

Information Integration for Software Maintenance and Evolution

Malcom Bernard Gethers II

Elizabeth City, North Carolina

Master of Science, University of North Carolina at Greensboro, 2007
Bachelor of Science, High Point University, 2005

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
August, 2012

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosphy

Malcom Bernard Gethers II

Approved by the Committee, July, 2012

Committee Chair

Assistant Professor Denys Poshyvanyk, Computer Science
The College of William and Mary

Associate Professor Peter Kemper, Computer Science
The College of William and Mary

Associate Professor Xipeng Shen, Computer Science

The College of William and Mary

Associate Professor Andrian Marcus, Computer Science

Wayne State University

Assistant Professor Huzefa Kagdi, Electrical Engineering and Computer Science
Wichita State University

ABSTRACT PAGE

Software maintenance and evolution is a particularly complex phenomenon in the case of long-
lived, large-scale systems. It is not uncommon for such systems to progress through years of
development history, a number of developers, and a multitude of software artifacts including
millions of lines of code. Therefore, realizing even the slightest change may not always be
straightforward. Clearly, changes are the central force driving software evolution. Therefore,
it is not surprising that a significant effort has been (and should be) devoted in the software
engineering community to systematically understanding, estimating, and managing changes to
software artifacts. This effort includes the three core change related tasks of (1) expert de-
veloper recommendations - identifying who are the most experienced developers to implement
needed changes, (2) traceability link recovery recovering dependencies (traceability links) be-
tween different types of software artifacts, and (3) software change impact analysis - which
other software entities should be changed given a starting point.

This dissertation defines a framework for an integrated approach to support three core software
maintenance and evolution tasks: expert developer recommendation, traceability link recovery,
and software change impact analysis. The framework is centered on the use of conceptual and
evolutionary relationships latent in structured and unstructured software artifacts. Information
Retrieval (IR) and Mining Software Repositories (MSR) based techniques are used for analyzing
and deriving these relationships. All the three tasks are supported under the framework by
providing systematic combinations of MSR and IR analyses on single and multiple versions of
a software system. Our approach to the integration of information is what sets it apart from
previously reported relevant solutions in the literature. Evaluation on a number of open source
systems suggests that such combinations do offer improvements over individual approaches.

Table of Contents

Acknowledgments ix

List of Tables xii

List of Figures xiii

1 Supporting Software Evolution 2

1.1 Research Goals and Contributions . 3

1.1.1 Information Integration . 4

1.1.2 Contributions . 4

1.2 Bibliographical Notes . 6

2 Developer Recommendation 8

2.1 Our Approach to Expert Developer Recommendations 11

2.1.1 Locating Concepts with Information Retrieval 11

2.1.2 Recommending Developers from Mining Software Repositories . . . 15

2.2 Case Study . 21

2.3 Design . 21

iv

2.3.1 Evaluation Procedure and Protocol 24

2.3.2 Request-Level Accuracy . 28

2.3.3 Expertise-Granularity Accuracy . 29

2.3.4 Ranking Effectiveness . 32

2.3.5 Accuracy and History Periods . 35

2.4 Comparative Study on KOffice . 39

2.4.1 Effectiveness of automatic vs. manual LSI queries 39

2.4.2 Accuracy Effectiveness with Alternate Recommendations 46

2.5 Threats to Validity . 48

2.5.1 Construct Validity . 48

2.5.2 Internal Validity . 50

2.5.3 External Validity . 52

2.5.4 Reliability . 54

2.6 Background and Related Work . 55

2.6.1 Concept Location . 55

2.6.2 Developer Contributions and Recommendation 57

2.7 Discussion . 60

3 Traceability Link Recovery 62

3.1 Background and Related Work . 64

3.1.1 IR-based Traceability Recovery . 64

3.1.2 State of the art . 67

3.2 Relational Topic Model . 68

v

3.3 The Hybrid Approach . 71

3.4 Case Study . 72

3.4.1 Definition and Context . 72

3.4.2 Research Questions . 74

3.4.3 Metrics . 75

3.4.4 Analysis of the Results . 78

3.5 Discussion and Threats to Validity . 84

3.5.1 Evaluation Method . 84

3.5.2 Object Systems and Oracle Accuracy 86

3.5.3 RTM Configuration and Number of Topics 87

3.5.4 Heuristics to Weight the IR methods to be Combined 87

3.5.5 Orthogonality is a Key Point for Improving Accuracy 88

3.6 Discussion . 89

4 Impact Analysis 90

4.1 Background and Related Work . 92

4.1.1 Software Change Impact Analysis (IA) 92

4.1.2 Conceptual Information in Software 94

4.1.3 Evolutionary Information in Software Repositories 94

4.2 A Integrated Approach to Impact Analysis 96

4.2.1 Conceptual Couplings . 97

4.2.2 Evolutionary Couplings . 98

4.2.2.1 Extract Change-sets from Software Repositories 99

vi

4.2.2.2 Process to Fine-grained Change-sets 100

4.2.2.3 Mine Evolutionary Couplings 100

4.2.3 Disjunctive and Conjunctive Combinations 100

4.2.4 Examples . 101

4.3 Case Study . 103

4.3.1 Accuracy Metrics . 104

4.3.1.1 Precision and Recall . 104

4.3.2 Evaluated Subject Systems . 105

4.3.3 Examples . 105

4.3.4 Evaluation Procedure . 105

4.3.4.1 Conceptual training sets - Corpora 107

4.3.4.2 Evolutionary training sets 107

4.3.4.3 Testing set . 108

4.3.5 Results . 109

4.3.5.1 RQ1:Does combining conceptual and evolutionary couplings

improve accuracy of IA? . 109

4.3.5.2 RQ2: Does the choice of granularity (i.e., file vs. method)

impact standalone techniques and their combinations? . . . 114

4.3.6 Threats to validity . 115

4.4 Discussion . 117

5 Conclusion 118

Bibliography 121

vii

To my family and friends.

viii

ACKNOWLEDGMENTS

I would first like to sincerely thank my advisor, Denys Poshyvanyk for his guidance

during my doctoral studies. I would also like to thank my dissertation committee mem-

bers, Huzefa Kagdi, Peter Kemper, Andrian Marcus, and Xipeng Shen. I am also grateful

to all faculty and staff in the Computer Science department for cultivating a supportive

environment.

I am grateful to Gabriele Bavota, Michael Collard, Andrea De Lucia, Massimiliano

Di Penta, Maen Hammad, Huzefa Kagdi, and Rocco Oliveto for strong colloborations.

Furthermore, I express my gratitude to all the members of the SEMERU group, namely

Bogdan Dit, Daniel Graham, Mario Linares Vasquez, Collin McMillan, Evan Moritz, Derrin

Pierret, Meghan Revelle, and Trevor Savage.

I would like to thank all my family and friends who supported me and took time out to

review this work. I would especially like to thank my friend and love Laura for all of her

support and encouragement throughout the years and my wonderful son Malachi.

The work described in dissertation was partially funded by the grants CCF-1016868 and

CNS-0959924 from the U.S. National Science Foundation, Virginia Space Grant Consortium,

and Southern Regional Education Board (SREB). Any opinions, findings and conclusions

expressed herein are those of the author and do not necessarily reflect those of the sponsors.

ix

List of Tables

2.1 Top five classes extracted and ranked by the concept location tool that are

relevant to the description of bug# 173881 reported in KOffice. 15

2.2 Candidate expert developers recommended by xFinder to the KoDocker-

Manager.cpp file in KOffice. 20

2.3 Summary of developer recommendation accuracies obtained using automatic

queries. 26

2.4 Accuracies of developer recommendations for bug# 167009 from KOffice at

the File, Package , System , and overall levels. 31

2.5 Summary of developer recommendation accuracies obtained for 18 KOffice

bugs at the File, Package , System , and Overall levels. 32

2.6 Automatic queries: Summary of an average ranking effectiveness for bugs of

KOffice using different granularities. 33

2.7 Automatic queries: Summary of an average ranking effectiveness for features

of KOffice using different granularities . 34

x

2.8 Summary of developer recommendation average accuracies obtained using

automatic queries for all systems at the File, Package , System, and Overall

levels. 36

2.9 Summary of developer recommendation accuracies for 18 KOffice bugs at the

File, Package , System , and Overall levels using the manually formed queries. 38

2.10 Summary of developer recommendation accuracies for five feature requests

and one refactoring using the manually formed queries at the File, Package ,

System , and overall levels from KOffice. 39

2.11 Manual queries: Summary of an average ranking effectiveness for bugs in

KOffice using different granularities. 42

2.12 Manual queries: Summary of an average ranking effectiveness for features in

KOffice using different granularities. 43

2.13 Questions posed to the developers of ArgoUML, Eclipse, and KOffice. . 49

3.1 Characteristics of the software systems used in the experimentation. 70

3.2 Principal Component Analysis. Results are for tracing use cases onto code

classes. 78

3.3 Overlap analysis. Results are for tracing use cases onto code classes. 79

3.4 Comparing RTM-based combinations with stand-alone methods: Wilcoxon

test results (p-values). 81

4.1 Example showing the accuracy gains of the disjunctive impact analysis method

on the bug# 47087 in Apache httpd. 102

4.2 Characteristics of the subject systems considered in the empirical evaluation. 105

xi

4.3 Evolutionary training and (testing) datasets used for the empirical evaluation.106

4.4 Orthogonality check for various cut points of conceptual, evolutionary, and

their combination. 109

4.5 Results of Wilcoxon signed-rank test (= 30) comparing disjunctive combi-

nation to the baseline approach. 113

4.6 Precision and recall percentages results of conceptual coupling , evolutionary

coupling , disjunctive , and conjunctive approaches to impact analysis for all

systems using various cut points. 114

xii

List of Figures

2.1 Part of a KOffice subversion log message. 16

2.2 The ranking procedure used in xFinder . 19

2.3 The procedure used to compute accuracy of the ranking of recommended

developers . 30

2.4 Comparing the similarity and diversity of files for automatic and manual

queries obtained from concept location in KOffice. 45

3.1 RTM vs VSM and JS: use cases onto code classes of eTourENG. 80

3.2 Results of the average precision in eTourENG using various values of lambda. 81

3.3 Results of average precision for retrieving all correct links for each EasyClinicENG,

EasyClinicITA, and eTourENG. 82

3.4 Interaction between Method and Artifact Types and between Method and

Language. 85

xiii

Information Integration for Software Maintenance and Evolution

Chapter 1

Supporting Software Evolution

Software maintenance and evolution represents a phase in the software development life

cycle, which accounts for approximately 50%-60% of time and money devoted towards de-

veloping software systems [21]. This dissertation presents techniques which alleviate the

time and effort required by developers to perform software maintenance tasks. More specif-

ically, we present techniques to assist software engineers when they address crucial software

maintenance tasks, including (1) developer recommendation (DR) (2) traceability link re-

covery (TR) and (3) impact analysis (IA). The underlying theme of this dissertation is to

leverage various sources of information and analysis techniques to reduce the effort required

by software developers and project managers when faced with these duties. Through this

research we advance the state-of-the-art in three important areas of software maintenance.

Ideally, the time and effort required of developers should be minimal, and in its reduction

organizations will see significant decrease in the expense of developing software systems.

In this dissertation, we introduce an approach for the analysis of software that integrates

information and analysis techniques to directly support the core software maintenance tasks

DR, TR, and IA. Conceptual information captures the extent to which domain concepts and

software artifacts are related to each other. This information is derived using Information

2

CHAPTER 1. SUPPORTING SOFTWARE EVOLUTION 3

Retrieval (IR) based analysis of textual software artifacts that are not limited to a single

version of software (e.g., comments and identifiers in a single snapshot of source code), but

also across versions (e.g., change logs and bug reports in the change history). Evolutionary

information is derived from analyzing relationships and relevant information observed from

past changes by utilizing Mining Software Repositories (MSR) techniques. Central to our

approach are the information sources that are developer/human centric (e.g., comments

and identifiers, and commit practices), rather than (formal)language/artifact centric (e.g.,

static and dynamic dependencies such as call graphs).

The core research philosophy is that the integration of information sources and analysis

techniques will enhance our ability to perform crucial software maintenance tasks. For

example, existing IA techniques have utilized both single and multiple version analysis of

source code independently, but their combined use has not been previously investigated.

Overall, a change management solution which integrates various types of analysis and not

only helps with identifying expert developers, but also the extent the change will have on

the system, is currently missing. Our solution is an addresses these open issues and support

software maintenance using an integrated approach.

1.1 Research Goals and Contributions

In this dissertation we take an initial step towards answering our overarching research

question as to what are the exclusive and potentially synergistic benefits of integrating

conceptual and evolutionary information with regards to key software maintenance tasks.

While both these sources have been studied independently before, their combined use for

CHAPTER 1. SUPPORTING SOFTWARE EVOLUTION 4

tasks such as the ones studied here has not been scientifically investigated. Furthermore,

the combination of different analysis techniques on a single information source as also been

overlooked.

1.1.1 Information Integration

The core research philosophy behind this integrated approach is that the combination of

different information sources and types of analysis overcomes their individual limitations.

In this work we consider two cases, (1) integrating information of two different sources

(namely, IR and MSR) and (2) integrating different types of analysis techniques for a sin-

gle source of information. Each individual information source as well as type of analysis

possesses a set of strengths and limitations. In the first case, complementary sources of

information are combined. More specifically, it allows for the analysis of single (present)

and multiple versions (past) of software systems. In the second case, the individual analysis

techniques represent experts and both experts express complementary judgments based on

the conceptual relationships between source code entities. In both cases, the integration

helps alleviate the limitations of the individual techniques. Our principal research hypoth-

esis is that such integrated approaches to performing software maintenance task will help

alleviate the effort required by developers and project leads.

1.1.2 Contributions

This dissertation makes the following research contributions:

• Developer Recommendation: We present a novel approach that integrates IR and

MSR techniques to recommend expert developers to assist in the implementation of

CHAPTER 1. SUPPORTING SOFTWARE EVOLUTION 5

software change requests (e.g., bug reports and feature requests). An IR-based concept

location technique is first used to locate source code entities, e.g., files and classes,

relevant to a given textual description of a change request. The previous commits

from version control repositories of these entities are then mined for expert developers.

The role of the IR method in selectively reducing the mining space is different from

previous approaches that textually index past change requests and/or commits. The

approach is evaluated on change requests from three open-source systems: ArgoUML,

Eclipse, and KOffice, across a range of accuracy criteria. The results show that the

overall accuracies of the correctly recommended developers are between 47% and 96%

for bug reports, and between 43 and 60for feature requests. Moreover, comparison

results with two other recommendation alternatives show that the presented approach

outperforms them with a substantial margin. Project leads or developers can use this

approach in maintenance tasks immediately after the receipt of a change request in a

free-form text.

• Traceability Link Recovery: We define an integrated approach to address the

issue of traceability link recovery. Different IR methods have been proposed to re-

cover traceability links among software artifacts. Until now there is no single method

that sensibly outperforms the others, however, it has been empirically shown that

some methods recover different, yet complementary traceability links. In this work

we exploit this empirical finding and present an integrated approach to combine or-

thogonal IR techniques, which have been statistically shown to produce dissimilar

results. Our approach combines the following IR-based methods: Vector Space Model

CHAPTER 1. SUPPORTING SOFTWARE EVOLUTION 6

(VSM), probabilistic Jensen and Shannon (JS) model, and Relational Topic Modeling

(RTM), which has not been used in the context of traceability link recovery before.

The empirical case study conducted on six software systems indicates that the inte-

grated method outperforms stand-alone IR methods as well as any other combination

of non-orthogonal methods with a statistically significant margin.

• Impact Analysis: We have developed a novel approach that integrates conceptual

and evolutionary techniques to support change impact analysis in source code. In-

formation Retrieval is used to derive conceptual couplings from the source code in

a single version (release) of a software system. Evolutionary couplings are mined

from source code commits. The premise is that such combined methods provide im-

provements to the accuracy of impact sets. A rigorous empirical assessment on the

changes of the open source systems Apache httpd, ArgoUML, iBatis, and KOffice is

also reported. The results show that a combination of these two techniques, across

several cut points, provides statistically significant improvements in accuracy over ei-

ther of the two techniques used independently. Improvements in recall values of up

to 20% over the conceptual technique in KOffice and up to 45% over the evolutionary

technique in iBatis were reported.

1.2 Bibliographical Notes

This dissertation contains material which was previously published. This section highlights

details related to collaborations with other researchers.

The material presented in Chapter 2 is based on a collaborative research effort with

CHAPTER 1. SUPPORTING SOFTWARE EVOLUTION 7

Dr. Huzefa Kagdi at Wichita State University and Maen Hammad at Hashemite University

in Zarqa, Jordan. The results of the research project were originally published in the

Journal of Software: Evolution and Process (formely the International Journal of Software

Maintenance and Evolution) [79].

The idea and findings presented in Chapter 3 appeared in the proceedings of the 18th

IEEE International Conference on Program Comprehension (ICPC’10) [113] and the 27th

IEEE International Conference on Software Maintenance (ICSM’11) [144] and was invited

to the Journal of Software Maintenance and Evolution special issue among the best papers

at ICSM’11. This project was a collaboration with Rocco Oliveto at the University of

Molise, Italy and Andrea De Lucia at the University of Salerno, Italy.

Chapter 4 contains the results of a collaboration with Huzefa Kagdi at Wichita State

University. The findings were previously published in the proceedings of the 17th IEEE

Working Conference on Reverse Engineering (WCRE’10) [78]. The publication was invited

to the Empirical Software Engineering special issue among the best papers at WCRE’10.

Chapter 2

Developer Recommendation

It is a common, but by no means trivial, task in software maintenance for technical leads to

delegate the responsibility of implementing change requests (e.g., bug fixes and new feature

requests) to the developers with the right expertise. This task typically involves project, or

even organization, wide knowledge, and the balancing many factors; all of which if handled

manually can be quite tedious [10]. The issue is particularly challenging in large-scale soft-

ware projects with several years of development history and developed collaboratively with

hundreds of contributors, often geographically distributed (e.g., open source development

environments). It is not uncommon in such projects to receive tens of change requests daily

that need to be resolved in an effective manner (e.g., within time, priority, and quality

factors).

Therefore, assigning change requests to the developers with the right implementation

expertise is challenging, but certainly a needed activity. For example, one straightforward

practice is to email the project team or developers, or discuss via issue tracking system,

and rely on them for suggestions or advice on who has the helpful knowledge about a

certain part of source code, a bug, or a feature. Clearly, this activity is reactive and may

not necessarily yield an effective or efficient answer. An active developer of ArgoUML,

8

CHAPTER 2. DEVELOPER RECOMMENDATION 9

where this activity is manual, stated that they would welcome any tool that would lead to

more enjoyable and efficient job experience, and is not perceived as a hindrance. In open

source software development, where much relies on volunteers, it could serve as a catalyst

if there was a tool that automatically mapped change requests to appropriate developers.

That is, developers do not have to wade through the numerous change requests to seek

for what they can contribute to; they are presented a filtered set of change requests that

suits their palates instead. Both help seekers and sustained software evolution in such a

situation would greatly benefit from a proactive approach that automatically recommends

the appropriate developers based solely on information available in textual change requests.

Change requests are typically specified in a free-form textual description using natural

language (e.g., a bug reported to the Bugzilla system of a software project).

We developed an approach that integrates two existing techniques to address the task

of developer assignments to change requests [76]. Here, the umbrella term concept refers to

the textual description of the change request irrespective of its specific intent (e.g., a new

feature request or a bug report). An IR technique, specifically Latent Semantic Indexing

(LSI) [46, 102], is first used to locate relevant units of source code (e.g., files and classes)

that implement the concept of interest in a single version (e.g., KOffice 2.0-Beta 2) in

which a bug is reported. The past commits (e.g., from Subversion repositories) of only the

relevant units of source code are then analyzed to recommend a ranked list of candidate

developers [74]. Therefore, our approach not only recommends a list of developers who

should resolve a particular change request, but also the potentially relevant source code

to it. The same ArgoUML developer mentioned above commented that pinpointing the

source code associated with a problem (i.e., involved in a bug) is also interesting, which is

CHAPTER 2. DEVELOPER RECOMMENDATION 10

exactly what our approach provides, as an intermediate step.

The research philosophy is that the present+past of a software system leads to its better

future evolution [73]. This combined approach integrates several latent opportunities in the

rich set of actual changes that is left behind in the system’s development history (otherwise

perceived as a challenge and largely ignored in conventional development tools). We can now

ask for developer recommendations at the textual change request level instead of the source

code level, as in our previous work [74]. For example, our approach correctly recommended

a ranked list of developers, [jaham, boemann], knowledgeable in source code files related to

a bug, from its description splitting views duplicates the tool options docker, in KOffice ,

an open source office productivity suite.

The key contribution of our work is the first use of a concept location technique in-

tegrated with a technique based on Mining Software Repositories for the expert developer

recommendation task. This integrated approach is different from other previous approaches,

including those using IR, for expert developer recommendations that rely solely on the his-

torical account of past change requests and/or source code changes [10, 25, 27, 26, 74]. Our

approach does not need to mine past change requests (e.g., history of similar bug reports

to resolve the bug request in question), but does require source code change history. The

single-version analysis with IR is employed to reduce the mining space of the source code

change history to only selected entities. This chapter includes a comprehensive evaluation

of the approach on a number of change requests spanning across bug reports, feature re-

quests, and even refactorings, from KOffice, and also a number of releases and commit

history periods of ArgoUML and Eclipse. The accuracy of the developer recommendations

is rigorously assessed across various criteria. The results indicate that our approach fares

CHAPTER 2. DEVELOPER RECOMMENDATION 11

very well with accuracies of 80% for bug reports and 42% for feature requests in KOffice,

for example.

2.1 Our Approach to Expert Developer Recommendations

Our approach to recommending expert developers to assist with a given change request

consists of the following two steps:

1. Given a concept description, we use LSI to locate a ranked list of relevant units of

source code (e.g., files, classes, and methods) that implement that concept in a version

(typically the version in which an issue is reported) of the software system.

2. The version histories of units of source code from the above step are then analyzed

to recommend a ranked list of developers that are the most experienced and/or have

substantial contributions in dealing with those units (e.g., classes).

2.1.1 Locating Concepts with Information Retrieval

Concept refers to a human-oriented expression of the intent of implemented software or its

parts [16]. Concepts are typically expressed in natural language with terms from application

and/or problem domains. Examples include spell checking in a word processor or drawing

a shape in a paint program. Concept location is a widely studied problem in software

engineering and includes many flavors such as feature identification and concern location.

In short, a typical concept location technique identifies relevant units of a software system

(e.g., classes or methods in C++) that implement a specific concept that originates from

the domain of interest [117]. Existing approaches to concept location use different types

CHAPTER 2. DEVELOPER RECOMMENDATION 12

of software analyses. They can be broadly classified based on their use of static, dynamic,

and/or combined analysis.

In software engineering, LSI has been used for a variety of tasks such as software reuse

[95, 157], identification of abstract data types [96], detection of high level concept clones

[99, 141], recovery of traceability links between software artifacts [8, 43, 72, 97], identifying

topics in source code [87], classifying and clustering software [82], measuring cohesion [98]

and coupling [119], browsing relevant software artifacts [42] and tracing requirements [67,

91]. Using advanced IR techniques, such as those based on LSI [102, 120], allow users to

capture relations between terms (words) and documents in large bodies of text. A significant

amount of domain knowledge is embedded in the comments and identifiers present in source

code. Using IR methods, users are able to index and effectively search this textual data by

formulating natural language queries, which describe the concepts they are interested in.

Identifiers and comments present in the source code of a software system form a language

of their own without a grammar or morphological rules. LSI derives the meanings of words

from their usage in passages, rather than a predefined dictionary, which is an advantage

over existing techniques for text analysis that are based on natural language processing

[137]. Marcus et al. [102] introduced a methodology to index and search source code using

IR methods. Subsequently, Poshyvanyk et al. [120] refined the methodology and combined

it with dynamic information to improve its effectiveness.

In our approach, the comments and identifiers from the source code are extracted and

a corpus is created. In this corpus, each document corresponds to a user-chosen unit of

source code (e.g., class) in the system. LSI indexes this corpus and creates a signature for

each document. These indices are used to define similarity measures between documents.

CHAPTER 2. DEVELOPER RECOMMENDATION 13

Users can originate queries in natural language (as opposed to regular expressions or some

other structured format) and the system returns a list of all the documents in the system

ranked by their semantic similarity to the query. This use is analogous to many existing

web search engines.

1. Creating a corpus of a software system: The source code is parsed using a

developer-defined granularity level (i.e., methods, classes or files) and documents are

extracted from the source code. A corpus is created so that each method (and/or

class) will have a corresponding document in the resulting corpus. Only identifiers

and comments are extracted from the source code. In addition, we also created the

corpus builder for large C++ projects, using srcML [40] and Columbus [55].

2. Indexing: The corpus is indexed using LSI and its real-valued vector subspace repre-

sentation is created. Dimensionality reduction is performed in this step, capturing the

important semantic information about identifiers and comments in the source code,

and their relationships. In the resulting subspace, each document (method or class)

has a corresponding vector. The steps 1 and 2 are usually performed once, while the

others are repeated until the user finds the desired parts of the source code.

3. Formulating a query: A set of terms that describe the concept of interest constitutes

the initial query, e.g., the short bug description of a bug or a feature described by the

developer or reporter. The tool spell-checks all the terms from the query using the

vocabulary of the source code (generated by LSI). If any word from the query is not

present in the vocabulary, then the tool suggests similar words based on edit distance

and removes the term from the search query.

CHAPTER 2. DEVELOPER RECOMMENDATION 14

4. Ranking documents: Similarities between the user query and documents from the

source code (e.g., methods or classes) are computed. The similarity between a query

reflecting a concept and a set of data about the source code indexed via LSI allows

for the generation of a ranked list of documents relevant to the concept. All the

documents are ranked by the similarity measure in descending order (i.e., the most

relevant at the top and the least relevant at the bottom).

LSI offers many unique benefits when compared to other natural language processing tech-

niques. Among which include the robustness of LSI with respect to outlandish identifier

names and stop words (which are eliminated), and no need of a predefined vocabulary or

morphological rules. The finer details of the inner workings of LSI used in this work are

similar to its previous usages; we refer the interested readers to [102, 120].

Here, we demonstrate the working of the approach using an example from KOffice.

The change request or concept of interest is the bug# 173881 that was reported to the bug

tracking system (maintained by Bugzilla) on 2008-10-30. The reporter described the bug

as follows:

“splitting views duplicates the tool options docker”

We consider the above textual description as a concept of interest. We collected the

source code of KOffice 2.0-Beta 2 from the development trunk on 2008-10-31 (the bug

was not fixed as of this date). We parsed the source code of KOffice using the class-level

granularity (i.e., each document is a class). After indexing with LSI, we obtained a corpus

consisting of 4,756 documents and containing 19,990 unique words. We formulated a search

query using the bug’s textual description, which was used as an input to LSI-based concept

CHAPTER 2. DEVELOPER RECOMMENDATION 15

Table 2.1: Top five classes extracted and ranked by the concept location tool that are relevant to
the description of bug# 173881 reported in KOffice.

