compared to Gvt was fourfold: (i)

participants tended to report minor, acceptable differences in fonts across the examples

(despite the instructions clearly stating not to report such violations); (ii) users tended

to attribute more than one DV to a single component, specifically for font style and font

color violations despite instructions to report only one; (iii) users tended to misclassify

DVs based on the provided categories (e.g., classifying a layout DV for a Text GC as

an incorrect text DV ), and (iv) participants missed reporting many of the injected DVs,

leading to the low recall numbers. These results indicate that, at the very least, developers

can struggle to both detect and classify DVs between mock-up and implementation screen

pairs, signaling the need for an automated system to check for DVs before implemented

apps are sent to a UI/UX team for auditing. This result confirms the notion that devel-

opers may not be as sensitive to small DVs in the GUI as the designers who created the

GUI specifications. Furthermore, this finding is notable, because as part of the iterative

process of resolving design violations, designers must communicate to developers DVs and

developers must recognize and understand these DVs in order to properly resolve them.

This process is often complicated due to ambiguous descriptions of DVs from designers

to developers, or developers disagreeing with designers over the existence or type of a

DV . In contrast to this fragmented process, Gvt provides clear, unambiguous reports that

facilitate communication between designers and developers.

Figure 3.5 illustrates the responses to the likert based UX questions, and the results

are quite encouraging. In general, participants found that the reports from Gvt were easy

to read, useful for identifying DVs and indicated that they would like to use the reports

for identifying DVs. Participants also indicated that the reports were not unnecessarily

complex or difficult to read. We asked the participants about their preferences for the

Gvt reports as well, asking about the most and least useful information in the reports.

Every single participant indicated that the highlighted annotations on the screenshots

72



The GVT allowed for better transfer of the 
       design from mock−ups to the implementation of the app

The GVT has helped you to reduce the time 
       required for verifying design violations.

The GVT is able to accurately report existing 
       design violations in production−quality applications

The GVT tool helped my team (design/implementation) 
       communicate with other teams (implementation/design) 

       regarding GUI design violations

Using the GUI−Verification tool (GVT) 
       helped to improve the quality of mobile 

       applications produced by industrial partner

SD D N A SA

Figure 3.6: Study 3 - Applicability Questions. SD=Strongly Disagree, D=Disagree,
N=Neutral, A=Agree, SA=Strongly Agree

in the report were the most useful element. Whereas most users tended to dislike the

PID output included at the bottom of the report, citing this information as difficult to

comprehend.

3.5.3 Study 3 Results: Industrial Applicability

The results for the applicability questions asked to 20 designers and developers who use

Gvt in their daily activities is shown in Figure 3.6. A positive outcome for each of these

statements correlates to responses indicating that developers “agree” or “strongly agree”.

The results of this study indicate a weak agreement of developers for these statements,

indicating that while Gvt is generally applicable, there are some drawbacks that prevented

developers and designers from giving the tool unequivocal support. We explore these

drawbacks by conducting semi-structured interviews.

In conducting the interviews, one of the authors asked the questions presented in Figure

3.6 to 3 managers (2 from UI/UX teams and 1 from a Front-End development team).

When asked whether Gvt contributed to an increased quality of mobile applications at

the company, all three managers tended to agree that this was the case. For instance,

one of the design managers stated, “Certainly yes. The tool is the industry’s first" and
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the other designer manager added, “When the page is more complicated, the tool is more

helpful".

When asked about the overall performance and accuracy of the tool in detecting DVs,

the manager from the implementation team admitted that the current detection perfor-

mance of the tool is good, but suggested that dynamic detection of some components may

improve it, stating, “[DVs ] can be detected pretty well... [but the tool is] not very flexi-

ble. For example, a switch component in the design is open, but the switch is off in the

implementation". He suggested that properly handling cases such as this would make the

tool more useful from a developers perspective. One of the design team managers held

a similar view stating that, “Currently, most errors are layout errors, so tool is accurate.

Static components are basically detected, [but] maybe the next extension should focus on

dynamic components." While the current version of the Gvt allows for the exclusion of

regions with dynamic components, it is clear that both design and development teams

would appreciate proper detection of DVs for dynamic components. Additionally, two of

the managers commented on the “rigidity” of the Gvt’s current interface, and explained

that a more streamlined UI would help improve its utility.

When asked about whether Gvt improved communication between the design and de-

velopment teams, the development team manager felt that while the tool has not improved

communication yet, it did have the potential to do so, “At present there is no [improvement]

but certainly there is the potential possibility." The design managers generally stated that

the tool has helped with communication, particularly in clarifying subtle DVs that may

have caused arguments between teams in the past, “If you consider the time savings on

discussion and arguments between the two teams, this tool saves us a lot of time". Another

designer indicated that the tool is helpful at describing DVs to developers who may not

be able to recognize them with the naked eye “We found that the tool can indeed detect

something that the naked eye cannot". While there are certainly further refinements that

can be made to Gvt , it is clear that the tool has begun to have a positive impact of the
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development of mobile apps, and as the tool evolves within the company, should allow for

continued improvements in quality and time saved.

3.6 Limitations & Threats to Validity

Limitations : While we have illustrated that Gvt is applicable in an industrial setting,

the tool is not without its limitations. Currently, the tool imposes lightweight restrictions

on designers creating Sketch mock-ups, chief among these being the requirement that

bounding boxes of components do not overlap. Currently, Gvt will try to resolve such

cases during the GUI-Comprehension stage using an Intersection over union (IOU) metric.

Internal Validity : While deriving the taxonomy of DVs, mistakes in classification arising

from subjectiveness may have introduced unexpected coding. To mitigate this threat we

followed a set methodology, merged coding results, and performed conflict resolution.

Construct Validity : In our initial study (Sec. 3.2), a threat to construct validity arises in

the form of the manner in which coders were exposed to presentation failures. To mitigate

this threat, designers from our industrial partner manually annotated the screen pairs in

order to clearly illustrate the affected GCs on the screen. In our evaluation of Gvt threats

arise from our method of DV injection using the synthetic fault injection tool. However,

we designed this tool to inject faults based upon both the type and distribution of faults

from our DV taxonomy to mitigate this threat.

External Validity : In our initial study related to the DV taxonomy, we utilized a dataset

from a single (albeit large) company with examples across several different applications and

screens. There is the potential that this may not generalize to other industrial mobile ap-

plication development environments and platforms or mobile app development in general.

However given the relatively consistent design paradigms of mobile apps, we expect the

categories and the sub-categories within the taxonomy to hold, although it is possible that

the distribution across these categories may vary across application development for differ-
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ent domains. In Study 3 we surveyed employees at a single (though large) company, and

findings may differ in similar studies at other companies.

3.7 Conclusion & Future Work

In the course of this project, we have formalized the problem of detecting design violations

in mobile apps, and derived a taxonomy of design violations based on a robust industrial

dataset. We presented Gvt, an approach for automatically detecting, classifying, and

reporting design violations in mobile apps, and conducted a wide ranging study that mea-

sured performance, utility, and industrial applicability of this tool. Our results indicate

that Gvt is effective in practice, offers utility for developers, and is applicable in industrial

contexts.
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Chapter 4

Machine Learning-Based

Prototyping of Graphical User

Interfaces for Mobile Apps

Most modern user-facing software applications are GUI-centric, and rely on attractive user

interfaces (UI) and intuitive user experiences (UX) to attract customers, facilitate the ef-

fective completion of computing tasks, and engage users. Software with cumbersome or

aesthetically displeasing UIs are far less likely to succeed, particularly as companies look to

differentiate their applications from competitors with similar functionality. This phenom-

ena can be readily observed in mobile application marketplaces such as the App Store [24],

or Google Play [50], where many competing applications (also known as apps) offering

similar functionality (e.g., task managers, weather apps) largely distinguish themselves via

UI/UX [112]. Thus, an important step in developing any GUI-based application is drafting

and prototyping design mock-ups, which facilitates the instantiation and experimentation

of UIs in order to evaluate or prove-out abstract design concepts. In industrial settings

with larger teams, this process is typically carried out by dedicated designers who hold do-

main specific expertise in crafting attractive, intuitive GUIs using image-editing software

such as Photoshop [4] or Sketch [86]. These teams are often responsible for expressing a
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coherent design language across the many facets of a company’s digital presence, including

websites, software applications and digital marketing materials. Some components of this

design process also tend to carry over to smaller independent development teams who prac-

tice design or prototyping processes by creating wireframes or mock-ups to judge design

ideas before committing to spending development resources implementing them. After

these initial design drafts are created it is critical that they are faithfully translated into

code in order for the end-user to experience the design and user interface in its intended

form.

This process (which often involves multiple iterations) has been shown by past work

and empirical studies to be challenging, time-consuming, and error prone [259, 231, 232,

193, 224] particularly if the design and implementation are carried out by different teams

(which is often the case in industrial settings [224]). Additionally, UI/UX teams often

practice an iterative design process, where feedback is collected regarding the effectiveness

of GUIs at early stages. Using prototypes would be preferred, as more detailed feedback

could be collected; however, with current practices and tools this is typically too costly

[189, 230]. Furthermore, past work on detecting GUI design violations in mobile apps

highlights the importance of this problem from an industrial viewpoint [224]. According to

a study conducted with Huawei, a major telecommunications company, 71 unique applica-

tion screens containing 82 design violations resulting from the company’s iterative design

and development process were empirically categorized using a grounded-theory approach.

This resulted in a taxonomy of mobile design violations spanning three major categories

and 14 subcategories and illustrates the difficulties developers can have faithfully imple-

menting GUIs for mobile apps as well as the burden that design violations introduced by

developers can place on the overarching development process.

Many fast-moving startups and fledgling companies attempting to create software pro-

totypes in order to demonstrate ideas and secure investor support would also greatly benefit

from rapid application prototyping. Rather than spending scarce time and resources on

iteratively designing and coding user interfaces, an accurate automated approach would
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likely be preferred. This would allow smaller companies to put more focus on features and

value and less on translating designs into workable application code. Given the frustrations

that front-end developers and designers face with constructing accurate GUIs, there is a

clear need for automated support.

To help mitigate the difficulty of this process, some modern IDEs, such as XCode

[115], Visual Studio [108], and Android Studio [11], offer built-in GUI editors. How-

ever, recent research suggests that using these editors to create complex, high-fidelity

GUIs is cumbersome and difficult [189], as users are prone to introducing bugs and pre-

sentation failures even for simple tasks [274]. Other commercial solutions include of-

ferings for collaborative GUI-design and for interactive previewing of designs on target

devices or browsers (displayed using a custom framework, with limited functionality)

[65, 75, 44, 61, 73, 117, 64, 43, 56, 74, 55, 28], but none offer an end-to-end solution

capable of automatically translating a mock-up into accurate native code for a target plat-

form. It is clear that an automated tool capable of even partially automating this process

could significantly reduce the burden on the design and development processes.

To help mitigate the difficulty of this process, some modern IDEs, such as XCode

[115], Visual Studio [108], and Android Studio [11], offer built-in GUI editors. How-

ever, recent research suggests that using these editors to create complex, high-fidelity

GUIs is cumbersome and difficult [189], as users are prone to introducing bugs and pre-

sentation failures even for simple tasks [274]. Other commercial solutions include of-

ferings for collaborative GUI-design and for interactive previewing of designs on target

devices or browsers (displayed using a custom framework, with limited functionality)

[65, 75, 44, 61, 73, 117, 64, 43, 56, 74, 55, 28], but none offer an end-to-end solution

capable of automatically translating a mock-up into accurate native code (with proper

component types) for a target platform. It is clear that a tool capable of even partially au-

tomating this process could significantly reduce the burden on the design and development

processes.
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Unfortunately, automating the prototyping process for GUIs is a difficult task. At

the core of this difficulty is the need to bridge a broad abstraction gap that necessitates

reasoning accurate user interface code from either pixel-based, graphical representations of

GUIs or digital design sketches. Typically, this abstraction gap is bridged by a developer’s

domain knowledge. For example, a developer is capable of recognizing discrete objects in a

mock-up that should be instantiated as components on the screen, categorizing them into

proper categories based on their intended functionalities, and arranging them in a suitable

hierarchical structure such that they display properly on a range of screen sizes. However,

even for a skilled developer, this process can be time-consuming and prone to errors [224].

Thus, it follows that an approach which automates the GUI prototyping process must

bridge this image-to-code abstraction gap. This, in turn, requires the creation of a model

capable of representing the domain knowledge typically held by a developer, and applying

this knowledge to create accurate prototypes.

Given that, within a single software domain, the design and functionality of GUIs can

vary dramatically, it is unlikely that manually encoded information or heuristics would

be capable of fully supporting such complex tasks. Furthermore, creating, updating, and

maintaining such heuristics manually is a daunting task. Thus, we propose to learn this

domain knowledge using a data-driven approach that leverages machine learning (ML)

techniques and the GUI information already present in existing apps (specifically screen-

shots and GUI metadata) acquired via mining software repositories (MSR).

More specifically, we present an approach that deconstructs the prototyping process

into the tasks of: detection, classification, and assembly. The first task involves detecting

the bounding boxes of atomic elements (e.g., GUI-components which cannot be further

decomposed) of a user interface from a mock-up design artifact, such as pixel-based images.

This challenge can be solved either by parsing information regarding objects representing

GUI-components directly from mock-up artifacts (e.g., parsing exported metadata from

Photoshop), or using CV techniques to infer objects [232]. Once the GUI-components

from a design artifact have been identified, they need to be classified into their proper

80



domain-specific types (e.g., button, dropdown menu, progress bar). This is, in essence,

an image classification task, and research on this topic has shown tremendous progress in

recent years, mainly due to advancements in deep convolutional neural networks (CNNs)

[186, 275, 255, 257, 167]. However, because CNNs are a supervised learning technique,

they typically require a large amount of training data, such as the ILSVRC dataset [246],

to be effective. We assert that automated dynamic analysis of applications mined from

software repositories can be applied to collect screenshots and GUI metadata that can

be used to automatically derive labeled training data. Using this data, a CNN can be

effectively trained to classify images of GUI-Components from a mock-up (extracted using

the detected bounding boxes) into their domain specific GUI-component types. However,

classified images of components are not enough to assemble effective GUI code. GUIs

are typically represented in code as hierarchal trees, where logical groups of components

are bundled together in containers. We illustrate that an iterative K-nearest-neighbors

(KNN) algorithm and CV techniques operating on mined GUI metadata and screenshots

can construct realistic GUI-hierarchies that can be translated into code.

We have implemented the approach described above in a system called ReDraw for the

Android platform. We mined 8,878 of the top-rated apps from Google Play and executed

these apps using a fully automated input generation approach (e.g., GUI-ripping) derived

from our prior work on mobile testing [219, 203]. During the automated app exploration

the GUI-hierarchies for the most popular screens from each app were extracted. We then

trained a CNN on the most popular native Android GUI-component types as observed

in the mined screens. ReDraw uses this classifier in combination with an iterative KNN

algorithm and additional CV techniques to translate different types of mock-up artifacts

into prototype Android apps. We performed a comprehensive set of three studies evaluat-

ing ReDraw aimed at measuring (i) the accuracy of the CNN-based classifier (measured

against a baseline feature descriptor and Support Vector Machine based technique), (ii)

the similarity of generated apps to mock-up artifacts (both visually and structurally), and

(iii) the potential industrial applicability of our system, through semi-structured interviews
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with mobile designers and developers at Google, Huawei and Facebook. Our results show

that our CNN-based GUI-component classifier achieves a top-1 average precision of 91%

(i.e., when the top class predicted by the CNN is correct), our generated applications share

high visual similarity to their mock-up artifacts, the code structure for generated apps is

similar to that of real applications, and ReDraw has the potential to improve and facili-

tate the prototyping and development of mobile apps with some practical extensions. Our

evaluation also illustrates how ReDraw outperforms other related approaches for mobile

application prototyping, Remaui [232] and pix2code [127]. Finally, we provide a detailed

discussion of the limitations of our approach and promising avenues for future research

that build upon the core ideas presented.

In summary, the project presented in this chapter makes the following noteworthy

contributions:

• The introduction of a novel approach for prototyping software GUIs rooted in a

combination of techniques drawn from program analysis, MSR, ML, and CV; and an

implementation of this approach in a tool called ReDraw for the Android platform;

• A comprehensive empirical evaluation of ReDraw, measuring several complimentary

quality metrics, offering comparison to related work, and describing feedback from

industry professionals regarding its utility;

• An online appendix [80] showcasing screenshots of generated apps and study repli-

cation information;

• As part of implementing ReDraw we collected the largest known dataset of mobile

application GUI data containing screenshots and GUI related metadata for over 14k

screens and over 190k GUI-components.

• Publicly available open source versions of the ReDraw code, datasets, and trained

ML models [80].
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4.1 Background & Problem Statement

4.1.1 Convolutional Neural Network (CNN) Background

In order to help classify images of GUI-components into thier domain specific types, Re-

Draw utilizes a Convolutional Neural Network (CNN). To provide background for the

unfamiliar reader, in this sub-section we give an overview of a typical CNN architecture,

explaining elements of the architecture that enable accurate image classification. However,

for more comprehensive descriptions of CNNs, we refer readers to [186] & [182].

CNN Overview: Fig. 4.1 illustrates the basic components of a traditional CNN architec-

ture. As with most types of artificial neural networks, CNNs typically encompass several

different layers starting with an input layer where an image is passed into the network,

then to hidden layers where abstract features, and weights representing the “importance"

of features for a target task are learned. CNNs derive their name from unique “convolu-

tional" layers which operate upon the mathematical principle of a convolution [33]. The

purpose of the convolutional layers, shown in blue in Figure 4.1, are to extract features

from images. Most images are stored as a three (or four) dimensional matrix of num-

bers, where each dimension of the matrix represents the intensity of a color channel (e.g.,

RGB). Convolutional layers operate upon these matrices using a filter (also called kernel,

or feature detector), which can be thought of as a sliding window of size n by m that

slides across an set of matricies representing an image. This window applies a convolu-

tion operation (i.e., an element-wise matrix multiplication) creating a feature map, which

represents extracted image features. As convolution layers are applied in succession, more

abstract features are learned from the original image. Max Pooling layers also operate as

a sliding window, pooling maximum values in the feature maps to reduce dimensionality.

Finally, fully-connected layers and a softmax classifier act as a multi-layer perceptron to

perform classification. CNN training is typically performed using gradient descent, and

back-propagation of error gradients.
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Figure 4.1: Typical Components of CNN Architecture
Convolutional Layers: Convolutional layers extract feature maps from images to learn

high level features. The size of this feature map results from three parameters: (i) the

number of filters used, (ii) the stride of the sliding window, and (iii) whether or not

padding is applied. Leveraging multiple filters allows for multi-dimensional feature maps,

the stride corresponds to the distance the sliding window moves during each iteration, and

padding can be applied to learn features from the borders of an input image. These feature

maps are intended to represent abstract features from images, which inform the prediction

process.

Rectified Linear Units (ReLUs): Traditionally, an element of non-linearity is intro-

duced after each convolutional layer, as the convolution operator is linear in nature, which

may not correspond to non-linear nature of data being learned. The typical manner in

which this non-linearity is introduced is through Rectified Linear Units (ReLUs). The

operation these units perform is simple in nature, replacing all negative values in a feature

map with zeros. After the convolutions and ReLU operations have been performed, the

resulting feature map is typically subjected to max pooling (Fig. 4.1).

Max Pooling: Max pooling again operates as as sliding window, but instead of performing

a convolution, simply pools the maximum value from each step of the sliding window. This

allows for a reduction in the dimensionality of the data while extracting salient features.

Fully Connected Layers: The layers described thus far in the network have been focused

on deriving features from images. Therefore, the final layers of the network must utilize
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these features to compute predictions about classes for classifications. This is accomplished

via the fully connected layers, which act as a multi-layer perceptron typically utilizing a

softmax activation function.

CNN Training Procedure: Training a CNN is accomplished through back-propagation.

