
Deep Learning Software Repositories

Martin White

Virginia Beach, VA

Master of Engineering, Old Dominion University, 2011
Master of Science, Old Dominion University, 2007

Bachelor of Science, Old Dominion University, 2004

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
August 2017

© Copyright by Martin White 2017

ABSTRACT

Bridging the abstraction gap between artifacts and concepts is the essence of
software engineering (SE) research problems. SE researchers regularly use
machine learning to bridge this gap, but there are three fundamental issues with
traditional applications of machine learning in SE research. Traditional
applications are too reliant on labeled data. They are too reliant on human
intuition, and they are not capable of learning expressive yet efficient internal
representations. Ultimately, SE research needs approaches that can
automatically learn representations of massive, heterogeneous, datasets in situ,
apply the learned features to a particular task and possibly transfer knowledge
from task to task.

Improvements in both computational power and the amount of memory in
modern computer architectures have enabled new approaches to canonical
machine learning tasks. Specifically, these architectural advances have enabled
machines that are capable of learning deep, compositional representations of
massive data depots. The rise of deep learning has ushered in tremendous
advances in several fields. Given the complexity of software repositories, we
presume deep learning has the potential to usher in new analytical frameworks
and methodologies for SE research and the practical applications it reaches.

This dissertation examines and enables deep learning algorithms in different SE
contexts. We demonstrate that deep learners significantly outperform
state-of-the-practice software language models at code suggestion on a Java
corpus. Further, these deep learners for code suggestion automatically learn
how to represent lexical elements. We use these representations to transmute
source code into structures for detecting similar code fragments at different
levels of granularity—without declaring features for how the source code is to be
represented. Then we use our learning-based framework for encoding
fragments to intelligently select and adapt statements in a codebase for
automated program repair.

In our work on code suggestion, code clone detection, and automated program
repair, everything for representing lexical elements and code fragments is mined
from the source code repository. Indeed, our work aims to move SE research
from the art of feature engineering to the science of automated discovery.

TABLE OF CONTENTS

Acknowledgments iv

Dedication v

List of Tables vi

List of Figures vii

Vision 2

1 Introduction 3

1.1 Deep Learning Software Repositories 3

1.2 Contributions . 5

1.3 Dissertation Overview . 6

1.4 Bibliographical Notes . 9

2 Deep Learning for Code Suggestion 10

2.1 Background and Related Work . 13

2.1.1 Language Models . 13

2.1.2 Applications of Software Language Models 14

2.1.3 Artificial Neural Networks . 17

2.1.4 Applications of Neural Network Language Models 18

2.2 Deep Software Language Model . 19

2.3 Intrinsic Evaluation . 23

i

2.3.1 Methodology and Data Collection 24

2.3.2 State-of-the-Practice Software Language Models 26

2.3.3 State-of-the-Art Software Language Models 27

2.3.4 Committees of Deep Software Language Models 28

2.3.5 Deep Software Language Models Online 30

2.4 Extrinsic Evaluation . 31

2.4.1 Research Question 1 . 31

2.4.2 Research Question 2 . 32

2.5 Threats to Validity . 33

2.6 Avenues for Future Work . 35

2.7 Summary . 38

3 Deep Learning for Code Clone Detection 40

3.1 Background and Related Work . 43

3.1.1 Code Clone Detection . 44

3.1.2 Language Modeling . 47

3.1.3 Recursive Deep Learning . 47

3.2 Deep Learning Code Fragments . 48

3.2.1 Deep Learning Code at the Lexical Level 49

3.2.2 Deep Learning Code at the Syntactic Level 51

3.3 Empirical Validation . 60

3.3.1 Data Collection Procedure 62

3.3.2 Analysis Procedure . 63

3.4 Empirical Results . 66

3.4.1 Research Question 3 . 66

3.4.2 Research Question 4 . 67

3.5 Discussion . 72

ii

3.6 Future Work . 73

3.6.1 On Scaling Deep Learning for Clone Detection 73

3.6.2 Type Prediction . 75

3.7 Summary . 75

4 Sorting and Transforming Program Repair Ingredients 77

4.1 Background and Related Work . 80

4.1.1 Automated Program Repair 80

4.1.2 Redundancy Assumption . 82

4.2 Technical Approach . 83

4.2.1 Language Recognition Phase 84

4.2.2 Machine Learning Phase . 85

4.2.3 Program Repair Phase . 88

4.3 Empirical Validation . 90

4.3.1 Experiment Scope and Plan 90

4.3.2 Data Collection Procedure 93

4.3.3 Analysis Procedure . 96

4.4 Empirical Results . 98

4.4.1 Research Question 5 . 98

4.4.2 Research Question 6 . 100

4.4.3 Research Question 7 . 101

4.4.4 Research Question 8 . 101

4.5 Threats to Validity . 106

4.6 Summary . 107

5 Conclusion 109

A Intermediate Code Statistics 111

iii

ACKNOWLEDGMENTS

Thank you to the members of SEMERU, particularly Michele Tufano whose keen
insight advanced this work in many ways. Thank you, Michele.

I want to thank Matías Martínez and Martin Monperrus for the opportunity to
collaborate. I am almost embarrassed at how much I learned from them.

I want to thank my committee members—Giuliano Antoniol, Peter Kemper,
Denys Poshyvanyk, Evgenia Smirni, and Andreas Stathopoulos—all
researchers who I hold in the highest regard. I extend my deepest professional
gratitude to my advisor. Thank you, Denys, for your time and guidance from the
beginning (absolute zero) through the end.

To my children, this process required appreciable sacrifice on your part, but I
hope the experience imparted wisdom that will shape decisions you make for the
better. To my wife, Jessica, this work is at least as much your accomplishment
as it is mine. I have learned my most valuable lessons from you.

Marty
August 2017

iv

To Jessica, for everything

v

LIST OF TABLES

2.1 Code Corpora Statistics . 25

2.2 Perplexity versus Order . 26

2.3 Perplexity versus Cache . 26

2.4 Perplexity versus Hidden Layer Size and Depth 28

2.5 Committees of Software Language Models 29

2.6 Static, Dynamic, and Mixture Models 30

2.7 Top-k Accuracy . 32

2.8 Querying Similar Terms . 38

3.1 ast2bin Productions . 53

3.2 Node Precedence . 54

3.3 Subject Systems’ Statistics . 63

3.4 Performance Results . 66

3.5 Precision Results . 67

4.1 Five DeepRepair Configurations Evaluated in Our Experiment . . . 91

4.2 Project Statistics . 95

4.3 Patches Found at (L)ocal, (P)ackage, and (G)lobal Scope 99

A.1 Intermediate Code Metrics . 111

A.2 Intermediate Code Statistics . 112

A.2 Intermediate Code Statistics continued 113

vi

LIST OF FIGURES

2.1 RtNN Unfolded in Time . 22

3.1 Learning-based Approach to Code Clone Detection 48

3.2 RtNN Matrix of Embeddings . 49

3.3 AST-based Encoding . 56

3.4 Greedy Encoding . 56

3.5 Replaced Control Statements in Apache Ant 68

3.6 Reordered Data-dependent Statements in Hibernate 69

3.7 Overloaded Constructor in Hibernate 70

3.8 Inserted and Deleted Lines in dnsjava 71

3.9 Relative Frequency Histograms of File-level Features 74

3.10 τ Decoder . 75

4.1 Suspicious Method in Math-63’s MathUtils.java 85

4.2 First Iteration of the Encoding Procedure 86

4.3 Sample of Math-63 Identifiers’ Embeddings 87

4.4 Number of Attempts to Find a Test-adequate Patch 100

4.5 Number of Attempts to Find a Compilable Ingredient 101

vii

Deep Learning Software Repositories

Vision
Imagine you are a software engineering (SE) researcher. You study artifacts that are pro-

duced and archived during the software development lifecycle. Suppose you are pre-

sented with a problem like detecting similar source code fragments such as methods or

classes in a codebase. What is the first thing you do?

A reasonable first step is to think about how to represent fragments. However, con-

sidering the complexity of software repositories, there is another approach. Rather than

specify how you want to represent an artifact, you simply declare what you want to repre-

sent, abstracting away the problem of determining the representation. Changing “how” to

“what” requires learning the representation from the data, which—considering the com-

plexity of software repositories—requires models with a lot of representation power.

There is an apparent discrepancy between the expressiveness that is produced and

archived in repositories and the representation power of models that we use to reap in-

formation from the repositories. If we can improve the representation power, then SE re-

searchers will begin to limn their data several automated transformations away from input

space, unveiling previously hidden insight. SE research papers will shift from motivating

feature sets to prefiguring search problems for empirically-based features. The nature of

data collection will change from describing preprocessing pipelines to emphasizing the

small amount of intuition required to preprocess artifacts. SE research, an empirical disci-

pline, values intentions like gaining empirically-based insight and replacing intuition with

search-based optimization. But how can we improve representation power? This disser-

tation moves SE research toward deep learning software repositories.

2

Chapter 1

Introduction

SE research concerns the analysis, design, implementation, maintenance, and evolu-

tion of software systems, but modern ever-growing software repositories are extraordi-

narily complex. The complexity stems in part from the considerable volume of unstruc-

tured data such as requirements, design documents, source code files, communication

archives (e.g., email and online fora transcripts), test cases, and defect reports. More-

over, the data are typically unlabeled, i.e., not primed to answer a particular question,

and labeling software artifacts to supervise a learner is exceedingly expensive and con-

sistently inconsistent. Bridging the abstraction gap between artifacts and concepts is the

essence of SE research problems such as code clone detection and automated program

repair. SE researchers regularly use machine learning to bridge this gap.

1.1 Deep Learning Software Repositories

Traditional applications of machine learning in SE research begin by assembling a list of

attributes to characterize observations, and the goal of a machine learning algorithm is to

discover a useful representation from the data to perform a task. For instance, many SE

problems can be cast as classification tasks. For a classification task, the goal of machine

learning may be to infer a conditional probability distribution over class labels.

3

CHAPTER 1. INTRODUCTION

This inference problem often assumes the training data are labeled, but SE research

needs approaches that can leverage the disproportionate amount of unlabeled data in

software repositories and learn useful representations with limited supervision. These

problems also give way to feature engineering, where an expert places a strong prior

on the feature space, which is assumed to be the ideal perspective for the task. Con-

sidering the complexity of software repositories, SE research needs approaches based

on the science of building machines to automatically discover discriminatory features as

opposed to the traditional art of intuitive feature engineering. These approaches would

learn kernels rather than simply apply kernels [20]. Finally, there is an implicit problem

with traditional approaches using kernels, which is learning decision boundaries in a fea-

ture space that is one handcrafted transformation removed from input space. This design

exemplifies shallow architectures, and the problem here is one of efficiency. In order to

solve deeply complex problems like code clone detection, SE research needs approaches

that are capable of learning hierarchical representations to manage the complexity. Ulti-

mately, SE research needs approaches that can automatically learn representations of

massive, heterogeneous, datasets in situ, apply the learned features to a particular task

and possibly transfer knowledge from task to task.

Improvements in both computational power and the amount of memory in modern

computer architectures have enabled new approaches to canonical machine learning

tasks, which underpin many different applications in SE research [217]. Specifically, these

architectural advances (with keen activators [57] and suitable initialization [190]) have

enabled machines that are capable of learning deep, compositional representations of

massive data depots. The rise of deep learning has ushered in tremendous advances

in several fields. Given the complexity of software repositories, we presume deep learn-

ing has the potential to usher in new analytical frameworks and methodologies for SE

research and the practical applications it reaches.

4

CHAPTER 1. INTRODUCTION

1.2 Contributions

In Sec. 1.1, we diagnosed a few problems with traditional applications of machine learn-

ing in SE research. Traditional applications are too reliant on labeled data. They are too

reliant on human intuition, and they are not capable of learning expressive yet efficient

internal representations. By “internal,” we mean traditional approaches learn y = f(x) as

opposed to deep, compositional representations like y = f(g(h(x))) where f , g, and h

are nonlinear. Thus, by “expressive,” we mean that f ◦ g ◦h is a highly nonlinear operator

capable of modeling arbitrarily complex domains. By “efficient,” we mean features can be

reused at progressively higher levels of abstraction, e.g., g learns from h and f learns

from g ◦ h.

Why is all of this important to SE? Software repositories are too complex to simply

operate on labeled input (label dependence), once (shallow architecture), in a specific

way (feature engineering) to effectively conceptualize artifacts.

This dissertation posits a new research paradigm for SE where low-level representa-

tions automatically acquire domain knowledge from unlabeled input, and this knowledge

automatically informs high-level, invariant features. Additionally, in this new paradigm, the

knowledge we learn in one domain can be transferred to another domain under certain

conditions. Our research lies at the nexus of this rich new class of models and SE. We use

representation learning [20], a significant departure from traditional approaches, to auto-

matically extract useful information from the disproportionate amount of unlabeled data in

software repositories. The value in circumventing feature engineering is twofold. Learning

transformations of the data will drastically reduce the cost of modeling software artifacts,

because the purpose is to reduce the amount of supervision upon improving knowledge

of the domain, and software repositories store a lot of data to affect the improvement. The

other benefit is better performance. Generally, learning algorithms are more efficient than

humans at discovering correlations in high dimensional spaces. So, rather than rely on

strong prior knowledge to propose the best perspective on an SE task, our work uses

5

CHAPTER 1. INTRODUCTION

machines to discover the perspective that yields optimal performance.

The following list summarizes the main contributions of this dissertation:

• We introduce deep learning to SE research. Deep learning, a nascent field in ma-

chine learning, will provide the SE community with new ways to mine and analyze

artifacts to support SE tasks.

• We show that deep learning induces high-quality software language models com-

pared to state-of-the-practice models using a general measure of quality. Then we

demonstrate its effectiveness at code suggestion.

• We introduce a learning-based paradigm for code clone detection.

• We introduce a learning-based approach to intelligently select and adapt statements

in a codebase for automated program repair along with a set of novel metrics that

are specific to the analysis of fix space navigation strategies.

1.3 Dissertation Overview

Chapter 2: Deep Learning Code Corpora for Code Suggestion

Deep learning subsumes algorithms that automatically learn compositional representa-

tions. The ability of these models to generalize well has ushered in tremendous advances

in many fields such as natural language processing (NLP). Recent research in the SE

community has demonstrated the usefulness of applying NLP techniques to software cor-

pora [14, 15, 43, 47, 55, 141, 154, 156]. Hence, we motivate deep learning for software

language modeling, highlighting fundamental differences between state-of-the-practice

software language models and connectionist models. Our deep learners are applicable

to source code files (since they only require lexically analyzed source code written in

any programming language) and other types of artifacts. We show how a particular deep

6

CHAPTER 1. INTRODUCTION

learner can remember its state to effectively model sequential data, e.g., streaming soft-

ware tokens, and the state is shown to be much more expressive than discrete tokens in a

prefix. Thenwe instantiate deep learners and show that deep learning induces high-quality

models compared to n-grams and cache-based n-grams on a corpus of Java projects. We

experiment with two of the models’ hyperparameters, which govern their capacity and the

amount of context they use to inform predictions, before building several committees of

software language models to aid generalization. Then we apply the deep learners to code

suggestion and demonstrate their effectiveness at a real SE task compared to state-of-

the-practice models. Finally, we propose avenues for future work where deep learning

can support model-based testing and improve software lexicons.

Chapter 3: Deep Learning Code Fragments for Code Clone Detection

Code clone detection is an important problem for software maintenance and evolution.

Many approaches consider either structure or identifiers, but none of the existing detec-

tion techniques model both sources of information. These techniques also depend on

generic, handcrafted features to represent code fragments. We introduce learning-based

detection techniques where everything for representing terms and fragments in source

code is mined from the repository. Our code analysis supports a framework, which relies

on deep learning, for automatically linking patterns mined at the lexical level with patterns

mined at the syntactic level. We evaluated our learning-based approach for code clone

detection with respect to feasibility from the point of view of software maintainers. We

sampled and manually evaluated 398 file- and 480 method-level pairs across eight real-

world Java systems; 93% of the file- and method-level samples were evaluated to be true

positives. Among the true positives, we found pairs mapping to all four clone types. We

compared our approach to a traditional structure-oriented technique and found that our

learning-based approach detected clones that were either undetected or suboptimally re-

ported by the prominent tool Deckard. Our results affirm that our learning-based approach

7

CHAPTER 1. INTRODUCTION

is suitable for clone detection and a tenable technique for researchers.

Chapter 4: Sorting and Transforming ProgramRepair Ingredients via Deep Learning

Code Similarities

In the field of automated program repair, the redundancy assumption claims large pro-

grams contain the seeds of their own repair [13, 120]. However, most redundancy-based

program repair techniques do not reason about the repair ingredients—the code that is

reused to craft a patch. We aim to reason about the repair ingredients by using code sim-

ilarities to prioritize and transform statements in a codebase for patch generation. Our

approach, DeepRepair, relies on deep learning to measure code similarities. Code frag-

ments at well-defined levels of granularity in a codebase can be sorted according to their

similarity to suspicious elements (i.e., code elements that contain suspicious statements)

and statements can be transformed by mapping out-of-scope identifiers to similar iden-

tifiers in scope. We examined these new search strategies for patch generation with re-

spect to effectiveness from the viewpoint of a software maintainer. Our comparative ex-

periments were executed on six open-source Java projects including 374 buggy program

revisions and consisted of 19,949 trials spanning 2,616 days of computation time. Deep-

Repair’s search strategy using code similarities generally found compilable ingredients

faster than the baseline, jGenProg, but this improvement neither yielded test-adequate

patches in fewer attempts (on average) nor found significantly more patches than the

baseline. Although the patch counts were not statistically different, there were notable

differences between the nature of DeepRepair patches and baseline patches. The re-

sults demonstrate that our learning-based approach finds patches that cannot be found

by existing redundancy-based repair techniques.

8

CHAPTER 1. INTRODUCTION

1.4 Bibliographical Notes

Portions of this dissertation have been previously published or have been submitted for

publication and are under review at the time of this writing. Material from Chap. 2 was

published and presented at the 12th Working Conference on Mining Software Reposito-

ries (MSR’15) [210] and the IEEE/ACM 37th International Conference on Software En-

gineering (ICSE’15) [207]. Material from Chap. 3 was published and presented at the

IEEE/ACM 31st International International Conference on Automated Software Engineer-

ing (ASE’16) [209]. The ideas and results in Chap. 4 are currently under review at an inter-

national conference. Material from Chap. 4 was based on a collaborative research effort

with Martin Monperrus from the University of Lille and INRIA and Matías Martínez from the

University of Valenciennes. Parergons of the work in this dissertation included work pub-

lished and presented at the 12th Working Conference on Mining Software Repositories

(MSR’15) [111] and the IEEE 23rd International Conference on Program Comprehension

(ICPC’15) [208].

9

Chapter 2

Deep Learning Code Corpora

for Code Suggestion

The field of NLP has developed many prominent techniques to support speech recog-

nition [78] and statistical machine translation [97], among many other applications. One

critical component of many of these techniques is a statistical language model. The most

prevalent class of statistical language models is simple Markov models called n-gram

models (or “n-grams”) [59]. n-grams are useful abstractions for modeling sequential data

where there are dependencies among the terms in a sequence. A corpus can be re-

garded as a sequence of sequences, and corpus-based models such as n-grams learn

conditional probability distributions from the order of terms in a corpus. Corpus-based

models can be used for many different types of tasks like discriminating instances of data

or generating new data that are characteristic of a domain.

The terms in a sequence can represent different entities depending on the domain. In

SE, sequential data emerge from countless artifacts, e.g., source code files and execution

traces, where the terms can be software tokens or method calls, and the sequences

can be lines of code or method call sequences. While software tokens and method calls

characterize two different lexicons, statistical language models such as n-grams can be

applied to corpora from each domain because the models represent simple arrangements

10

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

of terms. Consequently, models like n-grams can be used to predict the next term in a

sequence [87].

Recent research in the SE community has examined and successfully applied n-grams

to formal languages, like programming languages, and SE artifacts [2, 4, 6, 29, 68, 142,

150, 196, 198]. The breadth of these applications in SE research and practice underscores

the importance of the ability to effectively learn from sequential data in software reposi-

tories. However, there is an apparent discrepancy between the representation power of

models like n-grams for reaping information from repositories and the expressiveness that

is produced and archived in repositories.

Consider the characteristics of modern software repositories and the requirements

that these characteristics impose on models. Software repositories are massive depots

of unstructured data, so good models require a lot of capacity to be able to learn from

the voluminous scale rather than saturate after observing a fraction of the data that are

available. Specifically, the kind of conceptual information that is buried in software repos-

itories is very complex, requiring expressive models to manage this complexity. More-

over, software artifacts are laden with semantics, which means approaches that depend

on matching lexical elements are suboptimal. Finally, practical SE tasks like developing

a feature or reproducing an issue require a lot of context—more context than short lists

of the last two, three, and four terms in a sequence.

Capacity, expressiveness, semantics, and context are key concerns when mining se-

quential SE data and inducing software language models in particular. Nonetheless, n-

grams have limited capacity [171]. They are not expressive, because they are simply

smoothed counts of term co-occurrences [137]. They have trouble with semantics and

generalizing beyond the explicit features observed in training [21, 140, 179]. Lastly, lan-

guage models, including software language models, based on n-grams are quickly over-

whelmed by the curse of dimensionality [21], so the amount of context is limited.

How can we improve the performance at SE tasks based on software language mod-

els? In order to improve the quality of software language models, we must improve the

11

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

representation power of the abstractions we use, so the goal of this work is to marry

deep learning and software language modeling. The purpose of applying deep learning

to software language modeling is to improve the quality of the underlying abstractions for

numerous SE tasks, viz. code suggestion [52, 68, 198], deriving readable string test in-

puts to reduce human oracle cost [2], predicting programmer comments to improve search

over codebases and code categorization [142], improving error reporting [29], generating

feasible test cases to improve coverage [196], improving stylistic consistency to aid read-

ability and maintainability [4], code migration [144, 145, 146], synthesizing application

programming interface (API) completions [167], code review [65], fault localization [166],

and suggesting accurate method and class names [5].

Thus, we make the following contributions:

• We introduce deep learning to SE research, specifically, software language model-

ing. Deep learning, a nascent field in machine learning, will provide the SE commu-

nity with new ways to mine and analyze artifacts to support SE tasks.

• We motivate deep learning algorithms for software language modeling by clearly

distinguishing them from state-of-the-practice software language models.

• We show that deep learning induces high-quality software language models com-

pared to state-of-the-practice models using an intrinsic evaluation metric.1 Then we

demonstrate its effectiveness at code suggestion.

• While we focus on applying one deep architecture to one SE task, we believe deep

learning is teeming with opportunities in SE research. We identify avenues for future

work, highlighting different ways that deep learning can be used to support practical

SE tasks.

Sec. 2.1 will review background on software language modeling and deep learning

for NLP. This section will define all the keywords (e.g., deep architecture, deep learning,
1An intrinsic evaluation measures the quality of a model independent of any application [87].

12

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

deep software language model) and affirm the purpose of introducing these state-of-the-

art approaches to SE research. Sec. 2.2 will pinpoint how this new class of software

language models is poised to perform better at SE tasks by emphasizing their capacity

and expressiveness as well as their ability to model semantics and consider rich contexts.

Sec. 2.3 will use perplexity (PP), an intrinsic evaluation metric, to compare the quality

of this new class of software language models to a state-of-the-practice baseline, and

Sec. 2.4 will measure the models at a real SE task. Sec. 2.5 will discuss threats to the

validity of our work. Sec. 2.6 will describe avenues for future work. One avenue proposes

using deep software language models to support objectives other than code coverage in

model-based testing. Another avenue proposes using deep software language models to

improve software lexicons. Sec. 2.7 summarizes the chapter.

2.1 Background and Related Work

In this section, we present background on statistical language models and preliminary re-

search applying these models to software corpora. We focus on how current approaches

to software language modeling can be improved, laying the foundation for Sec. 2.2, where

we show how deep learning can realize these improvements. Then we define all the

keywords associated with deep learning, before reviewing preliminary research applying

deep learning to NLP.

2.1.1 Language Models

A statistical language model is a probability distribution over sentences in a language [87].

This ostensibly simple abstraction is remarkably effective for NLP tasks such as speech

recognition and statistical machine translation. In statistical language modeling, our goal

is to find a tractable representation p of a sentence s in a language with vocabulary V by

13

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

way of a joint distribution over words wi:

p(s) = p(w1, . . . , wm) ≡ p(wm
1) =

m∏
i=1

p(wi|wi−1
1) ≈

m∏
i=1

p(wi|wi−1
i−n+1) (2.1)

where wi ∈ V ∪ {BOS,EOS}. BOS and EOS denote the beginning and end of sentence

tokens, respectively. The joint distribution simplifies under the Markov assumption. In

practice, we generalize the model’s maximum likelihood estimates using one of many

smoothing techniques [38]. These probabilistic automata (or, more specifically, n-grams)

measure the degree of membership of every conceivable sentence in the language. Sen-

tences frequently observed—in a generative sense—in the training corpus are judged to

be more fluent than sentences observed less frequently (or not at all). In other words,

we expect a good model to assign a high probability to a representative test document,

or, equivalently, in-domain out-of-sample cases should have low cross entropy H with

respect to p:

Hp(s) ≡ Hp(w
m
1) = Eq[− log2 p(wm

1)] ≈ − 1

m

m∑
i=1

log2 p(wi|wi−1
i−n+1) (2.2)

where q ∼ U(0,m). Cross entropy (Eq. (2.2)) is an empirical estimate of how well a lan-

guage model predicts terms in a sequence [6]. Likewise, PP = 2Hp estimates the average

number of terms at each point in the test document [6]. In language modeling, PP is a

proxy for quality, and—as noted by Tu et al. [198]—good quality language models show

great promise in SE applications. Our goal is to introduce powerful abstractions novel to

software languagemodeling using PP as empirical validation of their efficacy and capacity

to support SE tasks.