Rank Class Names Similarity

1 KoDockerManager 0.66

2 ViewCategoryDelegate 0.54

3 ViewListDocker 0.51

4 KisRulerAssistantToolFactory 0.49

5 KWStatisticsDocker 0.46

location tool. The partial results of the search (i.e., a ranked list of relevant classes) are

summarized in Table 2.1.

2.1.2 Recommending Developers from Mining Software Repositories

We use the xFinder approach to recommend expert developers by mining version archives

of a software system [74]. The basic premise of this approach is that the developers who

contributed substantial changes to a specific part of source code in the past are likely to best

assist in its current or future changes. More specifically, past contributions are analyzed

to derive a mapping of the developers’ expertise, knowledge, or ownership to particular

entities of the source code a developer-code map. Once a developer-code map is obtained,

a list of developers who can assist in a given part of the source code can be acquired in a

straightforward manner.

Our approach uses the commits in repositories that record source code changes submit-

ted by developers to the version-control systems (e.g., Subversion and CVS). Commits’ log

entries include the dimensions author, date, and paths (e.g., files) involved in a change-

CHAPTER 2. DEVELOPER RECOMMENDATION 16

Figure 2.1: Part of a KOffice subversion log message.

set. Figure 2.1 shows a log entry from the Subversion repository of KOffice. A log

entry corresponds to a single commit operation. In this case, the changes in the file kof-

fice/kword/part/frames/KWAnchorStrategy.cpp are committed by the developer zander on

the date/time 2008-11-14T17:22:26.488329Z.

We developed a few measures to gauge developer contributions from commits [74]. We

used the measures to determine developers that were likely to be experts in a specific source

code file, i.e., developercode map. The developer-code map is represented by the developer-

code vector DV for the developer d and file f . DV(d,f) =< Cf , Af , Rf >, where:

• Cf is the number of commits, i.e., commit contributions that include the file f and

are committed by the developer d.

• Af is the number of workdays, i.e., calendar days, in the activity of the developer d

with commits that include the file f .

• Rf is the most recent workday in the activity of the developer d with a commit that

includes the file f .

CHAPTER 2. DEVELOPER RECOMMENDATION 17

Similarly, the file-change vector FV representing the change contributions to the file f, is

shown below: FV(f) =< C ′f , A
′
f , R

′
f >, where

• C ′f is the total number of commits, i.e., commit contributions, that include the file f .

• A′f is the total number of workdays in the activity of all developers that include

changes to the file f .

• R′f is the most recent workday with a commit that includes the file f .

The measures Cf , Af , and Rf are computed from the log history of commits that is readily

available from source code systems, such as CVS and Subversion. More specifically, the

dimensions author, date, and paths of log entries are used in the computation. The dimen-

sion date is used to derive workdays or calendar days. The dimension author is used to

derive the developer information. The dimension path is used to derive the file information.

Similarly, the measures C ′f , A′f , and R′f are computed. The log entries are readily avail-

able in the form of XML and straightforward XPath queries were formulated to compute

the measures. The contribution or expertise factor, termed xFactor, for the developer d

and the file f is computed using a similarity measure of the developer-code vector and the

file-change vector. For example, we use the Euclidean distance to find the distance between

the two vectors (for the details on computing this measure refer to [74]). Distance is an

opposite of similarity, thus lesser the value of the Euclidean distance, greater the similarity

between the vectors. xFactor is an inverse of distance and is given as follows,

xFactor(d, v) =
1

DV(d,v) − FV(f)
(2.1)

CHAPTER 2. DEVELOPER RECOMMENDATION 18

xFactor(d, v) =
1

2

√
(Cf − C ′f)2 + (Af −A′f)2 + (Rf −R′f)2

(2.2)

We use xFactor as a basis to suggest a ranked list of developers to assist with a change in a

given file. The developers are ranked based on their xFactor values. The ranking is directly

proportional to the xFactor values. That is, the developer with the highest value is ranked

first, with second highest value is ranked second, and so forth. Multiple developers with the

same value are given the same rank. Now, some files may have not changed in a very long

time or added for the very first time. As a result, there will not be any recommendation

at the file level. To overcome this problem, we look for developers who are experts in a

package that contains the file, and recommend them instead. If no package expert can be

identified, we turn to the idea of system experts as a final option. By doing so, we strive

for guaranteed recommendation from our tool.

Package here means the immediate directory that contains the file, i.e., we consider the

physical organization of source code. We define the package expert as the one who updated

the largest number of unique files in a specific package. We feel the package experts are

a reasonable choice and a developer with experience in several files of a specific package

can most likely assist in updating a specific file in that package. As a final option, if no

package expert can be identified, we turn to the idea of a system expert. The system

means a collection of packages. It can be a subsystem, a module, or a big project (e.g.

kspread, KOffice, and gcc). The system or project expert is the person(s) who is involved

in updating the largest number of different (unique) files in the system. The person who

updated the most files should have more knowledge about the system. In this way, we move

from the lowest, most specific expertise level (file) to the higher, broader levels of expertise

CHAPTER 2. DEVELOPER RECOMMENDATION 19

Figure 2.2: The procedure used in xFinder to give a ranked list of developer candidates to assist
with a given source code entity.

(package then system). According to this approach, we guarantee that the tool always gives

a recommendation, unless this is the very first file added to the system. The procedure for

the suggested approach is given in Figure 2.2. The integer parameter maxExperts, i.e.,

the maximum of developer recommendations desired from the tool, is user defined. The

number of recommendations follow the property maxFileExperts + maxPackageExperts

+ maxSystemExperts <= maxExperts, i.e., the total number of recommendation possible

from all the three levels collectively is less than or equal to the user specified value. To help

understand the process we now present a detailed example/scenario of using our approach.

CHAPTER 2. DEVELOPER RECOMMENDATION 20

Table 2.2: Candidate expert developers recommended by xFinder to the KoDockerManager.cpp
file in KOffice.

Rank File Experts Package Experts

1 jaham mpfeiffer

2 boemann jaham

3 zander

Now we demonstrate the working of the second step of our approach, i.e., xFinder, using

the KOffice bug example from Section 2.1. The classes from Table 2.1, given by concept

location, are fed to the xFinder tool. The files in which these classes are implemented are

first identified. In our example, it turned out that each class was located in a different file;

however, it is possible that multiple classes are implemented in a single file. xFinder is used

to recommend developers for one file at a time. Here, we limit our discussion to a single file,

i.e., the file containing the top most class obtained from our concept location step. The file

guiutils/KoDockerManager.cpp contains the top ranked class KoDockerManager. xFinder

started with KOffice 2.0-Beta 2 from the development trunk version on 2008-10-31 and

worked its way backward in the version history to look for recommendations for the file

guiutils/KoDockerManager.cpp. We configured xFinder to recommend a maximum of five

developers. The ranked list of developer user IDs that xFinder recommended at file and

package levels are provided in Table 2.2. Further details on xFinder are provided in our

previous work on this topic [74].

The bug# 173881 was fixed on 2008-11-02 by a developer with the user id jaham and the

patch included the file KoDockerManager.cpp. As can be clearly seen, both the appropriate

file and developer were ranked first in the respective steps of our approach. Next, we

CHAPTER 2. DEVELOPER RECOMMENDATION 21

systematically assess the accuracy of our approach.

2.2 Case Study

We conducted a case study to empirically assess our approach according to the design and

reporting guidelines presented in [132].

2.3 Design

The case of our study is the event of assigning change requests to developers in open source

projects. The units of analysis are the bug and feature requests considered from three open

source projects. The key objective is to study the following research questions (RQs):

• RQ1 - How accurate are the developer recommendations when applied to the change

requests of real-world systems?

• RQ2 - What is the impact on accuracy with different amounts of training data, i.e.,

commits?

• RQ3 - How do the accuracy results compare when the original descriptions of bug/feature

requests and their sanitized versions are formulated as LSI queries?

• RQ4 - How does our approach compare to alternate sources for developer recom-

mendations (e.g., wild/educated guesses)? In particular, we posit the following two

sub-questions:

• RQ4.1 - Are the developers recommended by our approach more accurate than ran-

domly selected developers?

CHAPTER 2. DEVELOPER RECOMMENDATION 22

• RQ4.2 - Are the developers recommended by our approach more accurate than the

maintainers, an obvious first choice, that are typically listed as the main points of

contact in open source projects?

The first two research questions related to the explanatory purpose, i.e., positivist

prospective, of our study, as to what is the correlation of the developer recommendations

from our approach with the developers who actually address change requests in open source

projects (see the rest of Section 3). The last two research questions relate to the compar-

ative part of the study, as to how our approach compares with alternative methods (see

the rest of Section 4). We collected a fixed set of qualitative data, i.e., change and bug

requests, from the software archives found in bug and source code repositories. We used

data triangulation approach to include a variety of data sources from three open source

subject systems, such as, ArgoUML, Eclipse, and KOffice that represent different main

implementation languages (e.g., C/C++ and Java), sizes, and development environments.

KOffice is an application suite, which is comprised of about 911 KLOC. It includes

several office productivity applications, such as word processing (KWord), spread sheet

(KSpread), presentation (KPresenter), and drawing/charting (KChart) tools. KOffice

closely follows the KDE (K Desktop Environment) development model and has compo-

nent dependencies (e.g., core KDE libraries), but has an independent release cycle. We

considered the release 2.0 series (different version cycle from KDE’s). Eclipse is an open

source integrated development environment, which is used in both research and industry,

and provides a good representation for a large software system. We considered its releases

2.0, 3.0, and 3.3.2. Version 2.0 was released on 27 Jun 2002, version 3.0 was released on 25

Jun 2004, and 3.3.2 was released on 21 Feb 2008. For each version we studied the change

CHAPTER 2. DEVELOPER RECOMMENDATION 23

history before the release date. Eclipse project contains millions lines of code and tens of

developers. For example release 3.0 contains 1,903,219 lines of code with 84 committers.

ArgoUML is an open source tool that provides an UML modeling environment. It has gone

through eleven releases, and the latest stable version is 0.28. We used version 0.26.2 in our

evaluation. The commit history from version 0.20 to candidate release version 0.26.1 was

used and had contributions from a total of 19 developers.

Guided by the Goal-Question-Metric (GQM) method, the main goal of the first part

of our study is to assess the accuracy effectiveness of our approach, asking how accurate

are the developer recommendations when applied to the change requests of real systems?

That is, investigate the research questions RQ1 and RQ2. The main focus is on addressing

different viewpoints, i.e., theory triangulation, of recommendation accuracy:

1. Request-Level Accuracy: Does the approach include among the recommended devel-

opers the ones that actually contribute changes needed for a given change request?

2. Expertise-Granularity Accuracy: How does the recommendation accuracy vary across

different levels of granularity, i.e., file, package, and system, considered for developer

expertise?

3. Ranking Effectiveness: How many files (from a ranked list relevant to a concept) need

to be queried for developer recommendations to get to the first accurate recommen-

dation, i.e., effectiveness of the ranking?

The metrics corresponding to the above three questions are discussed in Sections 3.3,3.4,

and 3.5. These metrics enable a quantitative analysis of the results obtained in our study.

CHAPTER 2. DEVELOPER RECOMMENDATION 24

2.3.1 Evaluation Procedure and Protocol

The bug/issue tracking and source code changes in software repositories, i.e., commits, are

used for evaluation purposes. Our general evaluation procedure consists of the following

steps:

1. Select a change request (e.g., a bug or feature/wish) from the bug tracking system

that is resolved as fixed (or implemented).

2. Select a development version on or before the day, e.g., a major or minor release

or snapshot of the source code repository, at which the selected change request was

reported (but not resolved) and apply concept location to get a ranked list of relevant

source code classes and files given its textual description.

3. Use xFinder to collect a ranked list of developers for the classes from the step 2.

4. Compare the results of the step 3 with the baseline. The developers who resolved

the issue, e.g., contributed patches or commits that fixed a bug, are considered the

baseline.

5. Repeat the above steps for N change requests.

We first show the evaluation of our approach on KOffice, as a primary aid to highlight

the details, and take a result-oriented view on the other two systems. The development

of the release 2.0 series started after the second maintenance release 1.6.3 in July 2007.

Thereafter, over 90 developers have contributed source code changes. In the 2.0 series

timeframe:

CHAPTER 2. DEVELOPER RECOMMENDATION 25

• The soft-freeze (no new feature/functional requirement addition except those planned),

after the development period of about a year, was announced in mid July 2008;

• The first beta version, after the hard-freeze (no new feature/functional requirement

addition permitted), was released in mid September 2008;

• Beta 2 and Beta 3 were released in October 2008 and November 2008 respectively;

• The latest beta release, Beta 4, rolled out in early December 2008. The beta versions

are primarily focused on corrective or perfective maintenance issues, such as bug fixes,

feature improvements, and user interface issues, and user feedback/testing.

We sampled 18 bugs (out of 128 total) from KOffice that were fixed during the period

between the releases soft-freeze and Beta 04. The resulting sample was checked to include

representatives via consideration of factors such as priority, severity, and description of

the bug (similar to stratified sampling). These bugs were reported to the KOffice issue

tracking system, which is managed by Bugzilla. A bug report typically includes a textual

description of the reported problem. Besides the status of the sampled bugs marked as

resolved or fixed in Bugzilla, there were patches/commits contributed toward these bugs

in the source code repository. In this way, we ascertained that the sampled bugs were

considered fixed with source code contributions.

For each bug from our sampled set, we applied our concept analysis tool to the source

code in the release Alpha 10, which was the most recent version before the soft-freeze. The

short textual descriptions of the bugs, i.e., change requests, were directly used as LSI queries

with respect to the features or bugs that we were locating (see Table 2.5 and Table 2.3).

We configured the tool to report only the top ten relevant source code files. Our previous

CHAPTER 2. DEVELOPER RECOMMENDATION 26

Table 2.3: Summary of developer recommendation accuracies, obtained using automatic queries,
for five (5) feature requests and one (1) refactoring of KOffice at the File, Package (Pkg), System
(Sys), and overall (Ovl) levels. For each feature, the accuracy values are provided for files with the
top ten relevant classes. The ranks for the first relevant recommendation on file (Rf), package (Rp),
system (Rs) and overall (Ro) levels are provided as well. A ”–” is specified if none of the files in the
top-ten-list generates a correct recommendation.

Accuracy (%) Ranking Effectiveness

Commit # Feature description excerpt/LSI Query File Pkg Sys Ovl Rf Rp Rs Ro

832876 rudimental authentication support to test out pion net authentication features 0 0 0 0 – – – –

835741 refactoring presenter view feature enabling the presenter without opening a new view 0 0 0 0 – – – –

846840 page master styles header and footers in a document multiple page layout per document 50 10 0 50 1 3 – 1

847576 add support for input device angle rotation 4d mouse and tilt tablet pens are supported 10 10 0 10 7 7 – 7

868014 new feature kwpage setpagenumber which just updates the cache of page numbers 60 100 100 100 1 1 1 1

881241 lens distortion using oldrawdata and counter to simulate old behavior of deform brush 20 20 100 100 1 1 1 1

Average 23.3 23.3 33.3 43.3 2.5 3 1 2.5

work on the analysis of commits that are associated with bug fixes guided the choice of this

particular cut point [3]. This satisfies the steps 1 and 2 of our evaluation procedure.

In the second part of our approach, each file that contains the relevant classes from

concept location in the first part is fed to xFinder to recommend a maximum of a total of

ten developers at the file, package, and system levels collectively. xFinder was configured

to use only the commits in the source control repository before the release Alpha 10. This

satisfies the step 3 of our evaluation procedure.

A common policy or heuristic that developers follow in KOffice, like several other open

source projects, is to include keywords, such as the bug id of a reported bug (in Bugzilla)

and FEATURE or new feature for features, in the text message of the commits that are

submitted with the purpose to fix/implement it. We used this information from commits to

further verify that these bugs were actually (or at least attempted to be) fixed. Furthermore,

we also know the specific developer(s) who contributed to these bug-fix commits. In this way,

we can find the exact developer(s) who contributed to a specific bug fix. Such developers

CHAPTER 2. DEVELOPER RECOMMENDATION 27

for the sampled bugs and features are used as a baseline for evaluating our approach.

Let the sampled evaluation set of change requests be: CREval = b1, b2, . . . , bn, where

each bi is one of the n resolved, fixed or implemented requests chosen for evaluation. The

baseline, BL, is then a set of pairs of an issue and a set of developers, who contributed

source code changes to this issue: where bt is the change request and dt is the developer

who contributed at least one commit, ct, that includes the bug id of bt or submitted a

patch to the bug-tracking system. Next, we compare the developer recommendations from

our approach with the baseline and assess the three questions discussed at the beginning

of Section 3.1. This suffices the step 4 of our evaluation procedure. Additionally, we also

sampled five feature and one refactoring requests. For feature requests, we used textual

descriptions of implemented features, which were recorded in the svn commit logs. We

treated the developer-specified textual messages of the commits that implemented features

(or refactorings) as LSI queries and such commits were excluded from the history used for

xFinder. That is, the goal was to see how well our approach would have performed if

these commit messages were used as change requests? For example, Table 2.3 shows the

commit# 832876 from KOffice that was contributed after the release Alpha 10. The

textual description rudimental authentication support to test out pion net authentication

features was formulated as a LSI query to locate the relevant class (files) in the release Alpha

10. xFinder used these files to recommended developers from the commit history before

the release Alpha 10, which were compared with the actual developer who contributed the

commit# 832876 to compute accuracy. It should be noted that this view of a feature is

different from what is submitted as a feature request or a wish in the issue tracking system.

CHAPTER 2. DEVELOPER RECOMMENDATION 28

2.3.2 Request-Level Accuracy

Request-level accuracy is the percentage of change requests for which there was at least

one developer recommendation from our approach that matched their established baselines

(similar to the widely used recall metric in IR, i.e., what percentage of the considered

change requests had correct developers recommended?). In other words, did our approach

find the correct developer for a given change request? We separately compute this level of

accuracies for the 18 bugs, five features, and one refactoring sampled from KOffice. For

example, the pair (bug# 167009, zander) was found in the baseline of the bug# 167009

taken from our sample of the KOffice’s Bugzilla system. For this bug, there was at least

one recommendation from our approach that included the developer zander. Therefore,

we consider that this developer was correctly recommended from the perspective of the

request-level accuracy.

There was at least one correct recommendation for 11, 15, and 13 bugs at the file, pack-

age, and system levels of developer expertise considered by xFinder. This gives request-level

accuracy of 61% (11/18), 83% (15/18), and 72% (13/18) at the three respective levels. There

was at least one correct recommendation for each of 16 bugs. This gives the request-level

accuracy of 88.89% (16/18). That is, when request-level accuracy is looked at irrespective

of the granularity of expertise from xFinder, the approach was able to provide at least one

correct recommendation for each of 16 bugs (and there was not a single correct recommen-

dation for the remaining two bugs). This is because there were cases where one level of

granularity correctly recommended the developer for a bug and another level did not.

CHAPTER 2. DEVELOPER RECOMMENDATION 29

2.3.3 Expertise-Granularity Accuracy

Our approach provides expert developer recommendations for every retrieved class (file)

that is identified as relevant via concept location. We investigated how many of these

recommendations matched with the established baseline in the above discussion. This also

helps us to see how the accuracy varies with the number of relevant classes (and files)

used for recommendation (similar to the widely used precision metric in IR, i.e., how many

recommendations are false positives for a change request?). In our evaluation on KOffice,

we considered only the top ten relevant classes for each change request. Thus, we get

ten sets of recommendations from xFinder. A recommendation set for a given bug or a

feature is considered accurate if it includes the developers who are recorded in the baseline

of that bug. The accuracy is further examined at file, package, and system levels of detail.

The procedure used to compute the accuracies for sampled change requests is detailed in

Figure 2.3.

We explain the accuracy computation with the help of the bug# 167009, shown in

Table 2.4. This bug is described as kword crashes after deleting not existing page. We

used the textual description of this bug as an LSI query (see Table 2.5) and obtained the

top ten relevant source code files from the release Alpha 10. Examining the Subversion

repository, we found that the developer zander contributed a commit for this bug, i.e.,

the bug# was mentioned in the commit message. (The same author id was found in the

Bugzilla repository.) The pair (bug# 167009, zander) was formed as the baseline for this

bug. Table 2.4 shows the accuracy of the recommendations for this bug on the files that

contain the top ten relevant classes. In this case, our approach obtained accuracies of 40%

CHAPTER 2. DEVELOPER RECOMMENDATION 30

Figure 2.3: Procedure for computing recommendation accuracy of the approach in the evaluation
process.

(4/10), 100% (10/10), and 100% (10/10) at the file, package, and system levels respectively.

That is, the correct developer appeared in the candidate list at the file-level expertise for

files containing four relevant classes, whereas, it did not appear for files for the six relevant

classes (i.e., all the recommended developers were false positives, i.e., not the ones who

actually fixed the bug). At the package and system levels of expertise, i.e., the package

or system, containing the relevant class, did not have any false positives in this case. Our

approach is considered overall accurate, if there is at least one file, package, or system level

recommendation that is correct. This result again shows that our approach can recommend

CHAPTER 2. DEVELOPER RECOMMENDATION 31

Table 2.4: Accuracies of developer recommendations for bug# 167009 from KOffice at the File,
Package (Pack), System (Sys), and overall (Ovl) levels. The value 1 (0) indicates that the actual
developer was (not) in the list of recommendations

Recommendation Coverage

Files with Relevant Classes File Pack Sys Ovl

TestBasicLayout.cpp 0 1 1 1

KWPageTextInfo.cpp 0 1 1 1

KWPageManager.cpp 1 1 1 1

KWPageManager.cpp 1 1 1 1

TestPageManager.cpp 0 1 1 1

KWPageManagerTester.cpp 0 1 1 1

KWPageInsertCommand.cpp 1 1 1 1

KWPageSettingsDialog.cpp 1 1 1 1

KPrMasterPage.cpp 0 1 1 1

KPrPageEffectSetCommand.cpp 0 1 1 1

Accuracy (%) 40 100 100 100

developers with a high accuracy.

Table 2.5 and Table 2.3 show the expertise-granularity accuracies for the bugs and

features+refactoring change requests respectively. The accuracies at the different levels of

granularities are computed according to the bug# 167009 example described above. None of

the granularity levels independently show a particularly high accuracy; however, the overall

accuracies are 80% and 43% for the two types of change requests, higher than any of the file,

package, and system expertise. This further suggests that different levels of granularities

CHAPTER 2. DEVELOPER RECOMMENDATION 32

Table 2.5: Summary of developer recommendation accuracies obtained for 18 KOffice bugs at the
File, Package (Pkg), System (Sys), and Overall (Ovl) levels using their descriptions directly from
the repositories, i.e., automatic queries. For each bug, the accuracy values are provided for files with
the top ten relevant classes. The ranks for the first relevant recommendation on file (Rf), package
(Rp), system (Rs) and overall (Ro) levels are provided. A ”–” is specified if none of the files in the
top-ten-list generates a correct recommendation.

Accuracy (%) Ranking Effectiveness

Bug # Bug description excerpt/LSI Query File Pkg Sys Ovl Rf Rp Rs Ro

124527 display of calculation results incorrect for number or scientific format cells but correct for text format cells 0 0 0 0 – – – –

125306 cant undo insert calendar tool 0 40 100 100 – 2 1 1

130922 import from xls treats borders wrong 0 0 100 100 – – 1 1

137639 karbon imports inverted radial gradient colors from open document graphics with patch 10 60 0 60 8 4 – 4

140603 != in cell formula is buggy 0 30 100 100 – 3 1 1

141536 crash when pasting a new layer srcobject selected from a deleted layer 20 60 100 100 6 2 1 1

156754 cant rotate image by less than 0 5 degrees 0 40 0 40 – 2 – 2

162872 with filter paintop transparent pixels are replaced by black or white pixels 50 70 100 100 1 1 1 1

164688 cut copy paste is greyed when using the selection tool 0 70 100 100 – 4 1 1

166966 karbon14 crashes while closing unsaved document 0 0 0 0 – – – –

167009 kword craches after deleting not existing page 40 100 100 100 3 1 1 1

167247 tooltips for resource choosers broken 30 40 0 40 2 1 – 1

169696 loaded shapes at wrong place 30 100 100 100 1 1 1 1

171969 decoration not in sync with shape 30 90 100 100 3 1 1 1

173354 start presentation from first page doesnt start from first page of custom slideshow 20 90 100 100 7 1 1 1

173630 format page layout does nothing 10 70 100 100 10 2 1 1

173882 cant set splitter orientation 10 90 100 100 10 1 1 1

176278 crash on loading image 30 40 100 100 5 4 1 1

Average 16 55 72.2 80.0 5.1 2 1 1.3

need to be taken into account for accurate recommendations, which was exactly done in

our approach. Also, the accuracy of features is less than that of bugs (further discussion in

Section 3.5).

2.3.4 Ranking Effectiveness

Ranking effectiveness determines how many files in the ranked list that are retrieved by

the concept location tool need to be examined before xFinder obtains the first accurate

recommendation (i.e., finds the correct expert developer). This issue directly corresponds

CHAPTER 2. DEVELOPER RECOMMENDATION 33

Table 2.6: Automatic queries: Summary of an average ranking effectiveness for bugs of KOffice
using different granularities (file (Rf), package (Rp), system (Rs) and overall (Ro)) for top 1, 3, 5,
10 recommendations.

Avg. Ranking Effectiveness for Bugs

Top 1 Top 3 Top 5 Top 10 No rec.

Rf 11.11% 27.78% 33.33% 61.11% 38.89%

Rp 38.89% 66.67% 83.33% 83.33% 16.67%

Rs 72.22% 72.22% 72.22% 72.22% 27.78%

Ro 77.78% 83.33% 88.89% 88.89% 11.11%

Avg 50.00% 62.50% 69.44% 76.39% 23.61%

to the amount of change history that is needed and analyzed. If fewer relevant files are

needed to get the correct developer then a smaller subset of change history is needed. It

is desirable to have an approach that needs only a change history of a single class/file to

function accurately (compared to another that requires a change history of more than one

classes/files). Next, we see how does manually selected value of ten classes fare with regards

to the recommendation accuracy? Obviously, it is desirable to have the classes/files that

give the best recommendation accuracy appear sooner than later.