After the initialization of all the network parameters, initial weights are set to random

values. Then input images are fed through the network layers in the forward direction, and

the total error across all output classes is calculated. This error is back-propagated through

the network and gradient descent is used to calculate error gradients for the network weights

which are then updated to minimize the output error. A learning rate controls the degree

to which weights are updated based on the gradient calculations. This process is repeated

over the entire training image set, which allows for training both feature extraction and

classification in one automated process. After training is complete, the network should be

capable of effective classification of input images.

4.1.2 Problem Definition

Given the definitions specified in Chapter 2, the problem that we aim to solve with our

proposed approach is the following:

Problem Statement: Given a mock-up artifact, generate a prototype application that

closely resembles the mock-up GUI both visually, and in terms of expected structure of the

GUI-hierarchy.

As we describe in Sec. 4.2, this problem can be broken down into three distinct tasks in-

cluding the detection and classification of GUI-components, and the assembly of a realistic

GUI-hierarchy and related code. In the scope of this project, we focus on automatically

generating GUIs for mobile apps that are visually and structurally similar (in terms of their

GUI hierarchy). To accomplish this we investigate the ability of our proposed approach

to automatically prototype applications from two types of mock-up artifacts, (i) images

of existing applications, and (ii) Sketch [86] mock-ups reverse engineered from existing
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Figure 4.2: Overview of Proposed Approach for Automated GUI-Prototyping

popular applications. We utilize these types of artifacts as real mockups are typically not

available for open source mobile apps and thus could not be utilized in our study. It should

be noted that the two types of mock-up artifacts used in our investigation of ReDraw may

not capture certain ambiguities that exist in mock-ups created during the course of a real

software design process. We discuss the implications of this in Sec. 4.5.

4.2 Approach Description

We describe our approach for GUI prototyping around the three major phases of the

process: detection, classification, & assembly. Fig. 4.2 illustrates an overview of the pro-

cess that we will refer to throughout the description of the approach. At a high-level,

our approach first detects GUI-components from a mock-up artifact by either utilizing

CV techniques or parsing meta-data directly from mock-up artifacts generated using pro-

fessional photo-editing software. Second, to classify the detected GUI-components into

proper types, we propose to train a CNN using GUI data gleaned from large-scale auto-

mated dynamic analysis of applications extracted by mining software repositories. The

trained CNN can then be applied to mock-up artifacts to classify detected components.
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Finally, to construct a suitable GUI-hierarchy (e.g., proper groupings of GUI-components

in GUI-containers) we utilize a KNN-based algorithm that leverages the GUI-information

extracted from the large-scale dynamic analysis to assemble a realistic nested hierarchy of

GUI-components and GUI-containers. To illustrate our general approach, for each phase

we first describe the proposed methodology and design decisions at a high level and then

discuss the implementation details specific to our instantiation of ReDraw for the Android

platform.

4.2.1 Phase 1 - Detection of GUI-Components

The first task required of a GUI-prototyping approach is detecting the GUI-components

that exist in a mock-up artifact. The main goal of this phase is to accurately infer the

bounding boxes of atomic GUI-component elements (in terms of pixel-based coordinates)

from a mock-up artifact. This allows individual images of GUI-components to be cropped

and extracted in order to be utilized in the later stages of the prototyping process. This

phase can be accomplished via one of two methodologies: (i) parsing data from mock-up

artifacts, or (ii) using CV techniques to detect GUI-components. A visualization of this

phase is illustrated in Fig. 4.2- 1 . In the following subsections we describe the detection

procedure for both of these methodologies as well as our specific implementation within

ReDraw.

4.2.1.1 Parsing Data from Design Mockups

The first method for detecting the GUI-components that exist in a mock-up artifact,

shown in the bottom portion of Fig. 4.2- 1 , is to utilize the information encoded into

mock-up artifacts. Given the importance of UI/UX in today’s consumer facing software,

many designers and small teams of developers work with professional grade image editing

software, such as Photoshop [4] or Sketch [86] to create either wireframe or pixel perfect

static images of GUIs that comprise mock-up artifacts. During this process photo-editing

or design software is typically used to create a blank canvas with dimensions that match

87



a target device screen or display area (with some design software facilitating scaling to

multiple screen sizes [4, 86]). Then, images representing GUI-components are placed as

editable objects on top of this canvas to construct the mock-up. Most of these tools are

capable of exporting the mock-up artifacts in formats that encode spatial information about

the objects on the canvas, such as using the Scalable Vector Graphics (.svg) format or

html output [60]. Information about the layouts of objects, including the bounding boxes

of these objects, can be parsed from these output formats, resulting in highly accurate

detection of components. Therefore, if this metadata for the mock-up artifacts is available,

it can be parsed to obtain extremely accurate bounding boxes for GUI-components that

exist in a mock-up artifact which can then be utilized in the remainder of the prototyping

process.

Given the spatial information encoded in metadata that is sometimes available in mock-

up artifacts, one may question whether this information can also be used to reconstruct a

hierarchical representation of GUI-components that could later aid in the code conversion

process. Unfortunately, realistic GUI-hierarchies typically cannot be feasibly parsed from

such artifacts for at least the following two reasons: (i) designers using photo-editing soft-

ware to create mock-ups tend to encode a different hierarchal structure than a developer

would, due to a designer lacking knowledge regarding the best manner in which to pro-

grammatically arrange GUI-components on a screen [224]; (ii) limitations in photo-editing

software can prohibit the creation of programmatically proper spatial layouts. Thus, any

hierarchical structure parsed out of such artifacts is likely to be specific to designers’

preferences, or restricted based on the capabilities of photo-editing software, limiting ap-

plicability in our prototyping scenario. For example, a designer might not provide enough

GUI-containers to create an effective reactive mobile layout, or photo-editing software

might not allow for relative positioning of GUI-components that scale across different

screen sizes.
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4.2.1.2 Using CV Techniques for GUI-component Detection:

While parsing information from mock-ups results in highly accurate bounding boxes for

GUI-components this info may not always be available, either due to limitations in the

photo-editing software being used or differing design practices, such as digitally or physi-

cally sketching mockups using pen displays, tablets, or paper. In these cases, a mock-up

artifact may consist only of an image, and thus CV techniques are needed to identify

relevant GUI-component info. To support these scenarios, our approach builds upon the

CV techniques from [232] to detect GUI-component bounding boxes. This process uses

a series of different CV techniques (Fig. 4.2- 1 ) to infer bounding boxes around objects

corresponding to GUI components in an image. First, Canny’s edge detection algorithm

[135] is used to detect the edges of objects in an image. Then these edges are dilated to

merge edges close to one another. Finally, the contours of those edges are used to derive

bounding boxes around atomic GUI-components. Other heuristics for merging text-based

components using Optical Character Recognition (OCR) are used to merge the bounding

boxes of logical blocks of text (e.g., rather than detecting each word as its own component,

sentences and paragraphs of text are merged).

4.2.1.3 ReDraw Implementation - GUI Component Detection

In implementing ReDraw, to support the scenario where metadata can be gleaned from

mock-ups for Android applications we target artifacts created using the Marketch [60]

plugin for Sketch [86], which exports mock-ups as a combination of html & javascript.

Sketch is popular among mobile developers and offers extensive customization through

a large library of plugins [87]. ReDraw parses the bounding boxes of GUI-components

contained within the exported Marketch files.

To support the scenario where meta-data related to mock-ups is not available, Re-

Draw uses CV techniques to automatically infer the bounding boxes of components from

a static image. To accomplish this, we re-implemented the approach described in [232].
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Thus, the input to the GUI-component detection phase of ReDraw is either a screenshot

and corresponding marketch file (to which the marketch parsing procedure is applied), or

a single screenshot (to which CV-based techniques are applied). The end result of the

GUI-component detection process is a set of bounding box coordinates situated within the

original input screenshot and a collection of images cropped from the original screenshot

according to the derived bounding boxes that depict atomic GUI-components. This infor-

mation is later fed into a CNN to be classified into Android specific component types in

Phase 2.2. It should be noted that only GUI-components are detected during this process.

On the other hand GUI-containers and the corresponding GUI-hierarchy are constructed

in the assembly phase described in Sec. 4.2.3.

4.2.2 Phase 2 - GUI-component Classification

Once the bounding boxes of atomic GUI-component elements have been detected from a

mock-up artifact, the next step in the prototyping process is to classify cropped images

of specific GUI components into their domain specific types. To do this, we propose a

data-driven and ML-based approach that utilizes CNNs. As illustrated in Fig. 4.2-2.1 and

Fig. 4.2- 2.2 , this phase has two major parts: (i) large scale software repository mining

and automated dynamic analysis, and (ii) the training and application of a CNN to classify

images of GUI-components. In the following subsections we first discuss the motivation and

implementation of the repository mining and dynamic analysis processes before discussing

the rationale for using a CNN and our specific architecture and implementation within

ReDraw.

4.2.2.1 Phase 2.1 - Large-Scale Software Repository Mining and Dynamic

Analysis

Given their supervised nature and deep architectures, CNNs aimed at the image classifica-

tion task require a large amount of training data to achieve precise classification. Training

data for traditional CNN image classification networks typically consists of a large set of
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images labeled with their corresponding classes, where labels correspond to the primary

subject in the image. Traditionally, such datasets have to be manually procured, wherein

humans painstakingly label each image in the dataset. However, we propose a methodol-

ogy that automates the creation of labeled training data consisting of images of specific

GUI-components cropped from full screenshots and labels corresponding to their domain

specific type (e.g., Buttons, or Spinners in Android) using fully-automated dynamic pro-

gram analysis.

Our key insight for this automated dynamic analysis process is the following: during au-

tomated exploration of software mined from large repositories, platform specific frameworks

can be utilized to extract meta-data describing the GUI, which can then be transformed into

a large labeled training set suitable for a CNN. As illustrated in Fig. 4.2-2.1 , this process

can be automated by mining software repositories to extract executables. Then a wealth of

research in automated input generation for GUI-based testing of applications can be used

to automatically execute mined apps by simulating user-input. For instance, if the target is

a mobile app, input generation techniques relying on random-based [208, 13, 53, 249, 269],

systematic [124, 122, 121, 219, 227], model-based [121, 268, 124, 141, 166, 273, 203], or

evolutionary [214, 212] strategies could be adopted for this task. As the app is executed,

screenshots and GUI-related metadata can be automatically extracted for each unique

observed screen or layout of an app. Other similar automated GUI-ripping or crawling ap-

proaches can also be adapted for other platforms such as the web [243, 258, 244, 143, 234].

Screenshots can be captured using third party software or utilities included with a

target operating system. GUI-related metadata can be collected from a variety of sources

including accessibility services [160], html DOM information, or UI-frameworks such as

uiautomator [14]. The GUI-metadata and screenshots can then be used to extract sub-

images of GUI-components with their labeled types parsed from the related metadata

describing each screen. The underlying quality of the resulting dataset relates to how

well the labels describe the type of GUI-components displayed on a screen. Given that

many of the software UI-frameworks that would be utilized to mine such data pull their
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information directly from utilities that render application GUI-components on the screen,

this information is likely to be highly accurate. However, there are certain situations where

the information gleaned from these frameworks contains minor inaccuracies or irrelevant

cases. We discuss these cases and steps that can be taken to mitigate them in Sec. 4.2.2.4.

4.2.2.2 ReDraw Implementation - Software Repository Mining and Auto-

mated Dynamic Analysis

To procure a large set of Android apps to construct our training, validation, and test

corpora for our CNN we mined free apps from Google Play at scale. To ensure the repre-

sentativeness and quality of the apps mined, we extracted all categories from the Google

Play store as of June 2017. Then we filtered out any category that primarily consisted of

games, as games tend to use non-standard types of GUI-components that cannot be auto-

matically extracted. This left us with a total of 39 categories. We then used a Google Play

API library [46] to download the top 240 APKs from each category, excluding duplicates

that existed in more than one category. This resulted in a total of 8,878 unique APKs after

accounting for duplicates cross-listed across categories.

To extract information from the mined APKs, we implemented a large-scale dynamic

analysis engine, called the Execution Engine that utilizes a systematic automated input

generation approach based on our prior work on CrashScope and MonkeyLab [203, 225,

219, 227] to explore the apps and extract screenshots and GUI-related information for

visited screens. More specifically, our systematic GUI-exploration navigates a target apps’s

GUI in a Depth-First-Search (DFS) manner to exercise tappable, long-tappable, and type-

able (e.g., capable of accepting text input) components. During the systematic exploration

we used Android’s uiautomator framework [14] to extract GUI-related info as xml files that

describe the hierarchy and various properties of components displayed on a given screen.

We used the Android screencap utility to collect screenshots. The uiautomator xml files

contain various attributes and properties of each GUI-component displayed on an Android

application screen, including the bounding boxes (e.g., precise location and area within the
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screen) and component types (e.g., EditText, Toggle Button). These attributes allow for

individual sub-images for each GUI-component displayed on a given screen to be extracted

from the corresponding screenshot and automatically labeled with their proper type.

The implementation of our DFS exploration strategy utilizes a state machine model

where states are considered unique app screens, as indicated by their activity name and

displayed window (e.g., dialog box) extracted using the adb shell dumpsys window com-

mand. To allow for feasible execution times across the more than 8.8k apps in our dataset

while still exploring several app screens, we limited our exploration strategy to exercis-

ing 50 actions per app. Prior studies have shown that most automated input generation

approaches for Android tend to reach near-peak coverage (e.g., between ⇡ 20 and 40%

statement coverage) after 5 minutes of exploration [142]. While different input generation

approaches tend to exhibit different numbers of actions per given unit of time, our past

work shows that our automated input generation approach achieves competitive coverage

to similar approaches [219], and our stipulation of 50 actions comfortably exceeds 5 min-

utes per app. Furthermore, our goal with this large scale analysis was not to completely

explore each application, but rather ensure a diverse set of screens and GUI-Component

types. For each app the Execution Engine extracted uiautomator files and screenshot pairs

for the top six unique screens of each app based on the number of times the screen was

visited. If fewer than six screens were collected for a given app, then the information for

all screens was collected. Our large scale Execution Engine operates in a parallel fashion,

where a centralized dispatcher allocated jobs to workers, where each worker is connected to

one physical Nexus 7 tablet and is responsible for coordinating the execution of incoming

jobs. During the dynamic analysis process, each job consists of the systematic execution

of a single app from our dataset. When a worker finished with a job, it then notified the

dispatcher which in turn allocates a new job. This process proceeded in parallel across

5 workers until all applications in our dataset had been explored. Since Ads are popular

in free apps [245, 163], and are typically made up of dynamic WebViews and not native
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Figure 4.3: Heat-map of GUI Components by Category

components, we used Xposed [241] to block Ads in apps that might otherwise obscure

other types of native components.

This process resulted in a dataset of GUI-information and screenshots for 19,786 unique

app screens containing over 431,747 native Android GUI-components and containers which,

to the best of the authors knowledge, is one of the largest such datasets collected to date be-

hind the RICO dataset [151]. In Fig. 4.3 we illustrate the frequency in logarithmic-scale of

the top-19 observed components by app category using a heat-map based on the frequency

of components appearing from apps within a particular category (excluding TextViews

as they are, unsurprisingly, the most popular type of component observed, comprising

⇡ 25% of components). The distributions of components in this dataset illustrate two

major points. First, while ImageViews and TextViews tend to comprise a large number of
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the components observed in practice, developers also heavily rely on other types of native

Android components to implement key pieces of app functionality. For instance, Buttons,

CheckedTextViews, and RadioButtons combined were used over 20k times across the apps

in our dataset. Second, we observed certain types of components may be more popular

for different categories of apps. For instance, apps from the category of “MUSIC_AND_AUDIO"

tend to make much higher use of SeekBar and ToggleButton components to implement the

expected functionalities of a media player, such as scrubbing through music and video files.

These findings illustrate that for an approach to be able to effectively generate prototypes

for a diverse set of mobile apps, it must be capable of correctly detecting and classifying

popular types of GUI-components to support varying functionality.

4.2.2.3 Phase 2.2 - CNN Classification of GUI-Components

Once the labeled training data set has been collected, we need to train a ML approach

to extract salient features from the GUI-component images, and classify incoming images

based upon these extracted features. To accomplish this our approach leverages recent

advances in CNNs. The main advantage of CNNs over other image classification approaches

is that the architecture allows for automated extraction of abstract features from image

data, approximation of non-linear relationships, application of the principle of data-locality,

and classification in an end-to-end trainable architecture.

4.2.2.4 ReDraw Implementation - CNN Classifier

Once the GUI-components in a target mock-up artifact have been detected using either

mock-up meta-data or CV-based techniques, ReDraw must effectively classify these com-

ponents. To accomplish this ReDraw implements a CNN capable of classifying a target

image of a GUI-component into one of the 15 most-popular types of components observed

in our dataset. In this subsection, we first describe the data-cleaning process used to gen-

erate the training, validation, and test datasets (examples of which are shown in Fig. 4.4)

before describing our CNN architecture and the training procedure we employ.
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Data Cleaning: We implemented several types of preprocessing and filtering techniques

to help reduce noise. More specifically, we implemented filtering processes at three differing

levels of granularity: (i) application, (ii) screen & (iii) GUI-component level.

While future versions of ReDraw may support non-native apps, to provide an appro-

priate scope for rigorous experimentation, we have implemented ReDraw with support for

prototyping native Android applications. Thus, once we collected the xml and screenshot

files, it is important to apply filters in order to discard applications that are non-native,

including games and hybrid applications. Thus, we applied the following app-level filtering

methodologies:

• Hybrid Applications: We filtered applications that utilize Apache Cordova [18] to

implement mobile apps using web-technologies such as html and CSS. To accomplish

this we first decompiled the APKs using Apktool [19] to get the resources used in the

application. We then discarded the applications that contained a www folder with

html code inside.

• Non-Standard GUI Frameworks: Some modern apps utilize third party graphi-

cal frameworks or libraries to create highly-customized GUIs. While such frameworks

tend to be used heavily for creating mobile games, they can also be used to create

UIs for for more traditional applications. One such popular framework is the Unity

[103] game engine. Thus, to avoid applications that utilize this engine we filtered

out applications that contain the folder structure com/unity3d/player inside the code

folder after decompilation with Apktool.

This process resulted in the removal of 223 applications and a dataset consisting of 8,655

apps to which we then applied screen-level filtering. At the Screen-level, we implemented

the following pre-processing techniques:

• Filtering out Landscape screens: To keep the height and width of all screens

consistent, we only collected data from screens that displayed in the portrait orien-
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Figure 4.4: Example of a subset of ReDraw’s training data set consisting of GUI-
Component sub-images and domain (Android) specific labels. Images and corresponding
Labels are grouped according to the dashed-lines.

tation. Thus, we checked the size of the extracted screenshots and verified that the

width and the height correspond to 1200x1920, the landscape oriented screen size

used on our target Nexus 7 devices. However, there are some corner cases in which

the images had the correct portrait size but it was on landscape. So, to overcome this

we checked the extracted uiautomator xml file and validated the size of the screen to

ensure a portrait orientation.

• Filtering Screens containing only Layout components: In Android, Layout

components are used as containers that group together other types of functional

components such as Buttons and Spinners. However, some screens may consist

only of layout components. Thus to ensure variety in our dataset, we analyzed

the uiautomator xml files extracted during dynamic analysis to discard screens that

are only comprised of Layout components such as LinearLayout, GridLayout, and

FrameLayout among others.

• Filtering WebViews: While many of the most popular Android apps are native,

some apps may be hybrid in nature, that is utilizing web content within a native

app wrapper. Because such apps use components that cannot be extracted via
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Figure 4.5: Heat-map of GUI Components by Category After Filtering

uiautomator we discard them from our dataset by removing screens where a WebView

occupied more than 50% of the screen area.

After these filtering techniques were applied, 2,129 applications and 4,954 screens were

removed, and the resulting dataset contained 14,382 unique screens with 431,747 unique

components from 6,538 applications. We used the information in the uiautomator xml

files to extract the bounding boxes of leaf-level GUI-components in the GUI-hierarchies.

