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ABSTRACT

Mobile developers and testers face a number of emerging challenges. These include rapid
platform evolution and API instability; issues in bug reporting and reproduction
involving complex multitouch gestures; platform fragmentation; the impact of reviews
and ratings on the success of their apps; management of crowd-sourced requirements;
continuous pressure from the market for frequent releases; lack of effective and usable
testing tools; and limited computational resources for handheld devices. Traditional and
contemporary methods in software evolution and maintenance were not designed for
these types of challenges; therefore, a set of studies and a new toolbox of techniques for
mobile development are required to analyze current challenges and propose new
solutions.

This dissertation presents a set of empirical studies, as well as solutions for some of the
key challenges when evolving and maintaining Android apps. In particular, we
analyzed key challenges experienced by practitioners and open issues in the mobile
development community such as (i) Android API instability, (ii) performance
optimizations, (iii) automatic GUI testing, and (iv) energy consumption. When carrying
out the studies, we relied on qualitative and quantitative analyses to understand the
phenomena on a large scale by considering evidence extracted from software repositories
and the opinions of open-source mobile developers.

From the empirical studies, we identified that dynamic analysis is a relevant method for
several evolution and maintenance tasks, in particular, because of the need of
practitioners to execute/validate the apps on a diverse set of platforms (i.e., device and
OS) and under pressure for continuous delivery. Therefore, we designed and
implemented an extensible infrastructure that enables large-scale automatic execution of
Android apps to support different evolution and maintenance tasks (e.g., testing and
energy optimization). In addition to the infrastructure we present a taxonomy of issues,
single solutions to the issues, and guidelines to enable large execution of Android apps.

Finally, we devised novel approaches aimed at supporting testing and energy
optimization of mobile apps (two key challenges in evolution and maintenance of Android
apps). First, we propose a novel hybrid approach for automatic GUI-based testing of
apps that is able to generate (un)natural test sequences by mining real applications
usages and learning statistical models that represent the GUI interactions. In addition,
we propose a multi-objective approach for optimizing the energy consumption of GUIs in
Android apps that is able to generate visually appealing color compositions, while
reducing the energy consumption and keeping a design concept close to the original.
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Chapter 1

Introduction

The last decade has seen the tremendous proliferation of mobile computing in our society.

Billions of users have access to millions of mobile applications that can be installed di-

rectly to their mobile devices and electrical appliances such as TV handsets without any

complicated setup. Moreover, the current offering of mobile applications is not only lim-

ited to games or apps for entertainment but also represents several categories of common

computing tasks that users more frequently choose to carry out in the intuitive Graphical

User Interface (GUI) of a smart phone. When considering only the top-2 platforms in

terms of market share, the app offerings are represented by more than 3M apps available

for download: Google Play (the official store for Android apps) offers about 1.9M apps

organized in 23 different categories (data for 2016 Q1), and Apple’s App store contains

1.4M+ apps also in 23 domain categories (data for 2015 Q2).

From developers’ perspective, there are several reasons why mobile economy is attrac-

tive to them; and these reasons are not limited only to cultural popularity of mobile devices

and apps. Factors such as new monetization/revenue models, programming models, and

distribution infrastructures contribute to an “attractive” movement that captivates new

and traditional developers, as well as a crowd of other professionals that explore, de-

sign, and implement mobile apps [232]. Also, the need for “enterprise apps” that support

start-ups or serve as a new front-end for traditional companies is pushing software-related

2



professionals to embrace the mobile technologies [232]. However, the nature of the econ-

omy (including devices, apps, markets) imposes new challenges to the way how mobile

apps are envisioned, designed, implemented, tested, released, and maintained. The mo-

bile development cycle is built around the usage of online app markets that (i) allow

developers to publish apps and crowdsource requirements (as user ratings and reviews1),

and (ii) allow users to access a large offering of apps and to quickly discard/uninstall the

apps when expectations are not accomplished by the apps. The rating/reviews mechanism

in online app markets is a cheap way to collect thousands of real requirements from the

users, which also imposes a significant overhead on the developers because of the effort

required to analyze the user reviews, distinguish informative reviews from non-informative

ones, and prioritize the feature requests/bugs for the next release.

The mobile development cycle is mostly represented by the iterative/incremental se-

quence: development → publishing → reviews analysis → development → publishing

→ . . . development, and there are very specific challenges that mobile developers cur-

rently face during the development cycle such as the constant pressure from the users for

frequent releases (i.e., continuous delivery) [142, 133, 143]; rapid platform/library evolu-

tion and API instability [163, 168, 185, 69]; complex reporting and bug report reproduc-

tion involving complex multitouch gestures [100]; platform fragmentation [121]; impact

of reviews and ratings on the success of the apps [125, 163, 134, 200, 97, 76, 190, 78];

cloning and reuse across different markets [192, 189, 165]; management of crowd-sourced

requirements [78, 134, 201]; limited availability/adequacy of testing tools for mobile apps

[143, 146]; limited computational resources in mobile devices (e.g., memory, battery);

among the others. These challenges are not considered by traditional/contemporary soft-

ware development methods and techniques; therefore, the mobile software development

lifecycle and their disciplines (e.g., evolution and testing) require new models, methods,

and techniques. The need for a new “software engineering” for mobile applications is

1It is worth noting that reviews not only contain feature requests, but also bug reports, users’ sentiments,
etc.
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even more evident with respect to their evolution and maintenance, mainly due to

market pressure demanding rapid release cycles and a mostly crowdsource-based nature

of requirements management [201].

As a response to the challenges, tremendous amount of research has been conducted

to propose a new software engineering toolbox for mobile development. However, some

key challenges for evolution and maintenance of mobile apps, such as dynamic anal-

ysis, testing, and energy consumption, lack effective industrial-grade solutions to support

developers and testers. This dissertation presents an in-depth analysis of these key issues

and an initial set of solutions for supporting evolution and maintenance of Android apps,

in particular native Android apps running on handheld devices. The proposed solutions

are rooted into (i) empirical studies performed to understand the challenges of the mobile

development ecosystem (Chapter 2), and (ii) an infrastructure designed and implemented

to support large-scale dynamic analysis and testing of Android apps (Chapter 3). This

dissertation also presents two automated approaches that support two key challenges for

evolution and maintenance of Android apps: automatic test cases generation (Chapter 4)

and automatic optimization of GUIs to reduce energy consumption (Chapter 5).

In summary, this dissertation makes the following research contributions:

• Empirical Studies. As part of the dissertation, a set of empirical studies were per-

formed to analyze phenomena such as: Android API instability; developer practices

for detecting/fixing performance bottlenecks and for micro-optimizing Android apps

“in the wild”; usage of crowdsourced reviews to plan releases; developer practices for

documenting and designing test cases; and energy-greedy APIs. The studies com-

bined different data collection and analysis techniques, and for some of the studies

new approaches were implemented to enable these analyses; for instance, as part

of the analysis of developers’ reaction to Android API instability, we designed a

traceability link recovery technique for linking StackOverflow questions to Android

API changes. The studies helped improve current understanding of the nature of

4



the mobile development, practices performed by developers, and challenges specific

to the Android ecosystem. Therefore, our studies and corresponding results have

been widely discussed and cited by the research community. In fact, the studies

on the Android API instability problem were the first of its kind in the software

engineering community; moreover, we performed the first large-scale study aimed

at analyzing real practices of open source developers for micro-optimizing Android

apps, and for detecting/fixing performance issues in Android apps. Some of the key

insights extracted from the studies are summarized as in the following:

– Change and fault proneness of the Android API is a threat to the success of

Android apps, and developers lack automatic notification tools when changes

to the API can introduce bugs in the apps [163, 168, 69];

– Developers strongly rely on user reviews when planning new releases of their

apps and mainly rely on user reviews for detecting bugs experienced by the

users as well as for suggestions of new features [201];

– Android developers prefer dynamic analysis and observation-based techniques

to detect opportunities for improving the performance of their apps [161];

– Micro-optimizations are not widely used by open source developers, and the

impact of micro-optimizations is noticeable only under certain “load” conditions

that might appear only on specific types of apps;

– Manual testing is preferred over automated testing, and execution of use cases

or sequences of test cases are the preferred criteria for designing test cases;

– Coverage analysis is not considered as useful to measure the quality of test

cases by mobile developers;

– GUI and database related classes and methods in the official API are the most

energy greedy [165].
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The main findings from the empirical studies suggest that dynamic analysis is a

crucial mechanism to support evolution and maintenance of Android apps; moreover,

effective dynamic analysis requires scalable infrastructural support for automatic

execution of mobile apps under different conditions (e.g., different devices).

• An Infrastructure for Large-scale Analysis and Testing of Android apps.

Fragmentation at OS and device level is one of the most pressing challenges for

mobile development because during evolution and maintenance, new features and

fixes should be tested under different contextual events on a multitude of different

platforms. However, manual testing is still preferred over automated approaches; in

fact, development teams lacking testing resources usually test their apps only on a

subset of devices [143, 149]. One of the main reasons for the preference for manual

testing is the expensive maintenance of automated test cases and the lack of tools

supporting large-scale testing. Therefore, we designed T+, an infrastructure for

automatic generation of actionable test cases that can target different purposes and

combine different sources of information. Under T+ we also designed the Execution

Engine, which is an extensible infrastructure for large-scale execution of Android

apps on virtual devices. T+ was published at the ACM SIGSOFT Student Research

Competition at the 37th IEEE International Conference on Software Engineering

(ICSE 2015) [162], and won the Gold Medal (First Place) in the Graduate Student

Category. The Execution Engine was inspired by the taxonomy of accidental and

essential issues (and corresponding solutions) for large-scale execution of Android

apps; this taxonomy was devised as part of the industrial collaboration with a major

telecommunication company (Huawei). Both, T+ and the Execution Engine, are the

foundations of our proposed solutions for supporting automated GUI testing and

improving energy consumption of Android apps.

• Supporting Automated GUI testing. We propose a novel hybrid approach for

combining GUI and usage models for automatic generation of actionable test cases.
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Our approach (namely MonkeyLab) derives feasible and fully replayable GUI-

based event sequences for (un)natural app usage scenarios (i.e., actionable scenarios),

which provides stakeholders with an automated approach for scenario generation

that can be as powerful as manual testing (Chapter 4). MonkeyLab includes a novel

mechanism for generating actionable scenarios that is rooted in mining event traces,

generating execution scenarios via statistical language modeling, static and dynamic

analyses, and validating these resulting scenarios using interactive executions of the

app on real devices (or emulators). In particular, we explore interpolated n-grams

and back-off models, and we propose three different flavors (i.e., up, down, and

strange) for generating (un)natural scenarios. MonkeyLab was originally published

in the 12th IEEE Working Conference on Mining Software Repositories (MSR 2015)

[171].

• Improving Energy consumption. Finally, we propose a multi-objective ap-

proach, called GEMMA, for generating color compositions that reduce the energy

consumption of GUIs in Android apps and are visually attractive at the same time

(Chapter 5). GEMMA combines power models, pixel-based engineering, color the-

ory, dynamic analysis, and a multi-objective optimization technique to produce a

Pareto-optimal set of design solutions (i.e., GUI color compositions) across three

different objectives: (i) reducing energy consumption, (ii) increasing contrast, and

(iii) improving the attractiveness of the chosen colors by keeping the palette close

to the original one. GEMMA is the very first approach adopting multi-objective

optimization to choose colors for mobile apps with the main goal of reducing energy

consumption, that accounts for multiple screens and the duration of time they are

displayed, and produces pleasant and consistent color combinations. GEMMA was

originally published in the 10th Joint Meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE 2015) [167] and won ACM SIGSOFT Distinguished Paper
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Award and the Department of Computer Science Graduate Park Award.
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Chapter 2

Empirical Studies

The way the mobile apps are developed represents a paradigm shift (as compared to the

traditional desktop and web applications) not only because of gesture-driven interaction

of these apps, but also due to the differences in the development cycle. For instance, apps

are distributed using online markets; release periods are shorter; features planning and

development is highly impacted by crowdsourced requirements; and device/OS fragmenta-

tion introduces additional overhead in terms of testing efforts. However, by the time when

this thesis was conveived, several of the mobile development challenges remained without

solutions, and the research community lacked understanding of important facets of mo-

bile apps maintenance and evolution. Proposing solutions and new approaches supporting

evolution and maintenance of Android requires understanding of developers’ practices and

challenges. Therefore, in the first research thrust, several facets from the Android mobile

ecosystem were analyzed by conducting empirical studies. The studies aimed at under-

standing current practices performed by practitioners in-the-wild, and the challenges they

face when maintaining and evolving Android apps.

The decision to conduct empirical studies was motivated by the lack of reports, ev-

idence, and empirical data describing (i) how practitioners evolve and maintain mobile

apps, and (ii) the disciplines in the development cycle associated with the evolution and

maintenance tasks. In that sense, we relied on several methods widely used in Empirical
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Software Engineering for data collection and analysis, such as mining software repositories,

grounded theory, surveys with practitioners, and controlled experiments.

In this chapter we summarize the studies and the main findings; we do not provide all

the details concerning motivation, study design, results, and the related work. However,

we invite the interested reader to check all the details of each study in the corresponding

publications listed in Section 2.8.

2.1 Android API instability [163, 69]

Stability and fault-proneness in the Android API is a sensitive and timely topic, given

the frequent releases and the number of applications that use these APIs. Therefore, we

designed two case studies [163, 69] to provide solid empirical evidence and shed some light

on the relationship between the success of apps (in terms of user ratings), and the change-

and fault-proneness of the underlying APIs (i.e., Android API and third-party libraries).

In the first study we analyzed to what extent the APIs fault- and change-proneness affect

the user ratings of the Android apps using them, while in the second we investigated to

what extent Android developers experience problems when using APIs and how much they

feel these problems can be causes of unfavorable user ratings/comments.

The first study (in the following referred to as “API-Study I”) was conducted on a set

of 5,848 Android free apps belonging to different domains. We estimated the success of

an app based on the ratings posted by users in the app store (Google Play1). Then, we

identified the APIs used by those apps, and computed the number of bug fixes in those

APIs. In addition to the bug fixes, we computed different kinds of changes occurring in

such APIs, including changes in the interfaces, implementation, and exception handling.

Finally, we analyzed how the user ratings of an app are related to APIs fault- and change-

proneness, specifically to different kinds of changes occurring to APIs. This study was

mainly aimed at providing possible quantitative evidence about relationship between APIs

1http://play.google.com verified on January 2014.
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fault- and change-proneness, and the apps’ ratings. However, especially because we have

no visibility over the source code of such apps and of their issue trackers, it is difficult to

provide a strong rationale and, possibly, a cause-effect relationship for such findings.

In order to provide explanations to the findings of API-Study I, we conducted a sec-

ond study (in the following referred as “API-Study II”). This study consisted of a survey,

and it involved 45 professional Android developers. We asked such developers to fill-in

a questionnaire composed by 21 questions organized into five categories: (i) developer’s

background, (ii) factors negatively impacting user ratings, (iii) frequent reasons causing

bugs/crashes in Android apps, (iv) experiences with used APIs, and (v) impact of prob-

lematic APIs on the user ratings. Then, we quantitatively analyzed the answers to 19

questions by using descriptive statistics, and completed the analysis with qualitative data

gathered from the other two questions.

It is important to point out that this work does not claim a cause-effect relationship

between APIs fault- and change-proneness and the success of apps, which can be due to

several other internal (e.g., app features and usability) and/or external (e.g., availability

of alternative similar apps) factors. Instead, the purpose of the study was to investigate

whether the change- and fault-proneness of APIs used by the app relates (or not) to

the app success, measured by its ratings. That is, a heavy usage of fault-prone APIs

can lead to repeated failures or even crashes of the apps, hence, encouraging users to

give low ratings and possibly even abandoning the apps. Similarly, the use of unstable

APIs that undergo numerous changes in their interfaces can cause backward compatibility

problems or require frequent updates to the apps using those APIs. Such updates, in

turn, can introduce defects into the applications using unstable APIs. In the following

we summarize the research questions and corresponding results. Complete details of the

studies are with the FSE and TSE publications [163, 69].
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2.1.1 RQ1: Does the fault-proneness of APIs affect the user ratings of

Android Apps?

APIs used by apps having higher user ratings are, on average, significantly less fault-prone

than APIs used by low rated apps. However, it is interesting to understand if the observed

difference in terms of APIs fault-proneness between apps having different levels of rating

is due to the used official Android APIs, third-party APIs, or to both of them. To this

aim, we separately investigated the fault-proneness of the official Android APIs and of the

third-party APIs used by the apps object of our study.

Concerning the official Android APIs, apps having a high rating use APIs that under-

went, on average, 6.2 bug fixes, as compared to the 9.7 (+56%) of apps having a medium

rating and the 13.0 (+109%) of apps having a low rating. This result is inline with what

we observed when analyzing all the used APIs as a whole. Also the results of the Mann-

Whitney test confirm that official Android APIs used by apps having a higher average

user rating are, on average, significantly less fault-prone than APIs used by low rated

apps. Indeed, as already observed when considering all APIs, apps having a higher rating

always exhibit a statistically significant lower number of bug fixes in the used APIs than

apps having a lower rating (p-value always < 0.0001).

When analyzing third-party APIs in isolation we only considered the 1,224 apps using

at least one third-party API since not all the considered apps use third-party APIs. In

this case we observed a slightly different trend:

• Apps having a high rating use third-party APIs subject, on average, to 1.3 bug-fixing

activities.

• Apps having a medium rating use third-party APIs subject, on average, to 3.6 bug-

fixing activities (+177%).

• Apps having a low rating use third-party APIs subject, on average, to 2.7 bug-fixing

activities (+108%).
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Thus, while it is confirmed that apps having a high rating use less fault-prone APIs than

apps having a medium and a low rating, from the average values it seems that apps having

a medium rating use APIs more fault prone than those used by apps having a low rating.

However, by looking into the data we found that this result is mainly due to a set of 28

apps falling in the medium rating category and all using the same (fault-prone) third-party

APIs. In particular, these 28 apps are developed by the same software house2 and use

APIs subject to a number of bug-fixes going from a minimum of 23 to a maximum of

46, clearly raising the average value of bug-fixes in the medium rating category. In fact,

when comparing the fault-proneness of the three categories by using the Mann-Whitney

test , we obtained that apps having higher ratings use APIs statistically significant less

fault-prone than low rated apps, even when comparing apps having a medium rating with

those having a low (p-value always <0.0001, with a small effect size).

Summarizing, the results of our RQ1 show that the higher the ratings of the apps, the

lower the fault-proneness of the APIs they use. This holds when considering all APIs, as

well as the official Android APIs and third-party APIs in isolation.

2.1.2 RQ2: Does the change-proneness of APIs affect the user ratings

of Android Apps?

As done for the fault-proneness, we also analyzed the change-proneness of APIs used by

the different categories of apps by isolating official Android APIs and third-party APIs.

Concerning the official Android APIs, we observed that those used by apps having high

user ratings are significantly less change prone than those used by low rated apps, as also

confirmed by the results of the Mann-Whitney test (p-value always <0.0001 with a small

effect size). In particular:

• In terms of overall method changes, apps having a high rating use APIs that un-

derwent, on average, 25 changes, as compared to the 37 (+48%) of apps having a

2http://www.androidpit.it/it/android/market/applicazioni/list/owner/LightCubeMagic veri-
fied on January 2014
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medium rating and the 48 (+92%) of apps having a low rating. This trend is also

confirmed when just considering changes to public methods, with apps having low

rating using APIs subject to 27 changes, on average, 80% more than the apps having

high rating.

• When focusing on changes performed on method signatures, apps having a high

rating use APIs object, on average, of 5 changes, 40% less than APIs used by apps

having a medium rating and 80% less than APIs used by apps having a low rating.

These results are also confirmed when just focusing on public methods.

• If restricting our analysis to the Android APIs only, we do not observe any statisti-

cally significant difference in terms of changes performed to the exceptions thrown

by methods between the different categories of apps.

Turning to the third-party APIs, the results of the Mann-Whitney test showed that the

change-proneness of APIs used by apps having high user ratings is lower in a statistically

significant way. Moreover, when comparing apps having a high rating with those having

a low rating, we obtain a large effect size for all type of changes. For instance, when

considering all changes performed to the API methods, we go from the three changes, on

average, of APIs used by apps having a high rating to seven changes (+133%) of APIs

used by apps having a low rating. The same trend has been also observed when (i) just

focusing on public methods, and (ii) just considering the changes occurred to (public)

methods’ signature.

Summarizing, the results of RQ2 show that the higher the average ratings of the apps,

the lower the change-proneness of the APIs they use. This holds when considering all APIs,

as well as when restricting our attention to official Android APIs or third-party APIs only.

Instead, there is no significant difference when the changes are on the exceptions thrown

by API methods. Again, this result holds for all APIs as well as for the official Android

APIs and the third- party APIs considered in isolation.
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2.1.3 RQ3: To what extent Android developers experience problems

when using APIs?

Among the 45 developers answering our questionnaire, 33 (73%) said they have experi-

enced problems with the used APIs. Of these 33, 21 indicated Android APIs as the cause

of the problems, and 12 indicated third-party APIs. Again, this is likely because most of

the APIs used in the apps belong to the Android SDK, and only few of them are third-

party ones3. Also, 64% of developers (29) declared to have observed new bugs in their

apps introduced as a consequence of new releases of the Android platform. Summarizing,

the study results for RQ3 indicate that:

• A large percentage of the developers (between 44% and 71%) consider change- and

fault-proneness of APIs as threats to the proper working of their apps. When fo-

cusing on problems related to the APIs (i.e., considering all the answers but the

“Java programming errors in the app” one), developers perceive that bugs present

in third-party APIs represent the most frequent cause of bug introduction in their

apps.

• Developers are generally more concerned about the effect of bugs present in the used

APIs than about changes performed in new releases of the used APIs; this is true

for both third-party as well as official Android APIs.

• Developers believe that more bugs are present in third-party APIs than in the official

Android APIs. However, they are more concerned about the change-proneness of

the Android platform than of the change-proneness of third-party APIs. This result

likely has a two-fold explanation. First, the Android APIs have been object of a very

fast evolution4 leading to 18 major releases over just four years. It is very unlikely

that also third-party APIs have evolved so fast. This is also confirmed by the average

3Note that in our first study, we found just 21% of the considered apps to use at least one open source
third-party API.

4https://developer.android.com/reference/android/os/Build.VERSION_CODES.html verified on
January 2014.
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frequency of commits per month observed in Study I for the Android APIs (164

commits per month) as compared to the third-party APIs (14 commits per month).

Thus, developers have more likely experienced bugs introduced by major changes

in the Android APIs than by changes in the used third-party libraries. Second,

Android API reuse by inheritance is widely implemented by developers [192, 189],

and Android apps are highly dependent on the official Android APIs [222]. Almost

50% of classes in Android apps inherit from a base class as shown in a recent study by

Mojica Ruiz et al. [192]. This, again, makes more likely for developers to experience

bugs due to changes in the official APIs than in third-party APIs.

2.1.4 RQ4: To what extent Android developers consider problematic

APIs to be the cause of negative user rating/comments?

Of the 45 surveyed developers, 28 (62%) declared to have observed a relationship between

problems experienced with the used APIs and bad user’s ratings/comments. These 28

developers evaluated the severity of the observed impact, providing a score on a five point

Likert scale between 1=very low and 5=very high. The median is 4 (i.e., high impact)

indicating that the use of problematic APIs could strongly impact the rating of an app

form the developers’ point-of-view. Also, it is important to note that no one of the

developers assessed the impact at a value lower than 3 (i.e., medium impact). This means

that developers, in their experience, not only observed a decrease of the ratings assigned

by users to their apps as consequence of problems in the used APIs, but also that this

decrease was substantial.

The answers provided by developers to questions related to RQ4 indicate that 62%

of developers perceived a direct relationship between problems experienced with the used

APIs and bad users’ ratings/comments, and the impact of such APIs on the apps’ user

ratings was considered as medium-high. Also, the discussed examples support the quanti-

tative results obtained in our first study: the use of problematic APIs could represent a

threat for the success of Android apps.
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2.2 Usage of Crowdsourced Requirements [201]

The distribution of updates—related to the introduction of new features and to bug fixes—

through app online stores is accompanied by a mechanism that allows users to rate releases

using scores (i.e., star ratings) and text reviews. The former (i.e., the score) is usually

expressed as a choice of one to five stars, and the latter (i.e., the review) is a free text

description that does not have a predefined structure and is used to describe informally

bugs and desired features. The review is also used to describe impressions, positions,

comparisons, and attitudes toward the apps [134, 78, 203, 120, 200]. Therefore, online

store reviews are free and fast crowd feedback mechanisms that can be used by developers

as a backlog for the development process. Also, given this easy online access to app-

store-review mechanisms, thousands of these informative reviews can describe various

issues exhibited by the apps in certain combinations of devices, screen sizes, operating

systems, and network conditions that may not necessarily be reproducible during regular

development/testing activities.

By analyzing ratings and reviews, development teams are encouraged to improve their

apps, for example, by fixing bugs or by adding commonly requested features. Accord-

ing to a recent Gartner report’s recommendation [142], given the complexity of mo-

bile testing “development teams should monitor app store reviews to identify issues that

are difficult to catch during testing, and to clarify issues that cause problems on the

users’ side”. Moreover, useful app reviews reflect crowd-based needs and are a valuable

source of comments, bug reports, feature requests, and informal user experience feedback

[76, 78, 97, 134, 200, 147, 191]. However, because of this easy access to the app stores and

lack of control over the reviews’ content, relying on crowdsourced reviews for planning

releases may not be widely used by mobile developers because of (i) the large amount of

reviews that need to be analyzed, and (ii) some of these reviews may not provide tangible

benefits to developers [78].

In this section we summarize the results of an empirical study [201] aimed at investi-
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gating to what extent app development teams can exploit crowdsourcing mechanisms for

planning future changes, and how these changes impact user satisfaction as measured by

follow-up ratings. We performed (i) a mining study conducted on 100 Android open source

apps in which we linked user reviews to source code changes, and analyzed the impact of

implementing those user reviews in terms of app success (i.e., ratings); and (ii) an online

survey featuring 73 responses from mobile app developers, aimed at investigating whether

they rely on user reviews, what kind of requirements developers try to elicit from user

reviews, and whether they observe benefits in doing that. The study makes the following

noteworthy contributions:

• A novel reviews-to-code-changes traceability recovery approach, called CRISTAL.

The approach combines classic Information Retrieval (IR) based traceability recovery

approaches (e.g., [61, 184, 209, 208]) with some specific heuristics to deal with (i)

diversity and noise in crowd reviews, and (ii) inherent abstraction mismatch between

reviews and developers’ source code lexicon.

• Results of a survey conducted with 73 Android developers and aimed at investigating

the developers’ perception of user reviews, to what extent they address them and

whether they observe any tangible benefits from such an activity.

• Results of an empirical study conducted on 100 Android apps. The study exploits

CRISTAL to provide quantitative evidence on (i) how development teams follow sug-

gestions contained in informative reviews, and (ii) how users react to those changes.

• A comprehensive replication package [202]. The package includes all the materials

used in our studies.

In the following we summarize the research questions and corresponding results. The

full details of the studies can be found in our ICSME’15 publication [201].
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2.2.1 RQ1:To what extent do developers fulfill reviews when working on

a new app release?

Results obtained by mining 100 Android apps show that, in most cases, developers care-

fully take into account user reviews when working on the new release of their app. Indeed,

on average, 49% of the informative reviews are implemented by developers in the new

app release. The survey respondents confirmed such findings, claiming that they often

rely on the information in user reviews when planning a new release of their app (49%

very often, 38% often). They mainly look in user reviews for bug reporting (75%) and

suggestions for new features (68%). Also, they identify useful reviews by searching for the

constructive and detailed ones (44%), containing more than just emotional expressions.

The vast majority of the survey respondents (75%) indicate that just a small percentage

of user reviews is informative (< 25%).

2.2.2 RQ2:What is the effect of a crowd review mechanism (for planning

and implementing future changes) on the app success?

Developers of Android apps implementing user reviews are rewarded in terms of ratings;

in fact, 90% of the surveyed developers (i.e., 66 out of 73) observed an increase of their

app ratings as a consequence of user requests they implement. This is confirmed by the

observed positive correlation (0.59) between review coverage and change in overall score

between the old and the new app releases. Also, our qualitative analysis supports, at

least in part, our quantitative findings. Answers provided by the surveyed developers

confirmed that the small set of informative reviews represents a very precious source

of information, leading to the fixing of bugs difficult to catch during testing activities,

to the implementation of new successful features, and to the improvement of the app’s

non-functional requirements. The vast majority of the respondents (90%) believes that

implementing requests from user reviews has a positive effect on the app’s success (as

assessed by the user ratings).
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2.3 How Android Developers Detect and Fix Performance

Bottlenecks [161]

Despite the efforts of researchers [119, 174, 199] and mobile API designers in providing

developers with guidelines and best practices [9, 62, 60] for improving the performance

of mobile apps, there is still a significant gap between research and practice in terms of

dealing with performance issues by developers in the wild [174, 147].

Our work is empirical in nature and is aimed at filling this important gap and at

increasing the understanding of current performance related practices by developers of

Android apps. While previous empirical studies [119, 174, 199] focused on understanding

and categorizing performance bugs, the study described in this section [161], analyzed real

practices that are followed and actual tools that are used by developers to fix performance

related bugs. In the context of the study, 485 contributors of open source Android apps

and libraries hosted on GitHub were surveyed, inquiring about their practices and tools

for detecting and fixing performance bottlenecks; then, the repositories (i.e., bugs from the

issue trackers and commits from the code change histories) of their apps were manually

analyzed to study real performance bottlenecks and fix-inducing commits to investigate

actual strategies followed by developers to deal with performance related issues. The study

makes the following noteworthy contributions:

• To the best of our knowledge, this is the first study aimed at analyzing real practices

of open source developers for detecting and fixing performance issues in Android

apps;

• The study provides an overview and key insights into types of performance related

issues faced by developers as well as prevalent practices and tools used to deal with

performance bugs and bottlenecks. The results also reveal current performance

related needs of developers that can be used to drive future efforts of researchers;

• The findings complement previous studies of performance bottlenecks in Android
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apps by providing the viewpoint of real developers via analysis of their practices;

• An extensive online appendix that includes the anonymized answers collected from

the survey, the list of tools reported by the participants, a taxonomy of practices

for fixing performance bottlenecks, and examples of real performance bottlenecks in

Android apps [25].

In the following we summarize the research questions and corresponding results. Com-

plete details of the study can be found in our ICSME’15 publication [161].

2.3.1 RQ1: What practices are used by Android developers to detect

performance bottlenecks?

The results suggest that open source Android developers primarily rely on manual testing

and analysis of the reviews for detecting performance bottlenecks. Manual execution of

apps is also accompanied by tools that help measure and visualize performance-related

measurements (e.g., execution time and memory). Despite the availability of tools for

profiling performance-related measurements, a number of practitioners still rely on man-

ually inserting statements in the code to measure and print execution time and memory

consumption.

2.3.2 RQ2: What tools are used by Android developers to detect per-

formance bottlenecks?

Although there is a diverse set of available tools, Android developers mostly rely on tools

for performance profiling and debugging of their apps; most of the tools are from Google,

as expected. There is a preference towards tools supporting observation-based analysis,

and most of the tools do not support automatic detection of bottlenecks. Only a few tools

support automatic detection of a limited number of types of performance bottlenecks

(Google’s StrictMode Android API and PerfChecker tool [174]), yet these tools are not
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widely used. Static analysis tools are used less frequently and only in a few cases for

detecting performance optimizations.

2.3.3 RQ3: What practices are used by Android developers to fix per-

formance bottlenecks?

We obtained 72 codes (after the open coding on free-text answers) identifying individual

practices for improving performance bottlenecks. These 72 codes were further categorized

into 16 groups by considering the type of practice (e.g., threading) or the goal (e.g., mem-

ory management). Finally, these 16 groups were linked to the following types of high-level

categories: GUI lagging, Memory bloat, Energy leak, General-purpose, Unclear-benefit.