We explain the computation of ranking effectiveness for different granularities with the

help of the results presented in Table 2.5. As mentioned in the Section 3.3, the correct

recommendations are generated for 11, 15, and 13 bugs at the file, package and system

levels of developer expertise. Thus, the ranking effectiveness for the ranked list of ten files

is 61%, 83%, and 72% at the three respective granularity levels.

We explored in how many cases different granularities (e.g., file, package, system, and

CHAPTER 2. DEVELOPER RECOMMENDATION 34

Table 2.7: Automatic queries: Summary of an average ranking effectiveness for features of KOffice
using different granularities (file (Rf), package (Rp), system (Rs) and overall (Ro)) for top 1, 3, 5,
10 recommendations.

Avg. Ranking Effectiveness for Features

Top 1 Top 3 Top 5 Top 10 No rec.

Rf 50.00% 50.00% 50.00% 66.67% 33.33%

Rp 33.33% 50.00% 50.00% 66.67% 33.33%

Rs 33.33% 33.33% 33.33% 33.33% 66.67%

Ro 50.00% 50.00% 50.00% 66.67% 33.33%

Avg 41.67% 45.83% 45.83% 58.33% 41.67%

overall) return relevant files that produce correct developer recommendations within the top

1, 3, 5, and 10 results, as well as cases when no correct recommendation is found in the top

ten results. We analyzed ranking effectiveness of different granularities for bugs and features

separately (see Table 2.6 and Table 2.7). On average across the three different granularities,

which also includes overall accuracies of three granularities, in 50% of cases the first relevant

file is found in the first position of the ranked list. These results are quite encouraging and

support the previous results in the literature [117] that IR-based concept location approach

is robust in identifying the first relevant method to a feature of interest. It should be noted

that the system granularity gives the highest ranking effectiveness (i.e., 72.22%), whereas

the file granularity produces the lowest (i.e., 11.11%) for the top most recommendation. We

also observed that the system level granularity has the highest ranking effectiveness across

the considered ranked lists of different sizes. It should also be noted that the accuracies for

file and package granularities improve drastically with the increase in the size of the ranked

CHAPTER 2. DEVELOPER RECOMMENDATION 35

list (i.e., the ranking effectiveness for the top ten list is 61.11% as opposed to 11.11% for the

top one list). The logical OR overall accuracy of three granularities (Ro) has consistently

high-ranking effectiveness values ranging between 77.78% and 88.89% for the resulting lists

of various sizes.

The results for the analyzed features are more encouraging in terms of identifying the

first relevant file for the file level expertise granularity. In 50% of cases the relevant file

appears in the first position; however, the overall ranking effectiveness is also relatively

high (66.67%) for the ranked lists containing ten files. For features, we observed somewhat

different patterns of ranking effectiveness for different granularity levels. For example, we

observed that the file granularity performs the same as, or better than, both package and

system granularities in all the cases. It should be noted that the file granularity for features

performed better than the file granularity for the bug reports. On the contrary, the ranking

effectiveness results for package and system levels of granularity were consistently higher

across resulting recommendation lists of various sizes for the bug reports than those for

features. Overall, the results clearly indicate that our approach can recommend relevant

files, and thus, correct developers, with high effectiveness for both bugs and features. We

also observed the potential value in using granularities finer than the system level, such

as file and package granularities, as they did contribute to the overall increase in ranking

effectiveness.

2.3.5 Accuracy and History Periods

Another factor that could affect our approach is the amount of history period. Here, we

repeated the setup of Section 3.1 for 18 bugs; however, with a different set of commit

CHAPTER 2. DEVELOPER RECOMMENDATION 36

Table 2.8: Summary of developer recommendation average accuracies obtained using automatic
queries for all systems at the File, Package (Pkg), System (Sys), and Overall (Ovl) levels. The
average accuracy values are obtained from the accuracy values of all of the bugs evaluated in the
particular system. The average ranks for the first relevant recommendation on file (Rf), package
(Rp), system (Rs) and overall (Ro) levels are provided.

Avg. Accuracy (%) Avg. Ranking Effectiveness

System xFinder: Max Num of Dev Num of Bugs File Pkg Sys Ovl Rf Rp Rs Ro

KOffice (17 days history) 10 18 1.1 12.8 16.7 22.2 3 3.5 1 3.1

KOffice (1 month history) 10 18 2.8 25.6 33.3 42.2 6.5 2.9 1 2.1

KOffice (2 months history) 10 18 4.4 36.7 55.6 61.1 6 2.4 1 1.3

KOffice (4 months history) 10 18 5.0 39.4 55.6 62.8 6 2.6 1 1.6

KOffice (All history) 10 18 15.6 55.0 72.2 80.0 5.1 2 1 1.3

Eclipse 2.0 10 14 13.6 34.3 57.1 75.0 3.5 2.9 1 1.4

Eclipse 3.0 10 14 15.7 27.1 35.7 47.1 3.4 2.7 1 1.8

Eclipse 3.3.2 10 14 27.9 36.4 71.4 82.1 2.9 2.9 1 1.6

ArgoUML 0.26.2 5 15 23.3 59.3 20.0 64.7 3.4 1.7 1 1.7

ArgoUML 0.26.2 10 23 17.4 75.2 69.1 95.7 3.6 1.3 1.4 1

histories of KOffice. In other words, what is the impact on accuracy if different amounts

of previous commits considered? An answer to this question helps us gain insight into how

much history is necessary for our approach to function well in practice. Table 2.8 shows the

results of our accuracy assessment for periods of 17 days, 1 month, 2 months, 4 months, and

entire duration. That is, xFinder was configured to consider only the most recent commits

for the duration considered from the time the issue was reported. The overall accuracy

results suggest that the recommendation accuracies at all the expertise levels increase with

the increase in the history duration. We noticed that the commit history in the order of

weeks was necessary to get correct recommendations. For example, the file-level granularity

in KOffice began to show accurate recommendations with a history period of 17 days. The

CHAPTER 2. DEVELOPER RECOMMENDATION 37

overall accuracies in KOffice crossed the 50% mark with at least a month history. As can

be also seen in KOffice, the best accuracies were obtained when its entire commit histories

were considered. We did not record a single instance where there was a decline in accuracy

with the increase in the commit history. In some instances, the increase in accuracy was

rather small, especially when the increment was in the order of months. This behavior is

seemingly obvious due to the natural evolution of the systems, i.e., the development phases

into the next release than the previous, and therefore the immediate previous history may

not be that relevant.

Now that we have presented the three views of accuracy assessment with an in-depth

discussion on KOffice, we turn to the results obtained on the two other systems. Table 2.8

shows the average accuracy and ranking effectiveness results for the three different releases of

Eclipse and different xFinder configurations on ArgoUML. The bugs used in the evaluation

were sampled based on similar criteria used for KOffice. The accuracies at the different

levels of expertise granularities and ranking effectiveness were computed using the same

process described for KOffice. Table 2.8 shows only the average accuracy results, which

correspond, for example, to the last rows in Table 2.5 and Table 2.9. The accuracy results

of Eclipse releases 2.0 and 3.0 (e.g., overall accuracies of 75% and 82%) are comparable

to that of KOffice (80%); especially when its entire commit history is considered. Also,

we observed an improved ranking effectiveness performance for Eclipse in particular. We

achieved the best accuracy results of 95% in ArgoUML, when xFinder was configured to

recommend the maximum of ten developers; however, we did notice a decline in accuracy

when this number was reduced to five developers. Also, we have to be careful in that

ArgoUML had the least number of active developers among our considered subject systems.

CHAPTER 2. DEVELOPER RECOMMENDATION 38

Table 2.9: Summary of developer recommendation accuracies for 18 KOffice bugs at the File,
Package (Pkg), System (Sys), and Overall (Ovl) levels using the manually formed queries. For each
bug, the accuracy values are provided for files with the top ten relevant classes. The ranks for the
first relevant recommendation on file (Rf), package (Rp), system (Rs) and overall (Ro) levels are
provided. A ”–” is specified if none of the files in the top-ten-list generates a correct recommendation.

Accuracy (%) Ranking Effectiveness

Bug # Sanitized LSI Query File Pkg Sys Ovl Rf Rp Rs Ro

124527 number value scientific format 20 20 0 20 5 5 – 5

125306 insert calendar undo 0 30 70 100 – 2 1 1

130922 import xls excel 0 0 90 90 – – 1 1

137639 karbon inverted radial gradient color 20 60 0 60 1 1 – 1

140603 formula equal not cell 0 10 50 60 – 4 1 1

141536 new layer image srcobject select 0 70 20 80 – 1 1 1

156754 rotate image 0 50 0 50 – 2 – 2

162872 filter paintop pixel transparency 10 50 90 100 2 1 1 1

164688 selection select tool 0 60 20 70 – 1 2 1

166966 close document save discard 10 10 0 20 8 10 – 8

167009 delete document 90 100 20 100 1 1 5 1

167247 tooltip resource chooser 60 70 0 90 1 1 – 1

169696 load shape path 40 90 40 100 2 1 4 1

171969 selection decorator shape rotate 50 90 40 100 1 1 3 1

173354 presentation slideshow slide custom 20 50 50 100 1 1 2 1

173630 format page layout view 10 70 30 100 10 2 1 1

173882 splitter orientation horizontal vertical 50 70 30 90 1 1 1 1

176278 load image 20 40 30 60 6 3 5 3

Average 22.2 52.2 32.2 77.2 3.3 2.1 2.2 1.8

Overall, our assessment results suggest that our approach can yield an equivalent accuracy

across different systems and releases of the same system.

The above discussion provides empirical answers to the research questions RQ1 and RQ2

of our case study. Thus, concluding the first half of our study.

CHAPTER 2. DEVELOPER RECOMMENDATION 39

Table 2.10: Summary of developer recommendation accuracies for five (5) feature requests and one
(1) refactoring using the manually formed queries at the File, Package (Pkg), System (Sys), and
overall (Ovl) levels from KOffice. For each feature, the accuracy values are provided for files with
the top ten relevant classes. The ranks for the first relevant recommendation on file (Rf), package
(Rp), system (Rs) and overall (Ro) levels are provided as well. A ”–” is specified if none of the files
in the top-ten-list generates a correct recommendation

Accuracy (%) Ranking Effectiveness

Feature # Sanitized LSI Query File Pkg Sys Ovl Rf Rp Rs Ro

846840 page style master header footer page layout 40 20 0 50 2 3 – 2

881241 lens distortion oldrawdata use counter deform brush 10 10 90 100 5 5 1 1

847576 input device angle rotation 4D mouse tilt tablet pen 0 0 0 0 – – – –

832876 authentication security login pion net 0 0 0 0 – – – –

868014 kwpage setpagenumber style page number 40 90 10 100 1 1 9 1

835741 presenter slideshow custom enable presentation view 50 20 0 50 3 7 – 3

Accuracy 28 28 20 60 2.8 4 5 1.8

2.4 Comparative Study on KOffice

2.4.1 Effectiveness of automatic vs. manual LSI queries

The ranked lists of files generated by LSI are somewhat sensitive to the input query [58, 89,

102]. In Section 3, the original textual descriptions from the bug reports were automatically

used as LSI queries. Here, we investigate the impact of different formulations of the queries

by different developers (e.g., different choice of words or simply without typographical

errors a situation not uncommon in collaborative environments such as the open source

development). Here, we consider the short descriptions of the bugs taken verbatim from

the bug/issue repositories or commit messages for LSI queries as automatic queries. We

repeated our evaluation with the same bugs and features; however, their textual descriptions

were sanitized by one of the authors, which we refer to as manual queries.

CHAPTER 2. DEVELOPER RECOMMENDATION 40

The setup in Section 3 was repeated; however, with manually revised queries by one of

the authors. The queries were designed to be self-descriptive and sanitized from typograph-

ical errors (see Table 2.9 and Table 2.10). There was at least one correct recommendation

for 12, 17, and 13 bugs at file, package, and system level of developer expertise considered

by xFinder. This gives request-level accuracy of 66.67% (12/18), 94% (17/18), and 72.2%

(13/18) at the three respective levels. When a request-level accuracy is looked at irrespec-

tive of the granularity of expertise from xFinder, the approach was able to provide at least

one correct recommendation for all of the 18 bugs. This again shows that our approach

can recommend developers with a very high accuracy and the potential value in considering

granularities finer than the system level. Similar accuracy was observed for the feature

requests. Table 2.9 and Table 2.10 show the expertise-granularity accuracies for the bugs

and features+refactoring change requests respectively. None of the granularity levels inde-

pendently show a particularly high accuracy; however, the overall accuracies are 77% and

60% for the two types of change requests, higher than any of the file, package, and system

expertise. This further suggests that different levels of granularities need to be taken into

account for accurate recommendations, which was exactly done in our approach.

We again explored in how many cases different granularities (e.g., file, package, system,

and overall) return relevant files within the top 1, 3, 5, and 10 results, as well as when no

correct recommendation is found in the top ten. We analyzed the ranking effectiveness of

different granularities for bugs and features separately (see Table 2.11-2.12). The analysis of

the results for 18 bugs shows that in 42% of cases, on average the first relevant file is found

in the first position of the ranked list across all granularities. The results also indicate that

in 69% of cases the relevant file is found in the top ten recommendations. Moreover, the

CHAPTER 2. DEVELOPER RECOMMENDATION 41

ranking effectiveness is 82%, meaning that only in 18% of cases the correct recommendation

was not found. In only 30.6% of cases the ranked lists of results (i.e., the top ten) do not

contain any relevant methods. We also observed that the package granularity has the

highest effectiveness for top one (45.45%), top three (68.18%), top five (77.27%) and top

ten (81.82%) results. The package granularity also has the lowest percentage of cases when

no correct recommendation is returned within top ten (18.18%). We also observed that the

system granularity consistently outperformed the file granularity for all list sizes in the bug

requests.

The results for the analyzed features are a bit less encouraging in terms of identifying

the first relevant file immediately. On average, only in 20.82% of cases did the relevant

file appear in the first position across all the three granularities; however, the overall ef-

fectiveness is also relatively high (58.33%) for the ranked lists containing ten files. For the

features, we observed somewhat different patterns in terms of granularity effectiveness. For

example, we observed that file granularity performs better in case of the top three and top

five results; however, it performs similarly to package granularity for the top one and top

ten. Similarly to package granularity, file granularity does not return any relevant files in

33.33% cases.

We attribute some of the differences in ranking effectiveness for bugs and features to the

fact we used words directly from bug reports, whereas we used words from commit messages

for features. In our case, we found the descriptions of the bug reports were more expressive

and complete than the commit messages, which only briefly summarized the implemented

features. This could have impacted the choice of words for LSI queries and thus, the ranking

effectiveness in the results in the Table 2.11-2.12.

CHAPTER 2. DEVELOPER RECOMMENDATION 42

Table 2.11: Manual queries: Summary of an average ranking effectiveness for bugs in KOffice
using different granularities (file (Rf), package (Rp), system (Rs) and overall (Ro)) for top 1, 3, 5,
10 recommendations

Avg. Ranking Effectiveness for Bugs

Top 1 Top 3 Top 5 Top 10 No rec.

Rf 27.27% 36.36% 40.91% 54.55% 45.45%

Rp 45.45% 68.18% 77.27% 81.82% 18.18%

Rs 31.82% 45.45% 59.09% 59.09% 40.91%

Ro 63.64% 72.73% 77.27% 81.82% 18.18%

Avg 42.05% 55.68% 63.64% 69.32% 30.68%

In summary, the accuracies of our approach using two querying techniques, i.e., au-

tomatic and user refined queries, are generally comparable. These are very encouraging

results, as the proposed approach does not impose additional overhead on users in terms

of constructing queries and more than that, does not require prior knowledge of change

requests nor the project, which makes it attractive not only for experienced contributors,

but also to newcomers. The descriptions in the issue/bug repositories can be directly used

without much impact on accuracy. For bug reports, the manual queries improved average

accuracy by 6.6% over the automatic queries at the file level granularity. However, accura-

cies at the package and system granularities are higher for automatic queries: 55% vs. 52.2%

and 72.2% vs. 32.2%. Automatic queries also improve the overall accuracy over manual

queries by 2.8% (80% vs. 77.2%). On the other hand, the ranking effectiveness is better for

manual queries at the file level granularity (3.3 for manual vs. 5.1 for automatic). These

results indicate that manual queries on average obtain the correct recommendation quicker

CHAPTER 2. DEVELOPER RECOMMENDATION 43

Table 2.12: Manual queries: Summary of an average ranking effectiveness for features in KOffice
using different granularities (file (Rf), package (Rp), system (Rs) and overall (Ro)) for top 1, 3, 5,
10 recommendations

Avg. Ranking Effectiveness for Features

Top 1 Top 3 Top 5 Top 10 No rec.

Rf 16.67% 50.00% 66.67% 66.67% 33.33%

Rp 16.67% 33.33% 50.00% 66.67% 33.33%

Rs 16.67% 16.67% 16.67% 33.33% 66.67%

Ro 33.33% 66.67% 66.67% 66.67% 33.33%

Avg 20.83% 41.67% 50.00% 58.33% 41.67%

(fewer files need to be examined) than automatic queries, which is not surprising, given the

fact that users formulate the queries (and the human time involved therein). The ranking

effectiveness for the overall, package, and system granularities is generally comparable for

automatic and manual queries.

The comparison of accuracies between manual and automatic queries for features across

the file, package, and system granularities yielded the following results. The revised queries,

as in the results for the bugs, outperform automatic queries by 4.7% (28% vs. 23.3%) at

the file level granularity. We also observed that the package-level accuracy is higher for

manual queries (28% vs. 23.3%), whereas the system level accuracy yields better results

for automatic queries (33% vs. 20%). Overall accuracy is higher for manual queries (60%

vs. 43.3%), whereas overall accuracy was higher for automatic queries in the case of bugs.

In terms of ranking effectiveness (the number of files that have to be explored before the

correct recommendation is obtained), automatic queries outperform manual queries across

CHAPTER 2. DEVELOPER RECOMMENDATION 44

all granularities, i.e., file, package and system. While using automatic queries, fewer files

on average are used from the ranked list to obtain the pertinent recommendations.

While analyzing average ranking effectiveness for manual vs. automatic queries using

ranked lists of different sizes (1, 3, 5, and 10), we observed similar patterns as in the case

of default size of the ranked list (i.e., top ten). For bugs, automatic queries outperform

manual queries in terms of the average ranking effectiveness for ranked lists of sizes 1, 3,

and 5 for the overall accuracy. The results for the features are slightly different. Overall

the average ranking effectiveness for automatic queries outperform manual queries at the

ranked list sizes for one (50% vs. 33%); however, degrades for three and five, while being

equivalent for ten. Based on the analysis of the results of accuracies at different levels of

granularity, we can conclude that automatic queries perform, at least, as well as manually

revised queries, even noticeably better in some cases.

In order to obtain more insights into distinctions between manual and automatic queries,

we also explored the differences among the resulting ranked lists of relevant files for both

automatic and manual queries. We analyzed the resulting ranked lists of different sizes

ranging from top ten to 100 relevant files. We used Jaccard similarity coefficient to compare

similarity and diversity of the files appearing in the ranked lists of results for manual and

automatic queries. In our case, the Jaccard index is computed as the following. Given two

sets of files in the ranked list of the results, A (obtained using automatic queries) and B

(obtained using manual queries), Jaccard index is computed as J(A,B) = |A∩B|
|A∪B| .

We report the average Jaccard measure for the ranked lists of various sizes, separately

for bugs and features. Our analysis of the results suggests that the resulting ranked lists

for automatic and manual queries for bugs and features are quite different, which is not

CHAPTER 2. DEVELOPER RECOMMENDATION 45

Figure 2.4: Comparing the similarity and diversity of files for automatic and manual queries
obtained from concept location in KOffice.

surprising as some of the revised queries were quite different. However, the Jaccard mea-

sure values tend to increase as the size of the ranked list increases. Figure 2.4 indicates

that the highest average Jaccard similarity coefficients for bugs and features are 0.33 and

0.56. In other words, the results indicate that on average ranked lists for manual and au-

tomatic queries contain more similar files for features than those for bugs. Again, these

observations strengthen our conclusions that our approach works comparably well for au-

tomatic and manual queries even though they might produce different relevant files. This

observation also leads to the conjecture that in order to produce pertinent recommenda-

tions (i.e., identify relevant expert developers) we do not need to locate exact files that have

been changed in order to locate the correct expert. We posit that locating conceptually

CHAPTER 2. DEVELOPER RECOMMENDATION 46

(i.e., textually) similar files also have potential to generate the correct recommendations, as

it is reasonable to conjecture that the developers change related files throughout software

evolution, as captured by contribution measures in our xFinder approach. We are planning

an in-depth exploration of this phenomenon as our future work.

2.4.2 Accuracy Effectiveness with Alternate Recommendations

We investigated how the accuracy of our approach compares to some straightforward rec-

ommendation approaches. Here, we focus our discussion on KOffice (partially because it

contained the largest number of developers among the datasets considered).

To answer the question RQ4.1, we randomly selected ten developers for each of the

same 18 bugs considered in our evaluation. That is, 18 samples of ten developers each.

The value ten was chosen to match with the number of maximum developers chosen for

our approach. The same history period used in xFinder for recommendations was used to

obtain the total number of active developers (i.e., 93 developers who contributed at least one

commit the sample space). A bug was considered to have an accurate recommendation, if

the correct developer, i.e., the one who ended up fixing the bug, was one of the ten randomly

chosen developers. A request level accuracy of 22% (four correctly recommended/18 total

bugs) was obtained from this random developer model. Comparing this result with the

request level accuracies in Section 3.3 shows that our approach provides substantially better

accuracy as compared to a random selection method (approximately thrice accurate). We

repeated a similar experiment to see how the results compared when a random selection

was made for each pair of a bug and a relevant file obtained using LSI (essentially the

same setup is used in our approach to obtain the results). We obtained an accuracy of

CHAPTER 2. DEVELOPER RECOMMENDATION 47

22% for overall expertise-level granularity (refer Section 3.4). Once again, a comparison

of this result with the KOffice results in Table 2.8 shows that our approach achieves

substantially better accuracy as compared to a random selection method for each history

period considered (approximately thrice accurate). None of the 6 features had the correct

developer recommended from the random selection sets (i.e., a 0% accuracy). We realize

that comparing our approach with a random method is probably not sufficient or a realistic

depiction; however, we believe that it is a reasonable litmus test. After all, this test provides

an answer to why need a sophisticated method when a random works equally well or even

better?

To answer the question RQ4.2, we first collected the maintainers listed for everyKOffice

application . In order to get the best accuracy, we did not restrict the recommendations

to only the maintainer of the application (e.g., Kword) in which a given bug was reported

(and fixed). We considered all the maintainers. That is, any maintainer is equally likely to

fix any given bug in any application of KOffice. The setup was similar to that of the first

question above except that now the maintainers were recommended as potential bug fixers

(and not the randomly selected developers). A bug was considered to have an accurate

recommendation, if the correct developer, i.e., the one who ended by fixing the bug, was

one of the recommended maintainers. A request level accuracy of 33% (six correctly rec-

ommended/18 total bugs) was obtained from this maintainer model. Comparing this result

with the request level accuracies in Section 3.3 shows that our approach provides substan-

tially better accuracy than a random selection method (approximately twice as accurate).

We observed similar results for overall expertise-level granularity accuracy. Two of the six

features had the correct developer recommended from the maintainer set. Overall, our ap-

CHAPTER 2. DEVELOPER RECOMMENDATION 48

proach outperformed both randomly selected and maintainer based methods of developer

recommendations on the considered KOffice dataset by a substantial margin.

The details of the bug and accuracy data for ArgoUML, Eclipse, and KOffice corre-

sponding to Table 2.8 are available at http://www.cs.wm.edu/semeru/data/jsme09-bugs-

devs/ and excluded here for brevity. The above discussion provides empirical answers to

the research questions RQ3 and RQ4 of our case study. Thus, concluding the second half

of our study.

2.5 Threats to Validity

We discuss some threats that may affect the construct, internal, external validity and reli-

ability of the approach and the case study conducted for its evaluation.

2.5.1 Construct Validity

We discuss threats to construct validity that concerns to the means that are used in our

method and its accuracy assessment as a depiction of reality. In other words, do the

accuracy measures and their operational computation represent correctness of developer

recommendations?

Our developer recommendation method does not entirely reflect the true reality of real

systems: We realize that the activity or process of who resolves the change requests, and

histories of even simple bugs, is dependent on social, organizational, and technical knowledge

that cannot be automatically extracted from solely software repositories [12]. In our case

studies we had access only to the qualitative and quantitative data from the bug tracking

and revision control systems. We did contact some of the developers (contact persons for

CHAPTER 2. DEVELOPER RECOMMENDATION 49

Table 2.13: Questions posed to the developers of ArgoUML, Eclipse, and KOffice.

1. What is the current practice/process of allocating bug reports/feature requests to developers?

2. Is the current practice/process mostly manual or involves automatic tool support?

3. What are the specific manual and automatic parts of the process?

4. What are the criteria, if any, used in the current process?

5. Would it be potentially useful to your project or contributing developers in your opinion to have a tool that automatically identifies and

favors developers who have previously contributed source code related to a bug request (or a feature request) in question to work on?

6. Would it be potentially useful to your project or contributing developers in your opinion to have a tool that favors developers who have

previously worked on similar bugs (or features) to a bug request (or a feature request) in question to work on?

7. Do you have any comments or suggestions or advise about our work that you would like to share?

components or specific project parts listed on the project web sites) of the three systems

considered in our study to gain an understanding of their current practices and potential

benefits of our method. We requested them to respond to a questionnaire we prepared (see

Table 2.13). We received only a single response in which it was stated that the current

practice of change requests to developer matching was largely manual. The response also

stated that an automatic method that could save time and is not a deterrent would be

useful. Also, it should be noted that the bug history databases have been used in the

literature for validating the accuracy of developer recommendations. For example, using

the developer related information in the fixed bug report to compare with the recommended

developers by a given approach [10]. In the sense, the accuracy assessment procedure that

we used in our study is not uncommon.

Concept location may not find source code exactly relevant to the bug or feature: In

a few cases, the concept location tools did not exactly return the classes (files) that were

found in the commits related to the bug fixes or feature implementations. However, it is

interesting to note from the accuracy results that the classes that were recommended were

CHAPTER 2. DEVELOPER RECOMMENDATION 50

either relevant (but not involved in the change that resolved the issue) or conceptually

related (i.e., developers were also knowledgeable in these parts). This point is elaborated

in Section 4.1. Accuracy measures may not precisely measure the correctness of developer

recommendations: A valid concern could be a single measure of accuracy that was used in

our method does not provide a comprehensive picture, i.e., an incomplete and monolithic

view of accuracy from the considered dataset. To mitigate this concern, we defined three

different viewpoints of accuracy that assess the core components of our method and analyzed

the data from the prospective of each of these viewpoints on the studied systems. The three

corresponding measures are discussed at length in Sections 3.3, 3.4, and 3.5.