We only extract leaf-level components in order to align our dataset with components

detected from mock-ups. Intuitively it is unlikely that container components (e.g., non-

leaf nodes) would exhibit significant distinguishable features that a ML approach would be

able to derive in order to perform accurate classification (hence, the use of our KNN-based

approach is described in Sec. 4.2.3). Furthermore, it is unclear how such a GUI-container
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Figure 4.6: Screenshots of synthetically generated applications containing toggle buttons
and switches

classification network would be used to iteratively build a GUI-structure. We performed

a final filtering of the extracted leaf components:

• Filtering Noise: We observed that in rare cases the bounds of components would

not be valid (e.g., extending beyond the borders of the screen, or represented as zero

or negative areas) or components would not have a type assigned to them. Thus, we

filter out these cases.

• Filtering Solid Colors: We also observed that in certain circumstances, extracted

components were made up of a single solid color, or in rarer cases two solid colors.

This typically occurred due to instances where the view hierarchy of a screen had

loaded, but the content was still rendering on the page or being loaded over the

network, when a screenshot was captured. Thus, we discarded such cases.

• Filtering Rare GUI-Components: In our dataset we found that some compo-

nents only appeared very few times, therefore, we filtered out any component with

less than 200 instances in the initial dataset, leading to 15 GUI-component types in

our dataset.
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The data-cleaning process described above resulted in the removal of 240,447 compo-

nents resulting in 191,300 labeled images of GUI-components from 6,538 applications. We

provide a heat-map illustrating the popularity of components across apps from diferent

Google Play categories in Fig. 4.5 To ensure the integrity of our dataset, we randomly

sampled a statistically significant sample of 1,000 GUI-component images (corresponding

to confidence interval of ±3.09 at a 95% confidence level), and had one author manually

inspect all 1,000 images and labels to ensure the dataset integrity.

Data Augmentation: Before segmenting the resulting data into training, test, and val-

idation sets, we followed procedures from previous work [186] and applied data augmen-

tation techniques to increase the size of our dataset in order to ensure proper training

support for underrepresented classes and help to combat overfitting to the training set.

Like many datasets procured using “naturally" occurring data, our dataset suffers from

imbalanced classes. That is, the number of labeled images in our training set are skewed

toward certain classes, resulting in certain classes that have high support, and others that

have low support. Thus, to balance our dataset, we performed two types of data augmen-

tation: synthetic app generation and color perturbation. For the sake of clarity, we will

refer to data collected using our automated dynamic analysis approach as organic data

(i.e., the data extracted from Google Play) and data generated via synthetic means as

synthetic data (i.e., generated either via synthetic app generation or color perturbation).

To generate synthetic data for underrepresented components, we implemented an app

synthesizer capable of generating Android apps consisting of only underrepresented compo-

nents. The app synthesizer is a Java application that is capable of automatically generating

single-screen Android applications containing four instances of GUI-components (with ran-

domized attributes) for 12 GUI-component classes in our dataset that had less than 10K

observable instances. The synthesizer places the four GUI-components of the specified

type on a single app screen with randomized sizes and values (e.g., numbers for a number

picker, size and state for a toggle button). Two screenshots of synthesized applications

used to augment the Toggle button and Switch classes are illustrated in Fig. 4.6. We
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ran these apps through our Execution Engine, collecting the uiautomator xml files and

screenshots from the single generated screen for each app. After the screenshots and uiau-

tomator files were collected, we extracted only the target underrepresented components

from each screenshot (note that in Fig. 4.6 there is a header title and button generated

when creating a standard Android app), all other component types are ignored. 250 apps

for each underrepresented GUI-component were synthesized, resulting in creating an extra

1K components for each class and 12K total additional GUI-components.

While our application generator helps to rectify the imbalanced class support to an

extent, it does not completely balance our classes and may be prone to overfitting. Thus,

to ensure proper support across all classes and to combat overfitting, we follow the guid-

ance outlined in related work [186] to perform color perturbation on both the organic and

synthetic images in our dataset. More specifically, our color perturbation procedure ex-

tracts the RGB values for each pixel in an input image and converts the values to the HSB

(Hue, Saturation, Brightness) color space. The HSB color space represents colors as part

of a cylindrical or cone model where color hues are represented by degrees. Thus, to shift

the colors of a target image, our perturbation approach randomly chooses a degree value

by which each pixel in the image is shifted. This ensures that color hues that were the

same in the original image, all shift to the same new color hue in the perturbed image,

preserving the visual coherency of the perturbed images. We applied color perturbation

to the training set of images until each class of GUI-component had at least 5K labeled

instances, as described below.

Data Segmentation: We created a the training, validation, and test datasets for our

CNN such that the training dataset contained both organic and synthetic data, but the

test and validation datasets contained only organic data, unseen in the training phase of

the CNN. To accomplish this, we randomly segmented our dataset of organic components

extracted from Google Play into training (75%), validation (15%), and test (10%) sets.

Then for the training set, we added the synthetically generated components to the set of

organic GUI-component training images, and performed color perturbation on only the

101



Input Layer
Filter Size=7, numFilters =64, 

padding=3, stride=2

Filter Size=7, numFilters =64, 
padding=3, stride=2

poolSize=3x3, stride=1

Filter Size=3, numFilters =96

poolSize=2x2, stride=1

Dropout Rate = 0.5

1024 nodes

Dropout Rate = 0.5

1024 nodes

15 nodes

Network Layers Parameters

Convolutional Layer + ReLU

MaxPooling Layer

Dropout Layer

FullyConnected + ReLU

Softmax Layer

Convolutional Layer + ReLU

Convolutional Layer + ReLU

MaxPooling Layer

Dropout Layer

FullyConnected + ReLU

FullyConnected + ReLU

Figure 4.7: ReDraw CNN Architecture

training data (after segmentation) until each class had at least 5K training examples. Thus,

the training set contained both organic and synthetically generated data, and the validation

and test sets contained only organic data. This segmentation methodology closely follows

prior work on CNNs [186].

ReDraw’s CNN Architecture: Our CNN architecture is illustrated in Fig. 4.7. Our

network uses an architecture similar to that of AlexNet [186], with two less convolutional

layers (3 instead of 5), and is implemented in MATLAB using the Neural Network [62], Parallel

Computing [96], and Computer Vision [95] toolkits. While “deeper" architectures do exist

[275, 257, 167] and have been shown to achieve better performance on large-scale image

recognition benchmarks, this comes at the cost of dramatically longer training times and

a larger set of parameters to tune. Since our goal is to classify 15 classes of the most

popular Android GUI-components, we do not need the capacity of deeper networks aiming

to classify thousands of image categories. We leave deeper architectures and larger numbers

of image categories as future work. Also, this allowed our CNN to converge in a matter of

hours rather than weeks, and as we illustrate, still achieve high precision.
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To tune our CNN, we performed small scale experiments by randomly sampling 1K

images from each class to build a small training/validation/test set (75%, 15%, 10%) for

faster training times (Note, these datasets are separate from the full set used to train/vali-

date/test the network described earlier). During these experiments we iteratively recorded

the accuracy on our validation set, and recorded the final accuracy on the test set. We

tuned the location of layers and parameters of the network until we achieved peak test

accuracy with our randomly sampled dataset.

Training the CNN: To train ReDraw’s network we utilized our derived training set;

we trained our CNN end-to-end using back-propagation and stochastic gradient descent

with momentum (SGDM), in conjunction with a technique to prevent our network from

overfitting to our training data. That is, every five epochs (e.g., entire training set passing

through the network once) we test the accuracy of our CNN on the validation set, saving

a copy of the learned weights of the classifier at the same time. If we observe our accuracy

decrease for more than two checkpoints, we terminate the training procedure. We varied

our learning rate from 0.001 to 1⇥ 10�5 after 50 epochs, and then dropped the rate again

to 1 ⇥ 10�6 after 75 epochs until training terminated. Gradually decreasing the learning

rate allows for the network to “fine-tune" the learned weights over time, leading to an

increase in overall classification precision [186]. Our network training time was 17 hours,

12 minutes on a machine with a single Nvidia Tesla K40 GPU.

Using the CNN for Classification: Once the CNN has been trained, new, unseen

images can fed into the network resulting a series of classification scores corresponding

to each class. In the case of ReDraw, the component class with the highest confidence

is assigned to be the label for a given target image. We present an evaluation of the

classification accuracy of ReDraw’s CNN using the dataset described in this subsection

later in Sec. 4.3 & 4.4.
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Algorithm 1: KNN Container Determination
Input: InputNodes // Either leaf components or other containers

Output: Containers // Groupings of input components

1 while canGroupMoreNodes() // While groupings exist

2 do

// For each screen in the mined data

3 foreach Screen S 2 Dataset do

4 TargetNodes = S.getTargetNodes() score = TargetNodes()\InputNodes
TargetNodes()[InputNodes // IOU

5 if score > curmax then

6 curmax = score
7 MatchedScreen = S

8 end

9 end

10 TargetNodes = MatchedScreen.getTargetNodes()

InputNodes.remove(TargetNodes \ InputNodes) Containers.addContainers(MatchedScreen)

11 end

4.2.3 Phase 3 - Application Assembly

The final task of the prototyping process is to assemble app GUI code, which involves

three phases (Fig. 4.2- 3 ): (i) building a proper hierarchy of components and containers,

(ii) inferring stylistic details from a target mock-up artifact, and (iii) assembling the app.

4.2.3.1 Deriving GUI-Hierarchies

In order to infer a realistic hierarchy from the classified set of components, our approach

utilizes a KNN technique (Alg. 1) for constructing the GUI hierarchy. This algorithm

takes the set of detected and classified GUI-components represented as nodes in a single

level tree (InputNodes) as input. Then, for each screen in our dataset collected from

automated dynamic analysis, Alg. 1 first extracts a set of TargetNodes that correspond

the hierarchy level of the InputNodes (Alg. 1 -line 4), which are leaf nodes for the first

pass of the algorithm. Next, the InputNodes are compared to each set of extracted

(TargetNodes) using a similarity metric based on the intersection over union (IOU) of

screen area occupied by the bounding boxes of overlapping components (Alg. 1 -line 5).

A matching screen is selected by taking the screen with the highest combined IOU score

between the InputNodes and TargetNodes. Then, the parent container components from

the components in the matched screen are selected as parent components to the matched
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Figure 4.8: Illustration of KNN Hierarchy Construction

InputNodes. The matched InputNodes are then removed from the set, and the algorithm

proceeds to match the remaining InputNodes that were not matched during the previous

iteration. This procedure is applied iteratively (including grouping containers in other

containers) until a specified number of levels in the hierarchy are built or all nodes have

been grouped. An illustration of this algorithm is given in Figure 4.8, where matched

components are highlighted in blue and containers are represented as green boxes.

It should be noted that all attributes of a component container are inherited during

the hierarchy construction, including their type (e.g., LinearLayout, RelativeLayout).

We can specify the number of component levels to ensure that hierarchies do not grow

so large such that they would cause rendering delays on a device. The result of this

process is a hierarchy built according to its similarity to existing GUI-hierarchies observed

in data. Given different types of containers may behave differently, this technique has

the advantage that, in addition to leaf level GUI-components being properly classified by
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Listing 4.1: ReDraw’s Skeleton Main Activity Class
1 public class MainActivity extends Activity {

2 @Override

3 protected void onCreate(Bundle savedInstanceState) {

4 super.onCreate(savedInstanceState);

5 setContentView(R.layout.main_activity);

6 }

7 }

Listing 4.2: Snippet from layout.xml file generated by ReDraw for the Yelp Application
1 <LinearLayout android:id="@+id/LinearLayout452" android:layout_height="

127.80186 dp" android:layout_marginStart="0.0dp"

android:layout_marginTop="0.0dp" android:layout_width="400.74304 dp"

android:orientation="vertical" android:text="" android:textSize="8pt

">

2 <Button android:id="@+id/Button454" android:layout_height="58.45201

dp" android:layout_marginStart="0.0dp" android:layout_marginTop=

"0.0dp" android:layout_width="400.74304 dp" android:text="Sign up

with Google" android:textSize="8pt" style="@style/Style65"/>

3 <Button android:id="@+id/Button453" android:layout_height="50.526318

dp" android:layout_marginStart="3.4674923 dp"

android:layout_marginTop="18.82353 dp" android:layout_width="

393.31268 dp" android:text="Sign up with Facebook"

android:textSize="8pt" style="@style/Style66"/>

4 </LinearLayout >

the CNN, proper types of container components are built into the GUI-hierarchy via this

KNN-based approach.

4.2.3.2 Inferring Styles and Assembling a Target App

To infer stylistic details from the mock-up, our approach employs the CV techniques of

Color Quantization (CQ), and Color Histogram Analysis (CHA). For GUI-components

whose type does not suggest that they are displaying an image, our approach quantizes

the color values of each pixel and constructs a color histogram. The most popular color

values can then be used to inform style attributes of components when code is generated.

For example, for a component displaying text, the most prevalent color can be used as a

background and the second most prevalent color can be used for the font.
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Listing 4.3: Snippet from style.xml file generated by ReDraw for the Yelp Application
1 <style name="Style63" parent="AppTheme">

2 <item name="android:textColor">#FEFEFF </item>

3 </style >

4 <style name="Style64" parent="AppTheme">

5 <item name="android:textColor">#FEFEFF </item>

6 </style >

7 <style name="Style65" parent="AppTheme">

8 <item name="android:background">#DD4B39 </item>

9 <item name="android:textColor">#FEFEFF </item>

10 </style >

4.2.3.3 ReDraw Implementation - App Assembly

ReDraw assembles Android applications, using the KNN approach for GUI-hierarchy con-

struction (see Sec. 4.2.3.1) and CV-based detection of color styles. The input to Alg. 1

is the set of classified “leaf-node" components from the CNN, and the output is a GUI-

hierarchy. To provide sufficient data for the KNN-algorithm, a corpus including all of

the info from the "cleaned" screens of the GUI-hierarchies mined from our large scale

dynamic analysis process is constructed. This corpus forms the dataset TargetNodes to

which the InputNode components are matched against during hierarchy construction. The

GUI-hierarchy generated by the KNN for the target "leaf-node" components is then used

to infer stylistic details from the original mock-up artifact. More specifically, for each

component and container, we perform CQ and CHA to extract the dominant colors for

each component. For components which have a text element, we apply optical character

recognition (OCR) using the open source Tesseract [94] library on the original screenshot

to obtain the strings.

Currently, our approach is able to infer three major types of stylistic detail from target

components:

• Background Color: To infer the background color of components and containers,

ReDraw simply utilizes the dominant color in the CHA for a specific component as

the background color.
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• Font Color: To infer the font color for components, ReDraw uses the dominant

color in the CHA as the background text and the second most dominant color as the

font color.

• Font Size: ReDraw is able to infer the font size of textual components by using the

pixel based height of the bounding boxes of text-related components.

These techniques are used for both variants of the ReDraw approach (e.g., mock-

up based and CV based). There is ample opportunity for future work to improve upon

the inference of stylistic details, particularly from mock-up artifacts. More specifically,

future work could expand this process to further adapt the style of “standard” components

to match stylistic details observed in a mock-up artifact. Depending upon the export

format for a mock-up, ReDraw could also potentially infer additional styles such as the

font utilized or properties of component shapes (e.g., button bevels). While ReDraw’s

current capabilities for inferring stylistic details are limited to the above three categories,

in Section 4.4 we illustrate that these are sufficient to enable ReDraw to generate highly

visually similar applications in comparison to target images.

ReDraw encodes the information regarding the GUI-hierarchy, stylistic details, and

strings detected using OCR into an intermediate representation (IR) before translating

it into code. This IR follows the format of uiautomator xml files that describes dynamic

information from an Android screen. Thus, after ReDraw encodes the GUI information

into the uiautomator-based IR, it then generates the necessary resource xml files (e.g.,

files in the res folder of an Android app project directory) by parsing the uiautomator-

based IR xml file. This process generates the following two types of resource code for the

generated app: (i) the layout.xml code describing the general GUI structure complete

with strings detected via OCR; and (ii) a style.xml file that stipulates the color and style

information for each component gleaned via the CV techniques, and ReDraw generates the

xml source files following the best practices stipulated in the Android developer guidelines

[12], such as utilizing relative positioning, and proper padding and margins. In addition
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to these resource xml files ReDraw also generates a skeleton Java class encompassing the

MainActivity which renders the GUI stipulated in the resource xml files, as well as other

various files required to build and package the code into an apk. The Skeleton MainActivity

Java class is shown in Listing 4.1 and snippets from generated layout.xml & style.xml

files for a screen from the Yelp application are shown in Listings 4.2 & 4.3. The layout.xml

snippet of code generated by ReDraw illustrates the use of margins and relative dp values

to stipulate the spatial properties of GUI-containers and GUI-components and references

the style.xml file to stipulate color information. Listing 4.3 illustrates the corresponding

styles and colors referenced by the layout.xml file.

4.3 Empirical Study Design

The goal of our empirical study is to evaluate ReDraw in terms of (i) the accuracy of the

CNN GUI-component classifier, (ii) the similarity of the generated GUI-hierarchies to real

hierarchies constructed by developers, (iii) the visual similarity of generated apps compared

to mock-ups, and (iv) ReDraw’s suitability in an industrial context. The context of this

study consists of (i) a set of 191,300 labeled images of Android GUI-components extracted

from 14,382 unique app screens mined from 6,538 APKs from the Google Play store (see Sec.

4.2.2.2 for details) to assess the accuracy of the CNN-classifier, (ii) 83 additional screens

(not included in the dataset to train and test the CNN-classifier) extracted from 32 of the

highest rated apps on Google Play (top-3 in each category), (iii) nine reverse engineered

Sketch mockups from eight randomly selected highly rated Google Play Apps to serve as

mock-up artifacts, and (iv) two additional approaches for prototyping Android applications

Remaui [232] and pix2code [127]. The quality focus of this study is the effectiveness of

ReDraw to generate prototype apps that are both visually similar to target mock-up

artifacts, with GUI-hierarchies similar to those created by developers. To aid in achieving

the goals of our study we formulated the following RQs:
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• RQ1: How accurate is the CNN-based image classifier for classifying Android GUI-

components?

• RQ2: How similar are GUI-hierarchies constructed using ReDraw’s KNN algorithm

compared to real GUI-hierarchies?

• RQ3: Are the prototype applications that ReDraw generates visually similar to mock-

up artifacts?

• RQ4: Would actual mobile developers and designers consider using ReDraw as part

of their workflow?

It should be noted that in answering RQ2-RQ4 we use two types of mock-up artifacts

(existing application screenshots, and reverse engineered Sketch mock-ups) as a proxy

for real GUI-design mock-ups, and these artifacts are not a perfect approximation. More

specifically, screenshots represent a finalized GUI-design, whereas real GUI design mockups

may not be complete and might include ambiguities or design parameters that are able

to be properly implemented in code (i.e., unavailable fonts or impractical spatial layouts).

