
Enhancing Bug Reports for Mobile Apps

Kevin Patrick Moran

Maitland, FL

Bachelor of Science, College of the Holy Cross, 2013

A Thesis presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Master of Science

Department of Computer Science

The College of William and Mary
August 2015

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Master of Science

Kevin Patrick Moran

Approved by the Committee, August 2015

Committee Chair
Associate Professor Denys Poshyvanyk, Computer Science

The College of William and Mary

Associate Professor Gang Zhou, Computer Science

The College of William and Mary

Professor Xu Liu, Computer Science

The College of William and Mary

ABSTRACT

Software bug reports are artifacts leveraged by users, testers or developers in order
to document defects in software applications or projects. Bug reports are typically
instantiated when a problem (e.g. unexpected or unwanted behavior) is observed
in a software application and are created through a mechanism known as an
issue-tracker. The primary purpose of issue-tracking systems are to allow reporters
to construct a detailed bug report that accurately describes a software problem so
that it can be faithfully reproduced and subsequently fixed. In general,
issue-trackers employ natural language descriptions of problems, and sometimes
support the addition of augmented information such as the uploading of
screenshots. These systems have been used, with few exceptions, mostly
unchanged to document and formulate fixes for bugs across many different types of
software projects. However, some applications that rely on complex user
interactions are not well suited to these types of traditional systems, as they are
not able to capture intricacies of complicated application event-flows. The most
prominent example of a classification of applications that exhibits this type of
behavior, and for which issue-tracking systems could be improved, is the rapidly
growing category of mobile apps which rely on touch-based gestures for navigation
on smartphones and tablet devices.

The modern software development landscape has seen a shift in focus toward
mobile applications as “smart” devices near ubiquitous adoption. Due to this
trend, the complexity of mobile applications has been increasing, making
development and maintenance particularly challenging. However, it is clear that
current bug tracking systems are not able effectively support construction of
reports with actionable information that will directly lead to a bug’s resolution.
To address the need for an improved reporting system, we introduce a novel
solution, called FUSION, that helps users auto-complete reproduction steps in bug
reports for mobile apps. FUSION links information, that users provide, to
program artifacts extracted through static and dynamic analysis performed before
testing or release. The approach that FUSION employs is generalizable to other
current mobile software platforms, and constitutes a new method by which
off-device bug reporting can be conducted for mobile software projects. We
evaluate FUSION by conducting a study that quantitatively and qualitatively
measures the user experience of the system for both reporting and reproducing
bugs, as well as the quality of the bug reports it produces. In a study involving 28
participants we apply FUSION to support the maintenance tasks of reporting and
reproducing defects on 15 real-world bugs found in 14 open source Android apps.
Our results demonstrate that FUSION allows for more reliable reproduction of
bugs from reports by aiding users in reporting more detailed application-specific
information compared to traditional bug tracking systems.

TABLE OF CONTENTS

Acknowledgments iii

Dedication iv

List of Tables v

List of Figures vii

1 Introduction 2

1.1 Motivation . 2

1.2 Contributions . 4

2 Related Works 6

2.1 Existing Bug Reporting Systems . 6

2.2 Bug Reporting Studies . 7

2.3 In-Field Failure Reproduction . 9

2.4 Bug and Error Reporting Research . 10

3 The FUSION Approach 12

3.1 Analysis Phase . 12

3.1.1 Static Analysis (Primer) . 14

3.1.2 Dynamic Analysis (Engine) . 14

3.2 Report Generation Phase . 16

3.2.1 Report Generator User Interface 16

i

3.2.2 Auto-completing Bug Reproduction Steps 18

3.2.3 Report Generator Auto-Completion Engine 20

3.2.4 Handling FUSION’s Application Model Gaps 21

3.2.5 Report Structure . 22

4 Design of Empirical Studies 25

4.1 Study Context: Bug Reports Used in the Studies 26

4.2 Study 1: Reporting Bugs with FUSION 28

4.3 Study 2: Reproducibility of Bug Reports 31

5 Empirical Study Results 34

5.1 Study 1 (Bug Report Creation) Results 34

5.1.1 Study 1 Bug Creation Time Results 34

5.1.2 Study 1 UX & UP Results . 37

5.2 Study 2 (Bug Report Reproducibility) Results 39

5.2.1 Study 2 UX and UP Results 39

5.2.2 Study 2 Bug Reproduction Results 41

6 Limitations and Threats to Validity 45

6.1 Limitations of the FUSION approach 45

6.2 Threats to the Validity of the Empirical Study 46

7 Conclusion 48

A Instructions for User Study Participants 49

A.1 Study 1 Instructions . 49

A.2 Study 2 Instructions . 51

ii

ACKNOWLEDGMENTS

This thesis and the work performed towards its writing would not have been possible
without the support and guidance of several individuals. First and foremost, I would like
to thank my advisor, Dr. Denys Poshyvanyk for taking the time to mentor and support
a physics major with an initially limited background in computer science. He has
tirelessly supported this work and set a great example illustrating how to conduct
meaningful research in the field of software engineering with integrity, vision, passion
and thoroughness. It goes without saying that without him this work would not have
been possible, and I look forward to continuing to grow as a researcher under his
mentorship as I pursue my PhD.

Next, I would like to thank all of the members of the SEMERU group for their support
in this project and others as I began my career as a graduate student. It is not often
that you find individuals who are willing to use their time to explain proper research
methods and code conventions to a new research student and I am extremely grateful for
their guidance. In particular, I would thank to Mario Linares-Vásquez, Carlos
Bernal-Cárdenas, and Christopher Vendome. Mario, your research expertise and
constructive feedback contributed immensely to this project and to my education as a
software engineer and research practitioner. Carlos, your coding expertise and patience
in teaching me new techniques has been invaluable to me and this project. Chris, I am
grateful for your support and friendship since I started at William & Mary. I cannot
possibly give you all enough credit.

I thank my parents Brian and Elizabeth for their continued support of my academic
pursuits, especially during difficult times. I look to you both for inspiration and
motivation in the way you have raised my brothers and me and in the way you live your
lives. I would also like to thank my grandparents, Tom and Jeanne Moran, and Mary
and Paul Lavin, for always encouraging me in my studies and offering crucial advice
when needed.

Most Importantly, I would like to thank my fiancée Emily for her unwavering support,
especially during the late nights and deadline work marathons. Your character and
accomplishments inspire all that I do, and my full appreciation for having you in my life
can not be adequately put into words.

iii

In loving memory of Thomas P. Moran, Mary E. Lavin, and Paul B. Lavin; your

lives inspired many people – myself included – to accomplish great things.

iv

LIST OF TABLES

4.1 Summary of the bug reports used for the empirical studies:

GDE = Gui Display Error, C = Crash, DIC = Data Input/Calculation

Error, NE = Navigation Error; (Links to the original bug reports can

be found at our online appendix) . 27

4.2 Study 1 Participant Design Matrix: This table shows the indicies

of bug reports assigned to participants during Study 1. The bugs

corresponding to the index numbers can be found in Table 4.1 28

4.3 Study 1 User Preference Questions: Questions used during Study

1 to evaluate User Preferences regarding FUSION. 30

4.4 Study 1 User Experience Questions: Questions used during Study

1 to evaluate the User Experience of FUSION. 30

4.5 Participant Programming Experience Questions Questions used

to evaluate the relative programming experience of participants in

both empirical studies. 30

4.6 Study 2 User Preference Questions: Questions used during Study

1 to evaluate User Preferences regarding FUSION. 31

4.7 Study 2 User Experience Questions: Questions used during Study

1 to evaluate the User Experience of FUSION. 31

4.8 Study 2 Participant Design Matrix: This table shows the indicies

of bug reports assigned to participants during Study 2. The bugs

corresponding to the index numbers can be found in Table 4.1 33

v

5.1 Creation Time Statistics for FUSION Bugs: All of the times

reported in this table are in the format (m:ss); an (*) next to the

time indicates that FUSION was able to capture all of the steps for

reproduction with the autocompletion engine and a replayable can be

generated. 35

5.2 Creation Time Statistics for GCIT Bugs: All of the times

reported in this table are in the format (m:ss) 35

5.3 Average Bug Report Reproduction Time: Average reproduction

time results for each type of bug report evaluated. 40

5.4 Non Reproducible Bug Reports: Number of bugs that could not

be reproduced per Bug Report Type. 43

5.5 Bug Report Quality Statistics: GCIT = Google Code Issue Tracker,

NR = # Instances not reproducible, Time = Average time to repro-

duce, E = bug report created by experienced participant, I = bug

report created by inexperienced participant 44

vi

LIST OF FIGURES

2.1 The Google Code Issue Tracker: An example of a popular Issue

Tracking System with semi-structured fields for reporters to construct

issue tickets. Image taken from [?] 8

2.2 Bugzilla Issue Tracker: An example of a popular Issue Tracking

System with separate fields that prompts users to enter reproduction

steps and expected/actual results of the steps. Image taken from [5] . 11

2.3 Mantis Issue Tracker: An example of a popular Issue Tracking

System containing a large amount of contextual information. Image

taken from [12] . 11

3.1 Overview of FUSION Workflow: First static and dynamic app

analysis is performed on the target app, then the Auto-Completion

Engine uses the information gleaned by the analyses in order to help

the user auto-complete reproduction steps of a bug for the target app. 13

3.2 FUSION Reporter Interface: This figure shows the FUSION re-

porter web interface, with an area for contextual information and a

natural language description of the bug at the top of the page, an area

for reporting reproduction steps, and an area showing the history of

the steps entered with an option to view or delete past steps. 17

3.3 Auto-Completion Dropdown Menus: This figure shows examples

of the auto-completion dropdown menus that present reporters with

possible choices during course of creating a report. 19

vii

3.4 Decision Tree Utilized by Auto-Completion Engine: This fig-

ure outlines the decision tree utilized by FUSION’s autocompletion

engine which helps to predict the possible components that a user can

interact with at a specific place in the event flow of an application. . . 22

3.5 Relative Location Enumeration and Example Augmented Screen-

shot: This figure shows FUSION’s enumeration for the relative loca-

tion of GUI-components on the screen and an example of an aug-

mented full screenshot. 23

3.6 Example FUSION Bug Report: This report shows the three ma-

jor categories of information contained within FUSION bug reports 1)

Contextual information and natural language description of the bug.

2) A detailed set of reproduction steps including GUI-component spe-

cific screenshots. 3) A list of fullscreen screenshots with the GUI-

component acted upon in each step highlighted. 24

5.1 Study 1 User Experience Question Results: Answers to the

UX-related questions for Study 1 (Bug Report Creation) 36

5.2 Study 2 User Experience Question Results: Answers to the

UX-related questions for Study 2 (Bug Report Reproduction) 39

5.3 Study 2 Bug Report Reproduction Results: Results for the

number of bug reports reproduced and the average time taken to re-

produce each bug . 42

viii

Enhancing Bug Reports for Mobile Apps

Chapter 1

Introduction

1.1 Motivation

Smartphones and mobile computing have skyrocketed in popularity in recent years, and

adoption has reached near-ubiquitous levels with over 2.7 billion active smartphone users

in 2014 [42]. An increased demand for high-quality, robust mobile applications is being

driven by a growing user base that performs an increasing number of computing tasks

on “smart” devices. Due to this demand, the complexity of mobile applications has been

increasing, making development and maintenance challenging. The intense competition

present in mobile application marketplaces like Google Play and the Apple App Store,

means that if an app is not performing as expected, due to bugs or lack of desired features,

48% of users are less likely to use the app again and will abandon it for another one with

similar functionality [13].

Software maintenance activities are known to be generally expensive and challenging

[89]. One of the most important maintenance tasks is bug report resolution. However,

current bug tracking systems such as Bugzilla [5], Mantis [12], the Google Code Issue

Tracker [9], the GitHub Issue Tracker [8], and commercial solutions such as JIRA [11]

rely mostly on unstructured natural language bug descriptions. These descriptions can be

augmented with files uploaded by the reporters (e.g., screenshots). As an important com-

2

CHAPTER 1. INTRODUCTION 3

ponent of bug reports, reproduction steps are expected to be reported in a structured and

descriptive way, but the quality of description mostly depends on the reporter’s experience

and attitude towards providing enough information. Therefore, the reporting process can

be cumbersome, and the additional effort means that many users are unlikely to enhance

their reports with extra information [26, 37, 25, 18].

A past survey of open source developers conducted by Koru et al. has shown that

only ≈ 50% of developers believe bug reports are always complete [61]. Previous studies

have also shown that the information most useful to developers is often the most difficult

for reporters to provide and that the lack of this information is a major reason behind

non-reproducible bug reports [41, 24]. Difficulty providing such information, especially

reproduction steps, is compounded in the context of mobile applications due to their

complex event-driven and GUI-based nature. Furthermore, many bug reports are created

from textual descriptions of problems in user reviews. According to a recent study by Chen

et al. [31], only a reduced set of user reviews can be considered useful and/or informative.

Also, unlike issue reports and development emails, reviews do not refer to details of the

app implementation.