2.5.2 Internal Validity

We discuss threats to internal validity that concerns with factors that could have influenced

our results. Factors other than expertise are responsible for the developers ending up resolv-

ing the change requests: In our case study, we showed that there is a positive relationship

between the developers recommended with our approach to work on change requests and

the developers entered as the ones who fixed them in the software repositories (i.e., consid-

ered baseline). Therefore, the basic premise of our approach, i.e., relevant source code with

LSI and developers contributions to it in the form of past changes, was found to hold well.

However, we do not clam past contributions or expertise alone is a necessary and sufficient

condition to correctly assigning developers to change requests. At best, our results allude

to a strong correlation between the recommendations and the baseline, and not causality.

It is possible other factors, such as schedule, work habits, technology fade or expertise, and

project policy/roles are equally effective or better. A definitive answer in this regard would

CHAPTER 2. DEVELOPER RECOMMENDATION 51

require another set of studies.

Developer Identities could have influenced the accuracy results: xFinder uses the com-

mitter ID, which represents the developer’s identity. We do not exactly know from the

repository data who changed the file, but only who committed. Also, if the developer has

more than one ID [129], the accuracy of the result will be affected. In our evaluation, we

came across several cases where developers had one form of identification in the Bugzilla

repository (names or email addresses) and another (username) in the source code reposi-

tory, and even a manual examination could not conclusively assert that they were the same

developers. It should be noted that such cases were discarded from our accuracy computa-

tion. This identity issue is one of the main reasons why we did not report the accuracy for

all the bug reports submitted and only considered samples during the evaluation periods in

our assessment study.

Specific query formulation could have influenced the accuracy results: It also should

be noted that the LSI queries to retrieve initial files used in the study to compare man-

ual and automatic queries were formulated by one of the authors. While the automatic

queries were solely based on the words from the actual change requests, a different choice

of words for the manual queries could have produced a different set of ranking results.

Nonetheless, automatic queries provide a reliable, realistic non-biased assessment on the

lower bound of possible accuracy measure results. For example, in the true spirit of open

source development model, one cannot and should not police as to what is being reported

and risk discouraging project participation and success. There is bound to be variations in

the textual description due to the diverse backgrounds and skills of project participants.

User-specified parameters could influence the accuracy results: Another potential issue

CHAPTER 2. DEVELOPER RECOMMENDATION 52

is the variation in the accuracy with the change in the number of relevant classes and

maximum number of developer recommendations, both of which are user specified. We

found that the values used in our evaluation were sufficient to provide a reasonable level of

accuracy. In fact, the average number of developers recommended at the file and package

levels in our evaluated systems was well within the specified maximum limits, which suggests

that the value ten is a reasonable upper bound.

History periods could influence the accuracy results: Our tool needs source code version

history in order to give recommendations. If there is not a good portion of development

history, it will most likely not be able to function with a high accuracy (or in the worst case

provide no recommendation, e.g., a new developer to a project making the first contribution

to a bug fix). The accuracy of the recommended list seems to improve with an increase in

the training set size (also observed in our conducted evaluation results); however, not to a

conclusively significant limit. This could be attributed to the fact that when open source

projects evolve, their communities also evolve [19, 110], so the relationship between the

length of the historical period of time and the accuracy of the recommendation is not very

succinct and decisive. In other related studies [63, 161] in the mining software repositories

community, it was observed that recent history was a better predictor of the future.

2.5.3 External Validity

We discuss threats to external validity that concerns with factors that are associated with

generalizing the validity of our results to datasets other than considered in our study.

Assessed systems are not representative: The accuracy was assessed on three open source

systems, which we believe are good representatives of large-scale, collaboratively developed

CHAPTER 2. DEVELOPER RECOMMENDATION 53

software systems. However, we cannot claim that the results presented here would equally

hold on other systems (e.g., closed source).

Sampled sets of change requests are not sufficient: The evaluation was performed on

randomly chosen bug reports, features, and even a refactoring change that fit our sampling

criteria. While the bug reports and feature requests used are representatives of the consid-

ered software systems used in the evaluation (we picked them from more than one release,

history period), similar studies on other systems are necessary to confirm that conclusions

would hold in general.

The size of the evaluation sample and the number of systems remains a difficult issue,

as there is no accepted gold standard for the problem of the developer recommendation

problem, i.e., how many change requests and systems are considered to be a sufficient

evaluation data set? The approach of more, the better may not necessarily yield a rigorous

evaluation, as they are known issues of bug duplication [131] and other noisy information

in bug/issue databases. Not accounting for such issues may lead to biased results positively

or negatively or both. The considered sample sizes in our evaluation, however, is not

uncommon, for example, Anvik et al. [10] also considered 22 bug reports from Firefox in

their evaluation. Nonetheless, this topic remains an important part of our future work.

Accuracy offered by our method may not be practical: We compared the accuracy results

of our approach with two obvious null models that use a random set of developers and a

maintainer list available in project documentation. But we certainly do not claim that these

two models define the gold standard for comparison. We plan to pursue avenues such as a

case study on the use of our approach in the actual triage process of the considered open

source projects and the actual developers’ feedback (on arguably non-trivial tasks).

CHAPTER 2. DEVELOPER RECOMMENDATION 54

2.5.4 Reliability

We discuss threats that would risk the replication of our evaluation study. Dataset not

available: One of the main difficulties in conducting empirical studies is the access (or

lack of it) to the dataset of interest. In our study, we used open source datasets that are

publicly available. Also, we detailed the specifics of change requests that we used. The

details of the bug and accuracy data for ArgoUML, Eclipse, and KOffice are available

at http://www.cs.wm.edu/semeru/data/jsme09-bugs-devs/. We also provide the appropri-

ate context to our study, e.g., parameters used for xFinder and concept location tools.

Therefore, our case studies can be reliably reproduced by other researchers.

Evaluation protocol not available: A concern could be that the lack of sufficient infor-

mation on the evaluation procedure and protocol may limit the replicability of the study.

We believe that our accuracy measures along with the evaluation procedure are sufficiently

documented to enable replication on the same or even different dataset.

Instruments not available: Lack of access to the instruments and tools used in the

study could limit the replication of the study. The concept location tool uses LSI-based

algorithm, which is available in many statistical open-source packages, and xFinder tool

uses well-documented mining methods, which should allow for easy implementation and/or

access. We are working on making an open source version of our tool chain available in the

near future.

CHAPTER 2. DEVELOPER RECOMMENDATION 55

2.6 Background and Related Work

Our work falls under two broad areas: concept location and recommendation systems. Here,

we succinctly discuss the related work in both of these fields.

2.6.1 Concept Location

Wilde et al. [154] were the first to address the problem of feature location using the

Software Reconnaissance method, which uses dynamic information. Several researchers

recently revisited this approach with the goal of improving its accuracy and provided new

methods for analyzing execution traces [7] and selecting execution scenarios [54]. Biggerstaff

et al. [16] introduced the problem of concept assignment in the context of static analysis.

They extracted identifiers from the source code and clustered them to support identification

of concepts. The most straightforward and commonly used static technique for searching

the source code is based on regular expression matching tools, such as the Unix utility grep.

Information-retrieval techniques [58, 102, 120, 118] bring a significant improvement over

regular expression matching and related techniques, and allow more general queries and

rank the results to these queries. Latent Dirichlet Allocation and independent component

analysis have been recently applied to locate concepts [65] and bugs [93], categorize software

systems [147] and measure software cohesion [90]. Natural language processing techniques

have been recently utilized to augment concept location approaches [69, 137].

Chen et al. [33] proposed a static-based technique for concept location that is based on

the search of abstract system dependence graphs. This approach has been recently improved

by Robillard [128]. Zhao et al. [160] proposed a technique that combines information

CHAPTER 2. DEVELOPER RECOMMENDATION 56

retrieval with branch-reserving call-graph information to automatically assign features to

respective elements in the source code. Gold et al. [64] proposed an approach for binding

concepts with overlapping boundaries to the source code, which is formulated as a search

problem and uses genetic and hill climbing algorithms.

Eisenbarth et al. [53] combined static dependencies and dynamic execution traces to

identify features in programs and used Formal Concept Analysis (FCA) to relate features

together. Salah et al. [133, 134] use static and dynamic data to identify feature interaction

in Java source code. Kothari et al. [86] use dynamic and static analysis for identifying

canonical feature sets in software systems. Greevy et al. used dynamic analysis to analyze

evolving features throughout software evolution [66]. Hill et al. [68] combined static and

textual information to expedite traversal of program dependence graphs for impact analysis.

Poshyvanyk et al. [89, 117] combined an information retrieval based technique with a

scenario-based probabilistic ranking of the execution traces to improve the precision of

feature location. Eaddy et al. [52] combined static, dynamic and textual analyses to trace

requirements (concepts) to target source code elements.

A comparison of different approaches for feature location is presented in [125]. Sum-

maries of static, dynamic, and other approaches are available in [7, 34, 89, 101], while an

overview of industrial feature location tools is available in [138]. To the best of our knowl-

edge, no other work besides ours [76] has applied concept location techniques to the problem

of expert developer recommendation.

CHAPTER 2. DEVELOPER RECOMMENDATION 57

2.6.2 Developer Contributions and Recommendation

McDonald and Ackerman [104] developed a heuristic-based recommendation system called

the Expertise Recommender (ER) to identify experts at the module level. Developers are

ranked according to the most recent modification date. When there are multiple modules,

people who touched all the modules are considered. Vector based similarity is also used

to identify technical support. For each request, three query vectors (symptoms, customers,

and modules) are created. These vectors are then compared with the person’s profile. This

approach depends on user profiles that need to be explicitly collected upfront. This approach

has been designed for specific organizations and not tested on open source projects.

Mino and Murphy [106] produced a tool called Emergent Expertise Locator (EEL).

Their work is adopted from a framework to compute the coordination requirements between

developers given by Cataldo et al. [30]. EEL helps find the developers who can assist in

solving a particular problem. The approach is based on mining the history of how files have

changed together and who has participated in the change. In our approach, we also include

the activities, i.e., days on which they contributed changes, of the developers and identify

experts at the package and system levels, and not only at the file level.

Expertise Browser (ExB) [108] is another tool to locate people with desired expertise.

The elementary unit of experience is the Experience Atom (EA). The number of these EAs

in a specific domain measures the developer experience. The smallest EA is a code change

that has been made on a specific file. In our approach, the number of EAs corresponds

to the commit contributions. Again, we included more than one parameter in determining

file experts. We also used two different measures to identify experts: one measure for file

CHAPTER 2. DEVELOPER RECOMMENDATION 58

experts and another for package and system experts.

Anvik and Murphy [11] did an empirical evaluation of two approaches to locate expertise.

As developers work on a specific part of the software, they accumulate expertise. They term

this expertise as implementation expertise. The two approaches are based on mining the

source and bug repositories. The first approach examines the check-in logs for modules that

contain the fixed source files. Recently active developers who did the changes are selected

and filtered. In the second approach, the bug reports from bug repositories are examined.

The developers are selected from the CC lists, the comments, and who fixed the bug. They

found that both approaches have relative strengths in different ways. In the first approach,

the most recent activity date is used to select developers. This study focuses on identifying

experts to fix bugs or to deal with bug reports.

A machine learning technique is used to automatically assign a bug report to the right

developer who can resolve it [10]. The classifier obtained from the machine learning tech-

nique analyzes the textual contents of the report and recommends a list of developers.

Another text-based approach is used to build a graph model called ExpertiseNet for ex-

pertise modeling [140]. A recent approach to improve bug triaging uses graph based model

based on Markov chains, which capture bug reassignment history [71]. Our approach uses

expertise measures that are computed in a straightforward manner from the commits in

source code repositories and does not employ any machine learning like techniques. In an-

other recent work, Matter et al. [103] used the similarity of textual terms between source

code changes (i.e., word frequencies of the diff given changes from source code repositories)

and the given bug report to assign developers. Their approach does not require indexing of

past bug reports, one of the rare ones similar to ours; however, it is purely text based. Our

CHAPTER 2. DEVELOPER RECOMMENDATION 59

approach does not use textual analysis of source code changes and is based on a number of

non-text based contribution measures.

There are also works on using MSR techniques to study and analyze developer contri-

butions. German [60] described in his report some characteristics of the development team

of PostgreSQL. He found that in the last years only two persons were responsible for most

of the source code. Tsunoda et al. [149] analyzed the developers’ working time of open

source software. The email sent time was used to identify developers’ working time. Bird

et al. [18] mined email archives to analyze the communication and co-ordination activities

of the participants. Del Rosso [48] used collaborations and interactions between knowledge-

intensive software developers to build a social network. By analyzing this network, he tries

to understand the meaning and implications to software and software development. Some

implications are locating developers with a wide expertise on the project and determin-

ing where the expertise is concentrated in the software development team. Ma et al. [94]

proposed an approach for identifying developers using implementation expertise (i.e., using

functionality by calling API methods). Yu and Ramaswamy [158] mined CVS repositories

to identify developer roles (core and associate). The interaction between authors is used

as clustering criteria. The KLOC and number of revisions are used to study the develop-

ment effort for the two groups. Weissgerber et al. [153] analyze and visualize the check-in

information for open source projects. The visualization shows the relationship between the

lifetime of the project and the number of files and the number of files updated by each

author. German [59] studied the modification records (MRs) of CVS logs to visualize who

are the people who tend to modify certain files. Fischer et al. [56] analyzed and related

bug report data for tracking features in software.

CHAPTER 2. DEVELOPER RECOMMENDATION 60

In summary, to the best of our knowledge, no other work besides ours has used a

combination of a concept location and mining software repositories techniques to address

the problem of assigning expert developers to change requests. Also, our approach does not

need to mine past change requests (e.g., history of similar bug reports to resolve the bug

request in question), but does require source code change history. The single-version source

code analysis with IR (and not the past reports in the issue repositories) is employed to

reduce the mining space of the source code change history of only selective entities.

2.7 Discussion

The main contribution of our work is the first use of a concept location technique integrated

with a technique based on MSR for the expert developer recommendation task. While both

these techniques have been investigated and used independently before, their combined

use for tasks such as the one studied here has not been systematically investigated. We

showed the application of a concept location technique beyond merely concept or feature

location in source code. Also, our work provides an interesting horizon to bring together

single-version analysis of traditional software engineering (i.e., concept location) with multi-

version analysis based on mining software repositories.

The results of our systematic evaluation on KOffice, Eclipse and ArgoUML indicate

that our approach can identify relevant developers to work on change requests with fairly

high accuracy and in an effective ranked order. We recorded the highest overall accuracies

of 95%, 82%, and 80% in ArgoUML, Eclipse, and KOffice when all the prior commit

histories were considered (and the lowest of 22% overall accuracy with only about two weeks

CHAPTER 2. DEVELOPER RECOMMENDATION 61

of commit history in KOffice). These results are comparable to other approaches in the

literature. For example, Anvik et al. [10] reported the precision of their approach as 57% and

64% on Eclipse and Firefox systems (albeit a different experiment setup and execution). At

the very least, the presented approach did outperform two straightforward first choices that

maybe readily available to recommend developers to work on change requests. Our approach

required mining histories of only between top three and five ranked files relevant to a concept

to get the first accurate developer recommendations on the evaluated systems. We make our

evaluation data publicly available (see http://www.cs.wm.edu/semeru/data/jsme09-bugs-

devs/) and hope that this data, including the specific bugs used, will provide the first steps

towards creating a benchmark for evaluating developer recommendation approaches. Also,

we show the value of the package and system levels of expertise considered by xFinder in

developer recommendations. We believe that our approach has merits in time, effort, and

quality improvements when dealing with change requests during software maintenance (a

rigorous validation of which would require a field case study, and is a subject of future

work).

Chapter 3

Traceability Link Recovery

Traceability links between software artifacts represent an important source of information,

if available, for different stakeholders and provides important insights during software devel-

opment [8]. Unfortunately, establishing and maintaining traceability links between software

artifacts is an error prone and person-power intensive task [123]. Consequently, despite the

advantages that can be gained, effective traceability is rarely established.

Extensive effort in the software engineering community has been brought forth to im-

prove the explicit connection of software artifacts. Promising results have been achieved

using Information Retrieval techniques [14, 46] to recover links between different types of

artifacts (see e.g., [8, 97]). IR-based methods propose a list of candidate traceability links

on the basis of the textual similarity between the text contained in the software artifacts.

The conjecture is that two artifacts having high textual similarity share similar concepts,

thus they are good candidates to be traced on each other. Several IR methods have been

employed for traceability recovery, such as Vector Space Model [14] and Latent Semantic

Indexing [46].

The experiments conducted to evaluate the accuracy of all these methods highlight

that there is no clear technique able to sensibly outperform the others. In a recent study

62

CHAPTER 3. TRACEABILITY LINK RECOVERY 63

[111] it has been empirically proved that widely used IR-based methods, such as VSM and

LSI, are nearly equivalent, while Latent Dirichlet Allocation (LDA) [20]—a topic modeling

technique recently used for traceability link recovery [13]—is able to capture some important

information missed by the other exploited IR methods, while its accuracy is lower than that

of the other IR methods.

This recent empirical result motivates our work. In particular, orthogonality of IR-based

techniques may present the opportunity to improve accuracy through the integration of

different techniques. In addition, topic modeling techniques should be further analyzed since

they seem to capture a dimension missed by canonical IR methods. Thus, in this chapter

we present (i) a novel method for traceability link recovery that exploits Relational Topic

Model [31] for extracting and analyzing topics and relationships among them from software

artifacts; and (ii) an approach to efficiently integrate different IR methods for traceability

recovery. The results of the case study conducted on six software repositories indicate

the benefits achieved while combining RTM with canonical IR techniques, in particular

a technique based on VSM [14] and a technique based on probabilistic model, namely

Jensen and Shannon [1]. The combination is highly valuable only when canonical methods

are integrated with the topic modeling technique based on RTM. This is because RTM is

orthogonal to VSM and JS, while the latter two canonical methods provide similar results,

thus confirming the finding achieved in [111]. In the context of our case study, we also

analyzed the impact on the recovery accuracy of the natural language (i.e., English versus

Italian) and the type of software artifacts (i.e., use cases, UML diagrams, and test cases) to

be traced on source code classes. The data used in the evaluation is made freely available

CHAPTER 3. TRACEABILITY LINK RECOVERY 64

online, encouraging other researchers to replicate this work1.

Summarizing, the specific contributions of the chapter are:

• the definition of a novel traceability recovery method based on RTM;

• an hybrid approach for traceability recovery that combines different IR methods.

The integration of orthogonal techniques provides a tangible improvement in recovery

accuracy;

• an analysis on how the language and the type of the software artifacts to be traced

interact with the IR method and influence the recovery accuracy

Structure of the chapter. Section 3.1 presents background information to our work.

Sections 3.2 and 3.3 present RTM and the hybrid traceability recovery method, respectively.

Section 3.4 provides details on the design of the case study and presents the results achieved.

Section 3.5 discusses the results achieved, while Section 3.6 concludes the chapter.

3.1 Background and Related Work

This section provides background notions and state of the art on IR-based traceability

recovery.

3.1.1 IR-based Traceability Recovery

An IR-based traceability recovery tool uses an IR technique to compare a set of source

artifacts (used as a query) against another (even overlapping) set of target artifacts and

1http://www.cs.wm.edu/semeru/data/icsm2011-traceability-rtm

CHAPTER 3. TRACEABILITY LINK RECOVERY 65

rank the similarities of all possible pairs of artifacts. The textual similarity between two

artifacts is based on the occurrences of terms (words) within the artifacts contained in the

repository. The extraction of the terms from the artifact contents is preceded by a text

normalization for removing most non-textual tokens (e.g., operators, special symbols, some

numbers) and splitting into separate words source code identifiers composed of two or more

words separated by using the under score or CamelCase separators. Common terms (e.g.,

articles, adverbs) that are not useful to capture semantics of the artifacts are also discarded

using a stop word function, to prune out all the words having a length less than a fixed

threshold, and a stop word list, to cut-off all the words contained in a given word list. In

our study, we also performed a morphological analysis, i.e., stemming [116], of the extracted

terms to remove suffixes of words to extract their stems.

The extracted information is generally stored in a m×n matrix (called term-by-document

matrix), where m is the number of all terms that occur in all the artifacts, and n is the

number of artifacts in the repository. A generic entry wi,j of this matrix denotes a measure of

the weight (i.e., relevance) of the ith term in the jth document [14]. In our study we adopted

a standard term weighting scheme known as term frequency – inverse document frequency

(td-idf) [14]. Term frequency awards terms appearing in an artifact with a high frequency,

while inverse document frequency penalizes terms appearing in too many artifacts, i.e.,

non-discriminating terms. This means that a term is considered relevant for representing

the artifact content and is assigned a relatively high weight if it occurs many times in the

artifact, and is contained in a small number of artifacts.

Based on the term-by-document matrix representation, different IR methods can be used

to rank conceptual similarities between pairs of artifacts. In our study we use a probabilistic

CHAPTER 3. TRACEABILITY LINK RECOVERY 66

model, i.e., the JS model, VSM, and a topic model, i.e., RTM.

The JS similarity model is an IR technique driven by a probabilistic approach and

hypothesis testing techniques. As well as other probabilistic models, it represents each

artifact through a probability distribution. This means that an artifact is represented by

a random variable where the probability of its states is given by the empirical distribution

of the terms occurring in the artifact (i.e., normalized columns of the term-by-document

matrix). The empirical distribution of a term is based on the weight assigned to the term for

the specific artifact [1]. In the JS method the similarity between two artifacts is represented

by the “distance” of their probability distributions measured by using the Jensen-Shannon

Divergence [1]. The JS method does not take into account relations between terms. This

means that having “automobile” in one artifact and “car” in another artifact does not

contribute to the similarity measure between these two documents. Thus, the method

suffers of the synonymy and the polysemy problems.

In the VSM, artifacts are represented as vectors of terms that occur within artifacts

in the repository [14]. In particular, each column of the term-by-document matrix can be

considered as an artifact vector in the m-space of the terms. Thus, the similarity between

two artifacts is measured by the cosine of the angle between the corresponding vectors (i.e.,

columns of the term-by-document matrix). Such a similarity measure increases as more

terms are shared between the two artifacts. In particular, as well as the JS method, VSM

does not take into account relations between terms and it suffers of the synonymy and the

polysemy problems.

Other than canonical IR-based recovery methods, we also propose the use of RTM as

traceability recovery method. Details on such a technique are provided in Section 3.2.

CHAPTER 3. TRACEABILITY LINK RECOVERY 67

3.1.2 State of the art

Antoniol et al. [8] are the first to apply IR methods to the problem of recovering trace-

ability links between software artifacts. They use both the probabilistic and vector space

models to trace source code onto software documentation. The results of the experimen-

tation show the two methods exhibit similar accuracy. Marcus and Maletic [97] use LSI

to recover traceability links between source code and documentation. They perform case

studies similar in design to those in [8] and compare the accuracy of LSI with respect to

the vector space and probabilistic models. The results show that LSI performs at least as

well as the probabilistic and vector space models combined with full parsing of the source

code and morphological analysis of the documentation. Abadi et al. [1] compare several IR

techniques to recover traceability links between code and documentation. They compare

dimensionality reduction methods (e.g., LSI), probabilistic and information theoretic ap-

proaches (i.e., JS), and the standard VSM. The results achieved show that the techniques

that provide the best results are VSM and JS. Recently, Asuncion et al. [13] applied LDA

for traceability link recovery between text-based artifacts (such as requirements and design

documents). The authors monitor the operations (e.g., opening a requirements specification

or visiting a Wiki page) performed by the software engineers during software development

identifying a list of potentially related artifacts. Such relationships are then used to extract

a set of topics that can be subsequently used to infer other relationships between code and

documentation.

Heuristics [28, 38] and variants of basic IR methods [38, 43, 92, 136] have been pro-

posed to improve the retrieval accuracy of IR-based traceability recovery tools. Promising

CHAPTER 3. TRACEABILITY LINK RECOVERY 68

results have also been achieved using the relevance feedback analysis [6, 44, 67] that aims

at improving the accuracy of the tool by learning from user feedback provided during the

link classification. Recently, the use of the coverage link analysis has also been proposed

to increase the amount of correct links traced by the software engineer with respect to a

traditional process [45].

A issue which hinders the performance of IR techniques when applied to traceability

recovery is the presence of vocabulary mismatch between source and target artifacts. Re-

cently, a technique attempts to alleviate such an issue has been introduced [36, 62]. The

proposed approach uses search engines to identify a set of terms related to the query and

expand the query in an attempt to improve recovery accuracy. Empirical studies indicate

that using web mining to enhance queries improves retrieval accuracy.

3.2 Relational Topic Model

Relational Topic Model [31] is a hierarchical probabilistic model of links and document

attributes. RTM defines a comprehensive method for modeling interconnected networks of

documents. There exist other models for explaining network link structure (see related work

by Chang et al. [31]), but what separates RTM from those prior methods of link prediction

is its ability to account for both document context and links between documents when

making predictions. Prediction of links, which are modeled as binary random variables,

is dependent on the topic assignments of the documents modeled. Another distinction,

beneficial to our application, is that RTM does not require any prior observed links to make

these predictions.

CHAPTER 3. TRACEABILITY LINK RECOVERY 69

Generating a model consist of two steps (1) modeling the documents in a corpus and (2)

modeling the links between pairs of documents. Established with a foundation on LDA, step

one is identical to the LDA generative process. In the context of LDA, each document has

a corresponding multinomial distribution over T topics and each topic has a corresponding

multinomial distribution over the set of words in the vocabulary of the corpus. LDA assumes

the following generative process for each document di in a corpus D:

1. Choose N ∼ Poisson distribution (ξ)

2. Choose θ ∼ Dirichlet distribution (α)

3. For each of the N words wn:

(a) Choose a topic tn ∼ Multinomial (θ).

(b) Choose a word wn from p(wn|tn, β), a multinomial probability conditioned on

topic tn.

The second phase for the generation of the model exploited by RTM is as follows:

For each pair of documents di, dj :

(a) Draw binary link indicator ydi,dj
|ti, tj ∼ ψ (η · |ti, tj ,) where ti = {ti,1, ti,2, . . . , ti,n}

The link probability function ψε is defined as:

ψε(y = 1) = exp(ηT (tdi
◦ tdj

) + v).

where links between documents are modeled by logistic regression. The ◦ notation repre-

sents the Hadamard product, td = 1
Nd

∑
n zd,n and exp() is an exponential mean function

parameterized by coefficients η and intercept v.

CHAPTER 3. TRACEABILITY LINK RECOVERY 70

Table 3.1: Characteristics of the software systems used in the experimentation.