The first three categories represent performance bugs defined by Liu et al. [174]; thus, the

groups linked to these categories represent practices aimed at solving corresponding bug

types (e.g., GUI optimization aims at reducing “Application Not Responding-ANR” errors

and GUI lagging). The last two categories are for general-purpose cases (e.g., profiling)

and when the perceived benefit is unclear. The complete taxonomy (codes, groups, and

categories) is in our appendix [25].

The most frequent practices used by the surveyed developers for fixing performance

bottlenecks include the usage of multi-treading to avoid lengthy operations in the main

thread, GUI optimizations for reducing the complexity of the UI, caching to avoid redun-

dant or blocking/time consuming resource accesses, memory management to avoid GC

events and OOM errors, and source code optimizations.

2.4 How Developers Micro-Optimize Android Apps

Micro-optimizations consist of changes to the source code that are applied mostly at

statement level and are not intended to change the system design or architecture. Some

of the tools for detecting potential micro-optimizations (e.g., FindBugs, LINT, PMD)

have been widely adopted by software developers and companies [67] building Java and
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C/C++ systems. However, the effectiveness of the suggestions (i.e., warnings about micro-

optimization opportunities or bugs) provided by these tools has been previously questioned

in the context of fault detection in C/C++ and Java systems [234, 247, 231, 230, 247, 66].

Moreover, little research has been done into understanding whether mobile developers per-

form micro-optmizations, given the fact that mobile apps are more prone to performance

bugs [174].

In this section, we summarize the results of three empirical studies aimed at under-

standing the usage of micro-optimizations in the wild, the reasons, and their impact when

optimizing Android apps5. First, we measured the persistence of micro-optimization op-

portunities 6 in change histories of open source Android apps; in particular, we mined the

change histories of 3,513 Android apps hosted on GitHub to identify the most frequent

micro-optimization opportunities suggested by two static analysis tools (i.e., PMD and

LINT ) in 297K+ snapshots of these apps (at commit level) and to understand if (and

when) developers implement these micro-optimization opportunities. Second, we analyze

the effectiveness of micro-optimizations on the resource consumption of Android apps by

means of an in-depth analysis into whether implementing suggested micro-optimizations

can help reduce memory and CPU usage in a sample of eight Android apps; to this we im-

plemented a tool that automatically refactors micro-optimization opportunities and builds

APKs from refactored source code. Finally, we investigated current practices of Android

developers for improving the performance of their apps by conducting a survey involving

389 open-source Android developers to understand the state-of-practice with respect to

micro-optimizing apps and the reasons for applying (or not) micro-optimizations in prac-

tice. One limitation of our study is that Android-specific micro-optimizations for the GUI

were not included, because they can not be automatically performed and their implemen-

5The publication supporting this Section is currently under review at the Journal: Empirical Software
Engineering. This is a joint work with Christopher Vendome and Michele Tufano from the SEMERU
group.

6We use the term micro-optimization opportunities because (i) these are suggestions (more than must-do
changes) reported by static analysis tools, thus these tools might suggest false positives, and (ii) micro-
optimizations effectiveness might depend on the context (e.g., the impact of string micro-optimizations is
noticeable with certain volume of string operations).

23



tation is always app-specific. Therefore, this paper represents a “starting point” for future

efforts in terms of validating the impact of existing Android-specific micro-optimizations

and providing developers with micro-optimizations that can have real impact on the per-

formance of their apps.

The studies summarized in this sections make the following noteworthy contributions:

• To the best of our knowledge, this is the first set of studies aimed at analyzing

micro-optimization practices of open source Android developers.

• The studies contribute to understanding the nature of Android apps and the need

for specific practices that consider the context of the apps (i.e., device, OS); the

theoretical assumption that practices with certain success in non-mobile systems

can be transferred to mobile apps with the same results is not entirely valid as

in the case of micro-optimizations, which require specific conditions that are not

available in mobile apps (e.g., large number of String operations, or a large number

of instantiations of objects in loops).

• An extensive online appendix that includes the anonymized answers collected from

the survey, a taxonomy of practices for detecting micro-optimzation opportunities,

detailed results from the measurements study, and results from the mining study [26].

In the following we summarize the research questions and corresponding results. The

publication supporting the results is under review at the journal of Empirical Software

Engineering.

2.4.1 RQ1: What is the distribution of micro-optimization opportunities

across Android Apps at GitHub?

We utilized LINT [32] and PMD [39] to identify performance-related warnings (i.e, micro-

optimization opportunities) in 3,513 Android open source projects. In total, we detected 56

types of micro-optimization opportunities (24 from LINT and 32 from PMD). The results
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suggest that Android open source developers mostly do not implement micro-optimizations

to improve mobile apps performance. When analyzing the most recent snapshot of the

3,513 open source Android apps, we found a large number of micro-optimizations oppor-

tunities (detected by PMD and LINT). Importantly, we observed that the density of these

micro-optimization (i.e., normalized by the number of files and LOC) reflected the high

prevalence of micro-optimizations, since the densities mirrored the results for the raw fre-

quencies. The top three micro-optimization types (i.e., MethodArgumentCouldBeFinal,

LocalVariableCouldBeFinal, UnusedResources) amount to over 1.5 million instances where

micro-optimizations might be implemented. The next two micro-optimization opportuni-

ties in the top-5 list are UnusedIds and AvoidInstantiatingObjectsInLoops accounting for

53K+ instances.

2.4.2 RQ2: To what extent are micro-optimizations introduced or avoided

during the evolution and maintenance of Android apps?

The analysis method for RQ2 consisted of identifying the trends, by finding the function

that best describes (i.e., best fit) the evolution of the number of performance-related

warnings (i.e., micro-optimization opportunities) for each project at commit level. The

function fitting was implemented in MATLAB targeting a diverse set of functions to

avoid bias towards widely analyzed models (e.g., linear and power); in particular, for

the fitting, we used the following functions available with MATLAB: linear, quadratic,

cubic, exponential, power, logarithmic, Weibull, sine, and first order Fourier series model

(fourier1).

We observed a dominance of a first order fourier model fitting the number of micro-

optimization opportunities at each commit of the analyzed apps, when considering both

global data (i.e., al the micro-optimization categories) and data for each category. The

global distributions only showed linear-const as the dominant fitting at the 5th ranking

(i.e., top-5) of functions (235 projects), but it was prevalent for certain history sizes

and particular warning categories. Of these projects, only 12 projects never had a micro-
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optimization opportunity introduced during their revision history. However, we observed a

high prevalence of linear-constant as the top two dominant function, when we investigated

the warnings categories. Additionally, we observe a decreasing function, in the top three

fittings for the global data, but when normalized by LOC and only for projects with

long histories. The results indicate that the most prevalent behaviors in terms of micro-

optimization opportunities detected in the analyzed apps are (i) the opportunities increase

during the app history, and (ii) the opportunities are constant, therefore, it suggests that

developers mostly do not implement micro-optimizations in mobile apps.

2.4.3 RQ3: How do micro-optimizations impact CPU and memory usage

of Android apps?

To measure the impact of micro-optimizations, we focused on apps with a large number

of micro-optimizations opportunities. Instead of measuring the impact of incrementally

applying one, two, three, etc., micro-optimizations, we decided to measure the impact in a

scenario when all the micro-optimizations opportunities are addressed. To this, we devel-

oped a tool to automatically refactor (i.e., apply micro-optimizations) Android projects

(i.e., source code), based on the list of warnings reported by PMD and LINT. We utilized

a combination of AST-based analysis and textual transformations depending on the type

of violation and required fix. The implementation of the micro-optimizations is based on

the practices and solutions suggested by PMD and LINT. The tool generates a refactored

version of an app (source code and APK) implementing either all the micro-optimizations

belonging to a target category, or all the micro-optimizations in all the categories. Our

tool after modifying the source code, automatically builds Android APKs. In addition to

our tool, we used the optimizations provided by Proguard [40], which is the state-of-the

practice tool for optimizing APKs. We used the specific configuration of Proguard for

optimizing apps as suggested by the related work [218]. In particular, this configuration

performs (i) peephole optimizations for arithmetic instructions and casting operations,

(ii) removes write-only fields, (iii) marks fields as private, if possible, (iv) propagates the
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values of fields across methods, and (v) merges classes vertically and horizontally in the

class hierarchy, whenever possible. It is worth noting that the micro-optimizations imple-

mented by our tool and the ones in Proguard are not the same, thus, each tool provides a

different set of optimizations. Also, note that the micro-optimizations performed by our

tool are done in the source code, meanwhile Proguard optimizations work directly at the

bytecode level.

The results on eight open source apps (AnCal, AndroidBicycle, Hangeulider, Heatl-

hFoodConcepts, SaveApp, RaspberrybusMalasya, Subsonic-Android, HeartsSky) with a

large number of micro-optimization opportunities, demonstrate that the analyzed micro-

optimizations do not significantly improve CPU or memory consumption (except for the

UnusedResources case), even in those apps that contain a high number of warnings. How-

ever, we found evidence that developers can significantly reduce the memory consumption

of the running app, by removing unused resources, which can be automatically detected

and performed by the Android LINT tool.

2.4.4 RQ4: What practices are used by developers for detecting opti-

mization opportunities in Android apps?

Although the current practices and tools based on dynamic analysis do not support au-

tomatic detection of optimization opportunities, these techniques were preferred by the

survey participants over static analysis tools for ad-hoc fixing of performance related is-

sues or early detection of micro-optimization opportunities. In general, 371 informative

answers from the survey revealed the existence of a diverse set of practices and tools for

detecting optimization opportunities. However, the responses show a bias in preference

towards dynamic-based practices and tools provided by Google. Only 82 participants in-

cluded in their answers static analysis-based practices, and only 15 participants indicated

use of static analysis tools (e.g., PMD, FindBugs, LINT) in order to detect optimiza-

tion opportunities. Manual testing and profiling turned out to be the most preferred

practices. Only two participants rely on automated unit testing tools. In the case of
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profiling, the most used suites and tools belong to the Android ecosystem, such as Eclipse

MAT[17], DDMS [114], Android Device Monitor [104], traceview [109], systrace [111], and

dmtracedump [109]. Only 20 answers included third-party tools such as Valgrind [51],

LittleEye [33], AT&T ARO [8], Intel Parallel Studio [29], Adreno profiler [34], among the

others. A detailed taxonomy of practices is provided in the online appendix [26].

2.4.5 RQ5: What micro-optimizations are recognized (and used) by de-

velopers as useful for improving the performance of apps?

The practice of detecting and implementing micro-optimizations is not prevalent among

Android developers who responded to our survey. Most of the participants are unaware

of this practice, claiming that their apps do not require micro-optimizations, or that they

do not trust in “premature optimization”. However, some developers reported successful

usage of some micro-optimizations, which suggests that, in general, the impact of micro-

optimizations might depend on the application domain (e.g., games) and the operations

workload involved in the micro-optimizations (e.g., large volume of String operations)

2.5 Energy Greedy APIs [165]

Programming errors, hardware interactions, and API misuses can cause high levels of

energy consumption (also known as energy bugs) in mobile apps [204]. To identify such

problems, effective strategies for measuring energy consumption in mobile devices are

needed. In the literature, several different strategies have been proposed, based on real

measurements [77, 96, 127, 144, 152, 225] and power modeling [122, 123, 205, 206, 241,

246]. While previous work attempted at characterizing energy bugs in mobile devices

[77, 82, 122, 205, 225], most of these classifications have been done either by mining

software repositories (e.g., bug reports, forums, commit logs) [204, 229, 244] or by using

dynamic tainting [172, 245]. Thus, there is a clear gap in the research literature on how

and where the uses and misuses of APIs can lead to energy bugs based on large-scale
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empirical data. Up-to-date, only the wakelock and GPS related APIs and their misuses

have been studied and linked to energy bugs [206, 207, 229, 244].

Based on these considerations, we conducted a quantitative and, above all, qualitative

exploration into how different API usage patterns can influence energy consumption in

mobile apps [165]. We mined and analyzed thousands of instances of energy-greedy method

calls and API usage patterns by measuring their energy consumption in 55 free Android

apps belonging to different domain categories. In order to collect energy consumption

values for each API call, we used a hardware-based approach for collecting actual energy

measurements and aligned those values with execution traces generated from real usage

scenarios on mobile apps. Once energy consumption data were collected for all execution

scenarios, we traced all API calls back to the source code where they appear using an

approach that we specifically implemented in this paper. Note that, since previous studies

had already shown that 3G/GSM and GPS were energy-greedy hardware components

[77, 122, 205, 206], in this study we were not interested in measuring the energy consumed

by APIs related to those components.

Using the proposed measurement framework, we analyzed the consumption of individ-

ual APIs as well as their usage patterns. Firstly, we quantitatively identified the APIs

and the patterns exhibiting high energy consumption in 55 free Android apps. Then, sev-

eral evaluators inspected—following a categorization approach inspired from the grounded

theory [98]—thousands of code fragments where such APIs/patterns occurred. In some

cases, we found evidence of energy bugs due to API misuses or suboptimal API choices.

Overall, the work is in the trend of mining energy consumption patterns for software

systems, originally pioneered in this community by the work of Hindle [127]. The main

contributions of this study are:

• An approach, based on power measurement and mining source code, for identifying

API calls and usage patterns exhibiting high energy consumption;

• Quantitative ranking of high energy-demanding APIs and usage patterns, which
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have been traced back to original source code in the apps;

• Results of a qualitative analysis aimed at understanding energy hotspots in API

usage patterns and discussing whether alternative solutions are available;

• Actionable knowledge and recipes for developers on how to reduce energy consump-

tion while using certain categories of Android APIs and patterns.

In the following we summarize the research questions and corresponding results. Com-

plete details of the study are with the MSR publication [165].

2.5.1 RQ1: Which are the most energy-greedy Android API methods?

Out of all the analyzed APIs, 131 represent negative outliers in terms of energy consump-

tion (i.e., energy greedy APIs). While the average energy consumption for the remaining

676 (807-131) methods is 4e-5 J on average, for the top-131 methods it is 5e-3 J on average

(125 times higher) with peaks of 0.15 Joule, i.e., more than 3,000 times than the average

of all the methods. Note also that these API invocations are scattered across all the 55

analyzed apps, with a total of 9,609 instances (mean 73, median 23).

APIs related to GUI & Image Manipulation and Database represent, all together, 60%

of the energy-greedy APIs. Concerning the GUI & Image Manipulation category, an inter-

esting case is represented by the method notifyDataSetChanged of class ArrayAdapter.

In the Android documentation, this method is described as the one in charge of notifying

the attached observers that the underlying data has been changed and any View reflecting

the data set should refresh itself. This method is energy-greedy due to the necessity of

refreshing all views when changes happen to the data represented in them. This method

appears to be a well-known energy bottleneck and it has been spotted and discussed by

Android developers on Stack Overflow [219]. However, this example represents one of

those cases where developers have no choice to implement automatic updating of view

basic blocks in response to data changes.
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Several methods from the Database category are needed in the management of an

SQLite database on Android. We go from the database opening SQLiteDatabase.open-

Database, to its querying SQLiteDatabase.query, until its deletion ContextWrapper.-

deleteDatabase, for a total of 30 energy-greedy APIs. It should be noted that energy-

greedy APIs responsible for XML files manipulation are, instead, very rare, with only the

method XML.newSerializer belonging from the File Manipulation category. Of course,

this does not mean that the use of an SQLite database represents an energy bug, but just

that developers should seriously think if their application really needs to use a relational

database as a storage layer or, instead, could also store persistent data in XML files or

using SharedPreferences [103] for storing key-value pairs of primitive data types.

2.5.2 RQ2: Which sequences of Android API calls are the most energy-

greedy?

We found 642 and 319 different patterns with length two and three respectively in the

considered set of apps. For the former (length = 2) there were 15 negative outliers, while

for the latter (length = 3) we found eight outliers. As already observed when analyzing

single API methods, also in this case energy-greedy patterns mainly fall into two categories:

GUI Manipulation and Database. Note that this holds for both patterns of length two

and three. The complete list of patterns and energy measurements can be found in the

online appendix 7.

The pattern <Activity.setContentView(int); Activity.findViewById(int); View.-

setVisibility(int)> is the most energy-greedy sequence we found, with an average

consumption of 0.20 Joules. It is used for setting the content view of an Activity and

make it visible to the user. Most of the energy consumption for this pattern is due to

the Activity.findViewById(int) method (also present among the 131 greedy-energy

methods identified in RQ1). This method is in charge of finding a View basic block iden-

tified by the id passed as a parameter. The problem is that the views structure for an

7http://bit.ly/1fCsjwz
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Android app is stored in XML files (known as layout files) that can easily reach very

large size. Thus, in order to find a specific view given its id, all the layout files must be

iterated through, which is a computationally expensive operation resulting in high-energy

consumption as well. Although the consumed energy depends on the amount of views

declared in the layout files, some developers recommend to save a global private instance

of every visual component that will be used instead of calling Activity.findViewById

often, as described by an Android Framework Engineer in the Google Forum [27]:

How expensive findViewById? [...] Actually it’s not nearly so smart – it is just a

traversal through the view hierarchy until it finds a matching id [...] As with all things,

you should avoid doing this repeatedly if you don’t need to (keep the thing you find in

a variable so you don’t have to look it up again).

Curiously, this is exactly the opposite of what we found in several apps, like a birthday

reminder app showing an app method with more than 50 calls to the Activity.find-

ViewById(int) API. We looked for the energy consumed by those calls and we found that

the 57 executions of findViewById can consume up to 0.22 J, which represents 8 · 10−3%

of the battery of a Nexus 4 smart phone. Note that this is the consumption caused by the

execution of just one method, and that is given the fact that multicore CPUs implemented

in modern smart phones are able to execute millions of methods in less than a second time.

Among the energy-greedy patterns related to database operations, interesting ones are

those represented by sequences of calls to the SQLiteDatabase.execSQL(String) method,

especially long when the statements are used to create/drop database elements. We found

some examples, such as one method in an Education app in which 26 execSQL(String)

invocations are performed, leading to battery consumption up to 3 · 10−3% for a single

execution of a method.
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2.6 How Developers Document and Design Test Cases for

Android Apps

While common wisdom and best practices suggest that test cases should be derived from

requirements artifacts, to the best of our knowledge, previous studies (about mobile test-

ing) have focused on the challenges and tools used for testing but without analyzing the

details of the strategies used by mobile developers for designing manual and automated

test cases [143, 149]8. In this section we summarize the findings of a survey with con-

tributors of open source Android apps hosted on GitHub. The goal of the study was

to understand testing practices of mobile developers from the perspective of how test

cases are designed, what are the testing strategies, why manual testing is preferred over

automated (as suggested by previous work [143, 149]), and what information should be

included in an automatically generated test case. In addition, the survey asked mobile

developers about the usage of widely used techniques in the research community such as

random testing and coverage analysis.

In the following we summarize the research questions and corresponding results. The

publication supporting the results is under submission to the journal IEEE Transactions

on Software Engineering.

2.6.1 RQ1: What are the strategies used by mobile developers to design

test cases?

Mobile developers heavily rely on usage models to document and design test cases. First,

requirements are documented using different artifacts such as feature lists, informal natural

language descriptions, user stories and use cases; only 6 out of 102 participants reported

8Kochhar et al. [149] investigated also with a survey with 83 open source Android developers the tools
they use and challenges they face while testing Android apps. It is worth noting that our survey also
includes a question concerning the tools used for automated testing. Kochhar et al. [149] list a reduced
set of tools (i.e., 10), however, we complement their findings with a list of 55 tools used by our surveyed
participants. We also complement their findings with a specific question designed to understand experiences
and issues of mobile developers when using random testing tools
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they do not use any artifacts to document requirements. Second, the surveyed participants

mostly rely on manual testing and unit testing for their testing strategies. The rationale

provided by the participants for their preference and effort dedication to manual testing

is supported by several reasons such as (i) changing requirements, (ii) lack of time for

testing and process decisions, (iii) size of the apps, (iv) lack of knowledge of the tools

and techniques, (v) usability and learning curve of available tools, and (vi) the cost of

maintaining automated testing artifacts. Finally, the surveyed developers mostly focus

on the usage model (i.e., use cases and features) to design test cases, therefore, they use

single model or a combination of use cases/features as the target for their test cases.

2.6.2 RQ2: What are the preferences of mobile developers for test cases

generated automatically?

Automatically generated test cases in natural language or expressed using automated

testing APIs (e.g., Robotium or Espresso) are preferred by the participants. This suggest

a preference for high-level languages instead of low level events as the ones that can be

expressed using ADB input commands. In addition, the surveyed developers prefer to

have test cases that include expected outputs and reproduction steps organized/grouped

by use cases or features.

2.6.3 RQ3: What tools are used by mobile developers for automated

testing?

The surveyed participants rely on a diverse set of tools for supporting automated testing

of mobile apps. In particular, 55 different apps were reported showing a preference for

APIs such as JUnit, Roboelectric and Robotium. Compared to the study by Kochhar et

al. [149], we report a larger set of apps answered by a larger set of participants. However,

both studies agree on listing JUnit, Roboelectric and Robotium as part of the top-4 used

tools. Record & replay, and random testing tools are used only by few participants. In the

case of random testing tools, few participants claimed some benefits such as stress testing,
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execution/discovery of corner cases, and execution of events that are hard for humans.

However, some of the reasons that are an impediment for a wide usage of random testing

tools (e.g., Monkey) is the lack of expressiveness of the generated event streams.

2.6.4 RQ4: Do mobile developers consider code coverage as a useful

metric for evaluating test cases effectiveness?

Code coverage is neither used nor considered as useful for measuring the quality of test

cases by 63.73% (i.e., 65 out of 102) of the surveyed participants. Some of the reasons

explaining the lack of confidence in the metric is that they prefer fault-detection or feature-

coverage capabilities of test cases as a measure of quality, or they prefer to measure test

cases quality by performing code reviews. On the other side, some participants consider

that code measure is a good metric because it helps to identify parts of the code that are

not tested.

2.7 Discussion

The empirical studies provided insights into the key challenges of mobile developers, pre-

ferred practices, and tools required by practitioners to support evolution and maintenance.

A main cross-cutting concern, over most of the studies, is related to the high dependency

on dynamic analysis for evolution/maintenance tasks: execution of Android apps on a

diverse set of platforms (i.e., combination of device and OS) is a mandatory task to (i)

assure the quality of the apps, (ii) validate/acknowledge crowdsourced requirements and

bugs, and (iii) test non-functional requirements such as performance and energy consump-

tion. Moreover, dynamic analysis of Android apps has to follow the constraints and nature

imposed by the mobile development lifecycle; in that sense, tasks relying on dynamic anal-

ysis (e.g., testing) should be efficient and effective (i) under the pressure for continuous

delivery, (ii) with an unstable API that is a threat to the success of the apps, (iii) with

a constantly changing set of target devices, and (iv) with a contextual model (i.e., events
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and adversarial conditions) that imposes a complex set of inputs. Therefore, there is a

clear need for a versatile infrastructure supporting dynamic analysis of mobile apps, and a

need for approaches that support evolution and maintenance of Android apps that rely on

such an infrastructure. The next Chapter describes an infrastructure designed to support

large-scale execution of mobile apps, which follows design drivers such as the open-closed

principle, vertical/horizontal scalability, and loose coupling between an Execution Engine

and diverse clients supporting different tasks.
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Chapter 3

Enabling Large-Scale Execution

and Testing of Android Apps

In the last few years, the industrial community has experienced a tremendous gravita-

tion toward a new economy driven by mobile devices, apps, and other corresponding

services/products. As a response to this phenomena, researchers in software engineering

have contributed various tools and approaches aimed at supporting essential tasks in the

development process of mobile apps including ensuring security [115, 180, 65, 213], test-

ing [55, 124, 178, 175, 81, 171, 195], improving energy consumption [123, 152, 166, 235,

154, 167], and crowdsourcing requirements [120, 203, 200, 201], among others. However,

despite ongoing efforts from both academic and industrial communities, there are still

outstanding challenges related to dynamic analysis and execution of Android apps that

highly impact mobile development and maintenance.

Industrial mobile developers and testers face the following challenges: (i) continuous

pressure from the market for frequent releases [133, 142], (ii) platform fragmentation

at device and OS levels [143, 146], and (iii) rapid platform/library evolution and API

instability [160, 168, 185, 69]. Therefore, continuous validation of mobile apps on a large

set of device configurations is a “must-have” in the development process to ensure the

quality of mobile apps. However, this must be enabled within the constraints of tight
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release schedules and limited developer and hardware resources. In academic research,

the large number of apps available in markets such as Google Play [24] and F-droid [21],

and the considerable volume of recently published papers that utilize dynamic analysis or

perform execution of Android apps with large datasets, are pushing the field to increase the

number and complexity of apps used in the studies. When taking into consideration the

challenges in both communities (industry and academia), an infrastructure for large-scale

dynamic analysis of Android apps is highly desirable.

Large-scale execution of mobile apps in the context of this paper can be defined as the

concurrent execution of a high number of varying configurations of the following attributes:

(i) devices (either as a physical or virtual device farm, further defined by hardware con-

straints such as screen size, amount of memory, etc.), (ii) platform/OS versions, (iii) apps

(in terms of both the diversity of supported apps, and the ability to run multiple versions

of the same application), and (iv) execution scenarios or test cases (either manually writ-

ten or automatically generated; utilizing one of several scripting tools/languages). The

most typical use case for such a framework is conducting mobile testing by running a

suite of manual or automated GUI-based scenarios on given versions of an application on

a multitude of device configurations for verification purposes, typically before a release.

However, this type of large-scale dynamic analysis can also support other tasks such as

energy optimization, performance analysis, and security analysis.

In order to be practical such an infrastructure must meet two key requirements (i)

it should be easily adoptable and highly configurable by both researchers and developers

via relying on open-source technologies, and (ii) it should not require a large investment

of expensive hardware/software components. Unsurprisingly, there are several challenges

and issues that arise when enabling such a framework within these requirements. For

instance, currently the tools provided by Google (e.g., emulators) and the Android SDK/

Framework utilities exhibit several issues that inhibit automated, parallel execution tasks

on a large number of concurrently running devices/emulators. Furthermore, emulator

instability and inappropriate management of inter-event delays are exacerbated when a
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large set of emulators are executed in parallel. Additionally, there are also open problems

specific to automated mobile testing, such as the generation of test oracles.

Previous studies have proposed approaches involving large-scale, parallel analysis of

Android apps [74, 179, 177, 220, 70, 238, 186]; however, the papers neither report tech-

nological challenges when enabling their frameworks nor offer clear solutions or guidelines

that developers and researchers should follow when implementing a large parallel execution

framework to meet their needs. Thus, there is currently a glaring lack of best practices

and guidelines for large-scale execution and testing of Android apps. Recently, as part

of a research effort and industrial collaboration with a large telecommunication company

(Huawei), we have developed and assembled an infrastructure for enabling large-scale exe-

cution and testing of Android apps that is easily adoptable and relies only on open source

components. In the course of this development, several technical challenges were met and

overcome. It is likely that many of these challenges will continue to go unaddressed by

emerging tools or documentation, and while commercial tools may solve some issues, the

research community will lack a critical roadmap for implementing a framework that will

enable further work related to dynamic execution of applications. Thus, a clear discussion

of the specific challenges encountered, the developed solutions, and current open questions

is required in order to provide researchers and practitioners with a clear understanding of

the architecture and guidelines we present.

The purpose with this Chapter is two-fold: (i) provide researchers and developers with

a list of guidelines and best practices for enabling large-scale execution and testing of

Android apps, and (ii) present a infrastructure that can be instantiated/extended to allow

large execution of Android apps with multiple purposes. Therefore, the contributions of

this Chapter are as the following:

• A taxonomy of issues that developers, testers, and researchers experience when en-

abling large-scale execution and testing of Android apps (Sec. 3.1);

• Specific solutions for some of the issues presented in the taxonomy (Sec. 3.2);
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• Guidelines for designing an infrastructure that will support large-scale execution and

testing of Android apps (Sec. 3.3);

• A comprehensive online appendix with recipes and pertinent guidelines [20].

3.1 A Taxonomy of Essential and Accidental Issues

Software difficulties, in the strict sense of the language used by Brooks in his famous “No

Silver Bullet” and [72] and “The Mythical Man-Month” collection of essays[73], are cat-

egorized into “essence and accidents”1. The former, i.e., essential difficulties, represent

challenges that stem from the inherent nature of software such as complexity, changeabil-

ity, and invisibility; the latter, i.e., accidental difficulties, refer to issues that are an artifact

of the process or the tools utilized for some software development goal. Typically, acci-

dental challenges can be solved, however, only partial solutions exist (if any) for essential

challenges.

In this chapter, we follow the same dichotomy to describe the set of issues we have ex-

perienced when enabling large-scale execution and testing of Android apps. Consequently,

we have found essential issues/challenges that are inherent to large-scale execution and

testing of Android apps, and accidental issues/challenges that are introduced by the tools

currently available for Android development. An overview and at-a-glance information for

these issues and their corresponding solutions (presented in detail in Section 3.1) can be

found in Table 3.1. When developing the infrastructure proposed in this paper we had

testing as our main goal, and thus we center our discussion of issues and challenges around

this application. However, several of the challenges discussed are not specific to testing

and can impact other activities that require dynamic analysis.

1The distinction between essential and accidental properties is not an exclusive concept of Computer Science;
the concepts were first introduced by Aristotle in “Metaphysics”, and later applied by Brooks in the context of SE.
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3.1.1 Essential Challenges for Automated GUI-based Execution

Dynamic analysis and testing of Android apps generally follows GUI-based strategies

because of the GUI-centric design and event-driven nature of mobile apps. In this sense,

essential issues in execution and testing of apps are mostly related to (i) efficient and

effective verification of the expected results for the GUI and app states, (ii) execution

strategies that account for proper timing and coordination of event execution, and (iii)

the impact of external dependencies. We highlight these essential issues in detail.

3.1.1.1 Test Oracles

Current “in-the-wild” practices for mobile testing heavily rely on the developer/tester to

manually verify expected results [143, 149, 169], or require the programmatic definition

of oracles via assertions and test automation APIs such as JUnit [30], Espresso [112],

or Robotium [43]. In the context of automated approaches proposed by researchers, the

most common execution strategies are GUI ripping and systematic exploration with the

intention of discovering crashes and errors that are reported as exceptions [132, 81, 195,

133, 179, 177]; other approaches focus on automatic generation of test cases as sequences

of GUI events but without the corresponding oracle [171, 243, 159], which requires manual

definition or verification. Additionally, expected transitions between windows and GUI

screenshots have been proposed as potential solutions for automatic detection of GUI

errors in Android apps [159].

Using APIs for automated testing (e.g., JUnit, Espresso, Robotium) is very convenient

in terms of automatic execution but is also expensive in the sense that they require a

developer/tester to write and maintain the tests and corresponding oracle(s). State-of-the-

art rippers are very useful for detecting crashes and unexpected errors, but lack capabilities

for identifying errors occurring in the GUI; e.g., a GUI component expected to be in a

window was not activated due to a bug in presentation or business logic where no exception

was thrown (or the exception was encapsulated or handled with an empty catch).
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Approaches that rely on screenshot comparison (i.e., expected GUIs vs. resulting

GUIs) are closer to the goal of detecting such GUI-level errors, however, require image

similarity thresholds, which could vary widely for different apps and analyzed windows.

The GUI comparison and similarity threshold definition can be impacted by several con-

ditions exhibited under different devices and settings [159]. In our experience we have

found that the accuracy of matching GUI oracles (i.e., using images as test oracles) can

be negatively affected when comparing images (i.e., a GUI oracle against collected GUIs

during tests) of different screen sizes and when the test is performed on a different device

or orientation (e.g., horizontal vs. vertical). Additionally, GUI hierarchies are typically

rendered differently (e.g., hiding/showing some components) on smaller displays because

of responsive design capabilities provided by the Android framework or defined program-

matically by the developer, which can cause further issues in matching screenshot pairs

on devices with diverse configurations. Color palettes can be modified drastically in a

target device according to the theme defined by the user or the language setting, which

can cause false positives when using images as test oracles. Moreover, GUI components

for dynamic content, such as date/time pickers (see Fig. 3.1-a) or map visualizations, can

differ depending on the variables linked to the component (e.g., current date, location);

for instance, collecting a GUI oracle on a CalendarView in an app on February 29th, and

then running the test cases ten days later would result in a failing test. We discuss a

custom solution to the problem of test oracles in Section 3.2.1.