2.1.2 Applications of Software Language Models

Hindle et al. [68] demonstrated that language models over software corpora emit a “nat-

uralness” in the sense that real programs written by real people have useful statistical

14

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

properties, encapsulated in statistical language models, that can leverage SE tasks. This

work was an important first step in applying natural language abstractions to software

corpora. But n-grams are simple approaches that do not have the capacity to learn repre-

sentations that reliably generalize beyond the explicit features in a training corpus [140].

Furthermore, these models build limited domain abstractions, and they are quickly over-

whelmed by the curse of dimensionality [8, 21, 68, 126, 191].

The expectation in software language modeling research is that performance at SE

tasks will improve with models more sophisticated than n-grams [68]. The purpose of

our work is to introduce compositional representations that are designed to process data

in stages in a complex architecture. Each stage transforms internal representations as

information flows from one layer of the architecture to the next [18]. The feature spaces

in a deep learner are fundamentally different than the conditional probability tables that

constitute an n-gram model, and the power lies in the fact that these efficient distributed

representations generalize well [18, 133].

Allamanis and Sutton [6] estimated an n-gram from a software corpus with more than

one billion tokens, but we regard the massive scale as an organic smoothing technique.

The model’s effectiveness is still subject to token distances in the corpus where clues

behind the n-gram’s relatively short prefix are elided from the model’s context [21, 126,

170]. Moreover, the massive scale does not truly solve the problem of considering tokens’

semantic similarity [21, 126, 170]. The approach for software language modeling that we

present in Sec. 2.2 is designed to consider an arbitrary number of levels of context where

context takes on a much deeper meaning than concatenated tokens in a prefix. In our

work, a deep learner encodes context in a continuous-valued state vector, encapsulating

much richer semantics.

Allamanis and Sutton [6] conducted experiments where they collapsed the vocabulary

by having the tokenizer replace identifiers and literals with generic tokens, which was a

novel way to measure the model’s performance on structural aspects of the code. How-

ever, we regard this approach as feature engineering. In this case, the token types in the

15

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

corpus are engineered to solve the specific problem of modeling syntax. But the essence

of deep learning, which underpins our work, is to design approaches that can automati-

cally discover these feature spaces [18, 17] to—for instance—capture regularities at the

syntactic, type, scope, and semantic levels [68].

Although Allamanis’ giga-token model over source code demonstrated improvements

in quality, a drawback to estimating n-grams over a massive corpus is losing resolution in

the model. Good resolution yields regularities “endemic” to particular granularities, e.g.,

methods, classes, or modules. Of course, if the training corpus is too small, then the

language model will be brittle for any practical application [74, 171]. A cache-based lan-

guage model [39, 104] is designed to solve this optimization problem by interpolating a

static model with a dynamic cache component. Kuhn and De Mori [104] originally pro-

posed cache-based language models for speech recognition. Recently, Tu et al. [198]

applied cache models to software corpora:

p(wi|wi−1
i−n+1, c) = λpN (wi|wi−1

i−n+1) + (1− λ)pC(wi|wi−1
i−n+1) (2.3)

where c is the list of n-grams stored in the cache; λ is the interpolation weight; pN is a static

n-gram model; and pC is a dynamic cache model. The cache component encapsulates

endemic and specific patterns in source code.

The cache component is a mechanism for capturing local context. The context we

recur in a deep learner will be an expressive continuous-valued state vector. This state

vector is capable of characterizing domain concepts [18, 21] rather than simply storing

auxiliary conditional probability tables such as pC in Eq. (2.3). Consequently, cache-based

language models still suffer from the inability to understand semantic similarity, because

they are fundamentally look-up tables, whereas deep learners induce similar representa-

tions for token types used in similar ways [137].

16

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

2.1.3 Artificial Neural Networks

Connectionism subsumes an expansive and deep body of knowledge that pervades arti-

ficial intelligence, neuroscience, and philosophy. Connectionist models comprise neuron-

like processing units. Each unit has an activity level computed from its inputs [70]. In a

feed-forward topology, information in the artificial neural network flows from input units

through hidden units to output units along connections with adjustable weights.

A neural network architecture specifies intrinsic characteristics such as the number

of units in the input, hidden, and output layers as well as the number of hidden layers

in the network. A deep architecture comprises many hidden layers. Supervised learning

algorithms discriminatively train [26] the weights to achieve the desired input-output be-

havior [174], so the hidden units automatically learn to represent important features of the

domain [70]. This process of training the weights in a deep architecture is known as deep

learning, and we refer to software language models based on deep learning as deep soft-

ware language models. Thus, deep learners, including deep software language models,

comprise many levels of nonlinear transformations [18].

The canonical learning algorithm for neural networks is the back-propagation pro-

cedure [174], which allows an arbitrarily connected neural network to develop internal

representations of its environment [174]. These neural activation patterns, or distributed

representations [69], harness formidable and efficient internal representations of domain

concepts. Units can participate in the representation of more than one concept, which

gives way to representational efficiency (where different pools of units encode different

concepts) and aids generalization [18, 71].

A simple two-layer feed-forward neural network, with one hidden layer and one output

layer, cannot reliably learn beyond first-order temporal dependencies [183]. This architec-

ture can be augmented with a short-term memory by recurring the hidden layer, encap-

sulating the network’s state, back to the input layer. This continuous-valued state vector

is fundamentally different than a discrete token in an n-gram’s history. The directed cycle

17

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

provides context for the current prediction. We can provide more context by extending

the recurrence and considering an arbitrary number of levels of context. From a temporal

perspective, this recurrent neural network (RtNN) can be viewed as a very deep neural

network [67, 77, 157, 190, 191] where depth is the length of the longest path from an input

node to an output node.

The purpose of the depth in this case is to reliably model temporal dependencies. The

depth of an RtNN is evident when you unfold the recurrence in time and measure the

path from any unit in the deepest state vector to any output unit. Deep architectures like

RtNNs lie at the forefront of machine learning and NLP, but we are not indiscriminately

introducing complexity. We expect these approaches will yield tremendous advances in

SE as they already have in other fields.

2.1.4 Applications of Neural Network Language Models

Connectionist models for NLP go back at least as far as Elman [50], who used them to

represent lexical categories, and Miikkulainen and Dyer [125], who developed a mech-

anism for building distributed representations for communication in a parallel distributed

processing network. Bengio et al. [21] proposed a statistical model of natural language

based on neural networks to learn distributed representations for words to allay the curse

of dimensonality since one training sentence increases the probability of a combinato-

rial number of similar sentences [21]. Sequences of words were modeled by agglutinat-

ing the word representations of consecutive words in the corpus into a single pattern to

be presented to the network. Bengio also constructed model ensembles by combining

a neural network language model with low-order n-grams and observed that mixing the

neural network’s posterior distribution with an interpolated trigram (n = 3) improved the

performance. This work also measured the performance of the model after adding direct

connections from nodes in the projection layer to output nodes, but the topology of this

network does not constitute a deep architecture. This model represents history by pre-

18

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

senting n-gram patterns to the network, whereas our work is based on a network which

considers an arbitrary number of contextual levels to inform predictions.

Our primary related work is the work by Mikolov [126], who excised the projection

layer in Bengio’s architecture [21] and added recurrent connections [86] from the hid-

den layer back to the input layer to form an RtNN. Representing context with recurrent

connections rather than patterns of n-grams is what distinguishes Mikolov’s recurrent ar-

chitecture from Bengio’s feed-forward architecture. Mikolov reported improvements us-

ing RtNNs over feed-forward neural networks [126] and implemented a toolkit [131] for

training, evaluating, and using RtNN language models. The package implements several

heuristics for controlling the computational complexity of training RtNNs [128]. Recently,

Raychev et al. [167] proposed a tool based in part on Mikolov’s package, RtNNs, and

program analysis techniques for synthesizing API completions.

2.2 Deep Software Language Model

In this section, we specify a deep architecture for software language modeling and pin-

point how this new class of models is poised to improve the performance at SE tasks

that use language models. We begin with the ubiquitous two-layer feed-forward neural

network. As noted in Sec. 2.1, these models cannot reliably learn beyond first-order tem-

poral dependencies, so Elman networks augment the architecture with a short-termmem-

ory mechanism [50]. RtNNs extend Elman networks by considering an arbitrary number

of levels of context. RtNNs are state-of-the-art models for NLP, but they are expensive to

train, so a number of heuristics have been developed to control the complexity [128]. One

heuristic is designed to reduce the complexity of computing the posterior distribution

for each training example by factorizing the output layer and organizing the tokens into

classes [130, 181]. Another heuristic involves training a maximum entropy model with an

RtNN by implementing direct connections between input units and output units [128].

A pattern is presented to a feed-forward neural network by setting the value of each

19

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

unit in the network’s input layer x to the pattern’s corresponding value. For instance, given

a software corpus C of lexically analyzed tokens, we can represent a token w in the vo-

cabulary VC using one-hot encoding and set wi = xi. The token is projected onto a feature

space F by an affine transformation pj = ajixi+bj . This transformation (or pre-activation)

is a fundamental point of divergence from models like n-grams. Then each pj is trans-

formed by a differentiable, nonlinear function f such that zj = f(pj) where zj are the

units that comprise the hidden layer z. The size of z (i.e., |z|) is an example of a hyperpa-

rameter [18], and adjusting this hyperparameter will regulate the model’s capacity such

that models with larger hidden layers yield more capacity [19, 20]. Practical choices for f

include the logistic sigmoid, the hyperbolic tangent, and the rectifier [57]. These activation

functions enable highly nonlinear and supremely expressive models [191].

After learning weights from x to z, when a fresh token is presented to the network,

the units zj will fire with varying intensities—analyzing the learned features—and ascribe

a point in F to the token, effectively inducing clusters of examples in F . These clusters

enable a connectionist software language model to generalize beyond simple Markov

chains in C like n-grams and model semantics. The hidden units are transformed qk =

βkjzj (omitting bias terms going forward for brevity) and activated by a function g in the

output layer y such that yk = g(qk). For multinomial classification problems, such as

predicting the next token in source code, the softmax function activates values in the

output layer such that p(yk|w) = g(qk). In software language modeling, propagating a

token w(t) from x through z to y yields a posterior distribution over VC , and the model

predicts the next token w(t+ 1) in a sequence:

ŵ(t+ 1) = argmax
k

p(yk|w(t)) (2.4)

We require an algorithm for learning θ = {a, β} from C, i.e., maximizing the likelihood

20

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

function,

L(θ) =
|C|∏
t=1

p(w(t+ 1)|w(t), θ)

Equivalently, we can minimize the negative log-likelihood by training θ using stochastic

gradient descent [108]. For each w ∈ C, we compute the gradient of the error in the

output layer, using a cross entropy criterion, and propagate this error back through the

network [174], using the chain rule to evaluate partial derivatives of the error function with

respect to the weights, before updating the weights. Overfitting is a key concern since

these models have the capacity to learn very complex representations, so θ is typically

regularized [21, 126, 179].

The immediate concern with the model (Eq. (2.4)) is the inability to reliably learn

beyond first-order temporal dependencies. n-grams encode temporal dependencies by

learning tables of smoothed conditional probability distributions over a large number of

prefixes. On the other hand, connectionist models can represent histories much more

compactly. Specifically, an Elman network [50] augments a feed-forward network with a

simple short-term memory mechanism. The short-term memory is realized by copying the

hidden state z(t− 1) back to the input layer x(t) and learning more weights γ to influence

the hidden activations. This recurrence provides context for the current prediction. Thus,

the input layer x in an Elman network is essentially a concatenation of w(t) and z(t− 1),

i.e., xi(t) = (w(t), z(t − 1))i. In a feed-forward network, the pre-activation in z took the

form pj = ajixi, but after recurring the state vector, the pre-activation in z takes the form

pj(t) = ajiwi(t)+γjjzj(t−1) = αjixi(t), where α is simply a concatenation of aji and γjj ,

and the model becomes θ = {α, β}. The cost of learning an additionalO(m2) parameters,

where m = |z|, is met with improved representation power over sequences of software

tokens.

An RtNN (Fig. 2.1) extends the memory bank in an Elman network for an arbitrary

number of levels of context—though there may be practical limits to the depth of the

recurrence [22]. Therefore, because of the gradient problem [22], we typically truncate the

21

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

a

β
γ

z

w

y

w(1) w(2) w(3) w(4) w(5) w(6) w(7)

int [] list = null ;

Figure 2.1: The depth of an RtNN is evident when the recurrence is unfolded in time. Time steps
correspond to lexical elements in a corpus. Each node in the figure represents a vector of units.
White nodes are one-hot term vectors; black nodes are continuous-valued state vectors; and gray
nodes are posterior distributions over the vocabulary. The red nodes constitute the input layer at
time t = 5. The blue node represents the posterior distribution for predicting w(6).

back-propagation through time procedure [206]. Parenthetically, there are other ways to

control this problem [126, 158, 178], but we omit these implementation details here. As the

error is back-propagated through time in an RtNN, each level of temporal context has an

abating amount of influence on training γ, which is shared across time. This weight sharing

yields an efficient representation compared to n-grams, which are hampered by the curse

of dimensionality as they try to encode deeper contexts. And persisting a sequence of

state vectors is much more expressive, in terms of discriminative power, than hard-coded

prefixes. Interestingly, if τ is the number of time steps the error is back-propagated through

time, the network is still capable of learning information longer than τ steps [126].

However, while an RtNN is capable of learning powerful representations, it has some

computationally expensive components, e.g., the posterior distribution in the output layer.

Massive software repositories have a daunting challenge that arguably far exceeds the

same problem in natural languages (including highly inflective natural languages), which

is the size of the vocabulary. Computing the softmax function over extremely large vocab-

ularies |C| × ε times, where ε is the number of training epochs, is nontrivial. One solution

to controlling this complexity is to factorize the output layer [59, 136, 140, 181]. Using

class-based output layers has been shown to yield 15–30 times speed-up [126].

22

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

Direct connections are another implementation detail designed to improve perfor-

mance. Bengio et al. [21] implemented direct connections from units in the projection

layer to output units. The authors reported the connections did not help the model gen-

eralize from their relatively small corpus, but the connections did help reduce the training

time. Mikolov [128] proposed direct connections from input units to output units and cast

these connections as a maximum entropy model which can be trained with the neural net-

work using stochastic gradient descent. The only change to the model specification is the

addition of a term in the output pre-activation to account for the connections. The direct

connections are reported to have yielded significant performance gains with respect to

PP and word error rate [126].

Now, we are ready to present a deep architecture for software language modeling,

specified in Eq. (2.5)–(2.7), without implementation details like class-based output layers

and direct connections for clarity:

xi(t) = (w(t), z(t− 1))i (2.5)

zj(t) = f(αjixi(t)) (2.6)

yk(t) = g(βkjzj(t)) (2.7)

where α = concatenate(a, γ), f(uj) = sigmoid(uj), and g(uk) = softmax(uk). The model

is similar to Eq. (2.4), except we present more than the current token to the network, i.e.,

x(t) rather than simply w(t).

2.3 Intrinsic Evaluation

The goal of our empirical study was to analyze deep learners for the purpose of evalua-

tion with respect to effectiveness [211]. Our study was from the point of view of software

developers in the context of real-world Java systems [211]. We used PP, an intrinsic eval-

uation metric that estimates the average number of tokens to choose from at each point in

23

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

a sequence, as the criterion. We began by computing the PP of several different n-gram

configurations by varying the order n and adding a dynamic cache component to estab-

lish a state-of-the-practice baseline in software language modeling. Then we instantiated

several deep learners and computed the PP of these models with varying amounts of ca-

pacity and context over the same software corpus. Next, we selected the most performant

architectures and interpolated several model instances to aid generalization and assess

the performance of committees of software language models. Finally, deep learners are

capable online learners, so we also measured the performance of models that learned as

they tested on out-of-domain samples.

2.3.1 Methodology and Data Collection

To build the corpora for our study, we used the JFlex2 scanner generator, packaged with

a full Java lexical analyzer, to tokenize the source code in a repository of 16,221 Java

projects cloned fromGitHub. After tokenizing the files in each project, we sampled projects

from the repository without replacement, querying enough projects to gather over seven

million tokens. Then we randomly partitioned the projects into mutually exclusive training,

development, and testing sets where approximately five million tokens were allotted for

training, one million tokens for development, and one million tokens for testing.

The purpose of a training set is to learn a useful representation of the domain. For ex-

ample, a high-quality software language model is useful, because it can effectively predict

the next token in a sequence. In a supervised setting, the training set couples input and

its corresponding target to guide the form of the representation. To learn a good model,

the supervised learning algorithm presents a token w(t) to the model and, in the case

of deep software language models, the back-propagation through time algorithm (with a

gradient descent step) trains the model using the next token w(t+ 1) in the sequence.

Generally, the purpose of a development set is to govern hyperparameters such as

the learning rate in gradient searches. The model is evaluated on the development set
2http://jflex.de/

24

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

Table 2.1: Code Corpora Statistics
Corpus Projects Tokens Vocab.

Training 732 4,979,346 90,415
Development 125 1,000,581 19,816
Testing 173 1,364,515 32,124

Total 1,030 7,344,442 125,181

after each training epoch, and its relative performance on the development set can be

used to judge convergence. It is important to note that data in the development set are

not used to learn any of the model’s parameters. In other words, none of the weights are

modified as the model is evaluated on the development set.

Once the model is trained, it can be evaluated on a testing set. Notably, by partitioning

the projects into mutually exclusive training, development, and testing sets, all of our

experiments simulated new project settings (or greenfield development) [198]. Training

and testing on distinct domains presents unique challenges for corpus-based models like

software language models [198].

For each set of projects, we removed blank lines from the files and randomly agglu-

tinated the source files to form a training corpus, a development corpus, and a testing

corpus. Tab. 2.1 lists summary statistics for each corpus, including the number of projects

used to form each corpus, the total number of tokens in each corpus, and the vocabulary

size for each corpus. The total vocabulary size denotes the number of unique tokens in

a concatenated corpus of all three corpora. From these corpora, we used standard text

normalization techniques that are used in the NLP community [126]. We used regular ex-

pressions to replace integers, real numbers, exponential notation, and hexadecimal num-

bers with a generic NUM token. After replacing numbers, we replaced hapax legomenon

in each corpus as well as every token in the development and testing corpora that did not

appear in the training corpus with the UNK token to build an open vocabulary system [87]

with a vocabulary size of 71,293.

25

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

Table 2.2: PP versus Order
Order Back-off Interpolated

2 29.9132 28.8362
3 20.9029 20.9299
4 20.0656 20.4990
5 19.8911 20.0741
6 19.9678 20.0497
7 19.9976 19.9929
8 20.0573 19.9815
9 20.0475 20.0147

Table 2.3: PP versus Cache
Cache 5-gram B 8-gram I

10 15.6914 15.6929
50 12.5881 12.5005
100 12.3170 12.2209
500 12.4920 12.3868

1,000 12.7552 12.6477
5,000 12.4912 13.3809
10,000 13.7828 13.6721

2.3.2 State-of-the-Practice Software Language Models

In practice, n-grams’ maximum likelihood estimates are discounted [38], and the proba-

bility mass is redistributed using either back-off [92] or interpolation [79]. We used SRILM

[189] to estimate back-off (B) and interpolated (I) n-grams from our training corpus, vary-

ing the order from two to nine. Each model was smoothed using modified Kneser-Ney [38]

with an unknown token and no cutoffs. Tab. 2.2 lists PP versus order for each model. The

models’ results on the test corpus are virtually indistinguishable for this dataset, and both

models appear to saturate near order five. This saturation is consistent with other studies

on similar corpora [68]. With respect to PP, the most performant back-off model was the 5-

gram and the most performant interpolated model was the 8-gram. We augmented these

models with a unigram cache, varying the size of the cache from 10 to 10,000. The dy-

namic unigram cache model was linearly interpolated with the static n-gram model using

a mixing coefficient of 0.05. Tab. 2.3 lists PP versus unigram cache size for both mod-

els. The 100-token unigram cache component effectively improved the performance for

both the 5-gram back-off model and the interpolated 8-gram model. These performance

gains from using a dynamic cache component are consistent with previous empirical stud-

ies [198].

Key result. We used the interpolated 8-gram model with a 100-token unigram cache as

the baseline.

26

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

2.3.3 State-of-the-Art Software Language Models

After computing a baseline result using state-of-the-practice software language models,

we trained several RtNNs. These models have expansive design spaces spanned by sev-

eral hyperparameters. We chose to measure the performance by varying the sizem of the

hidden layer and the number of steps τ in the truncated back-propagation through time

algorithm. To train and test RtNNs, we used the RNNLM Toolkit [131]. We instantiated 10

models with the same random seed, but we varied m from 50 to 500 units with sigmoid

activations. The RNNLM Toolkit implements a simple mechanism to control the gradient

problem by limiting the maximum size of gradients of errors that get accumulated in the

hidden units [126]. For each model, we truncated the back-propagation through time al-

gorithm at 10 levels, updating the context every 10 iterations, and factorized the output

layer into 268 classes. We used the default starting learning rate of 0.1 and the default

ℓ2 regularization parameter of 10−6. The learning rate was annealed during training by

monitoring the model’s performance on the development set. After each training epoch,

PP on the development set was computed to govern the learning rate schedule [131].

Finally, to determine the number of direct connections from input nodes to output nodes,

we built a frequency distribution of the token types in the training corpus. We found that

995 token types covered 80.0% of the tokens in the training corpus, so we set the number

of direct connections equal to 1,000. All 10 deep learners—without a dynamic auxiliary

component like a cache during testing—outperformed the baseline on our dataset, with

the best results between 200 and 400 hidden units. Next, we selected the five models

withm between 200 and 400. For each model, we varied the number of levels of context,

keeping the same configuration for every other parameter (Tab. 2.4). For our dataset, the

most performant models in our (m, τ) design space were (300, 20) and (400, 5).

Key result. Deep learning beat the baseline.

27

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

Table 2.4: PP versus Hidden Layer Size (m) and Depth (τ)
m τ PP

200

5 10.3744
10 10.3168
15 10.4778
20 10.4465

250

5 10.2557
10 10.4265
15 10.2815
20 14.3927

300

5 17.4354
10 10.3297
15 14.7124
20 10.1960

350

5 10.4856
10 10.3954
15 10.6468
20 10.2892

400

5 10.1721
10 10.3338
15 13.9920
20 10.5023

2.3.4 Committees of Deep Software Language Models

Neural network language models are initialized with small random weights. Different in-

stantiations will likely lead tomodels finding different local minima on the error surface, and

models converging to different local minima may have different perspectives on the task.

Therefore, we can construct committees of software language models by simply averag-

ing p(y|x) for each model instance [25]. Bengio et al. [21] reported performance gains by

combining a neural network language model with an interpolated trigram, and the authors

noted the performance gains suggest that the models make errors in different places.

Likewise, Schwenk and Gauvain [179] interpolated neural network language models with

back-off models to improve the performance in a speech recognition system.Mikolov [126]

reported performance gains by combining several RtNN language models. We instanti-

28

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

Table 2.5: Committees of Software Language Models
Architecture Seeds Coefficients PP

(300, 20)

1,2 0.50 9.6467
1,2,3 0.33 9.5060
1,2,3,4 0.25 9.4549
1,2,3,4,5 0.20 9.3534

1,2,3,4,5,N 0.60 7.8512

(400, 5)

1,2 0.50 9.5775
1,2,3 0.33 9.9305
1,2,3,4 0.25 9.6265
1,2,3,4,5 0.20 9.5326

1,2,3,4,5,N 0.60 7.9346

ated five models with 300 hidden units and 20 levels of context and five models with 400

hidden units and five levels of context with different random seeds. Tab. 2.5 lists the re-

sults of combining several software languagemodels on our dataset. For example, the first

row denotes the linear interpolation of two (300, 20) models—one model instantiated with

random seed 1 and the other instantiated with random seed 2—where the coefficients in

the mixture are 0.50. N denotes an interpolated 8-gram model with a 100-token unigram

cache. So, the fifth row represents the combination of five deep models and an interpo-

lated n-gram model, where the combination of deep models has a weight of 0.60 in the

mixture and the n-gram has a weight of 0.40. The top performing committee achieves a

cross-entropy score of 2.9729 bits. Recall these performance scores are computed using

a training corpus of 732 randomly chosen projects, and the test corpus is another ran-

dom collection of 173 out-of-domain projects. The committee improves the performance

as compared to instances of each model.

Key result. Constructing committees of deep software language models can aid gener-

alization and improve performance.

29

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

Table 2.6: Static, Dynamic, and Mixture Models
Architecture Seed Update Coefficients PP

(300, 20) 5
S - 10.1686
D - 3.6518
M 0.50 3.9856

(400, 5) 1
S - 10.1712
D - 3.5958
M 0.50 3.7480

2.3.5 Deep Software Language Models Online

Cache-based language models separate static concerns from dynamic concerns using a

convex combination of components where a large static model is interpolated with a small

dynamic model. In software language modeling, this small dynamic model has been used

to capture local patterns in source code [198]. Neural network language models are capa-

ble of learning online by back-propagating the error for each test document and perform-

ing a gradient search thereby enabling adaptation. Tab. 2.6 lists the results of evaluating

models online on our dataset. Static models denote conventional models. Dynamic mod-

els denote deep learners that learn as they test on out-of-domain samples. Mixturemodels

denote a committee comprising the static and dynamic models using the corresponding

mixture coefficient. For example, the third row represents the combination of one static

model with 300 hidden units and 20 levels of context and one dynamic instance where

the posterior distributions are equally weighted. Evaluating models online significantly im-

proved the performance on our dataset.