System Description Source Artifact (#) Target Artifact (#) Correct links

eAnci A system providing support to manage Italian

municipalities

Use cases (139) Classes (55) 567

EasyClinic∗ A system used to manage a doctor’s office

Use cases (30) Classes (37) 93

UML Diagrams (20) Classes (37) 69

Test Cases (63) Classes (37) 204

eTour* An electronic touristic guide developed by stu-

dents.

Use cases (58) Classes (174) 366

SMOS A system used to monitor high school students

(e.g., absence, grades)

Use cases (67) Classes (100) 1,044

* A complete version of the software system is available in both English (ENG) and Italian (ITA).

Proposed applications of RTM [31] include assisting social network users in identifying

potential friends, locating relevant citations for a given scientific paper, pinpointing related

web pages of a particular web page, and computing coupling among source code classes in

software [61]. Our intuition leads us to believe this model may serve well for traceability link

recovery. In the context of traceability recovery, RTM is used to estimate topic distribution

in the term-by-document matrix in order to define the link probability function. Such a

function plays the same role of the artifact vectors in canonical vector-based IR methods,

e.g., VSM. In particular, it is used to topically compare pairs of artifacts in order to obtain

a list of candidate links.

One key distinction between establishing link probabilities in RTM and the canonical

LDA is the underlying data used. Here, RTM uses topic assignments to make link predic-

tions whereas to compute document similarities we use topic proportions for each document.

This difference is discussed in more detail in the original work by Chang et al. [31].

CHAPTER 3. TRACEABILITY LINK RECOVERY 71

3.3 The Hybrid Approach

Besides proposing to use RTM as a traceability recovery method, we also propose a new

approach to improve the accuracy of recovery methods by integrating orthogonal IR meth-

ods, i.e. methods that provide different sets of recovered links. Our conjecture is supported

by a preliminary study [111] that provides some evidence of (i) the equivalence (in terms of

links recovered) of canonical IR methods, such as VSM, LSI, and JS and (ii) the presence of

orthogonality between canonical IR methods and topic modeling techniques, in particular

LDA. The proposed combined method is based on affine transformation [70], a technique

used to combine experts’ judgments previously used to combine orthogonal feature location

techniques [117].

The basic idea behind our approach is that two IR methods can be viewed as two

experts who provide their expertise to solve the problem of identifying links between a

set of source artifacts and a set of target artifacts. The two experts, e.g., a canonical

IR method and a topic modeling technique, express their judgments based on different

observations. Both experts express judgments based on the textual similarity between two

artifacts. However, canonical methods analyze the terms shared by two artifacts, while topic

modeling techniques utilize probabilistic topic distributions and word distributions across all

the artifacts. This allows two techniques to capture different information, as highlighted in

[111] and confirmed in our study (see Section 3.4). Thus, the proposed approach integrates

valuable (orthogonal) expertise of both experts to obtain a more accurate list of candidate

links and minimize the effort of software developers.

Formally, the combination is obtained in two steps. In the first step, the judgments (i.e.,

CHAPTER 3. TRACEABILITY LINK RECOVERY 72

similarities) of the two experts are mapped to a standard normal distribution as follows:

simmi(x, y) =
mi(x, y)−mean(mi(X,Y))

stdev(mi(X,Y))

where X,Y are sets of software artifacts, x ∈ X, y ∈ Y and simmi(x, y) is the normalized

similarity of mi(x, y) where mi is an IR method. The functions mean() and stdev() return

the mean and standard deviation respectively, for the similarity values of all pairs of artifacts

(xa, yb) using mi. Note that the normalization phase is required because different experts

may express judgments that are not commensurable.

In the second step, the normalized judgments are combined through a weighted sum:

simcombined(x, y) = λ× simmi(x, y) + (1− λ)× simmj (x, y)

where λ ∈ [0, 1] expresses the confidence in each technique. The higher the value the higher

the confidence in the technique. In Section 3.4.4 we experimentally identify two heuristics

to define the value of λ.

3.4 Case Study

In this section we describe in detail the design and the results of the case study car-

ried out to evaluate the proposed approach. The description of the study follows the

Goal−Question−Metric [15] guidelines.

3.4.1 Definition and Context

The goal of the experiment was to analyze (i) the support given by RTM during traceabil-

ity link recovery; (ii) whether RTM is orthogonal to VSM and JS canonical IR methods;

CHAPTER 3. TRACEABILITY LINK RECOVERY 73

and (iii) whether the accuracy of IR-based traceability recovery methods improves when

combining RTM with other canonical methods. The quality focus was on ensuring better

recovery accuracy, while the perspective was both (i) of a researcher, who wants to evaluate

the accuracy improvement achieved using a hybrid recovery method; and (ii) of a project

manager, who wants to evaluate the possibility of adopting the hybrid technique within her

software company.

The context of our study is represented by six software repositories, namely eAnci, Easy-

Clinic (English and Italian versions), eTour (English and Italian versions), and SMOS. All

the systems have been developed by final year students at the University of Salerno (Italy).

Use cases and code classes are available for eAnci, eTour, and SMOS, while for EasyClinic

those two types of artifacts as well as UML interaction diagrams and test cases are available.

Note that EasyClinic and eTour were recently used as data set for the traceability challenge

organized at TEFSE 20092 and 20113.

Table 3.1 shows the characteristics of the considered software systems in terms of type

and number of source and target artifacts. The language of the artifacts for all the systems

is Italian, while for the EasyClinic and eTour repositories both Italian and English versions

are available. On each system links between source and target artifacts are recovered to

analyze the accuracy of the experimented IR methods. The table also reports the number of

correct links between source and target artifacts. The traceability links were derived from

the traceability matrix provided by the original developers. Such a matrix was used as the

oracle for evaluating the accuracy of the studied traceability recovery methods.

2http://web.soccerlab.polymtl.ca/tefse09
3http://www.cs.wm.edu/semeru/tefse2011

CHAPTER 3. TRACEABILITY LINK RECOVERY 74

3.4.2 Research Questions

In the context of our study the followings research questions (RQ) were formulated:

• RQ1: Does RTM-based traceability recovery outperform other canonical IR-based ap-

proaches?

• RQ2: Is RTM orthogonal as compared to canonical IR techniques?

• RQ3: Does the combination of RTM and canonical IR methods outperform stand-

alone methods?

To respond to our research questions, we recovered traceability links between source code

and documentation of EAnci, EasyClinic, eTour, and SMOS (see Table 3.1 for details).

To have a good benchmark for the proposed traceability recovery methods and cover

a large number of IR methods, we selected and considered as canonical method the JS

method and VSM based on the results of our previous study [111]. The selected techniques

are widely used for traceability recovery and are accepted as state of the art for IR-based

traceability recovery [35]. In the context of our study, IR methods were provided identical

term-by-document matrices as an input in order to eliminate all pre-processing related

biases.

We were also interested in analyzing how the proposed approach interacts with the

types and the language of the artifacts to be traced. Thus, two more research questions

were formulated:

• RQ4: Does the type of the artifacts to be traced interact with the IR method and affect

the recovery accuracy?

CHAPTER 3. TRACEABILITY LINK RECOVERY 75

• RQ5: Does the language of the artifacts to be traced interact with the IR method and

affect the recovery accuracy?

To analyze the effect of the type of the artifacts to be traced, only EasyClinic (English

and Italian) repositories were considered because it is the only repository in our dataset

with different types of artifacts. Regarding the influence of the language, we used both the

EasyClinic and eTour repositories as for these repositories we had versions of the artifacts

written in both Italian and English.

3.4.3 Metrics

To evaluate the accuracy of each IR method the number of correct links and false positives

were collected for each recovery activity performed. Indeed, the number of correct links

and false positives were automatically identified by a tool. The tool takes as an input the

ranked list of candidate links and classifies each link as correct link or false positive until

all correct links are recovered. Such a classification is automatically performed by the tool

exploiting the original traceability matrix as an oracle.

Method comparison. A preliminary comparison of different IR methods—i.e., re-

search questions RQ1 and RQ3—is obtained using two well-known IR metrics, namely recall

and precision [14]:

recall =
|cor ∩ ret|
|cor|

% precision =
|cor ∩ ret|
|ret|

%

where cor and ret represent the sets of correct links and links retrieved by the tool, respec-

tively. Other than recall and precision, we also use average precision [14], which returns a

single value for each ranked lists of candidate links provided.

CHAPTER 3. TRACEABILITY LINK RECOVERY 76

A further comparison of the IR-based recovery methods exploits statistical analysis. In

particular, we used a statistical significance test to verify that the number of false positives

retrieved by one method is significantly lower than the number of false positives retrieved

by another method. In other words, we compared the false positives retrieved by method

mi with the false positives retrieved by method mj to test the following null hypothesis:

H0: there is no difference between the number of false positives retrieved by mi

and mj

Thus, the dependent variable of our study is represented by the number of false positives

retrieved by the traceability recovery method for each correct link identified. Since the

number of correct links is the same for each traceability recovery activity (i.e., the data was

paired), we decided to use the Wilcoxon Rank Sum test [41] to test the statistical significance

difference between the false positives retrieved by two traceability recovery methods. The

results were intended as statistically significant at α = 0.05.

Other than testing the null hypothesis, it is of practical interest to estimate the magni-

tude of the difference between accuracy achieved with different IR methods (e.g., combined

vs. stand-alone). To this aim, we used the Cohen d effect size [81], which indicates the mag-

nitude of the effect of the main treatment on the dependent variables [81]). For dependent

samples (to be used in the context of paired analysis) it is defined as the difference between

the means, divided by the standard deviation of the (paired) differences between samples,

i.e., false positive distributions. The effect size is considered small for 0.2 ≤ d < 0.5,

medium for 0.5 ≤ d < 0.8 and large for d ≥ 0.8 [39]. We chose the Cohen d effect size

as it is appropriate for our variables (in ratio scale) and given the different levels (small,

CHAPTER 3. TRACEABILITY LINK RECOVERY 77

medium, large) defined for it, it is quite easy to be interpreted.

Orthogonality Checking. To analyze the orthogonality of different IR methods

(RQ2), we uses Principal Component Analysis (PCA), a statistical technique capable of

identifying various orthogonal dimensions captured by the data (principal components) and

which measure contributes to the identified dimensions. The analysis identifies variables

(in our case IR-based techniques) which are correlated to principal components and which

techniques are the primary contributors to those components. This information provides

insights on the orthogonality between similarity metrics.

Moreover, to have a further analysis of orthogonality between traceability recovery meth-

ods we used the following overlap metrics [111]:

correctmi∩mj =
|correctmi ∩ correctmj |
|correctmi ∪ correctmj |

%

correctmi\mj
=
|correctmi \ correctmj |
|correctmi ∪ correctmj |

%

where correctmi represents the set of correct links identified by the IR method mi. It

is worth noting that correctmi∩mj captures the overlap between the set of correct links

retrieved by two IR methods, while correctmi\mj
measures the correct links retrieved by mi

and missed by mj . The latter metric gives an indication on how an IR method contributes

to complementing the set of correct links identified by the other method.

Interaction of Artifact Types and Language. The interaction of the type and the

language of the artifacts to be traced with the IR method (RQ4 and RQ5) was analyzed by

using the Two-Way Analysis of Variance (ANOVA) [49] and interaction plots. The latter are

simple line graphs where the means on the dependent variable (number of false positives)

CHAPTER 3. TRACEABILITY LINK RECOVERY 78

Table 3.2: Principal Component Analysis. Results are for tracing use cases onto code classes.

PC1 PC2 PC3

% variance 79.74% 20.15% 0.11%

Cumulative % 79.74% 99.89% 100%

JS 0.98 -0.19 0.03

VSM 0.97 -0.19 -0.03

RTM 0.68 0.73 0.00

(a) EasyClinic-ENG

PC1 PC2 PC3

% variance 75.78% 24.11% 0.11%

Cumulative % 75.78% 99.89% 100%

JS 0.99 -0.09 0.04

VSM 0.99 -0.10 -0.03

RTM 0.54 0.83 0.00

(b) EasyClinic-ITA

PC1 PC2 PC3

% variance 68.51% 31.18% 0.31%

Cumulative % 68.51% 99.69% 100%

JS 0.99 0.11 0.07

VSM 0.99 0.08 -0.06

RTM 0.29 0.95 0.00

(c) eTour-ENG

PC1 PC2 PC3

% variance 67.12% 32.63% 0.25%

Cumulative % 67.12% 99.75% 100%

JS 0.97 0.21 0.06

VSM 0.98 0.18 -0.05

RTM 0.31 0.94 0.00

(d) eTour-ITA

PC1 PC2 PC3

% variance 63.79% 35.55% 0.66%

Cumulative % 63.79% 99.34% 100%

JS 0.96 0.24 0.10

VSM 0.97 0.18 -0.09

RTM 0.17 0.98 0.00

(e) SMOS

PC1 PC2 PC3

% variance 70.03% 29.65% 0.32%

Cumulative % 70.03% 99.68% 100%

JS 0.98 -0.19 -0.06

VSM 0.98 -0.18 0.06

RTM 0.42 0.90 0.00

(f) EAnci

for each level of one factor are plotted over all the levels of the second factor. When there

is no interaction the resulting profiles are parallel, otherwise they are non-parallel [49].

3.4.4 Analysis of the Results

RQ1: Accuracy of RTM. We first investigate whether RTM provides accuracy superior

to that of other IR-based traceability recovery techniques. Fig. 3.1 provides the preci-

sion/recall curves achieved when tracing use cases onto code classes of eTourENG. From

the results we are unable to identify an approach, which consistently exceeds the perfor-

mance of all the others. As the figure shows, we have cases where RTM outperforms most

other techniques for certain levels of recall, but there are also cases (e.g., on EasyClinicITA)

where the performances of RTM are not consistently better than that acquired by other

techniques.

The statistically analysis indicates that the RTM-based technique is capable of providing

CHAPTER 3. TRACEABILITY LINK RECOVERY 79

Table 3.3: Overlap analysis. Results are for tracing use cases onto code classes.
EasyClinicITA EasyClinicENG eTourENG eTourITA EAnci SMOS

Cut points µ Cut points µ Cut points µ Cut points µ Cut points µ Cut points µ

25 50 100 25 50 100 25 50 100 25 50 100 25 50 100 25 50 100

correctJS∩V SM 100 92 95 83 85 88 91 94 85 89 91 91 72 80 82 100 79 76

correctJS\V SM 0 3 4 16 15 8 4 5 7 10 5 7 11 7 10 0 8 6

correctV SM\JS 0 3 0 0 0 2 4 0 7 0 2 1 16 11 8 0 12 17

correctJS∩RTM 19 40 52 19 19 36 23 28 35 25 36 36 20 23 29 16 18 23

correctJS\RTM 42 22 21 38 36 21 41 35 22 34 29 25 41 26 24 26 24 23

correctRTM\JS 38 37 26 42 44 42 35 36 41 40 34 38 37 50 45 56 57 52

correctV SM∩RTM 19 40 51 15 17 33 23 29 32 26 34 35 15 26 31 16 17 26

correctV SM\RTM 42 22 20 35 32 21 41 32 24 30 29 23 46 26 22 26 25 25

correctRTM\V SM 38 37 28 50 50 45 35 38 42 43 36 40 38 47 45 56 56 47

statistically significant improvement over other canonical techniques only when tracing use

cases onto code classes and interaction diagrams onto code classes of eTourENG (p-values

are lower than 0.01 with a high effect size). In all the other cases, the Wilcoxon tests

indicate that RTM does not provide any statistically significant improvement over other

stand-alone methods.

RQ2: Orthogonality checking. Regarding the orthogonality of the experimented

techniques, Table 3.2 reports the results of PCA, which indicate the prevailing characteris-

tics of the analysis for all the results). Results of the six systems evaluated are in agreement

with regards to both the number of principal components, which capture most of the vari-

ance, and the main contributors of those principal components. From the results, we can

conclude that RTM is orthogonal to other canonical IR methods, that on the other hand

are not orthogonal between them.

We also evaluated the degree of overlap amongst correct links for candidate sets provided

by pairs of the techniques (one of the two techniques is the RTM-based traceability recovery

CHAPTER 3. TRACEABILITY LINK RECOVERY 80

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Recall (%)

P
re

c
is

io
n

 (
%

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Technique

JS

VSM

RTM

Figure 3.1: RTM vs VSM and JS: use cases onto code classes of eTourENG.

technique). Given the top µ candidate links we describe two aspects of the data. Provided

the set of correct links obtained from both candidate sets we determine the percentage of

correct links (1) identified by both techniques (correctRTM∩JS) and (2) distinctly revealed

by RTM (correctRTM\JS). Once again, Table 3.3 shows a subset of the results achieved

(among the average results). As we can see, the overlap between RTM and other techniques

is relatively low, while the percentage of links identified by RTM and not identified by other

canonical methods is high. In the case of recovering traceability links between use cases and

code classes for EasyClinicENG the results show that RTM provides a significant number of

unique correct links. When ranked lists of 100 links are returned for the two techniques JS

and RTM, JS is capable of identifying 33 correct links while RTM identifies 45 correct links.

Among the correct links identified, 37% of them are common to both techniques while 42%

are unique to RTM. Similar results are obtained for various systems, tracing links between

different artifacts and for artifacts in various natural languages. These results confirm

CHAPTER 3. TRACEABILITY LINK RECOVERY 81

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

Lambda

A
ve

ra
g

e
 P

re
c
is

io
n

●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

Combination

JS+RTM

JS+VSM

VSM+RTM

Figure 3.2: Average precision in eTourENG using various values of lambda. Lambda represents
the weight of the first method in the combination, while the asterisk indicates the accuracy of the
PCA-based weighting technique.

Table 3.4: Comparing RTM-based combinations with stand-alone methods: Wilcoxon test results
(p-values).

EasyClinicENG EasyClinicITA eTourENG eTourITA SMOS EAnci

RTM+JS vs JS < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001

RTM+VSM vs VSM < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001

RTM+JS vs RTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.47

RTM+VSM vs RTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.04

the findings of the PCA, indicating that RTM is a technique orthogonal to the other IR

canonical methods.

RQ3: Evaluation of the hybrid approach. Our goal is to improve traceability

recovery accuracy by exploiting the orthogonality of IR methods. The proposed hybrid

approach uses a parameter (λ) to assign a weight to the IR method to be combined (see

Section 3.3). We analyze the effect of such a parameter on the accuracy (in terms of average

precision) of the proposed approach using various values to lambda (0.05 through 0.95 with

a step of 0.05) to combine techniques. Figure 3.2 shows the results achieved on ETourENG.

CHAPTER 3. TRACEABILITY LINK RECOVERY 82

Easyclinic_ENG Easyclinic_ITA eTour_ENG

A
ve

ra
g
e
 P

re
c
is

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

JS
VSM
JS+VSM
JS+VSM(pca)
RTM
JS+RTM
JS+RTM(pca)
VSM+RTM
VSM+RTM(pca)

Figure 3.3: Results of average precision for retrieving all correct links for each EasyClinicENG

(left), EasyClinicITA (middle), and eTourENG (right). Results are presented the best performing
combination and combinations obtained using the PCA-based weighting technique.

As expected the value of λ affects the accuracy of the proposed approach. Defining a “good”

value for λ a priori is challenging. However, from the analysis of the results we identify two

possible heuristics: (i) assign the same weight λ = 0.5 to the IR methods to be combined;

(ii) use the proportion of variance obtained by PCA to weight the different IR methods.

The former is a constant heuristic that generally provides good results, while the latter

is an heuristic that is context-dependent and provides a more accurate estimation of λ.

Such an heuristic is based on the observation that PCA identifies the different dimensions

that describe a phenomenon, e.g., the similarity between pairs of artifacts, and gives an

indication of the importance of each dimension (captured by one or more IR methods) in

the description of this phenomenon, i.e., the proportion of variance. We conjecture that

the higher the amount of variance captured by a particular dimension the higher should

be the weight for the IR technique that best correlates to that dimension. The accuracy

CHAPTER 3. TRACEABILITY LINK RECOVERY 83

obtained weighting the IR methods exploiting the proportion of variance obtained by PCA

is highlighted in Figure 3.2 with an asterisk. Note that the PCA-based weighting technique

provides better results than approximately 75% of combinations considered for the complete

analysis). Such a result suggests that the PCA-based technique provides an acceptable

means of combining IR methods for recovering traceability links.

Figure 3.2 also highlights the benefits provided by combining orthogonal IR methods. In

particular, the accuracy of RTM+JS (or VSM) sensibly overcomes the accuracy of JS+VSM.

To have further evidence of the benefits provided by the combination of different IR methods

(using for lambda the best and the PCA-based values), Figure 3.3 shows the average preci-

sion achieved with stand-alone methods and different combinations of IR methods. As we

can see the combination of RTM with other IR techniques results in significant improvement

in average precision. In addition, the results achieved applying our proposed PCA-based

weighting technique to combine orthogonal IR methods yields results, which consistently

exceed the results of standalone techniques. Such a result confirms the usefulness of the

proposed heuristic.

All these findings were also confirmed by the results of the Wilcoxon tests (see Table

3.4). In all the repositories, but SMOS and in one case for EAnci, the RTM combined

method is able to statistically outperform the stand-alone methods. However, even if in the

other cases the results did not reveal a statistically significant difference between techniques,

the average precision of the combination is higher than any other standalone method.

RQ4,5: Interaction of Artifact Type and Language. The ANOVA analysis con-

firmed the influence of the IR method, and highlighted the influence of both types and

language of the artifacts to be traced. ANOVA also revealed a statistically significant in-

CHAPTER 3. TRACEABILITY LINK RECOVERY 84

teraction between IR method and artifact language (on the ETour repositories), as well as

between IR method and artifact type. The interactions investigated are statistically signif-

icant based on our dataset with p < 0.001. To better understand the interaction between

factors, Figure 3.4 shows (a) the interaction plot between IR method and artifact language

and (b) between IR method and artifact type. Regarding the influence of the artifact lan-

guage, we observe that on EasyClinic better recovery accuracy is achieved on the Italian

version, while on ETour better accuracy is generally achieved on the English version. The

reason is that in the Italian version of the ETour repository identifiers in the source code

are written in English. This negatively impacts the accuracy of the IR methods. As for

the influence of the artifact type, we observe that the combination is highly valuable when

tracing UML diagrams onto source code, while in the other cases the improvement is not

so evident.

3.5 Discussion and Threats to Validity

This section discusses the achieved results focusing the attention on the threats that could

affect their validity [15].

3.5.1 Evaluation Method

Recall, precision, and average precision are widely used metrics for assessing an IR technique

and the number of false positives retrieved by a traceability recovery tool for each correct

link retrieved reflects well its retrieval accuracy. The overlap metrics give a good indication

on the overlap of the correct links recovered by the different IR methods. Moreover, the

CHAPTER 3. TRACEABILITY LINK RECOVERY 85

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

IR Method

N
u
m

b
e
r

o
f
fa

ls
e
 p

o
s
it
iv

e
s

JS RTM+JS VSM RTM+VSM

 Artifact language

ENG

ITA

(a) EasyClinic - Method and Language

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

IR Method

N
u
m

b
e
r

o
f
fa

ls
e
 p

o
s
it
iv

e
s

JS RTM+JS VSM RTM+VSM

 Artifact language

ITA

ENG

(b) eTour - Method and Language

5
0

1
0
0

1
5
0

2
0
0

2
5
0

IR Method

N
u
m

b
e
r

o
f
fa

ls
e
 p

o
s
it
iv

e
s

JS RTM+JS VSM RTM+VSM

 Artifact type

TC

UC

ID

(c) EasyClinic - Method and Artifact Type

Figure 3.4: Interaction between Method and Artifact Types and between Method and Language.

similarity measures provided by each IR method are also statistically analyzed using PCA

to verify the presence of IR methods that provide orthogonal similarity measures.

We also performed statistical analysis of the achieved results. Attention was paid not

to violate assumptions made by statistical tests. Whenever conditions necessary to use

parametric statistics did not hold (e.g., analysis of each experiment data), we used non-

parametric tests, in particular Wilcoxon test for paired analysis. We also used a parametric

test, i.e., ANOVA, to analyze the effect of different factors even if the distribution was not

CHAPTER 3. TRACEABILITY LINK RECOVERY 86

normal. According to [156] this can be done since the ANOVA test is a very robust test.

In addition, even if the distribution is not normally distributed we can relax the normality

assumption applying the law of large numbers. In particular, according to [139] having a

population higher than 100 it is possible to safety relax the normality assumption.

3.5.2 Object Systems and Oracle Accuracy

An important threat is related to the repositories used in the case study. EAnci, Easy-

Clinic, eTour, and SMOS are not industrial projects, since they were developed by students.

However, they are comparable to (or greater than) repositories used by other researchers

[20, 8, 67, 91, 100] and both EasyClinic and ETour have been used as benchmark reposito-

ries in the last two editions of the traceability recovery challenge organized at TEFSE. In

addition, to the best of our knowledge in this dissertation we reported the largest empirical

study to evaluate and compare different IR methods for traceability recovery.

The investigated traceability recovery methods are based on IR techniques. Thus, the

language of the artifacts may play an important role and affect the achieved results. To

mitigate such a threat we performed the experimentation on two versions of the same artifact

repository, one written in Italian and the other one in English. Analyzing the performance

achieved on the same repository written in two different natural languages we had possibility

to focus our investigation on the only difference between two versions of the repository, i.e.,

artifact language. The same considerations hold for the types of the artifacts to be traced.

Finally, the accuracy of the oracle we used to evaluate the tracing accuracy could also

affect the achieved results. To mitigate such a threat we used original traceability matrices

provided by the software developers. The links were also validated during review meet-

CHAPTER 3. TRACEABILITY LINK RECOVERY 87

ings made by the original development team together with PhD students and academic

researchers.

3.5.3 RTM Configuration and Number of Topics

RTM is a probabilistic topic model method which uses sampling techniques to infer un-

derlying topics and topic/word distributions. When generating topic models, using an R

project implementation4, we performed a large number of sampling iterations to stabilize

the set of topics extracted from a software system. In addition, the choice of the number

of topics is critical and the proper way to make such a choice is still an open issue. For

this reason we experimented different number of topics and for each repository we used the

value that provides the best accuracy. Future work will be devoted to try to identify an

heuristic to estimate the number of topics.

3.5.4 Heuristics to Weight the IR methods to be Combined

The proposed hybrid approach uses a parameter (λ) to assign a weight to the IR method

to be combined. Defining a “good” value for λ a priori is challenging. For this reason, we

experimentally identified two possible heuristics to weight the IR methods to be combined:

(i) assign the same weight λ = 0.5 to the IR methods to be combined; (ii) use the proportion

of variance obtained by PCA to weight the different IR methods. Both the heuristics are

able to approximate the optimal λ. This means that the software engineer can initially

use the value provided by the heuristic and then work around it by slightly increasing or

decreasing it, within an incremental classification process.