The above issues point to a more prominent problem for bug tracking systems in

general: the lexical gap that normally exists between bug reporters (e.g., testers, beta

users) and developers. Reporters typically only have functional knowledge of an app,

even if they have development experience themselves, whereas the developers working on

an app tend to have intimate code level knowledge. In fact, a recent study conducted

by Huo et al. corroborates the existence of this knowledge gap as they found there is

a difference between the way experts and non-experts write bug reports as measured by

textual similarity metrics [49]. When a developer reads and attempts to comprehend

(or reproduce) a bug report, she has to bridge this gap, reasoning about the code level

problems from the high-level functional description in the bug report. If the lexical gap

is too wide the developer may not be able to reproduce and/or subsequently resolve the

bug report.

CHAPTER 1. INTRODUCTION 4

1.2 Contributions

To address this fundamental problem of making bug reports more useful (and repro-

ducible) for developers, we introduce a novel approach, which we call FUSION, that relies

on a novel Analyze → Generate paradigm to enable the auto-completion of Android bug

reports in order to provide more actionable information to developers. In the context

of this work, we define auto-completion as suggesting relevant actions, screen-shots, and

images of specific GUI-components to the user in order to facilitate reporting the steps

for reproducing a bug. FUSION first uses fully automated static and dynamic analysis

techniques to gather screen-shots and other relevant information about an app before it

is released for testing. Reporters then interact with the web-based report generator using

the auto-completion features in order to provide the bug reproduction steps. By linking

the information provided by the user with features extracted through static and dynamic

analyses, FUSION presents an augmented bug report to the developer that contains im-

mediately actionable information with well-defined steps to reproduce a bug. The work

presented in this thesis represents an extension of a published conference paper at FSE’15

[69].

We evaluate FUSION in a study comparing bug reports submitted using our system

to the bug reports produced using Google Code Issue Tracker, involving 28 participants,

reporting bugs for 15 real-world failures stemming from 14 open source Android apps.

Our paper makes the following noteworthy contributions: We evaluate FUSION in a

study comparing bug reports submitted using our system to bug reports produced using

Google Code Issue Tracker, involving 28 participants reporting bugs for 15 real-world

failures stemming from 14 open source Android apps.

Our paper makes the following noteworthy contributions:

1. We design and implement a novel approach for auto-completing and augmenting

Android bug reports, called FUSION, which leverages static and dynamic analyses,

and provides actionable information to developers. The tool facilitates the reporting,

CHAPTER 1. INTRODUCTION 5

reproduction and subsequent resolution of Android bugs. The program analysis

techniques of the apps can be run on both physical devices and emulators;

2. We design and carry out a comprehensive user study to evaluate the user experience

of our approach and the quality of bug reports generated using FUSION compared to

the Google Code Issue Tracker. The results of this study demonstrate that FUSION

enables developers to submit bug reports that are more likely to be reproducible

compared to reports written entirely in natural language;

3. We make FUSION and all the data from the experiments available for researchers

[57] in hope that this work spurs new research related to improving the quality of

bug reports and bug reporting systems.

Chapter 2

Related Works

Bug and error reporting has been an active area of research in the software engineering

community. However, little work has been conducted to improve the lack of structure

in the reporting mechanism for entering reproduction steps, and adding corresponding

support in bug tracking systems. Therefore, in this section, we briefly survey the features

of current bug reporting systems and the studies that motivated this work. We outline

the current types of information that bug reporting systems attempt to elicit from users

and explain how FUSION improves upon this method for collecting information. Then we

differentiate our work from approaches for reproducing in-field failures and explain how

our work compliments existing research on bug reporting.

2.1 Existing Bug Reporting Systems

The purpose of a bug reporting system, sometimes referred to as an issue tracker, is

twofold: First, such systems must provide a coherent and easy to use mechanism for re-

porters to accurately and completely describe a software defect or feature addition/enhancement.

Second, they must organize this information and present it to the developer in a meaning-

ful fashion. Most current bug reporting systems rely upon unstructured natural language

descriptions in their reports. However, some systems do offer more functionality. For in-

stance, the Google Code Issue Tracker (GCIT) [9] (See Figure 2.1) offers a semi-structured

6

CHAPTER 2. RELATED WORKS 7

area where reporters can enter reproduction steps and expected input/output in natural

language form (i.e., the online form asks: ”What steps will reproduce the problem?”).

Nearly all current issue trackers offer structured fields to enter information such as tags,

severity level, assignee, fix time, and product/program specifications. Some web-based

bug reporting systems (e.g. Bugzilla [5] (See Figure 2.2), Jira [11], Mantis [12] (See Figure

2.3), UserSnap [15], BugDigger [87]) facilitate reporters including screenshots. One com-

monality that most of these reporting systems share is that reporters and developers share

the same view of the bug report report. That is, there is no differentiation between the

information and view of the issue report that reporter sees and that which the developer

sees. This is yet another example of how current issue tracking systems do not effectively

handle the lexical gap that exists between developers and testers/reporters. Ideally, the

user-facing reporting mechanism should be familiar and easy to use, and the developer

report should be detailed and suitable for the maintenance task at hand (e.g. feature

addition/enhancement, bug fixing). In other words, the issue tracker system, not the

developer should bridge the lexical knowledge gap that typically exists between reporters

and developers. This is precisely what FUSION accomplishes. By leveraging information

gleaned from program analysis, FUSION is able to present to the reporter the familiar

interface of a mobile application GUI, and suggest the steps to reproduce a bug.

2.2 Bug Reporting Studies

The problem facing many current bug reporting systems is that typical natural language

reports capture a coarse grained level of detail that makes developer reasoning about

defects difficult. This highlights the underlying task that bug reporting system must

accomplish: bridging the lexical knowledge gap between typical reporters of a bug and the

developers that must resolve the bugs. In order for an issue tracking system to effectively

accomplish this task, it must facilitate the entry of certain types of crucial information that

developers find useful. Previous studies on bug report quality and developer information

CHAPTER 2. RELATED WORKS 8

Figure 2.1: The Google Code Issue Tracker: An example of a popular Issue Tracking System
with semi-structured fields for reporters to construct issue tickets. Image taken from [?]

needs highlight several factors that can impact the quality of bug reports [28, 41, 24]:

• Other than “Interbug dependencies” (i.e., a situation where a bug was fixed in a

previous patch), insufficient information in bug reports is one of the leading causes

of non-reproducible bug reports [41];

• Developers consider (i)steps to reproduce, (ii)stack traces, and (iii)test cases/scenarios

as the most helpful sources of information in a bug report [24];

• Information needs are greatest early in a bug’s life cycle, therefore, a way to easily

add the above features is important during bug report creation [28].

Using these issues as motivation, we developed FUSION with two major goals in

mind: (i) provide bug reports to developers with immediately actionable knowledge (reliable

reproduction steps) and (ii) facilitate reporting by providing this information through an

auto-completion mechanism.

It is worth noting that one previous study conducted by Bhattacharya et. al. [27]

concluded that most Android bug reports for open source apps are of high-quality, however

in their study only ≈ 46% of bug report contained steps to reproduce, and and even lesser

amount (≈ 20%) contained additional information (e.g. bug-triggering input or even an

CHAPTER 2. RELATED WORKS 9

app version). Therefore, there is clearly room for improvement in terms of the type of

information that is contained within open source Android bug reports. By helping auto-

complete the reproduction steps using guided suggestions for reporter GUI actions and

corresponding components, we facilitate the reporter providing this information in the

bug report which is both useful from a developer’s perspective, and typically difficult to

provide from a reporter’s perspective.

2.3 In-Field Failure Reproduction

A body of work known as in-field failure reproduction [23, 52, 97, 33, 51, 19, 58, 30]

shares similar goals with our approach. These techniques collect run-time information

(e.g., execution traces) from instrumented programs that provide developers with a better

understanding of the causes of an in-field failure, which will subsequently help expedite

the fixing of those failures. However, there are several key differences that set our work

apart and illustrate how FUSION improves upon the state of research.

First, techniques regarding in-field failure reproduction rely on potentially expensive

program instrumentation, which requires developers to modify code, and introduce over-

head. FUSION is completely automatic, our static and dynamic analysis techniques only

need to be applied once for the version of the program that is released for testing. Further-

more, the analysis process can be done without the need for instrumentation of programs

in the field. Second, current in-field failure reproduction techniques require an oracle to

signify when a failure has occurred (e.g., a crash). FUSION is not an approach for crash

or failure detection, it is designed to support testers during the bug reporting process.

Third, these techniques have not been applied to mobile apps and would most likely need

to be optimized further to be applicable for the corresponding resource-constrained env-

iornment.

CHAPTER 2. RELATED WORKS 10

2.4 Bug and Error Reporting Research

A subset of prior work has been focused on bug and crash triage [86, 71, 50, 59, 94, 60,

85, 18, 62, 68, 45, 48, 54, 56]. The techniques associated with this topic typically employ

different program analysis and machine learning or natural language processing techniques

to match bug reports with appropriate developers. Our proposed research compliments

developer recommendation frameworks, as FUSION can provide these frameworks with

more detailed “knowledge” than current state of practice bug reporting systems.

A significant amount of research has been conducted concerning the summarization

[66, 26, 82, 61, 93, 35], fault localization [97, 91, 81, 22, 90, 95, 67, 20, 34, 36], classification

and detection of duplicate bug reports [41, 72, 92, 47, 96, 46, 75]. Research on these

topics is primarily concerned with duplicate bug report detection, localizing bug reports

to specific areas of source code, and effectively summarizing reports for developers with

the most pertinent information.

Again, the work presented in this paper compliments these categories of research as bug

reports created with FUSION can provide more detailed information, easliy linking the

bug back to source code, allowing for better localization, summarization and, potentially,

duplicate detection. It is worth noting that work by Bettenburg et. al. on extracting

structural information from bug reports is also related, however, we aim at helping auto-

complete the structured reproduction steps at the time of report creation, rather than

extracting it after the fact [26].

CHAPTER 2. RELATED WORKS 11

Figure 2.2: Bugzilla Issue Tracker: An example of a popular Issue Tracking System with
separate fields that prompts users to enter reproduction steps and expected/actual results of the
steps. Image taken from [5]

Figure 2.3: Mantis Issue Tracker: An example of a popular Issue Tracking System containing
a large amount of contextual information. Image taken from [12]

Chapter 3

The FUSION Approach

FUSION’s Analyze → Generate workflow corresponds to two major phases. In the Anal-

ysis Phase FUSION collects information related to the GUI components and event flow

of an app through a combination of static and dynamic analysis. Then in the Report

Generation Phase FUSION takes advantage of the GUI centric nature of mobile apps to

both auto-complete the steps to reproduce the bug and augment each step with contex-

tual application information. The overall design of FUSION can be seen in Figure 3.1.

We encourage readers to view videos of our tool in use, complete with commentary that

are available at our online appendix [57] The key idea behind the FUSION workflow is:

program analysis, performed preemptively before an app is released for testing, can be used

as a means to aid reporters to easily provide information that developers need during the

bug reporting process to reproduce and fix app issues.

3.1 Analysis Phase

The Analysis Phase collects all the information required for the Report Generation Phase

operation. The first phase has two major components: 1) static analysis (Primer), and

2) dynamic program analysis (Engine) of a target app. The information generated by

(Primer) and (Engine) is required by the Report Generation Phase. The Analysis phase

must be performed before each version of an app is released for testing or before it is

12

CHAPTER 3. THE FUSION APPROACH 13

Figure 3.1: Overview of FUSION Workflow: First static and dynamic app analysis is per-
formed on the target app, then the Auto-Completion Engine uses the information gleaned by the
analyses in order to help the user auto-complete reproduction steps of a bug for the target app.

CHAPTER 3. THE FUSION APPROACH 14

published to end users. Both components of the Analysis Phase store their extracted data

in the FUSION database (Fig. 3.1 - 3).

3.1.1 Static Analysis (Primer)

The goal of the Primer (Fig. 3.1 - 1) is to extract all of the GUI components and

associated information from the app source code. For each GUI component, the Primer

extracts: (i) possible actions on that component, (ii) type of the component (e.g., Button,

Spinner), (iii) activities the component is contained within, and (iv) class files where the

component is instantiated. Thus, this phase gives us a universe of possible components

within the domain of the application, and establishes traceability links connecting GUI

components that reporters operate upon to code specific information such as the class or

activity they are located within.

The Primer is comprised of several steps to extract the information outlined above.

First it uses the dex2jar[6] and jd-cmd [10] tools for decompilation, then, it converts the

source files to an XML-based representation using srcML [14]. We also use apktool [2]

to extract the resource files from the app’s APK. The ids, and types of GUI components

were extracted from the xml files located in the app’s resource folders (i.e., /res/layout

and /res/menu of the decompiled application or src). Using the srcML representation of

the source code we are able to parse and link the GUI-component information to extracted

app source files.

3.1.2 Dynamic Analysis (Engine)

The Engine (Fig. 3.1 - 2) is used to glean dynamic contextual information, such as the

location of the GUI component on the screen, and enhance the database with both run-

time GUI and application event flow information. The goal of the Engine is to explore an

app in a systematic manner ripping and extracting run-time information related to the

GUI components during execution including: (i) the text associated with different GUI

components (e.g., the “Send” text on a button to send an email message), (ii) whether

CHAPTER 3. THE FUSION APPROACH 15

the GUI component triggers a transition to a different activity, (iii) the action performed

on the GUI component during systematic execution, (iv) full screen-shots before and

after each action is performed, (v) the location of the GUI component object on the test

device’s screen, (vi) the current Activity and window of each step, (vii) screen-shots of the

specific GUI component, and (viii) the object index of the GUI component (to allow for

differentiation between different instantiations of the same GUI component on one screen).