Key result. The cross entropy scores for online models are on the order of two bits. When

deep software language models are online, they can be incrementally trained. Thus, in

new project settings, online learners are able to automatically adapt as the project is

being developed. In the committee of static and dynamic models, the static component

can be regarded as weak prior knowledge of the domain in new project settings, and the

dynamic component acts as an incremental learner, which adapts as the project is being

30

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

developed. Although the dynamic models performed noticeably better on our dataset, one

potential benefit of sacrificing some of the performance gain by using a committee is that

static models can serve as anchors and help prevent the model from being “poisoned,”

i.e., degenerated by learning unreliable information online.

2.4 Extrinsic Evaluation

In Sec. 2.3, our intrinsic evaluation compared the quality of deep software language mod-

els to state-of-the-practice models. In this section, we conduct an extrinsic evaluation [87]

to measure the performance of deep software language models in re code suggestion

and show that deep learning improves the performance. A code suggestion engine rec-

ommends the next token given the context [68, 198]. The goal of our empirical study was

to analyze deep software language models for the purpose of evaluation with respect to

effectiveness [211]. Our study was from the point of view of the software developer in the

context of the same corpora listed in Tab. 2.1.

We examined the following research questions:

RQ1 Do deep learning models (Sec. 2.2) significantly outperform state-of-the-practice

models (Sec. 2.1) at code suggestion on our dataset?

RQ2 Are there any distinguishing characteristics of the test documents on which the deep

learning models achieve considerably better performance as compared to state-of-

the-practice models?

2.4.1 Research Question 1

We used Top-k accuracy to compare deep software language models to state-of-the-

practice models at code suggestion. Top-k accuracy has been used in previous code

suggestion studies [68, 198]. Tab. 2.7 lists our Top-k results for the most performant static

31

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

Table 2.7: Top-k Accuracy
Model Update Top-1 (%) Top-5 (%) Top-10 (%)

8-gram I S 49.7 71.3 78.1
N D 4.8 69.5 78.5

(400, 5) S 61.1 78.4 81.4
(300, 20) D 72.2 88.4 92.0

and dynamic models of each model type. The deep learning models appear to outper-

form the n-grams at each level, so we designed comparative experiments to measure

the statistical significance of our results. The treatments in our experimental design were

the language models. The experimental units were the sentences in the test corpus, and

the responses were the Top-k scores. The null hypothesis stated there was no differ-

ence in performance. The (two-tailed) research hypothesis stated there was a difference

in performance. We tested these hypotheses at α = 0.05 using the Wilcoxon test [180],

a nonparameteric test, to determine whether the reported differences were statistically

significant. Comparing the dynamic (300, 20) model to the 8-gram I model, we found

p ≤ 2.2 × 10−16 < 0.05 = α in all three cases (i.e., Top-1, Top-5, and Top-10); there-

fore, we rejected the null hypothesis, suggesting that a statistically significant difference

existed. We interpreted the difference as deep learning realizing an improvement at the

code suggestion task. Regarding the effect size (Cliff’s δ), we observed a medium effect

size for Top-1, a large effect size for Top-5, and a medium effect size for Top-10.

Key result. Deep learning significantly outperformed n-grams at code suggestion on our

dataset.

2.4.2 Research Question 2

After assessing the significance of applying deep learning to a real SE task, we con-

ducted an exploratory study on the performance results. We sorted all the sentences in

the test corpus by their Top-10% (according to the n-gram), i.e., the ratio of the number

of tokens (including EOS) in the sentence suggested in the Top-10 divided by the total

32

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

number of tokens in the sentence. We observed that the sentences at the top of the list

with low Top-10 scores were relatively short in length. Some of these sentences only

comprised annotations (e.g., @Before and @Test) and others only comprised keywords

(e.g., else, try, and finally). Given the poor performance of n-grams on these test doc-

uments, we were interested in comparing the performance of deep software language

models on these sentences. We designed another set of experiments to compare the

performance of the two models; however, in these experiments, the experimental units

were sentences of length one, two, or three, respectively. Each experiment compared

the models’ Top-k performances at each sentence length. The null hypothesis for each

comparative experiment stated there was no difference in performance. The (two-tailed)

research hypothesis stated there was a difference in performance. We tested these hy-

potheses as above. All comparisons yielded statistically significant differences where

p ≤ 2.2× 10−16 < 0.05 = α; therefore, we rejected the null hypothesis (for each compar-

ison) and interpreted the difference as improved performance. Regarding the effect size

(Cliff’s δ), we only found large effect sizes for Top-5 where the sentence length was equal

to two and for Top-10 where the sentence length was equal to two or three.

Our results show that deep learning improves the performance at a SE task based on

software language models. Moreover, there may be interesting cases in software corpora

where deep learning outperforms models like n-grams. Sentences of length one or two

tokens are arguably more relevant to software corpora than natural language corpora.

2.5 Threats to Validity

Internal Validity

Threats to internal validity can be related to confounding factors internal to a study that

could have affected the results. In our study, we relied on the RNNLM Toolkit to train and

evaluate deep software language models. While the toolkit is a reliable implementation

33

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

that has been used in a number of NLP experiments [128, 130, 131], it is still an evolving

project. However, our results and trends are in line with those that have been obtained in

the field of NLP. Thus, we are confident that the results are reliable.

External Validity

Threats to external validity represent the ability to generalize the observations in a study.

We do not claim that the obtained results can be observed across other repositories or

projects, especially projects written in other programming languages. Additionally, our

dataset is representative of only repositories hosted on GitHub, so we do not claim that

the results generalize to all Java projects. GitHub’s exponential growth and popularity as

a public forge indicates that it represents a large portion of the open source community.

While GitHub contains a large number of repositories, it may not necessarily be a compre-

hensive set of all open source projects or even all Java projects. However, we analyzed

the diversity of the projects from the proposed metrics in Nagappan et al. [143] and com-

pared our dataset to the projects available on Boa [49] and found 1,556 projects out of

the 16,221 projects. We also analyzed the diversity of the 1,030 tokenized projects in our

training, development, and testing corpora, and we were able to match 128 projects. Our

entire dataset had a diversity score of 0.3455, and the subset that we used to conduct

our language modeling experiments had a diversity score of 0.2208. According to our

dimensions, these values suggest that approximately 10% of our entire dataset covers

one-third of the open source projects, and approximately 10% of our corpus covers one-

fifth of open source projects. In our diversity analysis, we considered six metrics: program-

ming languages, developers, project age, number of committers, number of revisions, and

number of programming languages. For the entire dataset, we had scores of 0.45, 0.99,

1.00, 0.99, 0.96, and 0.99, respectively. For the study corpora, we had scores of 0.38,

0.98, 1.00, 0.98, 0.92, and 1.00, respectively. These results indicate that both our dataset

and our corpora have high-dimensional diversity coverage for the relevant dimensions to

34

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

our study. Since we consider only Java projects, it is expected that our representative-

ness would be rather low in the programming languages dimension. Thus, our results

are representative of a proportion of the open source community. Further evaluation of

projects across other open source repositories and other programming languages would

be necessary to validate our observations in a more general context. It is also important

to note that we only consider open source projects.

Construct Validity

Threats to construct validity concern the relationship between theory and observation

and relate to possible measurement imprecision when extracting data used in a study. In

mining the Git repositories and collecting the projects for our analysis, we relied on both

the GitHub API and the Git command line utility. These tools are under active development

with a community supporting them. Additionally, the GitHub API is the primary interface

to extract project information. We cannot exclude imprecisions due to the implementation

of such an API.

2.6 Avenues for Future Work

There are two principal research components in our future work on deep software lan-

guage modeling and using deep learning to mine sequential SE data. One research com-

ponent examines extensions of the models. One set of extensions involves search prob-

lems, such as hyperparameter optimization, designed to improve deep learning-based

approaches for mining sequential SE data. Another set of extensions involves entirely

new architectures and models, such as stacked RtNNs [178] and recursive neural net-

works [186], for mining sequential SE data. The other research component examines

applications of deep architectures to SE tasks. The first application, model-based testing,

is an example of an SE task that can benefit from our deep software language models,

where the raw features do not have to be words per se. As we noted above, the na-

35

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

ture of the terms depends on the domain, and this application supports that claim. The

next application, software lexicon, shows that deep software language models are not

simply useful for their high-quality output. We can also use their internal representations

and feature detectors to support SE tasks. Thus, the same model that serves as a code

suggestion engine can also be used to improve the software lexicon.

Hyperparameter Optimization

Deep architectures comprise many levels of nonlinear transformations. Different sub-

spaces in a deep architecture are trained as information flows forward and supervision

propagates back through the network, but models like RtNNs entail a considerable num-

ber of hyperparameters for governing different facets of the architecture. For example,

the size of the hidden layer, the number of levels before truncating the back-propagation

through time algorithm, the number of classes for partitioning token types in the output

layer, the learning rate, and the amount of regularization yield an expansive design space

with new and important search problems for SE research to optimize these complex ar-

chitectures over SE datasets for SE tasks. SE research has examined similar problems in

different contexts [155]. Additionally, recent research in the machine learning community

has proposed methodologies beyond a naive grid search for automatically configuring the

optimal set of hyperparameters [23, 184], but these approaches have not been measured

using SE datasets in the context of SE tasks.

Model-based Testing

Tonella et al. [196] demonstrated how interpolating a spectrum of low-order Markov mod-

els inferred from an event log can be used to improve code coverage, since “backing off”

increases the likelihood of deriving feasible test cases. Conceptually, the work by Tonella

et al. uses “naturalness” (Sec. 2.1) at different scales to improve code coverage, but we

envision much more opportunity in model-based testing by exploiting the posterior dis-

36

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

tribution in the output layer of a deep software language model. While the posterior can

specify natural event sequences, we can also infer unnatural event sequences from this

model. Our work will segment the posterior’s domain into a natural space and an unnatural

space [111]. In this sense, we propose a novel interpretation of deep software language

models as natural bits to support other aspects of software testing, e.g., destructive test-

ing and regression testing. Moreover, the natural space in this model is not fixed. We

envision a framework for adapting this space by dynamically toggling event sequences

as natural or unnatural depending on the evidence to steer the model online according to

specific objectives (other than code coverage).

Software Lexicon

Software maintenance is hard. Since program comprehension is one contributing factor,

improving the software lexicon is one way to support critical maintenance tasks [161]. We

envision a novel lexicon broker to negotiate commits with the expressed goal of supporting

program comprehension by consolidating concepts and, to this end, serving as a recom-

mendation engine in cases where developers’ implementations can be improved. How

can we enable this broker? While a deep software language model can effectively sup-

port many different SE tasks, the architecture’s components may be used for other per-

tinent SE tasks such as learning software synonyms in massive repositories [73, 194,

195, 213, 214]. Recall the deep software language model embeds a token vector in a

low-dimensional subspace using a linear projection a (Sec. 2.2). This transformation is

perhaps best understood by thinking of the vector ajiwi as a linear combination of the

columns of a [197], i.e., ajiwi =
∑n

j=1wja·j = a·N ∈ Rm×1 where 1 ≤ N ≤ n, m = |z|,

and the last equality is because w is one-hot encoded. So, each column in a represents

one token in the vocabulary. These are contextualized feature vectors that can leverage

intelligent recommendations on improving the lexicon. After conducting our empirical val-

idation (Sec. 2.3) and observing how well the deep software language models performed

37

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

Table 2.8: Querying Similar Terms
Query Closest Tokens

getX getY, getWidth
transient native, volatile
@BeforeClass @AfterClass, @Extension

on our dataset, we conducted a cursory study of the models’ internal representations. The

purpose of this small exploratory study was to begin to understand how these models can

be analyzed to address other SE concerns, e.g., token similarity [195]. We extracted the

token embeddings a·j ∈ R300×1 from one of our static (300, 20) models (Sec. 2.3). Tab. 2.8

lists the two closest tokens, using Euclidean distance, for three distinct queries. Of the

71,293 token types in the vocabulary (Sec. 2.3), the two closest tokens to “getX” were two

other getter methods that appear to be related to position or size. Again, of the 71,293

token types, the closest tokens to “transient” were two other Java keywords. Finally, the

two closest tokens to “@BeforeClass” were two other Java annotations. While these are

intriguing anecdotes, this is very preliminary work in this space, but we believe these cur-

sory observations warrant a deeper and much more rigorous examination in different SE

contexts.

2.7 Summary

State-of-the-practice software language models are bound to the n-gram features that are

apparent by simply scanning a corpus and aggregating counts of specific and discrete

token sequences. On the other hand, deep learning uses expressive, continuous-valued

representations that are capable of learning more robust models. We propose that SE

research, with a wealth of unstructured data, is a unique opportunity to employ these

state-of-the-art approaches. By empirically demonstrating that a relatively simple RtNN

configuration can outperform n-grams and cache-based n-grams with respect to PP on

a Java corpus, deep software language models are shown to be high-quality software

38

CHAPTER 2. DEEP LEARNING FOR CODE SUGGESTION

language models, capable of showing great promise in SE applications [198]. We also

demonstrate an improvement in performance at an SE task. Finally, we identify avenues

for future work using deep software language models to conduct model-based testing and

improve software lexicons. Computer vision, speech recognition, and other fields have

occupied the attention of the approaches we present in this chapter. Our work is the first

step toward deep learning software repositories.

39

Chapter 3

Deep Learning Code Fragments

for Code Clone Detection

Abstraction is the most important word in SE. Accordingly, software repositories are re-

plete with abstractions, which give software engineers the ability to manage complexity

by separating concerns and handling different details at different levels [121]. For exam-

ple, software systems comprise modules; modules comprise classes; and classes com-

prise methods. Modules, classes, and methods represent different levels of granularity

and enable the decomposition of a problem into specialized constituent solutions, i.e.,

constituents. A module encapsulates a coherent set of classes. Likewise, classes encap-

sulate specific services or utilities that are designed to aid software development around

a particular concern. Software components can generally be characterized by their con-

stituents at lower levels of granularity. Thus, a general procedure for representing a well-

conceived software component is adequately representing its constituents.

Abstractions at all levels of granularity are complemented by implementations. These

implementations can be developed from scratch, or they can be cloned from existing

code fragments [54, 95]. If existing code provides a reasonable starting point for the im-

plementation, then a software engineer may clone the code by copying and pasting the

fragment. Another way that clones can be introduced in a software system is when an en-

40

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

gineer unknowingly develops an implementation that is similar to an existing one. Copy-

ing and pasting code and subsequently modifying the copied fragment may yield textually

similar code fragments where the similarities can be characterized by their syntax. On the

other hand, when an engineer unknowingly develops an implementation that is similar in

intent to something that already exists, she may create clones that are functionally similar

yet syntactically different.

Detecting clones is an important problem for software maintenance and evolution. Al-

though prior work has demonstrated several adverse impacts of code cloning [16, 110,

138], cloning is not necessarily harmful [91, 165]. Nor should clones necessarily be refac-

tored [28, 96]. Nonetheless, the ability to automatically detect that two fragments are sim-

ilar is critical in many applications [172], e.g., detecting library candidates [9, 44], aiding

program comprehension [168], detecting malicious software [202], detecting plagiarism

or copyright infringement [10, 27, 90], detecting similar applications [122, 200], detecting

context-based inconsistencies [82, 114, 205], and searching for refactoring opportuni-

ties [42, 134, 135]. Roy and Cordy [172] classified clone detection techniques by their “in-

ternal source code representation,” synthesizing a taxonomy of text-, token-, tree-, graph-

and metrics-based techniques. In this dissertation, our newfangled approach to mining in-

ternal source code representations gives way to a new, learning-based paradigm.

The clone detection process begins by transforming source code in situ into represen-

tations suitable for assessing similarity [172, 173]. For instance, to represent fragments,

traditional tree-based clone detection tools depend on handcrafted features that are tightly

coupled to generic programming constructs. In this respect, the domain information that

is rooted in identifiers [31, 46, 105, 115] is discarded, breaking the link between informa-

tion that can be learned at both the lexical level and syntactic level. Moreover, declaring

features (e.g., the occurrence counts of programming constructs) applies a great deal of

prior knowledge1 to how we can automatically represent fragments. However, it is reason-

able to expect that software systems from different application domains and at different
1By “prior knowledge,” we mean information coupled with (yet distinct from) training data.

41

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

stages of development yield unique patterns in source code that would be revealing for

problems like code clone detection. Yet these patterns are not necessarily captured using

approaches that establish a generic feature space, and the only way these useful, latent

features can be descried is by using perspectives of code that are learned, i.e., learning

the representations themselves. Automatically learning the representations, or “repre-

sentation learning” [20, 107], relaxes the prior knowledge used to transform raw data like

source code into suitable representations, automating what has been a manual step in

the detection process. Mining effective source code features, analyzing the language of

identifiers in source code, analyzing syntactic patterns, and engineering approaches that

can adapt to changing repositories are fundamental SE research problems. Engineering

a clone detection approach that considers all of these concerns is what motivates our

work. Our key result is a new set of techniques that fuse and use. We fuse information on

structure and identifiers in code and use the data in repositories to automate the step of

specifying transformations.

Our key insight to representing code fragments for code clone detection is twofold.

First, our approach maps the terms in fragments to continuous-valued vectors such that

terms used in similar ways in the source code repositorymap to similar vectors (Sec. 3.2.1).

This transformation from lexical elements to vectors is fundamentally different than the to-

ken abstraction used by token-based techniques (Sec. 3.1.1). Second, our representation

learning-based approach is designed to learn discriminating features for fragments at dif-

ferent levels of granularity (Sec. 3.2.2) rather than depend on intuitive (yet threateningly

myopic) features that are designed around the structural elements of a language like tree-

based techniques (Sec. 3.1.1).

The essence of our approach goes back to abstraction and handling different details

at different levels in SE. We propose exploiting this guiding principle in software con-

struction, so our techniques for modeling source code exploit empirically-based patterns

in structures of terms in code just as language modeling has exploited patterns in se-

quences of terms. To this end, we pair lexical analysis with recurrent neural networks

42

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

(Sec. 3.2.1) and syntactic analysis with recursive neural networks (Sec. 3.2.2). The pur-

pose of coupling the front end of the compiler with deep neural networks and deep learning

(Sec. 3.1.3) is to provide a framework for linking patterns mined at the lexical level (by

modeling how terms are used) with patterns mined at the syntactic level (by modeling how

fragments are composed). Clone detection is one important application of this framework.

Sec. 3.1 will review background on code clone detection and recursive deep learning.

This section will define four types of clones and review different code clone detection tech-

niques. Sec. 3.2 will present our novel, learning-based approach to encoding fragments

at arbitrary levels of granularity. Sec. 3.3 will describe our empirical validation aimed at

determining whether the idea of learning representations for fragments can be relevant for

clone detection. Sec. 3.4 will present our results. Sec. 3.5 will consolidate threats to the

validity of our work and lessons learned from training recursive deep learners on source

code corpora. Sec. 3.6 will describe avenues for future work. One avenue proposes using

different metric spaces to compute code similarities at scale. Another avenue proposes

augmenting the learning algorithm with more information imputed by the compiler to solve

other prediction problems. Sec. 3.7 summarizes the chapter.

3.1 Background and Related Work

A code fragment (or fragment) is a contiguous segment of source code, specified by

the source file and the lines where the segment begins and ends [193]. Code clones (or

clones) are two or more fragments that are similar with respect to a clone type [193]. A

candidate is a clone pair reported by a clone detector [72]. We introduce learning-based

detection techniques where everything for representing terms and fragments is mined

from the source code repository. Indeed, our approach aims to move clone detection

from the art of feature engineering to the science of automated discovery. To substan-

tiate our progress against this goal, consider the following difference. The related work

(Sec. 3.1.1) is chock-full of handcrafted feature vectors to represent fragments. In our

43

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

work (Sec. 3.2), this handcrafting is supplanted by methods for automatically discovering

empirically-based features. This supplantation is evidenced by the fact that feature vec-

tors in traditional approaches generally lend themselves to interpretation. A feature may

correspond to the occurrence count of a programming construct in a tree-based tech-

nique or a measure of central tendency in a metrics-based technique, etc. Alternatively,

our feature vectors do not lend themselves to interpretation. Why? We use a special type

of machine learning (Sec. 3.1.3) that shifts our clone detection approach from an impera-

tive style “Here is how I want to represent fragments” to a declarative style “Here is what

I want to represent.” Hence, our work does not replace existing techniques but rather

provides a completely new perspective.

3.1.1 Code Clone Detection

Generally, there are four clone types. Type I: Identical fragments except for variations in

comments, white space, or layout [172]. Type II: Identical fragments except for variations

in identifier names and literal values in addition to Type I differences [172]. Type III: Syn-

tactically similar fragments that differ at the statement level. The fragments have state-

ments added, modified, or removed with respect to each other, in addition to Type II

differences [172]. Type IV: Syntactically dissimilar fragments that implement the same

functionality [172]. Type I, II, and III clones indicate textual similarity, whereas Type IV

clones indicate functional similarity.

Recall that detection techniques generally begin by representing code before measur-

ing similarity, and these techniques can be classified by their source code representation.

Text-based techniques [48, 83, 84, 85] apply slight transformations to code and mea-

sure similarity by comparing sequences of text. Consequently, text-based techniques are

limited in their ability to recognize two fragments as a clone pair even if the difference

between them is as inconsequential as a systematic renaming of identifiers.

Token-based techniques [10, 11, 12, 90, 110] mollify the scrupulous text-based rule by

44

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

operating at a higher level of abstraction. These techniques lexically analyze the code to

produce a stream of tokens and compare subsequences to detect clones. Matching sub-

sequences of tokens generally improves the recognition power, but the token abstraction

has a tendency to admit more false positives [173]. Our learning-based approach differs

from token-based techniques in at least two ways. First, the token abstraction maps each

term to a (discrete) class, which effectively bins the terms, whereas our approach maps

terms to continuous-valued vectors in a feature space where similarities are encoded as

distances. Second, our approach incorporates context (e.g., syntax) beyond the token

abstraction as tree-based techniques do.

Tree-based techniques [16, 80, 101, 215] measure the similarity of subtrees in syn-

tactic representations. Our primary related work is the influential work by Jiang et al. [80]

who presented Deckard, which transforms parse trees into “characteristic vectors” and

clusters similar vectors (using Locality Sensitive Hashing [56]) to detect clones. We use

abstract syntax trees (ASTs) rather than parse trees, and while Deckard distinguishes

between “relevant” and “irrelevant” nodes, we regard every nonempty node in an AST as

relevant. Designating a subset of nodes as relevant amounts to handcrafting an abstrac-

tion for fragments. Each component of a characteristic vector represents the occurrence

count of relevant nodes in the corresponding subtree, so the vector’s dimension is the

number of tree patterns deemed relevant to approximate a given tree [53]. This feature

engineering represents a fundamental point of divergence in our work where we learn

discriminating features from the data as opposed to declare a priori a modest number

of specific features. Moreover, characteristic vectors approximate structural information

while neglecting domain information rooted in identifiers [135]. In fact, there is generally

no special treatment for identifiers and literal types in AST-based approaches [172]. Our

work operates on identifiers and literal types.

Graph-based techniques [37, 53, 98, 102, 112] use static program analysis to trans-

form code into a program dependence graph (PDG), an intermediate representation of

data and control dependencies [51]. Gabel et al. [53] augmented Deckard with seman-

45

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

tic information derived from PDGs; they mapped subgraphs to related structured syntax

(defining significant nodes to be those that descend from the parent statement class) and

then detected clones using Deckard. Chen et al. [37] used a “geometry characteristic” of

dependency graphs to measure methods’ similarities before combining method-level sim-

ilarities to detect application clones in Android markets. They begin by extracting methods

from Android application packages and transforming each method to a control flow graph

(CFG). They compute a “centroid” for each method by mapping every CFG node to a

three-dimensional point where the dimensions represent basic structures of structured

programming. Our work uses more resolution by operating on AST nodes rather than ba-

sic blocks. They only use the CFG part of the PDG, whereas our approach is designed to

learn models of how terms are composed at any level of granularity. By mapping methods

in a three-dimensional space of engineered features, Chen et al. place an extraordinar-

ily strong prior on the source code representation [37]. They imply the definition of the

centroid can be extended so the centroid can be impacted by the invoke statement, but

this augmentation constitutes more feature engineering designed to improve the perfor-

mance for the specific application of Android app clone detection. Our unique approach

obviates the need to engineer this kind of feature, since handcrafting is time-consuming

and limited [7].

Other detection approaches include the following. Davey et al. [44] ignored identi-

fiers and operators and instead considered the frequency of keywords, indentation pat-

terns, and line lengths to represent fragments. These feature vectors were passed to a

self-organizing map to detect clones. Marcus and Maletic [115] examined identifiers and

comments to identify implementations of similar high-level concepts. Nguyen et al. [148,

149, 160] extracted structural features from generic, graph-based representations to build

characteristic vectors. Lee et al. [109] measured structural similarities like Deckard and

proposed a multidimensional indexing structure to support fast inference. Kim et al. [94]

proposed a semantic detection technique that compared programs’ memory states. Her-

mans et al. [66] proposed a text-based algorithm for detecting clones in spreadsheets.

46

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Finally, Jiang and Su [81] presented EqMiner, a novel approach to identifying functionally

equivalent fragments. EqMiner runs fragments with random inputs and defines functional

equivalence in terms of I/O behavior. Our work aims to detect both textual and functional

similarity at compile time.

3.1.2 Language Modeling

Our approach is based in part on language models (Sec. 2.1.1). Traditionally, statistical

language models have been effective abstractions for NLP tasks. Recently, their effec-

tiveness has suffused SE tasks (Sec. 2.1.1). A statistical language model is a tractable

representation of sentences (e.g., lines of code or traces of method invocations) in a lan-

guage (Sec. 2.1.1). Tractability is realized by decomposing a joint distribution and analyz-

ing probabilistic automata such as n-grams (Eq. (2.1)). In Chap. 2, we showed that deep

learning induces high-quality software language models, so we enlist RtNNs, which map

the terms in source code to continuous-valued vectors called embeddings (Sec. 3.2.1). To

the best of our knowledge, we are the first to propose language models and embeddings

for code clone detection.