3.1.1.2 Event Coordination

Automated tests for Android apps can be described as sequences of events that exercise

the application under test by means of GUI events, services or intent invocations, and

contextual events that trigger execution of specific listeners. An important factor to be

considered in automated tests is the delay between events (a.k.a., inter-arrival delay) to

avoid phenomena such as early dropping of events [159, 158] and test flakiness. However,

response time for GUI output between events can not be totally controlled (even in the
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Table 3.1: Overview of the Essential and Accidental Challenges Discussed (Relevant
section numbers are indicated next to each challenge or solution, as well as corresponding
links to detailed solutions in our online appendix [20] are given as citations. Text in blue
represent partial solutions, green fully or mostly solved solutions, and red challenges that
are currently unsolved.)

Essential Challenges Solutions Accidental Challenges Solutions
Test Oracles: (3.1.1.1) How
does one design an extensible
GUI-based oracle that can be
used to verify expected appli-
cation behavior across different
device configurations?

(3.2.1) Use a hash of the xml
representation of an applica-
tion’s GUI, which is more ex-
tensible between devices com-
pared to image based heuris-
tics.[49]

Application Data and Cold
Starts: (3.1.2.1) Android ap-
plications can persist data us-
ing several different options.
How can one ensure a sterile
or desired testing environment
within the context of large scale
testing?

(3.2.3) Utilize the built-in adb

commands for clearing ap-
plication data for apps that
store it internally, and identify
and delete external data that
might be saved to the filesys-
tem. [48]

Event Coordination:
(3.1.1.2) In automated GUI-
based testing, deciding the
proper timing of firing events
on a device is challenging.

(3.2.2) Query the Android
window server to determine
when application animations
are occurring in order to in-
fer when the state of the GUI
is idle, and thus it is safe to
send new commands. [46]

Bugs in Framework Utili-
ties: (3.1.2.2) There exist cer-
tain limitations with core An-
droid Frameworks popular with
GUI-testing, such as the inabil-
ity to obtain a snapshot of GUI-
information for dynamically up-
dating screens.

(3.2.4) We modified the
source code of the Android
uiautomator framework
in order to enable the ef-
ficient collection of the
GUI-hierarchy from apps
with dynamically changing
screens. [49]

External Features: (3.1.1.3)
How can external features such
as notifications be properly in-
corporated into large-scale test-
ing of mobile apps?

Researchers should consider
using actual usage data from
the field in order to inform the
type and frequency of external
features such as notifications.

Bugs and Limitations in the
SDK Tools: (3.1.2.3) There
are limitations inherent to An-
droid developer tools, such as
adb, that make large-scale par-
allel execution and testing diffi-
cult.

(3.2.5) Use multiple adb

servers, with no more than 15
devices per server, in order to
properly interface with a large
number of connected physical
or virtual devices. [47]

External Dependen-
cies:(3.1.1.4) Many mobile
apps use external servers or
databases in order to send,
store, and receive information.
How can these dependencies be
appropriately incorporated into
large-scale testing?

While this issue is currently
unsolved, future work could
focus on modeling the behav-
ior of these external depen-
dencies, based on usage data.

Challenges Scaling Con-
current Virtual Devices:
(3.1.2.4) Android emulators
were not designed to scale well
on modest hardware, thus,
other types of virtual devices
are required to enable large
scale execution and testing.

(3.2.6) Use Android Vir-
tual Machines based on the
android-x86 project with a
hypervisor such as VirtualBox
in order to enable a config-
urable and scalable virtual
device farm. [47]

case of end-to-end tests with hermetic servers) due to the asynchronous nature of some

events in Android and processing delegated to external services. Consequently, “waiting”

times have to be hard-coded in scripts/code for automated execution/testing of apps ,

when the tool/API used for automatic execution is not idle-time aware. For instance,

if after executing an event (e.g., click on an OK button), the response from the app

might take more time than expected, in particular, if the response depends on an external

service or a lengthy operation, the next scheduled event in a script (or test case) can be

executed, but the app is may not be ready yet to process it. Therefore, the scheduled

event is not executed, which can lead to unexpected test case results, false declaration of

the test case as failed [159, 158], or execution of testing sequences that are not designed

by developers/testers.

This issue is often aggravated when running several test cases on multiple virtual de-
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a) Time/Date pickers d) GUI with time counter

b) Notification area 

c) Notification drawer

a) GNU Cash b) Daily Money c) The Weather Channel d) Walmart

Figure 3.1: Examples of GUI components in Android apps that are problematic for
automated test cases.

vices (i.e., emulators) on the same machine, even with GUIs that do not involve lengthy

operations or calls to external services. Depending on the machine specifications, the

processing (and corresponding time) of an event in a virtual device can depend on the

scheduling mechanism in the host machine, or the general GUI responsiveness of the vir-

tual devices. For example, on a moderately capable desktop workstation, with a 2.8GHz

Intel Xeon E-5-1603 v3 CPU with 4 cores, 128 GB of RAM, and an Nvidia Quadro

K420 GPU, we have experienced longer than expected wait times during automated

test-case execution with multiple emulators. Specifically, we experienced issues with a

hardcoded delay-time of 15 seconds between events (e.g., some event transition anima-

tions took longer than 15 seconds, so the following event in the test case was executed

during the transition causing unexpected behavior). When considering existing APIs

for automated testing (i.e., JUnit, Robotium, Roboelectric, Espresso), only Espresso is

idle-time aware. The execution of a GUI event with Espresso waits for the app to be

idle after the event; the source code of the action methods in Espresso includes a call

to UiControllerImpl.loopMainThreadUntilIdle() [19], which internally waits for the

following conditions with a do-while loop: (i) there is no task running, (ii) there is no

AsynkTask running, or (iii) the resources are in an idle-state. However, this solution is

Espresso-dependent, and can not be used with other APIs. We discuss a general custom

solution to hard-coded times in Section 3.2.2, which is not coupled to any specific API.
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3.1.1.3 External Features

Android apps can provide “external features” (i.e., outside of apps’ GUIs) via notifications,

timers, and widgets. For instance, notifications are messages that can be displayed outside

of an app at any moment (even when the app is not in foreground) [108]. A notification

appears initially as a banner (or icon) in the notification area at the top of the screen, and

the details can be displayed by opening the notification drawer. The banner/icon, detail,

and conditions for the notification depend on the application logic, while the location of the

icon (Fig. 3.1-b) and the items in the notification area/drawer (Fig. 3.1-c) depend on the

existence of other notifications in the device. Therefore, testing the opening and correct

displaying of a notification automatically requires approaches that are able to identify the

location of the icons/details in the notification area/drawer.

Moreover, automatically testing notifications that are time-related is a difficult task;

for example, assume a test case was recorded or programmed to show a notification at

4:05pm; the test case was collected at 4:00 pm, thus, a test case will wait for at least

5 minutes before opening the notification. When using a Record & Replay tool like

Monkey Runner [2] or RERAN [100], the timing between the sequences of actions to

set a date picker will be the same, however, the value chosen may differ depending on

the specific time the test is run and the corresponding default value in the date picker.

This specific scenario can be solved by relying on the PickerActions [105] provided by

the Espresso API and automatic collection of current time using the Java API. However,

if the notification time can not be estimated automatically because the notification is

generated by a service running in the device or by an external service, the test case might

include an infinite loop, or time-out-bounded loop that continuously checks if the alert is

in the notification area. These types of external features are better candidates for manual

testing, however, there is still effort required in assuring that the feature would work well

on different devices, OS versions, and under varying contextual conditions. This is an

open issue for which no solutions exist yet.
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3.1.1.4 External Dependencies

Complex mobile apps delegate tasks to back-end servers (e.g., authentication servers) or

rely on mobile cloud architectures [53]. These external dependencies pose a threat to the

quality of mobile apps, and a challenge for automated testing. Several strategies have been

proposed by the industry to test apps that require back-end servers [106]. For instance,

replacing real back-end servers or services with mock/fake servers or mock/fake network

implementations running on the same machine that host the virtual device (with an app

under test) reduce the risk of test flakiness and testing time, when comparing to end-to-end

tests [106]. However, this type of strategy imposes overhead on virtual devices, or machines

hosting the “fake” servers (when it is the same as running the virtual devices), which can

be an impediment to large-scale execution and testing when the developers/researchers

do not have access to elastic on-demand cloud-based infrastructures.

3.1.2 Accidental Challenges for Automated GUI-based Execution

3.1.2.1 Application Data and Cold Starts

Android apps can persist data using different options, such as shared preferences, inter-

nal/external storage, and SQLite databases [110]. Depending on the option selected by

the developer, application data can be persistent even after killing or uninstalling the app.

Application data in shared preferences, internal storage, cache, and SQLite databases

are private and this data is removed when the application is uninstalled; however, data

persisted using these options is persistent across different sessions. Whereas data saved

in external storage (e.g., sdcard), is available in the device even after uninstalling the

app. In order to ensure a consistent and “sterile” execution environment, particularly

for testing-related activities with repetitive executions, it is imperative that approaches

for automated execution are aware of internal and external application data. Therefore,

it is possible that some apps, which are reinstalled (e.g., after running a test case), will

use the data in external storage. In some cases, the behavior of an app depends on the
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application data and whether it is the first time the app is launched after installation on

a device (i.e., a cold start); splash/welcome screens, dialogs for downloading data from a

back-end server, or text bubbles and semi-transparent overlays with help/demo purposes,

are displayed by some apps when users interact with certain features for the first time

(Fig. 3.2).

Imagine a scenario in which automated test cases are recorded/programmed without

assuming cold-starts for an app A, but each test case is executed with cold-start; also,

assume that app A has semi-transparent overlays on each activity that appear only the

first time an Activity is started (see Fig. 3.2-f). In this scenario the recorded/programmed

test cases will not consider the semi-transparent overlays that disappear by clicking on it,

therefore, some GUI events in the test cases expected to be executed on GUI components

will be “wasted” when clicking on the overlays. Another example scenario is one in which

the test cases consider cold-starts, however, each test case is executed without removing

application data or uninstalling the app. Consequently, cold starts, and app data can

drive unexpected executions of test cases and thus false positives/negatives (in terms of

passed/failed test cases)2. We describe a technique for cleaning app data in Section 3.2.3,

which can be used with automated executions scenarios.

3.1.2.2 Bugs in the Framework Utilities

The Android OS running on devices includes a layer known as the Application Frame-

work (AF), which contains a set of system services (a.k.a., managers) that allow Android

apps to access basic properties of a device, such as activities, resources, and window man-

agement [92]. The AF also includes a set of utilities that can be invoked remotely (i.e.,

via Android Debug Bridge [102]) for debugging and testing purposes. These utilities are

located in the /system/ folder of the Android OS and provide the core functionality to

SDK tools, such as the hierarchyviewer and uiautomatorviewer. Both tools (and the

2Fuzz testing tools like Monkey can get stuck on welcome screens/dialogs. However, GUI rippers do not expe-
rience problems because the exploration is based on the current snapshots, therefore, GUI rippers are aware of the
GUI components in the welcome screens/dialogs
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a) GNU Cash b) Daily Money

d) The Weather Channel

d) Walmart

e) Walmart f) Calculator

c) PFA

Figure 3.2: Example of splash/welcome screens, dialogs, and semi-transparent overlays
that appear in Android apps during cold-starts or the first time a feature is used.

corresponding AF utilities) have been widely used in the research community (including

our own projects) to extract snapshots (i.e., components, locations, properties, and lay-

out) of the GUIs rendered in devices. As a matter of fact, utilizing such tools is the only

way to collect accurate GUI information dynamically without instrumenting apps or the

OS. Consequently, because the AF is the only layer that can be accessed remotely for dy-

namic analysis purposes, bugs in the AF utilities directly impact developers/researchers

infrastructures for execution and testing of Android apps. For example, we initially used

the hierarchyviewer utility from the AF, however, we found the utility to be too slow to
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be practical, incurring a large overhead when snapshots are collected after each event is

executed in a large test suite (automatically executed). After further research, we found

that the AF uiautomator utility operates much faster, thus reducing the time for GUI

snapshot collection. However, there are two issues that should be considered when using

uiautomator: (i) in the case of dialogs, the snapshot does contain information of the GUI

behind the dialog (conversely to hierarchyviewer that includes all the information); and

(ii) GUIs with changing components or animations generate an "ERROR: could not get

idle state"3 message and the snapshot is not generated (this bug does not show up with

hierarchyviewer). The latter issue shows up in cases when there are components that

are constantly changing (e.g., a stopwatch) like in the “One minute test” window of the

Learn Music Notes app that has a seconds (red) countdown counter at the top (Fig. 3.1-d).

We describe our fix for the issue in Section 3.2.4.

3.1.2.3 Bugs and Limitations in the SDK Tools

IDEs for Android development, such as Android Studio or Eclipse ADT, rely on the

Android SDK, which contains the APIs, emulators, and tools for compiling, packaging,

and debugging Android apps. Also, the SDK can be used as a stand-alone suite by invoking

the tools via command line. One of the most used tools by developers and researchers,

included in the SDK is the Android Debug Bridge (adb) [102]. It is a command-line tool

that allows for remote control and communication to a device/emulator from the machine

hosting the SDK. The adb operates in a client-server style in the host machine and talks

to the adb daemon running on each device/emulator. An adb server running on a machine

with the SDK is able to handle up to 15 different real or virtual devices [102] when using

default ports. In our testing experience, adb has a tendency to become unstable (e.g.,

dropped commands, devices disconnecting without warning) when the maximum number

of devices for a particular server is exceeded. In Section 3.2.5 we describe a procedure to

3This error is also apparent in the uiautomatorviewer tool in the SDK, which displays the following error: “Error
obtaining UI hierarchy. Reason:Error while obtaining UI hierarchy XML file: com.android.ddmlib.SyncException:
Remote object doesn’t exist!”.
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overcome this adb limitation.

3.1.2.4 Challenges Scaling Concurrent Virtual Devices

With the continuing fragmentation of the Android Platform and the continued release of

devices from different manufactures, it is clear that developers need automated methods to

support testing of their apps on several device configurations. An economically feasible way

to accomplish this goal is to use Android Virtual devices (e.g., either Android emulators

or virtual machines), as it does not require the upfront cost and maintenance of a physical

device farm (i.e., a large collection of physical Android devices). Furthermore, from a

time perspective, it is desirable to enable concurrent automated testing using a “cloud” of

emulators running simultaneously to reduce testing overhead. However, practical solutions

for achieving this on in-house hardware with modest specifications have not been effectively

discussed in the context of automated testing research, and open source solutions are not

immediately available.

During the course of developing a custom large-scale automated framework for the

parallelized execution and testing of Android apps, we have encountered several issues

with Android Virtual Devices (AVDs). We define an AVD as any instantiation of a

physical Android device in virtualized manner, e.g., either using emulated hardware, or

fully virtualized. There are many different potential solutions for running a virtual device

on a personal workstation or sever, however, there are several issues that could serve

as roadblocks to developing a large-scale testing infrastructure of which researchers and

practitioners should be made aware. Currently, the most popular current solutions for

running virtual Android devices are the following: (i) the standard Android emulator

officially supported by Google [36], (ii) the Genymotion [23] emulator, and (iii) Virtual

Machines based on the androidx86 project [3]. In this section we further discuss problems

encountered with the Google and Genymotion emulators in terms of scalability.

When designing a scalable framework for supporting multiple concurrent instances of

AVDs, it may seem that starting with the default Android emulator is the best course of
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action, however, this is not the case, as several problems arise that limit this option. First,

in order to properly utilize Google’s emulator at screen sizes and pixel densities represen-

tative of modern physical devices, the host machine must be equipped with a moderately

powerful GPU at a bare minimum. This severely limits the potential usefulness of these

tools on headless servers which do not typically contain the graphics cards required for

running these AVDs; even major IaaS providers like Linode [31] do note provide hard-

ware nodes with GPUs. We found that the maximum supported resolution of Google’s

emulators on hosts without graphics cards is that of 1280x786 (or that of the Nexus 4

phone). Additionally, these types of emulators require graphics acceleration in order to

function at an acceptable speed in terms of boot times and GUI-responsiveness. While

it is clear that a graphics card is important for the proper operation of these machines,

many development workstations typically include at least a moderate GPU, and several

emulators could conceivably be instantiated on such a workstation.

However, three additional limiting factors emerge when attempting to run more than

a few emulators on such a machine: (i) the amount of RAM available to the host machine,

(ii) whether the host CPU supports hardware acceleration, and (iii) the specifications and

computing potential of the available GPU. System RAM is perhaps the most important

limiting factor for such emulators, as large amounts of memory are still relatively expen-

sive, and this hardware specification puts a hard cap on the number of devices that can be

instantiated on given host machine. This is because at a minimum each emulator should

be assigned no less than 500 Mb of RAM; on a machine where 8GB of memory are avail-

able, this means that a maximum of 16 emulators could be established, assuming all this

memory would be free from the system (an optimistic assumption at best). As we explain

later, this is the most important system component in our experience and thus should be

the focus of building a machine to support parallel execution of AVDs.

Both the Google and Genymotion emulators rely on CPU hardware virtualization

(through either qemu, kvm, Intel HAXM, or VirtualBox) in order to emulate the hard-

ware at acceptable speeds. Therefore, this is a system requirement that must be taken
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into consideration. This is of particular importance for those wishing to instantiate a

parallel AVD framework on a cloud provider such as Linode[31] or Amazon EC2 [1], as

these cloud providers typically offer virtualized environments, meaning that unless the

provider enables paravirtualization, it is impossible to run these types of emulators on

these providers without using a commercial solution such as the one by Ravello systems

[42].

Finally, the computational ability of the GPU can also limit the number of parallel

emulators running on a given host machine. When the GPU is maxed out by concurrent

instances of emulators, new emulators launched will typically throw one of the following

errors to the command line window that launched the emulator: “ERROR: Could not

initialize OpenglES emulation” or “eglMakeCurrent failed”. Additionally, it should be

noted that the standard Google emulator can not be executed concurrently with either

Genymotion or an androidx86 VM instantiated with VirtualBox. This is due to the fact

that VirtualBox, which is also used by Genymotion, locks the CPU virtualization interface

(e.g., qemu, kvm, HAXM) required by the Google emulators. We discuss the solutions

that we have developed for concurrent execution of AVDs in Sections 3.2.6 and 3.3.

3.2 Proposed Solutions

In this section we outline custom solutions formulated in course of enabling large-scale,

concurrent execution and testing of Android apps in a custom framework developed as

part of our research efforts and collaborations with Huawei. Specifically, we aim to sys-

tematically provide either complete or partial solutions to the issues outlined in Section

3.1. We envision these solutions as constituting a set of guidelines, learned lessons, and

best practices for academic research teams, small teams of industrial practitioners, and

independent mobile developers and testers looking to enable a concurrent testing infras-

tructure with relatively modest hardware requirements. Table 3.1 gives an overview of

these solutions complete with direct anchored links to tutorials and examples in our on-
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line appendix [20]. The discussion of these solutions culminates in Section 3.3 where they

are used to drive the design of our large-scale execution framework. However, larger in-

dustrial teams could also benefit from adopting and applying some of the technologies

and techniques that we outline. Because of space limitations, we outline our solutions

and refer readers to our online appendix for detailed technical discussions and tutorials

for implementing these solutions [20].

3.2.1 Non-Image Based Generation of Oracles

The automated generation of test oracles is particularly challenging for automated mobile

testing approaches. While approaches have been proposed for detecting and reporting

crashes [133, 195], only a few approaches attempted to provide a solution for this oracle

problem. Typically, these solutions rely on specific system circumstances [243] or expensive

image-based analysis of GUI screenshots [159]. We consider that an ideal automatically

generated test oracle for mobile testing should be (i) easy and fast to collect from a device

or emulator, (ii) abstract enough to focus on the GUI behavior and state instead of specific

elements of the GUI appearance (e.g., colors), and (iii) should not be coupled to a specific

technology for the oracle generation (e.g., the approach by Lin et al. [159] requires an

external camera, which can introduce a lot of noise). In the course of our work we found

xml dumps of GUI-hierarchies to be suitable test oracles under proper testing conditions,

and scalable when the comparison is done between hashes of the hierarchies instead of the

entire hierarchy itself.

A GUI-hierarchy dump is an XML generated with the hierarchyviewer or uiautomator

utilities from the AF (i.e., the utility runs on the device). The XML contains a hierarchy

of nodes, in which each node is a GUI component or a container (e.g., LinearLayout).

Each node contains information, such as the component type, text, location, id assigned

by the developer (i.e., resource id), and boolean flags reporting whether the component

is focused, clickable, selected, etc. This XML representation allows for easy manipulation

and parsing that can be used to generate test oracles. For example, by hashing the GUI-
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hierarchy dump (or selected information from the dump) of the GUI output (i.e., screens)

as a response to each event in a test case, the concatenation of the test-hashes can serve

as an oracle for that test case. Then, during the execution of the same test case, the GUI

state can be extracted in the same way.

Formally, we define a test case tci, as a sequence of m events e0e1e3...em. After

executing an event ej , a corresponding dump dj is collected from the device/emulator.

If a hash Hj is generated for each dj , then, a test oracle Oi representing the GUI state

when executing tci is the concatenation of Hj , ∀j ∈ [1,m]. Therefore, a test suite is a

set of couples 〈tci, Oi〉. The Oi oracles can be collected automatically when replaying the

test cases on (i) an app version A0 used as a reference for the testing process, and (ii) the

version of the app under testing At; the Oi oracles collected with A0 and At should be the

same (assuming the GUI has not changed drastically from A0 to At).

It is worth noting that the complete dump can be used to generate the hashes, how-

ever, the dump contains locations and the text of each component. Therefore, devel-

opers/testers should be careful when deciding what information from the dump is used

to generate the hashes. For example, if the testing goal is to verify that each GUI has

the expected components and hierarchy, then the hashes should be generated from the

dumps but considering only the resource-id and component types attributes in the nodes

(and following the hierarchy in the dump). If the purpose is to verify all the “texts” are

rendered as expected, then the hashes should be generated from the dump considering

the resource-id, component types, and texts. Additionally, generally speaking, such an

oracle will only function correctly for deterministic applications, further work is required

to develop a robust oracle for apps with varying degrees of non-determinism.

3.2.2 Avoiding Hard-Coded Inter-Delay Times

When automatically executing GUI or system events in Android apps, a critical prop-

erty must be met: after sending an event to the device, the next event to be executed

should not be sent until the previous event has been received and processed. This is usually
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achieved using either a manually hardcoded or automatically inferred wait-time between

GUI events. Some approaches rely on instrumentation of an app or the OS [133, 211]

in order to hook directly into event-handlers to confirm when certain events have been

“completed”. However, instrumentation has been shown to be fault-prone [195], and these

approaches may not function properly (due to instrumentation overhead) when scaling to

several virtual devices concurrently running on a single machine. An ideal solution to

this problem for GUI-based automated testing should allow an Android device/emulator

property to be queried, without the need for instrumentation, to check current anima-

tion/idleness status.

In our work we found a solution by utilizing a property in the adb shell dumpsys -a

command to query the device about the current state of the animation transitions on the

screen. Since we are interested in the foreground app’s transition state at the time of the

running the command, we read the value of the mAppTransitionState property returned

by the command. This property has one of the four following states [12, 15]: (i) App State

Ready, (ii) App State Idle, (iii) App State Timeout, and (iv) App State Running. Further

information on these states, as well as a detailed technical discussion of this solution can

be found in our appendix [20].

The Window Manager can be queried directly after a GUI-input event has been sent

to the device. This will typically result in either 1) App State Ready or 2) App State Idle

being returned. If State 1 is returned, it means the app is not ready yet to process another

event, therefore, the device should be polled until State 2 is observed. Once State 2 has

been observed, the Window Manager has indicated that the currently displayed GUI is idle

and that it is safe to continue with the next GUI input command. While this methodology

offers a robust solution to the problem of non-deterministic animation delay in automated

mobile testing, it should be noted that this is applied in the context of the GUI only,

and does not guarantee contextual events (e.g., network activity) have completed on the

current screen. However, this solution offers an effective method of determining the state

of app animation transitions without the need for expensive instrumentation or a specific
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API because the dumpsys command can be invoked from any code that includes a method

for invoking console commands.

3.2.3 Cleaning Data for Cold-Starts

One often overlooked problem regarding the testing of Android apps is ensuring the same

execution environment at the beginning of each test run. As described in Section 3.1.2,

this can be a more difficult practice than researchers and testers expect. “Stale” app data

can cause problems with automated testing approaches; when performing automated GUI-

testing of Android apps, a desired feature of an automated execution/testing framework

is to ensure that the initial application state is the same (e.g., clean) before each test-case

is executed. This guarantees that sequences of GUI commands sent to the device will have

the same outcome during each run (for deterministic apps/tests), which is crucial when

evaluating or verifying test-cases.

In case of internal app data the solution to this problem is straightforward. Simply

uninstalling and reinstalling the app before each test case is executed will clear such

data from the previously executed scenario. The adb command adb shell pm clear

<package-name> also clears the app data similarly to the “Clear data” button, in the

device settings module. However, files that are saved externally are more difficult to

handle properly. First, a tester must determine where such files are saved on a particular

device and whether these files affect app execution in a derogatory manner with respect

to the testing goals. If it is determined by the tester that the persistence of an external

file is causing unexpected or unwanted behavior between executions of subsequent test

cases, then this data must be cleared by an adb shell command. This will ensure that

each test case is executed in the same environment, leading to the typically desired goal

of deterministic test cases.
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3.2.4 Extraction of GUI Hierarchies for Dynamic Screens

In GUI-based testing of mobile apps, the extraction of the currently displayed GUI-

hierarchy on a device is a fundamental operation for data collection and future event

generation, depending on the automated technique being used. In practice we relied on

uiautomator to extract GUI-related information from devices under test, as it fast and

flexible. However, as described in Section 3.1 we encountered two major problems in-

cluding (i) an inability to collect GUI-information for components “behind” dialogs, and

(ii) a bug in the uiautomator that does not allow capture information from dynamically

changing GUI components (e.g., a countdown timer is running on the screen). We are

able to solve the second issue by modifying the DumpCommand.java file from the AOSP

v4.4.2 [5] (although the fix should apply to any recent OS version in which uiautomator

is available).

There is a potential problem with the base implementation of uiautomator’s dump

command in the context of GUI-testing, namely, if an xml GUI dump is attempted when

a screen is transitioning/updating, no dump will be returned as opposed to waiting until

the screen is idle before attempting to grab a dump. As a consequence of this, if a screen

has a single component, such as a timer or dynamically updating widget, uiautomator

will never view the screen as idle and a GUI dump for that screen will not be possible.

While the original behavior may have been desired as a safe method to extract xml GUI

dumps from a device, it can dramatically hinder GUI-based testing that relies on such

information, particularly for apps with dynamically updating screens. To remedy this, we

modified the DumpCommand.run() method as explained in detail in our online appendix

[20]. Our modified version will make ten attempts (at most) at obtaining the ui-hierarchy

from a static screen, however if no idle state is reached, the command will still provide a

dump.

Once the file is modified, the AOSP source code needs to be recompiled to gener-

ate the uiautomator executable and libraries that should be replaced in the Android
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device/emulator. When recompiling the AOSP, it is best to follow the recommended

practices [4]. A full description of this solution, including pre-modified downloadable files,

a tutorial on how to modify and recompile the AOSP, and how to push the modified files

to a device or emulator are available at our online appendix [20]

3.2.5 Running Concurrent ADB Connections

adb clients connected to different instances of Android devices or emulators are limited to

ports in the range of 5555 to 5585. Each Android device or emulator uses two ports within

this range, one for the adb and another for console connections, therefore, the first device

instantiated on a particular adb server would occupy ports 5554 and 5555. Therefore, an

adb server can handle up to 15 devices/emulators. With a default setup using the adb

server, automation of Android apps execution/testing has an upper bound in terms of

devices/emulators that can be used (more details in [102]). One potential solution is to

enable multiple (n) adb servers on the same machine to have n × 15 devices/emulators,

by starting different adb servers on different ports [11]. However, we tried to enable

multiple adb servers in that way and we found that while this methodology works well

on specific SDK platform versions, the newest versions of the Android SDK platform led

to inconsistent behavior. We found that revision 23.0.1 and earlier of the platform tools

allow for the stable creation and use of multiple devices on multiple adb servers. However,

newer versions of the SDK platform tools led to several issues. Namely, when trying to

start an Android emulator on an adb port other than the default port, rather than the

device connecting to the expected port, it would connect to the default port and show a

status of inactive, making the device inaccessible via adb.

3.2.6 Enabling Parallel Execution of AVDs

The most economically feasible method of enabling testing approaches capable of executing

apps concurrently on varying device configurations this is through the parallel execution of

concurrent AVDs. Additionally, as research progresses with regard to automated testing
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approaches based on dynamic analysis, and researchers aim to provide practical, usable

open source tools to developers, the concurrent execution of several virtual devices will

most likely become a requirement. Thus, we present a solution that we utilized in a pro-

totype for large-scale automated execution/testing after encountering the issues described

in Section 3.1.2. Our proposed solution had several key features: (i) it has the ability to

run many instances of AVDs in parallel on hardware with modest specifications; (ii) it

utilizes only open-source tools to reduce cost and and encourage potential dissemination;

and (iii) it is highly configurable so as to accommodate varying hardware configurations

such as screen-size, memory, and graphics components.

Our solution is built around the androidx86 project [3], available under the Apache

Public License 2.0. The goal of this project is to port the AOSP to Intel’s x86 architecture

and instruction set so that it can run natively on such hardware. Note that unlike the

emulator-based AVDs from Google or Genymotion, where hardware components are simu-

lated in software (and often hardware accelerated depending on the platform), androidx86

can be run directly on x86 hardware, or virtualized and managed by a hypervisor. This

fact helps us overcome the accidental issues discussed in Section 3.1 that inhibit the other

AVDs in terms of parallel execution. Specifically, this helps to overcome the issues of (i)

GPU limitations, as the minimum video memory required for each VM is relatively small,

and even with a modest GPU, devices of nearly any screen size, resolution and pixel den-

sity can be instantiated; and (ii) certain hardware acceleration limitations, because if the

host machine is able to run a virtualization software like VirtualBox, then it is able to run

these Android virtual machines. To summarize, using androidx86 images through Virtu-

alBox, allows for highly scalable parallel execution of AVDs, limited only by the amount

of RAM and processing power of the CPU. For example, this enables the execution of ten

AVDs on a modern laptop, or over 50 AVDs on our server configuration described in the

online appendix [20].

In the context of our solution, we use the images provided by the androidx86 project

and instantiate them in VirtualBox [52] so that the hardware can be customized to the
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desired specifications for testing on devices of differing hardware configurations. The setup

process for booting an androidx86 image from VirtualBox is very straightforward, and

there are several freely available guides online, therefore, we forgo a detailed discussion

of such a set-up in this paper, but host an overview and links to such guides in our

online appendix [20]. Additionally, once the image is set up in VirtualBox, it is trivial to

adjust many hardware settings such as the amount of RAM and video memory allocated.

Minimum hardware settings for the Virtual Machine to boot and run satisfactorily are

also provided in our appendix. Simulating different screen sizes and allowing the virtual

devices to concurrently connect to the host machines adb server and network are more

difficult to configure, however, we provide a detailed tutorial and explanation online [20]

3.3 An Infrastructure for Large Scale Execution and Testing

In Section 3.2 we described a set of solutions that we have designed and implemented

for some of the issues described in Section 3.1 related to the large-scale dynamic anal-

ysis of Android apps with a focus on testing. In addition to those individual solutions

we designed a flexible and scalable architecture that enabled us to perform concurrent

execution of Android apps for the purpose of dynamic analysis (Fig. 3.3). The proposed

infrastructure can be instantiated with commodity machines and open-source software.