The Engine performs this systematic exploration of the app using the UIAutomator [1]

framework included in the Android SDK. This systematic execution of the app is similar to

existing approaches in GUI ripping [16, 88, 83, 17, 21, 65, 32, 74]. Using the UIAutomator

framework allows us to capture cases that are not captured in previous tools such as

pop-up menus that exist within menus, internal windows, and the onscreen keyboard. To

effectively explore the application we implemented our own version of a systematic depth-

first search (DFS) algorithm for application traversal that performs click events on all the

clickable components in the GUI that can be reached using the DFS-based traversal.

During the ripping, before each step is executed on the GUI, the Engine makes a

call to UIAutomator subroutines to extract the contextual information outlined above

regarding each GUI component displayed on the device screen. We then execute the action

associated with each GUI component in a depth-first manner on the current screen. Our

current implementation of DFS only handles the click/tap action, however, as this is the

most common action, we are still able to explore a significant amount of an application’s

functionality.

In the DFS algorithm, if a link is clicked that would normally transition to a screen in

an external activity (e.g., clicking a web link that would launch the Chrome web browser

app) we execute a back command in order to stay within the current app. If the DFS

exploration exits the app to the home screen of the device/emulator for any reason, we

simply re-launch the app and continue the GUI traversal. During the DFS exploration,

the Engine captures each activity transition that occurs after each action is performed

(e.g., whether or not a new activity is started/resumed after an action to launch a menu).

CHAPTER 3. THE FUSION APPROACH 16

This allows FUSION to build a model of the app execution that we will later use to help

track a reporter’s relative position in the app when they are using the system to record

the steps to reproduce the bugs.

3.2 Report Generation Phase

We had two major goals when designing the Report Generation Phase component of

FUSION:

1. Allow for traditional natural language input in order to give a high-level overview

of a bug.

2. Auto-complete the reproduction steps of a bug through suggestions derived by track-

ing the position of the reporter’s step entry in the app event flow.

During the Report Generation Phase FUSION aids the reporter in constructing the

steps needed to recreate a bug by making suggestions based upon the “potential” GUI

state reached by the declared steps. This means for each step s, FUSION infers — online

— the GUI state GUIs in which the target app should be, by taking into account the

history of steps. For each step, FUSION verifies that the suggestion made to the reporter

is correct by presenting the reporter with contextually relevant screen-shots, where the

reporter selects the screen-shot corresponding to the current action the reporter wants to

describe.

3.2.1 Report Generator User Interface

After first selecting the app to report an issue for, a reporter interacts with FUSION by

filling in some brief contextual information (i.e., name, device, title) and a brief textual

description of the bug in question in the top half of the UI. Next, the reporter inputs

the steps to reproduce the bug using the auto-completion boxes in a step-wise manner,

CHAPTER 3. THE FUSION APPROACH 17

Figure 3.2: FUSION Reporter Interface: This figure shows the FUSION reporter web inter-
face, with an area for contextual information and a natural language description of the bug at the
top of the page, an area for reporting reproduction steps, and an area showing the history of the
steps entered with an option to view or delete past steps.

CHAPTER 3. THE FUSION APPROACH 18

starting from the initial screen of a cold app launch1, and proceeds until the list of steps to

reproduce the bug is exhausted. Let us consider a running example where the user is filling

out a report for the Document Viewer bug in Table 4.1. According to the various fields in

Figure 3.2 the reporter would first fill in their (i) name (Field 1), (ii) device (Field 2), (iii)

screen orientation (Field 3), (iv) a bug report title (Field 4), and (v) a brief description of

the bug (Field 5).

3.2.2 Auto-completing Bug Reproduction Steps

To facilitate the reporter in entering reproduction steps, we model each step in the re-

production process as an {action, component} tuple corresponding to the action the

reporter wants to describe at each step, (e.g., tap, long-tap, swipe, type) and the com-

ponent in the app GUI with which they interacted (e.g.,“Name” textview, “OK” button,

“Days” spinner). Since reporters are generally aware of the actions and GUI elements

they interact with, it follows that this is an intuitive manner for them to construct repro-

duction steps. FUSION allocates auto-completion suggestions to drop down lists based

on a decision tree taking into account a reporter’s position in the app execution beginning

from a cold-start of the app.

The first drop down list (see Figure 3.3-A) corresponds to the possible actions a user

can perform at a given point in app execution. In our example with the Document Viewer

bug, let’s say the reporter selects click as the first action in the sequence of steps as shown

in Figure 3.3-A. The possible actions considered in FUSION are click(tap), long-click(long-

touch), type, and swipe. The type action corresponds to a user entering information from

the device keyboard. When the reporter selects the type option, we also present them

with a text box to collect the information they typed in the Android app.

The second dropdown list (see Figure 3.3-B) corresponds to the component associated

to the action in the step. FUSION presents the following information, which can also

1Cold-start means the first step is executed on the first window and screen displayed directly after the
app is launched

CHAPTER 3. THE FUSION APPROACH 19

Figure 3.3: Auto-Completion Dropdown Menus: This figure shows examples of the auto-
completion dropdown menus that present reporters with possible choices during course of creating
a report.

be seen in Figure 3.3: (i) Component Type: this is the type of component that is being

operated upon, e.g., button, spinner, checkbox, (ii) Component Text : the text associated

with or located on the component, (iii) Relative Location: the relative location of the

component on the screen according to the parameters in Figure 3.5, and (iv) Component

Image: an in-situ (i.e., embedded in the dropdown list) image of the instance of the

component. The relative location is displayed here to make it easier for reporters to

reason about the on-screen location, rather than reasoning about pixel values. In our

running example, FUSION will populate the component dropdown list with all of the

clickable components in the Main Activity since this is the first step and the selected

action was click. The user would then select the component they acted upon, in this case,

the first option in the list: the “OK” button located at the center of the screen (see Figure

3.3-B).

One potential issue with component selection from the auto-complete drop-down list is

that there may be duplicate components on the same screen in an app. FUSION solves this

problem in two ways. First, it differentiates each duplicate component in the list through

specifying text “Option #”. Second FUSION attempts to confirm the component entered

CHAPTER 3. THE FUSION APPROACH 20

by the reporter at each step by fetching screen-shots from the FUSION database repre-

senting the entire device screen. Each of these screen-shots highlights the representative

GUI component as shown in Fig. 3.5. To complete the step entry the reporter simply

selects the screen-shot corresponding to both the app state and the GUI component acted

upon. In our running example the reporter would select the full augmented screenshot

corresponding to the component they selected from the dropdown list. In our case an

illustrative portion of the screenshot for the “OK” button is shown in Figure 3.5.

After the reporter makes selections from the drop-down lists, they have an opportunity

to enter additional information for each step (e.g., a button had an unexpected behavior)

in a natural language text entry field. For instance in our running example, the reporter

might indicate that after pressing the “OK” button the pop-up window took longer than

expected to disappear.

3.2.3 Report Generator Auto-Completion Engine

The Auto-Completion Engine of the web-based report generator (Figure 3.1- 4) uses the

information collected up-front during the Analyze Phase. When FUSION suggests com-

pletions for the drop-down menus it queries the database for the corresponding state of

the app event flow, and suggests information based on the past steps that the reporter has

entered. Since we always assume a “cold” application start, the Auto-Completion Engine

starts the reproduction steps entry process from the app’s main Activity. We then track

the reporter’s progress through the app using predictive measures based on past steps.

The Auto-Completion Engine operates on application steps using several different

pieces of information as input. It models the reporter’s reproduction steps as an or-

dered stream of steps S where each individual step si may be either empty or full. Each

step can be modeled as a five-tuple consisting of {step num, action, comp name, activity,

history}. The action is the gesture provided by the reporter in the first drop-down menu.

The component name is the individual component name as reported by the UIautomator

interface during the Engine phase. The activity is the Android screen the component

CHAPTER 3. THE FUSION APPROACH 21

is found on. The history is the history of steps preceding the current step. The auto-

completion engine predicts the suggestion information using decision tree logic which can

be seen in Figure 3.4.

FUSION presents components to the reporter at the granularity of activities or ap-

plication screens. To summarize the suggestion process, FUSION looks back through the

history of the past few steps and looks for possible transitions from the previous steps

to future steps depending on the components interacted with. If FUSION was unable to

capture the last few steps from the reporter due to the incomplete application execution

model mentioned earlier, then FUSION presents the possibilities from all known screens

of the application. In our running example, let’s consider the reporter moving on to re-

port the second reproduction step. In this case, FUSION would query the history to find

the previous activity the “OK” button was located within, and then present component

suggestions from that activity, in the case that the user stayed in the same activity; and

the components from possible transition activities, in the case the user transitioned to a

different activity.

3.2.4 Handling FUSION’s Application Model Gaps

Because DFS-based exploration is not exhaustive [73], there may be gaps in FUSION’s

database of possible app screens (e.g., a dynamically generated component that triggers

an activity transition was not acted upon). Due to this, a reporter may not find the

appropriate suggestion in the drop-down list. To handle these cases gracefully, we allow

the reporter to select a special option when they cannot find the component they interacted

with in the auto-complete drop-down list. In our running example, let’s say the reporter

wishes to indicate that he clicked the button labeled “Open Document”, but the option is

not available in the auto-complete component drop-down list. In this case the user would

select the “Not in this list...” option and manually fill in (i) The type of the component

(to limit confusion, we present this option as a drop-down box auto-completed with only

the GUI-component types that exist in the application, as extracted by the Primer, in our

CHAPTER 3. THE FUSION APPROACH 22

Is steps_history = 0?

Display
components
for the app’s

Main
Activity

Is steps_history >=2?No

Yes

Is
steps_history-

1 verified by
FUSION?

Is steps_history = 1
and is

steps_history-1
confirmed?

NoYes

Display
components from
previous activity

and possible
transition
activities.

Is
steps_history-2

verified by
FUSION?

Yes No

Display
components from

the activity in
steps_history-2
and two stages of

transition activities.

Display all
possible app
components.

Yes
No

Display components
from previous activity

and possible
transition activities.

Display components
from Main Activity

and two stages of
transition activities.

Yes No

Figure 3.4: Decision Tree Utilized by Auto-Completion Engine: This figure outlines the
decision tree utilized by FUSION’s autocompletion engine which helps to predict the possible
components that a user can interact with at a specific place in the event flow of an application.

case the user would choose ”Button”), (ii) any text associated with the GUI-component

(in this case “Open Document”, and (iii) the relative location of the GUI-component as

denoted in Figure 3.5 (in this case “Top Center”).

3.2.5 Report Structure

The Auto Completion Engine saves each step to the database as reporters complete bug

reports. Once a reporter finishes filling out the steps and completes the data entry process,

a screen containing the final report, with an automatically assigned unique ID, is presented

to the reporter, and saved to the database for a developer to view later (see Figure 3.6 for an

CHAPTER 3. THE FUSION APPROACH 23

Figure 3.5: Relative Location Enumeration and Example Augmented Screenshot: This
figure shows FUSION’s enumeration for the relative location of GUI-components on the screen and
an example of an augmented full screenshot.

example report from Document Viewer). The Report presents information to developers

in three major sections. First, preliminary information including the report title, device,

and short description (shown in Figure 3.6 in blue). Second, a list of the Steps with the

following information regarding each step is dispalyed (highlighted in blue in Figure 3.6):

(i) The Action for each step, (ii) the type of a component, (iii) the relative location of the

component, (iv) the Activity class where the component is instantiated in the source code,

and (v) the component specific screenshot. Third, a list of full screen-shots corresponding

to each step is presented at the bottom of the page so the developer can trace the steps

through each application screen (this section is highlighted in green in Figure 3.6).

CHAPTER 3. THE FUSION APPROACH 24

Figure 3.6: Example FUSION Bug Report: This report shows the three major categories of
information contained within FUSION bug reports 1) Contextual information and natural language
description of the bug. 2) A detailed set of reproduction steps including GUI-component specific
screenshots. 3) A list of fullscreen screenshots with the GUI-component acted upon in each step
highlighted.

Chapter 4

Design of Empirical Studies

The two major design goals behind FUSION are: 1) facilitate and encourage reporters

to submit useful bug reports for Android applications. 2) provide developers with more

actionable information regarding the bugs contained within these reports. In order to mea-

sure FUSION’s effectiveness at achieving these goals, we have designed two comprehensive

empirical studies which evaluated two major aspects of our approach: 1) the user expe-

rience of reporters using FUSION, and 2) the quality of the bug reports produced by the

system . To this end, we investigated the following research questions (RQs):

• RQ1: What types of information fields do developers/testers consider important

when reporting and reproducing bugs in Android?

• RQ2: Is FUSION easier to use for reporting and reproducing bugs than traditional

bug tracking systems?

• RQ3: Do bug reports generated with FUSION allow for faster bug reproduction

compared to reports submitted using traditional bug tracking systems?

• RQ4: Do developers/testers using FUSION reproduce more bugs compared to tradi-

tional bug tracking systems?