Thus, we do not claim to measure ReDraw’s performance on incomplete or “in-progress”

design mock-ups. However, it was not possible to obtain actual GUI design mock-ups for

our study, and our target screenshots and reverse engineered mock-ups stem from widely

used applications. We discuss this point further in Sec. 4.5.
4.3.1 RQ1: Effectiveness of the CNN

To answer RQ1, as outlined in Sec. 4.2.2.4 we applied a large scale automated dynamic

analysis technique and various data cleaning procedures which resulted in a total of 6,538

apps, 14,382 unique screens, and 191,300 labeled images of GUI-components. To normalize

support across classes and prepare training, validation and test sets in order measure the

effectiveness of our CNN we applied data augmentation, and segmentation techniques also

described in detail in Sec. 4.2.2.4. The datasets utilized are illustrated, broken down by

class, in Table 4.1. We trained the CNN on the training set of data, avoiding overfitting
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Table 4.1: Labeled GUI-Component Image Datasets
GUI-C Type Total # (C) Tr (O) Tr (O+S) Valid Test

TextView 99,200 74,087 74,087 15,236 9,877

ImageView 53,324 39,983 39,983 7,996 5,345

Button 16,007 12,007 12,007 2,400 1,600

ImageButton 8,693 6,521 6,521 1,306 866

EditText 5,643 4,230 5,000 846 567

CheckedTextView 3,424 2,582 5,000 505 337

CheckBox 1,650 1,238 5,000 247 165

RadioButton 1,293 970 5,000 194 129

ProgressBar 406 307 5,000 60 39

SeekBar 405 304 5,000 61 40

NumberPicker 378 283 5,000 57 38

Switch 373 280 5,000 56 37

ToggleButton 265 199 5,000 40 26

RatingBar 219 164 5,000 33 22

Spinner 20 15 5,000 3 2

Total 191,300 143,170 187,598 29,040 19,090

Abbreviations for column headings: “Total#(C)"=Total # of GUI-components in each class af-

ter cleaning; “Valid"= Validation; “Tr(O)"= Training Data (Organic Components Only); “Tr(O+S)"=

Training Data (Organic + Synthetic Components).

using a validation set as described in Sec. 4.2.2.4. To reiterate, all of the images in the test

and validation sets were extracted from real applications and were separate (e.g., unseen)

from the training set. To evaluate the effectiveness of our approach we measure the average

top-1 classification precision across all classes on the Test set of data:

P =
TP

TP + FP

where TP corresponds to true positives, or instances where the top class predicted by

the network is correct, and FP corresponds to false positives, or instances where the top

classification prediction of the network is not correct. To illustrate the classification ca-

pabilities of our CNN, we present a confusion matrix with precision across classes in Sec.

4.4. The confusion matrix illustrates correct true positives across the highlighted diagonal,

and false positives in the other cells. To help justify the need and applicability of a CNN-

based approach, we measure the classification performance of our CNN against a baseline

technique, as recent work has suggested that deep learning techniques applied to SE tasks

should be compared to simpler, less computationally expensive alternatives [157]. To this

end, we implemented a baseline Support Vector Machine (SVM) for classification based

image classification approach [149] that utilizes a "Bag of Visual Words" (BOVW). At a
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high level, this approach extracts image features using the Speeded-Up Robust Feature

(SURF) detection algorithm [126], then uses K-means clustering to cluster similar features

together, and utilizes an SVM trained on resulting feature clusters. We utilized the same

training/validation/test set of data used to the train the CNN and followed the method-

ology in [149] to vary the number of K-means clusters from k = 1, 000 to k = 5, 000 in

steps of 50, finding that k = 4, 250 achieved the best performance in terms of classification

precision for our dataset. We also report the confusion matrix of precision values for the

BOVW technique.

4.3.2 RQ2: GUI Hierarchy Construction
In order to answer RQ2 we aim to measure the similarity of the GUI-hierarchies in apps

generated by ReDraw compared to a ground truth set of hierarchies and a set of hierarchies

generated by two baseline mobile app prototyping approaches, Remaui and pix2code. To

carry out this portion of the study, we selected 32 apps from our cleaned dataset of Apks

by randomly selecting one of the top-10 apps from each category (grouping all “Family"

categories together). We then manually extracted 2-3 screenshots and uiautomator xml

files per app, which were not included in the original dataset used to train, validate or

test the CNN. After discarding screens according to our filtering techniques, this resulted

in a set of 83 screens. Each of these screens was used as input to ReDraw, Remaui, and

pix2code from which a prototype application was generated. Ideally, a comparison would

compare the GUI-related source code of applications (e.g., xml files located in the res folder

of Android project) generated using various automated techniques however, the source code

of many of the subject Google Play applications is not available. Therefore, to compare

GUI-hierarchies, we compare the runtime GUI-hierarchies extracted dynamically from the

generated prototype apps for each approach using uiautomator, to the set of “ground

truth" uiautomator xml files extracted from the original applications. The uiautomator

representation of the GUI is a reflection of the automatically generated GUI-related source

code for each studied prototyping approach displayed at runtime on the device screen.
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Table 4.2: Semi-Structured Interview Questions for Developers & Designers

Q# Question Text

Q1 Given the scenario where you are creating a new user interface, would you consider

adopting ReDraw in your design or development workflow? Please elaborate.

Q2 What do you think of the visual similarity of the ReDraw applications compared to

the original applications? Please elaborate.

Q3 Do you think that the GUI-hierarchies (e.g., groupings of components) generated by

ReDraw are effective? Please elaborate.

Q4 What improvements to ReDraw would further aid the mobile application prototyping

process at your company? Please elaborate.

This allows us to make an accurate comparison of the hierarchal representation of GUI-

components and GUI-containers for each approach.

To provide a performance comparison to ReDraw, we selected the two most closely

related approaches in related research literature, Remaui [232] and pix2code [127] , to

provide a comparative baseline. To provide a comparison against pix2code, we utilized

the code provided by the authors of the paper on GitHub [72] and the provided training

dataset of synthesized applications. We were not able to train the pix2code approach on

our mined dataset of Android application screenshots for two reasons: (i) pix2code uses a

proprietary domain specific language (DSL) that training examples must be translated to

and the authors do not provide transformation code or specifications for the DSL, (ii) the

pix2code approach requires the GUI-related source code of the applications for training,

which would have needed to be reverse engineered from the Android apps in our dataset

from Google Play. To provide a comparison against REMAUI [232], we re-implemented

the approach based on the details provided in the paper, as the tool was not available as

of the time of writing this dissertation1.

As stated in Sec. 4.2.1 ReDraw enables two different methodologies for for detect-

ing GUI-components from a mock-up artifact: (i) CV-based techniques and (ii) parsing

information directly from mock-up artifacts. We consider both of these variants in our

evaluation which we will refer to as ReDraw-CV (for the CV-based approach) and Re-

Draw-Mockup (for the approach that parses mock-up metadata). Our set of 83 screens
1Remaui is partially available as a web-service [81], but it did not work reliably and we could not

generate apps using this interface.
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extracted from Google Play does not contain traditional mock-up artifacts that would arise

as part of the app design and development process (e.g., Photoshop or Sketch files) and

reverse engineering these artifacts is an extremely time-consuming task (see Sec. 4.3.4).

Thus, because manually reverse-engineering mock-ups from 83 screens is not practical,

ReDraw-Mockup was modified to parse only the bounding-box information of leaf node

GUI-components from uiautomator files as a substitute for mock-up metadata.

We compared the runtime hierarchies of all generated apps to the original, ground truth

runtime hierarchies (extracted from the original uiautomator xml files) by deconstructing

the trees using pre-order and using the Wagner-Fischer [110] implementation of Levenshtein

edit distance for calculating similarity between the hierarchical (i.e., tree) representations

of the runtime GUIs. The hierarchies were deconstructed such that the type and nested

order of components are included in the hierarchy deconstruction. We implemented the

pre-order traversal in this way to avoid small deviations in other attributes included in the

uiautomator information, such as pixel values, given that the main goal of this evaluation

is to measure hierarchical similarities.

In our measurement of edit distance, we consider three different types of traditional edit

operations: insertion, deletion, and substitution. In order to more completely measure the

similarity of the prototype app hierarchies to the ground truth hierarchies, we introduced

a weighting schema representing a “penalty" for each type of edit operation, wherein the

default case each operation carries an identical weight of 1/3. We vary the weights of each

edit and calculate a distribution of edit distances which are dependent on the fraction of

the total penalty that a given operation (i.e., insertion, deletion, or substitution) occupies,

and carry out these calculations varying each operation separately. The operations that

are not under examination split the difference of the remaining weight of the total penalty

equally. For example, when insertions are given a penalty of 0.5, the penalties for deletion

and substitution are set to 0.25 each. This helps to better visualize the minimum edit

distance required to transform a ReDraw, pix2code, or Remaui generated hierarchy to the
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original hierarchy and also helps to to better describe the nature of the inaccuracies of the

hierarchies generated by each method.

4.3.3 RQ3: Visual Similarity
One of ReDraw’s goals is to generate apps that are visually similar to target mock-ups.

Thus to answer RQ3, we compared the visual similarity of apps generated by ReDraw,

pix2code, and Remaui, using the same set of 83 apps from RQ2. The subjects of compari-

son for this section of the study were screenshots collected from the prototype applications

generated by ReDraw-CV, ReDraw-Mockup, pix2code, and Remaui. Following the ex-

perimental settings used to validate Remaui [232], we used the open source PhotoHawk

[71] library to measure the mean squared error (MSE) and mean average error (MAE)

of screenshots from the generated prototype apps from each approach compared to the

original app screenshots. To examine whether the MAE and MSE varied to a statisti-

cally significant degree between approaches, we compare the MAE & MSE distributions

for each possible pair of approaches using a two-tailed Mann-Whitney test [145] (p-value).

Results are declared as statistically significant at a 0.05 significance level. We also estimate

the magnitude of the observed differences using the Cliff’s Delta (d), which allows for a

nonparametric effect size measure for ordinal data [161].

4.3.4 RQ4: Industrial Applicability

Ultimately, the goal of ReDraw is integration into real application development work-

flows, thus as part of our evaluation, we aim to investigate ReDraw’s applicability in such

contexts. To investigate RQ4 we conducted semi-structured interviews with a front-end

Android developer at Google, an Android UI designer from Huawei, and a mobile re-

searcher from Facebook. For each of these three participants, we randomly selected nine

screens from the set of apps used in RQ2-RQ3 and manually reversed engineered Sketch

mock-ups of these apps. We verified the visual fidelity of these mock-ups using the GVT

tool [224], which has been used in prior work to detect presentation failures, ensuring

that there were no reported design violations reported in the reverse-engineered mockups.
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Table 4.3: Confusion Matrix for ReDraw

Total TV IV Bt S ET IBt CTV PB RB TB CB Sp SB NP RBt

TV 9877 94% 3% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

IV 5345 5% 93% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Bt 1600 11% 6% 81% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S 37 5% 3% 0% 87% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0%

ET 567 14% 3% 2% 0% 81% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

IBt 866 4% 23% 1% 0% 0% 72% 0% 0% 0% 0% 0% 0% 0% 0% 0%

CTV 337 7% 0% 0% 0% 0% 0% 93% 0% 0% 0% 0% 0% 0% 0% 0%

PB 41 15% 29% 0% 0% 0% 0% 0% 56% 0% 0% 0% 0% 0% 0% 0%

RB 22 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

TBt 26 19% 22% 7% 0% 0% 0% 0% 0% 0% 52% 0% 0% 0% 0% 0%

CB 165 12% 7% 0% 0% 1% 0% 0% 0% 0% 0% 81% 0% 0% 0% 0%

Sp 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

SB 39 10% 13% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 78% 0% 0%

NP 40 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 95% 0%

RBt 129 4% 3% 2% 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 89%

This process of reverse-engineering the mock-ups was extremely time-consuming to reach

acceptable levels, with well over ten hours invested into each of the nine mock-ups. We

then used ReDraw to generate apps using both CV-based detection and utilizing data

from the mock-ups. Before the interviews, we sent participants a package containing the

ReDraw generated apps, complete with screenshots and source code, and the original app

screenshots and Sketch mock-ups. We then asked a series of questions (delineated in Ta-

ble 4.2) related to (i) the potential applicability of the tool in their design/development

workflows, (ii) aspects of the tool they appreciated, and (iii) areas for improvement. Our

investigation into this research question is meant to provide insight into the applicability

of ReDraw to fit into real design development workflows, however, we leave full-scale user

studies and trials as future work with industrial collaborators. This study is not meant to

be comparative, but rather to help gauge ReDraw’s industrial applicability.

4.4 Experimental Results

4.4.1 RQ1 Results: Effectiveness of the CNN

The confusion matrices illustrating the classification precision across the 15 Android com-

ponent classes for both the CNN-classifier and the Baseline BOVW approach are shown

in Tables 4.3 & 4.4 respectively. The first column of the matrices illustrate the number of
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Table 4.4: Confusion Matrix for BOVW Baseline
Total TV IV Bt S ET IBt CTV PB RB TB CB Sp SB NP RBt

TV 9877 59% 4% 9% 1% 6% 2% 8% 6% 0% 1% 2% 0% 1% 0% 2%

IV 5345 4% 51% 4% 1% 2% 11% 2% 18% 1% 1% 3% 0% 2% 0% 2%

Bt 1600 6% 6% 59% 1% 5% 4% 7% 4% 0% 1% 1% 0% 0% 3% 1%

S 37 5% 0% 3% 65% 0% 0% 5% 22% 0% 0% 0% 0% 0% 0% 0%

ET 567 6% 2% 4% 1% 62% 1% 4% 15% 0% 0% 1% 0% 0% 4% 1%

IBt 866 2% 16% 3% 0% 2% 61% 1% 9% 1% 1% 2% 0% 2% 0% 3%

CTV 337 3% 1% 7% 1% 3% 0% 81% 1% 0% 0% 2% 0% 0% 0% 2%

PB 41 0% 24% 2% 0% 2% 5% 2% 54% 0% 0% 2% 2% 2% 0% 2%

RB 22 0% 5% 0% 0% 0% 0% 0% 27% 68% 0% 0% 0% 0% 0% 0%

TBt 26 7% 7% 19% 0% 0% 0% 11% 15% 0% 33% 0% 0% 0% 0% 7%

CB 165 4% 2% 3% 1% 2% 1% 2% 12% 1% 0% 72% 0% 0% 0% 1%

Sp 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

SB 39 0% 5% 0% 0% 0% 0% 0% 18% 3% 0% 5% 0% 68% 0% 3%

NP 40 3% 0% 5% 0% 3% 0% 5% 0% 0% 0% 0% 0% 0% 84% 0%

RBt 129 6% 3% 5% 1% 3% 0% 6% 18% 0% 1% 1% 0% 1% 0% 55%

Abbreviations for column headings representing GUI-component types: TextView (TV),
ImageView (IV), Button (Bt), Switch (S), EditText (ET), ImageButton (IBt), Checked-
TextView (CTV), ProgressBar (PB), RadioButton (RB), ToggleButton (TBt), CheckBox
(CB), Spinner (Sp), SeekBar (SB), NumberPicker (NP), RadioButton (RBt)

components in the test set, and the numbers in the matrix correspond to the percentage

of each class on the y-axis, that were classified as components on the x-axis. Thus, the

diagonal of the matrices (highlighted in blue) corresponds to correct classifications. The

overall top-1 precision for the CNN (based on raw numbers of components classified) is

91.1%, whereas for the BOVW approach the overall top-1 precision is 64.7%. Hence, it

is clear that the CNN-based classifier that ReDraw employs outperforms the baseline,

illustrating the advantage of the CNN architecture compared to a heuristic-based feature

extraction approach. In fact, ReDraw’s CNN outperforms the baseline in classification

precision across all classes.

It should be noted that ReDraw’s classification precision does suffer for certain classes,

namely ProgressBars and ToggleButtons. We found that the classification accuracy of

these component types was hindered due to multiple existing styles of the components.

For instance, the ProgressBar had two primary styles, traditional progress bars, which are

short in the y-direction and long in the x-direction, and square progress bars that rendered

a progress wheel. With two very distinct shapes, it was difficult for our CNN to distinguish

between the drastically different images and learn a coherent set of features to differentiate
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A) Insertion Edits B) Deletion Edits C) Substitution Edits

Figure 4.9: Hierarchy similarities based on edit distances

the two. While the CNN may occasionally misclassify components, the confusion matrix

illustrates that these misclassifications are typically skewed toward similar classes. For

example, ImageButtons are primarily misclassified as ImageViews, and EditTexts are mis-

classified as TextViews. Such misclassifications in the GUI-hierarchy would be trivial for

experienced Android developers to fix in the generated app while the GUI-hierarchy and

boilerplate code would be automatically generated by ReDraw. The strong performance

of the CNN-based classifier provides a solid base for the application generation procedure

employed by ReDraw. Based on these results, we answer RQ1:

RQ1: ReDraw’s CNN-based GUI-component classifier was able to

achieve a high average precision (91%) and outperform the baseline

BOVW approach’s average precision (65%).

4.4.2 RQ2 Results: Hierarchy Construction

An important part of the app generation process is the automated construction of a GUI-

hierarchy to allow for the proper grouping, and thus proper displaying, of GUI-components

into GUI-containers. Our evaluation of ReDraw’s GUI-hierarchy construction compares

against the Remaui and pix2code approaches by decomposing the runtime GUI-hierarchies

into trees and measuring the edit distance between the generated trees and target trees

118



(as described in Section 4.3.2). By varying the penalty prescribed to each edit operation,

we can gain a more comprehensive understanding of the similarity of the generated GUI-

hierarchies by observing, for instance, whether certain hierarchies were more or less shallow

than real applications, by examining the performance of insertion and deletion edits.

The results for our comparison based on Tree edit distance are illustrated in Fig. 4.9 A-

C. Each graph illustrates the results for a different edit operation and the lines delineated

by differing colors and shapes represent the studied approaches (ReDraw Mock-Up or CV-

based, Remaui, or pix2code) with the edit distance (e.g., closeness to the target hierarchy)

shown on the y-axis and the penalty prescribed to the edit operation on the x-axis. For

each of the graphs, a lower point or line indicates that a given approach was closer to the

target mock-up hierarchy. The results indicate that in general, across all three variations in

edit distance penalties, ReDraw-MockUp produces hierarchies that are closer to the target

hierarchies than Remaui and pix2code. Of particular note is that as the cost of insertion

operations rises both ReDraw-CV and ReDraw-MockUp outperform REMAUI. In general

ReDraw-Mockup requires fewer than ten edit operations across the three different types of

operations to exactly match the target app’s GUI-hierarchy. While ReDraw’s hierarchies

require a few edit operations to exactly match the target, this may be acceptable in practice,

as there may be more than one variation of an acceptable hierarchy. Nevertheless, ReDraw-

Mockup is closer than other related approaches in terms of similarity to real hierarchies.

Another observable phenomena exhibited by this data is the tendency for Remaui and

pix2code to generate relatively shallow hierarchies. We see that as the penalty for inser-

tion increases, both ReDraw-CV and ReDraw-Mockup outperform Remaui and pix2code.

This is because ReDraw simply does not have to perform as many insertions into the hi-

erarchy to match the ground truth. Pix2code and Remaui are forced to add more inner

nodes to the tree because their generated hierarchies are too shallow (i.e. lacking in inner

nodes). From a development prototyping point of view, it is more likely easier for a devel-

oper to remove redundant nodes than it is to create new nodes, requiring them reasoning

what amounts to a new hierarchy after the automated prototyping process. These results
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Figure 4.10: Pixel-based mean average error and mean squared error of screenshots:
ReDraw, Remaui, and pix2code apps
are unsurprising for the Remaui approach, as the authors used shallowness as a proxy

for suitable hierarchy construction. However, this evaluation illustrates that the shallow

hierarchies generated by Remaui and pix2code do match the target hierarchies as well as

those generated by ReDraw-Mockup. While minimal hierarchies are desirable from the

point of view of rendering content on the screen, we find that REMAUI’s hierarchies tend

to be dramatically more shallow compared to ReDraw’s which exhibit higher similarity to

real hierarchies. Another important observation is that the substitution graph illustrates

the general advantage that the CNN-classifier affords during hierarchy construction. Re-

Draw-Mockup requires far fewer substitution operations to match a given target hierarchy

than Remaui, which is at least in part due to ReDraw’s ability to properly classify GUI-

components, compared to the text/image binary classification afforded by Remaui. From

these results, we can answer RQ2:

RQ2: ReDraw-MockUp is capable of generating GUI-hierarchies closer

in similarity to real hierarchies than Remaui or pix2code. This signals

that ReDraw’s hierarchies can be utilized by developers with low effort.

4.4.3 RQ3 Results: Visual Similarity

An effective GUI-prototyping approach should be capable of generating apps that are

visually similar to the target mock-up artifacts. We measured this by calculating the

MAE and MSE across all pixels in screenshots from generated apps for ReDraw-MockUp,

ReDraw-CV, Remaui, and pix2code (Fig. 4.10.) compared to the original app screenshots.
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Table 4.5: Pixel-based comparison by MAE: Mann-Whitney test (p-value) and Cliff’s
Delta (d).