Moreover, it is built on top of the solutions presented in Section 3.2, and considers the

main design decisions from previous work. In the course of our work, this architecture has

supported an approach (with research and industrial purposes) for energy optimization

as well as large-scale systematic exploration and testing including over 4,500 test cases

(100 event sequences each) via a maximum of 100 parallel Android virtual devices with

varying configurations across two machines (50 concurrent instances per machine) 4. In

particular, our proposed architecture was designed with a client-server style, in which

multiple client systems can submit requests for asynchronous execution of different tasks

4Details and references are not provided because of the double-blind requirement in the ASE CFP.
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in a virtual Execution Engine (EE) (i.e., composed of one or more EE-nodes). We defined

the architecture with the following design drivers:

• Processing and execution tasks should be done on an Execution Engine that is

invoked by remote clients;

• The EE should be open for extension but closed for modification in the sense that

several tasks (e.g., random testing, or GUI ripping) should be enabled easily. There-

fore, workers in charge of executing the tasks can be implemented by following a

predefined interface in the EE;

• Asynchronous and decoupled communication between the clients and the EE. This

is particularly important because some execution and testing tasks might be lengthy

and computationally intensive;

• Hybrid storage strategy: the EE should not store any information of the tasks or

the proposed solution after completing the tasks, but clients should have local DBs

(if required). Images and files generated by the EE, that are rendered/painted in

the client afterwards, are stored in a external web folder;

• Potential horizontal-scalability by adding more EE nodes;

• Vertical scalability controlled by pools of background and android-x86 VM threads,

and a queue of tasks.

To achieve loose coupling and asynchronous calling between clients and the EE while

enabling of horizontal scalability, we decided to use a “Message Bus” architectural style,

which can be supported by technologies such as OpenESB [37], a message broker like Rab-

bitMQ [41], or a NoSQL engine like CouchDB [6]5. The message bus is the communication

bridge between the clients and EE nodes. The tasks from clients are pushed to the bus in

5CouchDB provides storage of JSON documents and supports sharding to enable horizontal scalability. It
provides a REST interface which reduces the time required for programming the connection between the clients and
CouchDB.
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Figure 3.3: A proposed architecture for enabling large-scale execution and testing of
Android apps.

a JSON-like format, which is not coupled to the EE implementation6. If more EE nodes

are required to scale-out, more EE nodes should be registered in the bus. An EE node

queries the requests in the “bus”, and then dispatches the requests to workers (i.e., the

units in charge of running tasks) following a FIFO policy. During the dispatching process,

the EE verifies the availability of background threads and free devices or VMs in the host

machine. If no device/VM or threads are available in the EE, the dispatcher keeps the

tasks in the queue. Otherwise, the task is assigned to a worker.

Once a worker is dispatched with a task, an device/VM, and a thread, the worker starts

to run (asynchronously) the requested task. During the execution, the workers update the

status of the assigned tasks directly to the “bus”, and after completion, the generated

artifacts are updated in the task document (in the bus) or copied into a public web folder

or a content delivery network; also, the tokens for the thread and device/VMs are released

back to the pools after completion. Note that, because there are no synchronous messages

between the workers and the clients notifying when a task is finished, the clients should

query the “bus” and synchronize their local databases to reflect the responses/results

6The JSON document should have metadata for the EE, which is used for the dispatching process. However,
the format for task-specific data (e.g., the APK to execute and the test case to run) is free given that this data is
only used and understood by the corresponding worker.
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generated with each task. In our design we include the possibility of having real devices

connected to the EE-nodes, because dynamic analysis tasks like performance analysis

require execution on real devices instead of virtual devices.

During the implementation of the EE, we found android-x86 VMs particularly useful

for duplication and deployment (on different physical hosts) of pre-packaged environments

(i.e., Android OS with application data and required services) required for dynamic anal-

ysis or testing. Also, the VMs allow for easy roll back or process restoration based on

VirtualBox’s capabilities for saving the state of the VM memory and disk image to a

host-based file.

There is a substantial amount of work in the related literature supporting research ap-

proaches and technological solutions to enable parallel execution of, or to support scalable

dynamic analysis of Android apps. Yet, none of those papers provides the details of the

issues, solutions, or guidelines when enabling large-scale analysis of Android apps. We

consider these papers as relevant and related to this experience report. Our contribution

is complementary to this body of work to further support developers and researchers in

designing, implementing and setting-up in-house infrastructures for scalable execution and

analysis of Android apps according to their specific needs. In this section we describe this

relevant work, which is summarized in Table 3.2.

Several papers reported the usage of cloud-based architectures to support app testing.

For instance, Mahmood et al. [177] proposed a cloud-based approach for generating a

large number of test cases to assess security. The authors use an infrastructure that

instantiates a virtual machine image (with a predefined environment) on several virtual

machines running in parallel using Amazon EC2. The instances are used to execute

test cases on the apps under analysis. Starov et al. [220] present a Testing-as-a-Service

(TaaS) solution for cloud-based testing. The cloud environment is composed of multiple

Application nodes that handle the communication with connected physical devices. The

TaaS solution also has a Master Application node that coordinates the work flow and

outputs of the Application nodes. The communication between all the components is
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made through REST services.

Wen et al. [238] proposed an approach called PATS to improve the execution time of

test cases by using a master-slave model; PATS has a module called Testing coordinator

that schedules jobs in slave nodes (i.e., virtual machines) to execute unexplored UI-states.

Another example of master-slave style, is ATT [186], which uses an AgentManager to

control worker instances; each worker is in charge of handling one device/emulator. Ex-

periments with ATT were performed by varying the number of emulators from 1 to 32,

showing that ATT is able to conduct parallel test executions. However, the paper does

not provide any implementation details or report issues related to large-scale execution.

Besides testing, malware detection has been also supported on infrastructures for large-

scale execution. Malek et al. [179] report the usage of a cloud-based framework to find

vulnerabilities on Android apps. The framework has a component called Test Execution

Environment that executes multiple instances of an app in parallel on emulators. Maggi et

al. [176] developed a framework called AndroTotal for detecting malware by using existing

malware detectors. AndroTotal requires an APK and a JSON with metadata information

required for the execution. Both APK and JSON messages are pushed to an execution

queue. Multiple workers running in parallel (each one handling one device) are in charge of

taking the requests from the queue and executing the apps in a device/emulator. Droid-

Dolphin [239] combines dynamic and static analyses to detect malware. DroidDolphin

installs an APK to collect execution logs, and then executes the app automatically in

an emulator from a pre-instantiated pool; this pool enables parallel execution of apps.

Andlantis [70] identifies malicious apps by relying on dynamic analysis; Andlantis uses

androidx86 images (similarly to our proposed solution) to create virtual machines that

execute the apps.

Other approaches propose mechanisms for reducing execution time of dynamic analysis

or large-scale data collection. Mutti et al. [197] proposed a platform, BareDroid, that can

work on top of any Android execution engine to speed up the testing process. BareDroid

has a supervisor component orchestrating the communication between a cloud of physical
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Table 3.2: Proposed approaches for parallel and large-scale execution of Android apps. The columns are as
follows: 1) Purpose of the tool [Security Evaluation, Testing Cloud]; 2) Device Type [Physical Device, Emulator,
Virtual Machine]; 3) Tool used for injecting input events [Manual, Robotium, MonkeyRunner, UiAutomator]; 4)
Type of exploration strategy [Manual, Systematic, Multiple, Ruled-based, Random]; 5) Requires Instrumentation
[Yes, No] ; 6) Type of Analysis [Static Analysis, Dynamic Analysis] ;7) Number of instances or clients executed in
the experimentation phase

Paper Purp. Device Events Exp. Instr. Ana. I/C

[74] SE PD MA MA N D 20
[179] SE E — S N S/D —
[177] TC E R S N S 100
[220] TC PD MR MU N S —
[176] SE PD/E MR RU N S 6
[239] SE E — S Y S/D 32
[70] SE VM MR S N D 188
[238] TC VM U S N D 2
[186] TC PD/E R RA Y D 32

devices and an analysis framework. Burguera et al. [74] uses crowdsourced-based collection

of execution traces on real devices; a central server collects and parses the traces, and

finally performs a behavior-based malware detection.

In summary, these related works provide value in outlining some useful design decisions

that can be used by researchers and developers, such as the usage of (i) cloud-based archi-

tectures and (ii) architectural styles in which a central manager that dispatches tasks to

workers/slaves on different “execution” nodes. Physical devices and emulators are the pre-

ferred choice in the analyzed papers, despite of the cost of keeping a physical devices farm

and the emulator issues (reported in Section 3.1.2); and only two papers [177, 220] report

the usage of Virtual Machines (our preferred choice). However, while these publications

provide value in terms of high level-infrastructure they do not provide implementation

details or the issues and technical challenges they faced in enabling concurrent testing of

Android apps. Lack of such details makes replication of these frameworks arduous at best,

which can in turn stifle research progress in scalable automated dynamic analysis. This

experience report is positioned to remedy this and offer researchers and developers a set

of practical solutions and guidelines for developing a framework supporting the large-scale

execution and testing of Android applications.
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3.4 Discussion

The solutions described in this Chapter are a technological contribution for practitioners

and researchers. Moreover, the taxonomy of issues is an starting point for other solutions

that can provided by the research community. However, the most important contribution

of the work described in this Chapter is the infrastructure that facilitated the implemen-

tation of novel approaches for evolution and maintenance tasks at a large scale. Building

the infrastructure required the implementation of a set of libraries for dynamic analy-

sis of Android apps, called the SEMERU Framework, which is currently supporting all

the research efforts of the SEMERU group related to maintaining and evolving mobile

apps. An example of an approach using the SEMERU Framework is the one described in

Chapter 4 for automatic generation of test cases. In addition, the infrastructure allowed

the implementation of the approach for optimizing energy consumption (GEMMA) de-

scribed in Chapter 5, and other products of the SEMERU group such as a novel approach

(CRASHSCOPE) for automatic discovery, reporting and reproduction of crashes in An-

droid apps [195]. Both products are currently prototyped for industrial usage with the

help of the Huawei European Research Center.

In summary, the empirical studies described in Chapter 2 highlighted (i) the impor-

tance of dynamic analysis for supporting evolution and maintenance of Android apps,

and (ii) the need for solutions and versatile infrastructures that support dynamic analysis

under the constraints imposed by the mobile development cycle. Then, in this Chap-

ter, we presented a set of solutions for enabling automatic and large-scale execution and

testing of mobile apps, which are foundational tasks for dynamic analysis. The solutions

and infrastructure (including the SEMERU framework) were designed to tailor multiple

dynamic-analysis based tasks, and have been proved to support several research efforts of

the SEMERU group [162, 165, 194, 167, 195]. In the following two chapters, we describe

two of those implementations, in particular for two tasks that are highly important in the

mobile development cycle: testing and energy optimization.
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Chapter 4

Combining Usage and GUI

Models to Support Automatic

Test Cases Generation

Although several tools are available to support automated execution of Android apps

for validation purposes, in practice, testing is still performed mostly manually as recent

survey study results show [143, 149] and confirmed with the survey described in Section 2.6.

Limited testing time during the development process tends to prohibit the use of data from

these manually generated scenarios for different devices [143] in a continuous development

fashion, especially taking into account that some apps may have users coming from as

many as 132 unique devices [146]. A significant amount of work is required to generate

replay scripts that are coupled to screen dimensions for a single device (i.e., one script

is required for each target device). Consequently, these scripts become quickly outdated

when significant changes are made to the app’s GUI [143, 116, 149].

Existing research tackled some of these issues by deriving models that represent the

GUI and behavior of apps. These models are abstract representations that can be decou-

pled from device dimensions and event locations and can still remain valid when small

changes are done to the app (e.g., button location change). For instance, some representa-
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tive approaches for deriving such models use either dynamic [224, 211, 55, 68, 175, 80, 198,

227] or static analyses [212, 187, 141, 75, 59, 95]. However, current approaches fall short

in (i) generating scenarios that are representative of natural (i.e., typical end-user) appli-

cation usages [227], (ii) taking into account the context which exists in an app’s execution

history [89, 227], (iii) generating sequences with previously unseen (i.e., not available in

artifacts used to derive the model) but feasible events. Moreover, utilizing model-based

testing techniques for GUI-based testing in industrial contexts may be particularly chal-

lenging because creating such models requires specialized expertise and using these models

(for manual and automated testing) assumes a logical mapping between the model and

the actual system that was modeled [54].

Another issue of current approaches for automated testing of mobile apps is in the lack

of consideration of event sequences as part of use cases of features. Test cases composed

of events that are not exercised having the usage model in mind, are not representative

of real application usages. The empirical study described in Section 2.6 showed that sur-

veyed participants prefer to design test cases targeting individual or combinations of use

cases/features. Therefore, to take into consideration the way as users and developers exer-

cise use cases/features in Android apps, we designed a method for generation of execution

scenarios (a.k.a., test sequences) that combines GUI and usage models.

In practice, developers constantly test their apps manually by exercising apps on target

devices. In fact, manual testing is usually preferred over automated approaches for testing

mobile apps [143]. However, oftentimes, this execution data is simply thrown on the ground

and never used when an app needs to be retested. Our key hypothesis is that all this data

that is produced from regular app usages by developers, testers, or even end-users can be

effectively recorded and mined to generate representative app usage scenarios (as well as

the corner cases) that can be useful for automated validation purposes. Furthermore, our

intuition is that the models mined from execution (event) traces can be augmented with

static analysis information to include unseen but feasible events.

In this chapter, we propose a novel hybrid approach for mining GUI and usage models
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from event logs collected during routine executions of Android apps. Our approach (Mon-

keyLab) derives feasible and fully replayable GUI-based event sequences for (un)natural

app usage scenarios (i.e., actionable scenarios) based on the novel Record→Mine→Generate

→Validate framework. MonkeyLab provides stakeholders with an automated approach

for scenario generation that can be as powerful as manual testing. MonkeyLab mines

event traces and generates execution scenarios using statistical language modeling, static

analysis, and dynamic analysis. To generate (un)natural event sequences, our novel ap-

proach (i) augments the vocabulary of events mined from app usages with feasible events

extracted statically from the app’s source code and (ii) exploits a space of possible events

and transitions with different flavors of language models capable of modeling and gener-

ating combinations of events representing natural scenarios (i.e., those observed relatively

frequently in app usages) and corner cases (i.e., those sequences that were observed rela-

tively infrequently or not observed at all).

We evaluated MonkeyLab on several medium-to-large Android apps from Google

Play and compared MonkeyLab to other commonly used approaches for generating

GUI-based event scenarios. The results demonstrate that MonkeyLab is able to gener-

ate effective and fully replayable scenarios. Moreover, MonkeyLab is able to generate

scenarios that differ from observed executions enabling it to explore other paths that could

trigger unexpected app crashes.

In summary, this Chapter provides the following contributions:

• A Record→Mine→Generate→Validate framework for generating actionable sce-

narios for Android apps. We designed MonkeyLab to be independent from specific

Android devices or API platform versions.

• A novel mechanism for generating actionable scenarios that is rooted in mining event

traces, generating execution scenarios via statistical language modeling, static and

dynamic analyses, and validating these resulting scenarios using interactive execu-

tions of the app on a real device (or emulator). In particular, we explore interpolated
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n-grams and back-off models, and we propose three different flavors (i.e., up, down,

and strange) for generating (un)natural scenarios.

• A thorough empirical evaluation and comparison of MonkeyLab to competitive

approaches on Android devices (Google Nexus 7 tablets). Experimental data, videos

of the generated scenarios, and other accompanying tools are available in our online

appendix [170].

4.1 Background and Related Work

Automatic generation of GUI-based scenarios (event sequences) has applications not only

in automated testing but also in creating app usage documentation [236]. In general, event

sequences can be generated automatically by relying on models built (i) statically from app

source code, (ii) dynamically from interactive app executions (e.g., GUI ripping) or from

execution traces, (iii) manually defined by programmers, or (iv) approaches using random

chains of events without any knowledge of the app such as the widely used Android UI

monkey [113]. Once the model is defined, it can be used to generate sequences of feasible

(in theory) events.

Models derived from the app source code rely on static analysis [212], symbolic [141, 75]

and concolic execution [59] techniques. Rountev et al. [212] proposed a method for stat-

ically extracting GUI components, flows of GUI object references and their interactions.

The concolic-based testing model proposed by Anand et al. [59] generates single events

and event sequences by tracking input events from the origin to the point where they are

handled.

Models derived using dynamic analysis are mostly based on interactive execution of

the app for systematically identifying the GUI components and transitions (i.e., GUI rip-

ping). The execution is usually done heuristically by using some strategy (e.g., depth-first

search (DFS) or a non-uniform distribution). Examples of approaches and tools relying

on systematic exploration are the work by Takala et al. [224], the tools VanarSena [211],
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AndroidRipper [55], A3E [68], Dynodroid [175], SwiftHand [80], OME∗ [198], and Mobi-

GUITAR [56] that extracts a state-based model of the GUI, which is used to generate

JUnit test cases.

Dynamic analysis has also been used for collecting real execution traces and infer-

ring some grammar-based rules or statistical models describing observed events. Repre-

sentative approaches of models extracted from execution traces collected apriori include

SwiftHand [80], which uses statistical models extracted from execution traces, and the

approach by Elbaum et al. [95] which generates test cases from user-session data. TAU-

TOKO [86] mines typestate models from test suite executions and then mutates the test

cases to cover previously unobserved behavior. Recent work by Tonella et al. [227] derives

language models from execution traces.

Hybrid models, such as ORBIT [242], have also been proposed, which combine static

analysis and GUI ripping. Moreover, Collider [141] combines GUI models and concolic

execution to generate test cases that end at a target location. EvoDroid [178] extracts

interface and call graph models automatically, and then generates test cases using search-

based techniques. Yeh et al. [75] track the execution paths of randomly generated input

events by using symbolic execution. Afterward, the paths are used for detecting faults

and vulnerabilities in the app.

Event sequences can also be generated by relying on random distributions. For in-

stance, the Android UI monkey [113] is widely used for generating random input events

without prior knowledge of the app’s GUI. Although a tool like monkey helps automate

testing, it is not robust since it is prone to providing a high ratio of invalid inputs. Dyn-

odroid [175] also includes a strategy for generating GUI and system level events via a

uniform distribution where available GUI events are discovered interactively using GUI

ripping.

Regardless of the underlying analyses to build the model, model-based GUI testing is

inherently difficult, because the current state of an app (available components and possible

actions) can change continually as new GUI events are executed. For example, consider
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a state machine-based GUI model in which each node (state) is a screen (i.e., activity) of

an Android app, and the transitions are actions on specific GUI components (e.g., click

the OK button). Some of the real transitions are feasible under certain conditions (e.g.,

delete a task in a non-empty list of a TODO app), and some states that are reachable

only after executing natural (and unnatural) sequences of GUI events (e.g., customized

scroll behavior on an empty list) are hard to model using state machines. In addition,

although systematic-based exploration techniques could execute events on all of the GUI

components of the app, the execution follows a predefined heuristic on the GUI (e.g.,

DFS) that neither represents natural execution scenarios nor considers execution history.

Existing approaches also assume a high rate of generated event sequences that are simply

infeasible [89, 227]. For instance, some events in the sequence can be infeasible in the

context of a given test case (e.g., an invalid action on a component or an action on

a component that is not displayed in the current GUI state). Another issue, which is

pertinent to the models extracted from execution traces, is their inability to generate

sequences with unseen (i.e., not observed in the traces) but feasible events.

4.2 Mining and Generating Actionable Execution Scenarios

with MonkeyLab

Given that manual execution of Android apps for testing purposes is still preferred and

relied upon over automated methods [143], we set out to build a system for generating

inputs (event sequences) to mobile apps on Android that would simulate the convenience,

naturalness, and power of manual testing (and utilize all the data that is produced during

these app usages) while requiring little effort from developers. Also, we identified a set of

four key goals that we felt such a system must satisfy in order to be useful:

1. The solution for generating executable scenarios needs to resemble manual testing,

where the process of collecting test scripts allows developers/testers to interact with

the app naturally by using gestures and/or GUI-based actions. One solution to this
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issue is represented by the event log collection capability used by RERAN [100].

However, RERAN replays only what it records and does not allow an arbitrary

recombination of events for replay; moreover, scripts recorded with RERAN cannot

be easily deciphered by testers since they are low-level, hardware-specific events that

are coupled to screen locations (e.g., events collected on a Nexus 4 will not work on

a Galaxy S4).

2. The solution should have context awareness of an app’s execution history, where

current possible actions are generated and executed as event streams to facilitate

the highest possible testing coverage. In this regard, our key insight is to rely on

statistical language models (n-grams) to generate event sequences by using program

structure and previous executions of an app. Our motivation behind using language

models (LMs) is in their capacity to represent event streams while maintaining con-

textual awareness of the event history. MonkeyLab uses LMs for representing

sequences of events as tokens (more specifically, Object:Action lexemes) that can

be extracted statically from the app and also mined from the app’s execution. Ex-

tracting the tokens only from execution traces carries the risk of missing possible

feasible events that are not observed in traces. Therefore, combining static and dy-

namic information may further augment the vocabulary used by LMs in such a way

that some unnatural (those that did not appear in traces) but feasible tokens are

included in the model, effectively taking into account both the execution history and

unobserved events.

3. The solution should be able to generate actionable scenarios as streams of events

that can be reproduced automatically on a device running the app. These scenarios

should not be low-level event streams but rather human readable streams that de-

velopers can easily comprehend and are not coupled to locations in a screen. This

goal can be met by translating high-level readable tokens (e.g., click OK button)

to low-level event streams that can be executed automatically on a target device.
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These high-level readable tokens are derived from language models formulated by

mining from app usages and source code.

4. The solution should not impose significant instrumentation overhead on a device or

an app in order to be able to reproduce automatically generated scenarios. In order

to meet this goal, we rely on the replay capability provided by the input commands

for remote execution in Android [44]. However, any framework for remote execution

of GUI events can be used such as Robotium [43].

Having these goals in mind, the proposed approach for generating actionable scenarios

is described by the following framework: (i) developers/testers use the app naturally; the

event logs representing scenarios executed by the developers/testers are Recorded ; (ii) the

logs are Mined to obtain event sequences described at GUI level instead of low-level events;

(iii) the source code of the app and the event sequences are Mined to build a vocabulary

of feasible events; (iv) language models are derived using the vocabulary of feasible events;

(v) the models are used to Generate event sequences; (vi) the sequences are Validated on

the target device where infeasible events are removed for generating actionable scenarios

(i.e., feasible and fully reproducible). The framework and the architecture are depicted

in Figure 4.1 as well as real examples of event logs collected in the Record phase, event

sequences derived after the Mine and Generate phases, and actionable scenarios generated

with the Validate phase, for the Android app (Mileage). In the following subsections,

we describe each step of the framework and the components required for each step.

4.2.1 Record : Collecting Event Logs from the Crowd

Collecting event logs from developers/testers should be no different from manual testing (in

terms of experience and overhead). Therefore, developers/testers using MonkeyLab rely

on the getevent command for collecting event sequences, similar to RERAN [100]. The

getevent command produces logs that include low-level events (see getevent log example

in Fig. 4.1), representing click-based actions as well as simple (e.g., swipe) and complex
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[   13331.457322] /dev/input/event0: 0003 0039 000007d1
[   13331.457353] /dev/input/event0: 0003 0030 0000000a
[   13331.457383] /dev/input/event0: 0003 003a 00000015
[   13331.457383] /dev/input/event0: 0003 0035 000002bf
[   13331.457383] /dev/input/event0: 0003 0036 0000007e
[   13331.457414] /dev/input/event0: 0000 0000 00000000
..................
..................
..................
[   13340.831651] /dev/input/event0: 0003 003a 00000017
[   13340.831651] /dev/input/event0: 0003 0035 0000035a
[   13340.831651] /dev/input/event0: 0003 0036 00000147
[   13340.831681] /dev/input/event0: 0000 0000 00000000
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EditTaskActivity.Main.id/button1#CLICK.android-widget-Button
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.......

.......

adb shell input tap 29 308
adb shell input tap 5 167
adb shell input tap 29 308
adb shell input text 'h5'
adb shell input keyevent 4
adb shell input tap 5 167
adb shell input tap 5 167
adb shell input touchscreen swipe  1195 1824 5 167 0
adb shell input keyevent 4
adb shell input tap 684 167
adb shell input tap 308 167

......
EditTaskActivity.Main.id/content#CLICK.android-widget-FrameLayout
EditTaskActivity.Main.id/text1#CLICK.android-widget-EditText
EditTaskActivity.Keyboard.id/keyboard_view#CLICK.com-android-inputmethod...
EditTaskActivity.Main.BACK_MODAL#CLICK
EditTaskActivity.Main.id/content#CLICK.android-widget-FrameLayout
EditTaskActivity.Main.id/content#CLICK.android-widget-FrameLayout
EditTaskActivity.Main.id/content#SWIPE-UP-LEFT.android-widget-FrameLayout
EditTaskActivity.Main.BACK_MODAL#CLICK
.....

10.  Vocabulary +
Event-sequence

c. Generate

Timestamp Input method Action Prop. Value

Figure 4.1: MonkeyLab architecture and the Record→Mine →Generate→Validate

framework

gestures; those logs are collected during an app execution. After MonkeyLab is enabled,

developers/testers exercise/test the app as in manual testing. After having executed the

app, the logs are generated with the getevent command and copied to the logs repository.

Since our log collection approach poses no overhead on developers/testers (they just use

apps as usual), this setup permits collecting logs on a large scale. In fact, this log collection

approach can be easily crowd-sourced, where logs are collected from daily app usages by

ordinary users.

4.2.2 Mine : Extracting Event Sequences from Logs and the App

The goal of the Mine phase is to extract the vocabulary of events (i.e., feasible events)

and translate the getevent logs required to build the language models. The vocabulary of

77



events is extracted from the source code of the app and also from the event logs. However,

the low-level events are coupled to specific locations on the screen and do not describe the

GUI components in the app; in addition, a single GUI event is represented by multiple lines

in a log (see Fig. 4.1). A line in a getevent log has a timestamp, input method (e.g., screen

or physical keyboard), an action (e.g., 003 = click), a property related to the action (e.g.,

0035 = x -axis position), and the property value. Therefore, to eliminate the dependency

of the actions on the screen coordinates in specific devices, we translated the getevent

logs to a GUI-based level representation: we model an event ei—represented by multi-

ple lines in a getevent log—as the tuple ei :=<Activityi, Windowi, GUI-Componenti,

Actioni, Component-Classi> (see examples of event sequences in Fig. 4.1). We included

the Window element to distinguish actions on the activity (i.e., screen) and actions on the

displayable Android keyboard. For the Action element, we included click, long-click,

and swipe. This representation considers the fact that Android apps are composed mostly

of Activities representing screens of the application. Each Activity is composed of GUI

components that are rendered dynamically according to the app’s state. Thus, the number

of GUI components that are visible in an activity can be different across time. Addition-

ally, the set of feasible actions for each component depends on the component type. For

instance, click and long-click event handlers can be attached to a button but not

to a swipe gesture handler. The Component-Class field is necessary to validate GUI-

components in the app at runtime. This representation of ei tuples is used for both

generating the vocabulary of events from app code and event sequences from getevent

logs.

4.2.2.1 Mining GUI events statically from APKs (APK Analyzer)

The APK-Analyzer component (Fig. 4.1-b) uses static analysis to extract from the app

source code a list of feasible GUI events. The list is used to augment the dynamically

built vocabulary from user event streams. To achieve this, GUI components are extracted

from decompiled APKs before links between these components to activities, windows,
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and actions/gestures are constructed. To extract this information, the APK-Analyzer (i)

uses the dex2jar [16] and Procyon[221] tools for decompilation and (ii) converts the source

files to an XML-based representation using srcML [50]. We also rely on apktool [7] to

extract the resource files from the app’s APK. The ids, types, and hierarchy of the GUI

components were extracted from the XML files of the APK resources.

The next major step in building the static vocabulary is linking each GUI component

to its respective actions/gestures. Rather than parsing the source code to determine which

gestures are instantiated, the APK-Analyzer assigns inherent gestures to the types of GUI

components. For standard Android component types, the linking is done with expected

gestures, e.g., Button would be linked with click and long-click. For custom com-

ponents, the APK-Analyzer parses source code to determine gesture handlers and event

listeners, which are attached to the custom components. After linking actions/gestures

and types to the components is complete, the APK-Analyzer links the components to the

Activities in which they appear. The list of events extracted statically from the app is

represented by a set of tuples ei. It should be noted that the APK Analyzer cannot gener-

ate a static vocabulary from obfuscated code nor code where components are instantiated

dynamically.

4.2.2.2 Mining GUI events from event logs (Data Collector)

The ei tuples require high-level information (i.e., activity, GUI component, window) that

is not provided by the getevent logs. Thus, we implemented a component (Data collector

in Fig. 4.1-b), which is able to translate getevent logs into sequences of ei tokens. The

Data collector replays the logs in a ripping mode in order to dynamically collect the

GUI information related to the event. The sentences (i.e., lines) in a log Lk are grouped

to identify individual GUI events. Then each group of sentences (c) representing a GUI

event is translated into a natural language description (e.g., <click, {x = 10, y = 200}>).

For identifying the corresponding component in the GUI, we queried the Android View

Server running on the device. The View Server provides a tree representation of the GUI
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components with some attributes such as the top-left location of a component and the

dimensions. Given the event location, we traversed the GUI tree looking for the component

area (top-left corner plus dimensions) that contains the event’s location. For identifying

the current activity we used the adb shell dumpsys window windows command, and

then we looked for the property mCurrentFocus|mFocusedApp. For identifying whether

the keyboard is displayed, we queried the list of current windows in the View Server. With

the ei tuple, we built an input event command[44] that can be remotely executed using

the Android Debugger Bridge (e.g., adb shell input tap x y). Finally, we executed

the input command to update the app state and continued with the next group c. The

output of the procedure is the list Tk of ei tuples extracted from the Lk getevent log.

The Tk sequences and unique ei tuples are copied to the sequence and token repositories,

respectively.

4.2.3 Generate : Event Sequences with Language Models

The vocabulary of event tokens extracted from the app code and the event logs, both

represented as GUI-level events, are the universe of feasible events in the app and are nat-

ural use cases respectively. They represent the GUI model of the app including activities,

components, feasible actions, and natural transitions. This data can be used to build sta-

tistical models for generating streams of events as execution scenarios of the app. In fact,

the Generate phase of our framework uses LMs [140, 145, 83] to generate (un)natural

sequences of events for that purpose. These LMs are trained with the vocabulary and

event sequences extracted in the M ine phase.

Our motivation behind using LMs is their capacity to represent event streams while

maintaining a contextual awareness of the event history. Hindle et al. [128] demonstrated

the usefulness of applying LMs to software corpora because real programs written by real

people can be characterized as natural in the sense that they are even more repetitive

than natural languages (e.g., English). Tonella et al. [227] exploited this interpretation

of naturalness by casting it to streaming events as test cases. Our hypothesis is that
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event-sequences extracted from getevent logs emit a natural set of event streams, which

map to core functionality, as well as an unnatural set of event streams. Language models

inherently capture natural behavior, but we also consider the complement of this natural

space, thereby improving the interpretive power of these statistical models. Our novel

interpretation of software LMs systematically segments the domain of a LM over dynamic

traces and imputes testing semantics to each segment. For example, a sampling engine

may select tokens from the natural space to improve coverage, yet it may sample from

the unnatural space to crash the app. In the following subsections we provide formal

definitions behind LMs, LM flavors that we defined in the context of our work as well as

details on using LMs for generating event sequences.

4.2.3.1 Language Models

A statistical language model is a probability distribution over units of written/spoken

language,which measures the probability of a sentence s = wm
1 = w1w2...wm based on the

words (a.k.a., tokens) probabilities:

p(s) = p(wm
1 ) =

m∏
i=1

p(wi|wi−1
1 ) ≈

m∏
i=1

p(wi|wi−1
i−n+1) (4.1)

In Eq. (4.1), the Markov assumption approximates the joint distribution by measuring the

conditional probabilities of token subsequences known as n-grams. After “discounting” the

model’s maximum likelihood estimates, there are generally two methods for distributing

the probability mass gleaned from the observed n-grams: back-off and interpolation. The

Katz back-off model [145] takes the form

pB(wi|h) =


α(wi|h) c(hwi) > k

β(h)pB(wi|wi−1
i−n+2) otherwise

(4.2)

where h = wi−1
i−n+1 is the history, α(wi|h) is the discounted maximum likelihood estimate

of word wi given h, β(h) is the back-off weight, c(hwi) is the number of times hwi appears
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in the training corpus, and k is a constant, which is typically zero. If the history was

observed in training, then a back-off model says the conditional probability of a word

given its history is equal to the discounted estimate of the n-gram, where α(wi|h) is

computed using a smoothing technique such as Good-Turing estimation [101]. Otherwise,

the model truncates the history and recursively computes the probability. Back-off models

only consider lower-order n-grams when c(hwi) = 0 for every wi in the vocabulary V. On

the other hand, interpolation considers lower-order n-grams whether or not c(hwi) > 0.