The empirical studies used to evaluate these research questions model two maintenance

activities involving reporting and reproducing real bugs in open source apps. In the

25

CHAPTER 4. DESIGN OF EMPIRICAL STUDIES 26

following sections we will describe the context of the two studies (i.e., Android apps and

bug reports), and the methodology of each study.

4.1 Study Context: Bug Reports Used in the Studies

In order to properly evaluate FUSION for creating and reproducing reports from real

world bugs, we manually selected bug reports from Android Open Source apps hosted

on the F-Droid [7] repository. We crawled the links of the issue tracking systems of the

apps, and then manually inspected the bug reports for each project where F-droid has a

linked issue tracker. The criteria for selecting the bug reports were the following: 1) bugs

that are reproducible given the technical constraints of our FUSION implementation; 2)

bugs of varying complexity, requiring at least three steps of user interaction in order to

be manifested; and 3) bugs that are reproducible on the Nexus 7 tablets utilized for the

user study. Details of these bug reports can be found in Table 4.1 and links can be found

in our online appendix [57].

FUSION targets bug reports that can be described in terms of GUI events and are not

context dependent. For instance, some bugs are triggered when changing the orientation

of the device, or are context dependent (i.e., the bug depends on the network signal qual-

ity, GPS location, etc.). We do not claim that our FUSION approach works for all types

of Android bugs, but rather acknowledge and give examples of the current limitations in

Chapter 6. However, even in cases where FUSION may not be able to capture the exact

cause of the bug, the steps to reproduction, along with additional information added to

the last step may aid in reproducing and fixing various types of mobile bugs. Application

activity coverage statistics can be found in Table 4.1. We present activity coverage infor-

mation in this table to give context describing the extent to which FUSION’s dynamic

analysis Engine was able to explore the app. Due to the nature of our DFS app traversal,

most of the components within an activity are explored.

CHAPTER 4. DESIGN OF EMPIRICAL STUDIES 27

Table 4.1: Summary of the bug reports used for the empirical studies: GDE = Gui
Display Error, C = Crash, DIC = Data Input/Calculation Error, NE = Navigation Error; (Links
to the original bug reports can be found at our online appendix)

App (Bug Index) Bug
ID

Description Min
of
Steps

Bug
Type

DFS Activ-
ity Cover-
age

1) A Time Tracker 24 Dialog box is displayed
three times in error.

3 GDE 1/5

2) Aarddict 106 Scroll Position of previ-
ous pages is incorrect.

4-5 GDE 3/6

3) ACV 11 App Crashes when long
pressing on sdcard folder.

5 C 3/11

4) Car report 43 Wrong information is dis-
played if two of the same
values are entered subse-
quently

10 DIC 5/6

5) Document Viewer 48 Go To Page # number re-
quires two entries before
it works

4 NE 4/8

6) DroidWeight 38 Weight graph has incor-
rectly displayed digits

7 GDE 3/8

7) Eshotroid 2 Bus time page never
loads.

10 GDE/NE 6/6

8) GnuCash 256 Selecting from autocom-
plete suggestion doesn’t
allow modification of
value

10 DIC 3/4

9) GnuCash 247 Cannot change a previ-
ously entered withdrawal
to a deposit.

10 DIC 3/4

10) Mileage 31 Comment Not Displayed. 5 GDE/DIC 2/27
11) NetMBuddy 3 Some YouTube videos do

not play.
4 GDE/NE 5/13

12) Notepad 23 Crash on trying to send
note.

6 C 4/7

13) OI Notepad 187 Encrypted notes are
sorted in random when
they should be ordered
alphabetically

10 GDE/DIC 3/9

14) Olam 2 App Crashes when
searching for word with
apostrophe or just a
”space” character

3 C 1/1

15) QuickDic 85 Enter key does not hide
keyboard

5 GDE 3/6

CHAPTER 4. DESIGN OF EMPIRICAL STUDIES 28

Table 4.2: Study 1 Participant Design Matrix: This table shows the indicies of bug reports
assigned to participants during Study 1. The bugs corresponding to the index numbers can be
found in Table 4.1

Phase 1: Creation Participant Report Type Bug Numbers (Index)
Experienced Users 1 FUSION(E)1 1-15

2 FUSION(E)2 1-15
3 Google Code((E)1 1-15
4 Google Code (E)2 1-15

Non-experienced Users 5 FUSION (I)1 1-15
6 FUSION (I)2 1-15
7 Google Code (I)1 1-15
8 Google Code (I)2 1-15

4.2 Study 1: Reporting Bugs with FUSION

The goal of the first study is to assess whether FUSION’s features are useful when report-

ing bugs for Android apps, which aims to address RQ1 & RQ2. In particular, we want

to identify if the auto-completion steps and in-situ screenshot features are useful when

reporting bugs. For this, we recruited eight students (four undergraduate or non-experts

and four graduate or experts) at the College of William and Mary to construct bug reports

using FUSION and the Google Code Issue Tracker (GCIT) — as a representative of tradi-

tional bug tracking systems— for the real world bugs from the reports shown in Table 4.1.

We chose the Google Code Issue tracker as our comparison benchmark as it represents

a general standard for current issue tracking systems in terms of features and is widely

used in many open source software projects. The four graduate participants had extensive

programming backgrounds. Four participants constructed a bug report for each of the 15

bugs in Table 4.1 using FUSION prototype, and four participants reported bugs using the

Google Code Issue Tracker Interface. The participants were distributed to the systems

to have non-experts and programmers evaluating both systems. The Design Matrix for

this phase of the study can be seen in Table 4.2. In total the participants constructed 60

bug reports using FUSION and 60 using GCIT. Participants used a Nexus 7 tablet with

Android 4.4.3 KitKat installed to reproduce the bugs.

One challenge in conducting this first study is illustrating the bug to the participants

CHAPTER 4. DESIGN OF EMPIRICAL STUDIES 29

without introducing bias from the original bug report. In other words, we wanted the

user not to create a bug report from a bug report, but rather create a bug report through

experiencing the bug naturally. To accomplish this, we created a short video of the steps

to reproduce the bug. So as not to influence the complexity of the bugs, we recorded the

videos using the fewest possible number of user steps to manifest the bug in question.

After the users experienced the bug through the video, they were asked to confirm it by

reproducing the bug on the loaned Nexus 7 tablet. After the users manifested the bug

they were asked to construct the bug report for the corresponding system to which they

were assigned. During the reports collection, the names of the bug reporting systems

were anonymized to “System A” for FUSION and “System B” for GCIT. The users were

provided with a short tutorial regarding how to enter bugs for each system, so as not to

introduce bias towards any reporting system.

In addition to the bug reports, we collected the amount of time it took each participant

to fill out each bug report, as well as responses to a set of questions after filling out all of the

bug reports for the system. The questions were focused on three different aspects: 1) user

preferences, 2) user experience and 3) demographic background. The preferences-related

questions were formulated based on the user experience honeycomb originally developed by

Peter Moville [70], The preferences-related questions are listed in Table 4.3. The usability

was evaluated by using statements based on the SUS usability scale by John Brooke

[29]. These statements are listed in Table 4.4. The questions were used to evaluate the

user experience with the systems and were presented to participants replacing the token

(system) with the anonymized name of the system they were evaluating (i.e., System A

or System B). The full instructions that were used during this user study can be found in

Appendix A.

The questions for user preferences (UP questions in Table 4.4) were free form text

entry fields, the user experience questions (UX Questions in Table 4.4) and programming

experience was scored by the participant on a Likert scale (1 representing a strong dis-

agreement and 5 representing strong agreement). Background information questions are

CHAPTER 4. DESIGN OF EMPIRICAL STUDIES 30

Table 4.3: Study 1 User Preference Questions: Questions used during Study 1 to evaluate
User Preferences regarding FUSION.

Question ID Question
S1UP1 What fields in the form did you find useful when reporting the bug?
S1UP2 (FUSION ONLY) Were the component suggestions accurate?
S1UP3 (FUSION ONLY) Were the screenshot suggestions accurate?
S1UP4 What information if any were you not able to report?
S1UP4 What elements do you like most from the system?
S1UP5 What elements do you like least in the system?
S1UP6 Please give any additional feedback about the bug reporting system?

Table 4.4: Study 1 User Experience Questions: Questions used during Study 1 to evaluate
the User Experience of FUSION.

Question ID Question
S1UX1 I think that I would like to use (system) frequently.
S1UX2 I found (system) very cumbersome to use.
S1UX3 I found the various functions in (system) were well integrated.
S1UX4 I thought (system) was easy to use.
S1UX5 I found (system) unnecessarily complex.
S1UX6 I thought (system) was really useful for reporting a bug.

Table 4.5: Participant Programming Experience Questions Questions used to evaluate the
relative programming experience of participants in both empirical studies.

Question ID Question
PX1 On a scale of 1 to 10 how do you estimate your programming experience? (1: very

inexperienced 10: very experienced)
PX2 On a scale of 1 to 10 how experienced are you with Android programming paradigms?

(1: very inexperienced 10: very experienced)
PX3 For how many years have you been programming?
PX4 For how many years have you been studying computer science?
PX5 How many courses (roughly) have you taken in which you had to write source code?

based on the programming experience questionnaire developed by Feigenspan et al [43].

For the analysis of the open questions, one of the authors analyzed and categorized the an-

swers manually. The results of this study, and their applicability to the research questions

are discussed in Chapter 5.

CHAPTER 4. DESIGN OF EMPIRICAL STUDIES 31

Table 4.6: Study 2 User Preference Questions: Questions used during Study 1 to evaluate
User Preferences regarding FUSION.

Question ID Question
S2UP1 What information from this type of Bug Report did you find useful

for reproducing the bug?
S2UP2 What other information if any would you like to see in this type of

bug report?
S2UP3 What elements did you like the most from this type of bug report?
S2UP4 What information did you like least from this type of bug report?

Table 4.7: Study 2 User Experience Questions: Questions used during Study 1 to evaluate
the User Experience of FUSION.

Question ID Question
S2UX1 I think that I would like to use this type of bug report frequently.
S2UX2 I found this type of bug report unnessecarily complex.
S2UX3 I thought this type of bug report was easy to read/understand.
S2UX4 I found this type of bug report very cumbersome to read.
S2UX4 I thought the bug report was really useful for reproducing the bug.

4.3 Study 2: Reproducibility of Bug Reports

Whereas Study 1 analyzes FUSION from the viewpoint of a reporter, Study 2 is centered

on developers and the activity of reproducing bugs, which corresponds specifically to RQ2-

RQ4. However, the information collected during this study has bearing on all research

questions, and the relevant information gleaned from the study and its applicability to the

research questions is described in Chapter 5 Therefore, the goal of Study 2 is to evaluate

the ability of our proposed approach to improve the reproducibility of bug reports. In

particular, we evaluated the following aspects in FUSION and traditional issue trackers:

1) usability when using the bug tracking systems’ GUIs for reading bug reports, 2) time

required to reproduce reals bugs by using the bug reports, and 3) number of bugs that

were successfully reproduced. The reports generated during Study 1, using FUSION and

GCIT, in addition to the original bug reports (Table 4.1) were evaluated by a new set of

participants by attempting to reproduce the bugs on physical devices.

For the evaluation we enlisted 20 new participants, none of which participated in the

first study. The participants were graduate students from the Computer Science Depart-

CHAPTER 4. DESIGN OF EMPIRICAL STUDIES 32

ment at College of William and Mary, all of whom are familiar with the Android platform.

All participants were compensated $15 USD for their efforts. Each user evaluated 15 bug

reports, six from FUSION, six from GCIT, and three original. 135 reports were evaluated

(120 from Study 1 plus the 15 original bug reports), and were distributed to the 20 par-

ticipants in such a way that each bug report was evaluated by two different participants

(the full design matrix can be found in our online appendix [57]). Each participant eval-

uated only one version of a bug report for a bug, since due to the learning effect, after a

user reproduces a bug once, they will be capable of reproducing it easily in subsequent

attempts with other bug reports. To clarify, if a participant p analyzed a bug report typed

in system A for bug x, no other bug report for bug x was assigned to p. The full design

matrix for this study can be seen in Table 4.8.

During the study, the participants were sent links corresponding to the reports for

which they were tasked with reproducing the bug. Each participant was loaned a Nexus 7

tablet with Android 4.4.3 KitKat installed; the apps were preinstalled in the devices. For

each bug report, the users attempted to recreate the bug on the tablet device using only the

information contained within the report. The users timed themselves in the reproduction

for each bug, with a ten minute time limit. If a participant was not able to reproduce

a bug after ten minutes, that bug was marked as not-reproduced. A proctor monitored

the study to judge whether participants successfully reproduced a given bug. After the

users attempted to reproduce all 15 bugs assigned to them, they were asked to fill out an

anonymous online questionnaire for each type of the bug report they utilized, with the

UX and UP questions in Tables 4.6 and 4.7. The full set of user instructions that utilized

during this study can be found in Appendix A. As for the analysis, we used descriptive

statistics to analyze the responses for the UX statements, the time for reproducing the

bugs, and the number of successful reproductions. Results for this study are presented in

Chapter 5.