3.1.3 Recursive Deep Learning

Compositional learning algorithms typify deep learning [18, 107]. In Chap. 2, we consid-

ered the limitations of n-grams and aimed to improve the representation power of the ab-

stractions (e.g., software language models) we use in SE research by examining RtNNs

on software corpora for a code suggestion engine [210]. While RtNNs are powerful ar-

chitectures for modeling sequences of terms, their generalization—the recursive neural

network (RvNN) [58]—is capable of modeling arbitrary structures to, for instance, predict

the sentiment of natural language sentences [187, 188]. In our work, we cast clone detec-

tion as a recursive learning procedure designed to adequately represent fragments that

serve as constituents of higher-order components. Of course, recursive learning is inher-

47

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

lexical analysissystem syntactic analysis

combine

method
RtNN

RvNN ast2binembeddings

match detection clones

greedy

AST-based

Figure 3.1: Our approach couples deep learners (red) to front end compiler stages (gray).

ently compositional, which gives way ipso facto to deep learning. Hence, the purpose of

deep learning in this new application is to synchronize the source code representation

that we use in the clone detection process with the manner in which the code is con-

ceptually organized. To the best of our knowledge, we are the first to propose a deep,

compositional, learning-based detection approach capable of inducing representations at

different levels of granularity.

3.2 Deep Learning Code Fragments

In this section, we specify our learning-based approach (Fig. 3.1) in two parts. The first

part (Sec. 3.2.1) describes how we use a particular type of language model, an RtNN, to

map each term in a fragment to an embedding. We rely on related work from the NLP

community [126, 128, 129, 130, 131] and SE literature [210] for some of the technical de-

48

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

α

β
γ

int foo = 42 ;

Figure 3.2: RtNN. White nodes are one-hot term vectors; black nodes are continuous-valued
state vectors; and gray nodes are posterior distributions. We extract the matrix of embeddings
represented by the red arc.

tails behind training and evaluating these models. The second part (Sec. 3.2.2) describes

how we use the language’s grammar and a recursive learning procedure, implemented

as an RvNN, to encode arbitrarily long sequences of embeddings to characterize frag-

ments. We are not going to specify the features for modeling these fragments at different

levels of granularity. The purpose of using deep learning is to automate this manual step.

3.2.1 Deep Learning Code at the Lexical Level

An RtNN (Fig. 3.2) is a deep learner that is well suited for modeling sequences of terms

in a source code corpus with vocabulary V where |V| = m terms. Let n, a user-specified

hyperparameter [18], be the number of hidden units. An RtNN comprises an input layer

x ∈ Rm+n, a hidden layer z ∈ Rn, and an output layer y ∈ Rm (assuming away heuristics

such as class-based output layers [59, 126, 136, 140, 181]). The size of z (i.e., |z| = n

hidden units) is an example of a user-specified hyperparameter [18]. Adjusting n regulates

the model’s capacity [19, 20]. Recall from Chap. 2 that the depth of an RtNN is attributed

to the recurrence [67, 77, 107, 157, 190, 191] where the hidden state is copied back to

the input layer, so the input layer in an RtNN agglutinates the current term t(i) and the

previous state z(i− 1):

x(i) = [t(i); z(i− 1)] (3.1)

49

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

This input vector is multiplied by a matrix [α, β] ∈ Rn×(m+n) and passed to a nonlinear

vector function f , i.e.,

z(i) = f(αt(i) + βz(i− 1)) (3.2)

where we omit the bias term. This state vector is multiplied by another matrix γ ∈ Rm×n

and normalized to compute a posterior distribution over terms,

y(i) = p(t|x(i)) = softmax(γz(i)) (3.3)

Eq. (3.1)–(3.3) specify an RtNN. Eq. (3.4) highlights its depth by making its composition a

bit more explicit to show how its output is a highly nonlinear function of its previous inputs:

y(i) = softmax(γf(αt(i) + βf(αt(i− 1) + β(· · ·)))) (3.4)

The model θ = {α, β, γ} is trained using a cross entropy criterion [25] but we omit the

technical details here [126, 206]. In software language modeling, the model’s output y(i)

can be used to predict the next term in a line of code as argmaxk yk(i) [210]. However,

deep learners are not simply useful for their output; their internal components are useful

too. In this work, themost important component of RtNN-based software languagemodels

is the matrix of embeddings α ∈ Rn×m in Eq. (3.2). Each column of α corresponds to a

term. The column space of α comprises semantic representations [5, 107, 210] for every

term in V such that the model imputes similar vectors to terms used in similar ways in the

corpus [107]. Given that each term is one-hot encoded when presented to the model, the

matrix-vector product αt in Eq. (3.2) amounts to mapping any term in V to a column in α

thereby mapping sequences of terms in fragments to sequences of embeddings. Thus,

to represent fragments, we encode arbitrarily long sequences of embeddings.

50

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

3.2.2 Deep Learning Code at the Syntactic Level

Our learning-based archetype diverges from traditional techniques. Given a fragment, in-

formation will flow up from the terminal nodes through the nonterminal nodes to the root

of a hierarchical structure (Fig. 3.3–3.4). This bottom-up flow of information is like the pro-

cedures for computing characteristic vectors in traditional structure-oriented techniques

or computing metrics in metrics-based techniques. However, we mine vector represen-

tations for terminal nodes (Sec. 3.2.1), and the features for nonterminal nodes are not

indicator-based occurrence counts (Sec. 3.1.1). The feature space is induced by learning

to discriminate fragments (Sec. 3.2.2). Furthermore, after information is synthesized in

a bottom-up traversal to compute characteristic vectors or metrics, traditional techniques

terminate and pass the source code representations to a match detection algorithm to find

similar fragments. In a way, we regard the bottom-up flow of information as necessary—

but not sufficient—to adequately represent fragments. Hence, our termination condition is

fundamentally different. In our approach, the procedure for mining representations termi-

nates when the model has converged to a solution such that it can adequately represent

programming constructs at different levels of granularity (Eq. (3.5)–(3.7)). This criterion

where information at the lexical level is transmitted from terminals to a structure’s root and

a supervised signal is broadcasted from the root back through the structure [58] lies at

the heart of our approach.

From ASTs to Full Binary Trees

The front end of a compiler decomposes a program into constituents and produces inter-

mediate code according to the syntax of the language [3]. These constituents are called

programming constructs, and a context-free grammar specifies the syntax of program-

ming constructs [3]. The AST is one type of intermediate code that represents the hierar-

chical syntactic structure of a program [3]. Ultimately, our goal is to specify learning-based

techniques for encoding arbitrarily long sequences of lexical elements. Since the nonter-

51

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

minal nodes in ASTs subsume sequences of lexical elements [3], suppose each AST node

has a special attribute repr that stores a vector representation. This code2 characterizes

the node and, by extension, the sequence of lexical elements the node subsumes. We

mine the codes in such a way that similar sequences have similar codes. One learning-

based technique is based on the AST, a tree representation that can have an arbitrary

number of levels comprising nodes with an arbitrary number of children, but herein lies

the problem. Our learner only accepts fixed-size inputs (Sec. 3.2.2), so we transform the

AST to a full binary tree to fix the size of the input, and we apply the learner recursively

to model the structure at different levels.

The degree [41] of an AST node is either zero, one, two, or greater than two. By

definition, AST nodes with degree zero or two satisfy the property of nodes in a full bi-

nary tree [41], but subtrees rooted at nodes with degree one (Case I) or greater than two

(Case II) must be transformed in order to refashion the local subtree into a full binary tree.

The first step of our transformation is to scan the AST and delete metadata (e.g., Javadoc

nodes in ASTs for Java fragments) as well as nodes for empty anonymous class declara-

tions, empty array initializers, empty blocks, empty classes, empty compilation units, and

empty statements. As we scan the AST for empty nodes, we also look for sequences of

identical literal types with the same parent. The learner will encode pairwise combinations

of AST nodes; therefore, we avoid encoding pairs of the same literal type by visiting non-

terminal nodes, inspecting their children, and collapsing adjacent, identical literal types

to one instance. For example, true true, true true true, etc. all become true. Collapsing

these sequences also helps control the depth of the binary tree (at the risk of losing some

resolution).

Next, to obtain a binary tree, subtrees rooted at Case II nodes (i.e., nodes with degree

greater than two) need to be reorganized so the children are suitably arranged.We defined

a grammar-based approach, for each nonterminal type, to systematically reorganize the
2We use “code” to refer to source code, intermediate code, and representations. The context will always

disambiguate the term.

52

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Table 3.1: ast2bin Productions
Head Body

⟨AnonymousClassDeclaration⟩ ⟨ClassBodyElementList⟩
⟨ArgumentList⟩ ⟨AnonymousClassDeclaration⟩ | ⟨Expression⟩ | ⟨Expression⟩ ⟨ArgumentList⟩
⟨ArrayCreation⟩ ⟨ArrayType⟩ ⟨DimensionList⟩
⟨ArrayInitializer⟩ ⟨ArrayInitializerList⟩
⟨ArrayInitializerList⟩ ⟨Expression⟩ | ⟨Expression⟩ ⟨ArrayInitializerList⟩
⟨Block⟩ ⟨StatementList⟩
⟨Branches⟩ ⟨Expression⟩ ⟨Expression⟩ | ⟨Statement⟩ ⟨Statement⟩
⟨CatchClauseList⟩ ⟨CatchClause⟩ | ⟨CatchClause⟩ ⟨CatchClauseList⟩
⟨ClassBodyElementList⟩ ⟨ClassBodyElement⟩ | ⟨ClassBodyElement⟩ ⟨ClassBodyElementList⟩
⟨ClassInstanceCreation⟩ ⟨ClassInstanceCreationHeader⟩ ⟨ArgumentList⟩
⟨ClassInstanceCreationHeader⟩ ⟨Expression⟩ ⟨TypeList⟩
⟨CompilationUnit⟩ ⟨CompilationUnitHeader⟩ ⟨TypeDeclarationList⟩
⟨CompilationUnitHeader⟩ ⟨PackageDeclaration⟩ ⟨ImportDeclarationList⟩
⟨ConditionalExpression⟩ ⟨Expression⟩ ⟨Branches⟩
⟨ConstructorInvocation⟩ ⟨ArgumentList⟩
⟨DimensionList⟩ ⟨Expression⟩ | ⟨Expression⟩ ⟨DimensionList⟩
⟨EnhancedForStatement⟩ ⟨EnhancedForStatementHeader⟩ ⟨Statement⟩
⟨EnhancedForStatementHeader⟩ ⟨FormalParameter⟩ ⟨Expression⟩
⟨ExpressionList⟩ ⟨Expression⟩ | ⟨Expression⟩ ⟨ExpressionList⟩
⟨FieldDeclaration⟩ ⟨FieldDeclarationHeader⟩ ⟨VariableDeclarationFragmentList⟩
⟨FieldDeclarationHeader⟩ ⟨ModifierList⟩ ⟨Type⟩
⟨ForStatement⟩ ⟨ForStatementHeader⟩ ⟨Statement⟩
⟨ForStatementHeader⟩ ⟨Expression⟩ ⟨ExpressionList⟩
⟨IfStatement⟩ ⟨Expression⟩ ⟨Branches⟩
⟨ImportDeclarationList⟩ ⟨ImportDeclaration⟩ | ⟨ImportDeclaration⟩ ⟨ImportDeclarationList⟩
⟨InfixExpression⟩ ⟨InfixExpressionList⟩
⟨InfixExpressionList⟩ ⟨Expression⟩ | ⟨Expression⟩ ⟨InfixExpressionList⟩
⟨MemberValuePairList⟩ ⟨MemberValuePair⟩ | ⟨MemberValuePair⟩ ⟨MemberValuePairList⟩
⟨MethodDeclaration⟩ ⟨MethodDeclarationHeader⟩ ⟨Block⟩
⟨MethodDeclarationHeader⟩ ⟨SignatureElementList⟩
⟨MethodInvocation⟩ ⟨MethodInvocationHeader⟩ ⟨MethodInvocationBody⟩
⟨MethodInvocationBody⟩ ⟨Identifier⟩ ⟨ArgumentList⟩
⟨MethodInvocationHeader⟩ ⟨Expression⟩ ⟨TypeList⟩ | ⟨ClassName⟩ ⟨TypeList⟩
⟨ModifierList⟩ ⟨ExtendedModifier⟩ | ⟨ExtendedModifier⟩ ⟨ModifierList⟩ | ⟨Modifier⟩ | ⟨Modifier⟩ ⟨ModifierList⟩
⟨NormalAnnotation⟩ ⟨TypeName⟩ ⟨MemberValuePairList⟩
⟨ParameterizedType⟩ ⟨TypeList⟩
⟨SignatureElementList⟩ ⟨SignatureElement⟩ | ⟨SignatureElement⟩ ⟨SignatureElementList⟩
⟨SingleVariableDeclaration⟩ ⟨VariableDeclarationHeader⟩ ⟨Expression⟩
⟨StatementList⟩ ⟨Statement⟩ | ⟨Statement⟩ ⟨StatementList⟩
⟨SuperConstructorInvocation⟩ ⟨SuperConstructorinvocationHeader⟩ ⟨ArgumentList⟩
⟨SuperConstructorinvocationHeader⟩ ⟨Expression⟩ ⟨TypeList⟩
⟨SuperMethodInvocation⟩ ⟨MethodInvocationHeader⟩ ⟨MethodInvocationBody⟩
⟨SwitchCaseItem⟩ ⟨SwitchCase⟩ ⟨ExpressionList⟩
⟨SwitchCaseList⟩ ⟨SwitchCaseItem⟩ | ⟨SwitchCaseItem⟩ ⟨SwitchCaseList⟩
⟨SwitchStatement⟩ ⟨Expression⟩ ⟨SwitchCaseList⟩
⟨TryStatement⟩ ⟨Block⟩ ⟨CatchClauseList⟩
⟨TypeDeclaration⟩ ⟨TypeDeclarationHeader⟩ ⟨ClassBodyElementList⟩
⟨TypeDeclarationHeader⟩ ⟨ModifierList⟩ ⟨TypeSignature⟩
⟨TypeDeclarationList⟩ ⟨TypeDeclaration⟩ | ⟨TypeDeclaration⟩ ⟨TypeDeclarationList⟩
⟨TypeList⟩ ⟨Type⟩ | ⟨Type⟩ ⟨TypeList⟩
⟨TypeSignature⟩ ⟨Identifier⟩ ⟨TypeList⟩
⟨Variable⟩ ⟨Type⟩ ⟨Identifier⟩
⟨VariableDeclarationExpression⟩ ⟨VariableDeclarationHeader⟩ ⟨VariableDeclarationFragmentList⟩
⟨VariableDeclarationFragmentList⟩ ⟨VariableDeclarationFragment⟩ | ⟨VariableDeclarationFragment⟩ ⟨VariableDeclarationFragmentList⟩
⟨VariableDeclarationHeader⟩ ⟨ModifierList⟩ ⟨Variable⟩ | ⟨ModifierList⟩ ⟨Type⟩
⟨VariableDeclarationStatement⟩ ⟨VariableDeclarationHeader⟩ ⟨VariableDeclarationFragmentList⟩

children of Case II nodes. For example, IfStatement instances can have either two or

three children. For this nonterminal type, we defined a new grammar that only produces

binary subtrees (assuming away the syntax of Expression and Statement nodes) since

every production body has either one or two constructs. To do so, we augmented the

language’s grammar by introducing new artificial nonterminal types such as Branches:

⟨IfStatement⟩ ····= ⟨Expression⟩ ⟨Branches⟩

53

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Table 3.2: Node Precedence
TypeDeclaration
MethodDeclaration
OtherType
ExpressionStatement
QualifiedName
SimpleType
SimpleName
ParenthesizedExpression
Block
ArtificialType

⟨Branches⟩ ····= ⟨Statement⟩ [⟨Statement⟩]

For nonterminal types with arbitrary maximum degree (e.g., Block nodes) we organized

their children into binary lists. Since the children of Block nodes are represented by a

sequence of statements, we replaced the original production

⟨Block⟩ ····= { ⟨Statement⟩ }

with a new production where Blocks can have the form of a recursive list of statements:

⟨Block⟩ ····= ⟨StatementList⟩

⟨StatementList⟩ ····= ⟨Statement⟩ [⟨StatementList⟩]

Our complete set of productions is listed in Tab. 3.1.

After we transform each Case II instance using the new grammar, we obtain a binary

tree from the original AST, but the binary tree may or may not be a full binary tree since

nodes may have one and only one child. In other words, we need to handle Case I nodes

(i.e., nodes with degree one). We traverse the binary tree in a top-down manner, and

when we reach a Case I node, we merge the node and its child into one node. Then we

recursively continue the transit from the new merged node. The top-down visit ensures

that instances of parent nodes with one and only one child are eventually merged into one

node. Our merging procedure is governed by a precedence list that assigns a value to

54

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

each nonterminal type. When merging two nodes, the precedence value is used to decide

whether to assign the current node type or the child type to the new node. Tab. 3.2 shows

the precedence list we defined where types higher in the list have higher precedence.

When two nodes have the same precedence value—which may be the case with two

OtherType nodes—the merge keeps the parent node. This design decision comes from

the observation that the parent node is typically more expressive and representative of the

programming construct than the child node. We determined the list upon several empirical

observations. In particular, with this order, we ensure the following.

• Certain levels of granularity are protected and never overwritten by other nodes.

• When merging two nodes, more expressive types are preferred over more general

types such as ParenthesizedExpression and Block.

• Artificial nonterminal nodes, created in the previous step to handle Case II nodes,

will never replace nonterminal types in the original grammar.

The implications for protecting certain levels of granularity are apparent in SE applications

such as clone detection where (for example) our approach is capable of representing and

thereby reporting clones at well-defined abstraction boundaries to better support software

maintainers.

From Full Binary Trees to Olive Trees

Now we describe how we transform a full binary tree to what we informally call an olive

tree, which is the result of converting intermediate code to a full binary tree and then an-

notating this tree with mined representations. Consider the statement int foo = 42;. The

AST for this statement is already a full binary tree depicted in Fig. 3.3 (1)–(5). Suppose

again that each AST node has a special attribute repr, e.g., 2.repr stores the represen-

tation for the SimpleName (2) in Fig. 3.3. We initialize this attribute for each terminal by

using its lexical element to select the corresponding column in the matrix of embeddings

55

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

1 2 3

4

5 2̂ 3̂

εℓ
εℓ εr

εr
δℓ δr

int foo 42

Figure 3.3: AST-based Encoding

1 2 3

44

5

εℓ εr

εr
εℓ

int foo 42

Figure 3.4: Greedy Encoding

α (Fig. 3.2). For example, if the lexical element int maps to the jth column of α, then repr

for the PrimitiveType (1) in Fig. 3.3 is initialized such that 1.repr = α·j . This attribute is

initialized to null for nonterminal nodes such as the VariableDeclarationFragment (4) and

the VariableDeclarationStatement (5) in Fig. 3.3. At this juncture, we have used patterns

mined at the lexical level (Sec. 3.2.1) to initialize a sequence of embeddings. Next, we

use an autoencoder to combine embeddings. The canonical form of an autoencoder is a

neural network with one input layer x, one hidden layer z, and one output layer y

z = g (εx+ βz) (3.5)

y = h (δz + βy) (3.6)

where ε = [εℓ, εr] ∈ Rn×2n is the εncoder; δ = [δℓ; δr] ∈ R2n×n is the δecoder; and βz ∈ Rn

and βy ∈ R2n are βiases. The tie that binds patterns mined at the lexical level with patterns

mined at the syntactic level is n, which is the same n that governed the size of the hidden

layer z in Eq. (3.2). The function g is a nonlinear vector function, and h is typically the

identity function.

In Sec. 3.2.2, we claimed that our learner only accepts fixed-size inputs, prompting

the transformation of ASTs to full binary trees. Concretely, the input to the autoencoder

is a vector of two sibling nodes’ codes, i.e., x = [xℓ;xr] ∈ R2n. For example, to com-

pute the representation for the VariableDeclarationFragment (4) in Fig. 3.3, we would

present x = [2.repr; 3.repr] to the model. Constricting the size of the hidden layer (i.e.,

|z| = n < 2n) coerces the model into learning a compressed representation of its input.

56

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

This compression, z in Eq. (3.5), serves as the mined representation that we store in

the nonterminal node’s repr attribute. Essentially, the model embeds the input in a lower-

dimensional feature space just as the language model embedded one-hot term vectors

(Sec. 3.2.1). In other words, the language model transforms lexical elements to embed-

dings, and the autoencoder compresses any two embeddings to a vector with the same

dimensions as a term embedding. The output y = [x̂ℓ; x̂r] ∈ R2n is referred to as the

model’s reconstruction of the input. Training the model involves measuring the distance

between the original input vector and the reconstruction:

E(xℓ, xr; ε, δ, βz, βy) = ||xℓ − x̂ℓ||22 + ||xr − x̂r||22 (3.7)

If the model can effectively learn discriminating features of the input, then it will be able

to generalize and faithfully reconstruct any input vector sampled from the domain.

We just demonstrated how conventional autoencoders can compress (modest) se-

quences of two lexical elements, but to support clone detection, we learn codes for much

more. Since the code for every node in the tree has the same size, we can apply the

autoencoder recursively, an RvNN, to model the full binary tree at different levels. The

autoencoder that we used to compress the SimpleName (2) and NumberLiteral (3) in

Fig. 3.3 can be applied recursively insofar as the code for the VariableDeclarationFrag-

ment (4) is coalesced with the code for the PrimitiveType (1) and presented to the same

model to compute the code for the VariableDeclarationStatement (5):

5.repr = g([εℓ, εr][1.repr;4.repr] + βz)

As before, to train the model, we decode the representation (i.e., y = h([δℓ; δr][5.repr] +

βy)) and compare the reconstruction to the input (i.e., x = [1.repr;4.repr]) to adjust the

weights. But now the error is a (weighted) sum of all reconstruction errors where larger

programming constructs will have more influence on shaping the representation for the

57

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

fragment. For example, the VariableDeclarationFragment (4) has a greater influence on

tuning 5.repr, the representation for the VariableDeclarationStatement (5), than the Prim-

itiveType (1). After computing the code for each nonterminal node in a forward pass,

the backpropagation through structure algorithm [58] computes partial derivatives of the

(global) error function with respect to the model’s components. Then the error signal is

optimized using standard methods. Once the deep learner has converged after a number

of epochs, we inlay the full binary tree with the representations to produce an olive tree.

Why is deep learning a good approach for clone detection? Techniques that analyze

identifiers generally use Latent Semantic Analysis (LSA) [45]. Deep learning has three ap-

parent advantages over LSA. First, autoencoders are nonlinear dimensionality reducers.

Second, recursively applying an autoencoder operates on input with several nonlinear

transformations as opposed to using one linear decomposition of the input. Third, the re-

cursion considers the order of terms. On the other hand, techniques that analyze structure

discard identifiers, which we use as prior knowledge. Rather than use generic structural

elements, our learning framework bases its representation on the discriminative power of

identifiers and literal types, so even when the syntax is only weakly similar, deep learning

can still recognize similarities among terms.

Socher et al. [187] applied recursive autoencoders to natural language sentences for

sentiment analysis. The novelty in Socher’s work was the semi-supervised augmentation

designed to train the model to classify the sentiment of sentences using sentence-level

labels. We use recursive autoencoders to learn representations, instantiated as syntactic-

level attributes, of arbitrary sized code fragments. One final remark on the nature of the

attributes that we use: in compiler parlance, an attribute (i.e., a quantity associated with a

programming construct) is said to be “synthesized” or “inherited” [3], but the attribute we

mine in this work is technically neither. A synthesized attribute for a node is computed from

the attribute values for the node and the node’s children, whereas an inherited attribute is

computed from the node, its parent, and its siblings [3]. However, in our work, attributes

are synthesized in a bottom-up traversal, but then the training algorithm will adjust the

58

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

attributes in a top-down manner as the errors for general programming constructs are

divvied up among their constituents.

Olive Trees for Clone Detection

Once the model is trained, inference is straightforward. Recognizing a clone pair amounts

to comparing the representations for two fragments, which can be at different levels of

granularity. Specifically, given a fragment, we build the AST and then transform the AST

to a full binary tree. If there are k terminal nodes in the full binary tree, then there will be

k− 1 nonterminal nodes. As a result, encoding the sequence requires k− 1 matrix-vector

multiplications each followed by the application of a vector function to derive the represen-

tation for the fragment. Naturally, the topology of the full binary tree governs the order in

which the nodes’ representations are combined. For the specific application of code clone

detection, all that is required is a threshold for comparing two representations to deter-

mine whether their propinquity classifies them as a clone pair; the threshold completes

the clone detection specification.

Greedy Combinations for Clone Detection

Here we draw from an approach proposed by Socher et al. [187] for combining pairwise

representations in a greedy manner. First, we summarize the training procedure. For each

fragment, we build the AST, but rather than transform the AST as before, we encode each

pair of adjacent terminal nodes. Then we select the pair with the lowest reconstruction er-

ror (Eq. (3.7)) to encode first. For example, in Fig. 3.4, the first iteration derives two codes;

the model does a better job at reconstructing [1.repr;2.repr] rather than the VariableDec-

larationFragment [2.repr;3.repr]. The next iteration substitutes the chosen pair with their

new parent and then computes the pairwise reconstruction errors again, selecting the

pair with the minimum error. If there are k terminal nodes covering the fragment, then this

procedure repeats until a representation has been computed for k−1 nonterminal nodes.

59

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Once the ad hoc tree is in place, the model is trained as before with the backpropagation

through structure algorithm and a standard optimization method.

Once the model is trained, inference again is straightforward. Given a fragment, we

build the AST and then greedily encode nodes until deriving a code for a node that sub-

sumes the fragment. This code is compared to other greedily encoded fragments using a

threshold to detect code clones. One important note on the training and inference proce-

dures for greedily encoding nodes is that we do not need to build the AST. In fact, since

the language model stores an embedding for every term in the corpus, we can operate

directly on the concrete fragment. The reason we build the AST is to filter lexical elements

such as punctuation to control the depth of the tree that we use for training and inference.