The general interpolated model takes the form

pI(wi|h) = α(wi|h) + β(h)pI(wi|wi−1
i−n+2) (4.3)

where α(wi|h) is computed using a smoothing technique such as modified Kneser-Ney

estimation [79].

4.2.3.2 Language Model Flavors

Back-off (BO) and interpolation (INTERP) are different approaches for computing proba-

bilities, but each LM is a way to characterize the naturalness of a sentence. Moreover, we

propose that each model can be used to generate unnatural sentences as well, and these

unnatural sentences have clear software testing semantics. Parenthetically, both BO and

INTERP can be decomposed to different flavors—up, down, and strange—that are simple

transformations for driving a sampling engine to specific segments of the language model’s

domain.

up corresponds to the natural distribution over tokens, but there are subtle differences

in the implementation depending on whether the language model uses BO or INTERP.

For example, suppose we are given the following conditional probabilities from a LM:

θ = {α(wa|h) : 0.20, α(wb|h) : 0.50, α(wc|h) : 0.10, α(wd|h) : 0.10}. For BO models, up

will sample a uniform variate using the cumulative sum of the smoothed estimates. If

c(hw) = 0, then up will back-off to the next lowest order and repeat the procedure,
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where unigram probabilities serve as the base case in the recursion. By construction,

interpolation mixes input from every n-gram that can be sliced from hw, so up recurses

on the order through the unigrams to compute p(wi|h)∀wi ∈ V using Eq. (4.3). Naturally,

while the probability mass is concentrated on expected transitions, INTERP-up models are

able to reach any transition in the vocabulary of transitions at any point in time. This is

not the case for BO-up models.

down corresponds to the unnatural distribution. For example, suppose we are given the

same conditional estimates θ. For BO models, down will normalize the estimates, sort the

tokens according to their probabilities and then reverse the probabilities over the tokens to

produce the following distribution: {p(wc|h) : 0.55, p(wd|h) : 0.22, p(wa|h) : 0.11, p(wb|h) :

0.11}. In cases where two tokens have the same probability, down will randomly arrange the

tokens, so {p(wc|h) : 0.55, p(wd|h) : 0.22} and {p(wc|h) : 0.22, p(wd|h) : 0.55} are equally

likely. According to the training log, tokens wc and wd are unnatural given the context,

but down seeks the unnatural transitions when it generates samples. For INTERP models,

down will build a categorical distribution over V using Eq. (4.3). Therefore, as with up, we

sort the tokens in V according to their probabilities and then reverse the probabilities over

the sample space. INTERP down models marshal uncharacteristic transitions in V given

the context into the natural space, replacing frequently observed transitions.

strange linearly interpolates up and down, which likely has the effect of increasing the

entropy of p(w|h). When the entropy of the natural distribution over tokens is low and the

mixture coefficient λ ≈ 0.5, strange distributions can take an interesting form where the

probability mass is simultaneously concentrated on very (un)natural events. This strange

case describes a scenario where the generative model produces a stream of natural tokens,

yet at any point in time is ”equally” likely to choose a corner case in the execution.

4.2.3.3 Generating Event Sequences

The generation engine estimates two n-gram language models—one BO and one INTERP—

using the vocabulary extracted in the Mine phase. The default order and smoother for
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both models are three and modified Kneser-Ney [79], respectively. Tokens in the vocabu-

lary that are not in the event-sequence repository are factored into the models’ unigram

estimates. Clients (i.e., instances of the Chimp component in Fig. 4.1) can communicate

with the Sequence Generator by sending JSON requests and reading JSON responses. A

request includes: model, flavor, history, and length. The model field can take one of two

values: BO or INTERP. The flavor field can take one of three values: up, down or strange.

The history field contains the initial prefix as an array of strings. If the client does not

have a prefix, then the history field is the empty string. When the client does not have

a history (or the length of the history is suboptimal), then the Sequence Generator will

essentially bootstrap the history to length n − 1, where n is the order of the model(s).

When the client gives a history that is longer than n, the Sequence Generator will apply

the Markov assumption, so the history will be sliced according to the order before query-

ing the language model. The length field governs the length of the sequence to query

from the language model (i.e., number of events in the test case). This enables us to use

the Sequence Generator in serial mode (e.g., requesting a sequence with 100 events) or in

interactive mode (i.e., only one event is requested at a time).

4.2.4 Validate : Filtering Actionable Scenarios

The streams of events generated by the Sequence Generator are expressed at GUI level,

which decouples the sequence from device-specific locations. Thus, the Chimp component

(Fig. 4.1-d) understands the events and Validates them dynamically on a device. The

validation can be performed in a serial (as in Tonella et al. [227]) or with MonkeyLab in-

teractive mode.

In the serial mode, the Chimp requests a sequence that is validated iteratively following

the procedure in Alg. 1. For each event e in the event sequence S, the Chimp searches for

the component (in the event tuple) in the Hierarchy View (i.e., GUI tree) of the current

GUI displayed in the target device. If the component is not in the GUI or the current

activity is not the same as in the tuple e (line 5), then the Chimp discards the event
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Algorithm 1: Validating Event Sequences: Serial Mode

Input: S
Output: AS

1 begin
2 i = 1, ATC = ∅;
3 startAppInDevice();
4 foreach e ∈ S do
5 feasible = queryV S(e.component, e.action);
6 if !feasible then
7 continue with next event;

8 < x, y >= searchV S(e.component);
9 cmdi = getInputCmd(e.action,< x, y >);

10 addEvent(AS,< e, cmdi >);
11 executeInputCmd(cmdi);
12 i = i+ 1;

(line 7); otherwise the Chimp queries the View Server (line 8) in the device to identify

the location of the component. Afterward, it generates an input command by using the

location <x, y> of the component and the action in the tuple e (line 9). Then the event

e and its corresponding input command are added to the actionable scenario (line 10).

Finally, the command cmdi is executed on the GUI to update the app state. This serial

model is similar to the one proposed in [227], however we are proposing three different

flavors for the interpolated n-grams and the back-off model (Sec. 4.2.3.1 and Sec. 4.2.3.2)

and we automatically validate the sequences on a target device.

In the interactive mode (Alg. 2), the Chimp requests single events until the target

length k is exhausted. Our motivation for this mode is the possibility of having infeasible

events in a sequence (i.e., in serial model) that can influence further events. We are

augmenting the vocabulary used to train the models, with individual tokens extracted

statically from the source code. So, it is possible that unseen—but also infeasible—events

appear in a sequence. For example, in the sequence e1e2...t1ekek+1...t2t3elel+1, tokens t1,

t2, and t3 are infeasible, which leads to the following issues: (i) the inclusion of events ek,

ek+1, el, el+1 into the sequence is influenced by the infeasible tokens t1, t2, and t3; and (ii)
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Algorithm 2: Validating Sequences: Interactive Mode

Input: k
Output: AS

1 begin
2 ATC = ∅, history = ∅;
3 startAppInDevice();
4 for i ∈ 1 : k do
5 e = queryEvent(history) feasible = queryV S(e.component, e.action);
6 if !feasible then
7 e = getEvent(randComponent());

8 < x, y >= searchV S(e.component);
9 cmdi = getInputCmd(e.action,< x, y >);

10 addEvent(AS,< e, cmdi >);
11 history = e;
12 executeInputCmd(cmdi);
13 i = i+ 1;

once the first infeasible token is read by the Chimp, the further events in the sequence can

also be infeasible in the GUI. This is why, in the serial mode, we opted to skip infeasible

events and continue reading until the sequence is exhausted, which drives to sequences

with less events than the target k.

Therefore, as a second option, we opted for requesting single events and executing

only feasible events. This is how the interactive mode operates. The Chimp in interactive

mode asks for a single token (similarly to code suggestion problem [128]) until a target

number of feasible events (lines 4 and 5 in Alg. 2) is executed on the device. To avoid

infeasible events and loops because of chains of infeasible events (i.e., the returned token

is always infeasible), we execute a random feasible event—queried from the current GUI

state— (line 7) when the component and action in event e are not feasible (line 6). This

guarantees that the Chimp always executes a feasible event, and that event is the history

for the next one (line 11). The interactive mode relies on the language model extracted

from the event logs and the source code, and takes advantage of the current GUI state to

reduce the rate of infeasible-events produced by the model. In summary, our interactive

mode combines static and dynamic analyses as well as GUI ripping.
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4.3 Empirical Study Design

Our main hypothesis is that models derived with MonkeyLab are able to produce event

sequences for natural scenarios and corner cases unseen in the scenarios executed by stake-

holders. Therefore, event sequences generated with MonkeyLab should not only include

events from scenarios used to derive the models (i.e., scenarios collected from users) but

also events not observed in those scenarios. To test our hypothesis, we performed a case

study with five free Android apps and unlocked/rooted Nexus 7 [107] Axus tablets each

having a 1.5GHz Qualcomm Snapdragon S4 Pro CPU and equipped with Android 4.4.2

(kernel version 3.4.0-gac9222c).

We measured statement coverage of sequences generated with (i) MonkeyLab, (ii)

a random-based approach (i.e., Android GUI monkey), (iii) GUI ripping using a DFS

heuristic, and (iv) manual execution. We also compared the GUI events in the sequences

to identify events that were executed only by one approach when compared to another

(e.g., GUI events in sequences from MonkeyLab but not in the users’ traces). In summary,

the study aimed at investigating the following research questions (RQs):

RQ1: Which language model-based strategy is more suitable for generating effective

(un)natural scenarios?

RQ2: Do scenarios generated with MonkeyLab achieve higher coverage as compared

to Android UI monkey?

RQ3: How do scenarios generated with MonkeyLab compare to a DFS-based GUI

ripper in terms of coverage?

RQ4: Do MonkeyLab scenarios achieve higher coverage than manual executions used

to train the models?

4.3.1 Data Collection

Tab. 4.1 lists the Android apps used in the study, lines of code (excluding third party

libraries), number of Activities, methods, and GUI components. We selected the appli-
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cations looking for a diverse set in terms of events supported by the apps (click, long

click, swipe), number of GUI components, number of Activities, and application do-

main. However, the main selection criteria was the app’s size. We decided to use only

medium-to-large applications that exhibit non-trivial use-cases and a large set of feasible

events.

To answer the research questions, we simulated a system-level testing process where we

asked graduate students to get familiarized with the apps for five minutes (exploratory test-

ing), and then to test the app executing multiple scenarios for 15 minutes (functional test-

ing). Five Ph.D. students at the College of William and Mary executed the R ecord phase

of our MonkeyLab framework. Afterward, we executed the Mine→Generate→Validate

phases in MonkeyLab to generate actionable sequences for each app. During the Vali-

date phase, we collected coverage measurements for each of the generated event sequences

by using a tailored version of Emma [18] for Android. Tab. 4.1 lists the total number of

low-level and GUI-level events collected from the participants.

To represent a random approach, we generated sequences of touch events with Android

GUI monkey, simulating test cases composed of random events. Regarding the GUI rip-

ping approach, we implemented our own version of DFS-based exploration. In terms of

GUI-model extraction/inference, it considers cases that were not captured in other tools

[175, 68], such as pop-up windows in menus/internal windows, on-screen keyboard, and

containers. In this case, we do not have a set of actionable sequences because the app

is explored trying to visit as many clickable GUI components as posible. However, we

measured the accumulated coverage for the whole systematic exploration. This measure-

ment helped us to establish a baseline to validate whether our event sequence generation

approach outperforms competitive approaches. More details of the DFS implementation

are in our online appendix.
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Table 4.1: Android Apps Used in our Study. The stats include the number of activities,
methods, and GUI components. Last two columns list the number of raw events (#RE)
in the event logs (i.e., lines in the files collected with the getevent command) and GUI
level events mined from the raw logs (#GE)

App Ver. LOC #Act. #M. #Comp. #RE #GE
Car Report 2.9.1 7K+ 6 764 142 23.4K+ 1.5K+
GnuCash 1.5.3 10K+ 6 1,027 275 14.7K+ 895
Mileage 3.1.1 10K+ 51 1,139 99 9.8K+ 783
My Expenses 2.4.0 24K+ 17 1778 693 20.3K+ 854
Tasks 1.0.12 10K+ 4 561 200 70.6K+ 1.7K+

4.3.2 Design Space

For training the language models, we used the traces collected from the participants for the

functional testing scenario. Given two LMs (i.e., INTERP and BO) and three flavors (i.e., up,

down, strange), we generated 100 scenarios for each combination <Model, Flavor, APP>

with 3 -gram LMs, then we generated actionable scenarios using the serial mode. For the

interactive mode, we generated 33 scenarios for each of the three INTERP flavors. Each

scenario (in serial and interactice modes) was composed of 100 events. We also executed

Android UI monkey on each app 100 times with 100 touchable events and inter-arrival

delay of 500ms. Finally, we executed our DFS-based GUI ripper on each app.

4.4 Results

Figures 4.2 to 4.6 show cumulative coverage of MonkeyLab and Android UI Monkey for

the event sequences, in addition to coverage achieved by logs collected from human par-

ticipants and coverage of the DFS-based exploration for the analyzed apps. In the case of

MonkeyLab, the figures depict the accumulated coverage of the best LM in serial mode

(in red color), and the combination of the 99 scenarios of INTER-up, INTER-down, and

INTER-strange (33 scenarios for each strategy) in interactive mode (I-LM ). In the fol-

lowing subsections, we present the results for the research questions defined in Section ??.
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Table 4.2: Accumulated Statement Coverage of the LMs

INTERP BO I-LM
App up down str. up down str.

Car Report 12% 14% 13% 11% 11% 11% 30%
GnuCash 7% 6% 7% 7% 7% 7% 22%
Mileage 36% 10% 25% 32% 24% 24% 26%
My Expenses 10% 10% 10% 10% 10% 10% 26%
Tasks 40% 34% 35% 22% 22% 34% 42%
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Figure 4.2: Accumulated Coverage for GnuCash

4.4.1 RQ1: Language Models and Flavors

The accumulated coverage values for the language models in serial mode are listed in

Table 4.2. In general, the INTERP-up flavor is the one with the highest accumulated

coverage for the serial mode. Apps with splash-screens and modal dialogs in clean launches

(i.e., the app is launched right after being installed) such as GnuCash, Car Report, and My

Expenses posed a challenge for the language models (see Section 4.4.5 for more details).

The interactive mode (I-LM ), outperforms the language models in serial model in 4 out

of the 5 apps. The I-LM mode is able to deal with the problem of splash-screens and

modal dialogs in clean launches to reduce the notoriously high rate of infeasible events.

The accumulated coverage provides a high-level measure when comparing two different

models, however, it does not reveal the entire story. It is possible that different strate-

gies are generating different events and sequences that drive to different executions of the

apps. In fact, our goal behind proposing six different flavors of LMs and the interactive

mode is based on the possibility that each flavor can explore different regions in the GUI
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Figure 4.3: Accumulated Coverage for CarReport
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Figure 4.4: Accumulated Coverage for Tasks

event space. Therefore, we investigated the mutually exclusive events executed by each

strategy in the five apps. We also measured the number of times the method coverage

for each method in an app was higher in one strategy when doing pairwise comparisons

(e.g., INTER-up versus INTER-down). The results are presented with heat-maps in Fig-

ure 4.7 and Figure 4.8. Both figures corroborate the fact that each LM strategy is able

to generate different sets of events. For example, when comparing INTERP-strange to

BO-down (Figure 4.7), the former strategy was able to generate 327 GUI events that were

not generated by the latter. In addition, the I-LM mode is the strategy with the highest

difference of executed events when compared to the other strategies.

Answer to RQ1. The LMs strategies are able to generate diverse and orthogonal sets of

GUI events, and the interactive mode is the most effective.
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Figure 4.5: Accumulated Coverage for MyExpenses
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Figure 4.6: Accumulated Coverage for Mileage

4.4.2 RQ2: MonkeyLab vs. Android UI monkey

The coverage of UI monkey surprisingly outperformed the LMs in serial model for Gnu

Cash, Car Report, and MyExpenses. LMs provided a better coverage only in Tasks and

showed similar coverage in Mileage. The random nature of the events generated by the UI

monkey allows this strategy to execute more GUI components without deeply exploring

execution paths that are related to the use cases. For instance, UI Monkey is able to click

on a diverse set of GUI components; however, it does so without context awareness of the

execution history. The LMs are able to explore execution paths that lead to the activation

of Activities and features that can not be reached easily by the UI Monkey. However, the

I-LM mode outperforms the accumulated coverage of UI monkey in all the apps except for

Mileage. When looking into the results in Figure 4.8, it is clear how UI monkey is able to

achieve higher coverage in source code methods more times than the serial LM-strategies.
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99 151 158 16 33 1886 1254
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21 34 187 264 235 1912 1316
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Figure 4.7: Total number of events executed by Strategy A that are not executed by
Strategy B. The key color goes from white (zero) to red (highest value)

However, the I-LM is able to achieve higher coverage in more source code methods when

compared to Android UI monkey.

Answer to RQ2. Android UI monkey is able to achieve higher coverage than Monkey-

Lab in serial model. However, our interactive mode outperforms UI monkey. In terms of

scenarios, all the MonkeyLab strategies are able to generate execution paths that are

not covered by UI monkey.

4.4.3 RQ3: MonkeyLab vs. DFS

The LMs in a serial mode provided similar statement coverage as compared to DFS in

GnuCash, Tasks, and MyExpenses, better coverage in Mileage, and lower in Car Report.

DFS follows a systematic strategy for executing click events on the GUIs. This systematic

exploration is able to exercise deeper executions paths as compared to UI monkey, but DFS

is not able to recognize data dependencies. We found that the LMs can actually model

some of these dependencies (e.g., some fields are required to create a budget or task). In
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Figure 4.8: Total number of source code methods in which coverage is higher when
comparing coverage of Strategy A versus Strategy B

other cases, the LMs can get stuck in specific paths that are very common (frequent) in the

observed traces. However, the I-LM mode outperformed the accumulated coverage of DFS

in the 5 apps. Concerning, the source code methods with higher coverage (Figure 4.8),

there is a notorious difference between DFS and the LMs in serial mode. However, the

I-LM provides higher coverage on more methods when compared to DFS (I-LM−DFS =

2,561 and DFS−I-LM = 1,035 methods).

Summary for RQ3: Although the LMs in serial mode are not able to achieve better

coverage than DFS, I-LM is able to achieve higher coverage as compared to DFS.

4.4.4 RQ4: MonkeyLab vs. Manual execution

The coverage achieved by the users during the Record phase outperforms UI Monkey,

DFS, and the LMs in serial and interactive modes, as originally expected. However, the
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LMs were able to execute events that were not observed in the event traces collected by

the users (see Figure 4.7). In general, the LMs were able to generate actionable scenarios

for natural executions, i.e., there are sequences generated with the LMs including GUI

events from the collected traces. However, the LMs were also able to generate sequences

with unseen events, which means that the actionable scenarios cover natural cases but

also corner-cases not considered by the users. And the benefit is noticeable when using

the interactive mode, which was able to generate 1,611 GUI events not considered by the

participants in our study.

While we can not claim that the LMs are better than the other approaches in terms of

coverage, after looking into the details of the events executed by each method, it becomes

clear that the combinations of manual testing and automated approaches can significantly

improve the coverage. However, MonkeyLab is able to learn a model and then generate

actionable scenarios that can be executed on a target device. In addition, Monkey-

Lab generates not only natural scenarios but also corner cases that are not generated by

any of the competitive approaches.

Answer to RQ4: Although the overall coverage achieved by MonkeyLab is not as high

as compared to manual execution, MonkeyLab is able to generate actionable scenarios

including not only natural GUI events, but also events that are not considered during

manual testing. Therefore, the scenarios generated by MonkeyLab can help increase the

coverage achieved by manual testing without extra effort that is imposed by collecting

test-scripts.

4.4.5 Limitations

Automated GUI-based testing approaches can benefit from the following information in

this study, since some of these issues can pose similar problems for various testing strate-

gies.

Encapsulated components. Encapsulated components (e.g., KeyboardView, Auto

CompleteTextView, CalendarView, and DatePicker) cannot be analyzed during system-
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atic exploration, because the sub-components (e.g., each key of the keyboard) are not

available for ripping at execution time. Thus, the sub-components are not recognized by

the View Server nor the Hierarchy Viewer. This type of component requires a prede-

fined model of the feasible events with the locations and areas of these sub-components.

Training corpus size in serial mode. Another lesson gleaned from this study con-

cerns an effective training set. Specifically, we diagnosed two critical issues that con-

tributed to the high rate of infeasible events produced by the interpolated n-grams and

back-off models. The principal issue was relatively small amount of training data for

each app as compared to the size of the respective vocabularies. The need for substantial

training data was observed in most of the sequences for the apps (especially Keepscore)

for which the LM-based strategies were not able to produce a response. For example,

an app with a vocabulary size of 250 events would require 250×249 and 250×250×249

parameters to reliably estimate bigram and trigram models, respectively. Data sparsity

is a key concern in statistical language modeling, and a number of techniques have been

developed to manage the problem of deriving useful statistical estimates from relatively

small corpora [79]. Naturally, one approach to controlling the number of parameters is to

reduce the order of the model [181]; however, reducing the order of our models presented

another issue. In our experiments, reducing the order degenerated the effectiveness of the

INTERP-up models at generating feasible test cases. This degeneration can be attributed

to allocating too much weight to the unigrams in the mixture model (Equation 4.3). In

other words, after unfolding the recurrence in Equation 4.3, unigrams will generally have

more influence on the predictions of interpolated n-gram models as compared to inter-

polated models whose order is greater than n. For example, unigrams will have more

influence on the predictions of interpolated trigrams than interpolated 4-grams, because

the unigrams are multiplied by β(h) (Equation 4.3), a number less than one, an addi-

tional time in interpolated 4-grams. Our expectation was for INTERP-up models to yield

favorable coverage results in line with previous empirical studies [227], yet the low-orders

disabled the models in our experiments. However, we did not expect INTERP-down nor
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INTERP-strange models to yield high rates of feasible events. Considering the nature of

the interpolation smoothing technique, models at all orders are factored into the estima-

tor. So, regardless of the order of the interpolated model and the history of events, every

event will have a chance to be selected at each point in time. Moreover, for INTERP-down

and INTERP-strange, the probability distributions are transformed such that all of the

unlikely events (given the context) in the vocabulary are generally assigned more proba-

bility mass. Thus, we expected INTERP-down and INTERP-strange models to yield high

rates of infeasible events. The sparse training set had a similar degenerative effect on the

back-off models. With relatively few data points to inform high-order component models,

the back-off model will successively probe low-order models until reaching unigrams—the

base case. Probing low-order models is not conducive to generating feasible events. The

purpose of smoothing techniques like interpolation and back-off is to use substantial con-

texts when possible before defaulting to lower-order models (e.g., unigrams and bigrams),

but this is predicated on a training set that can support the estimation of higher-order

models.

4.5 Discussion

The main contribution of our work is a novel Record→Mine→Generate →Validate

framework for the automatic generation of actionable scenarios for Android apps. The

framework relies on mining real app usages, static analysis of source code, and dynamic

analysis to translate low level events and GUI components to a high-level representation

that allows event sequences decoupled from specific locations and device sizes. The frame-

work is supported on a modular architecture that allows easy extension (more details

about the framework extensibility in the final Chapter 6) and multiple implementations

depending on the purpose of the developers. One instance of the framework is Monkey-

Lab , which generates (un)natural event sequences. The intention with MonkeyLab is

to generate sequences that are not often exercised by developers/testers; to this, Mon-
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keyLab uses statistical properties of two language models and three proposed flavors

of the language models to generate the sequences. For the evaluation, we used several

medium-to-large Android apps. On one hand, the results suggest that the BO model is

more suitable for generating unnatural scenarios with small and large corpora. On the

other hand, INTERP is not able to generate scenarios when the available corpora are small.

If small corpora are available, INTERP is more suitable for natural scenarios. Finally, the

interactive mode in MonkeyLab outperformed the serial mode in terms of coverage. The

evaluation demonstrated the ability of MonkeyLab to generate (un)natural sequences

not exercised by the developers. It is worth noting that the testing goal of MonkeyLab is

not coverage; therefore, MonkeyLab can be used by development teams as an automatic

and complementary approach to manual testing.

We also provide a set of learned lessons for GUI-based testing of Android apps using

actionable scenarios. The lessons recommend designing models for encapsulated compo-

nents and increasing training corpus size of LMs. The lessons can be used by researchers

to implement automated approaches for GUI-based testing that are more attractive and

useful to mobile developers and testers. Actionable scenarios can also be combined with

automatic generation of testing oracles [159] for generating GUI-based test cases for mobile

apps.
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Chapter 5

Visual Aesthetics Matter:

Multi-Objective Optimization of

Energy Consumption of GUIs in

Android Apps

Nowadays, an impressive amount of our everyday activities is supported by apps running

on mobile devices: A calendar app reminds us of that important meeting we have to attend,

the GPS navigator recommends the best route to reach our destination, and we take and

share meeting’s notes by using our favourite note app. This impressive adoption of mobile

devices and apps in daily activities has motivated the need for reducing their energy

consumption. For instance, common energy bugs in mobile apps have been identified

and catalogued [204, 207, 172, 244, 173], as well as typical hot spots [235] together with

energy greedy APIs [205, 165]. In addition, several infrastructures and methods have

been proposed to measure and estimate the energy consumption of mobile devices and

apps [130, 122, 183, 152].

Some practices for avoiding and fixing energy hotspots (bugs) in mobile apps focus

on how the apps should use energy-greedy hardware components in the device, such as
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Figure 5.1: Original design vs GEMMA’s solutions for the Learn Music Notes app.
Each solution shows the color composition for three GUIs in the app.

GPS, Wi-Fi, or the screen. However, despite using good programming practices targeting

energy greedy components, programming practices have a limit in terms of energy saving,

and the limit is imposed by the hardware components. For instance, in the case of LCD

displays, the energy drawn from the battery is constant regardless of the colors displayed

on the screen. This is not the case for OLED displays, for which the energy consumption

depends on the combinations of colors at the sub-pixel level. This property of OLED

displays motivated the adoption of power models for estimating the energy drawn by

the graphical user interfaces (GUI) displayed on the screen. In fact, previous work have

used power models to estimate and improve the energy consumption of web browsers [90],

mobile web apps [154], and mobile apps in general [91, 235].

All these prior techniques on improving energy consumption of GUIs running on OLED

devices have been mostly driven by a single objective to reduce energy consumption at

all costs. Also, these approaches generally exploit only a small subset of possible color

schemas that developers/designers can define to optimize the GUI. For example, using

predefined themes or using color transformations starting only from the original scheme

can drastically reduce the color palettes and compositions that can be explored as a

potential solution [91]. This is also the case when the proposed solution uses by default

dark colors in the background [154, 235]. Another issue with previous approaches is

that the solutions are generated individually for each GUI in the app, which can lead to
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inconsistencies in the whole design concept [154, 235].

In this Chapter we propose a multi-objective approach, namely GEMMA1, for gen-

erating color compositions that reduce the energy consumption of GUIs in Android apps

and are visually attractive at the same time. GEMMA combines power models, pixel-

based engineering, color theory, dynamic analysis, and a multi-objective optimization

technique—namely Non-dominated Sorting Genetic Algorithm (NSGA)-II [88]—to pro-

duce a Pareto-optimal set of design solutions (i.e., GUI color compositions) across three

different objectives: (i) reducing energy consumption, (ii) increasing contrast, and (iii) im-

proving the attractiveness of the chosen colors by keeping the palette close to the original

one. GEMMA is supported by a solution that relies on an infrastructure for large-scale

execution of Android apps described in Chapter 3.

To the best of our knowledge GEMMA introduces the following unique advantages

and contributions:

• Is multi-objective. This is the first approach adopting multi-objective optimization

to choose colors for mobile apps with the main goal of reducing energy consumption.

Multi-objective optimization avoids a direct aggregation of different, potentially con-

flicting objectives, and, as it will be shown in our empirical evaluation, it allows

developers to evaluate different possible solutions that optimize specific objectives

or achieve a compromise between two or three of them;

• Accounts for multiple screens and the duration of time they are displayed. Since a

GUI consists of multiple screens, it is particularly important to optimize colors for

screens that are used longer in typical usage scenarios, while screens that just appear

for few moments may have lesser contribution to the overall energy consumption.

This is accounted for in the GEMMA’s energy objective function;

• Produces pleasant and consistent color combinations. In addition to energy con-

sumption and contrast, this is the first approach taking GUI design principles—at

1Gui Energy Multi-objective optiMization for Android apps
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least in terms of choosing colors—into account. First, for the color palette generation

we combine the original color scheme in an app with three models based on color

theory harmonies. Then, GEMMA generates compositions such that if two or more

components have a given color (say yellow) in the original palette, they will appear

with the same color (say green) in the proposed solutions, so to avoid producing

inconsistent GUIs. Finally, as mentioned before, the multi-objective optimization

has a third, “design-related” objective aimed at choosing colors that are not too

distant from the original ones. To have an idea of what does this mean in terms of

generated color compositions, Figure 5.1 shows the original design and an example

of a GUI automatically generated by GEMMA for the Learn Music Notes app.

To validate the quality of the color schemas recommended by GEMMA, we used it to

generate optimized GUIs for 27 free apps available in Google Play and for five commercial

apps developed by Italian companies. The colorfulness of the GUIs derived for 27 of those

apps was evaluated by 104 mobile apps users in an online survey; also, since GEMMA is

implemented in a publicly available webapp, we asked developers and managers of three

Italian companies to use it on their apps and provide us feedback concerning the GUIs

generated by GEMMA for their apps and the usefulness of our tool. Finally, we used a

power monitor-based infrastructure to measure the actual energy saved by adopting the

GUIs generated by GEMMA.

Overall, GEMMA has been evaluated across four dimensions: (i) the ability to opti-

mize the three objectives, (ii) the actual energy saved by adopting the generated GUIs,

(iii) the extent to which potential users consider the choices of colors acceptable enough,

and (iiii) the extent to which the original developers of commercial apps would be willing

to account for GEMMA’s recommendations.
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Figure 5.2: The GEMMA approach and components

5.1 Optimizing Energy Consumption of GUIs with GEMMA

This section describes GEMMA, a multi-objective search-based optimization technique

that suggests possible color alternatives achieving a tradeoff between three desirable and

possibly conflicting objectives: (i) reducing energy consumption on OLED displays; (ii)

increasing contrast between adjacent GUI elements; and (iii) preserving a consistency in

the color usage with respect to the original design (i.e., proposing color schemas that

are close to the one adopted by developers in the original app’s GUI). In addition to

nearly optimizing the objectives mentioned above, GEMMA can also verify that the pro-

posed GUIs satisfy some specified constraints. For instance, the current implementation of

GEMMA does not consider GUIs’ color schemas as valid in which adjacent elements have

the same color or colors having a very low contrast between them, in order to promote

the readability of the recommended GUIs.

To solve the optimization problem, first, we obtain a power model of the corresponding

display, relating pixel colors to power consumption (Section 5.1.1). Then, we identify
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GUI elements composing each screen (Section 5.1.2). Finally, we define a multi objective

Genetic Algorithm (GA) aimed at finding near-optimal solutions to the stated problem

(Section 5.1.3). The GEMMA approach and the underlying components are depicted

in Figure 5.2. Each one of the components and phases in the GEMMA approach are

described in the following subsections.

5.1.1 Estimating the Power Consumption

The power consumption of OLED screens can be estimated by using the color components

of each pixel [91, 90, 154, 235]. According to the specific pixel matrix of the screen, each

color in a pixel is rendered by using a combination of red, green, and blue sub-pixels at

different levels (a.k.a., intensity) in the standard RGB (sRGB) color model. In the case of

OLED screens the power consumption of sub-pixels depends on the color component level.