CHAPTER 4. DESIGN OF EMPIRICAL STUDIES 33

Table 4.8: Study 2 Participant Design Matrix: This table shows the indicies of bug reports
assigned to participants during Study 2. The bugs corresponding to the index numbers can be
found in Table 4.1

Inexperienced
Participants

Report Type Bug #’s
(Index)

Experienced
Partici-
pants

Report Type Bug #’s
(Index)

1 Original 1-3 11 Original 1-3
Google Code (E) 1 4-6 Google Code (E) 2 4-6
Google Code (I) 1 7-9 Google Code (I) 2 7-9
FUSION(E) 1 10-12 FUSION(E) 2 10-12
FUSION (I) 1 13-15 FUSION (I) 2 13-15

2 Google Code (E) 1 1-3 12 Google Code (E) 2 1-3
Google Code (I) 1 4-6 Google Code (I) 2 4-6
FUSION(E) 1 7-9 FUSION(E) 2 7-9
FUSION (I) 10-12 FUSION (I) 2 10-12
Original 13-15 Original 13-15

3 Google Code (I) 1 1-3 13 Google Code (I) 2 1-3
FUSION(E) 1 4-6 FUSION(E) 2 4-6
FUSION (I) 1 7-9 FUSION (I) 2 7-9
Original 10-12 Original 10-12
Google Code (E) 1 13-15 Google Code (E) 2 13-15

4 FUSION(E) 1 1-3 14 FUSION(E) 2 1-3
FUSION (I) 1 4-6 FUSION (I) 2 4-6
Original 7-9 Original 7-9
Google Code (E) 1 10-12 Google Code (E) 2 10-12
Google Code (I) 1 13-15 Google Code (I) 2 13-15

5 FUSION (I) 1 1-3 15 FUSION (I) 2 1-3
Original 4-6 Original 4-6
Google Code (E) 1 7-9 Google Code (E) 2 7-9
Google Code (I) 1 10-12 Google Code (I) 2 10-12
FUSION(E) 1 13-15 FUSION(E) 2 13-15

6 Original 1-3 16 Original 1-3
Google Code (E) 1 4-6 Google Code (E) 2 4-6
Google Code (I) 1 7-9 Google Code (I) 2 7-9
FUSION(E) 1 10-12 FUSION(E) 2 10-12
FUSION (I) 1 13-15 FUSION (I) 2 13-15

7 Google Code (E) 1 1-3 17 Google Code (E) 2 1-3
Google Code (I) 1 4-6 Google Code (I) 2 4-6
FUSION(E) 1 7-9 FUSION(E) 2 7-9
FUSION (I) 1 10-12 FUSION (I) 2 10-12
Original 13-15 Original 13-15

8 Google Code (I) 1 1-3 18 Google Code (I) 2 1-3
FUSION(E) 1 4-6 FUSION(E) 2 4-6
FUSION (I) 1 7-9 FUSION (I) 2 7-9
Original 10-12 Original 10-12
Google Code (E) 1 13-15 Google Code (E) 2 13-15

9 FUSION(E) 1 1-3 19 FUSION(E) 2 1-3
FUSION (I) 1 4-6 FUSION (I) 2 4-6
Original 7-9 Original 7-9
Google Code (E) 1 10-12 Google Code (E) 2 10-12
Google Code (I) 1 13-15 Google Code (I) 2 13-15

10 FUSION (I) 1 1-3 20 FUSION (I) 2 1-3
Original 4-6 Original 4-6
Google Code (E) 1 7-9 Google Code (E) 2 7-9
Google Code (I) 1 10-12 Google Code (I) 2 10-12
FUSION(E) 1 13-15 FUSION (E) 2 13-15

Chapter 5

Empirical Study Results

5.1 Study 1 (Bug Report Creation) Results

In this section we present the qualitative and quantitative results for Empirical Study 1.

We begin with a discussion of the quantitative time statistics regarding the creation of

the bug reports from the known bug videos using both FUSION and the GCIT, then we

examine the quantitative responses to the user experience questions and summarize the

qualitative user preference responses.

5.1.1 Study 1 Bug Creation Time Results

Complete results for the bug report creation time statistics for Study 1 can be found in

Tables 5.1 and 5.2. This data was collected during Study 1 in order to help quantify RQ2,

which aims to answer if FUSION is easier to use than traditional bug tracking systems

for reporting bugs. The length of time that a reporter spent filling out a bug report is

an important indicator of the ease of use of the system. The results of collecting this

data show a clear trend, it took both experienced and inexperienced participants a longer

amount of time to report bugs using the FUSION interface as compared to the GCIT,

with the the total average bug creation time for FUSION being 6:33, compared to the

total average bug creation time for the GCIT being 3:14. However, there are also def-

34

CHAPTER 5. EMPIRICAL STUDY RESULTS 35

Table 5.1: Creation Time Statistics for FUSION Bugs: All of the times reported in this
table are in the format (m:ss); an (*) next to the time indicates that FUSION was able to capture
all of the steps for reproduction with the autocompletion engine and a replayable can be generated.

Bug ID App Participant
#1 (Experi-
enced)

Participant
#2 (Experi-
enced)

Participant
#3 (Inexperi-
enced)

Participant
#4 (Inexperi-
enced)

1 A Time Tracker 7:48 11:30 24:30 2:01
2 Aarddict 4:12 4:10 3:30 4:51
3 ACV 2:27 5:30 8:18 05:14
4 Car Report 12:21 4:50* 15:45 8:00*
5 Document Viewer 4:03* 5:10 16:32* 6:38*
6 Droid Weight 3:10* 2:10* 7:43* 6:09
7 Eshotroid 7:30 6:30 10:29 6:21
8 GnuCash 9:45 7:10* 18:45 08:23
9 GnuCash 9:23 7:30 20:03 9:27
10 Mileage 2:22* 5:10 7:07 3:04*
11 NetMBuddy 2:02 3:15 4:00 1:27
12 Notepad 3:53 3:20 4:45 3:14
13 OI Notepad 5:15 9:20 13:30 6:17
14 Olam 1:23 2:20 2:30 1:40
15 QuickDic 2:58 2:10 2:40 2:01

Average 5:14 5:20 10:40 4:59

Table 5.2: Creation Time Statistics for GCIT Bugs: All of the times reported in this table
are in the format (m:ss)

Bug ID App Participant
#1 (Experi-
enced)

Participant
#2 (Experi-
enced)

Participant
#3 (Inexperi-
enced)

Participant
#4 (Inexperi-
enced)

1 A Time Tracker 4:16 7:30 1:51 1:56
2 Aarddict 3:33 8:25 2:13 2:22
3 ACV 2:37 11:10 0:51 1:42
4 Car Report 2:52 12:23 0:40 2:39
5 Document Viewer 3:15 9:31 0:45 1:46
6 Droid Weight 2:33 7:13 1:03 1:45
7 Eshotroid 2:08 5:27 1:47 1:03
8 GnuCash 2:40 6:48 1:15 2:30
9 GnuCash 6:20 5:12 1:40 2:22
10 Mileage 3:53 5:25 1:00 1:16
11 NetMBuddy 3:52 3:13 1:20 1:48
12 Notepad 2:02 4:32 1:01 1:23
13 OI Notepad 3:16 6:25 0:58 1:12
14 Olam 4:26 3:13 1:16 1:49
15 QuickDic 1:37 03:17 0:55 0:59

Average 3:17 6:39 1:14 1:46

CHAPTER 5. EMPIRICAL STUDY RESULTS 36

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
! !
!
!
!

0

1

2

3

4

5

FUSION GCIT

U
sa
bi
lit
y7
Sc
or
e7
(1
=5
)

S1UX1

0

1

2

3

4

5

FUSION GCIT

S1UX2

Min7Outlier Max7Outlier

0

1

2

3

4

5

FUSION GCIT

S1UX3

0

1

2

3

4

5

FUSION GCIT

U
sa
bi
lit
y7
Sc
or
e7
(1
=5
)

S1UX4

0

1

2

3

4

5

FUSION GCIT

S1UX5

Min7Outlier Max7Outlier

0

1

2

3

4

5

FUSION GCIT

S1UX6

Figure 5.1: Study 1 User Experience Question Results: Answers to the UX-related ques-
tions for Study 1 (Bug Report Creation)

inite trends unique to each type of participant (e.g. experienced or inexperienced). In

particular, it is clear that there is a much smaller disparity in the time taken to complete

bug reports for either system for the participants with prior programming experience, in

fact it took one experienced participant longer to fill out bug reports for the GCIT than

for FUSION. This result is not unexpected, as a reporter with prior programming expe-

rience would be able to more easily navigate FUSION’s UI and would also be more likely

to more throughly enter information into a traditional bug tracking system such as the

GCIT. While the experienced participants showed little disparity in the creation times

CHAPTER 5. EMPIRICAL STUDY RESULTS 37

between the two reporting methods, inexperienced participants showed a very disparity,

with the GCIT taking as much as 9 minutes faster on average. This signifies that the

Inexperienced users typically had more difficulty using the FUSION reporting system and

entered only very brief natural language descriptions into the GCIT. These results are

not surprising, as experienced reporters understand the importance of providing detailed

information in bug reports and thus are more likely to create detailed natural language

bug reports using both GCIT and FUSION. On the other hand, the results show inexperi-

enced reporters are more likely to create superficial reports using GCIT. While it did take

inexperienced reporters a longer amount of time to create FUSION reports, the creation

times were still reasonable and doesn’t necessarily reflect poorly on the system. In fact,

these results suggest that FUSION forced even inexperienced reporters to create more

detailed, reproducible bug reports, and this is confirmed in the reproduction results. Fur-

thermore, it is clear from responses to the user preferences questions that several users

appreciated the structured nature, but would have preferred an improved web UI. For

instance, one participant stated: ”In my opinion, the GUI component selector should not

show the options as a list but in a easier way (for example a window where [you] pick the

components).” These results contribute to the answer for RQ2 as follows:

RQ2: The quantitive bug report creation time results suggest that FUSION

is about as easy for developers to use as a traditional bug tracking system,

however, it is more difficult for inexperienced users to use than traditional bug

tracking systems.

5.1.2 Study 1 UX & UP Results

In regard to the general usefulness of FUSION as tool for reporting bugs, there are two

clear trends that emerge from the user responses: 1) Reporters generally feel that the op-

portunity to enter extra information in the form of detailed reproduction steps helps them

more effectively report bugs; 2) Experienced reporters tended to appreciate the value and

CHAPTER 5. EMPIRICAL STUDY RESULTS 38

added effort of adding extra information compared to inexperienced reporters. There are

several statements made by participants that confirm these claims. To highlight our first

point, the responses we received were highly encouraging for S1UP6, for instance, on re-

sponse read “With some small adjustments in the page (as I said, for example the GUI

component selector) this system could really overtake all the existing bug-tracker systems

in terms of usability and precision/detail of the generated bug report.” To highlight our

second point made One response to question S1UP1 from an experienced user was the

following: “The GUI component form and the action/event form have been very useful

to effectively report the steps.”; however a response to the same question by an inexperi-

enced reporter was,“I liked the parts where you just type in the information”. However,

these responses are not surprising, as the participants with programming experience un-

derstand the need for entering detailed information, but the inexperienced participants

do not. One encouraging result during Study 1 is that FUSION was able to auto suggest

all of the reproduction steps without gaps (i.e., auto-completion did not miss any steps)

in 11 of 60 bug reports generated, as indicated in Table 5.1. This means that, using the

information for the steps contained with FUSION database, a replayable script can be

generated, whereas this would not be possible for GCIT or any other bug tracking system.

The user experience statistics from Study 1 are listed in Figure 5.1. In this table questions

1,3,4, and 6 expect an answer of Strongly Agree (5) in order to correlate to a favorable

usability score. Experienced developers reported scores of 4.5 for each of these questions,

indicating that developers give FUSION a high usability score. Inexperienced users gave

the same questions scores of 2.5, 2.5, 3.5, and 2 respectively, indicating a low usability

score. Thus, the results show two major trends: 1) Experienced users tended to prefer

FUSION compared to the GCIT and 2) Inexperienced users tended to prefer the GCIT

compared to FUSION. It should be noted, that since there are only two experienced and

inexperienced respondents for each system, the results in this section are not generaliz-

able. These results are not surprising, as non-expert users seemed to prefer the simplicity

of the Natural Language text entry of the GCIT to the structured format of FUSION. In

CHAPTER 5. EMPIRICAL STUDY RESULTS 39

summary we can answer RQ1 as follows:

RQ1: While reporter’s generally felt that the opportunity to enter extra infor-

mation in a bug report using FUSION increased the quality of their reports,

inexperienced users would have preferred a simpler web UI.

5.2 Study 2 (Bug Report Reproducibility) Results

In this section we present the qualitative and quantitative results for Empirical Study

2. We begin with a discussion of the the quantitative responses to the user experience

questions and summarize the qualitative user preference responses. Then we examine

quantitative time and reproducibility statistics regarding the reproduction of bugs from

FUSION, GCIT, and Original bug reports.

5.2.1 Study 2 UX and UP Results

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
! !

0

1

2

3

4

5

FUSION GCIT Original

U
sa
bi
lit
y:
Sc
or
e:
(1
?5
)

S2UX1

0

1

2

3

4

5

FUSION GCIT Original

S2UX2

Min:Outlier Max:Outlier

0

1

2

3

4

5

FUSION GCIT Original

S2UX3

0

1

2

3

4

5

FUSION GCIT Original

U
sa
bi
lit
y:
Sc
or
e:
(1
?5
)

S2UX4

0

1

2

3

4

5

FUSION GCIT Original

S2UX5

Figure 5.2: Study 2 User Experience Question Results: Answers to the UX-related ques-
tions for Study 2 (Bug Report Reproduction)

CHAPTER 5. EMPIRICAL STUDY RESULTS 40

Table 5.3: Average Bug Report Reproduction Time: Average reproduction time results
for each type of bug report evaluated.