Test p-value d
ReDraw-MU vs ReDraw-CV 0.835 0.02 (Small)
ReDraw-MU vs REMAUI 0.542 0.06 (Small)
ReDraw-MU vs pix2Code < 0.0002 -0.34 (Medium)
pix2Code vs ReDraw-CV < 0.0001 0.35 (Medium)
pix2Code vs REMAUI < 0.0001 0.39 (Medium)
REMAUI vs ReDraw-CV 0.687 -0.04 (Small)

Table 4.6: Pixel-based comparison by MSE: Mann-Whitney test (p-value) and Cliff’s
Delta (d).

Test p-value d
ReDraw-MU vs ReDraw-CV 0.771 0.03 (Small)
ReDraw-MU vs REMAUI < 0.0001 0.45 (Medium)
ReDraw-MU vs pix2Code < 0.003 -0.27 (Small)
pix2Code vs ReDraw-CV < 0.002 0.28 (Small)
pix2Code vs REMAUI < 0.0001 0.61 (Large)
REMAUI vs ReDraw-CV <0.0001 -0.42 (Medium)

This figure depicts a box-and-whisker plot with points corresponding to a measurement

for each of the studied 83 subject applications. The black bars indicate mean values. In

general, the results indicate that all approaches generated apps that exhibited high overall

pixel-based similarity to the target screenshots. ReDraw-CV outperformed both REMAUI

and pix2code in MAE, whereas all approaches exhibited very low MSE, with REMAUI very

slightly outperforming both ReDraw variants. The apps generated by pix2code exhibit a

rather large variation from the target screenshots used as input. This is mainly due to the

artificial nature of the training set utilized by pix2code which in turn generates apps only

with a relatively rigid, pre-defined set of components. The results of the Mann-Whitney

test reported in Table 4.5 & 4.6 illustrate wether the similarity between each combination

of approaches was statistically significant. For MAE, we see that when ReDraw-CV and

ReDraw-Mockup are compared to Remaui, the results are not statistically significant,

however, when examining the MSE for these same approaches the result is statistically

significant with a medium effect effect size according to the Cliff’s delta measurement.

Thus, it is clear that on average ReDraw and Remaui both generate prototype applications
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Figure 4.11: Examples of apps generated with ReDraw exhibiting high visual and struc-
tural similarity to target apps

that are closely similar to a target visually, with Remaui outperforming ReDraw in terms

of MSE to a statistically significant degree (with the overall MSE being extremely low

< 0.007 for both approaches) and ReDraw outperforming Remaui in terms of average MAE

(although not to a statistically significant degree). This is encouraging, given that Remaui

directly copies images of components (including those that are not images, like buttons) and

generates text-fields. Reusing images for all non-text components is likely to lead to more

visually similar (but less functionally accurate) apps than classifying the proper component

type and inferring the stylistic details of such components. When comparing both variants

of ReDraw and Remaui to pix2code, the results are all statistically significant, with ranging

effect sizes. Thus, both ReDraw and Remaui outperform pix2code in terms of generating

prototypes that are visually similar to a target.

While in general the visual similarity for apps generated by ReDraw is high, there are

instances where Remaui outperformed our approach. Typically this is due to instances
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where ReDraw misclassifies a small number of components that cause visual differences.

For example, a button may be classified and rendered as a switch in rare cases. However,

Remaui does not suffer from this issue as all components deemed not to be text are copied

to the generated app as an image. While this occasionally leads to more visually similar

apps, the utility is dubious at best, as developers will be required to add proper component

types, making extensive edits to the GUI-code. Another instance that caused some visual

inconsistencies for ReDraw was text overlaid on top of images. In many cases, a developer

might overlay a snippet of text over an image to create a striking effect (e.g., Netflix often

overlays text across movie-related images). However, this can cause an issue for ReDraw’s

prototyping methodology. During the detection process, ReDraw recognizes images and

overlaid text in a mockup. However, given the constraints of our evaluation, ReDraw

simply re-uses the images contained within screenshot as is, which might include overlaid

text. Then, ReDraw would render a TextView or EditText over the image which already

includes the overlaid text causing duplicate lines of text to be displayed. In a real-world

prototyping scenario, such issues can be mitigated by designers providing “clean" versions

of the images used in a mockup, so that they could be utilized in place of “runtime" images

that may have overlaid text. Overall, the performance of ReDraw is quite promising

in terms of the visual fidelity of the prototype apps generated, with the potential for

improvement if adopted into real design workflows.

We illustrate some of the more successful generated apps (in terms of visual similarity

to a target screenshot) in Fig. 4.11; screenshots and hierarchies for all generated apps are

available in a dataset in our online appendix [80]. In summary, we can answer RQ3 as

follows:

RQ3: The apps generated by ReDraw exhibit high visual similarity

compared to target screenshots.
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4.4.4 RQ4 Results: Industrial Applicability

To understand the applicability of ReDraw from an industrial prospective we conducted

a set of semi-structured interviews with a front-end Android developer @Google, a mobile

designer @Huawei, and a mobile researcher @Facebook. We asked them four questions (see

Sec. 4.3) related to (i) the applicability of ReDraw, (ii) aspects of ReDraw they found

beneficial, and (iii) areas for improvement.

4.4.4.1 Front End Android Developer @Google

The first individual works mostly on Google’s search products, and his team practices the

process of mock-up driven development, where developers work in tandem with a dedicated

UI/UX team. Overall, the developer was quite positive about ReDraw explaining that

it could help to improve the process of writing a new Android app activity from scratch,

however, he noted that “It’s a good starting point... From a development standpoint, the

thing I would appreciate most is getting a lot of the boilerplate code done [automatically]".

In the “boilerplate" code statement, the developer was referring to the large amount of

layout and style code that must be written when creating a new activity or view. He also

admitted that this code is typically written by hand stating, “I write all my GUI-code in

xml, I don’t use the Android Studio editor, very few people use it". He also explained that

this GUI-code is time-consuming to write and debug stating, “If you are trying to create a

new activity with all its components, this can take hours", in addition to the time required

for the UI/UX team to verify proper implementation. The developer did state that some

GUI-hierarchies he examined tended to have redundant containers, but that these can be

easily fixed stating, “There are going to be edge cases for different layouts, but these are

easily fixed after the fact".

The aspect of ReDraw that this developer saw the greatest potential for, is its use in

an evolutionary context. During the development cycle at Google, the UI/UX team will

often propose changes to existing apps, whose GUI-code must be updated accordingly. The

developer stated that ReDraw had the potential to aid this process: “The key thing is fast

124



iteration. A developer could generate the initial view [using ReDraw], clean up the layouts,

and have a working app. If a designer could upload a screenshot, and without any other

intervention [ReDraw] could update the [existing] xml this would be ideal." The developer

thought that if ReDraw was able to detect existing GUI-components in a prior app version,

and update the layouts and styles of these components according to a screenshot, generating

new components as necessary, this could greatly improve the turn around time of GUI-

changes and potentially increase quality. He even expressed optimism that the approach

could learn from developer corrections on generated code over time, stating “It would be

great if you could give it [ReDraw] developer fixes to the automatically generated xml and

it could learn from this."

4.4.4.2 Mobile UI/UX Designer @Huawei

We also interviewed a dedicated UI/UX designer at Huawei, with limited programming

experience. His primary job is to create mock-up artifacts that stipulate designs of mobile

apps, communicate these to developers, and ensure they are implemented to spec. This

interview was translated from Chinese into English. This designer also expressed interest

in ReDraw, stating that the visual similarity of the apps was impressive for an automated

approach, “Regarding visual, I feel that it’s very similar", and that such a solution would

be sought after at Huawei, “If it [a target app] can be automatically implemented after the

design, it should be the best design tool [we have]". While this designer does not have

extensive development experience, he works closely with developers and stated that the

quality of the reusability of the code is a key point for adoption, “In my opinion, for the

developers it would be ideal if the output code can be reused". This is promising as ReDraw

was shown to generate GUI-hierarchies that are comparatively more similar to real apps

than other approaches.

4.4.4.3 Mobile Researcher @Facebook

The last participant was a mobile systems researcher at Facebook. This participant ad-

mitted that Facebook would most likely not use ReDraw in its current state, as they are
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heavily invested in the React Native ecosystem. However, he saw the potential of the

approach if it were adopted for this domain, stating “I can see this as a possible tool to

prototype designs". He was impressed by the visual similarity of the apps, stating, “The

visual similarity seems impressive".

In the end, we can answer RQ4:

RQ4: ReDraw has promise for application into industrial design and

development workflows, particularly in an evolutionary context. How-

ever, modifications would most likely have to be made to fit specific

workflows and prototyping toolchains.

4.5 Limitations & Threats to Validity

In this section we describe some limitations and possible routes for future research in

automated software prototyping, along with potential threats to validity of our approach

and study.

4.5.1 Limitations and Avenues for Future Work

While ReDraw is a powerful approach for prototyping GUIs of mobile apps, it is tied to

certain practical limitations, some of which represent promising avenues for future work

in automated software prototyping. First, ReDraw is currently capable of prototyping a

single screen for an application, thus if multiple screens for a single app are desired, they

must be prototyped individually and then manually combined into a single application. It

would be relatively trivial to modify the approach and allow for multiple screens within a

single application with a simple swipe gesture to switch between them for software demo

purposes however, we leave this a future work. Additionally, future work might examine

a learning-based approach for prototyping and linking together multiple screens, learning

common app transitions via dynamic analysis and applying the learned patterns during

prototyping.
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Second, the current implementation of KNN-hierarchy construction is tied to the spe-

cific screen size of the devices used during the data-mining and automated dynamic anal-

ysis. However, it is possible to utilize display independent pixel (dp) vslues to generalize

this algorithm to function independently of screen size, we leave this as future work.

Third, as discussed in Section 4.2.3.2, ReDraw is currently limited to detecting and as-

sembling a distinct set of stylistic details from mock-up artifacts including: (i) background

colors; (ii) font colors, and (iii) font sizes. ReDraw was able to produce prototype applica-

tions that exhibited high visual similarity to target screenshots using only these inferences.

However, a promising area for future work on automated prototyping of software GUIs in-

volves expanding the stylistic details that can be inferred from a target mock-up artifact.

Future work could perform more detailed studies on the visual properties of individual

components from prototype screens generated from screenshots of open source apps. This

study could then measure how well additional inferred styles of individual components

match the original developer implemented components.

Our current CNN classifier is capable of classifying incoming images into one of 15 of the

most popular Android GUI-components. Thus, we do not currently support certain, rarely

used component types. Future work could investigate network architectures with more

capacity (e.g., deeper architectures) to classify larger numbers of component types, or even

investigate emerging architectures such as Hierarchical CNNs [263]. Currently, ReDraw

requires two steps for detecting and classifying components, however, future approaches

could examine the applicability of CNN-based object detection networks [240, 158] that

may be capable of performing these two steps in tandem.

4.5.2 Internal Validity

Threats to internal validity correspond to unexpected factors in the experiments that may

contribute to observed results. One such threat stems from our semi-structured interview

with industrial developers. While evaluating industrial applicability of ReDraw, threats

may arise from our manual reverse engineering of Sketch mock-ups. However, we applied
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a state of art tool for detecting design violations in GUIs [224] in order to ensure their

validity, sufficiently mitigating this threat.

During our experimental investigation of RQ2-RQ4, we utilized two different types of

mock-up artifacts, (i) images of existing application screens (RQ2 & RQ3, and (ii) reverse

engineered mock-ups from existing application screens. The utilization of these artifacts

represents a threat to internal validity as they are used as a proxy for real mock-up artifacts.

However, real mock-ups created during the software design process may exhibit some

unique characteristics not captured by these experimental proxies. For example, software

GUI designs can be highly fluid, and oftentimes, may not be complete when handed off to

a developer for implementation. Furthermore, real mock-ups may stipulate a design that

cannot be properly instantiated in code (i.e., unavailable font types, components organized

in spatial layouts that are not supported in code). We acknowledge that our experiments

do not measure the performance of ReDraw in such cases. However, collecting real mock-

up artifacts was not possible in the scope of our evaluation, as they are typically not

included in the software repositories of open source applications. We performed a search

for such artifacts on all Android projects hosted on GitHub as of Spring 2017, and found

that no repository contained mock-ups created using Sketch. As stated earlier, it was

not practically feasible to reverse-engineer mock-ups for all 83 applications utilized in our

dataset for these experiments. Furthermore, these screenshots represent production-grade

app designs that are used daily by millions of users, thus we assert that these screenshots

and mock-ups represent a reasonable evaluation set for ReDraw. We also did not observe

any confounding results when applying ReDraw to our nine reverse engineered Sketch

mock-ups, thus we assert that this threat to validity is reasonably mitigated.

Another potential confounding factor is our dataset of labeled components used to

train, validate, and test the CNN. To help ensure a correct, coherent dataset, we applied

several different data filtering, cleaning, and augmentation techniques, inspired by past

work on image classification using CNNs described in detail in Sec. 4.2.2.4. Furthermore,

we utilized the uiautomator tool included in the Android SDK, which is responsible for
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reporting information about runtime GUI-objects, and is generally accurate as it is tied

directly to Android sub-systems responsible for rendering the GUI. To further ensure the

validity of our dataset, we randomly sampled a statistically significant portion of our

dataset and manually inspected the labeled images after our data-cleaning process was

applied. We observed no irregularities and thus mitigating a threat related to the quality of

the dataset. It is possible that certain components can be specifically styled by developers

to look like other components (e.g., a textview styled to look like a button) that could

impact the CNN component classifications. However, our experiments illustrate that in

our real-world dataset overall accuracy is still high, suggesting that such instances are

rare. Our full dataset and code for training the CNN are available on ReDraw’s website

to promote reproducibility and transparency [80].

During our evaluation of ReDraw’s ability to generate suitable GUI-hierarchies, we

compared them against the actual hierarchies of the original target applications. However,

it should be noted, that the notion of a correct hierarchy may vary between developers,

as currently, there is no work that empirically quantifies what constitutes a good GUI-

hierarchy for Android applications. For instance, some developers may prefer a more rigid

layout with fewer container components, whereas others may prefer more components to

ensure that their layout is highly reactive across devices. We compared the hierarchies

generated by ReDraw to the original apps to provide an objective measurement on actual

implementations of popular apps, which we assert provides a reasonable measurement of

the effectiveness of ReDraw’s hierarchy construction algorithm. It should also be noted

that performing this comparison on apps of different popularity levels may yield different

results. We chose to randomly sample the apps from the top-10 of each Google Play

category, to investigate wether ReDraw is capable of assembling GUI-hierarchies of “high-

quality” apps as measured by popularity.
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4.5.3 Construct Validity

Threats to construct validity concern the operationalization of experimental artifacts. One

potential threat to construct validity lies in our reimplementation of the Remaui tool.

As stated earlier, the original version of REMAUI’s web tool was not working at the

time of writing this dissertation. We reimplemented REMAUI according to the original

description in the paper, however we excluded the list generation feature, as we could

not reliably re-create this feature based on the provided description. While our version

may vary slightly from the original, it still represents an unsupervised CV-based technique

against which we can compare ReDraw. Furthermore, we offer our reimplementation of

Remaui (a Java program with opencv [69] bindings) as an open source project [80] to

facilitate reproducibility and transparency in our experimentation.

Another potential threat to construct validity lies in our operationalization of the

pix2code project. We closely followed the instructions given in the README of the pix2code

project on GitHub to train the machine translation model and generate prototype appli-

cations. Unfortunately, the dataset used to train this model differs from the large scale

dataset used to train the ReDraw CNN and inform the KNN-hierarchy construction, how-

ever, this is due to the fact pix2code requires the source code of training applications and

employs a custom domain specific language, leading to incompatibilities to our dataset.

We include the pix2code approach as a comparative baseline in our empirical investiga-

tion as it is one of the few approaches aimed at utilizing ML to perform automated GUI

prototyping, and utilizes an architecture based purely upon neural machine translation,

differing from our architecture. However, it should be noted that if trained on a proper

dataset, with more advanced application assembly techniques, future work on applying

machine translation to automated GUI-prototyping may present better results than those

reported in this paper for pix2code.
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4.5.4 External Validity

Threats to external validity concern the generalization of the results. While we imple-

mented ReDraw for Android and did not measure its generalization to other domains, we

believe the general architecture that we introduce with ReDraw could transfer to other

platforms or types of applications. This is tied to the fact that other GUI-frameworks are

typically comprised sets of varying types of widgets, and GUI-related information can be

automatically extracted via dynamic analysis using one of a variety of techniques includ-

ing accessibility services [160]. While there are likely challenges that will arise in other

domains, such as a higher number of component types and the potential for an imbalanced

dataset, we encourage future work on extending ReDraw to additional domains.

ReDraw relies upon automated dynamic analysis and scraping of GUI-metadata from

explored application screens to gather training data for its CNN-based classifier. However,

it is possible that other application domains do not adequately expose such metadata in an

easily accessible manner. Thus, additional engineering work or modification of platforms

may be required in order to effectively extract such information. If information for a par-

ticular platform is difficult to extract, future work could look toward transfer learning as a

potential solution. In other words, the weights for a network trained on GUI metadata that

is easily accessible (e.g., from Android apps) could then be fine-tuned on a smaller number

of examples from another application domain, potentially providing effective results.

4.6 Conclusion & Future Work

In this chapter we have presented a data-driven approach for automatically prototyping

software GUIs, and an implementation of this approach in a tool called ReDraw for An-

droid. A comprehensive evaluation of ReDraw demonstrates that it is capable of (i)

accurately detecting and classifying GUI-components in a mock-up artifact, (ii) gener-

ating hierarchies that are similar to those that a developer would create, (iii) generating

apps that are visually similar to mock-up artifacts, and (iv) positively impacting industrial
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workflows. In the future, we are planning on exploring CNN architectures aimed at object

detection to better support the detection task. Additionally, we are planning on working

with industrial partners to integrate ReDraw, and our broader prototyping approach, into

their workflows.
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Chapter 5

Automatically Detecting, Reporting,

and Reproducing Android

Application Crashes

Continued growth in the mobile hardware and application marketplace is being driven

by a landscape where users tend to prefer mobile smart devices and apps for tasks over

their desktop counterparts. The gesture-driven nature of mobile apps has given rise to

new challenges encountered by programmers during development and maintenance, specif-

ically with regard to testing and debugging [180]. One of the most difficult [128, 131] and

important maintenance tasks is the creation and resolution of bug reports[162]. Reports

concerning app crashes are of particular importance to developers, because crashes repre-

sent a jarring software fault that is directly user facing and immediately impacts an app’s

utility and success. If an app is not behaving as expected due to crashes, missing features,

or other bugs, nearly half of users are likely to abandon the app for a competitor [63] in

marketplaces like GooglePlay [50].

Mobile developers heavily rely on user reviews [183, 237, 198], crash reports from

the field in the form of stack traces, or reports in open source issue tracking systems

to detect bugs in their apps. In each of these cases, the bug/crash reports are typically
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lacking in information [140, 180], containing only a stack trace, overly detailed logs or

loosely structured natural language (NL) information regarding the crash [129]. This is

not surprising as previous studies showed that information, which is most useful for a

developer resolving a bug report (e.g., reproduction steps, stack traces and test cases),

is often the most difficult information for reporters to provide [181]. Furthermore, the

absence of this information is a major cause of developers failing to reproduce bug/crash

reports [128]. In addition to the quality of the reports, some other factors specific to

Android apps such as hardware and software fragmentation [7], API instability and fault-

proneness [200, 125], the event-driven nature of Android apps, gesture-based interaction,

sensor interfaces, and the possibility of multiple contextual states (e.g., wifi/GPS on/off)

make the process of detecting, reporting, and reproducing crashes challenging.