There are some remarkable differences between the two combining methods. First,

for the AST-based method, the clone granularity is generally “fixed,” i.e., it combines frag-

ments within syntactic boundaries [173]. On the other hand, for the greedy method, the

clone granularity is generally “free,” i.e., it combines fragments without syntactic bound-

aries [173]. Second, training requires more computational resources for the greedy en-

coding than the AST-based encoding. The AST-based method has k − 1 matrix-vector

products to compute, whereas the greedy method has k − 1 (generally) dense matrix-

matrix products to compute. Third, since the greedy method is trained without explicit

knowledge of the syntax, it does not need to build the AST, so the model may better han-

dle syntactically invalid fragments. Despite the differences, the methods together reify a

new, learning-based paradigm for code clone detection.

3.3 Empirical Validation

The goal of our empirical study was to analyze our source code representations for the

purpose of evaluating them for code clone detection with respect to feasibility [211]. Our

study was from the point of view of software maintainers in the context of Ph.D. students

and real-world Java systems [211]. Our intent for establishing feasibility as the quality fo-

60

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

cus was twofold. First, we are not only presenting an innovative approach to transforming

source code but also introducing the idea of framing clone detection as a robust learning

problem. Hence, we seek to provide some understanding of the practical relevance of

this new perspective. Second, given a new approach to clone detection, the evaluation

in and of itself is a formidable task beset by undecidable problems and variable human

judgment [32, 35, 99, 100, 192, 193, 201, 204]. Roy et al. [173] highlight a number of fac-

tors that make evaluating and comparing detection tools challenging, including—but not

limited to—the diverse nature of detection techniques, the lack of standard similarity def-

initions, the absence of benchmarks, the diversity of target languages, and the sensitivity

of tuning parameters. Further, many clone detection tools are not available. Indeed, the

community’s knowledge of code clone detection tools’ performances on real-world sys-

tems is limited [193]. In this respect, our experimental design, analysis, and reporting are

consistent with current studies in the field. We discuss limitations of our empirical study

in Sec. 3.3.2 and consolidate threats to the validity of our work in Sec. 3.5.

Notwithstanding the challenges, we aimed to determine whether the idea of learning

representations for fragments can be relevant for clone detection and a tenable technique

for researchers. We examined the following questions.

RQ3 Are our representations suitable for detecting fragments that are similar with respect

to a clone type?

RQ4 Is there evidence that our compositional, learning-based approach is capable of

recognizing clones that are undetected or suboptimally reported by a traditional,

structure-oriented technique?

Considering our goal and questions, we intended to estimate the precision of our approach

at different levels of granularity to answer RQ3 and to synthesize qualitative data on code

clones across two detection techniques for RQ4. Judging code clones is inherently difficult

(even among experts [99, 201, 204]) because of imperfect definitions [35, 172] and the

lack of oracles [204], so we developed a research instrument [175] to support consistent

61

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

evaluations and control construct threats. We describe the guidelines used to manually

examine candidates in Sec. 3.3.2.

3.3.1 Data Collection Procedure

Our subject systems included eight real-world Java systems (Tab. 3.3) used in previous

studies [172]. We used ANTLR3 to tokenize the source code and the RNNLM Toolkit [131]

to train several RtNNs for each system, varying hidden layer sizes and depths [210]. We

selected the highest quality model for each system, using PP (Chap. 2) as a proxy for qual-

ity, and extracted the matrix of embeddings (Fig. 3.2). Researchers have not established

a correlation between intrinsic evaluation metrics such as PP and the quality of model

components like the matrix of embeddings. However, anecdotally, we have observed

interesting patterns in good models induced from Java corpora where embeddings for

similar terms are collocated in feature space. For each system except CAROL, we used

a hidden layer size of 500, i.e., z ∈ R500 in Eq. (3.2). For CAROL, our simplest system in

terms of tokens and vocabulary size, we used 400.

Next, we used the Eclipse Java development tools4 to build the AST for each file in

every system. Each AST node5 represents a programming construct, and we relied on

the visitor design pattern6 to traverse ASTs, identify nodes’ types, and implement ast2bin

(Sec. 3.2.2). Empirically, we found 25 different programming constructs that have at least

one Case II instance, so we implemented productions (using 30 different artificial types) to

handle each construct and verified that our ast2bin procedure transformed the 9,688 ASTs

across our eight systems to full binary trees. The roots in all but 17 of these trees were

CompilationUnit nodes. The others were rooted at TypeDeclaration nodes. To generate

method-level corpora, we used a MethodVisitor, collecting methods with 10–50 LOC. We
3http://www.antlr.org/
4http://www.eclipse.org/jdt/
5org.eclipse.jdt.core.dom.ASTNode
6org.eclipse.jdt.core.dom.ASTVisitor

62

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Table 3.3: Subject Systems’ Statistics
System Files LOC Tokens Vocab.

ANTLR 4 514 104,225 701,807 5,826
Apache Ant 1.9.6 1,218 136,352 888,424 16,029
ArgoUML 0.34 1,908 177,493 1,172,058 17,205
CAROL 2.0.5 184 12,022 80,947 2,210
dnsjava 2.0.0 196 24,660 169,219 3,012
Hibernate 2 555 51,499 365,256 5,850
JDK 1.4.2 4,129 562,120 3,512,807 45,107
JHotDraw 6 984 58,130 377,652 4,803

only considered methods with no more than 50 LOC to focus the method-level evaluation

on small code fragments and complement the coarse, file-level evaluation.

Given the embeddings, we induced an ad hoc, annotated, full binary tree for each

file using the greedy method. Then we used the embeddings and the AST-based full

binary trees to induce an olive tree for each file. Our experimental design planned to

compare results from our approach to the state-of-the-practice, so we ran Deckard on

our systems. To configure Deckard, we used the settings proposed by Jiang et al. [82],

setting minT to 50, stride to∞, and similarity to 1.0, which correspond to standard choices

in other tools.

3.3.2 Analysis Procedure

Research Question 3

After running the AST-based and greedy methods, the next step in the clone detection

process [172, 173] (and the first step in our analysis procedure) was to select a simi-

larity metric and threshold. We selected the ℓ2 norm to measure the similarity of frag-

ments’ codes. For the AST-based method, we used the same file-level threshold 1.0e-5

for each system. For the greedy method, the distances were dispersed across several

orders of magnitude, so we selected file-level thresholds such that the number of can-

didates was approximately equal to the number proposed by the AST-based method for

63

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

each project. Likewise, we used general thresholds for methods. Our selections were

not optimized—in accordance with our goal of evaluating feasibility rather than improv-

ing effectiveness. In other words, we are studying the feasibility of a new, learning-based

paradigm for code clone detection. Improving the effectiveness of learning-based tech-

niques by tuning project-dependent hyperparameters such as the size of the embeddings

or the threshold for classification constitutes a different problem.

Given the lack of oracles for our systems, we set out to manually examine random

samples of candidates. To provide a reasonable scope for the manual evaluation, we

settled on assaying file- and method-level candidates using two-author agreement. Two

Ph.D. students evaluated file- and method-level samples for each combining method and

every system. If our approach performed well on several hundred oracled pairs at mul-

tiple levels of granularity, then it is sensible to conclude that our source code represen-

tations are suitable for clone detection. To support consistent evaluations, we adapted

the taxonomy of editing scenarios designed by Roy et al. [173] to model clone creation

and be general enough to apply to any level of granularity. In our scenario-based eval-

uation, both participants were presented with samples and instructed to compare them

systematically—i.e., top-down from Scenario I to Scenario IV where clones created by the

scenarios correspond to one of the four clone types—to assess each sample as a true

positive or false positive. After independently evaluating the samples, authors’ disagree-

ments were discussed and resolved.

In addition to providing a reasonable scope for the manual evaluation, another rea-

son why we examined file-level samples is we expected the coarse granularity (a mixture

of compilation units and types) to be harder for our recursive learning procedure, which

amounts to applying the chain rule for partial derivatives. Larger fragments yield deeper

trees, but training deep architectures is notoriously difficult [18, 19, 20, 190, 191]. Conse-

quently, if the RvNN is capable of producing good results at coarse granularity, then it is

reasonable to expect its representations at lower levels of granularity are effective, and

we substantiate this claim with our method-level evaluation. Moreover, empirical stud-

64

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

ies [72, 153, 177] have underscored several practical uses for file-level clone detection

to include, inter alia, detecting similar projects and measuring third-party library reuse.

Sec. 3.4 reports estimates of the precision of our approach.

Measuring recall is a common limitation to many clone detection studies. We consid-

ered using a synthetic clone benchmark, but our approach is based on learning from how

terms are used in a corpus. By using a mutation-analysis procedure, we would increase

our control over estimating recall, but we would reduce the degree of realism, which risks

setting real influential factors (e.g., patterns mined at the lexical level) outside the scope

of the study [175].

Research Question 4

RQ4 was intended to frame an exploratory study on our results as compared to state-of-

the-practice results where differences may admit important practical impacts and theoret-

ical advances. From a software maintainer’s point of view, a detection technique that

is capable of reporting clones at fixed levels of granularity is useful [173]. For exam-

ple, given an oracled pair of file clones, it would be ideal for a detection technique to

report the files as clones rather than splinter the compilation units and report their con-

stituents as clones. Structure-oriented techniques like Deckard try to account for similar

code of any size with ad hoc, user-provided input, e.g., the width of a sliding window [80],

but automated support for this practical concern is not designed into the approach as

it is in our work. Automatically reporting clones at a fixed level without requiring input

from the user (beyond specifying the level) would be a notable strength of our compo-

sitional, learning-based paradigm where information is communicated between general-

ized constructs such as types and specialized constructs such as statements to train the

model. To provide a reasonable scope for the exploratory study, we settled on file-level

pairs. Sec. 3.4 synthesizes qualitative data from the study.

65

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Table 3.4: Performance Results

System
Training (sec) Inference (sec)

AST-based Greedy AST-based Greedy

ANTLR 443 3,516 3.21 (1.18) 33.36 (1.96)
Apache Ant 813 3,476 3.31 (1.76) 25.20 (3.10)
ArgoUML 1,018 3,868 2.58 (1.24) 16.35 (1.80)
CAROL 34 116 0.88 (0.48) 4.87 (0.95)
dnsjava 148 1,169 3.63 (2.16) 30.67 (4.30)
Hibernate 277 1,077 2.49 (1.17) 17.70 (1.70)
JDK 2,977 14,965 3.46 (1.19) 35.06 (1.80)
JHotDraw 336 792 1.67 (0.93) 6.40 (1.19)

3.4 Empirical Results

Our RvNN implementation forked Socher et al. [187], which used L-BFGS [152] to opti-

mize costs in batch mode. We trained each model for at least 30 epochs on one compute

node serving two Intel Xeon E5-4627 v2 processors at 3.3 GHz. Tab. 3.4 reports the av-

erage training time (in seconds) per epoch. Once a model is trained, inference at any

level of granularity amounts to matrix multiplications, so Tab. 3.4 reports the average time

(in seconds) to infer the representation of a file. These results contained outliers, so we

also report the median time in parentheses. Sec. 3.5 summarizes lessons learned from

training these models on source code.

3.4.1 Research Question 3

Sampling candidates for each combining method and system, Tab. 3.5 reports the ratio of

true positives as well as the total number of samples used to build the estimate. Altogether,

we sampled and manually evaluated 398 file-level pairs from a pool of 1,573 candidates

and 480method-level pairs from a pool of 60,474 candidates. 93%of the file-level samples

were evaluated to be true positives where 16 of the 27 false positives came from one

configuration (dnsjava, AST-based). Then we applied the model that was trained on the

file corpus to the method corpus. 93% of the method-level samples were evaluated to be

66

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Table 3.5: Precision Results

System
File-level Method-level

AST-based Greedy AST-based Greedy

ANTLR 97% (30) 100% (30) 100% (30) 100% (30)
Apache Ant 92% (24) 93% (30) 100% (30) 100% (30)
ArgoUML 90% (30) 100% (30) 100% (30) 100% (30)
CAROL 100% (1) 100% (10) 100% (30) 100% (30)
dnsjava 47% (30) 100% (30) 73% (30) 87% (30)
Hibernate 100% (13) 100% (20) 53% (30) 70% (30)
JDK 90% (30) 100% (30) 100% (30) 100% (30)
JHotDraw 100% (30) 100% (30) 100% (30) 100% (30)

true positives. Once more, neither file- nor method-level thresholds were optimized. For

systems that had less than or equal to 30 candidates (after applying the generic threshold),

we manually evaluated every candidate. For instance, Hibernate (AST-based) only had

13 file-level pairs with distances below the threshold, and all 13 candidates were true

positives. For systems that had more than 30 candidates, we sampled 30 of them. In one

case (CAROL, AST-based), the threshold on file-level pairs was too strict. Nonetheless,

Tab. 3.5 provides empirical evidence that our learning-based paradigm is feasible for real-

world systems. Among the file-level true positives, we found pairs mapping to all four clone

types: I (43), II (191), III (132), and IV (5). As expected, the distances were near zero for

Type I clones, and there was more dispersion for the other types. Four of the five Type IV

clones were found by the AST-based method.

3.4.2 Research Question 4

For a traditional, structure-oriented technique, we selected Deckard [80]. For the ex-

ploratory study, we queried the file-level true positives and filtered them to remove pairs

with at least one file that had less than 50 tokens and to remove Type I and Type II pairs.

We focused the exploratory study on how Deckard reported fragments in the remaining

pairs, and we found evidence that pairs were either undetected or suboptimally reported.

67

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Listing 3.1: Difference.java
1 pro tec ted Co l l ec t i on <Resource> ge tCo l l e c t i on () {
2 L i s t <ResourceCol lect ion > rcs = getResourceCol lec t ions () ;
3 i n t s i ze = rcs . s ize () ;
4 i f (s i ze < 2) {
5 throw new Bui ldExcept ion (” The d i f f e r ence of ” + s ize
6 + ” resource c o l l e c t i o n ” + ((s i ze == 1) ? ” ” : ” s ”)
7 + ” i s undef ined . ”) ;
8 }
9 Set<Resource> hs = new HashSet<Resource > () ;
10 L i s t <Resource> a l = new Ar rayL i s t <Resource > () ;
11 f o r (ResourceCol lec t ion rc : rcs) {
12 f o r (Resource r : rc) {
13 i f (hs . add (r)) {
14 a l . add (r) ;
15 } e lse {
16 a l . remove (r) ;
17 }
18 }
19 }
20 re tu rn a l ;
21 }

Listing 3.2: Intersect.java
1pro tec ted Co l l ec t i on <Resource> ge tCo l l e c t i on () {
2L i s t <ResourceCol lect ion > rcs = getResourceCol lec t ions () ;
3i n t s i ze = rcs . s ize () ;
4i f (s i ze < 2) {
5throw new Bui ldExcept ion (” The i n t e r s e c t i o n o f ” + s ize
6+ ” resource c o l l e c t i o n ” + ((s i ze == 1) ? ” ” : ” s ”)
7+ ” i s undef ined . ”) ;
8}
9I t e r a t o r <ResourceCol lect ion > rc = rcs . i t e r a t o r () ;
10Set<Resource> s = new

LinkedHashSet<Resource >(c o l l e c t (rc . next ())) ;
11whi le (rc . hasNext ()) {
12s . r e t a i n A l l (c o l l e c t (rc . next ())) ;
13}
14re tu rn s ;
15}
16p r i v a t e Set<Resource> c o l l e c t (ResourceCol lec t ion rc) {
17Set<Resource> r e s u l t = new LinkedHashSet<Resource > () ;
18f o r (Resource r : rc) {
19r e s u l t . add (r) ;
20}
21re tu rn r e s u l t ;
22}

Figure 3.5: Replaced Control Statements in Apache Ant

Modified Control Flow

In ArgoUML 0.34, both GoNamespaceToDiagram and GoProjectToStateMachine extend

the abstract class AbstractPerspectiveRule, which implements the interface Perspec-

tiveRule. The interface specifies three methods: getRuleName, getChildren, and getDe-

pendencies; these are the only methods implemented in both classes. While getRule-

Name and getDependencies are Type I (micro) clones, getChildren has two different im-

plementations. GoNamespaceToDiagram defines an ArrayList wrapped as a List, iterates

through a list of Diagram objects, and performs checks before adding them to the list. On

the other hand, GoProjectToStateMachine defines an ArrayList wrapped as a Collection

and iterates through a list of Model objects, adding them to a collection. Our approach was

robust against variations in syntax from the conditional statements. Deckard only reported

similarities between the package declarations and import statements.

Replaced Control Statements

In Apache Ant 1.9.6, both Difference (List. 3.1) and Intersect (List. 3.2) extend BaseRe-

sourceCollectionContainer with their main functionality in the method getCollection (Fig.

3.5). The first eight lines of getCollection are Type I clones, but the classes differ on how

68

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Listing 3.3: OnReplicateVisitor.java
1 Object p rocessCo l lec t i on (Object c o l l e c t i o n ,

Pe rs i s ten tCo l l ec t i onType type) throws
HibernateExcept ion {

2 SessionImpl session = getSession () ;
3 Se r i a l i z a b l e key = getKey () ;
4 Co l l e c t i o nPe r s i s t e r p e r s i s t e r =

session . ge tCo l l e c t i o nPe r s i s t e r (type . getRole ()) ;
5 session . removeCol lect ion (pe r s i s t e r , key) ;
6 i f (c o l l e c t i o n != n u l l && (c o l l e c t i o n ins tanceo f

Pe r s i s t en tCo l l e c t i o n)) {
7 Pe r s i s t en tCo l l e c t i o n wrapper = (Pe r s i s t en tCo l l e c t i o n)

c o l l e c t i o n ;
8 wrapper . setCurrentSess ion (session) ;
9 session . addNewCollect ion (wrapper) ;
10 }
11 else {
12 / / o therwise a n u l l or brand new co l l e c t i o n
13 / / t h i s w i l l a lso (i n e f f i c i e n t l y) handle arrays , which
14 / / have no snapshot , so we can ’ t do any be t t e r
15 / / processArrayOrNewCol lect ion (c o l l e c t i o n , type) ;
16 }
17 re tu rn n u l l ;
18 }

Listing 3.4: OnUpdateVisitor.java
1Object p rocessCo l lec t i on (Object c o l l e c t i o n ,

Pe rs i s ten tCo l l ec t i onType type) throws
HibernateExcept ion {

2SessionImpl session = getSession () ;
3Se r i a l i z a b l e key = getKey () ;
4Co l l e c t i o nPe r s i s t e r p e r s i s t e r =

session . ge tCo l l e c t i o nPe r s i s t e r (type . getRole ()) ;
5i f (c o l l e c t i o n != n u l l && (c o l l e c t i o n ins tanceo f

Pe r s i s t en tCo l l e c t i o n)) {
6Pe r s i s t en tCo l l e c t i o n wrapper = (Pe r s i s t en tCo l l e c t i o n)

c o l l e c t i o n ;
7i f (wrapper . setCurrentSess ion (session)) {
8Col lec t ionSnapshot snapshot =

wrapper . ge tCo l lec t ionSnapshot () ;
9i f (! SessionImpl . isOwnerUnchanged (snapshot ,

pe r s i s t e r , key)) {
10session . removeCol lect ion (pe r s i s t e r , key) ;
11}
12session . r ea t t a chCo l l e c t i on (wrapper , snapshot) ;
13}
14else {
15session . removeCol lect ion (pe r s i s t e r , key) ;
16}
17}
18else {
19/ / n u l l or brand new co l l e c t i o n
20/ / t h i s w i l l a lso (i n e f f i c i e n t l y) handle arrays , which
21/ / have no snapshot , so we can ’ t do any be t t e r
22session . removeCol lect ion (pe r s i s t e r , key) ;
23/ / processArrayOrNewCol lect ion (c o l l e c t i o n , type) ;
24}
25re tu rn n u l l ;
26}

Figure 3.6: Reordered Data-dependent Statements in Hibernate

they populate the collection. Difference uses nested enhanced for-loops to iterate over

the list of ResourceCollections, inspecting each resource in every collection, to calcu-

late the difference between two or more nested ResourceCollections. Intersect uses an

iterator, a while loop, and an enhanced for-loop to calculate the intersection of two or

more nested ResourceCollections. Our learning-based paradigm detected the clone pair

despite the classes using distinctly different control statements to loop over an iterable

object. Deckard only detected similarities between the package declarations and import

statements (not shown).

Reordered Data-dependent Statements

In Hibernate 2, for OnReplicateVisitor (List. 3.3) and OnUpdateVisitor (List. 3.4), Deckard

detected similar fragments from the package declarations up to the method declaration for

processCollection, the core method for each class (Fig. 3.6). Both classes extend the ab-

stract class ReattachVisitor, and the required method processCollection is similar across

69

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Listing 3.5: NonUniqueObjectException.java
1 p r i v a t e f i n a l Se r i a l i z a b l e i d e n t i f i e r ;
2 p r i v a t e f i n a l Class c lazz ;
3 pub l i c NonUniqueObjectException (S t r i ng message ,

Se r i a l i z a b l e id , Class c lazz) {
4 super (message) ;
5 t h i s . c lazz = c lazz ;
6 t h i s . i d e n t i f i e r = i d ;
7 }
8 pub l i c NonUniqueObjectException (Se r i a l i z a b l e id , Class

c lazz) {
9 t h i s (” a d i f f e r e n t ob jec t w i th the same i d e n t i f i e r value

was al ready assoc iated wi th the session ” , id ,
c lazz) ;

10 }
11 pub l i c Se r i a l i z a b l e g e t I d e n t i f i e r () {
12 re t u rn i d e n t i f i e r ;
13 }
14 pub l i c S t r i ng getMessage () {
15 re t u rn super . getMessage () + ” : ” + i d e n t i f i e r + ” , o f

c lass : ” + c lazz . getName () ;
16 }
17 pub l i c Class ge tPers i s ten tC lass () {
18 re t u rn c lazz ;
19 }

Listing 3.6: WrongClassException.java
1p r i v a t e f i n a l Se r i a l i z a b l e i d e n t i f i e r ;
2p r i v a t e f i n a l Class c lazz ;
3pub l i c WrongClassException (S t r i ng msg, Se r i a l i z a b l e

i d e n t i f i e r , Class c lazz) {
4super (msg) ;
5t h i s . i d e n t i f i e r = i d e n t i f i e r ;
6t h i s . c lazz = c lazz ;
7}
8pub l i c Se r i a l i z a b l e g e t I d e n t i f i e r () {
9re t u rn i d e n t i f i e r ;
10}
11pub l i c S t r i ng getMessage () {
12re t u rn ” Object w i th i d : ” + i d e n t i f i e r + ” was not o f

the spec i f i ed subclass : ” + c lazz . getName () + ” (”
+ super . getMessage () + ”) ” ;

13}
14pub l i c Class ge tPers i s ten tC lass () {
15re t u rn c lazz ;
16}

Figure 3.7: Overloaded Constructor in Hibernate

the implementations.Wemanually analyzed the two implementations and found that while

the implementations are distinctly different, the methods are similar. One difference pro-

vides evidence that our learning-based approach is capable of handling reordered data-

dependent statements: the method invocation session.removeCollection(persister, key)

is placed in different positions relative to the first if statement.

Overloaded Constructor

In Hibernate 2, NonUniqueObjectException (List. 3.5) and WrongClassException (List.

3.6) have the same private fields and implement the same methods using similar syn-

tax (Fig. 3.7). Discounting Type I and Type II variations, the few notable differences

are reordered data-independent statements in the constructors, minor syntactic differ-

ences in getMessage, and one class overloads its constructor with an additional (one-

line) method. Deckard did not report any similar fragments for this pair of files; however,

Deckard did report clones between NonUniqueObjectException and UnresolvableOb-

jectException, which overloads its constructor too.