Bug Report Type Avg Time to Reproduce
FUSION (E) 3:15
FUSION(I) 2:35
Google Code (E) 1:46
Google Code (I) 1:46
Originial 1:59
FUSION Total 2:55
Google Code Total 1:46

The usability scores in Figure 5.2 show that most users agree that they would like

to use FUSION’s bug reports frequently, however, several users also found the bug re-

ports to be unnecessarily complex, and some users found the bug reports difficult to

read/comprehend. Most users agreed that they thought FUSION bug reports were useful

for helping to reproduce the bugs. GCIT had the best usability scores out of the three sys-

tems, whereas the Original bug reports had the lowest usability scores. According to user

preference feedback which asked what information participants found most useful in bug

reports we received encouraging feedback; for instance: “The detail steps to find where to

find the next steps was really useful and speeded up things.”; “The images of icons help

a lot, especially when you have a hard time locating the icons on your screen.”. However,

users also expressed issues with the FUSION report layout: “Sometimes the steps were

too overly specific/detailed.”; “The information, while thorough, was not always clear”;

“If there are steps missing, it is confusing because it is otherwise so detailed”. Based on

these responses we can answer RQ2 as follows:

RQ2: According to usability scores, participants generally preferred FUSION

over the original bug reports, but generally preferred GCIT to FUSION by

a small margin. The biggest reporter complaint regarding FUSION was the

organization of information in the report.

CHAPTER 5. EMPIRICAL STUDY RESULTS 41

5.2.2 Study 2 Bug Reproduction Results

The Boxplots in Figure 5.3 summarize the reproduction results for Study 2, and more

detailed statistics about the number of bugs that could not be reproduced for each system,

as well as average reproduction times for each type of report can be found in Tables 5.4

and 5.3 respectively. In the case of reproduction time, because some of the reports were

not reproduced during a 10 minutes time slot, we set to 600 seconds the reproduction

time for visualization and analysis purposes. Detailed results regarding the reproduction

of bug reports can be found in Table 5.5.

As mentioned earlier there are five types of bug reports that this study evaluates:

FUSION reports written by experienced (i.e., FUSE(E)) and non-experienced partici-

pants (i.e., FUS(I)), reports written in GCIT by experienced (i.e., GCIT(E)) and non-

experienced participants (i.e., GCIT(I)), and original reports (i.e., Orig). As mentioned

before, for the analysis we will assume that the reproduction time of the non-reproducible

bug reports is the maximum time the participants had to declare a report as reproducible

or not. This decision is to have fair comparisons and avoid bias towards the options with

a low rate of non-reproducible reports (e.g., FUS(E)). Consequently, The average time to

reproduce for the two flavors of FUSION were 220.5 seconds and 216.8 seconds seconds re-

spectively for FUS(E) and FUS(I). Surprisingly, the FUS(I) reports had a smaller average

time to reproduce than the FUS(E) reports. Both types of GCIT reports (E) & (I) had an

average time to reproduce of 166.07 seconds and 224.45 seconds. While this result shows

that participants took longer to reproduce FUSION reports, this is to be expected as they

had to read and process the extra information regarding the reproduction steps. However,

reproduction time of inexperienced reporters with FUSION is lower than GCIT. There is

a clear trade-off of reproduction time versus accuracy. When examining the effectiveness

of the reports for bugs that were seemingly more complex to reproduce (e.g., they took

more time overall to reproduce), we see there is no strong correlation between the rela-

tive effectiveness of FUSION or GCIT. However, we do see that the more complex bugs

CHAPTER 5. EMPIRICAL STUDY RESULTS 42

●

●●●

●●

●

FUS(E) FUS(I) GCIT(E) GCIT(I) Orig.

0
20

40
60

80
10

0
% Reports Reproduced by Partic.

●●●●
●
● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●

FUS(E) FUS(I) GCIT(E) GCIT(I) Orig.

0
10

0
20

0
30

0
40

0
50

0
60

0

Reproduction time (secs)

Figure 5.3: Study 2 Bug Report Reproduction Results: Results for the number of bug
reports reproduced and the average time taken to reproduce each bug

generally have more instances where they are not reproducible, which is to be expected.

Based on these results we can answer RQ3 as follows:

RQ3: Bug reports generated with FUSION do not allow for faster reproduction

of bugs compared bug reports generated using traditional bug tracking systems

such as the GCIT

Figure 5.3 details reproducibility results for bug reports written in FUSION. In terms

of reproducibility, overall the reports generated using FUSION were more reproducible

than the reports generated using GCIT with only 13 of the 120 bug reports from FU-

SION being non-reproducible compared to 23 of the 120 reports from the GCIT being

non-reproducible. The bug report type with lowest number of non-reproducible cases is

FUS(E), where as the bug report type with the highest number of non-reproducible cases

is GCIT(I) One encouraging result is that when inexperienced participants created bug

reports in Study 1, participants in Study 2 seemed to have a much easier time reproduc-

ing the reports from FUSION (I) which only had eight non-reproducible cases, compared

to GCIT(I) which had twice as many, 15, non-reproducible cases. This means that for

reporters that may be classified as inexperienced FUSION could greatly improve the bug

report quality. Both of the individual FUSION bug report types (I) and (E) had a lower

number of non-reproducible cases than the Original bug reports as well. However, a di-

CHAPTER 5. EMPIRICAL STUDY RESULTS 43

Table 5.4: Non Reproducible Bug Reports: Number of bugs that could not be reproduced
per Bug Report Type.

Bug Report Type # of Bugs that could not be reproduced
FUSION (E) 5
FUSION(I) 8
Google Code (E) 8
Google Code (I) 15
Originial 11
FUSION Total 13
Google Code Total 23

rect comparison cannot be made here, as each original bug report was tested four times,

compared to two times for the FUSION and GCIT based bug reports. Therefore, based

on these results we can answer RQ4 as follows:

RQ4: Developers using FUSION are able to reproduce more bugs compared

to traditional bug tracking systems such as the GCIT.

CHAPTER 5. EMPIRICAL STUDY RESULTS 44

T
a
b

le
5
.5

:
B

u
g

R
e
p

o
rt

Q
u

a
li

ty
S

ta
ti

st
ic

s:
G

C
IT

=
G

o
o
g
le

C
o
d

e
Is

su
e

T
ra

ck
er

,
N

R
=

#
In

st
a
n

ce
s

n
o
t

re
p

ro
d
u

ci
b

le
,

T
im

e
=

A
ve

ra
g
e

ti
m

e
to

re
p

ro
d

u
ce

,
E

=
b

u
g

re
p

or
t

cr
ea

te
d

b
y

ex
p

er
ie

n
ce

d
p

a
rt

ic
ip

a
n
t,

I
=

b
u

g
re

p
o
rt

cr
ea

te
d

b
y

in
ex

p
er

ie
n

ce
d

p
a
rt

ic
ip

a
n
t

A
p

p
T

ot
al

A
v
-

er
ag

e
T

im
e

F
U

S
IO

N
(E

)
T

im
e

F
U

S
IO

N
(E

)
N

R
F

U
S

IO
N

(I
)

T
im

e

F
U

S
IO

N
(I

)
N

R
G

C
IT

(E
)

T
im

e

G
C

IT
(E

)
N

R

G
C

IT
(I

)
T

im
e

G
C

IT
(I

)
N

R
O

ri
g
in

a
l

T
im

e
O

ri
g
in

a
l

N
R

T
im

e
T

ra
ck

e
r

2:
29

2:
42

0
2
:4

6
1

1
:3

3
3

3
:0

2
1

2
:0

0
1

A
a
rd

d
ic

t
2:

53
4:

25
1

4
:3

4
1

1
:3

1
1

1
:1

3
1

2
:4

3
2

A
C

V
2:

09
2:

45
0

2
:2

4
0

1
:5

5
0

2
:1

0
2

1
:2

9
2

C
a
r

R
e
-

p
o
rt

2:
38

5:
14

0
2
:0

0
0

1
:2

1
0

N
/
A

4
1
:5

7
0

D
o
c
u

m
e
n
t

V
ie

w
e
r

2:
08

2:
00

1
1
:3

7
0

2
:0

6
0

3
:1

3
2

1
:4

6
0

D
ro

id
W

e
ig

h
t

1:
47

3:
47

0
1
:2

9
0

0
:5

8
0

1
:3

8
0

1
:0

2
1

E
sh

o
tr

o
id

2:
20

3:
06

0
1
:3

8
0

2
:3

5
1

2
:0

7
1

2
:1

3
0

G
n
u

C
a
sh

1
3:

57
5:

17
1

N
/
A

3
3
:5

8
1

1
:3

3
2

5
:0

1
1

G
n
u

C
a
sh

2
2:

25
3:

48
1

3
:2

1
2

1
:3

3
1

1
:3

7
1

1
:4

5
2

M
il

e
a
g
e

1:
54

2:
25

0
2
:1

7
0

2
:0

0
0

1
:1

2
0

1
:3

7
0

N
e
tM

B
u

d
d

y
1:

35
2:

19
0

1
:3

4
0

0
:5

1
0

1
:0

2
0

2
:1

0
0

N
o
te

p
a
d

1:
38

1:
40

0
3
:3

5
1

1
:0

5
0

0
:5

1
0

1
:0

0
0

O
I

N
o
te

p
a
d

4:
14

6:
11

0
5
:2

2
0

3
:2

5
0

3
:4

7
0

2
:2

6
1

O
la

m
1:

00
0:

49
0

0
:5

0
0

0
:5

4
0

1
:1

6
0

1
:0

9
0

Q
u

ic
k
D

ic
2:

05
3:

34
0

2
:3

6
0

1
:3

6
0

0
:5

6
0

1
:4

1
0

T
o
ta

l/
A

v
g

:
3:

15
5

2
:3

5
8

1
:4

6
8

1
:4

6
15

1
:5

9
1
1

Chapter 6

Limitations and Threats to

Validity

6.1 Limitations of the FUSION approach

Currently, the DFS implementation in FUSION only supports the click/tap action. An-

other option to gather runtime program information would be to record app scenarios and

replay them while collecting program data or using language modeling based approaches

for scenario generation [63] . However, we forwent these approaches in favor of the fully au-

tomatic DFS application exploration. Part of our immediate plan for future work includes

adding support for more gestures to our DFS engine. FUSION is currently not capable

of capturing certain contextual app information such as a change in device orientation or

network state. However, this can be mitigated by the fact that reporters can enter such

contextual information in the free-form text field associated with each step. FUSION is

also limited in the types of bugs that it can report. For instance, certain performance

or energy bugs would not be as useful reported through FUSION, as the steps to reduce

for these non-functional types of bugs may not be as well defined as bugs that can be

triggered by manipulating GUI components. FUSION is also limited in the types of bugs

that it can report, currently supporting functional bugs that can be uncovered using only

45

CHAPTER 6. LIMITATIONS AND THREATS TO VALIDITY 46

GUI-Gestures such as tap, long-touch, swipe and type. It is important to note that even

though the systematic section engine is not able to perform and capture gestures other

than tap, these gestures can still be reported using FUSION. Also, FUSION does not

perform any analysis on stack traces in order to reverse-engineer reproduction steps, it is

purely a mechanism to aid users in reporting functional, and GUI-related bugs.

6.2 Threats to the Validity of the Empirical Study

Threats to internal validity concern issues with the validity of causal relationships in-

ferred. In the context of our studies, threats come from potentially confounding effects of

participants. Since we base our conclusions upon data collected from participants, we see

two major threats to validity. First, we assumed that undergraduate students without a

CS background, but those who had experience using Android devices are representative of

non-expert testers. We believe this is a reasonable assumption given the context as most

non-expert testers will only have a “working” knowledge of the app and platform. We

also assumed graduate students with Android experience were reasonable substitutes for

developers. Again, we believe this is a reasonable assumption given that all four of the

“experienced” participants in Study 1 indicated they had extensive programming back-

grounds and reasonable Android programming experience (above 4 on the scale where 10

represents “Very experienced”). Likewise, the participants in Study 2 indicated that they

all had extensive programming backgrounds, and 13 of the 20 participants had reasonable

Android programming experience.

Threats to external validity concern the generalizability of the results. The first threat

to the generalizability of the results relates to the concern of the bug reports and Android

apps used in our study. We evaluated FUSION on only 15 bug reports from 14 different

applications from the F-droid [7] marketplace. In order to increase the generalizability of

the results we aimed at selecting bug reports of varying type and complexity from apps

representing different categories and functions. During our study we also utilized only

CHAPTER 6. LIMITATIONS AND THREATS TO VALIDITY 47

one device type, a Nexus 7 tablet. However, this was for the purpose of standardizing

the results across all the participants. There is nothing limiting us from using FUSION

on many different Android devices from varied manufacturers. We concede that FUSION

may not necessarily be suited for reporting all types of bugs, (e.g., nuanced performance

bugs), however, we conjecture that any type of bug that can be reported with a traditional

issue tracking system can be reported with FUSION.