Motivated by these current issues developers face regarding mobile application crashes,

we designed and implemented CrashScope, a practical system that automatically discov-

ers, reports, and reproduces crashes for Android applications. CrashScope explores a given

app using a systematic input generation algorithm and produces expressive crash reports

with explicit steps for reproduction in an easily readable natural language format. This

approach requires only an .apk file and an Android emulator or device to operate and

requires no instrumentation of the subject apps or the Android OS. The entirety of the

CrashScope workflow is completely automated, requiring no developer intervention, other

than reading produced reports. Our systematic execution includes different exploration

strategies, aimed at eliciting crashes from Android apps, which include automatic text

generation capabilities based on the context of allowable characters for text entry fields,

and targeted testing of contextual features, such as the orientation of the device, wire-

less interfaces, and sensors. We specifically tailored these features to test the common

causes of app crashes as identified by previous studies [273, 194, 136]. During execution,

CrashScope captures detailed information about the subject app, such as the inputs sent

to the device, screenshots and GUI component information, exceptions, and crash informa-
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tion. This information is then translated into detailed crash reports and replayable scripts,

for any encountered crash.

This chapter makes the following noteworthy contributions:

1. We design and implement a practical and automatic approach for discovering, report-

ing, and reproducing Android application crashes, called CrashScope. To the best

of the author’s knowledge, this is the first approach that is able to generate expres-

sive, detailed crash reports for mobile apps, including screenshots and augmented

NL reproduction steps, in a completely automatic fashion. CrashScope is also one of

the only available fully-automated Android testing approaches that is practical from

a developers’ perspective, requiring no instrumentation of the subject apps or OS.

Our approach builds upon prior research in automated input generation for mobile

apps, and implements several exploration strategies, informed by lightweight static

analysis that are able to effectively detect crashes and exceptions;

2. We perform a detailed evaluation of the crash detection abilities of CrashScope on

61 Android apps as compared to five state-of-the-art Android input generation tools

(Dynodroid [208], Gui-Ripper [120], PUMA[166], A3E [124], and Android Monkey

[13]). Our results show that CrashScope performs at least as well as current tools

in terms of detecting crashes, while automatically generating detailed reports and

replayable scripts;

3. We design and carry out a user study evaluating the reproducibility and readability of

our automatically generated bug reports through comparison to human written crash

reports for eight open source apps. The results indicate that CrashScope reports offer

more detail, while being at least as useful as the human written reports;

4. We make our experimental data, crash reports, and demo videos available in our

online appendix [35].
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5.1 Background & Motivation

In this section, we discuss the findings of previous studies examining mobile app bugs and

crashes and then outline the limitations of the automated input generation approaches de-

scribed in Chapter 2 while illustrating CrashScope’s novelty in context. Several approaches

for detecting and reproducing crashes are available in literature [147, 235, 148, 236, 205,

150, 266, 279, 277, 276, 272, 251, 204, 184, 177, 176]; however, we forgo discussion of these

approaches, as they are not presented in the context of mobile apps, and hence do not

consider the unique associated challenges.

5.1.1 Previous Studies on Mobile App Bug/Crashes

Motivating factors from Mobile App Bug/Crash Studies aided us in designing CrashScope.

Two studies stand out in terms of providing information to drive design decisions for our

approach. First, Ravindranath et al. [239] conducted a study of 25 million real-world

crash reports collected from Windows Phone users “in the wild" by the “Windows Phone

Error Reporting System" (WPER). Although this study was conducted regarding crashes

from a different mobile OS, several of the findings reported in this study are relevant in

the context of Android, due to platform similarities: 1) a small number of root causes

cover a majority of the crashes examined; 2) many crashes can be mapped to well-defined

externally inducible faults, for example, HTTP errors caused by network connectivity

issues; 3) the dominant root causes can affect many different user execution paths in

an app. The most salient piece of information that can be gleaned from the study and

applied in the design of CrashScope is the following: An effective crash discovery tool must

be able to test different contextual states in a targeted manner, while remaining resilient to

encountered crashes so as to uncover crashes present in different program event-sequence

paths. We explain how CrashScope achieves targeted testing of contextual states using

program analysis in Sec. 5.2.
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In addition, Zaeem et al. [273] conducted a bug study on 106 bugs drawn from 13

open-source Android applications, with the goal of identifying opportunities for automat-

ically generating test cases that include oracles. Most notably, the results of this study

were formulated as a categorization of different Android app bugs. Specifically, these cat-

egorizations were grouped into three headings: Basic Oracles, App-Agnostic Oracles, and

App-Specific Oracles. CrashScope uses the well-defined oracles of uncaught exceptions and

app crashes to detect faults; however, some of the bug categorizations in this study are

useful in triggering these, specifically the app-agnostic categorizations of Rotation, Activity

Life-Cycle, and Gestures. Specifically, we implemented a targeted (i.e., localized) version

of the double-rotation feature [273].

5.1.2 Limitations of Mobile Testing Approaches

While significant progress has been made in the area of testing and automatically gener-

ating inputs for mobile applications, the available tools generally exhibit some noteworthy

limitations that inspired the development of CrashScope:

• Previous approaches lack the ability to provide detailed, easy-to-understand testing

results for faults discovered during automatic input generation, leaving the developer

to sort through and comprehend stack traces, log files, and non-expressive event

sequences [142];

• Most approaches for automated input generation are not practical for developers to

use, typically due to instrumentation or difficult setup procedures. This is affirmed

by the fact developers typically prefer manual over automated testing approaches

[185, 180] As we show, instrumentation can contribute to a higher than necessary

developer effort in parsing results from automated approaches.;

• Few approaches combine different strategies and features for testing apps through

supporting different strategies for user text input and contextual states (e.g., wifi

on/off) in a single holistic approach.
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Figure 5.1: Overview of CrashScope Workflow

These shortcomings contribute to the low adoption rate of automated testing ap-

proaches by mobile developers. In the next section of this chapter, we clearly describe

how CrashScope’s design addresses these current limitations in automated mobile input

generation and testing tools.

5.2 CrashScope Design

In this section, we first describe CrashScope’s novelty by illustrating how it addresses the

limitations discussed in the previous section. We then give an overview of the Crash-

Scope’s workflow, and the salient features in detail.

CrashScope addresses the general limitations of existing tools. First, no other au-

tomated testing approach, is able to automatically generate expressive bug reports (and

replayable scripts) for exceptions and crashes discovered by automated input generation for

mobile apps. CrashScope accurately detects crashes and is able to generate easily readable

and detailed reports without any developer intervention. Second, CrashScope is a practical

tool, requiring only an .apk file and an instantiated emulator or physical device running

Android 4.3 and newer, which constitutes 55% of the current Android OS install base[10].
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Operating on emulators CrashScope is able to parallelize testing on multiple emulators

with different specifications, versions of Android, and screen sizes, mitigating a major

challenge in app development[180]. Third, inspired by existing approaches [239, 273, 119]

CrashScope is able to explore an app through automated input generation while testing

varying contextual states. We extend previous context aware testing techniques by lever-

aging static analysis to extract targeted locations for testing apps in different contextual

states. Finally, our approach is app-crash-resilient ; it can detect a crash and continue

testing the unvisited components and states of the GUI after handling the crash.

The overall workflow of CrashScope is illustrated in Figure 5.1. Let us consider the

31C3 Schedule app [2] as a running example to explain the CrashScope workflow; then, we

will discuss the salient features in detail. The first step in running CrashScope is to obtain

the source code of the app, either directly or through decompilation, and detect Activities

(by means of static analysis) that are related to contextual features (Figure 5.1- 1 ) in order

to target the testing of such features. In other words, CrashScope will only test certain

contextual app features (e.g., wifi off) if it finds instances where they are implemented in

the source code. In the case of 31C3 Schedule, the first activity (screen) of the app makes

use of network connectivity, so this screen would be marked as implementing this feature.

More details about the contextual features detection are provided in Sec. 5.2.1.

Next, the GUI Ripping Engine (Figure 5.1- 2 ) systematically executes the app using

various strategies (Section 5.2.4), including enabling and disabling the contextual features

(if run on an emulator) at the Activities of the app identified previously. If during the exe-

cution, uncaught exceptions are thrown, or the app crashes, dynamic execution information

is saved to the CrashScope’s database (Figure 5.1- 3 ), including detailed information re-

garding each event performed during the systematic exploration. In the case of 31C3

Schedule, if systematic execution is continued from the first screen when the network is

disabled, a crash occurs. This is because the differing contextual condition exposes a state

of the app that would not be otherwise seen.
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After the execution data has been saved to the CrashScope database, the Natural

Language Report Generator (Figure 5.1- 4 , Section 5.2.5) parses the database and processes

the information for each step of all executions that ended in a crash, generating an HTML

based natural language crash report with expressive steps for reproduction (Figure 5.1- 5 ).

In addition, the Crash Script Generator (Figure 5.1- 6 , Section 5.2.6) parses the database

and extracts the relevant information for each step in a crashing execution in order to

create a replayable script containing adb input commands and markers for contextual

state changes. The Script Replayer (Figure 5.1- 7 , Section 5.2.6) is able to replay these

scripts by executing the sequence of adb input commands and interpreting the contextual

state change signals, in order to reproduce the crash. In the case of the 31C3 Schedule

app, this involves turning off the network connection and trying to interact with one of

the app menu headers.

5.2.1 Extracting Activity and App-Level Contextual Features

CrashScope uses Abstract Syntax Tree (AST) based analysis to extract the API-call chains

that are involved in invocations of contextual features. In particular, it detects Android

API calls related to network connectivity and sensors (i.e., Accelerometer, Magnetometer,

Temperature Sensor, and GPS). Because the API calls might not be executed directly by an

Activity, CrashScope performs a call-graph analysis to extract paths ending in a method

invoking a contextual API. Because certain API calls may not be traceable through a

back-propagated call-chain (e.g., sensor or network implemented as a service), CrashScope

employs two granularities for testing contextual features: activity (screen-) level and app-

level. If a particular API call related to one of the contextual features above is able to be

traced back to an Activity, then that feature is later tested at the Activity level (i.e., the

contextual feature is enabled or disabled when the corresponding Activity is in foreground).

If the feature is not able to be linked to an Activity, then the feature is tested at the level

of the entire app (i.e., the contextual feature is enabled or disabled at the beginning of

the app’s execution). To obtain the activities that are rotatable, CrashScope parses the

140



AndroidManifest.xml, where rotatable activities must be declared. During testing, if a

rotatable activity is encountered while exploring an app, then the screen is rotated from

portrait to landscape and back again before any GUI interactions occur to test for proper

implementation of the corresponding rotation event-handlers.

5.2.2 Exploration of Apps & Crash Detection

To explore an app, CrashScope dynamically extracts the GUI hierarchy of each app screen

visited during the exploration and identifies the clickable and long-clickable components to

execute, as well as available components for text inputs (e.g., EditText boxes). The (long-)

clickable components are added to a working list to assure that all the clickable components

are executed systematically. CrashScope executes each possible event (i.e., action on an

available GUI component) on the current screen according to the GUI hierarchy. If text

entry fields are available in a particular app screen, then each text box is filled in before

each (long-) clickable component on the screen is exercised. Currently, our Ripping Engine

supports the tap, long-tap, and type events.

Text entry from the user is a major part of functionality in many Android apps, there-

fore, CrashScope’s GUI Ripping Engine employs a unique text input generation mech-

anism. CrashScope detects the type of text expected (e.g., numbers) by a text field, by

querying the keyboard type associated to the text field [8]. This is done with the adb

shell dumpsys input_method command. Once the type of expected input is detected,

CrashScope employs two strategies to generate text inputs: expected and unexpected. The

expected strategy generates a string within the keyboard parameters without any punctua-

tion or special characters, whereas the unexpected strategy generates random strings with

all of the allowable special characters for a given keyboard type. The intuition behind this

input generation mechanism is to test instances where a developer may have unknowingly

set a keyboard that allows certain characters, but does not properly check for these char-

acters in the code, resulting in a fault. Before the keyboard metadata is read, a touch

event is executed on the text box to ensure the corresponding keyboard is displayed.
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In addition to the text input generation strategies, CrashScope traverses the GUI

hierarchy either from the bottom of the hierarchy up or from the top of the hierarchy down.

The rationale for having two such strategies is to generally mimic what a user would do,

i.e., executing GUI events without a predefined order. If a transition to another screen

is recorded during the exploration, then the GUI-hierarchy of the new screen is detected

and the components on the new screen are executed next. The GUI Ripping Engine

constructs a graph containing all of the possible transition states and uses the back button

to return to previous states after the executable components in a particular branch have

been exhausted. It also keeps a stack of all the yet-to-be visited components. To detect

and capture exceptions, CrashScope filters the logcat for uncaught exceptions related only

to the app being tested. To detect crashes, CrashScope checks for the appereance of

the standard Android crash dialog. If a crash is encountered, the execution information

is logged to the database, but because of the transition diagram and stack of unvisited

components, execution can continue towards additional remaining program paths without

starting the execution from scratch.

5.2.3 Testing Apps in Different Contextual States

When the GUI-Ripping begins, CrashScope first checks for app-level contextual features

that should be tested according to the exploration strategy. Then, the GUI Ripping Engine

checks if the current Activity is suitable for exercising a particular contextual feature in

adverse conditions. If this is the case, it sets the value of the sensor according to the

current strategy. The testing of contextual features works only on emulators using telnet

commands associated with standard Android Virtual Devices (AVDs) [6]. While the telnet

commands do support turning on/off the network for an emulator, they do not support the

enabling/disabling of sensors (Accelerometer, Magnetometer, GPS, Temperature Sensor),

but it is possible to set the values of these sensors. Therefore, to test for sensor related

features in adverse conditions, the network connection is disabled, and unexpected values

are set for the other sensors (GPS, Accelerometer, etc) that would not typically be possible
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under normal conditions. For instance, to test the GPS in an adverse contextual state,

CrashScope sets the value to coordinates that do not represent physical GPS coordinates.

5.2.4 Multiple Execution Strategies

One of CrashScope’s most powerful features is its ability to explore an app according to

several different strategies through combinations of its various supported testing features.

These strategies stem from three major feature heuristics: 1) the direction in which to

traverse the GUI Hierarchy (top-down or bottom-up), 2) the method by which inputs are

generated for user text entry fields (no text, expected text, unexpected text), and finally, 3)

enabling or disabling the testing of adverse contextual states (e.g., if an activity is found to

have utilize wifi, should it be turned on or off?). Different combinations of these strategies

have the potential to uncover different types of app crashes. For example, consider the fol-

lowing configuration <no_text, top_down, enable_all_context_states>. According to

this strategy, CrashScope will not enter any user text, will exercise the GUI-components

in order from the top of the screen to the bottom, and will trigger adverse contextual

features in activities where they are detected. This type of strategy has a high likeli-

hood of uncovering crashes like the one described earlier in C13C Schedule in which the

change of contextual state triggers a crash. However, the <unexpected_text, top_down,

disable_context_states> has a better chance of uncovering crashes related to user input

being handled improperly by the app. By running an app through all 12 combinations

of these three feature heuristics in different strategies, CrashScope can effectively test for

different types of commonly inducible crashes. These strategies can also be parallelized

by running several strategies for an app concurrently on a group or cloud of emulator

instances, further reducing the testing overhead for the developer.

5.2.5 Generating Expressive, Natural Language Crash Reports

CrashScope generates a Crash Report (Figure 5.1- 5 ) that contains four major types of

information: 1) general information including the app name and version, the version of the

143



Figure 5.2: Crash Screen-Flow

Android OS, a legend of icons that indicate the current contextual state of the app in the

reproduction steps, the device, and the screen orientation and resolution when the crash

occurred; 2) natural language sentences that describe the steps to reproduce a crash using

detailed information about the GUI events and contextual states for each step (Figure 5.3);

3) an app’s screen flow that highlights the component interacted with on each screen in the

execution scenario for a particular crash (Figure 5.2); (4) a pruned stack trace containing

only the app exceptions that occurred during execution.

The natural language reproduction steps are constructed by the Report Generator (Fig-

ure 5.1- 4 ) using the template:

<action> on <component text> <component type>, which is located on the <relative

location> of the screen

For the steps that have text entry associated with them, the <action> placeholder is

modified into the following: “Type <text input> on the..." so as to capture any specific

text inputs that may trigger a crash.

5.2.6 Generating & Replaying Reproduction Scripts

The Crash Script Generator (Figure 5.1- 6 ), parses the saved execution information from

the CrashScope database and generates replayable scripts containing adb input commands

for touch and text inputs and markers for changes in contextual states. The scripts are
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Figure 5.3: Example of Contextual Information and Reproduction Steps sections in a
generated crash report

generated by parsing the database for all of the GUI events associated with each step

in a particular execution. Then, the coordinates of each component that were recorded

during the systematic exploration of the app are parsed and the center coordinates are

extrapolated based on each components size. These coordinates are used to generate

adb input commands to reproduce the GUI event. This approach relies on our previous

work in replaying events of test sequences in Android apps [199, 203]. An example of a

CrashScope replayable script can be seen in Fig. 5.1- 6 . The scripts can be replayed by the

Script Replayer (Fig. 5.1- 7 ), which executes the adb input commands, and interprets the
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Table 5.1: Tools used in the comparative fault finding study
Tool Name Android Version Tool Type

Monkey any Random
A3E Depth-First any Systematic

GUIRipper any Model-Based
Dynodroid v2.3 Random-Based

PUMA v4.1+ Random-Based

state change markers in the script (e.g., hWifi_OFFi) to execute proper telnet commands

to set states on an emulator.

5.3 Empirical Study 1: Crash Detection Capability

The goal of our first study is to evaluate the effectiveness of CrashScope at discovering

crashes in Android apps as compared to state-of-the-art approaches for testing mobile

apps. The quality focus of this first study concerns the fault detection capabilities of

CrashScope in terms of locating crashes. The context of this study consists of 61 open-

source Android apps previously used to evaluate automated testing approaches in [142],

as well as five approaches for automated input generation (listed in Table 5.1). We inves-

tigated the following research questions (RQs):

• RQ1: What is CrashScope’s effectiveness in terms of detecting application crashes

compared to other state-of-the-art Android testing approaches?

• RQ2: Does CrashScope detect different crashes compared to the other tools?

• RQ3: Are some CrashScope execution strategies more effective at detecting crashes

or exceptions than others?

• RQ4: Does average application statement coverage correspond to a tool’s ability to

detect crashes?
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5.3.1 Methodology

In order to compare CrashScope against other state of the art automated input generation

tools for Android, we utilized a subset of subject apps and tools available in the Androtest

testing suite [142, 16]. We chose to perform this study on a subset of the tools offered by

Androtest artifact due to runtime issues, namely, some tools would not run consistently on

the set of provided subject apps (e.g., the tools would launch an emulator but not the app),

causing inconsistent results we chose to exclude. However, when contacted, the authors

of the tool were helpful in supporting us. We believe the tools tested against constitute a

diverse representation of the publicly available Android testing tools. The Androtest suite

contains 68 subject applications for testing; however, when recompiling the applications

to run the tools and extract the apps from the VM to run with CrashScope, seven of

the subject apps failed to compile with the instrumentation necessary to gather code-

coverage results. Therefore, each tool in the suite was allowed to run for one hour for each

of the remaining 61 subject apps, five times, whereas we ran all 12 combinations of the

CrashScope strategies once on each of these apps. It is worth noting that the execution

of tools in the Androtest suite (except for Android monkey) can not be controlled by a

criteria such as maximum number of events.

In the Androtest VMs, each tool ran on its required Android version, for CrashScope each

subject application was run on an emulator with a 1200x1920 display resolution, 2GB of

RAM, a 200 MB Virtual sdcard, and Android version 4.4.2 JellyBean. We ran the tools

listed in Table 5.1, except Monkey, using Vagrant[106] and VirtualBox[107]. The Monkey

tool was run for 100-700 event sequences (in 100 event deltas for seven total configurations)

on an emulator with the same settings as above with a two-second delay between events,

discarding trackball events. Each of these seven configurations was executed five times for

each of the 61 subject apps, and every execution was instantiated with a different random

seed [13]. While Monkey is an available tool in Androtest, the authors of the tool chose

to set no delay between events, meaning the number of events monkey executed over the
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course of 1 hour far exceeds the number of events generated by the other tools, which would

have resulted in a biased comparison to the CrashScope and the other automated testing

tools. In order to give a complete picture of the effectiveness of CrashScope as compared

to the other tools, we report data on both the statement coverage of the tools as well as

crashes detected by each tool. Each of the subject applications in the Androtest suite was

instrumented with the Emma code coverage tool [40], and we used this instrumentation to

collect statement coverage data for each of the apps. Due to space limitations, we report

the cumulative coverage for all of the strategies and runs of each tool with a full dataset

of detailed statistics available in our replication package in the online appendix [35].