4http://cran.r-project.org/web/packages/lda/

CHAPTER 3. TRACEABILITY LINK RECOVERY 88

3.5.5 Orthogonality is a Key Point for Improving Accuracy

In our study we compare the accuracy of different IR methods, namely RTM, JS, and

VSM. No IR method consistently provides superior recovery accuracy when compared to all

other IR-based techniques considered. In particular, there are several cases where applying

different IR-based traceability recovery techniques result in comparable accuracy and there

are also cases where a particular technique yields better accuracy than any other technique

considered.

The results achieved also highlight that JS and VSM are almost equivalent, while RTM

captures a unique dimension in the data, i.e., it identifies correct links overlooked by JS and

VSM. Across all systems evaluated, PCA reveals that there exists a principal component

(typically accounting for 20%-35% of variance in data) with RTM as its main contributor.

That is, RTM tends to contribute 73%-98% of the variance captured by that particular

principal component. Through our analysis of overlap of links between pairs of IR methods

we confirm that RTM is able to provide correct links omitted by other techniques for

particular cut points.

Orthogonality of IR-based techniques is a key point for improving accuracy through

combining different techniques. In our study we show that the combination of RTM with

orthogonal IR techniques results in accuracy which surpasses that of either stand-alone

technique. That is, in our results the improvements in precision exceed 30% in certain cases.

Although improvements of that magnitude do not occur across all the systems evaluated,

we do obtain acceptable increases in virtually all the scenarios.

CHAPTER 3. TRACEABILITY LINK RECOVERY 89

3.6 Discussion

In this chapter we presented a novel traceability recovery method based on RTM and an

hybrid approach for traceability recovery that integrates different IR methods. We also

analyzed (i) the orthogonality of RTM as compared to other IR methods and (ii) the

recovery accuracy improvement provided by the combination of RTM with other canonical

IR methods. The empirical case study conducted on six software systems indicated that

the hybrid method outperforms stand-alone IR methods as well as any other combination

of non-orthogonal methods with a statistically significant margin.

Chapter 4

Impact Analysis

According to Arnold and Bohner [22] software-change impact analysis, or simply impact

analysis (IA), is defined as the determination of potential effects to a subject system result-

ing from a proposed software change. The premise of impact analysis is that a proposed

change may result in undesirable side effects and/or ripple effects. A side effect is a con-

dition that leads the software to a state that is erroneous or violates the original assump-

tions/semantics as a result of a proposed change. A ripple effect is a phenomenon that

affects other parts of a system on account of a proposed change. The task of an impact

analysis technique is to estimate the (complete closure of) ripple effects and prevent side

effects of a proposed change. The scope of the analyzed and estimated software artifacts

may include requirements, design, and source code.

IA is a key task in software maintenance and evolution. Decades of research efforts

have produced a wide spectrum of approaches, ranging from the traditional static and

dynamic analysis techniques [24, 88, 114, 115, 124, 127] to the contemporary methods such

as those based on Information Retrieval [25, 68, 119] and Mining Software Repositories [161].

Although ample progress has been made, there still remains much work to be done in further

improving the effectiveness (e.g., accuracy) of the state-of-the-art IA techniques. Our goal

90

CHAPTER 4. IMPACT ANALYSIS 91

is to develop a new and improved IA approach by reusing some of the existing contemporary

solutions. Central to our approach are the information sources that are developer centric

(e.g., comments and identifiers, and commits and commit practices), rather than artifact

centric (e.g., static and dynamic dependencies such as call graphs).

In this chapter, we present an approach that integrates conceptual and evolutionary

information to support IA in source code. The two sources of information are used to

capture couplings between source code entities. Conceptual couplings capture the extent to

which domain concepts and software artifacts are related to each other. This information is

derived using. This analysis focused on a single version is consistent with its previous usages

in IA [5, 119]. Evolutionary couplings capture the extent to which software artifacts were

co-changed. This information is derived from analyzing patterns, relationships, and relevant

information of source code changes mined from multiple versions in software repositories.

The research philosophy behind the integration of the two information sources is that

present+past of software systems leads to better IA. For IA, both single (present) and mul-

tiple versions (past) analysis methods have been utilized independently, but their integrated

use has not been previously investigated. The approaches presented in this chapter are a

fundamental and necessary baseline step in this direction. We investigate two different in-

tegration approaches, i.e., disjunctive and conjunctive, and compute impact sets at varying

source code granularity levels (e.g., files and methods). Our principal research hypothesis

is that such combined methods provide improvements to the accuracy of impact sets.

An extensive empirical study on hundreds of changes from the open source systems,

such as Apache httpd, ArgoUML, iBatis, and KOffice was conducted to test the research

hypothesis. The results of the study show that the disjunctive combination of IR and MSR

CHAPTER 4. IMPACT ANALYSIS 92

techniques, across several cut points (impact set sizes), provides statistically significant

improvements in accuracy over either of the two standalone techniques. For example, the

disjunctive method reported improvements in recall values of up to 20% over the conceptual

technique in KOffice and up to 45% improvement over the evolutionary technique in iBatis.

These results are encouraging considering that the combinations do not require an overly

complex blending of two separate approaches.

4.1 Background and Related Work

This chapter presents a novel approach for a key maintenance task, namely software change

impact analysis, by involving conceptual and evolutionary couplings. There is a rich volume

of literature covering each of these areas. Our intention is not to cover every individual work

exhaustively, but to provide a breadth of the solutions offered to the problem and by the

solutions.

4.1.1 Software Change Impact Analysis (IA)

Dependency analysis and traceability analysis are the two primary methodologies for per-

forming impact analysis. Broadly, dependency analysis refers to impact analysis of software

artifacts at the same level of abstraction (e.g., source code to source code or design to de-

sign). Traceability analysis refers to impact analysis of software artifacts across different lev-

els of abstractions (e.g., source code to UML). Various dependency-analysis methods based

on call graphs, program slicing [57], hidden dependency analysis [32, 150, 159], lightweight

static analysis approaches [109, 115], concept analysis [148], dynamic analysis [88], hyper-

text systems, documentation systems, UML models [23], and Information Retrieval [5] are

CHAPTER 4. IMPACT ANALYSIS 93

already investigated in the literature. Queille et al. [122] proposed an interactive process in

which the programmer, guided by dependencies among program components (i.e., classes,

functions), inspects components one-by-one and identifies the ones that are going to change

– this process involves both searching and browsing activities. This interactive process was

supported via a formal model, based on graph rewriting rules [33].

Coupling measures have been also used to support impact analysis in OO systems [24,

155]. Wilkie and Kitchenham [155] investigated if classes with high CBO (Coupling Between

Objects) coupling metric values are more likely to be affected by change ripple effects.

Although CBO was found to be an indicator of change-proneness in general, it was not

sufficient to account for all possible changes. Briand et al. [24] investigated the use of

coupling measures and derived decision models for identifying classes likely to be changed

during impact analysis. The results of an empirical investigation of the structural coupling

measures and their combinations showed that the coupling measures can be used to focus

the underlying dependency analysis and reduce impact analysis effort. On the other hand,

the study revealed a substantial number of ripple effects, which are not accounted for by

the highly coupled (structurally) classes.

More recent work appears in [68, 127], where proposed tools can help navigate and

prioritize system dependencies during various software maintenance tasks. The work in [68]

relates to our approach in as much as it also uses lexical (textual) clues from the source code

to identify related methods. Several recent papers presented algorithms that estimate the

impact of a change on tests [85, 130]. A comparison of different impact analysis algorithms

is provided in [114].

CHAPTER 4. IMPACT ANALYSIS 94

4.1.2 Conceptual Information in Software

Identifiers used by programmers for names of classes, methods, or attributes in source code

or other artifacts contain important information and account for approximately half of the

source code in software [47]. These names often serve as a starting point in many program

comprehension tasks [29], hence it is essential that these names clearly reflect the concepts

that they are supposed to represent, as self-documenting identifiers decrease the time and

effort needed to acquire a basic comprehension level for a programming task [9].

The software maintenance research community recently recognized the problem of ex-

tracting and analyzing conceptual information in software artifacts. IR-based methods have

been applied to support practical tasks. For instance, IR methods have been successfully

used to support feature location [117, 120], traceability link recovery [8, 43] and impact anal-

ysis [5, 119]. We do not discuss other applications of IR-based techniques in the context of

software maintenance due to space limitations, however, interested readers are referred to

[17] for such an overview.

4.1.3 Evolutionary Information in Software Repositories

The term MSR has been coined to describe a broad class of investigations into the exam-

ination of software repositories (e.g., Subversion and Bugzilla). The premise of MSR is

that empirical and systematic investigations of repositories will shed new light on the pro-

cess of software evolution, and the changes that occur over time, by uncovering pertinent

information, relationships, or trends about a particular evolutionary characteristic of the

system.

We now briefly discuss some representative works in MSR for mining of evolutionary

CHAPTER 4. IMPACT ANALYSIS 95

couplings. Zimmerman et al. [161] used CVS logs for detecting evolutionary coupling

between source code entities. Association rules based on itemset mining were formed from

the change-sets and used for change-prediction. Canfora et al. [25] used the bug descriptions

and the CVS commit messages for the purpose of change prediction. An information

retrieval method is used to index the changed files, and commit logs, in the CVS and the

past bug reports from the Bugzilla repositories.

In addition, conceptual information has been utilized in conjunction with evolutionary

data to support several other tasks, such as assigning incoming bug reports to developers [10,

71, 76], identifying duplicate bug reports [151], estimating time to fix incoming bugs [152]

and classifying software maintenance requests [50]. Finally, we conducted a comprehensive

literature survey on MSR approaches during the prologue of this work [73]. Xie’s online

bibliography and tutorial1 on MSR is another well-maintained source.

The above discussion shows that both IR and MSR have been used for impact analysis.

Also, IR techniques have been applied to software repositories. Our work differs in that

we limit the use of IR to a single snapshot (i.e., to derive conceptual couplings) of source

code and data mining techniques are used on past commits of source code (i.e., to derive

evolutionary couplings). To the best of our knowledge, such a combined use of IR and

MSR has not been presented elsewhere or empirically investigated before in the research

literature. Our approach builds on existing solutions, but synergizes them in a new holistic

technique.

1https://sites.google.com/site/asergrp/dmse

CHAPTER 4. IMPACT ANALYSIS 96

4.2 A Integrated Approach to Impact Analysis

A typical IA technique takes a software entity in which a change is proposed or identified

and estimates other entities that are also potential change candidates, referred to as an

estimated impact set. Our general approach computes the estimated impact set with the

following steps:

Step 1: Select the first software entity, es, for which IA needs to be performed. For

example, this first entity could be a result of a feature location activity. Note that IA starts

with a given entity.

Step 2: Compute conceptual couplings with IR methods from the release of a software

system in which the first entity is selected. Let EM(es) be the set of entities that are

conceptually related to the entity from Step 1.

Step 3: Mine a set of commits from the source code repository and compute evolu-

tionary couplings. Here, only the commits that occurred before the release in the above

step are considered. Let EM(es) be the set of entities that are evolutionary coupled to the

entity from Step 1.

Step 4: Compute the estimated impact set, EM(es), from the combinations of cou-

plings computed in steps 3 and 4.

We now discuss the details of these steps, especially conceptual and evolutionary cou-

plings, and their combinations.

CHAPTER 4. IMPACT ANALYSIS 97

4.2.1 Conceptual Couplings

We use conceptual similarity as a primary mechanism of capturing conceptual coupling

among software entities. This measure is designed to capture the conceptual relationship

among documents. Formally, the conceptual similarity between software entities ek and

ej (where ek and ej can be methods), is computed as the cosine between the vectors vek

and vej , corresponding to ek and ej in the vector space constructed by an IR method (e.g.,

Latent Semantic Indexing):

CSE(ek, ej) =
∑
vek × vej√∑

(vek)
2 ×

√∑
(vej)

2
(4.1)

As defined, the value of CSE(ek, ej) ∈ [−1, 1], as CSE is a cosine in the Vector Space

Model. For source code documents, the entities can be attributes, methods, classes, files,

etc. Computing attribute-attribute or method-method similarities, CSE is straightforward

(e.g., ek and ej are substituted by ak and aj in the CSE formula), while deriving method-

class or class-class CSE requires additional steps. We define the conceptual similarity

between a method mk and a class cj (CSEMC) with t number of methods as follows:

CSEMC(mk, cj) =

∑t
q=1CSE(mk,mjq)

t
(4.2)

which is an average of the conceptual similarities between method mk and all the methods

from class cj . Using CSEMC we define the conceptual similarity between two classes

(CSEBC) ck ∈ C with r number of methods and cj ∈ C (where C is a set of classes in

software) as:

CSEBC(ck, cj) =
∑r

l=1CSEMC(mkl, cj)
r

(4.3)

CHAPTER 4. IMPACT ANALYSIS 98

which is the average of the similarity measures between all unordered pairs of methods

from class ck and class cj . The assumption, which is used in defining CSE, CSEMC,

and CSEBC, is that if the methods of a class relate to each other, then the two methods

or classes are also related. For more details and examples, please refer to our preliminary

work on conceptual coupling measures [118, 119].

To analyze conceptual information in a given release of a software system, the source

code is parsed using a developer-defined granularity level (i.e., methods or files). A corpus

is created, so that each software artifact will have a corresponding document in it. We rely

on srcML [40] for the underlying representation of the source code and textual information.

srcML is an XML representation of source code that explicitly embeds the syntactic struc-

ture inherently present in source code text with XML tags. The format preserves all the

original source code contents including comments, white space, and preprocessor directives,

which are used to build the corpus.

4.2.2 Evolutionary Couplings

We mine the change history of a software system for evolutionary relationships. In our

approach, evolutionary couplings are essentially mined patterns of changed entities. We

employ itemsetmining [2], as the specific order of change between artifacts is not considered.

This unordered set allows the computed evolutionary couplings to be consistent with the

conceptual couplings (with no change order between coupled artifacts).

Formally, a software change history, SCH, is a set of change-sets (commits) submitted

to the source-control repository during the evolution of the system in the time interval λ.

Also, let E = ∪mi=1csi be the set of m entities, each of which was changed in at least one

CHAPTER 4. IMPACT ANALYSIS 99

change-set. An unordered evolutionary coupling is a set of source code entities that are

found to be recurring in at least a given number (σmin) of change-sets, ecu = ep, eq, . . . , eo

where each e ∈ E and there exists a set of related change-sets, S(ec) = {c ∈ SCH|ec ⊆ c}

with its cardinality, σ(ec) = |S(ec)| ≥ σmin. The σ(ec) value of a mined pattern is termed

its support value in the data mining vocabulary. Similarly, the σmin value is termed as

minimum support value. Also, let EC = ∪ki=1eci be a set of all the evolutionary couplings

observed in SCH.

For any given software entity from E, which could be the first point es for impact

analysis, we compute all the association rules from the mined evolutionary couplings where

it occurs as an antecedent (lhs) and another entity from E as a consequent (rhs). Simply

put, an association rule gives the conditional probability of the rhs also occurring when

the lhs occurs, measured by a confidence value. That is, an association rules is of the form

lhs ⇒ rhs. When multiple rules are found for a given entity, they are first ranked by their

confidence values and then by their support values; both in a descending order (higher the

value, stronger the rule). We allow a user specified cut-off point to pick the top n rules.

Thus, EM(es) is the set of all consequents in the selected n rules.

Broadly, the presented approach for mining fine-grained evolutionary couplings and

prediction rules consists of three steps: [Warning: Draw object ignored]

4.2.2.1 Extract Change-sets from Software Repositories

Modern source-control systems, such as Subversion, preserve the grouping of several changes

in multiple files to a single change-set as performed by a committer. This information can

be easily obtained (e.g., svn log and pysvn).

CHAPTER 4. IMPACT ANALYSIS 100

4.2.2.2 Process to Fine-grained Change-sets

The differences in a file of a change-set can be readily obtained at a line-level granular-

ity (e.g., with diff utility). In this case, the line differences need to be mapped to the

corresponding fine-grained differences in the syntactic constructs. Our approach employs

srcDiff, a lightweight methodology for fine-grained differencing of files in a change-set. sr-

cDiff extends the srcML representation by also marking the regions of changes to the code

in a collection of difference elements. Information about the syntactic changes to the code

is found using an XPath query. [Warning: Draw object ignored]

4.2.2.3 Mine Evolutionary Couplings

A mining tool, namely sqminer, was previously developed to uncover evolutionary couplings

from the set of commits (processed at fine-granularity levels with srcDiff should the need

be). The basic premise of sqminer is if the same set of source code entities frequently

co-changes then there is a potential evolutionary coupling between them. sqminer supports

mining of both unordered and ordered patterns. These patterns are used to generate associ-

ation rules that serve as prediction rules for source code changes. sqminer has already been

applied previously to mine co-changes at the file level [80], uncover/discover traceability

links [75], and mine evolutionary couplings of localized documents [73].

4.2.3 Disjunctive and Conjunctive Combinations

With regards to combining conceptual and evolutionary dependencies, there is a pertinent

research question. Should the union or intersection of the two estimations be considered,

i.e., EI(es) ∪ EM(es) or EI(es) ∩ EM(es)? This question may not be an issue, if both

CHAPTER 4. IMPACT ANALYSIS 101

EI(es) and EM(es) predict the same estimation set. If the estimation sets differ, taking

their union could result in increased recall; however, at the expense of decreased precision (if

a large number of false-positive are estimated). Alternatively, taking only the intersection

imposes a stricter constraint that could result in increased precision; however, at the expense

of decreased recall.

The combined approaches for IA that use the union and intersection of estimations of

conceptual and evolutionary estimations are termed as disjunctive approach and conjunctive

approach respectively. That is, E(es)∪ = EI(es)∪EM(es) and E(es)∩ = EI(es)∩EM(es).

Our approach supports both of these combinations. Both approaches require the user to

specify a starting entity as well as a cut point for deriving an estimated impact set. For

a given cut point, µ, provided by the user, we compute the impact set of the disjunctive

method E(es)∪ by determining EI(es) and EM(es) such that the cardinality of each set is

equal (or the cardinality EI(es) is larger by one entity) and the cardinality of their union

equals µ. A similar approach is taken to obtain the impact set of the conjunctive method;

however, in this case we ensure the cardinality of the intersection equals µ. They use typical

sets of parameters needed for LSI and itemset mining algorithms.

4.2.4 Examples

In order to explain what each technique finds and the issues that arise in the integration

of the techniques, we present an example from a real system. In Apache httpd commit#

888310 addresses the bug#470872 regarding “Incorrect request body handling with Expect:

100-continue if the client does not receive a transmitted 300 or 400 response prior to send-

2https : //issues.apache.org/bugzilla/showbug.cgi?id = 47087

CHAPTER 4. IMPACT ANALYSIS 102

Table 4.1: Example showing the accuracy gains of the disjunctive impact analysis method on the
bug# 47087 in Apache httpd.

Conceputal Evolutionary Disjunctive

1 /server/protocol.c /modules/http/byterange filter.c /server/protocol.c

2 /modules/proxy/mod proxy http.c /modules/http/http protocol.c /modules/proxy/mod proxy http.c

3 /modules/debugging/mod bucketeer.c /modules/proxy/mod proxy ftp.c /modules/http/byterange filter.c

4 /server/core filters.c /server/core.c /modules/http/http protocol.c

ing its body”. In this revision to fix the bug there were three source code files which

needed to be changed (/modules/http/http filters.c, /modules/http/http protocol.c, and

/server/protocol.c). In order to perform impact analysis, the developer must have a start-

ing entity. For this example, let us assume the developer discovers, through feature location,

that fixing the problem requires modifying /modules/http/http filters.c. From this point

the developer can perform impact analysis to discover other entities which also require

modification. Using conceptual and evolutionary couplings for impact analysis, we obtain

the results in 4.1. As standalone techniques neither conceptual nor evolutionary coupling

are capable of establishing 100% recall. Conceptual coupling ranks /server/protocol.c as

first in the ranked list, but ranks /modules/http/http protocol.c as 91st, whereas evolu-

tionary coupling ranks /modules/http/http protocol.c second in the ranked list, but ranks

/server/protocol.c as 16th. We can combine the results using our disjunctive approach. This

results in the set of entities that also appear in 4.1. Here we can see that when combined,

the couplings are capable of identifying all methods requiring modification within an impact

set, i.e., cut point, of five methods. Note that our disjunctive and conjunctive approaches

result in sets as opposed to ranked lists (i.e., the entities are unordered).

CHAPTER 4. IMPACT ANALYSIS 103

4.3 Case Study

In this section we describe the empirical assessment of our approach. We describe our study

following the Goal-Question-Metrics paradigm [15], which includes goals, quality focus, and

context. In the context of our case study we aim at addressing the research questions (RQs):

• RQ1: Does combining conceptual and evolutionary couplings improve the accuracy

of IA when compared to the two standalone techniques?

• RQ2: Does the choice of granularity, i.e., file or method, affect the accuracy of IA of

standalone techniques and their combination?

The goal of the case study is to investigate these research questions. The quality focus is on

providing improved accuracy, while the perspective was of a software developer performing

a change task, which requires extensive impact analysis of related source code entities.

Our two research questions directly address the effectiveness and expressiveness of an IA

solution. With regards to effectiveness, it is desirable to have a technique that provides

all, and only, the impacted entities, i.e., prevents false positives and false negatives in

the estimated impact set as much as possible. Additionally, it is desirable to provide the

developers with the ability to apply the IA technique at various source code granularities.

Our approach offers this feature; however, an important issue is to assess the change in

effectiveness at different levels of granularity.

CHAPTER 4. IMPACT ANALYSIS 104

4.3.1 Accuracy Metrics

4.3.1.1 Precision and Recall

Impact analysis techniques are typically assessed with the two widely used metrics precision

(i.e., inverse measure of false positives) and recall (i.e., inverse measure of false negatives).

These metrics are computed from the estimated impact set produced from a technique and

the actual impact set from the established ground truth (e.g., change-sets/patches after the

proposed change is actually implemented or developer verification).

For a given entity es (e.g., file and method) let EI(es) be the set of entities that are

conceptually related to the entity es. Let Ri be the set of actual or correctly changed entities

with the entity es. The precision of conceptual couplings, PEI , is the mean percentage

of correctly estimated changed entities over the total estimated entities. The recall of

conceptual couplings, REI , is the mean percentage of correctly estimated changed entities

over the total correctly changed entities.

PEI =
1
n

n∑
i=1

|EIi ∩Ri|
EIi

× 100% (4.4)

REI =
1
n

n∑
i=1

|Ei ∩Ri|
Ri

× 100% (4.5)

The precision and recall values for evolutionary couplings, disjunctive, and conjunctive

methods can be similarly computed. The set EM(es) would indicate the set of entities

that are related to a known entity es based on evolutionary couplings. The sets E(es)∪

and E(es)∩ would indicate the couplings from the disjunctive and conjunctive methods

respectively.

CHAPTER 4. IMPACT ANALYSIS 105

Table 4.2: Characteristics of the subject systems considered in the empirical evaluation.

System Version LOC Files Methods Terms

Apache(httpd) 2.2.3 311K 782 n/a 6583

ArgoUML 0.28 367K 1,995 n/a 9384

iBatis 3.0.0-216 70K 774 n/a 3772

KOffice 2.0.91 2.0.91 231K 6.5K n/a 48513

KOffice 2.0.1 2.0.1 257K 6.7K 68.4K 32212

4.3.2 Evaluated Subject Systems

4.3.3 Examples

The context of our study is characterized by a set of four open source software systems,

namely Apache httpd, ArgoUML, iBatis, and KOffice. The selected set of systems represents

different primary implementation languages (e.g., C/C++ and Java), size, development

environment, and application domain. Apache httpd is an open source implementation

of an HTTP server, which focuses on providing a robust and commercial-grade system.

ArgoUML is a Java implementation of a UML diagramming tool. The iBatis Data Mapper

framework provides a mechanism that simplifies the use of relational database systems

with Java and .NET applications. KOffice is an application suite that includes various

office productivity applications such as word (i.e., KWord) and spreadsheet (i.e., KSpread)

processing. Specifics of various system characteristics appear in Table 4.3.3.

4.3.4 Evaluation Procedure

The source code changes in software repositories, i.e., commits, are used for the evaluation

purpose. Our general evaluation procedure consists of the following steps:

CHAPTER 4. IMPACT ANALYSIS 106

Table 4.3: Evolutionary training and (testing) datasets used for the empirical evaluation.

System History # of Commits # of Entities

Apache(httpd) 2.2.9-2.3.5 1736 (287) 2086 (982)

ArgoUML 0.24-0.28 3375 (773) 4217 (621)

iBatis 3.0.0-190 b1 -3.0.0-240 b10 108 (40) 461 (118)

KOffice 2.0.91 2.0.0-2.0.91 2749 (522) 5580 (1072)

KOffice 2.0.1 2.0.0-2.0.2 763 (255) 1233 (533)

KOffice 2.0.1* 2.0.0-2.0.2 577 (192) 5530 (1438)

1. Compute conceptual couplings on a release (e.g., KOffice 2.0.91) of a subject system

– Conceptual Training Set.

2. Mine evolutionary couplings (and association rules) from a set of commits in a history

period prior to the selected release in Step 1 – Evolutionary Training Set.

3. Select a set of commits in a history period after the selected release in Step 1 –Testing

Set. Each commit in the testing set is considered as an actual impact set, i.e., the

ground truth, for evaluation purposes.

4. Derive disjunctive and conjunctive impact sets from the two training sets for each

commit in the testing set.

5. Compute accuracy metrics for the two standalone techniques and their two combina-

tions.

6. Compare standalone and combination accuracy results.

7. Repeat the above steps for all the considered subject systems and releases.

The details of the training and testing sets are detailed next.

CHAPTER 4. IMPACT ANALYSIS 107

4.3.4.1 Conceptual training sets - Corpora

We generated two sets of corpora from the subject systems corresponding to the granularity

of documents at the file and method levels. The process of generating a corpus consisted

of extracting textual information, i.e., identifiers and comments, from the source code for

the specific granularity level. The identifiers and comments, i.e., terms, from each file

(or a method if that is the chosen granularity) formed a document, whereas a complete

collection of these documents formed a corpus. Once a corpus was built, LSI was used to

index its term-by-document co-occurrence matrix. Conceptual couplings between source

code documents, i.e., files or methods, were then computed (see section 4.2). Details of

the corpora, including the releases indexed, are provided in Table 4.3.3. The associated

computing time was consistent with the previous uses [5, 119].