Chapter 7

Conclusion

Prior research has shown that the high-abstraction level of natural language descriptions

in current bug tracking systems makes it difficult for reporters to provide actionable in-

formation to developers. This illustrates the lexical gap between reporters of bugs and

developers. To help overcome this gap, we introduced FUSION, a novel bug reporting

approach that takes advantage of program analysis techniques and the event-driven na-

ture of Android applications in order to help auto-complete the reproduction steps for

bugs. We evaluated FUSION on 15 real-world Android application bugs in a user study

involving 28 participants and show that reports generated by FUSION are more reliable

for producing bugs than reports from the issue tracking system integrated into Google-

Code. We hope our work on FUSION encourages a new direction of research regarding

improving reporting systems. In the future, we aim to improve our DFS engine through

supporting gestures, to explore adding more specific program information in reports for

quicker/automatic fault localization, and to use FUSION as a tool for reporting feature

requests to aid feature location [78, 79, 76, 77, 64, 84, 38, 39] and impact analysis tasks

[40, 80, 53, 44, 55].

48

Appendix A

Instructions for User Study

Participants

A.1 Study 1 Instructions

Thank you for agreeing to participate in my user study, I sincerely appreciate your as-

sistance. Before starting the study, please be sure to read and sign the consent form

that I will give you at the beginning of the study. The study you are participating in

today has two tasks. Your first task will be to recreate a bug demonstrated in an online

video on a physical Nexus 7 tablet device that will be provided to you for the duration

of the study. The second task will be to fill out a bug report, and time yourself while

doing this, for each of the bugs that you have recreated on a tablet, in a specified Bug

Tracking System, System A. For those of you who may not be familiar with the term

?bug? or ?bug tracking system? please see the following definitions: A software bug[4]

is an error, flaw, failure, or fault in a computer program or system that causes it to pro-

duce an incorrect or unexpected result, or to behave in unintended ways. bug tracking

system - (BTS):[3] A system for receiving and filing bugs reported against a software

project, and tracking those bugs until they are fixed. Most major software projects have

their own BTS, the source code of which is often available for use by other projects.

49

APPENDIX A. INSTRUCTIONS FOR USER STUDY PARTICIPANTS 50

You will be asked to record your participation number, the unique id of each bug report

you fill out, and the time it takes you complete each bug report, and some exit inter-

view questions after completing your task. The link for the survey can be found here:

https://www.surveymonkey.com/s/System_A_Feedback You will time yourself starting

from the point you first start filling out each bug report, until the time you hit the submit

button when you have finished filling out each bug report. The steps you should take for

each bug report are as follows:

1. Watch the video for the bug in question. (Each video has a description and lists the

App to which it corresponds)

2. Attempt to reproduce the bug on the tablet device loaned to you (You will find all

of the apps for the user study in a folder on the Home screen titled ?User Study?.

You should verify with Kevin that you have successfully recreated each bug)

3. Open the link to the bug tracking system here: http://23.92.18.210:8080/FusionWeb

and select the app for which you are filling out the bug report.

4. Open up the survey (if you haven?t already) and copy and paste the unique id for

the bug report that you are filling out into the survey.

5. Start your timer and fill out the bug report to the best of your ability.

6. When you hit the submit button, signifying that you have finished entering the bug

report, stop your timer and record the time next to the corresponding bug report id

in the survey.

7. Ensure the information you have entered into the survey is correct, and start the

process over with the next bug in the list.

8. If have a question at any point during the study, please ask and I will do my best

to answer.

APPENDIX A. INSTRUCTIONS FOR USER STUDY PARTICIPANTS 51

A.2 Study 2 Instructions

Thank you for agreeing to participate in this user study, I sincerely appreciate your as-

sistance. Before starting, please be sure to read and sign the consent form that you will

be given before the the proctor gives an overview of the tasks. The study you are par-

ticipating in today has two tasks. Your first task will be to attempt to reproduce fifteen

different bugs from three different types of bug reports on a Google Nexus 7 tablet that

will be provided to you for the duration of the study. You can find the links to the fifteen

bugs assigned to you below. For each bug, you should time yourself from the point you

open the corresponding bug report until you perform the last step that manifests the bug.

When you think you have correctly reproduced the bug, please call over Kevin and he will

either verify that you have successfully reproduced the bug, or tell you to keep trying.

If Kevin confirms that you successfully reproduced the bug, record your time in the first

page of the survey (https://www.surveymonkey.com/s/Bug_Reproduction_Survey) in

the corresponding bug?s text box. There is a ten minute time limit for reproducing each

bug, if you cannot reproduce a bug within ten minutes, stop, record the 10 minute time

in the first page of the survey and move on to the next bug. Your second task will be to

answer some questions regarding each type of bug report you encountered as well as some

demographic questions in an online survey. To begin, please open the survey and enter

your participation number (number only) and your department affiliation as well as the

current degree you are pursuing in the first screen of the survey. Then follow the steps

below to complete your tasks: Steps to Complete the Study:

1. Open the link to the bug that you wish to reproduce. (You will find the app name

next to the link for each bug report, and all of the apps for the study are in a folder

on the home screen)

2. Start your timer and carefully read the bug report.

3. Open the app on the Nexus 7 tablet, and attempt to reproduce the bug from the

APPENDIX A. INSTRUCTIONS FOR USER STUDY PARTICIPANTS 52

bug report.

4. Once you fell you have reproduced the bug, stop your timer, call Kevin over, and he

will verify wether or not you have correctly reproduced the bug.

5. If you did correctly reproduce the bug, record the time it took you on the first page

of the survey, and move on to the next bug in the list. If you did not successfully

reproduce the bug, keep trying either until Kevin verifies that you succeeded, or until

the ten minute time limit, then enter your time result into the survey and move on

to the next bug in the list.

6. After you have attempted to reproduce all bugs, please answer the survey questions

as thoroughly and honestly as possible, verify your results have been received with

Kevin before leaving the study.

** If at any point in the study you have a questions please ask and the proctor will do

their best to answer, however, there will be some questions that we are not able to answer

due to constraints of the investigation. **

Bibliography

[1] Android uiautomator http://developer.android.com/tools/help/uiautomator/

index.html.

[2] apktool https://code.google.com/p/android-apktool/.

[3] Atimetrackerbug https://en.wikipedia.org/wiki/Bug_tracking_system/.

[4] Atimetrackerbug https://en.wikipedia.org/wiki/Software_bug.

[5] Bugzilla issue tracker https://bugzilla.mozilla.org.

[6] dex2jar https://code.google.com/p/dex2jar/.

[7] F-droid. https://f-droid.org/.

[8] Github issue tracker https://github.com/features.

[9] Google code issue tracker https://code.google.com/p/support/wiki/

IssueTracker.

[10] jd-cmd decompiler https://github.com/kwart/jd-cmd.

[11] Jira bug reporting system https://www.atlassian.com/software/jira.

[12] Mantis bug reporting system https://www.mantisbt.org.

[13] Mobile apps: What consumers really need and want https://info.dynatrace.com/

rs/compuware/images/Mobile_App_Survey_Report.pdf.

53

BIBLIOGRAPHY 54

[14] srcml http://www.srcml.org.

[15] Usersnap bug reorting tool https://usersnap.com/features/

feedback-widget-for-screenshot-bug-reporting.

[16] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salva-

tore De Carmine, and Atif M. Memon. Using gui ripping for automated testing

of android applications. In Proceedings of the 27th IEEE/ACM International Con-

ference on Automated Software Engineering, ASE 2012, pages 258–261, New York,

NY, USA, 2012. ACM.

[17] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salva-

tore De Carmine, and Atif M. Memon. Using gui ripping for automated testing

of android applications. In Proceedings of the 27th IEEE/ACM International Con-

ference on Automated Software Engineering, ASE 2012, pages 258–261, New York,

NY, USA, 2012. ACM.

[18] J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and

omissions in software repositories. In Software Engineering, 2009. ICSE 2009. IEEE

31st International Conference on, pages 298–308, May 2009.

[19] Shay Artzi, Sunghun Kim, and MichaelD. Ernst. Recrash: Making software

failures reproducible by preserving object states. In ECOOP 2008 – Object-Oriented

Programming, Jan Vitek, editor, volume 5142 of Lecture Notes in Computer Science,

pages 542–565. Springer Berlin Heidelberg, 2008.

[20] N. Ayewah, D. Hovemeyer, J.D. Morgenthaler, J. Penix, and William

Pugh. Using static analysis to find bugs. Software, IEEE, 25(5):22–29, Sept 2008.

[21] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for

systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN In-

BIBLIOGRAPHY 55

ternational Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA ’13, pages 641–660, New York, NY, USA, 2013. ACM.

[22] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Improving test suites

for efficient fault localization. In Proceedings of the 28th International Conference on

Software Engineering, ICSE ’06, pages 82–91, New York, NY, USA, 2006. ACM.

[23] Jonathan Bell, Nikhil Sarda, and Gail Kaiser. Chronicler: Lightweight

recording to reproduce field failures. In Proceedings of the 2013 International Confer-

ence on Software Engineering, ICSE ’13, pages 362–371, Piscataway, NJ, USA, 2013.

IEEE Press.

[24] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss,

Rahul Premraj, and Thomas Zimmermann. What makes a good bug report? In

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, SIGSOFT ’08/FSE-16, pages 308–318, New York, NY, USA,

2008. ACM.

[25] Nicolas Bettenburg, R. Premraj, T. Zimmermann, and Sunghun Kim. Du-

plicate bug reports considered harmful... really? In Software Maintenance, 2008.

ICSM 2008. IEEE International Conference on, pages 337–345, Sept 2008.

[26] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun

Kim. Extracting structural information from bug reports. In Proceedings of the 2008

International Working Conference on Mining Software Repositories, MSR ’08, pages

27–30, New York, NY, USA, 2008. ACM.

[27] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S.C. Koduru. An empirical

analysis of bug reports and bug fixing in open source android apps. In Software

Maintenance and Reengineering (CSMR), 2013 17th European Conference on, pages

133–143, March 2013.

BIBLIOGRAPHY 56

[28] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann.

Information needs in bug reports: Improving cooperation between developers and

users. In Proceedings of the 2010 ACM Conference on Computer Supported Cooper-

ative Work, CSCW ’10, pages 301–310, New York, NY, USA, 2010. ACM.

[29] J. Brooke. SUS: A quick and dirty usability scale. In Usability evaluation in

industry, P. W. Jordan, B. Weerdmeester, A. Thomas, and I. L. Mclelland, editors.

Taylor and Francis, London, 1996.

[30] Yu Cao, Hongyu Zhang, and Sun Ding. Symcrash: Selective recording for

reproducing crashes. In Proceedings of the 29th ACM/IEEE International Conference

on Automated Software Engineering, ASE ’14, pages 791–802, New York, NY, USA,

2014. ACM.

[31] N. Chen, J. Lin, S. Hoi, X. Xiao, and B. Zhang. AR-Miner: Mining informative

reviews for developers from mobile app marketplace. In 36th International Conference

on Software Engineering (ICSE’14), page To appear, 2014.

[32] Wontae Choi, George Necula, and Koushik Sen. Guided gui testing of android

apps with minimal restart and approximate learning. In Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented Programming Systems

Languages & Applications, OOPSLA ’13, pages 623–640, New York, NY, USA,

2013. ACM.

[33] James Clause and Alessandro Orso. A technique for enabling and supporting

debugging of field failures. In Proceedings of the 29th International Conference on

Software Engineering, ICSE ’07, pages 261–270, Washington, DC, USA, 2007. IEEE

Computer Society.

[34] Holger Cleve and Andreas Zeller. Locating causes of program failures. In

Proceedings of the 27th International Conference on Software Engineering, ICSE ’05,

pages 342–351, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 57

[35] Krzysztof Czarnecki, Zeeshan Malik, and Rafael Lotufo. Modelling the

‘hurried’ bug report reading process to summarize bug reports. In

Proceedings of the 2012 IEEE International Conference on Software Maintenance

(ICSM), ICSM ’12, pages 430–439, Washington, DC, USA, 2012. IEEE Computer

Society.

[36] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight de-

fect localization for java. In ECOOP 2005 - Object-Oriented Programming, AndrewP.

Black, editor, volume 3586 of Lecture Notes in Computer Science, pages 528–550.

Springer Berlin Heidelberg, 2005.

[37] Steven Davies and Marc Roper. What’s in a bug report? In Proceedings of the

8th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, ESEM ’14, pages 26:1–26:10, New York, NY, USA, 2014. ACM.

[38] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk.

Feature location in source code: a taxonomy and survey. Journal of Software: Evo-

lution and Process, 25(1):53–95, 2013.

[39] Bogdan Dit, Meghan Revelle, and Denys Poshyvanyk. Integrating informa-

tion retrieval, execution and link analysis algorithms to improve feature location in

software. Empirical Softw. Engg., 18(2):277–309, April 2013.

[40] Bogdan Dit, Michael Wagner, Shasha Wen, Weilin Wang, Mario

Linares-Vásquez, Denys Poshyvanyk, and Huzefa Kagdi. Impactminer: A

tool for change impact analysis. In Companion Proceedings of the 36th International

Conference on Software Engineering, ICSE Companion 2014, pages 540–543, New

York, NY, USA, 2014. ACM.