The power consumption of an OLED pixel is a linear function of its linear RGB values, i.e.,

the gamma decoding result from its values in the standard RGB space [91, 90]. Therefore,

given a power profile P〈color〉(level) that returns the power consumption of a color level,

the power consumption of a pixel in the position 〈x, y〉 with colorx,y and components Rx,y

(red), Gx,y (green), and Bx,y (blue) is estimated as in Equation 5.1, and the total power

consumed by the screen when painting a GUI is the sum of pixel power consumption over

all the X × Y pixels in the screen (Equation 5.2).

P (colorx,y) = P〈R〉(Rx,y) + P〈G〉(Gx,y) + P〈B〉(Bx,y) (5.1)

TP (GUI) =

X∑
x=1

Y∑
y=1

P (colorx,y) (5.2)

The power profile of the color components represented by the P〈color〉 functions is screen

specific. In fact, this characteristic of the OLED screen has been exploited before to build

power models that estimate the consumption of GUIs [91, 90, 154, 235]. In our case we

built the power model for a SUPER AMOLED screen (1080 × 1920 pixels) in a Samsung
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Galaxy S4, by using a monsoon power monitor [193]. To define each P〈color〉 function, we

measured the current drawn by the screen when painting it with all the pixels set to black

(i.e., idle period) during 30 seconds, and full screen with all the pixels set to the same

primary color component for each level ∈ [1, 255] during 30 seconds (i.e., measurement

period). We are not considering the effect of the screen brightness, consequently, we set

the display brightness to the maximum value. For both, idle and measurement periods

we computed the average current of a pixel dividing the raw value, measured with the

power monitor, by the total number of pixels in the screen (1080 × 1920). After collecting

all the values, we subtracted the current in idlek from the current in the corresponding

measurementk to account only for the current drawn by the screen pixels. Finally, we

removed noise by using the Tukey’s smoother implemented in R [228]. The measurements

after smoothing are presented in Figure 5.3.

To derive the power model, we followed the same procedure previously adopted in [91,

90]. With the 255 measurements representing the power profile of a primary color in sRGB

(Fig. 5.3), we transformed the intensities to linear RGB, and then we found the linear

function describing the power consumption (Figure 5.4). The linear RGB simplifies the

construction of the model without loss of information [90]. With the power models using

as input the color intensities in linear RGB, it is possible to estimate the current drawn

by all the pixels in the Galaxy S4 AMOLED screen when a specific GUI is painted, by

using Equation 5.2. The model in Figure 5.4 shows current measurements in mA (milli

Amperes); the current is proportional to power (Watts) because the voltage is constant

during the measurements; thus, there is no need to plot the results in terms of Watts.

These measurements are consistent with the ones by Dong et al. [90, 91] for OLED screens.

5.1.2 Extracting Color Composition from GUIs

Using a power model to estimate the power consumption of GUIs requires extracting pixel-

based representations of the GUIs. This extraction can be done online when the target

GUIs are displayed on the device’s screen [90], or offline by relying on screenshots [235] or

106



!!!
!!

!!!!

!

!!
!!!!

!!!!!
!!!!

!!!!!!!!
!!!!!!!!!!

!
!!!!!!!!!

!

!

!!!!!

!

!!!!
!!!!

!!!!!!
!!!!

!!!
!!!!!!!!

!!!!!!
!!!!!

!!!!!!!!!!!
!!!!!!!!!!!!!!

!!!!
!!!!!!!!!!!!!!

!!!!!
!!!!!!

!!!!!!!!!!
!!!!!

!
!!!!!!!!!

!!!
!!!!!!!!!!!!!

!!!!
!!!!!

!!!!!!!
!!!!!!

!!!!!!!!

!!!
!!!!!!!!!!

!!!
!
!!!!!!!!!

!!!

0 50 100 150 200 250

0
50

10
0

15
0

Color level

Av
g 

cu
rre

nt
 (m

A)

a) Standard RGB

P<R>
P<G>
P<B>

!!!!
!!!!!

!!!!
!!!

!!!
!
!!!!!!!!!!!!

!!!!!!!!
!!!!!!!

!!!!!!!!!!!!!!!
!!!!

!
!!!!!!!!!!!!!!

!!!!!
!!!!!!!!!!!!!!!!!

!!!!
!!!
!!!!!!!!!!

!!!!!
!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!

!!!!!
!!!!!!!!!!!!!!

!!!!!!
!!!!!

!!!
!!!!!!

!!!!
!!
!!!
!!!!!

!!!!
!!!!

!!
!!!!!!

!!!!!!!

!
!!
!!!!!!!

!!!!!
!!!
!!!!

!
!!!!

!!!!!!!!!!!!!!!
!!!!!!!!!

!!!!!
!

!!

!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!

!!
!!!!!!

!
!!
!
!!!!

!!!!!!
!!!!!!!

!
!!!!!!!!

!!!!!!
!!!!!!

!!!!!!!!!
!!
!!!!!

!!!!!!!
!!!!

!!!!!!
!!!!!!

!!!!!!!!
!!!!!!

!!!!!!!!!
!!!!!

!!
!
!!!!!!!!!

!!!!!!

!!!!!!!
!
!!

!!!!!!!!

!!!!!!
!!
!!
!!

!!!

!!!!!!

!!!
!!!!

!
!!!!!

!!

Figure 5.3: Current (mA) consumption models for primary colors of the Galaxy S4
SUPER AMOLED screen in standard RGB color space.
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Figure 5.4: Current (mA) consumption models for primary colors of the Galaxy S4
SUPER AMOLED screen in linear RGB color space.
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server-side code[154]. The representation is usually the GUI-based color histogram or a

set of tuples 〈pixel, red-level, green-level, blue-level〉. GEMMA relies on dynamic analysis

of an app to extract GUI-based information, since the GUI is shown on the device (or

emulator), and the Android View Server2 running on the device can be queried to collect

features of the GUI components such as location, dimensions, text, and component’s hi-

erarchy. With this information available, the extraction can be focused on detecting the

color scheme (i.e., individual colors and composition) instead of detecting shapes repre-

senting GUI components. Moreover, the information provided by the View Server allows

us to distinguish components with images, components with/without text, and containers.

This is particularly important to avoid transformation/distortion of images/logos that be-

long to the GUI or even to third-parties. GEMMA does not derive color schemes for

images/logos in the GUI; the color schemes are generated only for backgrounds, borders,

and fonts of Android GUI components. In this sense, we do not expect significant reduc-

tions in the power consumption of GUIs composed mostly of images. Also GEMMA is

aimed only at getting pixel-based representation for native-apps, conversely to [154] that

focuses on web apps for mobile devices.

In terms of representation, GEMMA extracts bag-of-color-pixels (BOCP) and bag-of-

color-components (BOCC) of Android app GUIs. Both BOCP and BOCC are hash-map

structures that use colors as keys. An entry in a BOCP is a collection of pixels with the

same color in the GUI, and an entry in a BOCC is a collection of components having

pixels with the same color in the GUI. The BOCP/BOCC extraction procedure starts

with getting a snapshot of the current GUI in the device, and the components in the

GUI, by querying the View Server with the UI Automator utility in the Android SDK.

The snapshot contains an XML-based representation of the GUI hierarchy (including lo-

cation, type, dimensions, and text for each component), and a screenshot of the GUI. The

whole procedure is described with Algorithm 3. It is worth noting that our BOCP/BOCC

2The Android View Server is one of the services available in the Android OS. Therefore, it is always
available on Android devices (or emulators) and can be easily queried with utilities from the Android
framework such as uiautomator and hierarchyviewer.
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Algorithm 3: Extracting BOCP and BOCC from a targeted set of GUIs in an
Android native app

Input: k, r,GUIS
Output: BOCP,BOCC

1 begin
2 BOCP = ∅, BOCC = ∅;
3 foreach GUI ∈ GUIS do
4 S = getUISnapshot(GUI);
5 C = getComponentsFromSnapshot(S);
6 foreach c ∈ C do
7 if c != image then
8 pixelsc = getP ixels(S, c);
9 histc = getP ixelHistogram(pixelsc);

10 histc = sort(histc);
11 medoids = getMedoids(histc, k, r);
12 foreach pixel ∈ pixelsc do
13 color = getColor(pixel);
14 color∗ = getClosest(color,medoids);
15 add(BOCP [color∗], pixel);

16 add(BOCC[color], c);

extraction procedure enables consistency of the generated solutions (i.e., the color com-

position is the same for all the GUIs), because the BOCP/BOCC represent the GUIs as

a whole entity instead of individual screens.

To collect the snapshots, GEMMA was designed two support two modes: (i) a manual

mode in which the developer can select directly on the device the GUIs to analyze, and

(ii) an automatic ripping mode in which the app is explored systematically using a Depth-

First-Search (DFS) strategy. Our rationale for the two modes is that while the manual

mode requires the developer to have a device and ask GEMMA locally to analyze the

GUIs, the automatic mode allows for a cloud-based or web-based approach in which the

developer only has to submit an APK to the GEMMA system. Regarding the automatic

mode, it executes click events on all the clickable components and iteratively builds a

tree of windows, components and transitions; the exploration is performed until all the
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Algorithm 4: Color medoids detection

Input: histc, k, r
Output: medoids

1 begin
2 medoids = ∅;
3 medoids[1] = histc[1];
4 index = 2,medoidIndex = 1,;
5 while |medoids| ≤ k && index ≤ |histc| do
6 color = histc[index];
7 if Lum(color,medoids[medoidIndex])¿ r then
8 medoidIndex+ +;
9 medoids[medoidIndex] = color;

10 index+ +;

clickable components (discovered during the exploration) have been exercised3. After the

automatic exploration, GEMMA selects the snapshots of the most visited GUIs. The

number of top-visited GUIs is selected a-priori by the developer when submitting the

APK. It is worth noting that the automatic selection of the most visited GUIs is only

enabled in the automatic mode.

Once the GUIs-to-analyze have been selected (manually or automatically), the corre-

sponding screenshots and GUI hierarchies are used to identify the representative colors

of each component in all the GUIs. To identify the colors in the components, we used

a clustering-based quantization on the color histogram of each component. Only com-

ponents different from ImageView and ImageButton were considered. Pixels belonging

to each component are detected by traversing the GUI hierarchy in a bottom-up fash-

ion, i.e., deepest level is processed first. A pixel in the screen is assigned to only one

component, and the priority for this assignment is based on the depth of the GUI hierar-

chy. These heuristics allow assigning pixels according to the z-index in the GUI; if there

are components inside a container, the pixels are first assigned to the components, and

then, the leftover pixels are assigned to the container. The set of pixels assigned to a

3DFS-based exploration is a widely used strategy for automated ripping, execution, and testing of
mobile apps [55, 198, 171, 194, 195]
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component/container are then used to derive a color histogram.

Top-k colors (i.e., medoids) are detected in the histogram of each component while

avoiding gradients and font shadows that are automatically injected by Android. For

that, GEMMA traverses the sorted histogram—from high to low frequency— looking for

changes in the contrast ratio higher than a threshold r as described in Algorithm 4. As

for the contrast ratio computation between two colors a and b, we used the luminance-

based contrast ratio (a.k.a., relative luminance) [13] Lum(a, b) that better accounts for

differences between text and background colors:

T (level) =

{
level
12.92 if level ≤ 0.03928
( level+0.055

1.055 )2.4 otherwise
(5.3)

L(a) = 0.216 · T
(
reda
255

)
+ 0.7152 · T

(greena
255

)
+ 0.0722 · T

(
bluea
255

)
(5.4)

Lum(a, b) =

{
L(a)+0.05
L(b)+0.05 if L(a) > L(b)
L(b)+0.05
L(a)+0.05 otherwise

(5.5)

To illustrate the contrast-based clusters detection let us assume a text edit component

with dark gray gradient (background) and white font; a lot of “grays” will surface at the

beginning of the sorted histogram, and then white will appear. However, the contrast

ratio between the grays is going to be low (close to one), and the ratio between grays

and white is going to be higher. Thus, the top-1 color in the histogram is the medoid

(i.e., the most frequent color in a cluster) for the first cluster (i.e., the most frequent gray

in the histogram), then a new cluster (i.e., text) is detected when the contrast ratio is

higher than r. This procedure is applied until k medoids are detected. The values we

adopted for k and r are reported in Section 5.3.4. Note that our definition of medoid is

the most-frequent color in a cluster instead of the average, because averaging the colors
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in a cluster might change the characteristics of the colors defined by the developers in the

original design.

Finally, the colors of the GUI components are discretized (i.e., color quantization)

using the color medoids in the histogram. It means that the pixels are assigned the closest

quantized color (i.e., color medoid) to the original pixel color. The BOCP is a hash-map

structure for all the pixels in the GUI, in which the key is a quantized color color∗ and

the value is a list of pixels assigned to that color. The BOCC is a hash-map too, in which

the key is a quantized color color∗ and the value is a set of the components associated

with the pixels in BOCP[color∗]. Both structures, BOCP and BOCC allow for a simple

and powerful representation of a set of GUIS-to-analyze in the sense that generating a

new consistent color composition for the GUIs-to-analyze consists in finding new values

for the keys (i.e., values for the color∗ keys) in the structures. Therefore, a “new” set of

color∗ keys is the color palette for a new color composition.

5.1.3 Multi-objective Optimization Model

In the following, we describe the GA component in GEMMA. The values we use for the

GA parameters are reported in Section 5.3.4. The GA has been implemented using jMetal

[94].

Representation. Our representation contains a gene for each key in a BOCP, i.e.,

each gene will define the color to all the pixels assigned to that key in the BOCP. We

indicate a generic solution of our optimization problem as S, and with S[i] we denote the

color this solution assigns to the i-th key in a BOCP structure.

Multi-Objective Genetic Algorithm. Rather than evaluating each solution ac-

cording to a single fitness function, a multi-objective GA produces frontiers composed of

Pareto-optimal solutions. A solution X is said to be Pareto-optimal if-and-only-if it is

non-dominated by any other solution within the search space, i.e., if-and-only-if no other

solution Y exists which would improve one of the objective functions, without worsening

other objectives. All the solutions that are not dominated by any other solution are said
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to form a Pareto-optimal set, while the corresponding objective vectors (containing the

values of the objective functions) are said to form a Pareto frontier. Identifying a Pareto

frontier is useful because the software engineer can use the frontier to make a well-informed

decision that balances the trade-offs between the different objectives. In our context, one

could select color choices achieving the lowest energy consumption, having the highest

contrast, being the closest to the original design, or a compromise among these objectives.

The specific multi-objective GAs we use for GEMMA is the Non-dominated Sorting Ge-

netic Algorithms NSGA-II [88], which tries to ensure diversity in the evolving populations

to avoid the situation where populations have been filled only with dominating solutions

(because of the elitism effect, i.e., best solutions are preserved). The key idea behind

NSGA-II is to use an elitist selection strategy for replacement (with respect to fitness

and spread). For each generation, parents and offsprings are gathered in a mating pool.

A fast, non-dominated sorting approach is used to rank these individuals in subsequent

Pareto fronts. Then, the next generation is built by preferring the individuals with the

lower non-domination ranks. In case of individuals with the same rank, the selection de-

pends on a diversity preservation mechanism. A density measure—crowding distance—is

computed in the objective space. The tournament used to select parents for reproduction

is based on this density measure.

Initial Population Generation. Each individual in the initial population has the

same number of genes (i.e., color keys) than in the original BOCP. In order to assign

values (i.e., colors) to the genes in the initial individuals, random colors are selected

from a color palette composed of 512 colors. The color codification is the single int

pixel in the TYPE INT ARGB representation provided by Java. Our color palette generation

strategy is not based on color transformations from the original design or predefined

palettes (which reduce drastically the universe of color compositions) as previous work

do [91, 154, 235]. Our strategy consist on combining colors in the original design with

color palettes derived using heuristics from the color theory field. The usage of color

composition heuristics allows GEMMA to rely on a set of colors selected to provide visual
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harmonies instead of totally random color palettes that might drive to unpleasant GUIS.

Therefore, the GEMMA palette includes m colors from the original BOCP, white, black, a

palette in equidistant color harmony with (512−m−2)/3 colors, a monochromatic palette

of (512−m− 2)/3 colors with difference in saturation and brightness, and the equidistant

harmony palette, but with random saturation and brightness for each of the colors. The

starting point of the equidistant harmony and monochromatic palette (i.e., initial values

for the tones) are randomly selected from the HSB/HSV color wheel. Our choice for a

diverse palette that includes equidistant and monochromatic harmonies is to provide the

GA with colors that can drive it to producing visually appealing GUIs.

Color generation techniques explores the color wheel spectrum with different selection

heuristics looking for specific angles, symmetries, and value and saturation contrasts, while

looking visual appealing composition. For instance, equidistant harmony is the rule for

color composition in the HSB/HSV (Hue Saturation Brightness/Value) color space that

derives a color palette with the same saturation and brightness, but modulating the tone

(i.e., hue) by taking proportional spaces in the HSB/HSV color wheel. Because the tone

in the HSB/HSV space varies from 0◦to 359◦, and each integer value corresponds to one

color (e.g., 0◦ is red, 120◦ is green, and 240◦ is blue), equidistant colors can be derived by

dividing the hue space in a target number of colors. For instance, an equidistant harmony

of 20 colors will have a tone difference of (360/20)◦ between each color; if the harmony

starts at a 10◦ tone with fixed values S for saturation and B for brightness, the colors

in harmony would be 〈10◦, S, B〉,〈28◦, S, B〉,〈46◦, S, B〉,...,〈334◦, S, B〉, 〈352◦, S, B〉.

Equidistant harmonies can also derive into palettes with value and saturation contrast by

changing randomly the saturation and brightness of the colors in the original equidistant

harmony (see Figure 5.5-middle). Monochromatic palettes are generated by using the same

hue but varying the saturation and brightness randomly for each color in the palette (e.g.,

20 colors with the same hue but with different saturation and brightness as in Figure 5.5-

bottom). In the three composition schemes we used a brightness range [0.2, 0.9] to avoid

colors that are too bright or too dark. Its worth nothing that the starting point for
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Equidistant harmony (EH)

EH with value and saturation contrast

Monochromatic

Figure 5.5: Example of palettes (20 colors each) with equidistant harmony (top), equidis-
tant harmony with random saturation and brightness (middle), and monochromatic scale
(bottom).

the equidistant harmonies and monochromatic schemes in the color palette for the initial

population are generated randomly at the beginning of the GA execution, therefore, each

GA execution will have a different color palette.

Genetic Operators. In order to evolve GA individuals, we use selection, crossover

and mutation operators. The crossover operator is the one-point crossover. Given two

parents, a one-point crossover cuts them—i.e., the array of BOCP—in a random position

p, and then all genes after position p are exchanged to produce the offspring. Crossover is

applied to individuals of the population with a probability pcross. The mutation operator

is the uniform bit-flip mutation that, with probability pmut, changes the color for one

gene to a different color randomly selected from the palette. The selection operator is

the binary tournament selection operator described by Deb et al. for NSGA-II [88]. A

binary tournament selection holds a competition between two solutions, selecting the

firstly ranked one with a probability p, and the second one with probability p · (1− p).

Fitness functions and constraints. Let us consider an app having ns screens SCRw

with w = 1, 2, . . . , ns. For each of these screens, let us assume that it has been estimated

that, on average, the h-th screen is being displayed for a percentage pth of the total

application usage time. Such estimates can be obtained by profiling application usages,

and are needed so to prioritize low energy consumption on screens that are displayed for

a long duration of the overall usage time. That is, having bright colors on a splash screen
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appearing for a few seconds is not as crucial as having them on the main application GUI.

Now, let us also assume that each screen has a X × Y resolution, and that, given a pixel

in position 〈x, y〉 of the screen h, the function B(x, y, h) returns the index of the BOCP

entry that the pixel belongs to. Therefore, given a GA individual solution S, the color

that such a solution assigns to a pixel 〈x, y〉 in screen h is S[B(x, y, h)].

The first fitness function (to be minimized) is the Energy Consumption Fitness (ECF).

Given a solution S, it computes its estimated consumption per unit of time based on

Equation 5.1, as in the following:

ECF (S) =
ns∑
h=1

ph ·
X∑

x=1

Y∑
y=1

P (S[B(x, y, h)]) (5.6)

where ECF (S) sums the estimated power consumptions of all the pixels in all the screens,

weighting them for the estimated fraction of time ph for a particular screen in use.

The second fitness function (to be maximized) is the contrast fitness (CF), which relies

on the GUI model extracted as explained in Section 5.1.2. Let us consider that each screen

h is composed of nch components Ci,h, the Adj(Ci,h) function returns the set of adjacent

components to Ci,h, and BC(Ci,j) returns the index of the entry in the BOCC to which

the component belongs.

TCon(Ci,h) =
∑

Cj,h∈Adj(Ci,h)

Con (S[BC(Ci,h)], S[BC(Cj,h)]) (5.7)

CF (S) =
∑
h

nch∑
i=1

TCon(Ci,h) (5.8)

That is, CF (S) sums, for each screen the contrast between each component Ci,h in the

screen h and all its adjacent components Cj,h ∈ Adj(Ci,h), using the function Con(a, b),

that returns the contrast between two colors a and b (in terms of brightness) using a

formula defined by W3C [233]:
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Con(a, b) =
∣∣∣299·reda+587·greena+114·bluea

1000 −

299·redb+587·greenb+114·blueb
1000

∣∣∣ (5.9)

Conversely to the W3C luminosity-based contrast ratio used during the color quantization

(Section 5.1.2) that focuses on contrast between text and background, the brightness-based

contrast measurement Con(a, b) is designed to compare background colors.

The third fitness function (to be minimized) is the design fitness (DF) and it aims at

producing GUIs with a set of colors that are close to the ones used in the original design.

Basically, while it can be acceptable to swap colors with respect to the original design—

e.g., to use the darker color for the background and the brighter color for the text or for

small components—or to have relatively similar colors, changing completely the palette

might result in a GUI with a choice of colors deviating drastically from the designer’s

intention. For this reason, the idea behind the third fitness function for a solution S is to

use the distance between each color S[i] in S and the closest color Or[j] in the original

palette. To compute the distance between two colors a and b, we use, according to existing

literature [217], the Euclidean distance along the green, red, and blue components of the

color. Given d(a, b) the distance between two colors a and b, BOCCOr the BOCC for the

original design, and Or∗(color) is a function that, given a color, returns the closest color

in the original palette:

α(color) =

{
1 if BOCC[color] 6= BOCCOr [Or∗(color)]
2 otherwise (5.10)

DF (S) =

n∑
i=1

α(S[i]) · d(S[i], Or∗(S[i])) (5.11)

Namely, for each color in S[i], DF(S) sums the distance to the closest color Or∗(S[i])

according to a penalization factor (α) defined by Equation 5.10. The rationale here is

that we want to penalize twice color differences when they occur on the same components

(i.e., same entry in the BOCC), though this can be a conflicting objective with respect to
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the ECF(S). Therefore, if the color S[i] is used in S for the same set of components with

color Or∗(S[i]) in the original design, the distance is penalized twice.

Besides the three fitness functions, we also define a constraint aimed at avoiding solu-

tions with low contrast. Specifically, we consider one constraint violation every time there

is a pair of adjacent components (Ci,h, Cj,h) when:

Con(S[BC(Ci,h)], S[BC(Cj,h)]) < CnTh (5.12)

where CnTh is a contrast threshold. Constraints are handled using the mechanism defined

in NSGA-II [88]. Constraint violations influence the binary tournament selection, and this

is done using an additional domination principle named constraint domination. Namely,

(i) feasible solutions (not violating any constraints) are ranked better than infeasible ones,

(ii) feasible solutions are ranked in terms of the objectives dominance, and (iii) infeasible

solutions are ranked based on the number of violated constraints. As a consequence of the

latter point, solutions violating constraints are not necessarily discarded, but, for the sake

of diversity, they survive. Clearly, once the resulting Pareto front has been obtained when

the evolutionary algorithm stops, solutions violating constraints are discarded in case they

are still present.

5.2 GEMMA’s Architecture

GEMMA’s architecture is outlined in Figure 5.6. GEMMA is composed of four main

components: (i) the user interface implemented as a web client, (ii) the Execution Engine

(EE) that executes the requests for GUI optimizations, and (iii) a NoSQL engine used to

asynchronously communicate the web client and the EE, and (iv) a data collection APK

that can be installed on any physical device. The GEMMA’s architecture is an instance

of the infrastructure described in Section 3.3.
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Figure 5.6: Architecture of the GEMMA Web Client and the Execution Engine.

5.2.1 The GEMMA Web Client

Android developers and GUI designers can access GEMMA’s features by means of a web

client. The goal of the web client is to provide users with an easy way to: (i) request

the execution of GEMMA tasks in the EE for optimizing the energy consumption of the

GUIs in target apps, (ii) explore the Pareto front of solutions generated by GEMMA, and

(iii) visualize the differences of the proposed solutions in terms of energy savings, contrast

improvement, distance from the original design, and color palettes. A request is a set of

attributes describing the optimization task, e.g., APK to analyze, task name, number of

GUIs to analyze. Therefore, the requests for optimizations are saved by the web client

in the CouchDB engine as JSON documents. The APKs of each request are stored in

the CouchDB engine by using its “attachments” feature [14]. Then, when the request is

dispatched by the EE to an internal worker (more details later), the request is removed

from the CouchDB engine, and a document is created for the task with all the information

generated during the processing (e.g., status, solutions, energy improvements). The web

client checks on demand for updates of the tasks running on the EE, and locally updates

the status of the non-finished tasks. When tasks are complete, all task info is synchronized
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locally (i.e., copied to the local DB) and removed from the CouchDB engine.

As far as technologies used and implementation details are concerned, the client is a

Java web application that uses Java Server Faces, Bootstrap, and JQuery for the pre-

sentation layer. The charts (Pareto Front and gauge-style) are implemented using the

HighCharts library. The web client uses a local MySQL database to store the information

of the tasks once they are processed by the Execution Engine. The data access layer is

realized using the EclipseLink implementation of JPA. The communication between pre-

sentation and data access layers is done with a Servlet, backing beans (JSF), and POJOs.

5.2.2 The GEMMA Collector

User can start a request through the GEMMA Web Client, by submitting an APK, which

is executed automatically on the EE. The systematic exploration in the EE automatically

selects the GUIs to analyze. However, to allow users to select the GUIs under analysis

we developed an Android app, called GEMMA Collector, which runs on any Android-

enabled device and connects to the business logic of the GEMMA Web Client via a

REST web service. The GEMMA Collector relies on the Accessibility Services API and

the uiautomator from the Android Framework to collect screenshots and GUI hierarchy of

the GUIs selected by the user. The corresponding files, collected at the device, are sent to

the GEMMA Web Client as a ZIP file. Then, the GEMMA Web Client creates a request

for the EE. This request does not contain an APK, because no systematic exploration

of the app is required on the EE, since the snapshots of the GUIs to analyze have been

already collected by the user (i.e., no virtual devices are required to execute the app in

the EE). The GEMMA Collector also allows to reduce the amount/time of processing

required in the EE. After the analysis, independently of the client selected by the user

(i.e.,GEMMA Collector or GEMMA Web Client), the results of the optimization process

will be available at the GEMMA Web Client. Android apps that require authentication

data (e.g., login and password) can not be executed automatically by the systematic

exploration. This limitation is not present when using the GEMMA collector, because
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the users can input private data in their apps (directly on the device) and navigate the

GUIs without any restriction.

5.2.3 The GEMMA Execution Engine

The Execution Engine (EE) is the heart of GEMMA. The EE is in charge of executing

the optimization tasks. In particular, the EE: (i) automatically executes the APK on a

virtual device by using systematic exploration similarly to what has been done in previ-

ous work [171, 194]; (ii) selects the GUIs to optimize according to the number of GUIs

requested by the user and an execution time-based heuristic (i.e., the GUIs are ranked

according to the number of visits during the systematic exploration)4; (iii) analyzes the

selected snapshots (i.e., GUI screenshot and GUI hierarchy tree) to identify GUI compo-

nents, containers, and salient colors on the components; (iv) builds the data structures

required for the Genetic Algorithm (GA) execution; (v) executes the multi-objective GA;

and finally (vi) saves the results to the CouchDB client and copies screenshots illustrating

the suggested color compositions into a folder that can be accessed by the web client.

The EE runs as a Java daemon that queries the requests in the “bus”, and then

dispatches the requests to workers (i.e., the units in charge of running GEMMA’s tasks)

following a FIFO policy. During the dispatching process, the EE verifies the availability

of free Emulators and background threads. If no emulators or threads are available in the

EE, the dispatcher keeps the tasks on queue. Otherwise, the task is assigned to a worker

that requires one background thread and one emulator. Once a worker is dispatched with

a task, an emulator, and a thread, start to run (asynchronously) the GEMMA tasks listed

before. During the execution, the workers update the status of the assigned tasks directly

to the “bus”, and after completion, the generated artifacts (i.e., solutions) are updated

in the task document (in the CouchDB engine), and the solution screenshots are copied

into a public web folder. Note that, because there are no synchronous messages between

4Note that conversely to our original approach [167] in which users selected manually the GUIs to
analyze, GEMMA web automatically detects the salient GUIs.
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Figure 5.7: List of user requests (i.e., GEMMA tasks) in the GEMMA web client.

the workers and the web client notifying when a task is finished, the clients should query

the “bus” and synchronize their local databases to reflect the responses/results generated

with each task. The workers rely on components (i.e., APK-Analyzer, Data-collector,

Emu-droid, and the GEMMA’s optimizer) previously developed by the authors for static

and dynamic analysis of Android apps and used in [171, 194, 167, 195]. The GEMMA’s

optimizer, uses the approach described in Section 5.1; the implementation relies on the

NSGA-II algorithm provided by JMetal [94]. The optimizer generates Pareto-fronts of

solutions while optimizing the following objectives: (i) energy consumption, estimated

through regression models, (ii) contrast between adjacent component (a minimum contrast

value is also added as problem constraint), and (iii) color distance with respect to the

original color composition. The algorithm produces solutions considering, as available

colors, the original ones, black, white, and sets of colors achieving equidistant harmony.

Noticeably, the fitness function weights the energy consumption of each app screenshot

based on the estimated proportion of time it is being displayed during an usage scenario.
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5.2.4 GEMMA in Action

After login, a user can (i) request for a new GEMMA task, (ii) check the status of

her requests/tasks, or (iii) check the solutions generated with a finished GEMMA task.

GEMMA web client has a form for submitting a new request that includes (i) the name of

the “request”, (ii) the name of the app, (iii) the APK to analyze, and (iv) the number of

GUIs to analyze in the APK. After a request is submitted, the user can check the status of

the execution on the GEMMA EE. Figure 5.7 depicts the window in GEMMA for listing

the requests, which groups finished and unfinished tasks. For example, the list of requests

in Figure 5.7 shows that the user “Carlos Bernal” has three unfinished requests for the

apps Diabetes Plus, Walmart, and Fit Brains Trainer, and one finished task for Learn

Music Notes. For the unfinished requests, the web client shows that one is still waiting

for dispatching (i.e., “Waiting for thread”), another is in execution mode and running

the “Systematic Exploration”, and the last one is on “Running: Genetic Algorithm”. If

errors/exceptions occur during processing, the status of the request is set to “Error” with

a link to the complete description of the error. The list of requests is updated on-demand,

it means, when the user refreshes the window.

For finished tasks, GEMMA has a link to the name of the corresponding app, which

leads to the details of the generated solutions (dashboard). The GEMMA dashboard,

depicted in Figure 5.8, includes the following visual artifacts: (i) a table-based summary

(sorting capabilities are included) listing the top-5 solutions for each optimization objective

; (ii) A 3D Pareto front chart (navigable) with the optimized solutions; (iii) color palettes of

the original design and a specific solution selected on the Pareto front; (iv) an image of the

visual appearance of the selected solution; and (v) a gauge-style visualization comparing

a solution to the original design of the three optimization objectives (i.e., energy, total

contrast of the GUI components, and distance to the original design). The Pareto front

(Figure 5.9) uses a 3D space to plot the energy consumption of the solutions in the x-axis,

the contrast in the y-axis, and the distance to original design in the z-axis. The Pareto
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Figure 5.8: Dashboard of GEMMA’s solutions for the Privacy Friendly Dicer app.

front also shows the original design using a sun marker. For example, Figure 5.9 depicts

the results of a real execution of GEMMA for the Learn Music Notes app, in which 20

solutions were generated.