70

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Listing 3.7: MINFORecord.java
1 p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID =

−3962147172340353796L ;
2 p r i v a t e Name responsib leAddress ;
3 p r i v a t e Name errorAddress ;
4 MINFORecord () { }
5 Record
6 getObject () {
7 re t u rn new MINFORecord () ;
8 }
9 pub l i c
10 MINFORecord (Name name, i n t dclass , long t t l ,
11 Name responsibleAddress , Name errorAddress)
12 {
13 super (name, Type .MINFO, dclass , t t l) ;
14 t h i s . responsib leAddress =

checkName (” responsib leAddress ” ,
responsib leAddress) ;

15 t h i s . er rorAddress = checkName (” errorAddress ” ,
er rorAddress) ;

16 }
17 void
18 rrFromWire (DNSInput i n) throws IOExcept ion {
19 responsib leAddress = new Name(i n) ;
20 errorAddress = new Name(i n) ;
21 }
22 void
23 rdataFromStr ing (Tokenizer st , Name o r i g i n) throws

IOExcept ion {
24 responsib leAddress = s t . getName (o r i g i n) ;
25 errorAddress = s t . getName (o r i g i n) ;
26 }
27 S t r i ng
28 r rToS t r i ng () {
29 S t r i n gBu f f e r sb = new S t r i ngBu f f e r () ;
30 sb . append (responsib leAddress) ;
31 sb . append (” ”) ;
32 sb . append (errorAddress) ;
33 re t u rn sb . t oS t r i n g () ;
34 }
35 pub l i c Name
36 getResponsibleAddress () {
37 re t u rn responsib leAddress ;
38 }
39 pub l i c Name
40 getErrorAddress () {
41 re t u rn errorAddress ;
42 }
43 void
44 rrToWire (DNSOutput out , Compression c , boolean canon ica l) {
45 responsib leAddress . toWire (out , nu l l , canon ica l) ;
46 errorAddress . toWire (out , nu l l , canon ica l) ;
47 }

Listing 3.8: SRVRecord.java
1p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID =

−3886460132387522052L ;
2p r i v a t e i n t p r i o r i t y , weight , po r t ;
3p r i v a t e Name ta r ge t ;
4SRVRecord () { }
5Record
6getObject () {
7re t u rn new SRVRecord () ;
8}
9pub l i c
10SRVRecord (Name name, i n t dclass , long t t l , i n t p r i o r i t y ,
11i n t weight , i n t por t , Name ta r ge t)
12{
13super (name, Type .SRV, dclass , t t l) ;
14t h i s . p r i o r i t y = checkU16 (” p r i o r i t y ” , p r i o r i t y) ;
15t h i s . weight = checkU16 (” weight ” , weight) ;
16t h i s . po r t = checkU16 (” po r t ” , po r t) ;
17t h i s . t a r ge t = checkName (” t a r ge t ” , t a r ge t) ;
18}
19void
20rrFromWire (DNSInput i n) throws IOExcept ion {
21p r i o r i t y = i n . readU16 () ;
22weight = i n . readU16 () ;
23po r t = i n . readU16 () ;
24t a r ge t = new Name(i n) ;
25}
26void
27rdataFromStr ing (Tokenizer st , Name o r i g i n) throws

IOExcept ion {
28p r i o r i t y = s t . getUInt16 () ;
29weight = s t . getUInt16 () ;
30po r t = s t . getUInt16 () ;
31t a r ge t = s t . getName (o r i g i n) ;
32}
33S t r i ng
34r rToS t r i ng () {
35S t r i n gBu f f e r sb = new S t r i ngBu f f e r () ;
36sb . append (p r i o r i t y + ” ”) ;
37sb . append (weight + ” ”) ;
38sb . append (po r t + ” ”) ;
39sb . append (t a r ge t) ;
40re t u rn sb . t oS t r i n g () ;
41}
42pub l i c i n t
43g e t P r i o r i t y () {
44re t u rn p r i o r i t y ;
45}
46pub l i c i n t
47getWeight () {
48re t u rn weight ;
49}
50pub l i c i n t
51getPor t () {
52re t u rn po r t ;
53}
54pub l i c Name
55getTarget () {
56re t u rn t a r ge t ;
57}
58void
59rrToWire (DNSOutput out , Compression c , boolean canon ica l) {
60out . wri teU16 (p r i o r i t y) ;
61out . wri teU16 (weight) ;
62out . wri teU16 (po r t) ;
63t a r ge t . toWire (out , nu l l , canon ica l) ;
64}
65pub l i c Name
66getAddit ionalName () {
67re t u rn t a r ge t ;
68}

Figure 3.8: Inserted and Deleted Lines in dnsjava

Inserted and Deleted Lines

In dnsjava 2.0.0, both MINFORecord (List. 3.7) and SRVRecord (List. 3.8) extend the

Record class and have a similar set of methods save a few additional getters since
71

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

SRVRecord has a few more private fields than MINFORecord (Fig. 3.8). Despite the syn-

tactic differences between constructors and helper methods, there are evident similarities

among the implementations. For example, both constructors execute a call to super be-

fore setting their private fields. Likewise, many of the helper methods have the same

interface and are exclusively designed to set private fields. Deckard did not report any

similar fragments between these classes yet Deckard did link some fragments of these

classes to other files in the system.

Fragmentation

In JHotDraw 6, both draw/standard/ConnectionTool and jhotdraw/standard/Connection-

Tool share most of their source code (with identical syntax) except for small numbers of

additional lines (in some cases one line) in different locations throughout the files. These

were larger files, which indicates that our approach is capable of handling gaps through-

out a pair of large files and detecting their similarity. Deckard reported nearly 20 clone

pairs that covered most of the files; however, from a software maintainer’s point of view,

splintering the files makes it difficult to detect these (strong) Type III clones.

3.5 Discussion

Internal Validity

We acknowledge the confounding configuration choice problem [204]. We did not adopt

arbitrary configurations and tried to justify each configuration in our approach. We also

tried to justify our Deckard configuration.

External Validity

From the viewpoint of software maintainers, two Ph.D. students conducted the evaluation

on eight real-world software systems. Thus, we believe everything to be representative.

72

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

Construct Validity

We recognize that analytical studies such as our empirical validation cannot adequately

evaluate the behavior of the developers while using a tool based on our approach [32]. We

do not infer developer behavior from our results and understand that humans must be

observed while using the approach [32]. Finally, to mitigate mono-method bias, two judges

used a uniform set of guidelines to measure the similarity of code fragments.

Lessons Learned

While our results affirm that deep learning is suitable for clone detection, reducing training

times is one area that needs more attention. To this end, we identified some corrective ac-

tion. First, we removed files withmore than 4,000 lexical elements from the training set, but

we should have been more aggressive with this cutoff. Extremely large files significantly

bogged down training times, and they may not be effective examples for the recursive

learning algorithm. Second, we should have sorted files by their size before feeding the

training set to the learning algorithm to improve worker utilization. Since we optimize the

objective in batch mode, the order used to process examples is inconsequential to learn-

ing, yet the order can significantly impact times when training for several epochs. Third,

training RvNNs is embarrassingly parallel, so we are modifying the implementation to run

on a cluster of compute nodes.

3.6 Future Work

3.6.1 On Scaling Deep Learning for Clone Detection

Here, we draw from work in the machine learning community on semantic hashing [176]

and show how a seemingly innocuous machine learning detail in a deep learner can have

important practical impacts in SE. In Sec. 3.2.2, we casually described g (Eq. (3.5)) as a

nonlinear vector function. The function g is called an “activation” function [25], and there

73

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

ANTLR Apache Ant ArgoUML CAROL dnsjava Hibernate JDK JHotDraw

●

●

●

●●●●●●
●
●●●●

●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●

●
●

●

●

●●●●

●
●
●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●

●
●●●●●

●

●

●

●
●●●

●
●●●

●●●●●●●●
●●

●

●

●

●●
●

●

●

●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●

●●●●●

●
●

●

●●●

●

●

●

●●●●●●●●●●●
●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●
●●●●●

●

●●

●

●●●●●
●
●

●

●●

●

●

●●

●●
●●●●

●●●●●●
●●●●

●●
●

●

●

●

●●

●

●
●●

●

●

●●●●●●●●
●●●●●●●●

●●
●

●

●●●●
●●

●

●

●
●
●●

●●●●●
●●●

●●
●
●●●

●●●●●●●●●●●●●●
●
●●●●●●

●
●
●

●●

●

●

●
●●●

●
●
●●

●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●●●

●●●●●●

●●

●

●
●
●

●

●

●●
●●
●●
●●

●●●

●●●●

●●

●

●

●●
●●●

●●
●

●

●

●●
●●●●

●●
●●●

●

●

●

●

●

●●●
●●●

●

●
●

●

●

●●●●●

●●●

●

●

●

●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●●●

●●
●●●●●●

●
●
●

●●●

●●●●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

●●●●●●

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

A
S

T
−

based
G

reedy

−0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05

Figure 3.9: Relative Frequency Histograms of File-level Features

are a number of activation functions used in practice, e.g., g ··= tanh. Models are ini-

tialized with small random weights, which implies the “pre-activation,” e.g., εx + βz in

Eq. (3.5), would lie in the (approximately) linear part of tanh [64]. As the model trains,

weights increase, drawing pre-activations away from zero and introducing nonlineari-

ties [64]. When using tanh activations, weights may be directed positively or negatively

away from zero. For instance, we initialized our RvNNs by sampling from (approximately)

U(-0.08,0.08) and used tanh activations. After the models were trained, we encoded each

file in every system. Fig. 3.9 shows the relative frequency histograms of features; we used

weight decay [64] for regularization. Distributions across the 16 configurations reveal an

interesting bimodal structure. Suppose we select some λ ∈ R so features greater than λ

map to 1 and features less than or equal to λ map to 0. λ transforms continuous-valued

feature vectors into binary codes, allowing us to measure the similarity of fragments in a

different metric space. Thus, given a fragment, clones can be detected by looking in small

Hamming balls around the fragment for other fragments in the repository, a computation

that can be optimized by fast algorithms onmodern computer architectures [103, 176]. Not

only would the binary codes enable fast search because measuring similarity amounts to

finding fragments that only differ by a few bits but they would also require less mem-

ory [103, 176]—a key concern for massive repositories. While conducting our empirical

study, we noticed a significant amount of Type I and II cloning in JHotDraw, so we trans-

formed JHotDraw’s (greedy) file-level feature vectors using λ = 0. 14 of 30 (47%) samples

were evaluated to be true positives (all Type III clones), which was noticeably worse than

74

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

1 2 3

4

5 2̂ 3̂

τ̂εℓ
εℓ εr

εr
δℓ δrδτ

int foo 42

Figure 3.10: τ Decoder

measuring similarity with ℓ2. To tune models for binary feature vectors, we plan to ex-

periment with different learning heuristics. Salakhutdinov and Hinton [176] reported that

semantic hashing (with their generative-based approach) was much faster than LSH in

their experiments hashing natural language documents.

3.6.2 Type Prediction

Fig. 3.10 shows how the original model {ε, δ, βz, βy} can be augmented with another de-

coder δτ trained to predict the type τ of a programming construct or fragment given its

code (z in Eq. (3.5)). Socher et al. [187] used a similar design to analyze sentiment in

a semi-supervised way with manually generated multinomial distributions. Our augmen-

tation would not require manually generated, coarse-grained labels like the sentiment

task because the types here are automatically imputed by the compiler. For example, in

Fig. 3.10, if we present [2.repr;3.repr] to the model, then we expect τ̂ = VariableDecla-

rationFragment. The only change to the criterion (Eq. (3.7)) is adding an expression to

compute (cross-entropy) misclassification costs.

3.7 Summary

We introduced a completely newway to detect code clones. Our learning-based paradigm

diverges from traditional structure-oriented techniques in at least two important ways.

First, terms—including identifiers—influence how fragments at different levels of gran-

ularity are represented. Second, our techniques are designed to automatically discover

75

CHAPTER 3. DEEP LEARNING FOR CODE CLONE DETECTION

discriminating features of source code, whereas traditional structure-oriented andmetrics-

based techniques use fixed transformations. Our results indicate that learning how to rep-

resent fragments for clone detection is feasible. We found that our techniques detected

file- and method-level pairs mapping to all four clone types and evidence that learning is

robust enough to detect similar fragments with reordered data independent declarations

and statements, data dependent statements, and control statements that have been re-

placed [173].

76

Chapter 4

Sorting and Transforming Program

Repair Ingredients via Deep

Learning Code Similarities

In the field of automated program repair, many repair approaches are based on a common

intuition: a patch can be composed of source code residing elsewhere in the repository or

even in other projects. These approaches are called redundancy-based repair techniques,

since they leverage redundancy and repetition in source code [13, 33, 34, 54, 68, 120,

147, 161]. For example, GenProg [60, 61, 106] reuses existing code from the same code-

base, whereas CodePhage [182] transplants checks from one application to another. This

intuition has been examined by at least two independent empirical studies, showing that

a significant proportion of commits are indeed composed of existing code [13, 120].

The code that is reused to craft a patch is called a repair ingredient. Most redundancy-

based repair techniques harvest repair ingredients at random and do not reason further

about the optimal strategies to select repair ingredients. In other words, these repair tech-

niques simply brute-force search for viable ingredients, randomly searching the codebase

in a straightforward trial-and-error process. Although these techniques are able to find

patches, their naive search and rigid application of repair ingredients means patches that

77

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

use novel expressions are unattainable.

We aim to improve the reasoning about repair ingredients before they enter the repair

pipeline (i.e., ingredient insertion, compilation, and test execution). Our key intuition is

that a good ingredient does not come from just any location in the program but comes

from similar code. We design our experiments to evaluate whether an approach built on

this intuition can effectively improve patch generation.

We rely on deep learning to reason about code similarities. Our learning-based ap-

proach automatically creates a representation of source code that accounts for the struc-

ture and meaning of lexical elements. Our approach is completely unsupervised, and no

top-down specification of features is made beforehand. We use the learned features to

compute distances between code elements to measure similarities, and we use the simi-

larities to intelligently select and adapt repair ingredients to generate a series of statement-

level edits for program repair.

We design, implement, and evaluate DeepRepair, an approach for sorting and trans-

forming program repair ingredients via deep learning code similarities. Our approach is im-

plemented on top of Astor [117], an automatic software repair framework for Java. Deep-

Repair uses recursive deep learning [185] to prioritize repair ingredients in a fix space, and

to select code that is most similar when choosing a repair ingredient to generate a patch.

Additionally, DeepRepair addresses a major limitation of current redundancy-based repair

techniques that do not adapt repair ingredients by automatically transforming ingredients

based on lexical elements’ similarities. For instance, given the simple ingredient

r e t u rn FastMath . abs (y - x) <= eps ;

the transformation may involve replacing the variable eps (which is out of scope at the

modification point1) with the variable SAFE_MIN (which is in scope).

We assess the effectiveness of using code similarities to sort or transform repair in-

gredients for patch generation. To do so, we evaluate our approach along several dimen-

sions to measure what aspects contribute and do not contribute to improved repair effec-
1Modification points are locations in the program where candidate patches would be applied.

78

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

tiveness. We compute a baseline; evaluate sorting (at different levels of granularity and

scope) in isolation; evaluate transforming in isolation; and evaluate sorting with the ability

to transform repair ingredients. We evaluate everything on six open-source Java projects

including 374 buggy program revisions in Defects4J database version 1.1.0 [89, 88]. In

summary, our evaluation consists of 19,949 trials spanning 2,616 days of computation

time. DeepRepair’s search strategy using code similarities generally found compilable

ingredients (Sec. 4.2.3) faster than the baseline, jGenProg [116], but this improvement

neither yielded test-adequate patches in fewer attempts (on average) nor found signifi-

cantly more patches than the baseline. Although the patch counts were not statistically

different, there were notable differences between the nature of DeepRepair’s patches and

jGenProg’s patches (Sec. 4.4).

To sum up, we make the following noteworthy contributions:

• We introduce a novel deep learning-based approach to intelligently select and adapt

repair ingredients for redundancy-based repair.

• We provide the implementation of our approach for Java in a publicly available tool.

• We introduce an evaluation protocol for redundancy-based repair, including a set of

novel metrics that are specific to the analysis of ingredient selection strategies.

• We conduct an evaluation on 374 real bugs from the Defects4J benchmark showing

that our algorithm finds patches that cannot be found by existing redundancy-based

techniques.

Sec. 4.1 will review background on automated program repair and the redundancy as-

sumption. This section will review two types of repair techniques, correct-by-construction

and generate-and-validate. Generate-and-validate techniques rely on the redundancy as-

sumption: large programs contain the seeds of their own repair [13, 120]. Sec. 4.2 will

present our technical approach organized as a pipeline with three phases: language

recognition, machine learning, and program repair. Sec. 4.3 will describe our empirical

79

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

validation aimed at measuring effectiveness. Sec. 4.4 will present our results. Sec. 4.5

will discuss threats to the validity of our work. Sec. 4.6 summarizes the chapter.

4.1 Background and Related Work

4.1.1 Automated Program Repair

Automated program repair involves the transformation of an unacceptable behavior of a

program execution into an acceptable one according to a specification [139]. Behavioral

repair techniques in particular change the behavior of a program under repair by changing

its (source or binary) code [139]. For example, GenProg [60, 61, 106] changes the behav-

ior of a program under repair according to a test suite (i.e., an input-output specification)

by modifying the program’s source code. This generate-and-validate technique searches

for statement-level modifications to make to an AST. GenProg does not use symbolic rea-

soning. Indeed, GenProg does not reason about repair ingredients at all, since it selects

ingredients from a pool of equiprobable statements.

A complimentary set of repair techniques leverage program analysis and program syn-

thesis to repair programs by constructing code with particular properties [123, 124, 151,

212]. For example, SemFix [151] synthesizes (side-effect free) expressions for replacing

the right-hand side of assignments or branch predicates to repair programs. Angelix [123]

uses guided symbolic execution and satisfiability modulo theories (SMT) solvers to syn-

thesize patches using angelic values (i.e., expression values that make a given test case

pass). Nopol [212] either modifies an existing conditional expression or adds a precondi-

tion to a statement or block in the code.

Both types of techniques have distinct advantages. Generate-and-validate techniques

have the advantage of operating at coarse granularity with the power to mutate state-

ments, leveraging the intuition that using human-written code for fixes at coarse granu-

larity leads to better quality patches. However, these techniques generally do not mutate

80

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

code below statement-level granularity, so they do not change conditional expressions

nor variables. Semantics-based techniques have the advantage of operating at fine gran-

ularity on expressions and variables, enabling them to synthesize a repair even if the

patch code does not exist in the codebase [151]. However, they generally do not operate

at higher levels of granularity, and scalability has been a key concern.

SearchRepair [93] draws from both generate-and-validate and semantics-based tech-

niques. SearchRepair uses symbolic reasoning to search for code and semantic reason-

ing to generate candidate patches. Consequently, SearchRepair suffers the same scala-

bility problems as semantics-based techniques and has only been demonstrated to work

on small programs. In lieu of program semantics to search for similar code, we use a

learning-based approach to query textually/functionally similar code at arbitrary levels of

granularity. SearchRepair uses several software systems to repair small, student pro-

grams, whereas our approach uses the program under repair, and we aim to repair real

software systems. SearchRepair depends on input-output examples to describe desired

behavior, whereas we automatically learn features for distinguishing code fragments.

Recently, Yokoyama et al. [216] used code similarity to select code lines in code re-

gions similar to the faulty code regions. Our work using code similarities differs in sev-

eral important respects. They used small, fixed-sized code regions of 4, 6, and 8 lines,

whereas we use code regions at arbitrary levels of granularity, making it possible to map a

suspicious statement (i.e., a statement suspected to contain a bug [118]) to its method or

class and query similar execution contexts or similar classes. Their similarity metric ana-

lyzed the longest common subsequence between two token sequences, whereas we use

a learning-based clone detector that fuses information on structure and identifiers and is

capable of finding more meaningful similarities than token-based techniques [209]. They

used a collection of 24 bug-fix commits and defined a code coverage metric to evalu-

ate their approach. We use a collection of 374 reproducible bugs and implemented our

learning-based approach in an automatic software repair framework to measure effective-

ness. Finally, our approach is capable of using similarities to transform repair ingredients.

81

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

Our approach relies in part onmachine learning for the fix localization problem. Prophet

[113] is a learning-based approach that uses explicitly designed code features to rank can-

didate repairs. We use representation learning [20, 107] to automatically learn how to en-

code fragments to detect similarities. Other approaches train on correct (student) solutions

to specific programming tasks and try to learn task-specific repair strategies [24, 162]. For

example, in massively open online courses, the programs are generally small and syn-

thetic [63]. Finally, other approaches cannot transform statements. For example, Gupta

et al. [63] use an oracle that rejects a fix if it does not preserve the identifiers and key-

words present in the original statement. We use similarities to map the set of out-of-scope

variables to a set of variables in scope.

4.1.2 Redundancy Assumption

Martinez et al. [120] empirically examined a critical assumption of GenProg that certain

bugs can be fixed by copying and rearranging existing code. They validated the redun-

dancy assumption by defining a concept of software temporal redundancy. A commit is

temporally redundant if it is only a rearrangement of code in previous commits. They mea-

sured redundancy at two levels of granularity—line- and token-level granularity—and we

draw key insights from their results at each level.

At line-level granularity, they found that most of the temporal redundancy is localized in

the same file. Accordingly, we use a learning-based code clone detection approach, which

is capable of detecting file-level clones, so the search will first look in the same file and

similar files. Moreover, their token-level granularity results imply that many repairs need

never invent a new token. Ergo, the tokens exist, but repair engines need to learn how

to use them. Again, our key insight is to look to the learning-based code clone detection

approach, which maps tokens to continuous-valued vectors called embeddings that we

can use to measure similarities. Then we use the similarities to consider different tokens

in different contexts.

82

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

We draw one more bit of insight from their empirical study. The authors note a tension

between working with the line pool or the token pool [120], and they characterize this

tension by the combination spaces of line- (smaller combination space) versus token-

level (larger combination space) granularity. The essence of our work is to suppose there

exists a manifold that is largely governed by coarse-grained snippets like lines yet can be

parameterized by fine-grained snippets like tokens. This low-dimensional representation

is where we will find repairs.

Barr et al. [13] examined a history of 15,723 commits to determine the extent to which

the commits can be reconstructed from existing code. The grafts they found were mostly

single lines, i.e., micro-clones, and they proposed that micro-clones are useful since they

are the atoms of code construction [13]. The learning-based clone detection approach

uses these micro-clones to compute the representation for fragments at higher levels of

granularity, which we in turn use to assess similarities and determine which statements

and values to assign to the source code modifications first. Their findings align with Mar-

tinez et al. [120] in that changes to a codebase contain snippets that already exist in the

codebase at the time of the change.

4.2 Technical Approach

Our approach is organized as a pipeline comprising three phases: recognition, learn-

ing, and repair. The language recognition phase (Sec. 4.2.1) consumes source code of

the application under repair and produces training data. The machine learning phase

(Sec. 4.2.2) consumes the training data and produces encoders for encoding anything

from a lexical element to a class such that similarities can be detected among the encod-

ings. The program repair phase (Sec. 4.2.3) uses the encoders to query and transform

code fragments in the codebase for patch generation. To explain our approach, we use

the buggy program revision Math-63 (Revision ID: d2a5bc0) from the Defects4J database

version 1.1.0 [89, 88] as a running example throughout this section.

83

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

4.2.1 Language Recognition Phase

Our approach begins with a program and its collection of source code files. For example,

Math2 is a library of lightweight, self-contained mathematics and statistics components.

Math is a Maven3 project with the standard directory layout. The src/main/java directory

is the artifact producing source directory where the package hierarchy exists.

The first stage of our language recognition phase consumes this source directory and

parses its contents to create an AST or any model for representing the code. There are no

special requirements for the model provided its complete in the sense that it contains all

the required information to derive compilable and executable programs. A well-formed,

typed AST—an instance of a model—is sufficient since the visitor design pattern facili-

tates queries on the program under analysis such as the number of files, classes, and

methods in the application sources. In our example, this stage produces a model for Math

containing 459 files, 661 classes, and 4,983 methods.

The second stage of our language recognition phase consumes the model and uses

a program processor to produce corpora at different levels of granularity. In this context,

a program processor is simply a utility for performing a specific action. First, we create

a file-level corpus by querying the model for all the files. Our program processor splays

each file on its own line in the corpus by printing (from left to right) the terminal symbols [3]

of the corresponding syntax tree. Simultaneously, we store keys that uniquely identify the

Java source code files. Likewise, we use the program processor to build corpora at other

levels of granularity, e.g., classes or methods, provided there is a way to uniquely identify

the code elements. For example, Math files can be identified by their path; classes can

be identified by their qualified name; and methods can be identified by concatenating

the qualified name of their parent type and their signature. We build corpora at different

levels of granularity because (in the next phase of our approach) we mine patterns at the

level of classes, methods, and even lexical elements. These representations will be the
2http://commons.apache.org/proper/commons-math/
3https://maven.apache.org/

84

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

pub l i c s t a t i c boolean equals (double x , double y) {
r e t u rn (Double . isNaN (x) && Double . isNaN (y)) | | x == y ;

}

Figure 4.1: Suspicious Method in Math-63’s MathUtils.java

mechanisms for querying and transforming repair ingredients.

The third stage of our language recognition phase normalizes the corpora by mapping

some or all of the literal tokens to their respective type. For example, every floating point

number in the Math corpus would be replaced by a generic symbol for floating point lit-

eral values. Normalizing the corpora is the last stage of recognition and staging data for

learning.

4.2.2 Machine Learning Phase

The first stage of our machine learning phase involves training a neural network language

model from the file-level corpus (Sec. 2.1.4). We require a neural network to learn repre-

sentations for each term in the file-level corpus [21]. These models learn from the order of

terms in a corpus, imputing continuous-valued vectors called “embeddings” to the terms

in such a way that terms used in similar ways have embeddings that are close to each

other in a feature space (Sec. 3.2.1). In this work, we use these embeddings to initialize

the second stage of the learning phase.

The second stage of our machine learning phase involves training another learner to

encode arbitrary streams of embeddings. We leverage work on recursive autoencoders

[187, 188] and learning-based code clone detection (Chap. 3). To review the general,

recursive learning procedure, consider a suspicious method in Math-63’s class MathUtils

(Fig. 4.1). Language recognition filters the method’s return statement to the stream of

terms in Fig. 4.2. Then our first machine learning stage maps the stream of terms to a

stream of embeddings x· ∈ Rn indexed in Fig. 4.2 by nodes (0)–(7). There are seven

pairs of adjacent terms. Each pair of adjacent terms are εncoded by agglutinating the

embeddings x = [xℓ;xr] ∈ R2n multiplying x by a matrix ε = [εℓ, εr] ∈ Rn×2n adding a

85

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

0 1 2 3 4 5 6 7

8 8 8 8 8 8 8
εℓ εr

Double isNaN x Double isNaN y x y

5̂ 6̂
δℓ δr

Figure 4.2: First Iteration of the Procedure to Encode a Stream of Lexical Elements

βias vector βz ∈ Rn and passing the result to a nonlinear vector function f :

z = f (εx+ βz) (4.1)

For example, in Fig. 4.2, xℓ, xr, and z may correspond to nodes (5), (6), and (8), respec-

tively. The result z represents an encoding for the stream of two terms corresponding to

x, e.g., “y x” in Fig. 4.2. Then z is δecoded by multiplying it by a matrix δ = [δℓ; δr] ∈ R2n×n

and adding a βias vector βy ∈ R2n, i.e., y = δz + βy. The output y = [x̂ℓ; x̂r] ∈ R2n is the

model’s reconstruction of the input (Chap. 3). As before (Sec. 3.2.2), training the model

θ = {ε, δ, βz, βy} involves measuring the Error between the original input vector x and the

reconstruction y, i.e.,

E(x; θ) = ||xℓ − x̂ℓ||22 + ||xr − x̂r||22 (4.2)

Concretely, the model is trained by minimizing Eq. (4.2). Training the model to encode

streams with more than two terms requires recursively applying the autoencoder. To this

end, we use the greedy procedure defined by Socher et al. [186], sketched in Sec. 3.2.2.