[41] Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. Works for

me! characterizing non-reproducible bug reports. In Proceedings of the 11th Working

BIBLIOGRAPHY 58

Conference on Mining Software Repositories, MSR 2014, pages 62–71, New York,

NY, USA, 2014. ACM.

[42] Ericsson. Ericsson mobility report novmeber 2014.

http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-november-

2014.pdf, November 2014.

[43] J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and S. Hanenberg. Measur-

ing programming experience. In Program Comprehension (ICPC), 2012 IEEE 20th

International Conference on, pages 73–82, June 2012.

[44] Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk.

Integrated impact analysis for managing software changes. In Proceedings of the

34th International Conference on Software Engineering, ICSE ’12, pages 430–440,

Piscataway, NJ, USA, 2012. IEEE Press.

[45] Malcom Gethers, Huzefa Kagdi, Bogdan Dit, and Denys Poshyvanyk.

An adaptive approach to impact analysis from change requests to source code. In

Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering, ASE ’11, pages 540–543, Washington, DC, USA, 2011. IEEE

Computer Society.

[46] Zhongxian Gu, E.T. Barr, D.J. Hamilton, and Zhendong Su. Has the bug

really been fixed? In Software Engineering, 2010 ACM/IEEE 32nd International

Conference on, volume 1, pages 55–64, May 2010.

[47] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan

Murphy. Characterizing and predicting which bugs get fixed: An empirical study of

microsoft windows. In Proceedings of the 32Nd ACM/IEEE International Conference

on Software Engineering - Volume 1, ICSE ’10, pages 495–504, New York, NY, USA,

2010. ACM.

BIBLIOGRAPHY 59

[48] Md Kamal Hossen, Huzefa Kagdi, and Denys Poshyvanyk. Amalgamating

source code authors, maintainers, and change proneness to triage change requests. In

Proceedings of the 22Nd International Conference on Program Comprehension, ICPC

2014, pages 130–141, New York, NY, USA, 2014. ACM.

[49] Da Huo, Tao Ding, C. McMillan, and M. Gethers. An empirical study of the

effects of expert knowledge on bug reports. In Software Maintenance and Evolution

(ICSME), 2014 IEEE International Conference on, pages 1–10, Sept 2014.

[50] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug triage

with bug tossing graphs. In Proceedings of the the 7th Joint Meeting of the Euro-

pean Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, ESEC/FSE ’09, pages 111–120, New York, NY,

USA, 2009. ACM.

[51] Wei Jin and Alessandro Orso. Bugredux: Reproducing field failures for in-

house debugging. In Proceedings of the 34th International Conference on Software

Engineering, ICSE ’12, pages 474–484, Piscataway, NJ, USA, 2012. IEEE Press.

[52] Wei Jin and Alessandro Orso. F3: Fault localization for field failures. In

Proceedings of the 2013 International Symposium on Software Testing and Analysis,

ISSTA 2013, pages 213–223, New York, NY, USA, 2013. ACM.

[53] H. Kagdi, M. Gethers, D. Poshyvanyk, and M.L. Collard. Blending con-

ceptual and evolutionary couplings to support change impact analysis in source code.

In Reverse Engineering (WCRE), 2010 17th Working Conference on, pages 119–128,

Oct 2010.

[54] H. Kagdi and D. Poshyvanyk. Who can help me with this change request? In

Program Comprehension, 2009. ICPC ’09. IEEE 17th International Conference on,

pages 273–277, May 2009.

BIBLIOGRAPHY 60

[55] Huzefa Kagdi, Malcom Gethers, and Denys Poshyvanyk. Integrating con-

ceptual and logical couplings for change impact analysis in software. Empirical Soft-

ware Engineering, 18(5):933–969, 2013.

[56] Huzefa Kagdi, Malcom Gethers, Denys Poshyvanyk, and Maen Hammad.

Assigning change requests to software developers. Journal of Software: Evolution and

Process, 24(1):3–33, 2012.

[57] Carlos Bernal Cardenas Kevin Moran, Mario Linares Vasquez

and Denys Poshyvanyk. Fusion online replication package http://www.

fusion-android.com.

[58] F.M. Kifetew, Wei Jin, R. Tiella, A. Orso, and P. Tonella. Reproducing

field failures for programs with complex grammar-based input. In Software Testing,

Verification and Validation (ICST), 2014 IEEE Seventh International Conference on,

pages 163–172, March 2014.

[59] Dongsun Kim, Yida Tao, Sunghun Kim, and A. Zeller. Where should we fix

this bug? a two-phase recommendation model. Software Engineering, IEEE Trans-

actions on, 39(11):1597–1610, Nov 2013.

[60] Sunghun Kim, T. Zimmermann, and N. Nagappan. Crash graphs: An aggre-

gated view of multiple crashes to improve crash triage. In Dependable Systems Net-

works (DSN), 2011 IEEE/IFIP 41st International Conference on, pages 486–493,

June 2011.

[61] A. Gunes Koru and Jeff Tian. Defect handling in medium and large open source

projects. IEEE Softw., 21(4):54–61, July 2004.

[62] M. Linares-Vasquez, K. Hossen, Hoang Dang, H. Kagdi, M. Gethers, and

D. Poshyvanyk. Triaging incoming change requests: Bug or commit history, or

BIBLIOGRAPHY 61

code authorship? In Software Maintenance (ICSM), 2012 28th IEEE International

Conference on, pages 451–460, Sept 2012.

[63] Mario Linares-Vásquez, Martin White, Carlos Bernal-Cárdenas, Kevin

Moran, and Denys Poshyvanyk. Mining android app usages for generating ac-

tionable gui-based execution scenarios. In 12th Working Conference on Mining Soft-

ware Repositories (MSR’15), to appear, 2015.

[64] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich.

Feature location via information retrieval based filtering of a single scenario execution

trace. In Proceedings of the Twenty-second IEEE/ACM International Conference on

Automated Software Engineering, ASE ’07, pages 234–243, New York, NY, USA,

2007. ACM.

[65] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input

generation system for android apps. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2013, pages 224–234, New York,

NY, USA, 2013. ACM.

[66] Senthil Mani, Rose Catherine, Vibha Singhal Sinha, and Avinava Dubey.

Ausum: Approach for unsupervised bug report summarization. In Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, FSE ’12, pages 11:1–11:11, New York, NY, USA, 2012. ACM.

[67] Wes Masri. Fault localization based on information flow coverage. Software Testing,

Verification and Reliability, 20(2):121–147, 2010.

[68] T. Menzies and A. Marcus. Automated severity assessment of software defect

reports. In Software Maintenance, 2008. ICSM 2008. IEEE International Conference

on, pages 346–355, Sept 2008.

BIBLIOGRAPHY 62

[69] K. Moran, M. Linares-Vsquez, C. Bernal-Crdenas, and D. Poshyvanyk.

Auto-completing bug reports for android applications. In Proceedings of 10th Joint

Meeting of the European Software Engineering Conference and the 23rd ACM SIG-

SOFT Symposium on the Foundations of Software Engineering (ESEC/FSE?15), to

appear, 2015.

[70] Peter Morville. User experience design. http://semanticstudios.com/user_

experience_design/.

[71] Hoda Naguib, Nitesh Narayan, Bernd Brügge, and Dina Helal. Bug report

assignee recommendation using activity profiles. In Proceedings of the 10th Working

Conference on Mining Software Repositories, MSR ’13, pages 22–30, Piscataway, NJ,

USA, 2013. IEEE Press.

[72] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, David Lo, and

Chengnian Sun. Duplicate bug report detection with a combination of information

retrieval and topic modeling. In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2012, pages 70–79, New York,

NY, USA, 2012. ACM.

[73] Bao Nguyen and Atif Memon. An observe-model-exercise* paradigm to test

event-driven systems with undetermined input spaces. IEEE Transactions on Soft-

ware Engineering, 99(Preprints), 2014.

[74] B.N. Nguyen and A.M. Memon. An observe-model-exercise; paradigm to test

event-driven systems with undetermined input spaces. Software Engineering, IEEE

Transactions on, 40(3):216–234, March 2014.

[75] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, Jiayang Sun, and

Bin Wang. Automated support for classifying software failure reports. In Software

Engineering, 2003. Proceedings. 25th International Conference on, pages 465–475,

May 2003.

BIBLIOGRAPHY 63

[76] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-

jlich. Combining probabilistic ranking and latent semantic indexing for feature iden-

tification. In Program Comprehension, 2006. ICPC 2006. 14th IEEE International

Conference on, pages 137–148, 2006.

[77] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-

jlich. Feature location using probabilistic ranking of methods based on execution

scenarios and information retrieval. Software Engineering, IEEE Transactions on,

33(6):420–432, June 2007.

[78] D. Poshyvanyk and A. Marcus. Combining formal concept analysis with infor-

mation retrieval for concept location in source code. In Program Comprehension,

2007. ICPC ’07. 15th IEEE International Conference on, pages 37–48, June 2007.

[79] Denys Poshyvanyk, Malcom Gethers, and Andrian Marcus. Concept lo-

cation using formal concept analysis and information retrieval. ACM Trans. Softw.

Eng. Methodol., 21(4):23:1–23:34, February 2013.

[80] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor

Gyimóthy. Using information retrieval based coupling measures for impact anal-

ysis. Empirical Softw. Engg., 14(1):5–32, February 2009.

[81] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premku-

mar Devanbu. Bugcache for inspections: Hit or miss? In Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Foundations of

Software Engineering, ESEC/FSE ’11, pages 322–331, New York, NY, USA, 2011.

ACM.

[82] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. Summarizing soft-

ware artifacts: A case study of bug reports. In Proceedings of the 32Nd ACM/IEEE

International Conference on Software Engineering - Volume 1, ICSE ’10, pages 505–

514, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 64

[83] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari Balakrish-

nan. Automatic and scalable fault detection for mobile applications. In Proceedings

of the 12th Annual International Conference on Mobile Systems, Applications, and

Services, MobiSys ’14, pages 190–203, New York, NY, USA, 2014. ACM.

[84] M. Revelle, B. Dit, and D. Poshyvanyk. Using data fusion and web mining

to support feature location in software. In Program Comprehension (ICPC), 2010

IEEE 18th International Conference on, pages 14–23, June 2010.

[85] Haihao Shen, Jianhong Fang, and Jianjun Zhao. Efindbugs: Effective error

ranking for findbugs. In Software Testing, Verification and Validation (ICST), 2011

IEEE Fourth International Conference on, pages 299–308, March 2011.

[86] Ramin Shokripour, John Anvik, Zarinah M. Kasirun, and Sima Zamani.

Why so complicated? simple term filtering and weighting for location-based bug

report assignment recommendation. In Proceedings of the 10th Working Conference

on Mining Software Repositories, MSR ’13, pages 2–11, Piscataway, NJ, USA, 2013.

IEEE Press.

[87] BugsIO Solutions. Bugdigger. http://bugdigger.com, December 2014.

[88] Tommi Takala, Mika Katara, and Julian Harty. Experiences of system-

level model-based gui testing of an android application. In Proceedings of the 2011

Fourth IEEE International Conference on Software Testing, Verification and Valida-

tion, ICST ’11, pages 377–386, Washington, DC, USA, 2011. IEEE Computer Society.

[89] G. Tassey. The economic impacts of inadequate infrastructure for software testing.

Technical report, National Institute of Standards and Technology, 2002.

[90] L. Vidacs, A. Beszedes, D. Tengeri, I. Siket, and T. Gyimothy. Test suite

reduction for fault detection and localization: A combined approach. In Software

BIBLIOGRAPHY 65

Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Soft-

ware Evolution Week - IEEE Conference on, pages 204–213, Feb 2014.

[91] Shaowei Wang and David Lo. Version history, similar report, and structure:

Putting them together for improved bug localization. In Proceedings of the 22Nd

International Conference on Program Comprehension, ICPC 2014, pages 53–63, New

York, NY, USA, 2014. ACM.

[92] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An approach

to detecting duplicate bug reports using natural language and execution information.

In Proceedings of the 30th International Conference on Software Engineering, ICSE

’08, pages 461–470, New York, NY, USA, 2008. ACM.

[93] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas

Zeller. How long will it take to fix this bug? In Proceedings of the Fourth Interna-

tional Workshop on Mining Software Repositories, MSR ’07, pages 1–, Washington,

DC, USA, 2007. IEEE Computer Society.

[94] Jin woo Park, Mu-Woong Lee, Jinhan Kim, Seung won Hwang, and

Sunghun Kim. Costriage: A cost-aware triage algorithm for bug reporting systems,

2011.

[95] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim.

Crashlocator: Locating crashing faults based on crash stacks. In Proceedings of the

2014 International Symposium on Software Testing and Analysis, ISSTA 2014, pages

204–214, New York, NY, USA, 2014. ACM.

[96] Jian Zhou and Hongyu Zhang. Learning to rank duplicate bug reports. In

Proceedings of the 21st ACM International Conference on Information and Knowledge

Management, CIKM ’12, pages 852–861, New York, NY, USA, 2012. ACM.

BIBLIOGRAPHY 66

[97] Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed? -

more accurate information retrieval-based bug localization based on bug reports. In

Proceedings of the 34th International Conference on Software Engineering, ICSE ’12,

pages 14–24, Piscataway, NJ, USA, 2012. IEEE Press.