When a user moves the mouse pointer over a solution in the Pareto front, GEMMA dis-

plays a contextual window (Figure 5.9) listing the values of the solution for energy con-

sumption, contrast, and distance from the original design. In addition, when clicking on

a solution, GEMMA updates the other visual artifacts in the dashboard, to plot the in-

formation corresponding to the selected solution. The Pareto front can be downloaded as

an image.

Concerning the GEMMA Collector, once the APK is installed in the device, the GUIs

collection workflow (on an Android-enabled device) starts with a window showing all the

apps installed in the device (See Fig. 5.10-left). Then, after selecting an app, the GEMMA

Collector launches the app and render to overlay buttons that allows for (i) getting an
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Figure 5.9: Pareto Front (top) and gauge style visualizations (bottom) in GEMMA .

snapshot of the current GUI , or (ii) submit the files to the REST WS running on the

GEMMA Web Client (See Fig. 5.10-center). Before submit the files, the GEMMA

Collector lists a preview of the collected GUIs and tex inputs for authentication purposes

(See Fig. 5.10-right).

5.3 Empirical Study Design

The goal of the study is to evaluate GEMMA in terms of (i) the energy savings that could

be achieved by running Android apps when adopting the GUI color design recommended

by GEMMA; (ii) the colorfulness of the GUIs that GEMMA produces as assessed by

mobile apps users; and (iii) GEMMA’s suitability in an industrial context, when applied to
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Figure 5.10: Screenshots of the GEMMA Collector Android app when running on a
Nexus 7 tablet and collecting GUIs information for the Game Master Dice app. The screen-
shots in this Figure are: initial activity (left), collection view (center), pre-submission
activity (right).

minimize GUI energy consumption of existing commercial apps. The context of the study

consists of 27 apps from the Google Play and F-droid markets, 104 mobile app users, and

three software companies (for a total of three project managers involved). The quality

focus is the effectiveness of GEMMA in producing GUIs aimed at reducing the energy

consumption of Android apps while also keeping a visually attractive color composition

and ensuring sufficient contrast.

All the materials used in our study are publicly available in our replication package

[164].

5.3.1 Research Questions

In the context of our study we formulated the following research questions (RQ):

• RQ0: Which multi-objective optimization approach is suitable for GEMMA? This

RQ is preliminary to the other research questions. Our goal in RQ0 is to identify a
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suitable search-based algorithm for the specific multi-objective problem we defined

in Section 5.1. To this aim, we assess GEMMA’s ability in optimizing the three

fitness functions formulated in Section 5.1 when using three different multi-objective

GAs, namely (i) the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [88],

the Pareto Archived Evolution Strategy (PAES) [148], and the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) [248].

• RQ1: To what extent is GEMMA able to optimize the GUI energy consumption,

contrast, and design objectives? This RQ aims at investigating the effectiveness of

GEMMA in reducing the energy consumption of the apps’ GUIs while keeping a

high contrast between its underlying components and staying as close as possible to

the original design. Such investigation is merely performed in terms of the metrics

used to compute the fitness functions defined in Section 5.1.

• RQ2: Are the color compositions generated by GEMMA visually attractive as per-

ceived by Android users? This RQ focuses on the colorfulness of the GUIs generated

by GEMMA, as it is perceived by humans instead of being evaluated in terms of

metrics. In visual aesthetics, colorfulness is the factor used to evaluate elements

related to individual colors and compositions [196]. We do not focus on the whole

concept of visual attractiveness; a complete appraisal of visual aesthetics should in-

clude other facets, such as simplicity, diversity, and craftsmanship that are related

to the GUI layout and design concepts [196]. Therefore, we focus on the colorfulness

only, because GEMMA only generates alternative color schemes and keeps the GUI

layout intact.

• RQ3: Do the low energy-consumption color compositions generated by GEMMA have

a tangible impact on the energy consumption of Android apps? Because GEMMA re-

lies on power models extracted a-priori at pixel level for estimating energy consump-

tion, we also wanted to measure the actual improvements in terms of energy drawn

from the battery and state of discharge when executing Android apps in real de-
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vices after modifying the GUI appearance with the color compositions generated by

GEMMA. In other words, RQ3 allows the user to answer the question “If I run

the app optimized by GEMMA, how much do I gain in terms of battery life as

compared to the original app?”

• RQ4: Would actual developers of mobile applications consider changing colors in

an app as recommended by GEMMA? For an approach like GEMMA a successful

technological transfer is the main target objective. In this research question, we

investigate the industrial applicability of GEMMA in the context of three software

companies developing Android apps.

Note that our five research questions have a high degree of complementarity in GEMMA’s

evaluation. RQ0 is preliminary to the others, and aims at selecting a suitable search-

based algorithm to be used in GEMMA. RQ1-RQ3 quantitatively analyze the efficacy of

GEMMA in producing energy saving GUI color schemas while still keeping those GUIs

visually attractive for the apps’ users. Finally, the quality of the GEMMA solutions is

qualitatively investigated in the industrial context in our RQ4.

5.3.2 Choice of Multi-Objective Optimization Techniques for GEMMA’s

Evaluation

In the following, we provide a brief description of the three employed multi-objective

optimization techniques, and we give elements to justify their choice.

NSGA-II [88] tries to ensure diversity in the evolving populations to avoid the situation

where populations have been filled only with dominating solutions (because of the elitism

effect, i.e., best solutions are preserved). The key idea behind NSGA-II is to use an

elitist selection strategy for replacement (with respect to fitness and spread). For each

generation, parents and offsprings are gathered in a mating pool. A fast, non-dominated

sorting approach is used to rank these individuals in subsequent Pareto fronts. Then, the

next generation is built by preferring the individuals with the lower non-domination ranks.
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Table 5.1: Android apps considered in our study.

App Category RQ0 RQ1 RQ2 RQ3 RQ4

360 security Tools 3 3 3

BoardGameGeek Books & Reference 3 3 3

Bollate Travel & Local 3 3 3 3

Clean master Tools 3 3 3

Daily Money Finance 3 3 3

Diabetes plus Medical 3 3 3

FitBrains Education 3 3 3

Google Play Music Music & Audio 3 3 3

Groupon Shopping 3 3 3

Learn music notes Puzzle 3 3 3 3

Lege Appen Medical 3 3 3

Mathtools Education 3 3 3

Notes (Keep) Productivity 3 3 3

Permission Friendly Apps Tools 3 3 3

Privacy Friendly Dicer Board 3 3 3 3

Petrella Travel & Local 3 3 3 3

QuickOffice Productivity 3 3 3

Simple deadlines Productivity 3 3 3 3

Sing Happy Birthday Songs Music & Audio 3 3 3 3

Tasks Productivity 3 3 3 3

Tasks: Astrid To-Do List Productivity 3 3 3 3

The Weather Channel Weather 3 3 3

TOE - tic tac toe Puzzle 3 3 3

Walmart Shopping 3 3 3

WorkTime Productivity 3 3 3

Italian app 1 – 3 3 3 3

Italian app 2 – 3 3 3 3

In case of individuals with the same rank, the selection depends on a diversity preservation

mechanism. A density measure—crowding distance—is computed in the objective space.

The tournament used to select parents for reproduction is based on this density measure.

PAES [148] is one of the simplest multi-objective optimization techniques, and has

many variants working on a single individual (i.e., performing a multi-objective hill-

climbing) or storing a population of individuals. The basic idea behind PAES is that,

when offspring is generated, it is accepted when it dominates the parent, whereas a new

offspring is generated if parents dominate the generated offspring. If there is no domina-
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tion relationship, a comparison is performed with previously generated solutions, which

are maintained in an archive of nondominated solutions.

SPEA2 [248] is an evolution of the SPEA [249] algorithm. SPEA produces offsprings

by performing (through tournament selection) the mating of the current population with

solutions stored in an archive built by adding all nondominated population members and

by removing those that become dominated. The archive is bounded as exceeding solutions

are removed by means of a clustering technique that reduces the number of solutions by

preserving the characteristics of the set of archived individuals. SPEA has limitations

due to (i) possible lost of outer solutions to the nondominated sets when performing the

clustering, and (ii) little information captured when many individuals of the population

nondominate each other. SPEA2 overcomes these limitations by using (i) an alternative

truncation method instead of clustering, and a fixed archive size, and (ii) a fine-grained

fitness computation that mitigates issues related to the presence of many nondominated

solutions in the population.

The choice of the algorithms to experiment is not random, but driven by evidence

in the literature showing their effectiveness in dealing with multi-objective optimization

problems [93? ]. Also, note that we did not consider more complex search-based algorithms

(e.g., NSGA-III [87, 139]), since they are particularly suited when solving optimization

problems characterized by the presence of several contrasting objectives [87, 139], while in

our problem formulation there are “only” three objectives to optimize. The best search-

based algorithm identified in the context of RQ0 will be used in the evaluations conducted

to answer the other four RQs.

5.3.3 Context Selection

The list of the 27 apps considered in our study is reported in Table 5.1; links to the Google

Play/F-Droid websites are reported with our replication package[164]. It is worth noting

that, while all 27 apps have been used in the context of RQ0, RQ1, and RQ2, only five

apps were used for RQ3 since this RQ required to modify the original color compositions
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used by the apps and to execute scripts on the apps multiple times (i.e., 30 times) in

order to assess the actual energy saving ensured by the color compositions generated by

GEMMA. In addition, the investigation performed in the software companies (i.e., RQ4)

is clearly limited to the set of five apps they developed and provided to us for the study.

In our study we targeted a diverse set of apps in terms of domain categories and types.

For instance, our dataset includes open source, commercial, and free apps, but also apps

developed by Google (e.g., Google Play Music and Notes). Two of the authors inspected

Google Play and F-Droid to randomly select a set of native apps (i.e., non-HTML based)

to use in the context of our study. The selected set of apps cover ten categories (e.g.,

productivity, weather, etc.) that are listed in Table 5.1.

In the context of RQ2, we involved 104 app users asking for their opinion about the

look and feel of the GUIs generated by GEMMA. Since RQ2 only aims at assessing

how visually attractive the generated color schemes are, the only requirement we had for

participants is to have some basic experience with mobile apps.

For the investigation of real impact on energy consumption of Android apps (RQ3), we

measured the energy consumption of five open source Android apps when executed on a

Samsung Galaxy S4 (the same device we used to extract the power model for GEMMA).

In particular, we measured the current drawn by the battery when executing the the

apps with (i) the original color palette, and (ii) the lowest-energy solution suggested by

GEMMA. For the experiment, we used the following apps: Privacy Friendly Dicer, Learn

Music Notes, Simple Deadlines, Tasks, and WorkTime. The selection criteria for the

apps were the following: (i) considering apps having a diverse set of background colors to

measure the real impact on apps originally with greedy/energy saving GUIs, (ii) different

domain categories, and (iii) open source apps in which we were able to modify the GUI

theme.

As for RQ4, we involved three Italian companies, namely GenialApps [22], Next [35]

and IdeaSoftware [28], that provided us a total of five apps to use in the context of our

study. All the companies have a multi-year experience in mobile app development and
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each of them enlist between ten and 20 developers. As it will be shown later, we performed

semi-structured interviews with people from these companies with the aim of gathering

qualitative feedback about the GUIs generated by GEMMA. In particular, two project

managers (from GenialApps and Next) and one developer (from MediaStudio) participated

in our study.

5.3.4 Data Collection

To answer our RQs we applied GEMMA on the 27 apps in order to generate color schemas

for GUIs. As explained in Section 5.1, GEMMA is able to work on multiple GUIs of the

same app. Note that, in order to answer RQ0, we executed GEMMA using NSGA-II,

PAES, and SPEA2 as the underlying methods for multi-objective optimization. Since

each of the 27 apps includes a specific number of different GUIs (or GUI states), for the

sake of consistency in our data analysis we decided to consider three GUIs per app as the

objective of GEMMA’s optimization process. In particular, we always consider the main

GUI of the app (i.e., the one visualized when the app is launched on the device) plus two

randomly selected GUI states.

We used the following settings for GEMMA:

1) Extracting Color Composition from GUIs (Section 5.1.2): k = 3, to extract three

different colors from each GUI component: background, text (or second main color), and

the third color for the border. As for the contrast ratio r, we found 1.6 to be a common

lower bound for the contrast between colors in the borders and the background as well as

the background and the text in the Android apps considered in our study.

2) GA parameters (Section 5.1.3): pcross = 0.9; pmut = 1/|BOCP |, where |BOCP | is

the number of bags of pixels identified in a GUI. Such parameters were the default ones

in jMetal [94]; we at least checked whether a lower crossover rate or higher mutation did

not produce better results than ours. The other choices were population size=50 and GA

number of evaluations=50,000 (larger populations and higher number of evaluations did

not produce better results). Finally, we set the minimum contrast ratio between adjacent
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components (CnTh) to 4, as we found this value to be sufficient to ensure readability of

a text over a background.

For each app we run GEMMA 30 times to account for the randomness of the multi-

objective GAs [63]. At each run we stored for each solution in the Pareto front respecting

the contrast ratio constraint (see Section 5.1) as well as for the original color schema of

the app: (i) its energy consumption (ECF function), (ii) its contrast ratio (CF function),

and (iii) its “distance” from the original design (DF function)—see Section 5.1.

To answer RQ2 we designed an online survey, aiming at collecting the participants’

opinions about the aspect of the GUIs generated by GEMMA. We wanted to verify if the

energy saving GUIs generated by GEMMA are also attractive in terms of colorfulness.

The first part of our survey included three questions aimed at gathering information about

the background of the study’s participants:

1. What is your current position? bachelor student, master student, PhD student,

developer, tester, graphic designer, other;

2. How frequently do you use mobile apps? never, occasionally (once a day), frequently

(several times per day);

3. Is the color composition of the GUI important for you in the overall judgment/rating

of a mobile app? 1=not important at all, 2=slightly important, 3=important,

4=very important.

The second part of the questionnaire asked participants for their feedback about the

colorfulness of the original apps’ GUIs as well as of those recommended by GEMMA.

Since GEMMA provides a set of solutions (i.e., all those in the Pareto front respecting

the contrast ratio constraint) as output and that we run GEMMA 30 times on each app,

we needed to make a selection of the recommended GUIs to be shown to the survey’s

participants. For each of the 27 apps involved, we showed to participants: (i) the original

three selected GUIs; (ii) the GEMMA’s solution having the lowest energy consumption
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across those generated in the 30 executions; and (iii) the GEMMA’s solution having the

median energy consumption across those generated in the 30 executions. Thus, for each

app A, participants examined, in a single page of the survey, three sets of GUIs, each

one containing a different color schema for the three GUIs selected for A. For each of

them, participants had to answer the following questions from the colorfulness evaluation

as suggested by Moshagen and Thielsch [196]:

1. Is the color composition visually attractive?

2. Do the colors match?

3. Is the choice of colors botched?

4. Are the colors appealing?

The possible answers for each question were presented with a four-point Likert scale:

1=absolutely not, 2=more no than yes, 3=more yes than no, 4=absolutely yes [196].

Each participant evaluated the colorfulness of five apps in order to reduce the participants’

workload. Specifically, we created six groups of apps and we assigned round-robin each

participant to a specific group aiming at balancing the number of evaluations for each

app. Given the 104 participants in our study, each app has been evaluated by at least 12

participants. All GUIs for the same app were shown in the same page to allow an easy

comparison between the different GUIs by participants. The order in which the apps were

evaluated by the participants was randomized as well. None of the participants was aware

of the experimental goals nor which of the GUIs in each page was the original one. It

is worth noting that the Moshagen and Thielsch framework [196] includes several facets

of visual aesthetics (i.e., simplicity, diversity, colorfulness, and craftsmanship), however,

our evaluation focused on the “colorfulness” facet because GEMMA generates solutions

for the color compositions without modifying number, layout, locations, or dimensions of

GUI the components.
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Algorithm 5: Procedure for collecting energy measurements from real executions
of Android apps.

Input: app, Script
Output: C,P

1 begin
2 C = ∅, P = ∅;
3 for exec← 1 to 30 do
4 install(app);
5 foreach step ∈ Script do
6 exec(step);
7 waitForIdle();
8 startEnergySampling();
9 waitSeconds(20);

10 stopEnergySampling();
11 C〈exec,step〉 = getAvgCurrentFromSample();

12 P〈exec,step〉 = getAvgPowerFromSample();

13 uninstall(app);

To collect the energy measurements required for RQ3 we followed a procedure similar

to the one described by Linares-Vásquez et al. [165]. One of the authors collected execution

scripts on the original versions of five apps using the getevent command in the Android

OS and a Samsung Galaxy S4. The brightness of the display in the device was set to the

maximum value, to avoid impact of automatic settings that adjust the brightness after

certain time. Each script was intended to exercise as many features as possible in the app

under analysis. The scripts were used to replay the collected scenarios automatically in

the apps, therefore, the measurements have not been biased or impacted by human-based

reproduction issues. We recorded the scripts mostly focused on exercising the components

in the 3 screens analyzed in GEMMA and real usage scenarios. On average the scripts

have 31 steps: this is 32 steps for Simple Deadlines, Privacy Friendly Dicer, Tasks: Astrid

To-Do List; 33 steps for Tasks; and 29 steps for Learn Music Notes. For the energy

collection, the Samsung Galaxy S4 was wired to a Monsoon power monitor to measure

the current drawn by the phone during the scenario reproduction.

The procedure for collecting energy measurements on a given app is described in
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Algorithm 5. Each script was executed on each app 30 times. The energy measurements

were collected (i) after each step was performed and, and (ii) after the device was in

the idle mode (Algorithm 5, lines 6 and 7). It is worth noting that our purpose is to

measure the energy consumed by the screen when displaying the color compositions in

the GUI; therefore, we do not collect energy measurements during the step execution or

meanwhile the device is executing the action related to the step. The energy measurements

were collected during a sampling period of 20 seconds (Algorithm 5, lines 8 - 10), which

accounts for an average of 99,000 values given the sampling frequency of the power monitor

(i.e., 5KHz). The power monitor provided us with average Current (mili Amperes) and

average Power (mili Watts) for each sampling period Algorithm 5, lines 11 and 12) 5. For a

given app, we collected average current C〈exec,step〉 and power measurements P〈exec,step〉 for

each execution step and for each of the 30 executions. Note also, that each execution was

a cold-start [171], i.e., we installed/uninstalled the app to avoid issues with application

data.

To address RQ4 we conducted semi-structured interviews with the project managers

of the three involved companies. The interviews lasted for two hours with each company.

Given that we had sufficient time available and only a few apps for each interview, for each

app we showed the whole set of solutions provided by GEMMA in a single run, i.e., the

run among the 30 we executed that provided the largest set of solutions. This choice was

made in order to have a larger set of alternative designs to discuss with the companies. We

accompanied each of the shown solutions with information about its energy consumption

and potential saving with respect to the original design.

During the interview, for each solution we asked the participant to answer the following

question: “Given the energy saving provided by this design with respect to the original

design, would you adopt it in your app?”, using a score on a four-point Likert scale:

1=absolutely no, 2=no, 3=yes, 4=absolutely yes. In addition, we also asked questions to

5We did not collect voltage measurements because the voltage output from the power monitor is con-
stant. We used a voltage output of 3.8 volts, which is the one required by the battery in the Samsung
Galaxy S4.

136



understand the principal reasons why the participants liked (or did not like) the suggested

colors and which are the components for which the participants noticed a poor choice

of colors. The interviews were conducted by one of the authors, who annotated the

provided answers as well as additional insights about the GEMMA’s points of strength

and weakness that emerged during the interviews.

5.3.5 Data Analysis

To answer RQ0 we show boxplots of the hypervolume [64] for the pareto-fronts generated

by the three algorithms. Also, we report boxplots of the energy consumption, the contrast

ratio, and the distance from the original design (measured as reported in Section 5.1)

obtained by running GEMMA using the three experimented search-based algorithms

(i.e., NSGA-II, PAES, and SPEA2). GEMMA has been run 30 times on each app with

each of the three algorithms. We compare the solutions generated by the three algorithms

for six categories of solutions: having the lowest and the median energy consumption,

having the highest and the median contrast ratio, and having the lowest and the median

distance from the original design (i.e., six solutions for each run).

We statistically compare the energy consumption, the contrast ratio, and the distance

from the original design of the solutions generated by the three algorithms by using the

Wilcoxon test [84]. The results are considered statistically significant at α = 0.05. Since

we perform multiple tests (e.g., the solutions generated by NSGA-II are compared with

both those generated by PAES and by SPEA2), we adjust our p-values using the Holm’s

correction procedure [131]. This procedure sorts the p-values resulting from n tests in

ascending order, multiplying the smallest by n, the next by n − 1, and so on. We also

estimate the magnitude of the observed differences by using the Cliff’s Delta (or d), a

non-parametric effect size measure for ordinal data [117]. Cliff’s d is considered negligible

for d < 0.148 (positive as well as negative values), small for 0.148 ≤ d < 0.33, medium for

0.33 ≤ d < 0.474, and large for d ≥ 0.474 [117]. The same statistical comparison is also

performed for the hypervolume of the pareto-fronts generated by the three algorithms.
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To answer RQ1 we show boxplots of the energy consumption, the contrast ratio, and

the distance from the original design (measured as reported in Section 5.1) obtained by

running GEMMA 30 times on each app. Note that in RQ1 we only consider the solutions

generated by the most suitable search-based algorithm selected as a result of RQ0. We

perform the comparison by considering the same categories of solutions previously men-

tioned (i.e., having the lowest and the median energy consumption, having the highest

and the median contrast ratio, and having the lowest and the median distance from the

original design). We statistically compare the energy consumption and the contrast ratio

of the generated solutions with those of the original design of the considered apps by using

the same procedure described for RQ0 (i.e., Wilcoxon test, Holm’s correction procedure,

and Cliff’s Delta).

For what concerns RQ2, we must firstly note that our goal is not to determine whether

GUIs recommended by GEMMA are considered more attractive than the original GUIs,

but, rather, whether they are acceptable enough, and to know what is the “price to pay”

in terms of visual aesthetics for the energy saving solutions provided by GEMMA. To

this aim, we report boxplots of the ratings assigned by participants to the colorfulness of

the different categories of GUIs. Also, we statistically compare the ratings assigned to

the original GUIs of the 27 apps to those assigned to generated solutions with lowest and

median energy consumption by performing the same statistical analysis used in RQ1.

In the context of RQ3, we use descriptive statistics to compare the real energy mea-

surements of original (a0) and low-energy consumption color compositions (agemma) of an

app a. Because we collected energy measurements (i.e., current intensity and power) over

30 executions of a given app version, we analyze the results by aggregating the C〈step〉 and

P〈step〉 series, using the average, min, and max. In that sense for the current we derived

three series C̄〈step〉, C ↑〈step〉, C ↓〈step〉, representing average, max, and min values; for

the power we also derived the series P̄〈step〉, P ↑〈step〉, and P ↓〈step〉. We use descriptive

statistics to compare the energy measurements of original (a0) and low-energy consump-

tion color compositions (agemma) of an app a. In addition, we statistically compare the
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Table 5.2: Hypervolume: Wilcoxon test (adjusted p-values) and Cliff’s delta (d).

Test adj. p-value d
NSGA-II vs PAES <0.01 0.15 (Small)
NSGA-II vs SPEA2 <0.01 -0.12 (Negligible)
PAES vs SPEA2 <0.01 -0.25 (Small)

energy measurements using the same procedure in RQ1 (Wilcoxon test with α = 0.05 and

Cliff’s d), but without the Holm’s correction because in RQ3 we do not perform multiple

comparisons. In order to have a practical implication of the results achieved, we compute

the percentage of the battery charge consumed by an app version consuming a certain

amount of Joules during the experiments. To this, given a P̄〈step〉 series, first we compute

the total energy in Joules. To compute the energy in Joules, for each value P̄〈step〉 we

derived Ē〈step〉 using Eq. 5.13:

Ē〈step〉 = ρ

(
P̄〈step〉mW ·

1KW

106mW
·∆tsecs · 1hour

3600secs

)
(5.13)

with ρ = 3.6 · 106 the conversion constant from KW · hour to Joule, and ∆t the duration

of the sampling period for step (i.e., 20 secs). Finally, given a series Ē〈step〉, we compute

the percentage of the total battery charge consumed on average by each step B̄〈step〉 [165]:

B̄〈step〉 = Ē〈step〉J ·
1h

3600secs
· 1

3.8V
· 1000A

2600mAh
· 100 (5.14)

In our context, the Galaxy S4 is equipped with a 2,600 mAh, 3.8V battery. Thus, an

energy consumption of 0.01 J will consume 2.81 · 10−5% of the total battery charge.

Finally, for RQ4 we qualitatively discuss the outcomes of the semi-structured inter-

views.

5.4 Study Results

This section reports the analysis of the results for the three research questions formulated

in Section 5.3.1.
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Figure 5.11: Hypervolume for the three algorithms.

5.4.1 RQ0: Which multi-objective optimization approach is suitable for

GEMMA?

Figure 5.11 shows the boxplots of the hypervolume obtained by the three experimented

algorithms (i.e., NSGA-II, PAES, and SPEA2) when running each of them 30 times on

the 27 subject apps. PAES is the algorithm obtaining the highest hypervolume (mean=,

median=), followed by NSGA-II (mean=, median=) and SPEA2 (mean=, median=).

Table 5.2 reports the results of the Wicoxon test (adjusted p-values) and the Cliff’s d effect

size when comparing the distributions of hypervolume generated by the three algorithms.

The algorithm achieving the highest hypervolume is highlighted in bold for each test.

From the results in Table 5.2 it is clear that (i) PAES is able to achieve a significantly

higher hypervolume with respect to the other two algorithms (i.e., p-value < 0.05), and

(ii) the effect size is small or negligible, thus highlighting marginal differences in the

hypervolume obtained by the three algorithms.

To have a more fine-grained comparison of the ability of the three algorithms in opti-

mizing the three objectives defined in Section 5.1.3, Figure 5.12 reports the distributions

of ECF—Figure 5.12-(a)—, CF—Figure 5.12-(b)—and DF—Figure 5.12-(c)—for the solu-
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Figure 5.12: Boxplots of ECF, CF, and DF for different solutions generated by the three
algorithms.

tions in the Pareto front obtained at each GEMMA’s run having the: lowest ECF, median

ECF, highest CF, median CF, lowest DF, and median DF. Results are shown for all three

algorithms. Note that Figure 5.12 does also show the ECF and CF of the original apps’

design, that will be discussed in the context of RQ1. In addition, Tables 5.3, 5.4, and

5.5 reports the results of the Wicoxon test and the Cliff’s d effect size when comparing

the ECF, CF, and DF, respectively, of the solutions generated by NSGA-II, PAES, and

SPEA2. Again, the algorithms generating the best value for a fitness function (i.e., the

lowest value for ECF, the highest for CF, and the lowest for DF) is highlighted in bold for
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Table 5.3: ECF: Wilcoxon test (adjusted p-values) and Cliff’s delta (d).

Test adj. p-value d
lowest ECF

NSGA-II vs PAES <0.01 -0.36 (Medium)
NSGA-II vs SPEA2 <0.01 -0.12 (Negligible)
PAES vs SPEA2 <0.01 0.23 (Small)

median ECF
NSGA-II vs PAES <0.01 -0.56 (Large)
NSGA-II vs SPEA2 <0.01 -0.21 (Small)
PAES vs SPEA2 <0.01 0.35 (Medium)

Table 5.4: CF: Wilcoxon test (adjusted p-values) and Cliff’s delta (d).

Test adj. p-value d
highest CF

NSGA-II vs PAES <0.01 -0.25 (Small)
NSGA-II vs SPEA2 0.62 -0.016 (Negligible)
PAES vs SPEA2 <0.01 0.25 (Small)

median CF
NSGA-II vs PAES <0.01 -0.22 (Small)
NSGA-II vs SPEA2 0.62 0.016 (Negligible)
PAES vs SPEA2 <0.01 0.24 (Small)

each test. From the analysis of the boxplots and of the results achieved in the statistical

tests, we can observe that:

1. PAES is the best algorithm in optimizing the ECF function (i.e., is the one generating

solutions having the lowest the energy consumption). The difference with respect to

the solutions generated by the other two algorithms is statistically significant with

a medium or large effect size, depending on the specific solutions object of the

comparison (see Table 5.3). NSGA-II ranks second in terms of ECF values, while

the worse algorithm from this perspective is SPEA2.

2. PAES is the worst algorithm in optimizing the CF function (i.e., is the one generat-

Table 5.5: DF: Wilcoxon test (adjusted p-values) and Cliff’s delta (d).

Test adj. p-value d
lowest DF

NSGA-II vs PAES <0.01 0.82 (Large)
NSGA-II vs SPEA2 <0.01 0.53 (Large)
PAES vs SPEA2 <0.01 -0.66 (Large)

median DF
NSGA-II vs PAES <0.01 0.54 (Large)
NSGA-II vs SPEA2 <0.01 0.15 (Small)
PAES vs SPEA2 <0.01 -0.40 (Medium)
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ing solutions having the lowest contrast). NSGA-II and SPEA2 are comparable for

what concerns the contrast of the generated solutions, with no significant difference

between them (see Table 5.4). Instead, both NSGA-II and SPEA2 generate solutions

having a contrast significantly higher than the contrast of the solutions generated

by PAES. The effect size is small for all solutions but for lowest DF, for which is

negligible.

3. NSGA-II is the best algorithm in optimizing the DF function (i.e., is the one gen-

erating solutions closer to the original design). PAES is again the worse algorithm

in this case. The difference is statistically significant for all solutions but for highest

CF, and the effect size is generally large (see Table 5.5).

Thus, while PAES is able to achieve the best results in terms of energy consumption

(ECF), it also achieves the worst results when it comes to optimize the contrast (CF)

and the distance from the original design (DF) of the generated solutions. NSGA-II,

while being the second choice for what concerns ECF, is the best performing algorithm

in the optimization of CF and DF. Also, while the comparison of the solutions generated

by GEMMA and the original design is detailed in RQ1, Figure 5.12-(a) clearly shows

the substantial reduction of energy consumption ensured by the NSGA-II solutions with

respect to the original design. Since our goal is to reduce energy consumption while

generating pleasant design solutions close to the original designs, we opted for using NSGA-

II as the search-based optimization algorithm in GEMMA. This is the algorithm that we

used to generate the results for our next research questions.

5.4.2 RQ1: To what extent is GEMMA able to optimize the GUI energy

consumption, contrast, and design objectives?

We base our results discussion for this research question on the boxplots in Figure 5.12,

by only comparing the distribution of values for the three fitness functions described in
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Table 5.6: ECF and CF: Wilcoxon test (adjusted p-values) and Cliff’s delta (d).

Test adj. p-value d
ECF

original design vs lowest ECF <0.01 -0.87 (Large)
original design vs median ECF <0.01 -0.53 (Large)
original design vs highest CF <0.01 -0.37 (Medium)
original design vs median CF <0.01 -0.52 (Large)
original design vs lowest DF <0.01 -0.35 (Medium)
original design vs median DF <0.01 -0.56 (Large)

CF
original design vs lowest ECF <0.01 0.09 (Negligible)
original design vs median ECF <0.01 0.24 (Small)
original design vs highest CF <0.01 0.44 (Medium)
original design vs median CF <0.01 0.24 (Small)
original design vs lowest DF <0.01 0.11 (Negligible)
original design vs median DF <0.01 0.22 (Small)

Section 5.1.3 exhibited by the original design6 and by solutions in the Pareto front obtained

at each GEMMA’s run when using NSGA-II. Again, we focus on solutions having the:

lowest ECF, median ECF, highest CF, median CF, lowest DF, and median DF at each

run. In addition, Table 5.6 reports the results of the Wicoxon test (adjusted p-values)

and the Cliff’s d effect size. We compared the values for the ECF (energy consumption)

and CF (contrast ratio) fitness functions between the original designs and the different

categories of solutions considered in this research questions. The design achieving the best

value for a fitness function (i.e., the lowest value for ECF or the highest value for CF) is

highlighted in bold for each test.