In the first iteration of the procedure, each pair of adjacent terms are encoded (Fig. 4.2).

The pair whose encoding yields the lowest reconstruction error (Eq. (4.2)) is the pair se-

lected for encoding at the current iteration. For example, in Fig. 4.2, the pair “y x” is se-

lected to be encoded first. As a result, in the next iteration, nodes (5) and (6) are replaced

by node (8) and the procedure repeats. Upon deriving an encoding for the entire stream,

the backpropagation through structure algorithm [58] computes partial derivatives of the

(global) error function w.r.t. θ. Then the error signal is optimized using standard methods.

86

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

absAsinh absAtanh

absSinh

absTanh

cosacosaa cosab

cosb
cotanFlag

rln10arln10b

sinasinb

alpha

beta

degreesOfFreedom
denominatorDegreesOfFreedom

df

distribution

gamma

inverseCumAccuracy

mean

median
numeratorDegreesOfFreedom

sd

shape

standardDeviation

nextGaussian

rand

random

randomData

randomGenerator

chiSquareTest

counts
expected

observed
observed1

observed2

METHOD_NAME

maxStep

minStep
nSteps

name

scalAbsoluteTolerance
scalRelativeTolerance

vecAbsoluteTolerance

vecRelativeTolerance

chromosomes
contractionCriteria

eDA

elitismRate
expansionFactor

expansionModeinitialCapacityinternalArray nextGenerationnumElements

percentileImpl

population

populationLimit

windowSize

POSITIVE_INFINITY

abs

absoluteAccuracy

accuracy

defaultMaximalIterationCount

delta

functionValueAccuracy
iterationCount

maximalIterationCount

minimalIterationCount

oldDelta

oldt
oldx

relativeAccuracy resultComputed

root

tolerance

x3
y3

yMin

DIMENSIONS_MISMATCH_2x2VECTOR_LENGTH_MISMATCH bpbpCol

bpI

cachedL

col lTData

lu

luRow

m

nColB

nCols
nRows

pivot
singular

DIMENSIONS_MISMATCH_SIMPLE
INSUFFICIENT_DIMENSION

biasCorrected

covariance

covarianceMatrix

matrix

nVars

outMatrix sigma

xArray

yArray

geoMeanImpl

maxImpl

meanImpl
minImpl

sumImpl

sumLogImpl

sumsqImpl

varianceImpl

columnCount

dataRow mRow

outData
outDataRow

rowCount

DEFAULT_EPSILON

MIN_VALUE

NEGATIVE_INFINITY

SAFE_MINendIndex

endTime

eps

errfac

errors

guess

lastTime

maxAbsoluteValue

maxColSum

maxCosinemaxCostEval

maxDegree

maxDenominator

maxGrowth

maxYIdx

minRatioPositions

minReduction

steadyStateThreshold

stepEnd

stop

stopTime

tol

tol1

totalEvaluations

trials

upperBound

upperBounds

fitter

function

observations

parameters

point

residuals
weight

weightedResidualJacobian

column

columns

destination

end

endColumn endRow

newValue
oldValue

row

rowI
rows

selectedColumns

selectedRows

start

startColumn

startRow

subMatrix

visitor

BLOCK_SIZE
block

blockColumn

blockColumns
blockData

blockEndColumnblockEndRow

blockIndex

blockRow

blockRows
blockStartColumn blockStartRow

blocks

colSums

columnsShift

dataP
dataPos

dstBlock

dstPos

dstStartColumn
dstStartRow

dstWidth

firstColumnfirstRow

heightExcess

iBlock

iHeight

iRow
iStartjColumn jEnd

jLength

jStart

jWidth

jWidth2

jWidth3

jWidth4
lEnd

lInclStart

lastColumns

lastPos

mBlock

mBlockIndex

mIndex

nStart

outBlock

outBlockIndex

outIndex

pBlock

pEnd pStart

qBlock

qEnd qStart
rStart

rawData
refLength

regularPos

rowsShift

srcBlock

srcEndColumn

srcEndRow

srcPos

srcRow
srcStartColumn

srcStartRow

srcWidth

subRow

tBlock

Figure 4.3: Sample of Math-63 identifiers’ embeddings (best viewed in color) where positions
have been jittered to avoid overplotting and colors correspond to clusters.

Our intent behind using this learning-based approach was manyfold. First, given that

we aimed to assess the effectiveness of using similarities in sorting and transforming fix

space elements for patch generation, this recursive learning procedure gave us the ability

to evaluate similarity-based sorts at well-defined levels of granularity. The samemodel can

be used to recognize similarities among classes, methods, or even identifiers. Second,

the approach did not require intuition in the matter of engineering features for fragments

since the approach automatically searched for empirically-based features.

The third and last stage of our machine learning phase involves clustering identifiers’

embeddings. For example, we clustered Math-63 identifiers’ embeddings and used t-SNE

[199] to reduce their dimensionality Rn → R2. We plotted a handful of identifiers in Fig. 4.3

where terms with similar semantics appear to be proximate in the feature space. In this

context, by similar “semantics,” we mean terms are used in similar ways in the program

(i.e., their token neighborhoods are similar). It is worth noting that the important distinction

between inference and decision lies at the heart of the purpose for this learning stage. The

learning phase induces models from source code, but the repair phase will require deci-

sions on whether or not to transform ingredients. We cluster embeddings to operationalize

a decision criterion. When transforming ingredients, the only identifiers that may replace

an out-of-scope variable access are identifiers in its cluster (Sec. 4.2.3).

87

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

4.2.3 Program Repair Phase

Core Repair Loop

DeepRepair is based on a typical generate-and-validate repair loop à la GenProg. First, it

begins in a traditional way by running fault localization to get a list of suspicious statements

and their suspicious values. For example, running spectrum-based fault localization [1] on

Math-63 yields eight statements with suspicious values greater than 0.1. These suspicious

statements serve as modification points. For each modification point in sequence, a repair

operator is used to transform that statement. Then, one tries to recompile the changed

class (since repair operators do not guarantee a well-formed program after modification),

and the tentative patch is validated against the whole test suite.

Repair Operators

In DeepRepair, the repair operators are addition of statements and replacement of state-

ments. Contrary to Genprog and jGenProg [116], we do not use removal of statements

because it generates too many incorrect patches [163]. Both addition and replacement

are redundancy-based repair operators, since they need to select code from elsewhere

in the codebase. In DeepRepair, the reused code are in ingredient pools, with three main

pools, corresponding to whether the ingredient is in the same class as the modification

point (local reuse), in the same package (package reuse), or anywhere in the codebase

(global reuse).

DeepRepair departs from jGenProg on two fundamental points. First, the default jGen-

prog operators randomly pick one statement from the ingredient pool, whereas DeepRe-

pair sorts the ingredients according to a specific criterion based on code similarity. Sec-

ond, the default jGenprog operators reuse code “as is” at the modification point, with-

out applying any transformation, so it could happen that the ingredient has variables

that are not in the scope at the modification point (or wrongly typed), resulting in an

uncompilable—obviously incorrect—candidate patch. On the contrary, DeepRepair has

88

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

the ability to transform an ingredient so that it fits within the programming scope of the

modification point. In DeepRepair, the sorting and transformation of ingredients are based

on deep learning. A combination of a sorting and transformation technique is called a fix

space navigation strategy. In this paper, we explore five novel navigation strategies im-

plemented in DeepRepair.

Sorting Ingredients

WhenDeepRepair applies a repair operator, it sorts the available repair ingredients. Deep-

Repair prioritizes the ingredients that come from methods (resp. classes) that are similar

to the method (resp. class) containing the modification point. For example, if the sus-

picious statement is the return statement in Fig. 4.1, then DeepRepair takes the parent

method MathUtils::equals(double,double) and uses the method-level similarity list to sort

methods in the codebase. Then, it extracts the statements from each similar method in

order and enqueues them in a first-in first-out ingredient queue.

Transforming Ingredients

For a patch to be compiled, the ingredient must “fit” in the modification point in the sense

that all variable accesses must be in scope. We refer to these “fit” ingredients as com-

pilable ingredients. The key point of DeepRepair is its ability to transform ingredients,

so a repair ingredient can be adapted to a particular context, resulting in uncompilable

ingredients becoming compilable at the modification point. If a variable is out of scope,

then DeepRepair examines the other identifiers in its cluster to determine whether any of

them are in scope. For example, suppose a patch attempt consists of replacing the return

statement in Fig. 4.1, and suppose we poll the following ingredient:

r e t u rn equals (x , y , 1) | | FastMath . abs (y - x) <= eps ;

The variable eps is out of scope at the modification point, but SAFE_MIN—a term in

its cluster (Fig. 4.3)—is in scope, so we replace eps with SAFE_MIN in the ingredi-

89

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

ent. Applying this patch with a transformed ingredient yields a correct patch for Math-63

(Sec. 4.4.4). Transforming repair ingredients using clusters based on learned embed-

dings enables DeepRepair to create novel patches. These patches would be impossible

to generate if only raw ingredients were used as done in jGenProg.

4.3 Empirical Validation

Redundancy-based program repair techniques search large repair spaces for fixes. One

simplifying assumption in the theory of fix space navigation strategies is that fixes already

exist somewhere in the codebase (Sec. 4.1.2). Invoking this redundancy assumption,

in Sec. 4.3.1, we define our research questions, define the goal of our empirical study,

establish the experimental baseline configuration, and state our hypotheses. Then we

select the dependent variables and identify the independent variables that we change (i.e.,

the factors) as well as the independent variables we control at fixed levels. We conclude

our plan with our experimental design: comparative experiments are characterized by

treatments, experimental units (i.e., the objects to which we apply the treatments), and

the responses that are measured. Next we describe our data collection procedures for

each phase of our approach (Sec. 4.3.2). We conclude this section by specifying our

analysis procedures for each one of our research questions (Sec. 4.3.3).

4.3.1 Experiment Scope and Plan

Our research questions included the following:

RQ5 Do code similarities based on deep learning improve fix space navigation as com-

pared to a uniform random search strategy?

RQ6 Does ingredient transformation using embeddings based on deep learning effec-

tively transform repair ingredients as compared to a default ingredient application

algorithm that does not transform ingredients?

90

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

Table 4.1: Five DeepRepair Configurations Evaluated in Our Experiment
Code Features

ED (E)xecutable-level similarity ingredient sorting
(D)efault ingredient application (no ingredient transformation)

TD (T)ype-level similarity ingredient sorting
(D)efault ingredient application (no ingredient transformation)

RE (R)andom ingredient sorting
(E)mbeddings-based ingredient transformation

EE (E)xecutable-level similarity ingredient sorting
(E)mbeddings-based ingredient transformation

TE (T)ype-level similarity ingredient sorting
(E)mbeddings-based ingredient transformation

RQ7 Does DeepRepair, our learning-based approach that uses code similarities and

transforms repair ingredients, improve fix space navigation as compared to jGen-

Prog [116]?

RQ8 Does DeepRepair generate higher quality patches than jGenProg?

The goal of our empirical study was to analyze ingredient search strategies for the pur-

pose of evaluation with respect to effectiveness [211]. Our study was from the point of view

of the software maintainer in the context of six open-source Java projects, a collection of

(real) reproducible bugs, and a collection of JUnit test cases [211].

The baseline configuration, jGenProg, was the uniform random search strategy where

ingredients were selected from a pool of equiprobable statements. We configured the

baseline with a cache so the same modification instance (i.e., ingredient and operator

instance) was never attempted more than once to improve its efficiency. The baseline

was also configured with a default ingredient application algorithm that analyzed the vari-

able accesses in a repair ingredient, matching accesses’ names and types to variables in

scope. If at least one variable access failed to match a variable in scope, then the ingre-

dient was discarded. Tab. 4.1 lists the DeepRepair configurations.

91

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

We formalized our experiment into the following hypotheses:

H1a
0 Using code similarities generates the same number of test-adequate patches (on

average) as jGenProg.

H1b
0 Using code similarities attempts4 the same number of ingredients before finding a

test-adequate patch as jGenProg.

H2a
0 Ingredient transformation using embeddings generates the same number of test-

adequate patches as jGenProg.

H2b
0 Ingredient transformation using embeddings attempts the same number of ingredi-

ents before finding a test-adequate patch as jGenProg.

H3a
0 DeepRepair generates the same number of test-adequate patches as jGenProg.

H3b
0 DeepRepair attempts the same number of ingredients before finding a test-adequate

patch as jGenProg.

H4
0 There is no significant difference in quality (i.e., correctness) between patches gen-

erated by DeepRepair and jGenProg.

We chose the following dependent variables: number of test-adequate patches and

number of ingredients attempted. We chose the following independent variables (high-

lighting the factors): ingredient search strategy, scope, clone granularity, variable res-

olution algorithm, fault localization threshold, maximum number of suspicious candi-

dates, and programming language. The fault localization threshold was fixed at 0.1; the

maximum number of suspicious candidates was fixed at 1,000; and the language was

fixed on Java. The random seed for each experimental configuration ranged from one to

three.

We designed comparative experiments to measure the statistical significance of our

results. Typically, empirical studies in the field report the number of test-adequate patches
4An attempt is defined to be a request sent to the fix space for an ingredient.

92

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

found, but we conducted a large-scale study, report the number of test-adequate patches

found, and measure the statistical significance of differences to contextualize the results.

For our quantitative study, the treatments in our experimental design were the ingredient

search strategies. The experimental units were the buggy program revisions, and the

responses were the number of test-adequate patches found and the number of ingredients

attempted before finding a test-adequate patch. We consolidate threats to the validity of

our work in Sec. 4.5.

4.3.2 Data Collection Procedure

The first stage of our recognition phase involved creating a model of source code (Sec.

4.2.1). We used Spoon [159], an open-source library for analyzing and transforming Java

source code, to build a model for each buggy program revision.

Given the models, we implemented program processors for querying program ele-

ments at three levels of granularity: file-, type-, and executable-level granularity. Types

included classes and interfaces, and executables included methods and constructors,

but we omitted anonymous blocks. We only queried top-level types and executables to

control the number of similarities to be computed. In this context, by “top-level,” we mean

types or executables that did not have a parent type or executable, respectively. For exam-

ple, a nested class would not be included, but its enclosing class may be included. Then

we extracted the yield [3] from each program element’s syntax tree along with a key for

uniquely identifying the element to build three corpora (Sec. 4.2.1). So each line of a type-

level corpus corresponded to a class or interface in the program. The only normalization

we performed was replacing character, float, integer, and string literal values with their

respective type.

The first stage of our learning phase involved inducing neural network language mod-

els from the normalized file-level corpora (Sec. 4.2.2). We used word2vec [127, 132, 133]

to learn embeddings for each buggy program revision. We selected word2vec over other

93

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

architectures because the models can be trained quickly, and we only used the language

models’ embeddings to initialize the embeddings for the recursive autoencoders rather

than randomly initialize them. We used the skip-gram model and set the size of the word

vectors to 400 in accordancewith previous studies using similar subject systems [209].We

set the maximum skip length between words to 10, used a hierarchical softmax to opti-

mize the computation of output vectors’ updates [169], and trained each model for 20

iterations. The language models enabled us to transform the file-level corpus for each

program revision into streams of embeddings.

Then we trained recursive autoencoders to encode streams of embeddings. The en-

coders used tanh activations (i.e., f ····= tanh in Eq. (4.1)), used L-BFGS [152] to optimize

costs in batchmode, and trained for up to 50 epochs. After an encoder was trained on a re-

vision’s file-level corpus, we used it to encode every type and executable in the revision’s

type- and executable-level corpora, respectively. Given the encodings, we computed the

pairwise Euclidean distance between each pair of types in the type-level corpus and each

pair of executables in the executable-level corpus to measure similarities for each pro-

gram revision.

Next, we extracted the term embeddings from the trained encoder and clustered them

using k-means. For each revision, to determine k, we used simulated annealing, initial-

izing both k and the temperature to be the square root of the corresponding vocabulary

size. The reason we chose the square root of the vocabulary size is because of its ef-

fectiveness in related contexts that categorize words [131]. The objective we optimized

was minimizing the number of points with negative silhouette values. Thus, at the end of

the learning phase, each buggy revision had a cached list of executable- and type-level

similarities as well as a categorization for identifiers.

The final phase of our technical approach involved automatically repairing buggy pro-

gram revisions (Sec. 4.2.3). Our subject systems comprised six open-source Java projects

including 374 buggy program revisions in Defects4J database version 1.1.0 [89, 88]. We

could not build the Spoon model for Mockito bugs 1–21, which was likely because of

94

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

Table 4.2: Project Statistics
Project Files LOC Tokens Vocab.

Apache commons-lang 221 48,890 420,000 4,672
Apache commons-math 845 97,130 830,000 8,450
Closure compiler 937 247,300 1,449,000 26,490
JFreechart 952 130,300 921,800 9,008
Joda-Time 316 81,640 736,300 5,989
Mockito 680 44,990 309,500 5,735

missing or incompatible dependencies. In Tab. 4.2, we report median values since each

project has several buggy program revisions.

To run program repair experiments, we used Astor [117], an automatic software repair

framework for Java. Within the Astor framework, we leveraged GZoltar [30], a spectrum-

based fault localization tool, to compute the Ochiai formula [1] for statements’ suspicious

values.

Each trial corresponded to a seeded treatment, which was a factorial of strategy and

scope. Previous empirical studies indicated that fragment locality matters in software

maintenance and evolution, so we analyzed three different levels of scope: local, pack-

age, and global [120]. For local scope, Astor builds the ingredient search space by amal-

gamating the distinct set of classes that contain at least one suspicious statement. For

package scope, Astor computes the distinct set of packages that contain at least one sus-

picious statement and builds the ingredient search space using the set of classes in those

packages. For global scope, Astor builds the ingredient space using all classes from the

application under repair. We configured Astor to not stop at the first patch found and—

starting from the original program—to continue searching for other patches until reaching

a three-hour time limit. In total, we ran 20,196 trials (374 buggy program revisions ×

6 configurations × 3 levels of scope × 3 random seeds) on subclusters comprising 64

compute nodes running Red Hat Enterprise Linux 6.2. Each compute node was a Dell

PowerEdge C6100 serving two Intel Xeon X5672 quad-core processors at 3.2 GHz with

12 MB L3 cache and at least 48 GB of 1333 MHz main memory. Each trial was allocated

95

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

two (hyper-threaded) cores and evolved one program variant for three hours using three

repair operators: InsertAfterOp, InsertBeforeOp, and ReplaceOp. We did not include Re-

moveOp in our operator space because we only focused on repair operators that reuse

code. We also wanted to guard against meaningless patches that simply remove func-

tionality.

4.3.3 Analysis Procedure

Research Question 5

We analyzed the effectiveness of fix space navigation strategies in two parts. The first part

analyzed effectiveness at generating test-adequate patches. We used the non-parametric

Wilcoxon test with a Bonferroni correction to compare the number of test-adequate patches

using jGenProg versus the strategy using code similarities at executable- and type-level

granularity. We used Wilcoxon since the test-adequate patch counts could be paired, and

we used a Bonferroni correction since we performed several tests simultaneously at differ-

ent levels of scope and strategy. To complement our statistical analysis on number of test-

adequate patches found, we also computed the difference between the set of jGenProg

patches and the set of DeepRepair patches. Specifically, if D is the set of DeepRepair

patches, and J is the set of jGenProg patches, then we compute and report |D \ J | / |D|,

the percentage of DeepRepair patches that were not found by jGenProg. The second

part analyzed the number of attempts to generate test-adequate patches. We used the

non-parametric Mann-Whitney test with a Bonferroni correction to compare the number

of attempts to generate test-adequate patches using jGenProg and using code similari-

ties at executable- and type-level granularity. To complement our analysis on number of

attempts, we also plotted the number of attempts to generate compilable ingredients.

96

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

Research Question 6

We analyzed effectiveness in two parts. We used the Wilcoxon test with a Bonferroni

correction to compare the number of test-adequate patches using jGenProg versus the

uniform random search strategy with the embeddings-based ingredient transformation

algorithm. The algorithm gives jGenProg the ability to transform repair ingredients con-

taining variable accesses that are out of scope. We also computed the difference between

the set of jGenProg patches and the set of DeepRepair patches. Additionally, we used

the Mann-Whitney test with a Bonferroni correction to compare the number of attempts to

generate test-adequate patches and plotted the number of attempts to generate compil-

able ingredients.

Research Question 7

Our experimental design for RQ7 was virtually identical to our design for RQ5 except here

we compared jGenProg to the strategy using code similarities with the embeddings-based

variable resolution algorithm.

Research Question 8

We used correctness as a proxy for quality. Three judges evaluated the same random

sample of 30 (15 jGenProg and 15 DeepRepair) patches to assess correctness. Martinez

et al. [119] defined the correctness of a patch to be one of three values: correct, incorrect,

or unknown. Correct denotes a patch is equivalent (according to the judge’s understand-

ing) to the human-written patch. Judges were also prompted for their confidence in their

correctness rating where confidence was one of four values: high, moderate, slight, and

none. Additionally, for reproducibility, judge’s also assessed the readability of each patch,

where the readability of a patch was either easy, medium, or hard in accordance with pre-

vious studies on patch correctness [116, 164]. We define readability to be the subjective

qualification of how easily the patch can be understood. Readability is a subjective aggre-

97

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

gation of different quantitative metrics: patch size in number of lines, number of involved

variables, number of method calls, and the types of AST elements being inserted or re-

placed. There is no accepted quantitative aggregation of these metrics, and we think that

a quantitative aggregation would be project- and even bug-dependent. In addition to the

random sample, judges also evaluated the patches generated by jGenProg that were

not found by DeepRepair and patches generated by DeepRepair that were not found by

jGenProg.

4.4 Empirical Results

We ran 20,196 repair trials, 247 of which were killed. The 19,949 trials that finished took

a total of 2,616 days of computation time. Zero patches were found for Closure, Mockito,

and Time bugs. The baseline configuration found test-adequate patches for 48 differ-

ent bugs. Six other bugs were unlocked by DeepRepair configurations. The trials found

19,832 different test-adequate patch instances and attempted 406,443,249 ingredients.

4.4.1 Research Question 5 (Analysis of ED and TD Strategies)

Tab. 4.3 lists the bugs for which test-adequate patches were found at (L)ocal, (P)ackage,

and (G)lobal scope. jGenProg found test-adequate patches for 48 bugs. The treatments

ED and TD found patches for 40 and 38 bugs, respectively.

Since many configurations found more than one patch for the same bug, we compared

the patch counts between jGenProg and the two treatments ED and TD to see whether

one configuration wasmore productive than another.We failed to reject the null hypothesis

H1a
0 at each level of scope. Next, we analyzed the sets of patches, and we observed that

approximately 99%, 25%, and 36% of DeepRepair’s patches for Chart, Lang, and Math

were not found by jGenProg. This result means that DeepRepair finds alternative patches.

We also counted the number of attempts needed to find each patch. Fig. 4.4 shows

descriptive statistics for the number of attempts to find a test-adequate patch. We failed

98

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

Table 4.3: Patches Found at (L)ocal, (P)ackage, and (G)lobal Scope
ProjectID BugID jGenProg ED TD RE EE TE

Chart

1 LPG LPG LPG LPG LPG LPG
3 LPG LPG LPG LPG LPG LPG
5 LPG LPG LPG LPG LPG LPG
7 LPG LPG LPG LPG LPG LPG
9 - - - - P -
12 G LPG LPG G LPG LPG
13 LPG LPG LPG LPG LPG LPG
14 LPG LPG LPG LPG LPG LPG
15 LPG LPG LPG LPG LPG LPG
18 L - - L - -
25 LPG LPG LPG LPG LPG -
26 LPG LPG LPG LPG LPG LPG

Lang

7 LPG LPG LPG LPG LPG LPG
10 LPG LPG LPG LPG LPG LPG
20 LPG LPG LPG LPG LPG LPG
22 LPG LPG LPG LPG LPG LP
24 LPG LPG L LPG L L
27 LPG LPG LPG LPG LPG LPG
38 PG - - PG - -
39 LPG LPG LPG LPG L -

Math

2 LPG LPG LPG LPG LPG LPG
5 LPG LPG LPG LPG LPG LPG
6 LP LPG LPG LP LP G
7 L - - - - -
8 - - - G LPG LPG
18 L - - P - -
20 LPG LPG LPG LPG LPG LPG
22 LPG LPG - LPG LPG -
24 - - - LP - -
28 LPG LPG LPG LPG LPG LPG
32 L LPG - LP - -
40 LPG LPG LP LPG LPG L
44 P - - - - -
49 LPG LPG LPG LPG LPG LPG
50 LPG LPG LP LPG LP LP
53 LPG LPG LPG LPG LPG LPG
56 L LPG LP LPG LP -
57 G L LP G - LP
58 - - - LP - -
60 G LP LPG G LP LP
63 - - - LPG LPG LPG
64 L - - - - -
70 LPG LPG LPG LPG LPG LPG
71 LPG - - LPG - -
73 LPG LPG LPG LPG LPG LPG
74 PG - - PG - -
77 LPG L LPG LPG L LPG
78 LPG LPG LPG LPG LPG LPG
80 LPG LPG LPG LPG P LPG
81 LPG LPG LPG LPG LPG LPG
82 - - - - PG G
84 LPG LP LP LPG LP LP
85 LPG LPG LPG LPG LPG LPG
98 LPG LPG LPG LPG LPG LPG

Total 54 48 40 38 49 42 38

99

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

Chart Lang Math

Local Package Global Local Package Global Local Package Global

1e+01

1e+03

1e+05

Scope

N
um

be
r

of
 a

tte
m

pt
s

Search strategy

jGenProg

ED

TD

RE

EE

TE

Figure 4.4: Number of Attempts to Find a Test-adequate Patch

to reject the null hypothesis H1b
0 at each level of scope. We also counted the number of

attempts needed to find each compilable ingredient (as defined in Sec. 4.2.3). Fig. 4.5

shows descriptive statistics for the number of attempts to find a compilable ingredient at

each level of scope for jGenProg, ED, and TD. Generally, sorting the fix space using code

similarities results in fewer attempts before finding a compilable ingredient.