The underlying purpose of this study is to compare the crash detection capabilities

of each of these tools and answer RQ1. However, we cannot make this comparison in

a straightforward manner. CrashScope is able to accurately detect app crashes by de-

tecting the standard Android dialog for exposing a crash (e.g., a text box containing the

phrase “application_name has stopped"). However, because the other analyzed tools do

not support identifying crashes at runtime, there is no reliable automated manner to ex-

tract instances where the application crashed purely from the logcat[9]. To obtain an

approximation of the crashes detected by these tools, we parsed the logcat files generated

for each tool in the Androtest VMs. Then, we isolated instances where exceptions occurred

containing the FATAL EXCEPTION key marker, which were also associated with the process

id (pid) of the app running during the logcat collection. While this filters out unwanted

exceptions from the OS and other processes, unfortunately, it does not guarantee that the

exceptions signify a crash caused by incorrect application logic. This could signify, among

other things, a crash caused by the instrumentation of the controlling tool. Therefore, in

order to conduct a consistent comparison to CrashScope, the authors manually inspected

the instances of fatal exception stack traces returned by the logcat parsing, discarding

duplicates and those caused by instrumentation problems, and we report the crash results

of the other tools from this pruned list. A full result set with both full and pruned logcat

traces is available in our online appendix [35]. The issues encountered when parsing the
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Table 5.2: Unique Crashes Discovered with Instr. Crashes in parentheses
App A3E GUI-

Ripper
Dyno-
droid

PUMA Monkey
(All)

Crash-
Scope

A2DP Vol 1 0 0 0 0 0
aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1
BatteryDog 0 0 1 0 1 0
Soundboard 0 1 0 0 0 0
AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0
Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1
PassMaker 1 0 0 0 1 1
BlinkBattery 0 0 0 0 1 0
D&C 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0
Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0
Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1
Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0)

results from these other tools further highlight CrashScope’s utility, and the need for an

automatic tool that can accurately detect and in turn effectively report crashes in mobile

apps.

5.3.2 Results & Discussion

Table 5.2 shows the aggregated crash discovery results of each tool over their various

runs. This table reports unique crashes (as signified by differing stack traces not caused

by app instrumentation) detected by the various approaches, only includes those apps for

which crashes were discovered. For tools other than CrahsScope, we also report crashes

(in parentheses) that were caused by instrumentation frameworks (e.g., troyd, Android

intsr., junit, Emma), as these represent “false positive" crashes uncovered by the tools.

The results highlight four key results. The first observable result is that CrashScope is

about as effective in terms of number of crashes detected, while also providing detailed

bug reports. CrashScope discovered fewer crashes compared to Monkey due to the large

number of events that this tool is capable of producing. However, it should be noted that
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Figure 5.4: Average Coverage Results for the Comparative Study

Monkey is not able to generate replayable scripts or reports, severely limiting its usefulness

form a developers perspective. CrashScope was able to discover about as many crashes as

A3E, GUI-Ripper, and Dynodroid, more than PUMA, without any false positives caused by

instrumentation of the app or system. Therefore, we answer RQ1 as follows: CrashScope

is about as effective at detecting crashes as the other tools. Furthermore, our

approach reduces the burden on developers by reducing the number of “false"

crashes caused by instrumentation and providing detailed crash reports.

The second observable result is that CrashScope is able to detect orthogonal crashes

compared to the other tools. In order to understand why CrashScope detected different

crashes than the other approaches, the authors manually examined the detected crash re-

ports to determine their causes. Because it might not be possible to determine the exact

cause or type of crashes from the other tools, we exclude a discussion here, but we spec-

ulate on the differences from CrashScope’s results. The key finding from this exploration
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is that the differing strategies implemented by CrashScope contributed to its ability to de-

tect orthogonal crashes compared to the other tools. For instance, the crash detected by

CrashScope for the zooborns app is triggered by typing unexpected text in a text box.

The other tools probably missed this crash because their text generation techniques do

not include unexpected inputs. Furthermore, one aspect of this crash highlights the util-

ity of CrashScope’s detection and reporting capabilities, namely, the thrown exception

is potentially misleading to a developer. While this crash was caused by text formatting,

the exception is for an AsyncTask object, one of Android’s thread handling mechanisms,

meaning it could be difficult for a developer to reason about the cause of this crash in

the absence of a detailed report. Another example of an orthogonal crash discovered by

CrashScope is that for the PasswordMakerPro app. While two other tools (Monkey, A3E)

found a crash during their exploration of this app, only CrashScope was able to discover a

crash caused by a contextual feature, rotation. This highlights the utility of the different

exploration techniques. Consequently, RQ2 can be answered as follows: The varying

strategies of CrashScope allow the tool to detect different crashes compared to

those detected by other approaches.

The third result we see from the the crash detection data is that certain CrashScope strate-

gies are more effective at uncovering crashes than others. The most effective of the text

strategies overall was the unexpected heuristic that was able to discover all of the crashes

listed for CrashScope in Table 5.2. Different crashes were discovered during the runs of

strategies where contextual features were and were not tested in adverse conditions, as

discussed above, suggesting that some errors are only discoverable when contextual fea-

tures are in normal states. Overall, the forwards heuristic for traversing the GUI led to

the discovery of more crashes (8 crashes) compared to the backwards strategy (7 crashes),

with some of these crashes overlapping. The most effective overall crash discovery strategy

was <contextual_feautres_enabled, forward, unexpected>. Thus, RQ3 can be answered

as Different combinations of CrashScope strategies were more effective than
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others, suggesting the need for multiple testing strategies encompassed within

a single tool.

The fourth observable result is that the average statement coverage of the analyzed tools

tool (see Fig. 5.4) does not necessarily correspond to a better fault discovery capability,

as CrashScope was able to detect about as many crashes with lower average coverage

than other tools (i.e., PUMA, Monkey, and Dynodroid). This implies that future testing

approaches for mobile apps need to take into consideration metrics in addition to code

coverage to illustrate the effectiveness of the approach. Therefore, our answer for RQ4 is:

Higher statement coverage of an automated mobile app testing tool does not

necessarily imply that tool will have effective fault-discovery capabilities.

5.4 Study 2: Reproducibility & Readability

The goal of the second study is to evaluate the reproducibility and readability of the natu-

ral language reports generated by CrashScope compared to original human written reports

found in online issue trackers. The quality focus of this study concerns the ability of de-

velopers to reproduce bugs from CrashScope’s reports. The context of this study consists

of eight real world Android app crashes and reports, extracted from open source apps and

their corresponding issue trackers, as well as reports generated by CrashScope for these

same crashes (details of the crashes and corresponding apps are presented in our online

appendix [35]). In the context of this second study we examined the following RQs:

• RQ5: Are reports generated with CrashScope more reproducible than the original

human written reports?

• RQ6: Are reports generated by CrashScope more readable than the original human

written reports?
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Table 5.3: User Experience Results: This table reports the mean average response
from 16 users regarding the User Experience questions posed for both CrashScope gener-
ated reports and the original human written reports found in the app’s issue trackers. (CS
= CrashScope Bug Reports, O=Original Bug Reports, M=Mean, SD=Standard Devia-
tion)

Question CS M CS SD O M O SD
UX1: I think I would like to have this type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was really useful for reproducing the crash. 4.13 0.62 3.44 0.89

5.4.1 Methodology

To identify the crashes used for this study, we manually inspected the issue trackers of

the apps on F-droid looking for reports that described an app crash. Then, we ran

CrashScope on the version of the app that the crash was reported against to observe

whether or not CrashScope was able to capture the crash on the same emulator configu-

ration as the previous study. While we chose these bugs manually, the goal of this study

is not to measure CrashScope’s effectiveness at discovering bugs (unlike the first study).

We acknowledge that there are situations in which CrashScope will not be able to detect

a fault and we outline these cases in Section 5.5.

In order to answer RQ5 and RQ6, we asked 16 CS graduate students from William and

Mary (a proxy for developers [247]) to reproduce the eight crashes (four from the original

human written reports, and four from CrashScope). The design matrix of this study was

devised in such as way that each crash for each type of report was evaluated by four partic-

ipants, no crash was evaluated twice for the same participant, and eight participants saw

the human written reports first, and eight participants saw the CrashScope reports first, all

in the interest of reducing bias. The system names were also anonymized (CrashScope to

“System A" and the human written reports to “System B"). The full design matrix can

be found in our online appendix [35]. During the study, participants recorded the time it

took them to reproduce the crash on a Nexus 7 device for each report, with a time limit

of ten minutes for reproduction. If a participant could not reproduce the bug within the
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ten minute time frame or gave up in trying to reproduce the bug, that bug was marked as

non-reproducible for that participant. Therefore, in order to answer RQ5, we measured

how many crashes were successfully reproduced by the participans for each type of crash

report, we also measured the time it took each participant to reproduce each bug (the

detailed dataset is available at [35]).

After the completion of the crash reproductions, we had each participant fill out a

brief survey, answering questions regarding the user preferences (UP) and usability (UX )

for each type of bug report. We also collected information about each participants pro-

gramming experience and familiarity with the Android platform. The UP questions were

formulated based on the user experience honeycomb originally developed by Moville [229]

and were posed to participants as free form text entry questions. We objectively measure

the user preferences of the participants by summarizing the responses and offering excerpts

from the answers highlighting the results. The UX questions were created using state-

ments based on the SUS usability scale by Brooke [132] and were posed to participants in

the form of a 5-point Likert scale. We quantify the user experience of CrashScope and

answer RQ6 by presenting the mean and standard deviation of the scores for the responses

to the Likert-based questions. The questions regarding programming experience are based

on the questionnaire developed by Feigenspan et al. [156].

5.4.2 Results & Discussion

The CrashScope reports achieved a similar levels of reproducibility compared to the human

written reports with 94% (60 out of 64) of the CrashScope reports being successfully repro-

duced by participants compared to 92% (59 out of 64) of the original reports. Therefore,

RQ5 can be answered as follows: Reports generated by CrashScope are about as

reproducible as human written reports extracted from open-source issue track-

ers. The UX questions and results can be found in Table 5.3, which show that participants

found CrashScope reports to be more readable and useful than the original reports. Thus,

RQ6 can be answered as: Reports generated by CrashScope are more readable
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and useful from a developers’ perspective as compared to human written re-

ports. One interesting case arose from this study. No participant assigned the original

report for the C13C Schedule app was able to reproduce the bug, whereas all participants

assigned the CrashScope version of this app were able to reproduce it. This is because the

network needed to be disabled for the crash to manifest itself, and this was not captured in

the original bug report. This highlights the utility of CrashScope’s context-aware reports.

5.5 Limitations & Threats to Validity

While our empirical evaluation has shown that CrashScope is effective at detecting crashes

in Android apps, our tool has some inherent limitations. First, because CrashScope’s

systematic execution engine does not implement the swipe gesture, it will not be able to

execute GUI components existing within a list that does not fit entirely within the device’s

screen. This limitation may cause some crashes or exceptions dependent on these types

of components to be missed. The second limitation is that CrashScope does not support

highly specialized text input. This may limit the exploration capabilities of our tool for

certain apps. However, recent approaches in concolic and symbolic executions may prove

useful in overcoming this limitation[252, 213, 174, 271]. The third limitation of our tool

relates to window detection in Android. Android apps are organized into screens based on

activities and other windows (e.g., dialogs). Activities are fairly simple to detect, as each

has a unique name which acts as an identifier for that activity. However, the same is not

true for dialogs, as they have no unique identifier. Each Activity can have multiple dialogs.

To solve this problem we use the size of the window with the focus and in foreground as

a unique identifier, as through our observations we found that very few activities employ

different unique windows of the same size. However, this is an imperfect heuristic and prone

to occasional errors. Due to checks in place in our systematic execution algorithm, this

never leads to incorrect execution of the app, however, it may mean that less functionality
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of the app is explored compared to a method that is able to correctly identify all unique

windows in an app.

One potential threat to external validity is the fact that we used a set of 61 open

source applications to evaluate CrashScope in the first empirical study, and eight crashes

in eight open source applications for the second empirical study. Therefore, we can not

generalize our results to Android apps in general due to the limitations of these subject

apps. However, we believe that this threat is lessened by the fact that these apps were

collected from datasets in previous studies and contain several popular, complex apps. In

the context of our empirical studies, one threat to internal validity stem from the potentially

surprising effects of participants in the user study for the second empirical study. To this

end there is a threat since we approximated graduate students in Computer Science as

experienced Android developers. However, this threat is mitigated by the fact that all

of these participants indicated that they have extensive programming experience as well

as moderate experience with the Android environment, and recent work shows that in

carefully controlled experiments experienced graduate students are sufficient proxy’s for

developers [247]. Another threat to internal validity concerns the manual inspection of log

traces from the tools CrashScope was tested against. However, this threat is mitigated

due to the fact that the the process was partially automated to decrease the manual

examination set and the authors who examined these logs are very well versed in the

Android platform and automated testing approaches in research.

5.6 Conclusions

In this chapter, we presented CrashScope, a practical approach for discovering, reporting,

and replaying Android app crashes. Our tool leverages a powerful algorithm for systematic

exploration that is crash tolerant, capable of context-aware input and text generation, and

runs on a diverse set of devices and emulators. We evaluated CrashScope with respect

to crash and exception detection, as compared to other state-of-the-art automatic input
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generation tools for Android and show that our tool is able to uncover at least as many

crashes as these other approaches, while offering more detailed information in the form

of NL crash reports containing steps to reproduce the crash, and high-level repayable

traces that can reproduce the crash on demand. We also evaluated the reproducibility and

readability of our automatically generated reports and show that they provide for reliable

reproduction of crashes while proving more readable and usable for developers. In the

future, we aim to investigate techniques to trim bug reports, so that they contain only the

necessary steps, as well as improving our systematic exploration strategy for uncovering a

higher number of bugs, by adapting promising emerging approaches in model-based GUI

testing. [233].

157



Chapter 6

Conclusions & Future Research

In this dissertation, we have presented several different approaches for automating the

software development process of mobile applications and both empirical validations of

their effectiveness and evidence of their applicability to real development workflows. More

specifically, we have helped to automate various aspects of the design, implementation,

and testing of apps. However, the presented work only touches the surface of various com-

ponents of the development process that are ripe for automation. Thus, there are several

promising avenues of future work related to software automation for mobile applications.

In this chapter, we outline three of these topics before offering concluding remarks on the

techniques presented in this dissertation. These three topics include (i) providing auto-

mated documentation related to graphical user interfaces, (ii) helping to improve program

comprehension and enable practical program synthesis by leveraging information encoded

into graphical user interfaces, and (ii) working towards a new vision for automated mobile

testing centered around three principles: continuous, evolutionary, and large-scale [197].

In our discussion of these directions for future work, we continue our focus upon the do-

main of mobile apps. However, many of the underlying principles of the work discussed are

transferrable to other domains, particularly those concerned with GUI-centric applications.
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6.1 Toward Automatically Documenting Graphical User In-

terfaces

Highly competitive app stores like Apple’s App Store [24] or Google Play [50] contain

millions of apps, many of which implement similar functionality. In order to succeed

in such marketplaces, developers need to ensure their application provides an engaging

user experience and aesthetically pleasing user interface [112]. Unfortunately, past studies

have shown that designing and implementing effective GUIs can be a difficult task [259,

231, 232], especially for mobile apps [224]. These difficulties are due in large part to

challenges unique to the mobile development process that have been well documented in

research literature [180] and include: (i) rapidly evolving platforms and APIs [200, 125], (ii)

continuous pressure for new releases [170, 178], (iii) inefficiencies in testing [142, 196, 197],

(iv) overwhelming and noisy feedback from user reviews [144, 152, 238, 237], and (v)

market, device, and platform fragmentation [165, 264, 7].

Mobile GUIs are typically stipulated in files separate from the main logic of the app

(e.g., .xml for Android, and .nib or storyboards for iOS). These files delineate attributes

of GUI components in relative terms (e.g., display independent pixel dpi values) and are

arranged according to a hierarchical structure (i.e., a GUI hierarchy) to facilitate reactive

design across fragmented device ecosystems. Reasoning about the actual rendering of a

GUI using such an abstract definition in code is a difficult task. Conversely, collecting

screenshots to discern visual changes is difficult, as it requires manual intervention and

adept visual perception is needed to discern meaningful GUI changes. Thus, it is clear

that comprehending how GUI code affects the visual representation of an app requires

mentally bridging a challenging abstraction gap.

Furthermore, the design and implementation of a GUI for a mobile app is not a “single

cost” task that is performed at the inception of development. Instead, GUI-changes must

evolve to keep pace with constant user feedback and the evolution of the prescribed design

language and guidelines of the underlying mobile platform (e.g., Android’s transitions
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to differing versions of material design [49]), thus developers must constantly evolve an

app’s GUI to satisfy changing design requirements. This illustrates that there is a clear

need for automated support in effectively documenting GUI changes to help aid developers

in time-consuming program comprehension tasks related to mobile app development. In

particular, automated summarization of visual GUI-changes would allow for developers to

more effectively comprehend the affect of code-based changes on the visual representation

of a mobile GUI.

It is clear that automated support in documenting graphical user interfaces for mobile

apps would greatly benefit developers. The overarching goals of this future research thrust

regarding automated GUI documentation are as follows:

• Research Goal 1: Understanding Developer’s and User’s Information Needs in

Documenting GUIs: In order to create effective automated documentation for graph-

ical user interfaces, it is important to first understand what documentation informa-

tion both developers and users find useful. Thus, the first goal of this research thrust

is to conduct studies that will shed light on information needs for GUI documenta-

tion.

• Research Goal 2: Designing Developer and User-Centric Approaches for Auto-

mated GUI Documentation: Once we have established a set of guidelines for effective

GUI documentation in eyes of developers and users, we will leverage this knowledge

to create approaches that are capable of automatically documenting GUIs as software

evolves.

6.2 Toward GUI-centric Automated Program Understanding

& Synthesis

The Graphical User Interfaces of software applications contain a wealth of information that

may be useful for aiding in automated program understanding, and in the future, program
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synthesis. In this dissertation, we have illustrated an effective and promising approach

for automated synthesis of code that implements a specified graphical user interface of a

mobile app. However, this is only the first step toward a more complete process of pro-

gram synthesis. Given recent advancements in artificial intelligence and machine learning

techniques, particularly as they relate to computer vision, one could conceive of moving

beyond the capabilities of ReDraw, towards implementing different functional properties

of a GUI. However, to accomplish this, the extent to which the visual semantics of graph-

ical user interfaces can encode underlying functional information of a software GUI must

be thoroughly explored.

The overarching goals of this future research thrust in program understanding and

synthesis are as follows:

• Research Goal 1: Explore the Representational Power of Graphical User Interfaces:

In order to move toward approaches capable of automatically generating functional

GUI-related code, the degree to which this functional information can be learned from

GUIs must be explored. In essence, this requires studies focused on ascertaining the

representational properties of GUIs as related to software functionality.

• Research Goal 2: Designing Approaches for Synthesizing functional GUI-related

Code: According to the information gleaned from studying the representational

power of GUIs, we will design approaches for synthesizing code related to various

discrete functional properties of software GUIs.