4.3.4.2 Evolutionary training sets

In order to obtain evolutionary training sets we selected a period of history, which preceded

the version of the system used to build the corpus. For example, the corpus created for

Apache httpd used the source code from version 2.2.3. The commit history from releases

2.2.9 to 2.2.3 was considered for the evolutionary training set. Commits with more than ten

files were discarded. This type of filtering is a common heuristic used in mining techniques

to mitigate factors such as updating the license information on every file or performing

merging and copying [24, 46]. Furthermore, because commits may contain non source code

files, only source code files were considered and other types discarded.

The tool sqminer was employed to mine evolutionary couplings (and association rules)

in the itemset mining mode with minimum support values of 1, 2, 4, and 8. Also, we

CHAPTER 4. IMPACT ANALYSIS 108

considered all the possible association rules with the confidence values greater than zero.

Mining was performed at both file and method levels of granularity. The mining time was

in the order of a few seconds.

4.3.4.3 Testing set

The testing sets were extracted similar to training sets; however, the periods of history used

were different from the training set. The testing set consists of commits extracted from

a period of history after the release date of the version of the system used to build the

corpus. For example, the commit history of Apache httpd after the release 2.2.3 and up

to the release 2.2.5 was considered for the testing set. The testing set provides a way to

evaluate our proposed approach. Similar approaches for the training and testing sets are

previously reported in the literature, for example in [75, 161].

Table 4.3.4 shows the details of the evolutionary training and testing sets considered at

the file and method levels. The entries corresponding to the method level are suffixes with

a * symbol (same notation in other tables). They include a range of releases corresponding

to different history periods. Also, the numbers of commits and files (methods) during those

periods of history are provided. The (larger) training sets and (smaller) testing sets were

extracted from the History (Table 4.3.4) periods before and after the Versions used to

index with LSI. For the method level, the number of commits corresponds to commits that

contained method changes (and so differs from those at the file level).

CHAPTER 4. IMPACT ANALYSIS 109

Table 4.4: Orthogonality check for various cut points of conceptual (C), evolutionary (E), and
their combination. The results show that conceptual and evolutionary couplings provide orthogonal
information, and support a strong case for combining them.

System Metric 5 10 20 30 40 50

Apache C \ E 32 33 35 35 35 37

E \ C 39 36 28 23 20 17

C ∩ E 29 32 37 42 45 46

ArgoUML C \ E 59 51 44 41 41 40

E \ C 28 26 28 25 24 22

C ∩ E 13 23 29 34 35 38

iBatis C \ E 67 65 69 70 70 70

E \ C 15 21 14 14 13 12

C ∩ E 18 13 16 16 17 18

KOffice 2.0.91 C \ E 60 62 64 64 63 64

E \ C 26 22 16 13 12 11

C ∩ E 14 16 20 23 24 26

KOffice 2.0.1 C \ E 42 41 40 42 43 44

E \ C 43 38 36 35 33 32

C ∩ E 16 21 23 23 23 24

KOffice 2.0.1 C \ E 47 48 46 47 46 46

E \ C 52 51 52 50 51 51

C ∩ E 1 1 2 3 3 3

4.3.5 Results

4.3.5.1 RQ1:Does combining conceptual and evolutionary couplings improve

accuracy of IA?

Prior research efforts have investigated the performance of coupling metrics that use specific

sources of information (e.g., structural and textual) to capture couplings in source code.

Our first research question focuses on determining if we can improve the accuracy of IA by

CHAPTER 4. IMPACT ANALYSIS 110

augmenting metrics based on complementary underlying information.

As a step toward determining the potential benefits of combining conceptual and evo-

lutionary couplings, we analyze the orthogonality of the two standalone couplings. One

situation where the combination of the techniques is beneficial is when techniques provide

complementary sets of correct entities. If the standalone techniques considered for combina-

tion provide identical or very similar information, combining them may not be a worthwhile

effort. In order to measure the degree to which the techniques could potentially complement

one another we use the following metrics:

correctmi∩mj =
correctmi ∩ correctmj |
correctmi ∪ correctmj |

% (4.6)

correctmimj =
correctmi correctmj |
correctmi ∪ correctmj |

% (4.7)

where correctmi represents the set of source code entities correctly identified when using

coupling metric mi for IA. The two metrics capture the overlap between the set of correct

source code entities and the percentage of correct entities identified only by mi respectively.

The results of orthogonality metrics between the two metrics for the various systems are

given in Table 4.4. Based on our datasets, the overlap between the set of correct links for

the two approaches did not exceed 46%. Minimal overlap indicates potential orthogonality

between the two techniques. One exception is the case where virtually all correct entities

identified by one technique make up a small subset of the correct entities identified by

the other technique. A similar scenario is where one technique performs inadequately and

returns very few correct entities. Both cases are captured by our metric correctmimj . Our

results contain cases where conceptual couplings are capable of identifying a large portion of

CHAPTER 4. IMPACT ANALYSIS 111

correct entities not identified by evolutionary couplings, and vice versa. In case of KOffice

2.0.1 both techniques are capable of capturing a similar portion of correct entities. These

findings support our premise that combining conceptual and evolutionary couplings could

identify a larger set of correct entities.

Based on our datasets, conceptual and semantic couplings identify correct entities or-

thogonally. With this knowledge we direct our attention to our second step towards demon-

strating the benefits of combining the couplings. Table 4.3.5.2 provides precision and recall

results for the subject systems under study. These results are obtained by using the var-

ious couplings for IA. Only a subset of the cut points (µ) we considered are shown in

Table 4.3.5.2. The cut points represent the sizes of the impact set considered with our

combinations. For example, a cut point of 5 indicate that the estimated impact set with

our approach contained 5 entities.

We considered both disjunctive and conjunctive approaches to combining couplings.

The disjunctive approach outperforms the conjunctive approach in all cases considered

(see Table 4.3.5.2). Additionally, the conjunctive approach is generally unable to provide

improvement over either technique. This is somewhat expected because the two couplings

appear complementary (see Table 4.4). The orthogonality between the sets of correct entities

identified by the two couplings appears to contribute to the performance of the conjunctive

approach. The utility of the conjunctive approach is probably better suited for scenarios

where a pair of couplings identifies similar sets of correct entities, but varying sets of false

positives. For such a scenario the conjunctive approach may serve as a useful filtering

mechanism for false positives. The disjunctive approach better leverages the orthogonality

between the couplings. The rest of the discussion about the combinations of two couplings

CHAPTER 4. IMPACT ANALYSIS 112

refers to the disjunctive approach.

[Warning: Draw object ignored]The prevailing pattern of our results demonstrates that

the combination of conceptual and evolutionary couplings improves the performance over

either standalone technique. Consider a case in Table 4.3.5.2 where µ = 30 for Apache httpd.

Conceptual and evolutionary couplings in this instance yield recall values of 58% and 51%

respectively, while the combination of the two increases recall to 70%. Similar improvements

are apparent throughout all the datasets considered in our evaluation. Another example

is where µ = 50 for KOffice 2.0.1 (file-level granularity). In this case both conceptual and

evolutionary couplings result in recall of 37% while their combination gives recall of 57%.

Within our results a few cases surface that illustrate the importance of both techniques.

For example, in the case where µ = 5 for iBatis combining conceptual and evolutionary

couplings does not improve accuracy. This can be partially attributed to the accuracy of

the evolutionary coupling metric. In this case, the inadequate individual performance of a

technique limits the gain acquired when they are combined.

Our results for combining conceptual and evolutionary couplings are promising. To

further ascertain our conclusions on our initial dataset, we carried out a statistical test. We

developed four testable null hypotheses:

H0CP : Combining conceptual and evolutionary couplings does not significantly improve

precision results of impact analysis compared to conceptual couplings.

H0CR: Combining conceptual and evolutionary couplings does not significantly improve

recall results of impact analysis compared to conceptual couplings.

H0EP : Combining conceptual and evolutionary couplings does not significantly improve

precision results of impact analysis compared to evolutionary couplings.

CHAPTER 4. IMPACT ANALYSIS 113

Table 4.5: Results of Wilcoxon signed-rank test (= 30). The p values indicate that the disjunctive
approach provided improvement is not by chance.

System H0CP H0CR H0EP H0ER Null Hypothesis

Apache(httpd) 0.0002 0.0003 0.0001 0.0003 Rejected

ArgoUML 0.0050 0.0039 < 0.0001 < 0.0001 Rejected

iBatis 0.0126 0.0126 0.0001 0.0002 Rejected

KOffice 2.0.91 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected

KOffice 2.0.1 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected

KOffice 2.0.1* < 0.0001 < 0.0001 < 0.0001 < 0.0001 Rejected

H0ER: Combining conceptual and evolutionary couplings does not significantly improve

recall results of impact analysis compared to evolutionary couplings.

We also developed alternative hypotheses for the cases where the null hypotheses can

be rejected with relatively high confidence. For example:

HaCP : Combining conceptual and evolutionary couplings significantly improve precision

results of impact analysis compared to conceptual couplings.

The remaining three alternative hypotheses are formulated in a similar manner and are

left out for brevity.

To test for statistical significance we used the Wilcoxon signed-rank test, a non-parametric

paired samples test. Our application of the test determines whether the improvement ob-

tained using the combination of conceptual and evolutionary couplings compared to stan-

dalone approaches is statistically significant.

Table 4.3.5.1 presents the results of performing the Wilcoxon signed-rank test. We

performed the test for each of the four hypotheses for each system to determine whether

the improvements for precision and recall when combining the techniques are statistically

CHAPTER 4. IMPACT ANALYSIS 114

Table 4.6: Precision (P) and recall (R) percentages results of conceptual coupling (Conc), evolu-
tionary coupling (Evol), disjunctive (Disj), and conjunctive (Conj) approaches to impact analysis for
all systems using various cut points. ImpC and ImpE show the improvement obtained by the dis-
junctive approach compared to conceptual and evolutionary couplings respectively. The disjunctive
approach outperforms with statistical significance.

5 10 20 30 40 50 5 10 20 30 40 50

P R P R P R P R P R P R P R P R P R P R P R P R

Apache Conc 15 28 11 38 7 49 6 58 5 63 4 67 KOffice 2.0.91 13 27 9 35 6 46 5 53 4 56 3 59

Evol 18 38 11 43 6 48 4 51 3 53 3 54 9 19 6 22 4 24 3 26 2 28 2 28

Disj 21 43 14 54 9 64 6 70 5 73 4 78 17 34 12 44 8 55 6 60 5 63 4 65

Conj 16 34 10 40 6 47 4 47 3 48 2 48 8 16 5 21 3 22 2 22 2 23 1 23

ImpC 6 15 3 16 2 15 0 12 0 10 0 11 4 7 3 9 2 9 1 7 1 7 1 6

ImpE 3 5 3 11 3 16 2 19 2 20 1 24 8 15 6 22 4 31 3 34 3 35 2 37

ArgoUML Conc 11 17 8 22 5 27 4 32 4 35 3 38 KOffice 2.0.1 10 19 7 26 4 30 3 33 3 35 2 37

Evol 6 10 5 15 4 20 3 24 3 27 2 29 13 26 9 30 5 35 4 36 3 37 2 37

Disj 11 19 9 27 6 33 5 38 4 41 4 44 16 34 11 41 7 49 5 53 4 55 4 57

Conj 10 16 7 18 4 21 3 25 3 25 2 25 8 15 5 17 3 18 2 18 2 18 1 18

ImpC 0 2 1 5 1 6 1 6 0 6 1 6 6 15 4 15 3 19 2 20 1 20 2 20

ImpE 5 9 4 12 2 13 2 14 1 14 2 15 3 8 2 11 2 14 1 17 1 18 2 20

iBatis Conc 17 27 13 37 10 56 7 59 6 61 5 63 KOffice 2.0.1* 5 4 3 4 2 5 2 6 1 7 1 7

Evol 7 11 6 17 3 19 2 21 2 24 2 24 11 7 10 12 7 17 6 17 5 18 4 19

Disj 18 27 14 40 10 60 8 66 6 68 5 68 14 10 12 15 8 21 6 22 5 24 4 25

Conj 8 12 5 13 3 15 2 15 1 15 1 15 2 1 1 1 1 1 1 1 1 1 1 1

ImpC 1 0 1 3 0 4 1 7 0 7 0 5 9 6 9 11 6 16 4 16 4 17 3 18

ImpE 11 16 8 23 7 41 6 45 4 44 3 44 3 3 2 3 1 4 0 5 0 6 0 6

significant over the accuracy of standalone conceptual and evolutionary couplings. In all

cases considered for our dataset we obtained a p-value less than 0.05, indicating that the

improvement in accuracy obtained is not by chance.

4.3.5.2 RQ2: Does the choice of granularity (i.e., file vs. method) impact

standalone techniques and their combinations?

Our second research question focuses on the impact of granularity on the accuracy of the

standalone techniques, as well as their combinations. We examined the impact of different

CHAPTER 4. IMPACT ANALYSIS 115

granularities on the accuracy of the couplings when they are used for IA. Here, we focused

on the accuracy of the various couplings on the system KOffice 2.0.1. For this system

we obtained results at both file and method levels of granularity. Accuracy results of the

techniques for IA are shown in Table 4.3.5.2. There is a noticeable decrease in accuracy

when method level granularity is used. Conceptual coupling is affected by the difference

in granularity more than evolutionary coupling. Regardless of the decrease in accuracy of

the standalone techniques, when the two are combined there exists a statistically significant

improvement in accuracy. In certain cases the improvement achieved is 6%. Generally, only

a small portion of correct methods identified by both techniques overlap, i.e., they exhibit

orthogonality. This allows their combination to provide an enriched set of correct methods.

Our results show that the level of granularity does impact the accuracy of both stan-

dalone techniques and their combinations. Although finer granularity decreases accuracy of

all approaches, it does not prevent the combination of the two from outperforming the stan-

dalone techniques. That is, the gain acquired by combining conceptual and evolutionary

coupling exists regardless of the granularity considered in this study. For both file-level and

method-level granularity levels, combining conceptual and evolutionary information delivers

accuracy superior to either standalone technique.

4.3.6 Threats to validity

We address some of the threats to validity that could have impacted our empirical study and

results. The uses of LSI and itemset mining algorithms are sensitive to a set of user-defined

parameters. It is a viable risk that the improvements gained by our approach are valid only

for a particular set of these parameter values. To address this risk, we experimented with

CHAPTER 4. IMPACT ANALYSIS 116

different parameter values. For example, the accuracy of evolutionary couplings decreases

with an increase in the minimum support value; however, the trend of accuracy gains

continued with our approach. We will continue our quest to obtain the optimal values with

other studies in the future.

We measured the accuracy of IA with precision and recall metrics. It is possible that

a different accuracy metric may produce a different result; however, both these metrics are

widely used and accepted in the community, including for IA. We tried with F-measure,

which is based on precision and recall, and also noticed statistically significant improve-

ments with our disjunctive approach. We considered (later) commits as the gold standard

for computing our accuracy metrics. It is reasonable to assume that not all the entities in a

commit are related to a single change request, and a single commit may not capture all the

entities related to a change request. Therefore, they may not be an accurate representation

of the actual change-sets and could have compromised our accuracy basis. However, com-

mits have been used as a basis for accuracy assessment previously (e.g., see Zimmerman et

al. [161]). We did some manual inspection and plan to conduct a user study with developer

established actual impact sets in the future. We reported our findings at the granularity of

file and method levels. A possible issue here could be how well our results hold for other

granularity levels besides the two considered. We concur with previous studies [161] that

file and method granularity levels provide a realistic balance of coarse and fine granularity

levels for IA. The accuracies of the two standalone techniques, however low in certain cases

to raise a practicality concern, are comparable to other previous results [161]. Our work

shows how to improve accuracy by forming effective combinations.

We evaluated on datasets from four open source systems that represent a wide spectrum

CHAPTER 4. IMPACT ANALYSIS 117

of domains, programming languages (C/C++ and Java), sizes, and development processes.

However, we do not claim that our combined approach would operate with equivalent im-

provement in accuracy on other systems, including closed source.

4.4 Discussion

The empirical assessment on four open source systems provides support for our approach

with several conclusions in the context of change impact analysis. Combining conceptual

and evolutionary couplings improves accuracy. Our findings indicate that in certain cases

an improvement of 20% in recall is achieved when conceptual and evolutionary coupling is

combined. The overall improvement obtained when combining the two techniques is statis-

tically significant for the dataset used in our evaluation. Although our combining methods

of couplings may appear straightforward, it did provide promising improvements in accu-

racy. Our findings show that the disjunctive approach clearly outperforms the conjunctive

approach in accuracy. We conjecture that the difference in performance is, in part, an at-

tribute of the orthogonal nature of the correct entities revealed by the two couplings in our

empirical analysis.

Chapter 5

Conclusion

The dissertation establishes an approach which integrates information as well as integrates

orthogonal analysis techniques to support three core software maintenance and evolution

tasks. The approach is focused on (1) the integration of information, i.e., conceptual and

evolutionary relationships found in structured and unstructured software artifacts and (2)

the integration of analysis techniques, i.e., analyzing a single information source using or-

thogonal analysis techniques. Information Retrieval and Mining Software Repositories based

techniques are leveraged to acquire insight necessary to reveal useful relationships. In this

dissertation, we provide results of our approach when used to address crucial software main-

tenance task, namely developer recommendations, traceability link recovery, and impact

analysis.

The main contributions of this dissertation include:

• Developer Recommendation: We present a novel approach to recommend ex-

pert developers for software change requests (e.g., bug reports and feature requests)

of interest. Our approach integrates IR with MSR. IR-based concept location tech-

nique is first used to locate source code entities, e.g., files and classes, relevant to

a given textual description of a change request. Expert developers are then mined

118

CHAPTER 5. CONCLUSION 119

from the previous commits from version control repositories related to the identified

relevant source code entities. The results of our evaluation on three open-source sys-

tems, namely KOffice, Eclipse and ArgoUML, show that our approach can identify

relevant developers to work on change requests with fairly high accuracy and in an

effective ranked order. The results show that the overall accuracies of the correctly

recommended developers are between 47% and 96% for bug reports, and between 43

and 60for feature requests. Through the integration of information, we provide project

leads and developers with an approach to automatically suggest relevant developers

for a given change request in free-form text.

• Traceability Link Recovery: We developed and evaluated a novel approach to

TR that integrates orthogonal analysis IR techniques. In the literature, different

Information Retrieval methods have been proposed to recover traceability links among

software artifacts. We conduct an empirical study and observe that no individual IR

technique sensibly outperforms the others, however, some methods recover different,

yet complementary traceability links. In this work we leverage this empirical finding

and present an integrated approach to combine orthogonal IR techniques, which have

been statistically shown to produce dissimilar results. We consider the following

IR techniques, Vector Space Model, probabilistic Jensen and Shannon model, and

Relational Topic Modeling, which has not been used in the context of traceability

link recovery before. We investigated (i) the orthogonality of RTM as compared

to other IR methods and (ii) the recovery accuracy improvement provided by the

combination of RTM with other canonical IR methods. Based on our evaluation,

CHAPTER 5. CONCLUSION 120

conducted on six software systems, we conclude that the hybrid method outperforms

stand-alone IR methods as well as any other combination of non-orthogonal methods

with a statistically significant margin.

• Impact Analysis: We have developed a novel approach to support the software

change impact analysis. Our approach integrates conceptual and evolutionary in-

formation. Information Retrieval is used to identify couplings based on conceptual

relationships from a single release of the software system’s source code. MSR is used to

identify couplings based on evolutionary relationships mined from source code com-

mits. An empirical study is conducted on four open source systems. Our finding

indicate that integrating conceptual and evolutionary information improves accuracy.

In certain cases, we observe an improvement as much as 20%. Furthermore, the im-

provement obtained when integrating the two sources of information is statistically

significant for the dataset used in our evaluation.

Our findings indicate that our integrated approach outperforms individual techniques

which are currently considered “state-of-the-art”. Furthermore, integrating multiple infor-

mation sources as well as integrating orthogonal analysis techniques to address software

maintenance task sets our approach apart from previously reported relevant solutions in

the literature.

Bibliography

[1] A. Abadi, M. Nisenson, and Y. Simionovici. A traceability technique for
specifications. In 16th IEEE International Conference on Program Comprehension
(ICPC’08), pages 103–112, Amsterdam, The Netherlands, 2008.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In
11th International Conference on Data Engineering, Taipei, Taiwan, 1995. IEEE Com-
puter Society: Los Alamitos CA.

[3] A. Alali, H. Kagdi, and J.I. Maletic. What’s a typical commit? a character-
ization of open source software repositories. In 16th IEEE International Conference
on Program Comprehension (ICPC’08), Amsterdam, The Netherlands, 2008.

[4] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guhneuc. Is it a
bug or an enhancement?: a text-based approach to classify change requests. In 18th
conference of the Centre for Advanced Studies on Collaborative research (CASCON
’08), 2008.

[5] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Identifying the
starting impact set of a maintenance and reengineering. In 4th European Conference
on Software Maintenance (CSMR2000), pages 227–230, Zurich, Switzerland, 2000.
CS Press.

[6] G. Antoniol, G. Casazza, and A. Cimitile. Traceability recovery by modeling
programmer behavior. In 7th IEEE Working Conference on Reverse Engineering
(WCRE’00), pages 240–247, Brisbane, Australia, 2000.

[7] G. Antoniol and Y.G. Guhneuc. Feature identification: An epidemiological
metaphor. IEEE Transactions on Software Engineering, 32(9):627–641, 2006.

[8] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lu-
cia, and Ettore Merlo. Recovering traceability links between code and documen-
tation. IEEE Transactions on Software Engineering, 28(10):970 – 983, 2002.

[9] Giuliano Antoniol, Yann-Gael Gueheneuc, Ettore Merlo, and Paolo
Tonella. Mining the lexicon used by programmers during software evolution. In
23rd IEEE International Conference on Software Maintenance (ICSM’07), pages 14–
23, Paris, France, 2007. IEEE Computer Society Press.

121

BIBLIOGRAPHY 122

[10] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In 28th
International Conference on Software Engineering (ICSE’06), pages 361–370, 2006.

[11] John Anvik and Gail Murphy. Determining implementation expertise from
bug reports. In Fourth International Workshop on Mining Software Repositories
(MSR’07), Minneapolis, MN, 2007.

[12] J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and omis-
sions in software repositories. In 31st IEEE/ACM International Conference on Soft-
ware Engineering (ICSE’09), pages 298–308, Vancouver, British Columbia, Canada,
2009.

[13] H. Asuncion, A. Asuncion, and R. Taylor. Software traceability with topic
modeling. In 32nd International Conference on Software Engineering (ICSE’10),
2010.

[14] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

[15] V. R. Basili, G. Caldiera, and D. H. Rombach. The Goal Question Metric
Paradigm. John W and S, 1994.

[16] T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster. The concept assign-
ment problem in program understanding. In 15th IEEE/ACM International Confer-
ence on Software Engineering (ICSE’94), pages 482–498, 1994. hard copy.

[17] D. Binkley and D. Lawrie. Information Retrieval Applications in Software Main-
tenance and Evolution. Encyclopedia of Software Engineering. Taylor & Francis LLC,
2010.

[18] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining
email social networks. In International Workshop on Mining Software Repositories
(MSR’06), pages 137–143, Shanghai, China, 2006.

[19] C. Bird, D. S. Pattison, R. M. D’Souza, V. Filkov, and P. T. Devanbu.
Latent social structure in open source projects. In ACM SIGSOFT Symposium on
Foundations of Software Engineering (FSE’08), pages 24–35, Atlanta, GA, 2008.

[20] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

[21] Barry W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1981.

[22] S. Bohner and R. Arnold. Software Change Impact Analysis. IEEE Computer
Society, Los Alamitos, CA, 1996.

[23] L. Briand, Y. Labiche, and G. Soccar. Automating impact analysis and re-
gression test selection based on uml designs. In International Conference on Soft-
ware Maintenance (ICSM’02), pages 252–261, Montreal, Quebec, Canada, 2002.
Briand02.pdf.

BIBLIOGRAPHY 123

[24] Lionel Briand, Jurgen Wust, and Hakim Louinis. Using coupling measurement
for impact analysis in object-oriented systems. In IEEE International Conference
on Software Maintenance (ICSM’99), pages 475–482. IEEE Computer Society Press,
1999.

[25] G. Canfora and L. Cerulo. Impact analysis by mining software and change
request repositories. In 11th IEEE International Symposium on Software Metrics
(METRICS’05), pages 20–29, 2005.

[26] Gerardo Canfora and L. Cerulo. Fine grained indexing of software reposi-
tories to support impact analysis. In International Workshop on Mining Software
Repositories (MSR’06), pages 105 – 111, 2006.

[27] Gerardo Canfora and L. Cerulo. Supporting change request assignment in
open source development. In 21st Annual ACM Symposium on Applied Computing
(SAC’06), pages 1767 – 1772, 2006.

[28] Giovanni Capobianco, Andrea De Lucia, Rocco Oliveto, Annibale
Panichella, and Sebastiano Panichella. On the role of the nouns in ir-based
traceability recovery. In 17th IEEE International Conference on Program Compre-
hension (ICPC’09), pages 148 – 157, Vancouver, British Columbia, Canada, 2009.

[29] C. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function
identifiers. In 6th IEEE Working Conference on Reverse Engineering (WCRE’99),
pages 112–122, Atlanta, Georgia, USA, 1999.

[30] Marcelo Cataldo, Patrick Wagstrom, James Herbsleb, and Kathleen M.
Carley. Identification of coordination requirements: Implications for the design
of collaboration and awareness tools. In 20th anniversary conference on Computer
supported cooperative work (CSCW’06), pages 353 – 362, Alberta, Canada, 2006.

[31] Jonathan Chang and D. M. Blei. Hierarchical relational models for document
networks. Annals of Applied Statistics, 2010.

[32] K. Chen and V. Rajlich. Ripples: Tool for change in legacy software. In Inter-
national Conference on Software Maintenance (ICSM’01), pages 230–239, Florence,
Italy, 2001. Chen01.pdf.

[33] Kunrong Chen and Vaclav Rajlich. Case study of feature location using de-
pendence graph. In 8th IEEE International Workshop on Program Comprehension
(IWPC’00), pages 241–249, Limerick, Ireland, 2000.

[34] B. Cleary, C. Exton, J. Buckley, and M. English. An empirical analysis of
information retrieval based concept location techniques in software comprehension.
Empirical Software Engineering, An International Journal, 14(1):93–130, 2009.

[35] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Ro-
manova. Best practices for automated traceability. IEEE Computer, 40(6):27–35,
2007. 1271947.

BIBLIOGRAPHY 124

[36] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A ma-
chine learning approach for tracing regulatory codes to product specific requirements.
In 32nd ACM/IEEE International Conference on Software Engineering (ICSE’10),
pages 155–164, Cape Town, South Africa, 2010.