Figure 5.12-(a) highlights that the design solutions generated by GEMMA have a lower

energy consumption as compared to the original design. In particular, picking on each

Pareto front the solution having the lowest value for ECF ensures a mean energy saving of

79% (median 92%). In other words, the most energy efficient colour schemas recommended

by GEMMA consume, on average, one fifth of the original color design. Interestingly

enough, the other categories of solutions proposed by GEMMA and considered in this

research question offer a substantial energy savings as compared to the original design.

For instance, the solution ensuring the highest contrast level between the GUI components

(Highest CF in Figure 5.12) offers a mean energy saving of 32% (median 56%) with respect

6For the original design there is no value for the DF, since this fitness function reflects the distance of
the color schema of a solution from the original design.
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Original Lowest Energy Median Energy Median Contrast Median Distance

Figure 5.13: Original design vs GEMMA’s solutions for the Tasks app.

Original Lowest Energy Median Energy Median Contrast Median Distance

Figure 5.14: Original design vs GEMMA’s solutions for the Play Music app.

to the original design. The statistical comparison in terms of energy consumption (ECF)

between the original design and the solutions proposed by GEMMA (top part of Table 5.6)

always highlight a statistically significant difference in favor of the GEMMA’s solution

accompanied by a large effect size for all categories of solutions but the one ensuring the

highest contrast level and the lowest distance from the original design (medium effect size).

The results in Figure 5.12-(b) highlight that, besides ensuring a lower energy con-

sumption, the color schemas recommended by GEMMA also help in improving the con-

trast ratio between the GUI’s components (i.e., higher values for the CF function). The

GEMMA’s solutions providing the best contrast ratio are able to obtain a mean improve-

ment of the contrast of 51% (median 37%). It is surprising to see how GEMMA’s solutions
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Original Lowest Energy Median Energy Median Contrast Median Distance

Figure 5.15: Original design vs GEMMA’s solutions for the Keep app.

having the lowest energy consumption are able to obtain a contrast in line with that of

the original design (mean +11%, no difference in terms of median). While this result does

not ensure the pleasantness of the color schemas generated by GEMMA (this aspect is

investigated in RQ2 and RQ4), at least it should ensure the readability of the generated

GUIs (i.e., high contrast between the GUIs components). The results of the statistical

test (bottom part of Table 5.6) show that the contrast ratio ensured by the GEMMA’

color schemas is significantly higher with respect to the original ones. The effect size

ranges between negligible (for the solutions ensuring the lowest ECF and DF values) and

medium (for the solutions having the highest CF). While the negligible effect size achieved

for solutions in the lowest ECF group might seem like a negative result, it is worth noting

that such color schemas are able to achieve a mean reduction of energy consumption of

79%, while also being able to improve its contrast ratio (even with a negligible effect size).

Examples of the solutions generated by GEMMA for three of the subject apps in

our study are shown in Figures 5.14 to 5.13 7. For instance, the proposed lowest energy

consumption solution for Tasks (Figure 5.13) offers energy consumption savings of up to

53% as well as an increase in terms of contrast ratio by 31%.

Finally, by looking at Figure 5.12-(c), it is interesting to understand what happens

to the DF fitness function. Remember that this function equals zero when the evaluated

7More examples for the analyzed apps are in our online appendix
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solution (i.e., color schema) exactly matches the original design. In all categories of

solutions we selected and reported for NSGA-II, there are solutions having zero as value

for DF (as visible by the lower whisker of the boxplots “touching” the zero value). This

indicates that DF function in GEMMA lets the GA search for solutions that very close

to the original design.

5.4.3 RQ2: Are the color compositions generated by GEMMA visually

attractive as perceived by Android users?

The sample of 104 survey participants is distributed (in terms of current position) as in the

following: 51 Bachelors, 17 PhDs, 15 industrial developers, 12 Masters, 3 product/project

manages, 1 business analysis, 1 executive director, 1 professional graphical designer, 1

pediatrician, 1 high school student, and 1 participant that reported herself as a“final

user”. 66 participants are from European countries, and 38 from the Americas (North,

Center, and South). In addition, 86 participants (82.69%) reported they use mobile apps

frequently (i.e., several times per day), and 18 participants reported to occasionally use

mobile apps (i.e., once a day). Concerning the importance of color compositions of the

GUI in the overall judgment/rating of a mobile app, 29 participants (27.89%) reported

it is “very important”, 57 (54.81%) answered it is “important”, and only 19 participants

(18.27%) think it is “slightly important”. Previous studies have analyzed the impact

of complex GUIs in the apps ratings [223, 226], however no study has explored yet the

impact of colors compositions on ratings. Note that our study is not about impact of

color compositions on ratings, however, we asked our participants about the importance

of color compositions to assure they care about colors compositions and provided useful

answers. None of the participants answered “not important at all”, therefore we kept all

the responses as useful for our study.

Boxplots in Figure 5.16 show the distribution of answers for the visual aesthetics-

related questions from the 104 participants. The boxplots summarize the answers regard-

ing the original design, lowest ECF, and median ECF solutions of the 27 considered apps.
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In addition, Table 5.7 reports the results of the Wicoxon test (adjusted p-values) and the

Cliff’s d effect size. Figure 5.16 highlights that the solutions generated by GEMMA have

a “cost” in terms of visual aesthetics as perceived by end users. Answers from the par-

ticipants to the colorfulness factor—described by the four questions presented in Sec-

tion 5.3.4—show a low evaluation for the solutions with the lowest ECF (i.e., the one

saving the maximum amount of energy). Although end users do not totally dislike the

lowest ECF solutions, the difference with the original design is statistically significant with

a large/medium effect size. By looking at the comments left by participants and justifying

their low ratings for the solution having the lowest ECF, it appears clear that most of

them simply do not like GUIs having dark colors as main base: “Black backgrounds can

look very good but not when there is a lot of text”; “I prefer other colors than black for the

mobile applications”.

Instead, participants found the median ECF solutions more visually appealing than the

lowest ECF ones. The differences reported between the original designs and the median

ECF solutions are small for the investigated colorfulness factors. Indeed, Figure 5.16

highlights how the median and average answers for the four questions are “close” when

comparing the original designs with the median ECF solutions. This is also confirmed

by the statistical analysis reported in Table 5.7: while there is a significant difference in

the participants’ ratings in favour of the apps’ original design when comparing it with

the median ECF solutions, such a difference only results in a small effect size. Remember

that, as shown in the context of RQ1, solutions having a median ECF are still able to

achieve a substantial energy savings with respect to the original design (42%, on average).

This illustrates GEMMA’s ability to balance multiple objectives, i.e., generating energy-

saving GUIs that use colors close to the original composition and being accepted by end

users.

RQ3: Do the low energy-consumption color compositions generated by GEMMA have

a tangible impact on the energy consumption of Android apps? Figure 5.17 and

Figure 5.18 depict the average current intensities (i.e., C̄〈step〉), and battery consumption

148



●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

OD LE ME

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(a)
Is

 th
e 

co
lo

r 
co

m
po

si
tio

n 
vi

su
al

ly
 a

tr
ac

tiv
e?

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

OD LE ME

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(b)

D
o 

th
e 

co
lo

rs
 m

at
ch

?

OD LE ME

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(c)

Is
 th

e 
ch

oi
ce

 o
f c

ol
or

s 
bo

tc
he

d?

●●●●●●●●●●●●●●●●●●●●●●●●●●

OD LE ME

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(d)

A
re

 th
e 

co
lo

rs
 a

pp
ea

lin
g?

Figure 5.16: RQ2: Boxplots of answers provided by participants. OD=Original Design,
LE=Lowest ECF, ME=Median ECF.

Table 5.7: RQ2: Wilcoxon test (p-value) and Cliff’s delta (d).

Test adj. p-value d

Is the color composition visually attractive?

original design vs lowest ECF <0.01 -0.66 (Large)
original design vs median ECF <0.01 -0.12 (Small)

Do the colors match?

original design vs lowest ECF <0.01 -0.65 (Large)
original design vs median ECF <0.01 -0.16 (Small)

Is the choice of colors botched?

original design vs lowest ECF <0.01 0.33 (Small)
original design vs median ECF <0.01 0.10 (Small)

Are the colors appealing?

original design vs lowest ECF <0.01 -0.55 (Large)
original design vs median ECF <0.01 -0.12 (Small)

(i.e., B̄〈step〉) collected for the two versions (original, and lowest energy GUI consumption)

of the five analyzed apps. It is worth nothing that the values of series for current, power,

energy, and battery consumption have the same trend; the differences in the series are

a dimensions change with a scalar multiplication over the original series (i.e., current).

Therefore, there is no need to plot all the series, however, we plot the average battery

consumption to give the reader values that are more natural (compared to mA or mW)

and easier to be understood. In addition, we computed the time (in hours) required to

drain (tdrain)the battery of the GS4 when replaying the execution scenarios continuously,

on the original version of the apps and the lowest energy GUI consumption provided by
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(b) Learn Music Notes
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(c) Simple Deadlines
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(d) Tasks
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(e) Tasks: Astrid To-Do List

Figure 5.17: Current (mA) drawn by the analyzed apps. Each plot depicts the range
(i.e., min to max) of the average current for each step across the 30 executions for (i)
original app (in red), and (ii) modified version with GEMMA GUI composition for low
energy-consumption (in cyan). The circles depict the averages in each range.

GEMMA; to this we computed the time-to-drain-battery similarly to [216, 215]:

tdrain =
100∑

step∈Script
B̄〈step〉

× duration(secs)× 1hour

3600secs
(5.15)

It is worth noting that duration is the total time in seconds of the sampling period

during the execution of a Script; Equation 5.15 computes tdrain based on the total per-

centage of battery consumption, i.e.,, the sum of the battery consumption over all the

steps in an execution Script, therefore, the 100 figure in the numerator of equation 5.15

is to account for the percentage values in the denominator.

The results are listed in Table 5.9, and for the five analyzed apps, when using the lowest

ECF solution, there is a clear improvement in terms of the time required to drain the

battery, i.e., the GEMMA solution improved the battery life.

Note that there are some cases shown in the plots in which there is no significant
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(a) Permissions Friendly Dicer (b) Learn Music Notes (c) Simple Deadlines

(d) Tasks (e) Tasks: Astrid To-Do List
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Figure 5.18: Percentage of battery consumed by the analyzed apps. Each plot depicts
the average consumption per each step across the 30 executions for (i) original app (in red),
and (ii) modified version with GEMMA GUI composition for low energy-consumption (in
cyan).

improvement: (i) step 13 for the Learn Music Notes app Figure 5.17-(b); (ii) steps 23

and 25 for the Simple Deadlines app—Figure 5.17-(c); and steps 16 and 30 for the Tasks:

Astrid To-Do List app—Figure 5.17-(e). In the case of step 13 of Learn Music Notes, the

percentage of consumed energy is also in favor of the original design; the reason for this

surprising result is that step 13 started a large black-background dialog that is displayed

over the main GUI; therefore, the changes to the GUI do not have a big impact (in terms

of energy consumption) after step 13, because the black dialog is painted on most of the

screen. The case of the Simple Deadlines app is illustrated in Figure 5.19; the steps

included displaying a drawer GUI component (with white background) which occupies

a large portion of the screen. The screens collected by GEMMA during the analysis of

Simple Deadlines did not include the drawer, therefore, the color compositions proposed

by GEMMA did not consider the drawer. The case of Tasks: Astrid To-Do List is similar

to Simple Deadlines; steps 16 and 30 display a modal dialog with white background that
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Table 5.8: RQ3: Wilcoxon test (p-value) and Cliff’s delta (d) for pairwise comparisons
of energy measurements (current in mA): original design vs lowest ECF

App p-value Cliff’s d

Privacy Friendly Dicer <0.01 0.97 (Large)
Learn Music Notes <0.01 0.99 (Large)
Simple Deadlines <0.01 0.96 (Large)
Tasks <0.01 0.96 (Large)
Tasks: Astrid To-Do List <0.01 0.92 (Large)

Table 5.9: Battery life (in hours) when using the original version of a mobile ap-
plication, and app modified with the GEMMA solution with the lowest energy con-
sumption (lowest ECF). The column Diff. lists the relative difference in percentage, i.e.,
lowestECF−original

original .

Application Original Design Lowest ECF Diff.

Privacy Friendly Dicer 6.707608 12.53452 86.87%
Learn Music Notes 8.093131 11.41668 41.07%
Simple Deadlines 6.201243 8.570963 38.21%
Tasks 6.145774 9.009598 46.60%
Tasks: Astrid To-Do List 6.182163 9.052713 46.43%

was not analyzed by GEMMA (Figure 5.20).

In summary, there is a substantial difference between the energy measurements (i.e.,

current and battery consumption) of the original design and the color composition recom-

mended by GEMMA. The strong difference is confirmed by the Wilcoxon test and the

Cliff’s delta effect size (listed in Table 5.8). The energy savings with GEMMA’s GUIs is

statistically significant with a large effect size for all five apps analyzed in our study.

5.4.4 RQ4: Would actual developers of mobile applications consider

changing colors in an app as recommended by GEMMA?

In the following, we report the results of the interviews we conducted with project man-

agers of three Italian companies aiming at analyzing the practical applicability of GEMMA in

a real development context. As explained in Section 5.3.4, we asked the participants to an-

swer the following question: “Given the energy saving provided by this design with respect
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(a) Original GUI (b) GEMMA

Figure 5.19: Example of GUI without significant improvement in the energy consumption
for the Simple Deadlines app.

to the original design, would you adopt it in your app?”, using a score on a four-point

Likert scale: 1=absolutely no, 2=no, 3=yes, 4=absolutely yes.

Next. The first person we interviewed was Nicola Noviello, the project manager of

Next. Such a company provided us with two apps, namely Bollate [10] and Petrella [38].

The two apps are from the category “Places and travels”, and provide tourist with in-

formation on two Italian towns. Before starting the interview, Nicola confirmed that

GEMMA might have a high practical applicability even if it would be important to assess

which percentage of the overall app energy consumption is actually amenable to its GUI,

and thus could be optimized by GEMMA. This is something we plan to explore more in

the future. As for the evaluation of the solutions provided by GEMMA for the Bollate

app, we showed to Nicola eleven design alternatives, asking him if he would adopt them

in his app. None of them was considered acceptable (answer “absolutely not”) despite the

average energy saving around 85%. The reason why Nicola discarded such alternatives is

represented by the color of the background. All the alternatives provided by GEMMA had

a black background. In the context of Nicola’s experience, “it is hard to make attractive

an interface with a black background”. Specifically, Nicola claimed that he uses a black

background only if it is explicitly required by the customer. Otherwise, he designs apps

with more vivid colors even if he recognized that this could negatively impact the energy

consumption of the app. This suggests an interesting future direction to explore, i.e.,
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(a) Original GUI (b) GEMMA

Figure 5.20: Example of GUI without significant improvement in the energy consumption
for the Tasks: Astrid To-Do List app.

usage of interactive GAs, where the developer can be integrated in the evolutionary loop

and set personalized constraints (e.g., do not use this color for this component) during the

generation of solutions. The results were different for the Petrella app. Among the five

different alternatives, Nicola considered three as good alternatives to the original design,

claiming that he would consider their adoption (answer “yes”). It is worth noting that

the solution considered the best by Nicola is also the one that provides the highest energy

savings (71%). For this app, Nicola particularly appreciated the recommended solutions

due to their high similarity with the original design. This characteristic allows obtaining

154



Original Design GEMMA's lowest ECF solution

Figure 5.21: IdeaSoftware app: Original design vs GEMMA’s solution (excerpts).

substantial energy savings just by performing small adjustments to the original GUI. In

addition, Nicola claimed that “even if the colors of these alternatives are less vivid than the

original design, I believe that the proposed combinations—with some smalls adjustments—

will make the app attractive”.

Genialapps. The second person we interviewed was Giuseppe Socci, the project

manager of Genialapps. The app that they provided was Sing Happy Birthday Songs

(HBS) [45], which has around 2,000 ratings on the Google Play market and a number of

installations between 100K and 500K. The app is from the category “Music and Songs”

and it can be used to send happy birthday wishes with a personalized phone call. Giuseppe

was particularly interested in GEMMA. He claimed that such an approach might have an

high industrial impact. We provided him with a set of 46 different alternatives. Among

them, 29 were discarded as not adoptable as alternative to the original design (answer

“absolutely not”). The reason why Giuseppe did not like those alternatives is that “the

colors are too dull and in a joyful app, like HBS, colors must be vivid”. The other 17

alternatives were considered good ones, with three of them gathering an “absolutely yes”

to the posed question (see Section 5.3.4). One of these three solutions provides an energy

savings of 63%. Such an alternative, again with some small adjustments, was considered by

Giuseppe an excellent solution for his app. During the interview, Giuseppe also pointed out

an important issue that approaches like GEMMA should take into account. GEMMA is

particularly useful “for apps that are used for a rather long period of time (e.g., social

network app). Although it is true that many drops make the ocean, and therefore, in our
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case, many apps not optimized used for a short time still consume a lot of energy, it is

also true that developers are not very likely to change the GUI aiming at saving battery.

The reason is that this non-functional requirement is quite difficult to sell, unless the app

is used for rather long time periods and thus the customer has a tangible evidence of the

energy saved.” This consideration is perfectly inline with our weighted model for power

consumption, in which we give more importance to screens that are used more. As well as

Nicola, Giuseppe is also interested in “the actual impact that the colors of the GUI have

on the overall energy consumption of the app”. He also pointed out that “in the case of

HBS, since it has a lightweight logic (the server is in charge of the application logic) I

suppose that the influence of the GUI is considerable”.

IdeaSoftware. The last person we interviewed was Luciano Cutone, co-founder and

the project manager of IdeaSoftware. The company requested to anonymize both of the

apps that they provided for our study. In the following, we refer to such apps as App1 and

App2. Both apps have thousands of installations on the Google Play market. Luciano was

particularly interested in GEMMA, that he defined as “a tool that should be integrated in

an IDE and used daily”. This confirms the high industrial impact that GEMMA might

have. As for App1, we provided to Luciano a set of 15 different alternatives. Among

them, 8 were not considered acceptable (answer “absolutely not”) by Luciano because “the

combination of colors was not exciting”. The other 7 solutions were instead considered

as good alternative to the original design (answer “absolutely yes”). Luciano particularly

liked one solution that is reported, compared to the original design, in Figure 5.21. Due

to the need for anonymization, we only report a portion of the original and recommended

GUIs. Luciano claimed “I would definitively use this combination of colors in my app. The

final result is excellent and I really like the effect of the GUI with a black background. This

helps in saving battery and makes the app more elegant. I will propose the new combination

of colors for the next release of the app”. Such a consideration highlights different points

of view by Luciano and Nicola about black background emphasizing that the choice of

colors is subjective and, as mentioned before, an interactive version of GEMMA could
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be worthwhile. For the App2, we only provided three different solutions. In addition,

the average energy savings for such solutions is around 10%, due to the already energy

efficient original design. Indeed, as pointed out by Luciano, when designing the GUI the

developers used low bright colors in order to (i) make the app more professional and (ii)

save the battery of the phone since the app was designed to be used continuously during

the day. Such considerations confirmed that the energy consumption is a problem relevant

for industry when the app is used frequently. Nevertheless, among the three solutions,

Luciano classified two of them as good alternatives (answer “yes”).

5.5 Threats to Validity

Threats to construct validity concern the relationship between theory and observation,

and in this work are mainly related to the measurements we performed in our study. One

major threat is that the measures of contrast and pleasant design—i.e., the CF(S) and

DF(S) objectives—which we use in the optimization process and quantitatively compare

with values of the original colors (RQ1) might not represent a proxy of what actually is

perceived by users. RQ2, within its generalizability limitations, is intended to mitigate

such a threat. Another possible threat is related to the fact that we used power models

to estimate energy consumption. So far, such models have been already used in previous

studies and considered reliable enough, and our models are consistent with the ones by

Dong et al. [90, 91] for OLED screens.

Threats to internal validity are related to factors, internal to our study, that can

influence our results. We have used GA settings that are frequently used in the research

literature [88, 94, 99], and calibrated the number of evolutions so that longer evolutions

did not produce better results. Of course, we cannot exclude that a better calibration

would produce better results. Last, but not least, we accounted for GA randomness by

executing GEMMA 30 times [63].

Threats to conclusion validity concern the relationship between experimentation and
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outcome. For RQ1 and RQ2, as described in Section 5.3.5, we have quantitatively as-

sessed our results using appropriate statistical procedures. Instead, RQ3 is exploratory

in nature, intended to collect some preliminary feedback about the practical applicability

of GEMMA in a real development context.

Threats to external validity are related to the generalizability of our findings. We

are aware that our results have to be interpreted carefully because (i) they may depend

on the specific device for which we extracted the color power model; (ii) results of RQ2

may depend on people’s preferences, and other people might have different opinion on the

chosen colors, and (iii) although we applied GEMMA on 25 different apps, we are aware

than GEMMA might produce different results in terms of energy consumption reduction

and colorfulness on a different set of apps.

5.6 Related Work

GEMMA is mostly related to previous work on energy optimization of GUIs in mobile

apps as well as approaches for detecting energy greedy units in such apps. Other ap-

proaches have focused on (i) measuring/estimating energy consumption of Java APIs [126],

(ii) measuring the impact of refactorings on energy consumption of Java apps [214], (iii)

empirical studies with practitioners regarding practices and perspectives for green soft-

ware engineering [182], (iv) optimizing energy consumption of test suites [153, 136], and

(v) infrastructures/frameworks for energy measurement/green mining [127, 130, 183, 129].

However, because GEMMA was developed in the context of Android apps, in this section

we only discuss previous work on energy consumption and optimization of Android apps.

5.6.1 Improving Energy Consumption of GUIs

OLED screens are suitable for optimizing energy consumption of GUIs in apps, because

the power consumed by OLED screens depends on the combination of color levels in the

screen’s sub-pixels. Therefore, power models of OLED screens estimate the energy by
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Table 5.10: Energy Optimization of Android Apps

Approach Opt. problem Color palettes

[91] min energy, s.t. similar
contrast than in original
GUI

1) Predefined themes, 2) Monochromatic
palette, 3) black assigned to most frequent color
in original GUI, then subsets of R,G,B assigned
to the rest of pixels

[154,
235,
157]

min energy, s.t. keep color
distance between neighbor-
ing HTML elements

Background replaced with dark colors, ran-
domly selected colors are assigned to the rest
of pixels

GEMMAmin energy, max contrast,
min distance to original
design, s.t. contrast > 40

Palette contains 512 colors: original + black +
white + equidistant harmonies and monochro-
matic palette)

combining individual consumption of the color sub-pixels [135, 240]. These models are

particularly useful, since they allow researchers to estimate energy consumption without

using expensive power monitors. Thus, power models have been used for energy saving

visualization of sequential data [237], design of energy adaptive displays [135], and design

of color-adaptive browsers [90].

As for mobile apps, representative works are the ones by Dong and Zhong [91] for

Windows mobile apps, Li et al.’s approach [154] for mobile web applications, and Wan

et al.’s work [235] on screenshots of Android apps. The three related approaches and

GEMMA are compared in Table 5.10. While we share the goals of minimizing energy

consumption through properly choosing colors and using color power models with these

approaches, GEMMA introduces novel aspects related to (i) multi-objective optimization,

(ii) considering contribution of different screens based on their usage duration, and (iii)

ensuring a pleasant and consistent choice of colors.

5.6.2 Detecting Energy Bugs in Mobile Apps

Energy bugs and energy hot spots in Android apps—at different granularities—have been

catalogued extensively. For instance, Pathak et al. [204, 207] describe a taxonomy of

energy bugs that depends on the hardware, software, or external conditions. Kwon and

Tilevich [150] focused on cloud offloading energy consumption. Pathak et al. [205] and
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Linares-Vásquez et al. [165] reported energy greedy Android APIs. Hao et al. [123] and

Li et al. [151] identified energy greedy apps, meanwhile Li et al. [152] focused on energy

measurement at code statement level. Liu et al. [173] detected energy bugs related to

misuses of wake locks and sensors. Li et al. [155, 156] optimize the energy consumed

by HTTP requests in Android apps, by automatically detecting and bundling sequential

HTTP requests. Finally, Rasmussen et al. [210] and Gui et al. [118] measured the impact

of ads in apps on energy consumption.

In addition to energy bugs and hot spots, energy consumption has been analyzed from

the perspective of other factors such as obfuscation [216] and performance-related changes

[215]. Sahin et al. [216], in a study with 15 apps, showed that obfuscation can impact—

with statistical significance— the energy consumption of Android apps; and in a study with

8 apps, Sahin et al. [215], found that the impact of 4 performance-related optimizations

(use final for static constants, avoid using floating point, avoid internal getters/setters, and

avoid accessing array length in loop body.) is negligible in terms of batter savings. Another

representative work is Ecodroid [137], which is a code search engine for Android apps that

ranks apps in the same category based on energy consumption; Ecodroid combines static

and dynamic analysis and estimates the apps energy consumption by aggregating the

energy consumed by the API calls.

All the approaches mentioned in this section detect different kinds of energy-greedy

units in the source code, yet not specifically related to the screen usage. For this reason,

GEMMA can be considered complementary to those approaches: in other words, reducing

the energy footprint of mobile apps concerns considering various aspects, including, among

the others, screen usage and colors.

5.7 Discussion

We presented GEMMA, a multi-objective approach for generating energy-friendly color

schemas for Android app GUIs. The multi-objective optimization balances the energy
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reduction objective with other objectives related to contrast and closeness to the original

design. GEMMA successfully generated designs for 27 Android apps with significant

reduction in the energy consumption. While the empirical evaluation highlighted that

solutions with the highest energy savings are usually not preferred by end-users, mainly

because of the dark background, GEMMA still generated solutions that achieve a good

energy reduction while being acceptable to end-users. Also, by evaluating the solutions

on five commercial apps, we confirmed that some project managers and developers are

ready to use GEMMA’s recommendations in future app releases. In the future work,

we are planning on relying on a more precise approach for reverse engineering app GUIs,

which would account for a proper choice of colors for GUI elements such as text fields and

buttons.

GEMMA is an example of (i) how dynamic analysis is an important task for evolution

and maintenance of Android apps and, and (ii) how an underlying infrastructure for

dynamic analysis can enable automated tasks that otherwise can not be achieved manually.

The relevance of quality attributes such as energy consumption, from the point of view

of the users and energy-aware developers, makes tools like GEMMA interesting to the

industry. Currently, an industrial prototype of GEMMA is under development as part of

a initiative between William and Mary and Huawei aimed at providing developers with

free tools that support evolution and maintenance of mobile apps.
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Chapter 6

Conclusion

This dissertation makes several research contributions from three different perspectives:

empirical studies, technological solutions, and novel practical approaches for supporting

evolution and maintenance of Android apps:

• The empirical studies presented in Chapter 2 analyzed key challenges experienced

by practitioners and open issues in the mobile development community such as (i)

Android API instability, (ii) performance optimizations, (iii) automatic GUI testing,

and (iv) energy consumption; consequently, the results from the studies can be used

by practitioners and researchers to design new methods, tools and approaches for

supporting evolution and maintenance of Android apps (similarly to the work done

with MonkeyLab and GEMMA).

• This dissertation proposes an infrastructure for enabling large-scale execution of

Android apps in Chapter 3. This infrastructure was designed with several design

drivers in mind to enable extensibility (open-closed principle), horizontal/vertical

scalability, and easy implementation with commodity machines and open source

software. A taxonomy of issues, solutions, and guidelines are also provided to support

researchers interested in enabling large-scale execution of Android apps on their own

environments.
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• Two novel solutions are proposed to solve highly relevant tasks during evolution and

maintenance of Android apps: automated testing and energy optimizations. For

automated testing, we proposed an approach that combines GUI and usage models

(extracted from the source code and real application usages) to generate actionable

(un)natural test cases in Chapter 4. The test sequences are generated by relying on

language models that are aware of events history and are validated dynamically to

remove unfeasible events. The validation shows that the proposed approach gener-

ates (un)natural test cases that were neither exercised by human participants nor

by the state-of-the-art approaches. We also proposed an approach for automatic

generation of GUI color compositions that reduce screen energy consumption and

are visually appealing in Chapter 5; the solution is rooted into our novel combi-

nation of power modeling, dynamic analysis, pixel-based engineering, color-theory,

and evolutionary multi-objective optimization. The experiments confirmed that the

color compositions intended to reduce drastically the energy consumption generate

large and significant savings (when compared to the original design); in addition, the

compositions are visually attractive and mobile development companies are eager to

use them.

In addition, this dissertation establishes a future roadmap of research and develop-

ment activities. First, the empirical studies highlighted challenges that still require novel

solutions; secondly, the foundations we established in this dissertation allow extensions,

in particular in the field of automated GUI testing. We briefly summarize some of those

activities.

A General Infrastructure for Enabling Testing of Android Apps. The Record

→ Mine → Generate → Validate framework introduced in Chapter 4 is based on a

modular design, in which the component in charge of generating the test sequences can

be replaced to derive test sequences with different purposes. Figure 6.1 illustrates the

case in which the Generate phase can be tailored to different purposes while reusing
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Figure 6.1: A general infrastructure for generating test sequences with different purposes

the components and features from the other phases. MonkeyLab is the first instance

described in Chapter 4, which is aimed at generating (un)natural test cases by relying on

language models. However, other types of test sequences can be generated using the same

infrastructure.

With the empirical studies (Chapter 2), we identified that API instability and fault-

proneness are the major threats to the success of Android apps. When a new API is

released, developers should conduct regression testing on the apps to verify that the new

API does not inject bugs in the client code (i.e., apps). Therefore, by mining the changes

to the APIs and performing static analysis on the source code of the apps, it is possible

to drive the test sequence generations towards executing features that are likely to be im-

pacted by API-breaking changes. In addition, informative reviews reporting bugs/crashes

could be analyzed to generate test cases aiming at testing features/GUI components in-

volved in the bug/crashes reported by users. Both scenarios can be implemented by

augmenting/extending the Generate phase in the proposed infrastructure.
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Combining Multiple Models For Test Cases Generation. Requirements of a soft-

ware system are often modeled as a combination of three essential models in Object-

Oriented Software Engineering approaches [57, 58]: (i) a usage model that describes how

users will work with the system (e.g, use cases or user stories); (ii) a domain model that

describes the business entities, relationships, and data constraints (e.g., class diagram

or database model; and (iii) a GUI model depicting the user interface. Therefore, those

three models are the main sources for designing test cases. In fact, deriving test cases from

the usage model is a well-promoted practice in Object-Oriented Software Engineering ap-

proaches as a systematic way to validate requirements [71, 85, 138]. In the case of mobile

apps, there is a fourth model (contextual model) that describes [195] the events/states

related to contextual events (e.g., GPS and WiFi) and adversarial conditions.

Few approaches for automated testing of mobile apps combined two of the models for

requirements specifications (i.e., usage, GUI, domain, contextual). For instance, Mon-

keyLab combines usage and GUI models, and SIGDROID [188] combines GUI and do-

main models. CrashScope by Moran et al. [195] is a recent publication of the SEMERU

group!1 that combines the GUI and contextual models. As of today, there is no complete

solution/approach combining the four models (i.e., GUI, usage, domain, and contextual);

therefore, future work should be devoted to building solutions for automated testing that

combine all four models. One potential solution is to reuse the Record → Mine →

Generate → Validate framework, and to design graphical probabilistic models that are

able to consolidate the information from the GUI, usage, domain, and contextual models.

Supporting Other Evolution and Maintenance Tasks. Some of the empirical studies

described in Chapter 2 suggest that developers lack the tools for (i) automated detection

of features in the apps that might be affected by breaking changes, and (ii) automatic

detection of performance bottlenecks following observation-based strategies (e.g., profiling

and debugging). Therefore, future work related to evolution and maintenance of Android

1CrashScope is supported by the SEMERU framework and infrastructure designed as part of this
dissertation (Chapter 3)
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apps should be aimed at devising approaches and solutions for these two aforementioned

issues.
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