6.3 Toward a Practical, Comprehensive Framework for Au-

tomated GUI-based Testing

Unique characteristics and emerging best practices for creating mobile apps, combined

with immense market interest, have driven both researchers and industrial practitioners

to devise frameworks, tools, and services aimed at supporting mobile testing with the goal
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of assuring the quality of mobile apps. However, current limitations in both manual and

automated solutions underlie a broad set of challenges that prevent the realization of a

comprehensive, effective, and practical automated testing approach [180, 142, 185]. Be-

cause of this, mobile app testing is still performed mostly manually costing developers,

and the industry, significant amounts of effort, time, and money [180, 142, 185]. As de-

velopment workflows increasingly trend toward adoption of agile practices, and continuous

integration is adopted by larger numbers of engineers and development teams, it is im-

perative that automated mobile testing be enabled within this context if the development

of mobile apps is to continue to thrive. However, current solutions for automated mobile

testing do not provide a “fully" automated experience, and several challenges are still open

issues requiring attention from the community, if the expected goal is to help mobile de-

velopers to assure quality of their apps under specific conditions such as pressure from the

users for continuous delivery and restricted budgets for testing processes. As part of our

proposed future work, we introduce a new paradigm for mobile testing called CEL testing,

which is founded on three principles: Continuous, Evolutionary, and Large-scale (CEL).

6.3.1 The CEL Testing Principles

The CEL testing framework is based on three core principles aimed at addressing these

challenges: Continuous, Evolutionary, and Large-scale. These principles integrate and

extend concepts from software evolution and maintenance, testing, agile development, and

continuous integration. However, the principles alone are not enough to provide solutions

to the aforementioned challenges. Therefore, as part of the CEL testing vision, we propose

a system architecture for automated mobile testing following CEL principles. To make this

vision tractable, we propose a research agenda for enabling CEL testing and implementing

our envisioned system.

Automated testing of mobile apps should help developers increase software quality

within the following constraints: (i) restricted time/budget for testing, (ii) needs for diverse
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types of testing, and (iv) pressure from users for continuous delivery. Following the CEL

principles can enable effective automated testing within these requirements:

Continuous. Following the principles that support continuous integration and delivery

(CI/CD), mobile apps should be continuously tested according to different goals and under

different environmental conditions. Tests should simulate real usages and consider scenarios

that simulate different contextual eventualities (e.g., exploring a photos app when loosing

connectivity) as dictated by app features and use cases. Any change to the source code or

environment (i.e., usage patterns, APIs, and devices) should trigger — automatically – a

testing iteration on the current version of the app. To avoid time-consuming regressions,

test cases executed during the iteration should cover only the impact set of the changes

that triggered the iteration. Finally, to support practitioners when fixing bugs, the bug

reports generated with CEL testing should be expressive and reproducible, i.e., the bug

reports should contain details of the settings, reproduction steps, oracle, inputs (GUI and

contextual events), and stack traces (for crashes).

Evolutionary. App source code and testing artifacts (i.e., the models, the test cases, and

the oracles) should not evolve independently of one another; the testing artifacts should

adapt automatically to changes in (i) the app, (ii) the usage patterns, and (iii) the available

devices/OSes. Thus, the testing artifacts should continuously and automatically evolve,

relying not only on source code changes as an input, but also information collected via MSR

techniques from sources such as on-device reporting/monitoring, user reviews, and API

evolution. CEL testing employs a multi-model representation of the app and this mined

data, consisting of GUI, domain, usage, fault, and contextual models, to properly evolve

the testing artifacts. This multi-model representation can be used for the evolutionary

generation of testing artifacts which consider both historical and current data.

Large-scale. To assure continuous delivery in the face of challenges such as fragmenta-

tion, constrained development timelines, and large combinations of app inputs from GUI

and contextual events, CEL requires a large-scale execution engine. This engine should

enable execution of test cases that simulate real conditions in-the-wild. Therefore, to sup-
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port a large test-matrix, CEL testing should be supported on infrastructures for parallel

execution of test cases on physical or virtual devices. While virtual devices reduce the

cost of implementing the engine, physical devices (or extremely accurate simulations) are

mandatory for performance testing. The large-scale engine should be accessible in the

context of both cloud and on-premise hardware. Thus, an open-source implementation of

the engine is preferred because CEL testing is targeted for both professional development

and SE research.

Based on the current frameworks, tools, and services that are available to developers,

as well as the limitations and remaining open challenges in the domain of mobile testing,

we firmly believe that our vision for Continuous, Evolutionary and Large-Scale mobile

testing offers a comprehensive architecture that, if realized, will dramatically improve the

testing process. However, there are still many components of this vision that are yet to be

properly explored in the context of research. Therefore, in order to make our vision for the

future of mobile testing tractable, we offer an overview of a research agenda broken down

into six major topics.

• Research Goal 1: Toward Improved Model-Based Representations of Mobile Apps:

Current approaches for deriving model-based representations of apps are severely

lacking a multi-model-based approach that might significantly improve the utility of

model-based testing. However, to this end, there are several unexplored areas requir-

ing further research and investigation. While model-based representations of mobile

GUIs have been widely explored [120, 141, 273, 268, 203, 278], researchers should fo-

cus on unifying the (often complementary) information which can be extracted from

both static and dynamic program analysis techniques. For instance, using static

control flow information from a tool like GATOR to guide dynamic GUI-ripping to

extract a more complete GUI model. Very little research work has been devoted to

deriving domain models from applications, however, such models will be crucial for

enabling automated tests to exercise complex inputs and behaviors. Future studies
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could focus on automatically extracting domain models from source code and data

storage models, and by examining common traits between apps that exist in simi-

lar categories in app marketplaces in order to derive common event sequences and

GUI-usage patterns.

Given the highly contextualized environment of mobile apps (e.g., varying network

and sensor conditions), effective automated testing will require a contextual model

identifying and quantifying the usages of related APIs within in application. While

some recent work has explored such functionality [219], this can be made more precise

and robust through more advanced static analysis and dynamic techniques that infer

potential context values to help drive automated testing. Very few automated testing

approaches for mobile apps consider usage models [203, 214] stipulating common

functional use cases of an app, expressed as combinations of GUI events. Recent

advances in deep-learning based representations may be applicable for appropriately

modeling user interactions and high-level features, if properly cast to the problem

domain.

In order to better inform test case generation and properly measure the effectiveness

of automated testing, platform specific fault models must be empirically derived

through observations and codification of open source mobile app issue trackers, and

knowledge bases such as Stack Overflow [88] or the XDA developer forums [116].

Finally, in order for these models to be viable within an evolutionary context, there

must exist mechanisms for accurate, history aware model updates. A continuously

evolving model will allow for more robust updates to generated test-related artifacts.

• Research Goal 2: Goal-Oriented Automated Test Case Generation: Current ap-

proaches for automated input generation for mobile apps have typically focused on

a single type of testing, namely destructive testing [39] or some derivation thereof.

The effectiveness of such techniques are typically measured code coverage metrics or

by the number of failures uncovered. While this type of testing can help improve the
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quality of an app, it is one of many important testing practices in the mobile domain.

In order to provide developers with a comprehensive automated testing solution, re-

searchers must focus on automated test generation for other types of testing aimed at

different goals, particularly those measuring mobile-specific quality attributes. Some

of these testing types include security testing, localization testing, energy testing,

performance testing and play-testing. Testing for different goals on mobile platforms

fundamentally differs from similar testing scenarios for other types of software due

to the GUI and event-driven nature of mobile apps, and the fact that GUI tests on

devices are currently a necessity (as unit testing misses important features untestable

outside of device runtimes) for exercising enough app functionality to achieve effec-

tive practices for many of these testing scenarios. Therefore, the challenge to the

research community is to utilize the representation power of the models we describe

in this paper to devise techniques for automated test case generation for different

testing goals.

• Research Goal 3: Flexible Open Source Solutions for Large Scale and CrowdSourced

Testing: As mobile markets mature and additional devices are introduced by con-

sumer electronics companies, the mobile fragmentation problem will only be exac-

erbated. As previously discussed, cloud-based services offering virtually accessible

physical devices and crowdsourced testing are two promising solutions to this issue,

however, these solutions are not available to all developers and are not scalable to all

testing goals. For instance, it may be difficult to carry out effective energy or security

testing on cloud-based devices if such services are not specifically enabled by a cloud

provider. As outlined in our vision, we looked to container and virtual machine

technology that has made testing practices scalable in development scenarios like

continuous integration (CI). Thus, it is clear that a robust and highly customizable

container or virtualization image of a mobile platform is the most promising long-

term, scalable solution for enabling our vision of CEL testing. Future research in the
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systems area could focus on improving the viability of promising open source source

projects as androidx86 [15] to be used in CI-like development environments, allowing

for further customizations and control over attributes such as sensor value mock-

ing and screen size and pixel density. While valuable, these virtual devices will not

be applicable to all types of testing, such as usability testing, or usage information

collection which can be used to derive an effective usage model of an app. Instead,

such goals fit the model of crowdsourced testing well. Unfortunately, no flexible open

source solutions to support developers or researchers currently exist, signifying the

need for such a platform. Luckily, there are existing modern open source solutions

such as OpenSTF [90] and ODBR [223] that could help facilitate the creation of such

a platform. This platform should allow for easy collection of privacy-aware execution

traces and logs, suitable for deriving usage models.

• Research Goal 4: Derivation of Scalable, Precise Automated Oracles: To allow

viable automated support of a diverse set of testing goals, progress must be made in

the form of automatically generated, accurate, and scalable oracles. It is likely that

such oracles will be specific to particular types of testing tasks and require different

technological solutions. Some automated testing approaches have broached this prob-

lem and devised simple solutions such as using app agnostic oracles based on screen

rotation actions [273] or GUI screenshots as state-representations [195]. However,

there are still open problems even with these simple types of oracles, and they are

not comprehensive. Promising directions along this research thread might include

mixed GUI representations that utilize both image and textual representations of

GUI information to form robust state indications, which could be used as automated

oracles. Additionally, the derivation of mobile platform-specific fault models may

help in deriving automated oracles that could test for common problems inherent to

mobile apps.
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• Research Goal 5: Mining Software Repositories and User Reviews to Drive Test-

ing: While many different automated testing solutions for mobile apps have been

proposed, they largely ignore information sources which could be invaluable for in-

forming the testing process, namely data mined from software repositories and user

reviews. Information from software repositories for mobile apps could be collected in

two ways, which could be combined to maximize the information utility, (i) mining

the development history of a single application, and (ii), the development history

of collections of open source apps hosted on services like GitHub. Here lightweight

static analysis techniques could be used at scale, whereas more expensive app control

flow analysis techniques could be used to provide more detailed code-level informa-

tion about a single subject app. Mobile app developers also have an unprecedented

feedback mechanism from users in the form of user reviews. As such there is a grow-

ing body of work that has focused on identifying informative reviews [140, 237, 261],

linking these to affected areas of source code [237], and even recommending code

changes [238]. However, little work has been done to use the information contained

within informative reviews to drive different types of testing. For instance, in the

context of functional or regression testing, user reviews could be used to prioritize

test cases, or even generate test cases for issues derived from reviews.

• Research Goal 6: Derivation of Methods to Provide Useful Feedback for Develop-

ers: In order to make the results of automated testing practices useful and actionable

for developers, researchers must dedicate effort to (i) deriving useful visual represen-

tations of testing results, and (ii) augmenting typical methodologies by which users

might report feedback to developers. Very few automated testing approaches have

considered methodologies for augmenting or effectively reporting testing information

to developers [225, 219]. Here researchers might consider applications of promising

visualization approaches adopted from the HCI community combined with developer

information needs derived from empirical studies. The studies conducted with engi-
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neers can help to develop theoretically grounded solutions for providing them with

actionable information and augmented context (e.g., sound traceability links back

to different parts of application code). Additionally, novel mechanisms for aiding

users in providing actionable feedback to developers will be important to increase

the quality of mineable information (e.g., on-device bug reporting and monitoring).

6.4 Concluding Remarks

We opened this dissertation with a thesis statement that asserted in essence, that au-

tomating the process of implementing and reasoning about code from abstract concepts will

lead to more effective, and more efficient software development practices. While the work

that has been presented over the course of this document only begins to investigate the

extent to which this assertion is true, there is not doubt that the results are promising. To

summarize our contributions, in this dissertation we presented three novel approaches that

automated the software design and testing processes for mobile apps. First, we introduced

Gvt, that is capable of resolving instances where the implementation of a mobile applica-

tion’s GUI does not meet its intended specifications. Second, we introduced ReDraw, a

technique for automatically generating GUI-related code for a mobile application taking

only a screenshot as input. Finally, we introduced CrashScope, which is capable of auto-

matically performing GUI-based testing of mobile apps, detecting crashes, and producing

expressive, useful crash reports.

We offer a combination of both quantitative empirical evidence, and qualitative ev-

idence collected from user studies with professional developers which supports our core

thesis that automation can improve the processes of designing and implementing software.

First, to evaluate Gvt we carried out both a controlled empirical evaluation with open-

source applications as well as an industrial evaluation with designers and developers from

Huawei, a major software and telecommunications company. The results show that Gvt is

able to detect and report violations of GUI design specifications with remarkable efficiency
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and accuracy and is both useful and scalable from the point of view of industrial designers

and developers. Gvt’s industrial applicability is bolstered by the fact that, at the time

of this dissertation’s publication, over one-thousand industrial designers and developers

at Huawei actively utilize our approach to improve the quality of their mobile apps. Sec-

ond, our evaluation of ReDraw illustrates that our approach’s CNN achieves an average

GUI-component classification accuracy of 91% and assembles prototype applications that

closely mirror target mock-ups in terms of visual affinity while exhibiting reasonable code

structure. Furthermore, interviews with industrial practitioners from Google, Facebook,

and Huawei illustrate ReDraw’s potential to improve real design and development work-

flows. Finally, we evaluated CrashScope’s effectiveness in discovering crashes as compared

to five state-of-the-art Android input generation tools on 61 applications. The results

demonstrate that CrashScope is able to uncover crashes that other tools failed to detect

and provides more detailed fault information. Additionally, in a study analyzing eight real-

world Android app crashes, we found that CrashScope’s reports are easily readable and

allow for reliable reproduction of crashes by presenting more explicit information than hu-

man written reports. While there is still much work to be done, this evidence helps support

the notion that practical applications to software engineering processes can dramatically

improve the effectiveness and efficiency of developers.
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Appendix A

Individual Contributions to Projects

A.1 Individual Contributions to the Gvt Project

• Kevin Moran: Kevin was the lead researcher who drove the conceptualization and

development of the Gvt approach. He designed the overall architecture of the ap-

proach, formulated the experimental investigation, and wrote the paper. He also lead

the implementation of Gvt, in particular the components related to the graphical

user interface of the tool and the computer vision techniques. He also formulated

and generated the material related to user study with developers and professionals

at Huawei. Kevin also participated in weekly meetings with professionals and re-

searchers at Huawei to review project progress and guide implementation towards

specifications from designers and developers.

• Boyang Li: Boyang worked primarily on the implementation of the Gvt tool,

in particular on the components that parsed and matched GUI-metadata from the

mock-up metadata and app implementation. Boyang assisted in designing these com-

ponents of the approach in combination with Kevin. He also assisted in carrying out

the survey with professionals at Huawei and translated the the survey and responses

between English and Chinese. Boyang assisted in revising the paper and participated

in weekly meetings with professionals and researchers at Huawei to review project
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progress and guide implementation towards specifications from designers and devel-

opers.

• Carlos Bernal Cardenas: Carlos worked primarily on enabling the injection of

the synthetic design violations for the empirical study of Gvt’s performance. He

also helped to implement the component of the tool that parsed and manipulated

the GUI-metadata from the app implementations. Carlos aided in paper revisions

and also helped to manually verify some of the mockups utilized in the empirical

evaluation of Gvt.

• Dan Jelf: Dan worked primarily on enabling the empirical study conducted to

evaluate Gvt by reverse engineering the Sketch mock-ups utilized. He also helped

to run Gvt on all subject screens for the study and to calculate the study metrics

based on Gvt’s output. Dan aided in paper revisions.

• Denys Poshyvanyk: Denys served as the faculty advisor on this project and helped

to guide the conceptualization and evaluation of the Gvt approach. He was also heav-

ily involved in revising the paper and participated in weekly meetings with profession-

als and researchers at Huawei to review project progress and guide implementation

towards specifications from designers and developers.

• Other Acknowledgements – The authors would like to thank Kebing Xie and

Roozbeh Farahbod from Huawei’s European Research Center in Munich for their

guidance and collaboration with regard to the industrial components of this project.

The authors also thank all of the developers and designers at Huawei who helped to

pilot Gvt and gave valuable feedback about the tool.

A.2 Individual Contributions to the ReDraw Project

• Kevin Moran: Kevin was the lead researcher who drove the conceptualization and

development of the ReDraw approach. He designed the overall architecture of the
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approach, formulated the experimental investigation, and wrote the paper. He also

lead the implementation of ReDraw, in particular the components related to the

convolutional neural network and computer vision techniques. He also formulated

and conducted the semi-structured interviews with developers and professionals at

Google, Huawei, and Facebook.

• Carlos Bernal Cardenas: Carlos worked primarily on adapting the systematic

exploration approach to perform a large-scale exploration of app GUIs in an efficient

manner in order to derive the initial dataset for ReDraw. He also aided in filtering

undesirable screens and apps from this dataset using static analysis, and helped to

calculate the image similarity metrics for the user study.

• Michael Curcio Michael worked primarily on three project aspects: (i) training and

tuning the convolutional neural network, (ii) the implementation of the K-nearest

neighbors approach for constructing the GUI-hierarchy, and (iii) the component that

translates a GUI-hierarchy into compilable and runnable GUI-code. He also helped

to conduct the empirical evaluation of ReDraw and aided in revising the paper.

• Richard Bonett: Richie worked primarily on setting up and running the re-implementation

of the Remaui approach for the empirical evaluation.

• Denys Poshyvanyk: Denys served as the faculty advisor on this project and helped

to guide the conceptualization and evaluation of the ReDraw approach. He was also

heavily involved in revising the paper.

• Other Acknowledgements – The authors would like to thank Steve Walker and

William Hollingsworth for their contributions to the re-implementation of the Remaui

technique as part of a class project during a software engineering course at William

& Mary. The authors would also like to thank Benjamin Powell, Jacob Harless,

Ndukwe Iko, and Wesley Hatin for their work on translating GUI-hierarchies into
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compilable GUI code in the context of a class project during a software engineering

course at William & Mary.

A.3 Individual Contributions to the CrashScope Project

• Kevin Moran: Kevin was the lead researcher who drove the conceptualization and

development of the CrashScope approach. He designed the overall architecture of

the approach, formulated the experimental investigation, and wrote the paper. He

also lead the implementation of CrashScope, in particular the components related

to the testing strategies for exercising GUI exploration, text entry, and contextual

features. He also formulated and wrote the material related to user study.

• Mario Linares-Vasquez: Mario primarily worked on the implementation of the

crash report generation, helped to design the empirical study for evaluating the

CrashScope approach, and aided in revising the paper.

• Carlos Bernal Cardenas: Carlos worked primarily on implementing the Android

utilities that enabled the extraction and manipulation of GUI-related information

from apps running on an Android device or emulator. He also helped to design the

initial algorithm for the depth first search-based exploration of a mobile app’s GUI

along with Kevin. Carlos aided in revising the paper.

• Christopher Vendome: Chris aided in carrying out the experimental evaluation of

CrashScope by running existing mobile testing approaches and collecting evaluation

metrics. Chris also aided in revising the paper.

• Denys Poshyvanyk: Denys served as the faculty advisor on this project and helped

to guide the conceptualization and evaluation of the CrashScope approach. He was

also heavily involved in revising the paper.
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A.4 Individual Contributions to the Formulation of

CEL Mobile Testing

• Mario Linares-Vasquez: Mario formulated the three principles, continuous, evo-

lutionary, and large-scale, upon which the research vision for CEL is based. He also

developed the theoretical software architecture of a system that could support CEL

testing.

• Kevin Moran: Kevin conducted a comprehensive literature review of automated

mobile testing approaches which helped lead to the formulation of the CEL principles.

Additionally, Kevin developed the concrete research agenda which aims to enable

CEL testing via a set of research goals that require a community research effort.

• Denys Poshyvanyk: Denys provided critical feedback on the CEL testing principles

and the proposed research directions.
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