[37] J. Cleland-Huang, Y. Shin, E. Keenan, A. Czauderna, G. Leach,
E. Moritz, Gethers, M., D. Poshyvanyk, J. H. Hayes, and W. Li. To-
ward actionable, broadly accessible contests in software engineering. In Proc. of 34rd
ACM/IEEE International Conference on Software Engineering (ICSE’12), New Ideas
and Emerging Results (NIER) Track, Zurich, Switzerland, 2012.

[38] Jane Cleland-Huang, R. Settimi, C. Duan, and X. Zou. Utilizing supporting
evidence to improve dynamic requirements traceability. In International Requirements
Engineering Conference (RE’05), pages 135–144, Paris, France, 2005.

[39] J. Cohen. Statistical power analysis for the behavioral sciences. 1988.

[40] Michael L. Collard, Huzefa H. Kagdi, and Jonathan I. Maletic. An xml-
based lightweight c++ fact extractor. In 11th IEEE International Workshop on Pro-
gram Comprehension (IWPC’03), pages 134–143, Portland, OR, 2003. IEEE-CS.

[41] W. J. Conover. Practical Nonparametric Statistics. Third Edition, Wiley, 1998.

[42] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. Hipikat: A project
memory for software development. IEEE Transactions on Software Engineering,
31(6):446–465, 2005.

[43] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability
links in software artefact management systems using information retrieval methods.
ACM Transactions on Software Engineering and Methodology, 16(4), 2007.

[44] A. De Lucia, R. Oliveto, and P. Sgueglia. Incremental approach and user feed-
backs: a silver bullet for traceability recovery. In IEEE International Conference on
Software Maintenance (ICSM’06), pages 299–309, Philadelphia, Pennsylvania, 2006.

[45] Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. The role of
the coverage analysis during ir-based traceability recovery: A controlled experiment.
In 25th IEEE International Conference on Software Maintenance (ICSM’09), pages
371–380, Edmonton, Alberta, Canada, 2009.

[46] Scott Deerwester, Susan T. Dumais, G. W. Furnas, Thomas K. Landauer,
and R. Harshman. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41:391–407, 1990.

[47] F. Deissenboeck and M. Pizka. Concise and consistent naming. In 13th IEEE
International Workshop on Program Comprehension (IWPC’05), pages 97–106, St.
Louis, Missouri, USA, 2005.

BIBLIOGRAPHY 125

[48] Christian Del Rosso. Comprehend and analyze knowledge networks to improve
software evolution. Journal of Software Maintenance and Evolution: Research and
Practice, 21:189 – 215, May 2009.

[49] J. L. Devore and N. Farnum. Applied Statistics for Engineers and Scientists.
1999.

[50] G. A. Di Lucca, M. Di Penta, and S. Gradara. An approach to classify software
maintenance requests. In IEEE International Conference on Software Maintenance
(ICSM’02), pages 93–102, Montral, Qubec, Canada, 2002.

[51] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in
source code: A taxonomy and survey. Journal of Software Maintenance and Evolution:
Research and Practice (JSME), to appear.

[52] M. Eaddy, A. V. Aho, G. Antoniol, and Y.G. Guhneuc. Cerberus: Tracing
requirements to source code using information retrieval, dynamic analysis, and pro-
gram analysis. In 16th IEEE International Conference on Program Comprehension
(ICPC’08), pages 53–62, Amsterdam, The Netherlands, 2008.

[53] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features
in source code. IEEE Transactions on Software Engineering, 29(3):210 – 224, 2003.

[54] Andrew D. Eisenberg and Kris De Volder. Dynamic feature traces: Find-
ing features in unfamiliar code. In 21st IEEE International Conference on Software
Maintenance (ICSM’05), pages 337–346, Budapest, Hungary, 2005.

[55] Rudolf Ferenc, Arpad Beszedes, and T. Gyimthy. Extracting facts with
columbus from c++ code. In 8th European Conference on Software Maintenance and
Reengineering (CSMR 2004), pages 4–8, Tampere, Finland, 2004.

[56] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report data for
feature tracking. In IEEE Working Conference on Reverse Engineering (WCRE’03),
pages 90–101, 2003.

[57] K. Gallagher and J. Lyle. Using program slicing in software maintenance. Trans-
actions on Software Engineering, 17(8):751–762, 1991. Gallagher91.pdf.

[58] G. Gay, S. Haiduc, M. Marcus, and T. Menzies. On the use of relevance
feedback in ir-based concept location. In 25th IEEE International Conference on
Software Maintenance (ICSM’09), pages 351–360, Edmonton, Canada, 2009.

[59] Daniel M. German. An empirical study of fine-grained software modifications.
Empirical Software Engineering, An International Journal, 11(3):369–393, 2006.

[60] Daniel M. German. A study of the contributors of postgresql. In 2006 International
Workshop on Mining Software Repositories (MSR ’06), pages 163 – 164, Shanghai,
China, 2006.

BIBLIOGRAPHY 126

[61] M. Gethers and D. Poshyvanyk. Using relational topic models to capture cou-
pling among classes in object-oriented software systems. In 26th IEEE International
Conference on Software Maintenance (ICSM’10), pages 1–10, Timioara, Romania,
2010.

[62] M. Gibiec, A. Czauderna, and J. Cleland-Huang. Towards mining replacement
queries for hard-to-retrieve traces. In 25th IEEE/ACM International Conference on
Automated Software Engineering (ASE’10), pages 245–254, Antwerp, Belgium, 2010.

[63] T. Girba, T. Ducasse, and M. Lanza. Yesterday’s weather: Guiding early reverse
engineering efforts by summarizing the evolution of changes. In 20th IEEE Interna-
tional Conference on Software Maintenance (ICSM’04), pages 40–49, Chicago, IL,
2004.

[64] N. Gold, M. Harman, Z. Li, and K. Mahdavi. Allowing overlapping bound-
aries in source code using a search based approach to concept binding. In 22nd
IEEE International Conference on Software Maintenance (ICSM’06), pages 310–319,
Philadelphia, PA, 2006.

[65] S. Grant, J. R. Cordy, and D. B. Skillicorn. Automated concept location using
independent component analysis. In 15th Working Conference on Reverse Engineering
(WCRE’08), pages 138–142, Antwerp, Belgium, 2008.

[66] O. Greevy, S. Ducasse, and T. Girba. Analyzing software evolution through
feature views. Journal of Software Maintenance and Evolution: Research and Practice,
18(6):425 – 456, 2006.

[67] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram. Advancing candidate link gener-
ation for requirements tracing: the study of methods. IEEE Transactions on Software
Engineering, 32(1):4–19, 2006.

[68] E. Hill, L. Pollock, and K. Vijay-Shanker. Exploring the neighborhood with
dora to expedite software maintenance. In 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE’07), pages 14–23, 2007.

[69] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically capturing source
code context of nl-queries for software maintenance and reuse. In 31st IEEE/ACM
International Conference on Software Engineering (ICSE’09). Vancouver, Canada,
2009.

[70] R. Jacobs. Methods for combining experts’ probability assessments. Neural Com-
putation, 7(5):867–888, 1995.

[71] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage with bug tossing
graphs. In 7th European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE 2009), Amster-
dam, The Netherlands, 2009.

BIBLIOGRAPHY 127

[72] H. Jiang, T. Nguyen, I. X. Che, H. Jaygarl, and C. Chang. Incremental latent
semantic indexing for effective, automatic traceability link evolution management.
In 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE’08), L’Aquila, Italy, 2008.

[73] H. Kagdi, M.L. Collard, and J.I. Maletic. A survey and taxonomy of ap-
proaches for mining software repositories in the context of software evolution. Journal
of Software Maintenance and Evolution: Research and Practice (JSME), 19(2):77–
131, 2007.

[74] H. Kagdi, M. Hammad, and J. I. Maletic. Who can help me with this source code
change? In IEEE International Conference on Software Maintenance (ICSM’08),
Beijing, China, 2008.

[75] H Kagdi, J. I. Maletic, and Bonita Sharif. Mining software repositories for
traceability links. In IEEE International Conference on Program Comprehension
(ICPC’07), pages 145–154, Banff, Canada, 2007.

[76] H. Kagdi and D. Poshyvanyk. Who can help me with this change request? In
17th IEEE International Conference on Program Comprehension (ICPC’09), pages
273–277, Vancouver, British Columbia, Canada, 2009.

[77] H. Kagdi, M. Gethers, and D. Poshyvanyk. SE2 model to support software
evolution. In Proc. of 27th IEEE International Conference on Software Maintenance
(ICSM’11), Early Research Achievements Track, pages 512–515, Williamsburg, Vir-
ginia, USA, 2011.

[78] Huzefa Kagdi, M. Gethers, Denys Poshyvanyk, and Michael Collard.
Blending conceptual and evolutionary couplings to support change impact analy-
sis in source code. In Proc. of 17th Working Conference on Reverse Engineering
(WCRE’10), pages 119–128, Beverly, Massachusetts, USA, 2010.

[79] Huzefa Kagdi, M. Gethers, Denys Poshyvanyk, and Maen Hammad. As-
signing change requests to software developers. Journal of Software: Evolution and
Process, 24(1):3–33, 2012.

[80] Huzefa Kagdi, Shehnaaz Yusuf, and J. I. Maletic. Mining sequences of
changed-files from version histories. In 3rd International Workshop on Mining Soft-
ware Repositories (MSR’06), pages 47–53, Shanghai, China, 2006. ACM Press: New
York NY.

[81] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, and D. I. K. Sjøberg. A systematic
review of effect size in software engineering experiments. Information and Software
Technology, 49(11-12):1073–1086, 2007.

[82] Shinji Kawaguchi, Pankaj K. Garg, Makoto Matsushita, and Katsuro
Inoue. Automatic categorization algorithm for evolvable software archive. In 6th
International Workshop on Principles of Software Evolution (IWPSE’03), pages 195–
200, 2003.

BIBLIOGRAPHY 128

[83] Ed Keenan, Adam Czauderna, Greg Leach, Jane Cleland-Huang,
Yonghee Shin, Evan Moritz, M. Gethers, Denys Poshyvanyk, Jonathan
Maletic, Jane Huffman Hayes, Alex Dekhtyar, Daria Manukian, Shervin
Hussein, and Derek Hearn. Tracelab: An experimental workbench for equipping
researchers to innovate, synthesize, and comparatively evaluate traceability solutions.
In Submitted to 34th ACM/IEEE International Conference on Software Engineering
(ICSE’12), Formal Research Tool Demonstration Track, Zurich, Switzerland, 2012.

[84] Sam Klock, M. Gethers, Bogdan Dit, and Denys Poshyvanyk. Traceclipse:
An eclipse plug-in for traceability link recovery and management. In Proc. of 6th
ICSE 2011 International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE’11), pages 24–30, Honolulu, Hawaii, USA, 2011.

[85] R. Kosara, C. G. Healey, V. Interrante, D. H. Laidlaw, and C Ware.
Visualization viewpoints. Computer Graphics and Applications, 23(4):20–25, 2003.

[86] J. Kothari, T. Denton, S. Mancoridis, and A. Shokoufandeh. On computing
the canonical features of software systems. In 13th IEEE Working Conference on
Reverse Engineering (WCRE’06), October 2006.

[87] Adrian Kuhn, Stephane Ducasse, and Tudor Grba. Semantic clustering:
Identifying topics in source code. Information and Software Technology, 49(3):230–
243, 2007.

[88] J. Law and G. Rothermel. Whole program path-based dynamic impact analysis.
In 25th International Conference on Software Engineering (ICSE’03), pages 308–318,
Portland, Oregon, 2003.

[89] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature location via
information retrieval based filtering of a single scenario execution trace. In 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE’07),
pages 234–243, Atlanta, Georgia, 2007.

[90] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimthy, and N. Chrisochoides.
Modeling class cohesion as mixtures of latent topics. In 25th IEEE International
Conference on Software Maintenance (ICSM’09), pages 233–242, September 20-26
2009.

[91] M. Lormans and A. Van Deursen. Can lsi help reconstructing requirements trace-
ability in design and test? In 10th European Conference on Software Maintenance
and Reengineering (CSMR’06), pages 47–56, 2006.

[92] Marco Lormans, Arie Deursen, and Hans-Gerhard Gross. An industrial
case study in reconstructing requirements views. Empirical Software Engineering, An
International Journal, 13(6):727–760, 2008. 1466714.

[93] S. Lukins, N. Kraft, and L. Etzkorn. Source code retrieval for bug location
using latent dirichlet allocation. In 15th Working Conference on Reverse Engineering
(WCRE’08), pages 155–164, Antwerp, Belgium, 2008.

BIBLIOGRAPHY 129

[94] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito. Expertise recommen-
dation with usage expertise. In 25th IEEE International Conference on Software
Maintenance (ICSM’09), Edmonton, Alberta, Canada, 2009.

[95] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information retrieval ap-
proach for automatically constructing software libraries. IEEE Transactions on Soft-
ware Engineering, 17(8):800–813, 1991.

[96] Jonathan I. Maletic and Andrian Marcus. Supporting program comprehension
using semantic and structural information. In 23rd International Conference on Soft-
ware Engineering (ICSE’01), pages 103–112, Toronto, Ontario, Canada, 2001. IEEE.
hard copy - .pdf.

[97] A. Marcus, J.I. Maletic, and A. Sergeyev. Recovery of traceability links be-
tween software documentation and source code. International Journal of Software
Engineering and Knowledge Engineering, 15(4):811–836, 2005.

[98] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the conceptual cohesion of
classes for fault prediction in object oriented systems. IEEE Transactions on Software
Engineering, 34(2):287–300, 2008.

[99] Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept
clones in source code. In Automated Software Engineering (ASE’01), pages 107–114,
San Diego, CA, 2001.

[100] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic indexing. In 25th IEEE/ACM
International Conference on Software Engineering (ICSE’03), pages 125–137, Port-
land, OR, 2003.

[101] Andrian Marcus, Vaclav Rajlich, Joseph Buchta, Maksym Petrenko, and
Andrey Sergeyev. Static techniques for concept location in object-oriented code.
In 13th IEEE International Workshop on Program Comprehension (IWPC’05), pages
33–42, St. Louis, Missouri, USA, 2005.

[102] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan
Maletic. An information retrieval approach to concept location in source code. In
11th IEEE Working Conference on Reverse Engineering (WCRE’04), pages 214–223,
Delft, The Netherlands, 2004.

[103] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. Assigning bug
reports using a vocabulary-based expertise model of developers. In 6th IEEE Working
Conference on Mining Software Repositories (MSR’09), pages 131 – 140, 2009.

[104] David McDonald and Mark Ackerman. Expertise recommender: A flexible
recommendation system and architecture. In 2000 ACM Conference on Computer
Supported Cooperative Work (CSCW ’00), pages 231–240, Philadelphia, PA, 2000.

BIBLIOGRAPHY 130

[105] C. McMillan, D. Poshyvanyk, and M. Revelle. Combining textual and struc-
tural analysis of software artifacts for traceability link recovery. In International
Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE’09),
pages 41–48, Vancouver, Canada, 2009.

[106] Shawn Minto and Gail Murphy. Recommending emergent teams. In Fourth
International Workshop on Mining Software Repositories (MSR ’07), Minneapolis,
MN, 2007.

[107] A. Mockus and L.G. Votta. Identifying reasons for software changes using historic
databases. In IEEE International Conference on Software Maintenance (ICSM’00),
pages 120–130, 2000.

[108] Audris Mockus and James Herbsleb. Expertise browser: a quantitative approach
to identifying expertise. In 24th International Conference on Software Engineering
(ICSE ’02), pages 503–512, Orlando, FL, 2002.

[109] L. Moonen. Lightweight impact analysis using island grammars. In 10th Inter-
national Workshop on Program Comprehension (IWPC’02), pages 219–228, Paris,
France, 2002. Moonen02.

[110] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi
Kishida, and Yunwen Ye. Evolution patterns of open-source software systems
and communities. In International Workshop on Principles of Software Evolution
(IWPSE’02), pages 76–85, Orlando, Florida, 2002.

[111] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. On the equiv-
alence of information retrieval methods for automated traceability link recovery. In
18th IEEE International Conference on Program Comprehension (ICPC’10), pages
68–71, Braga, Portugal, 2010.

[112] Rocco Oliveto, M. Gethers, Gabriele Bavota, Denys Poshyvanyk, and
Andrea De Lucia. Identifying method friendships to remove the feature envy bad
smell (nier track). In Proc. of 33rd ACM/IEEE International Conference on Software
Engineering (ICSE’11), New Ideas and Emerging Results (NIER) Track, pages 820–
823, Honolulu, Hawaii, USA, 2011.

[113] Rocco Oliveto, M. Gethers, Denys Poshyvanyk, and Andrea De Lucia.
On the equivalence of information retrieval methods for automated traceability link
recovery. In Proc. of 18th IEEE International Conference on Program Comprehension
(ICPC’10), pages 68–71, Braga, Portugal, 2010.

[114] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M.J. Harrold.
An empirical comparison of dynamic impact analysis algorithms. In IEEE/ACM
International Conference on Software Engineering (ICSE’04), pages 776–786, 2004.

[115] M. Petrenko and V. Rajlich. Variable granularity for improving precision of
impact analysis. In 17th IEEE International Conference on Program Comprehension
(ICPC’09), pages 10–19, Vancouver, BC, Canada, 2009.

BIBLIOGRAPHY 131

[116] Martin Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[117] D. Poshyvanyk, Y.G. Guhneuc, A. Marcus, G. Antoniol, and V. Rajlich.
Feature location using probabilistic ranking of methods based on execution scenarios
and information retrieval. IEEE Transactions on Software Engineering, 33(6):420–
432, 2007.

[118] D. Poshyvanyk and A. Marcus. The conceptual coupling metrics for object-
oriented systems. In 22nd IEEE International Conference on Software Maintenance
(ICSM’06), pages 469 – 478, Philadelphia, PA, 2006.

[119] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimthy. Using information
retrieval based coupling measures for impact analysis. Empirical Software Engineer-
ing, An International Journal, 14(1):5–32, 2009.

[120] D. Poshyvanyk and D. Marcus. Combining formal concept analysis with infor-
mation retrieval for concept location in source code. In 15th IEEE International Con-
ference on Program Comprehension (ICPC’07), pages 37–48, Banff, Alberta, Canada,
2007.

[121] D. Poshyvanyk, M. Gethers, and A. Marcus. Concept location using formal
concept analysis and information retrieval. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), to appear.

[122] Jean-Pierre Queille, Jean-Francois Voidrot, Norman Wilde, and Mal-
colm and Munro. The impact analysis task in software maintenance: A model and
a case study. In International Conference on Software Maintenance (’94), pages 234
– 242, 1994.

[123] B. Ramesh and M. Jarke. Toward reference models for requirements traceability.
IEEE Transactions on Software Engineering, 27(1):58–93, 2001.

[124] X. Ren, F. Shah, F. Tip, B.G. Ryder, and O. Chesley. Chianti: a tool for
change impact analysis of java programs. In 19th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications(OOPSLA ’04),
pages 432–448, Vancouver, BC, Canada, 2004.

[125] M. Revelle and D. Poshyvanyk. An exploratory study on assessing feature loca-
tion techniques. In 17th IEEE International Conference on Program Comprehension
(ICPC’09), pages 218–222, Vancouver, British Columbia, Canada, 2009.

[126] Meghan Revelle, M. Gethers, and Denys Poshyvanyk. Using structural and
textual information to capture feature coupling in object-oriented software. Empirical
Software Engineering, An International Journal (EMSE), 16(6):773–811, 2011.

[127] M. Robillard. Automatic generation of suggestions for program investigation. In
Joint European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE’05), pages 11 – 20, Lisbon, Portugal,
2005.

BIBLIOGRAPHY 132

[128] M. P. Robillard. Topology analysis of software dependencies. ACM Transactions
on Software Engineering and Methodology, 17(4), 2008.

[129] Gregorio Robles and Jesus M. Gonzlez-Barahona. Developer identification
methods for integrated data from various sources. In 2nd International Workshop on
Mining Software Repositories (MSR’05), pages 106–110, St. Louis, Missouri, 2005.
ACM Press: New York NY.

[130] Atanas Rountev, Ana Milanova, and G. Ryder, Barbara. Points-to analysis
for java using annotated constraints. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’01), pages 43–55, Tampa Bay, FL,
USA, 2001.

[131] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect
reports using natural language processing. In 29th IEEE/ACM International Confer-
ence on Software Engineering (ICSE’07), pages 499–510, Minneapolis, MN, 2007.

[132] P. Runeson and M. Hst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, An International
Journal, 14(2):131–164, 2009.

[133] M. Salah and S. Mancoridis. A hierarchy of dynamic software views: from
object-interactions to feature-interactions. In 20th IEEE International Conference
on Software Maintenance (ICSM’04), pages 72–81, Chicago, IL, 2004.

[134] M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta. Scenario-driven
dynamic analysis for comprehending large software systems. In 10th IEEE European
Conference on Software Maintenance and Reengineering (CSMR’06), pages 71–80,
2006.

[135] Trevor Savage, Bogdan Dit, M. Gethers, and Denys Poshyvanyk. TopicXP :
Exploring topics in source code using latent dirichlet allocation. In 26th IEEE In-
ternational Conference on Software Maintenance (ICSM’10), Formal Research Tool
Demonstration, pages 1–6, Timisoara, Romania, 2010.

[136] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik, and
C. DePalma. Supporting software evolution through dynamically retrieving traces
to uml artifacts. In 7th International Workshop on Principles of Software Evolution
(IWPSE), pages 49–54, Kyoto, Japan, 2004.

[137] D. Shepherd, Z. Fry, E. Gibson, L. Pollock, and K. Vijay-Shanker. Us-
ing natural language program analysis to locate and understand action-oriented con-
cerns. In 6th International Conference on Aspect Oriented Software Development
(AOSD’07), pages 212–224, 2007.

[138] S. Simmons, D. Edwards, N. Wilde, J. Homan, and M. Groble. Industrial
tools for the feature location problem: an exploratory study. Journal of Software
Maintenance: Research and Practice, 18(6):457–474, 2006.

BIBLIOGRAPHY 133

[139] R. M. Sirkin. Statistics for the social sciences. Sage Publications, 2005.

[140] X. Song, B. Tseng, C. Lin, and M. Sun. Expertisenet: Relational and evolu-
tionary expert modeling. In 10th International Conference on User Modeling (UM’5),
Edinburgh, UK, 2005.

[141] R. Tairas and J. Gray. An information retrieval process to aid in the analysis of
code clones. Empirical Software Engineering, An International Journal, 14(1):33–56,
2009.

[142] M. Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk. Integrated
impact analysis for managing software changes. In Proc. of 34th ACM/IEEE Inter-
national Conference on Software Engineering (ICSE’12), Zurich, Switzerland, 2012.

[143] M. Gethers, H. Kagdi, B. Dit, and D. Poshyvanyk. An adaptive approach to
impact analysis from change requests to source code. In Proc. of 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE’11), pages 540–
543, Lawrence, Kansas, USA, 2011.

[144] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia. On integrating
orthogonal information retrieval methods to improve traceability link recovery. In
Proc. of 27th IEEE International Conference on Software Maintenance (ICSM’11),
pages 133–142, Williamsburg, Virginia, USA, 2011.

[145] M. Gethers and Denys Poshyvanyk. Using relational topic models to capture
coupling among classes in object-oriented software systems. In Proc. of 26th IEEE In-
ternational Conference on Software Maintenance (ICSM’10), pages 1–10, Timisoara,
Romania, 2010.

[146] M. Gethers, Trevor Savage, Massimiliano Di Penta, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. Codetopics: Which topic am i
coding now? In Proc. of 33rd ACM/IEEE International Conference on Software En-
gineering (ICSE’11), Formal Research Tool Demonstration, pages 1034–1036, Hon-
olulu, Hawaii, USA, 2011.

[147] K. Tian, M. Revelle, and D. Poshyvanyk. Using latent dirichlet allocation
for automatic categorization of software. In 6th IEEE Working Conference on Min-
ing Software Repositories (MSR’09), pages 163–166, Vancouver, British Columbia,
Canada, 2009.

[148] P. Tonella. Using a concept lattice of decomposition slices for program understand-
ing and impact analysis. IEEE Transactions on Software Engineering, 29(6):495–509,
2003. Tonella03.pdf.

[149] Masateru Tsunoda, Akito Monden, Takeshi Kakimoto, Yasutaka Kamei,
and Ken-ichi Matsumoto. Analyzing oss developers’ working time using mailing
lists archives. In 2006 International Workshop on Mining Software Repositories (MSR
’06), pages 181 – 182, Shanghai, China, 2006.

BIBLIOGRAPHY 134

[150] R. Vaclav. A model for change propagation based on graph rewriting. In Interna-
tional Conference on Software Maintenance (ICSM ’97), pages 84–91, Bari, ITALY,
1997. IEEE. Vaclav97.pdf.

[151] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An approach
to detecting duplicate bug reports using natural language and execution information.
In 30th International Conference on Software Engineering (ICSE08), pages 461–470,
Leipzig, Germany, 2008.

[152] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take
to fix this bug? In 4th IEEE International Workshop on Mining Software Repositories
(MSR’07), pages 1–8, Minneapolis, MN, 2007.

[153] Peter Weissgerber, Mathias Pohl, and Michael Burch. Visual data mining
in software archives to detect how developers work together. In Fourth International
Workshop on Mining Software Repositories (MSR’07), Minneapolis, USA, 2007.

[154] N. Wilde, J.A. Gomez, T. Gust, and D. Strasburg. Locating user functionality
in old code. In IEEE International Conference on Software Maintenance (ICSM’92),
pages 200–205, Orlando, FL, 1992.

[155] F.G. Wilkie and B.A. Kitchenham. Coupling measures and change ripples in
c++ application software. The Journal of Systems and Software, 52:157–164, 2000.

[156] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnel, and
A. Wesslen. Experimentation in Software Engineering: An Introduction. Kluwer
Academic Press, Amsterdam, 1999.

[157] Y. Ye and Gerhard Fischer. Reuse-conducive development environments. Journal
Automated Software Engineering, 12(2):199–235, 2005.

[158] L. Yu and S. Ramaswamy. Mining cvs repositories to understand open-source
project developer roles. In 4th International Workshop on Mining Software Reposito-
ries (MSR’07), page 8, 2007.

[159] Z. Yu and V. Rajlich. Hidden dependencies in program comprehension and
change propagation. In 9th IEEE International Workshop on Program Comprehension
(IWPC’01), pages 293–299, Toronto, Canada, 2001. Yu01.pdf.

[160] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. Sniafl: Towards
a static non-interactive approach to feature location. ACM Transactions on Software
Engineering and Methodologies (TOSEM), 15(2):195–226, 2006.

[161] T. Zimmermann, A. Zeller, P. Weigerber, and S. Diehl. Mining version
histories to guide software changes. IEEE Transactions on Software Engineering,
31(6):429–445, 2005.