Key result. DeepRepair’s search strategy using code similarities generally finds compil-

able ingredients faster than jGenProg, but this improvement neither yields test-adequate

patches in fewer attempts (on average) nor finds significantly more patches than jGen-

Prog. Yet there were notable differences between DeepRepair and jGenProg patches.

4.4.2 Research Question 6 (Analysis of RE Strategy)

The treatment RE found test-adequate patches for 49 bugs. Comparing the patch counts,

we failed to reject the null hypothesis H2a
0 at each level of scope. Analyzing the set differ-

ence, 53%, 3%, and 53% of DeepRepair’s patches for Chart, Lang, and Math were not

found by jGenProg. We also failed to reject the null hypothesisH2b
0 at each level of scope.

This result is illustrated in Fig. 4.4, which shows descriptive statistics for the number of

attempts to find a test-adequate patch for jGenProg and RE.

Key result. DeepRepair’s search strategy using the embeddings-based ingredient trans-

formation algorithm neither yields test-adequate patches in fewer attempts (on average)

nor finds significantly more patches than jGenProg, but there were notable differences

between DeepRepair and jGenProg patches.

100

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

Chart Closure Lang Math Mockito Time

Local Package Global Local Package Global Local Package Global Local Package Global Local Package Global Local Package Global

10

1000

Scope

N
um

be
r

of
 a

tte
m

pt
s

Search strategy

jGenProg

ED

TD

RE

EE

TE

Figure 4.5: Number of Attempts to Find a Compilable Ingredient

4.4.3 Research Question 7 (Analysis of EE and TE Strategies)

The treatments EE and TE found test-adequate patches for 42 and 38 bugs, respectively.

Comparing the patch counts, we failed to reject the null hypothesis H3a
0 at each level of

scope. Analyzing the set difference, 99%, 28%, and 51% of DeepRepair’s patches for

Chart, Lang, and Math were not found by jGenProg. Fig. 4.4 shows descriptive statistics

for the number of attempts to find a test-adequate patch for jGenProg, EE, and TE. We

failed to reject the null hypothesis H3b
0 at each level of scope. Fig. 4.5 shows descriptive

statistics for the number of attempts to find a compilable ingredient at each level of scope

for jGenProg, EE, and TE.

Key result. DeepRepair’s search strategy using code similarities with the embeddings-

based ingredient transformation algorithm generally finds compilable ingredients faster

than jGenProg, but this improvement neither yields test-adequate patches in fewer at-

tempts (on average) nor finds significantly more patches than jGenProg. Once more, the

DeepRepair configurations appear to find a complementary set of patches.

4.4.4 Research Question 8 (Manual Assessment)

After independently evaluating each sample patch, three judges discussed and resolved

conflicts in terms of correctness. Five DeepRepair patches and five jGenProg patches

were evaluated to be correct. We failed to reject the null hypothesis H4
0 . Although judges

did notice differences in the patches generated by the approaches, no significant differ-

ence in readability was reported.

101

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

In addition to the random sample, we manually examined the following specific sets

of patches. There were three bugs patched exclusively by jGenProg. We examined jGen-

Prog’s patches for these bugs and found that all of them were clearly incorrect. On the

other hand, there were six bugs patched exclusively by DeepRepair configurations. We

also examined these patches and report some of our findings below.

Chart-9. The human-written patch was

- - - a / data / t ime / TimeSeries . java

+++ b / data / t ime / TimeSeries . java

@@ -941 ,7 +941 ,7 @@ pub l i c c lass TimeSeries extends Ser ies implements Cloneable ,

Se r i a l i z a b l e {

endIndex = - (endIndex + 1) ; / / t h i s i s f i r s t i tem AFTER end per iod

endIndex = endIndex - 1 ; / / so t h i s i s l a s t i tem BEFORE end

}

+ i f ((endIndex < 0) | | (endIndex < s t a r t I ndex)) {

- i f (endIndex < 0) {

emptyRange = t rue ;

}

i f (emptyRange) {

None of the identifiers in the human-written patch were new (cf. Sec. 4.1.2), but the con-

ditional expression (endIndex < 0) || (endIndex < startIndex) was novel w.r.t. the code-

base, so generate-and-validate techniques that cannot generate new code would never

find this patch. The selection statement that DeepRepair generated passed the test suite,

but it was incorrect (to the best of our knowledge). Notably, the DeepRepair patch con-

tained the expression (endIndex < 1) || (endIndex > LAST_WEEK_IN_YEAR) with a syn-

tactic structure that resembled the human-written expression. DeepRepair’s conditional

expression was novel w.r.t. the codebase as it was generated by transforming an ingredi-

ent. It was originally (result < 1) || (result > LAST_WEEK_IN_YEAR) but DeepRepair rec-

ognized similarities in how the identifiers, result and endIndex, were used in the codebase,

so it replaced result—a variable out of scope—with endIndex.

102

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

Math-58. The human-written patch was

- - - a / op t im i za t i on / f i t t i n g / Gauss ianF i t te r . java

+++ b / op t im i za t i on / f i t t i n g / Gauss ianF i t te r . java

@@ -118 ,7 +118 ,7 @@ pub l i c c lass Gauss ianF i t te r extends CurveF i t t e r {

* /

pub l i c double [] f i t () {

f i n a l double [] guess = (new ParameterGuesser (getObservat ions ())) . guess () ;

+ re t u rn f i t (guess) ;

_ re t u rn f i t (new Gaussian . Parametr ic () , guess) ;

}

/ * *

The patched class, GaussianFitter.java, fits a Gaussian to observations. As before, none

of the identifiers in the human-written patch were new, but the statement was novel

w.r.t. the codebase. DeepRepair generated the following patch:

- - - a / op t im i za t i on / genera l / LevenbergMarquardtOptimizer . java

+++ b / op t im i za t i on / genera l / LevenbergMarquardtOptimizer . java

@@ -159 ,6 +159 ,7 @@

}

}

double coe f f1 = 0;

+ previousCost = FastMath .max(previousCost , lmPar) ;

f o r (i n t j = 0 ; j < (solvedCols) ; ++ j) {

coe f f1 += (work1 [j]) * (work1 [j]) ;

}

The patched class, LevenbergMarquardtOptimizer.java, solves a least squares problem

using the Levenberg-Marquardt algorithm. The statement inserted in the DeepRepair

patch was a novel statement w.r.t. the codebase. The original ingredient was taken from

the same file, but it contained a variable access that was out of scope at the modifi-

cation point. The ingredient was transformed by substituting previousCost, a proximate

term in scope, for the out-of-scope variable. The result was a patch that set the variable

previousCost equal to the maximum of its previous value or the Levenberg-Marquardt

parameter. The root cause in the failing test case was GaussianFitter throws a NonStrict-

103

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

lyPositiveException when the standard deviation is not a positive number. GaussianFitter

uses LevenbergMarquardtOptimizer, but we expect the patch is incorrect. The readability

is hard since it involves a nontrivial optimization procedure.

Math-63. The human-written patch was

- - - a / u t i l / MathUt i l s . java

+++ b / u t i l / MathUt i l s . java

@@ -414 ,7 +414 ,7 @@ pub l i c f i n a l c lass MathUt i l s {

* @return {@code t rue } i f the values are equal .

* /

pub l i c s t a t i c boolean equals (double x , double y) {

+ re t u rn equals (x , y , 1) ;

- r e t u rn (Double . isNaN (x) && Double . isNaN (y)) | | x == y ;

}

/ * *

Again, none of the identifiers in the human-written patch were new, but the statement was

novel w.r.t. the codebase. DeepRepair generated the following patch:

- - - a / u t i l / MathUt i l s . java

+++ b / u t i l / MathUt i l s . java

@@ -181 ,7 +181 ,7 @@

}

pub l i c s t a t i c boolean equals (double x , double y) {

- r e t u rn ((Double . isNaN (x)) && (Double . isNaN (y))) | | (x == y) ;

+ re t u rn (equals (x , y , 1)) | | ((FastMath . abs ((y - x))) <= (SAFE_MIN)) ;

}

pub l i c s t a t i c boolean equalsIncludingNaN (double x , double y) {

The ingredient was selected from a similar method:

/ * *

* Returns t rue i f both arguments are equal or w i t h i n the range of al lowed

* e r r o r (i n c l u s i v e) .

*

* @param x f i r s t value

* @param y second value

104

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

* @param eps the amount o f abso lu te e r r o r to a l low .

* @return {@code t rue } i f the values are equal or w i t h i n range of each other .

* /

pub l i c s t a t i c boolean equals (double x , double y , double eps) {

r e t u rn equals (x , y , 1) | | FastMath . abs (y - x) <= eps ;

}

But the variable eps in the ingredient was not in scope at the modification point. Deep-

Repair recognized similarities between how the identifiers eps and SAFE_MIN are used

in the codebase, so it replaced eps with SAFE_MIN. As a result, both the human-written

patch and DeepRepair’s patch invoke equals(x, y, 1) which returns true if x and y are equal

or within the range of allowed errors (inclusive). In this case, the range of allowed error

is defined to be zero floating point numbers between the two values, so the values must

be the same floating point number or adjacent floating point numbers. Therefore, when

equals(x, y, 1) is true, both the human-written patch and the DeepRepair patch return true

since the conditional expression in the DeepRepair patch short-circuits. When equals(x,

y, 1) is false, the human-written patch returns false, and since SAFE_MIN is defined to be

the smallest normalized number in IEEE 754 arithmetic (i.e., 0x1.0p-1022), the DeepRe-

pair patch returns false. Hence, the DeepRepair patch is semantically equivalent to the

human patch and considered correct.

Key result. There are apparent, critical differences observed in DeepRepair’s patches

compared to jGenProg, which unlock new bugs—that would otherwise have not been

patched—by reusing and transforming repair ingredients. Our future work aims to exten-

sively analyze more results to understand which defect classes can be unlocked with

DeepRepair’s search strategies.

105

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

4.5 Threats to Validity

Internal Validity

DeepRepair relies on deep learning to compute similarities among code elements at dif-

ferent levels of granularity. Learning-based code clone detection has been evaluated at

multiple levels of granularity with promising results (Chap. 3). Additionally, we manually

examined small random samples of similar code fragments at executable- and type-level

granularity from each project to validate some degree of textual/functional similarity in ac-

cordance with previous studies. However, we do not claim to have used optimal settings

for training each program revision or even each project. We also acknowledge the con-

founding configuration choice problem [204]. We did not adopt arbitrary configurations

and tried to justify each configuration in our approach.

External Validity

In our experiments we evaluate DeepRepair on 374 buggy program revisions (in six

unique software systems) from the Defects4J benchmark. One threat is that the number

of bugs may not be large enough to represent the actual differences between DeepRe-

pair and jGenProg. While more systems with real bugs can help mitigate this threat, we

would like to point out that a subset of Defects4J programs was used not only in program

repair experiments [116, 212] but also recent testing studies [76, 89]. Moreover, we used

a subset of programs and bugs from Defects4J that were used in prior experiments and

made an effort to include new bugs for Mockito and Closure. Hence, our experiment is de

facto the largest program repair experiment for Java.

Construct Validity

Our empirical evaluation is similar to all previous studies on program repair in that the pro-

grams under repair must be repaired at one single location. DeepRepair and jGenProg

106

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

do not target buggy program revisions with multiple faults. Also, prior work noted some

impact of flaky test cases on program repair [116]. If the failing test is flaky, the repair

technique may conclude that a correct patch has been found. If a passing test case is

flaky, the repair technique may conclude that a patch has introduced a regression while

it may not necessarily be the case, which in turn may result in an underestimation of the

performance of a repair technique. While we did not detect any flaky tests in our bench-

marks during the experiments, their potential presence could impact both DeepRepair

and jGenProg.

Conclusion Validity

DeepRepair and jGenProg have random components. For example, jGenProg chooses

the statements and mutations randomly based on rules during the search. To this end,

it is possible that different runs of DeepRepair and jGenProg would produce somewhat

different patches. However, our experiments are as computationally extensive as they

could have potentially been within our means, consisting of 19,949 trials spanning 2,616

days of computation time. Finally, running several trials of DeepRepair and jGenProg on

every buggy revision generates dozens of different patches. Thus, we could not manually

analyze all the generated patches (as this would require years of manual work); however,

we randomly sampled a subset for manual evaluation. In order to minimize bias, three

authors inspected randomly sampled patches generated by DeepRepair and jGenProg.

4.6 Summary

We introduced a novel learning-based algorithm to intelligently select and transform repair

ingredients in a generate-and-validate repair loop based on the redundancy assumption

(Sec. 4.1.2). DeepRepair takes a novel perspective on the ingredient selection problem:

it selects ingredients from similar methods or classes where similarity has been inferred

with deep unsupervised learning. Moreover, many repairs need the usage of a new token

107

CHAPTER 4. SORTING AND TRANSFORMING PROGRAM REPAIR INGREDIENTS

in order to make an ingredient compilable at a specific modification point. DeepRepair

is the first approach ever, to the best of our knowledge, that transforms repair ingredi-

ents using identifiers’ similarities in order to expand the search space. We conducted

a computationally intensive empirical study, and found that DeepRepair did not signifi-

cantly improve effectiveness using a new metric (number of attempts), but DeepRepair

did generatemany patches that cannot be generated by existing redundancy-based repair

techniques.

108

Chapter 5

Conclusion

Software repositories are extraordinarily complex. Consider the complex domain analy-

ses, intricate designs, mazelike implementations, and ambiguous reports that are pro-

duced and archived during the software development lifecycle. Reconciling (concrete) ar-

tifacts and (abstract) concepts to support SE tasks is the essence of SE research. How-

ever, there is an apparent discrepancy between the expressiveness that is engineered

and submitted in repositories and the representation power of models like simple Markov

models for reaping this information from repositories.

This dissertation makes three main contributions:

Chapter 2 We introduce deep learning to SE research. Deep learning will provide the SE

community with new ways to mine and analyze artifacts to support SE tasks. Our

empirical study demonstrates that deep learning induces high-quality software lan-

guage models compared to state-of-the-practice models using an intrinsic evalua-

tion metric. Then we demonstrate its effectiveness at code suggestion using a set

of Java projects downloaded from GitHub.

Chapter 3 We introduce a new paradigm for code clone detection, an important problem

for software maintenance and evolution. Many clone detection approaches consider

either structure or identifiers, but none of the existing detection techniques model

both sources of information. These techniques also depend on generic, handcrafted

109

CHAPTER 5. CONCLUSION

features to represent code fragments. Our novel learning-based approach to code

clone detection fuses information on structure and identifiers and uses the data in

repositories to automate the step of specifying how to represent source code. Our

empirical validation asks and analyzes the question of whether our representations

are suitable for detecting similar code fragments. We found that our learning-based

approach finds pairs mapping to all four clone types and detects clones that were

either undetected or suboptimally reported by a prominent clone detection tool.

Chapter 4 We introduce a novel deep learning-based approach to intelligently select and

adapt program repair ingredients for redundancy-based repair. Our approach is

the first to reason on the fix space by sorting ingredients using textual/functional

similarities and the first to transform repair ingredients using identifiers’ similarities,

thereby expanding the search space. We also introduce an evaluation protocol for

redundancy-based repair, including a set of novel metrics that are specific to the

analysis of ingredient selection strategies. We conducted a large-scale empirical

study on 374 real, reproducible bugs that spanned 2,616 days of computation time.

Our algorithm found patches that cannot be found by existing redundancy-based

techniques. Indeed, sorting and transforming program repair ingredients using code

similarities enables patches that would be impossible to generate if restricted to in-

tact ingredients in the codebase.

In summary, our work on code suggestion, code clone detection, and automated pro-

gram repair has introduced new ways to mine and analyze artifacts for SE tasks such

as feature location [40], defect prediction [203], cross-lingual question retrieval [36], gen-

erating API usage sequences for a given natural language query [62], fixing common C

language errors [63], and fault localization [75], among many others. Deep learners re-

main one hypothesis set, but novel ways to use the improved representation power will

give way to elegant, yet practical and impactful, applications in the future in SE research.

110

Appendix A

Intermediate Code Statistics

Table A.1: Intermediate Code Metrics
Metric Description

ASTChildren Number of children of nonterminal nodes
ASTChildrenMoreThan2 Number of children of nonterminal nodes having more than two children
ASTMaxDepth Maximum number of edges from a node to the AST root
ASTNonTerminal Number of nonterminal nodes
ASTNonTerminal1Child Number of nonterminal nodes with degree one
ASTNonTerminalMoreThan2 Number of nonterminal nodes with degree greater than two
ASTTerminal Number of terminal nodes
ASTUniqueNonTerminal Number of different nonterminal nodes
FBTArtificialNonTerminal Number of nonterminals generated by the modified grammar
FBTMaxDepth Maximum number of edges from a node to the FBT root
FBTNonTerminal Number of nonterminal nodes
FBTTerminal Number of terminal nodes (after merging adjacent, identical literals with the same parent)
FBTUniqueNonTerminal Number of unique nonterminal nodes

111

APPENDIX A. INTERMEDIATE CODE STATISTICS

Table A.2: Intermediate Code Statistics
System Metric min q1 θ µ q3 max

ANTLR 4

ASTChildren 1 1 2 2 3 4,009
ASTChildrenMoreThan2 3 3 3 5 3 4,009
ASTMaxDepth 2 7 8 10 11 26
ASTNonTerminal 2 40 110 465 420 9,559
ASTNonTerminal1Child 1 13 41 183 152 4,597
ASTNonTerminalMoreThan2 0 6 20 124 80 4,440
ASTTerminal 2 43 130 590 496 14,130
ASTUniqueNonTerminal 2 15 18 20 26 50
FBTArtificialNonTerminal 0 16 52 289 190 9,076
FBTMaxDepth 1 11 19 66 37 4,040
FBTNonTerminal 1 42 121 568 476 13,980
FBTTerminal 2 43 122 569 477 13,990
FBTUniqueNonTerminal 1 18 24 26 33 61

Apache Ant 1.9.6

ASTChildren 1 1 2 2 2 512
ASTChildrenMoreThan2 3 3 3 4 5 512
ASTMaxDepth 2 8 10 11 14 49
ASTNonTerminal 2 58 148 278 312 3,762
ASTNonTerminal1Child 1 22 54 104 116 1,387
ASTNonTerminalMoreThan2 0 10 26 55 60 939
ASTTerminal 2 62 158 302 340 3,914
ASTUniqueNonTerminal 2 16 22 22 28 47
FBTArtificialNonTerminal 0 24 64 124 142 1,700
FBTMaxDepth 1 13 22 29 36 188
FBTNonTerminal 1 60 155 297 331 3,871
FBTTerminal 2 61 156 298 332 3,872
FBTUniqueNonTerminal 1 21 30 29 38 60

ArgoUML 0.34

ASTChildren 1 1 2 2 2 415
ASTChildrenMoreThan2 3 3 3 4 5 415
ASTMaxDepth 4 8 10 11 13 65
ASTNonTerminal 4 48 105 239 236 10,220
ASTNonTerminal1Child 1 17 38 92 89 4,621
ASTNonTerminalMoreThan2 0 8 17 40 39 1,015
ASTTerminal 3 50 112 246 250 7,822
ASTUniqueNonTerminal 3 15 20 20 25 45
FBTArtificialNonTerminal 0 19 42 97 100 2,393
FBTMaxDepth 2 11 17 24 29 423
FBTNonTerminal 2 49 110 244 248 7,810
FBTTerminal 3 50 111 245 249 7,811
FBTUniqueNonTerminal 2 20 27 27 33 57

CAROL 2.0.5

ASTChildren 1 1 2 2 2 45
ASTChildrenMoreThan2 3 3 4 5 5 45
ASTMaxDepth 4 7 10 11 14 21
ASTNonTerminal 6 38 94 174 234 1,285
ASTNonTerminal1Child 1 13 32 66 87 466
ASTNonTerminalMoreThan2 0 6 14 28 37 220
ASTTerminal 6 44 101 179 245 1,335
ASTUniqueNonTerminal 4 14 21 20 28 38
FBTArtificialNonTerminal 0 15 38 70 94 504
FBTMaxDepth 4 10 17 20 26 57
FBTNonTerminal 5 42 100 178 243 1,323
FBTTerminal 6 43 100 179 244 1,324
FBTUniqueNonTerminal 4 18 27 27 36 49

112

APPENDIX A. INTERMEDIATE CODE STATISTICS

Table A.2: Intermediate Code Statistics continued
System Metric min q1 θ µ q3 max

dnsjava 2.0.0

ASTChildren 1 1 2 2 2 263
ASTChildrenMoreThan2 3 3 3 5 5 263
ASTMaxDepth 4 8 9 10 12 39
ASTNonTerminal 11 69 152 298 344 2,681
ASTNonTerminal1Child 1 24 58 104 122 928
ASTNonTerminalMoreThan2 2 16 36 63 79 682
ASTTerminal 12 78 184 361 415 4,781
ASTUniqueNonTerminal 7 15 22 22 28 40
FBTArtificialNonTerminal 4 33 82 156 175 1,958
FBTMaxDepth 6 16 25 32 36 275
FBTNonTerminal 11 77 176 349 391 3,711
FBTTerminal 12 78 176 350 392 3,712
FBTUniqueNonTerminal 11 21 29 29 36 53

Hibernate 2

ASTChildren 1 1 2 2 2 249
ASTChildrenMoreThan2 3 3 4 5 5 249
ASTMaxDepth 4 7 10 10 12 24
ASTNonTerminal 6 46 98 254 230 12,650
ASTNonTerminal1Child 1 19 42 103 86 5,284
ASTNonTerminalMoreThan2 1 9 18 45 39 2,090
ASTTerminal 6 51 109 274 242 13,030
ASTUniqueNonTerminal 5 14 19 20 26 39
FBTArtificialNonTerminal 1 24 50 121 102 5,623
FBTMaxDepth 3 13 19 27 28 271
FBTNonTerminal 5 50 108 272 240 12,980
FBTTerminal 6 51 109 273 242 12,980
FBTUniqueNonTerminal 5 16 26 25 33 53

JDK 1.4.2

ASTChildren 1 1 2 2 2 882
ASTChildrenMoreThan2 3 3 4 5 5 882
ASTMaxDepth 3 6 10 11 14 50
ASTNonTerminal 4 29 96 321 306 7,446
ASTNonTerminal1Child 1 9 32 113 108 2,855
ASTNonTerminalMoreThan2 0 5 16 51 47 1,098
ASTTerminal 4 34 113 355 330 7,980
ASTUniqueNonTerminal 4 9 20 19 27 46
FBTArtificialNonTerminal 0 14 47 140 134 3,134
FBTMaxDepth 2 10 20 31 35 969
FBTNonTerminal 3 33 109 348 325 7,811
FBTTerminal 4 34 110 348 326 7,812
FBTUniqueNonTerminal 3 13 25 25 35 61

JHotDraw 6

ASTChildren 1 1 2 2 2 126
ASTChildrenMoreThan2 3 3 4 5 5 126
ASTMaxDepth 4 7 10 10 12 21
ASTNonTerminal 5 51 71 144 159 1,798
ASTNonTerminal1Child 1 21 26 57 60 823
ASTNonTerminalMoreThan2 0 10 15 26 31 366
ASTTerminal 5 59 86 157 178 1,797
ASTUniqueNonTerminal 4 17 18 19 22 37
FBTArtificialNonTerminal 0 27 40 68 75 810
FBTMaxDepth 3 13 16 21 24 130
FBTNonTerminal 4 58 85 155 173 1,785
FBTTerminal 5 59 86 156 174 1,786
FBTUniqueNonTerminal 4 19 23 24 31 51

113

Bibliography

[1] R. Abreu, P. Zoeteweij, and A. van Gemund. An evaluation of similarity coefficients

for software fault localization. PRDC’06.

[2] S. Afshan, P. McMinn, and M. Stevenson. Evolving readable string test inputs using

a natural language model to reduce human oracle cost. ICST’13.

[3] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and

Tools. 2 edition, 2006.

[4] M. Allamanis, E. Barr, C. Bird, and C. Sutton. Learning natural coding conventions.

FSE’14.

[5] M. Allamanis, E. Barr, C. Bird, and C. Sutton. Suggesting accurate method and

class names. FSE’15.

[6] M. Allamanis and C. Sutton. Mining source code repositories at massive scale using

language modeling. MSR’13.

[7] I. Arel, D. Rose, and T. Karnowski. Research frontier: Deep machine learning–a

new frontier in artificial intelligence research. CIM, 5(4), 2010.

[8] E. Arisoy, T. Sainath, B. Kingsbury, and B. Ramabhadran. Deep neural network

language models. WLM’12.

[9] J. Bailey and E. Burd. Evaluating clone detection tools for use during preventative

maintenance. SCAM’02.

114

BIBLIOGRAPHY

[10] B. Baker. On finding duplication and near-duplication in large software systems.

WCRE’95.

[11] B. Baker. A program for identifying duplicated code. In Computer Science and

Statistics, 1992.

[12] B. Baker. Parameterized pattern matching: Algorithms and applications. JCSS,

52(1), 1996.

[13] E. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro. The plastic surgery hy-

pothesis. FSE’14.

[14] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. de Lucia. Improving

software modularization via automated analysis of latent topics and dependencies.

TOSEM, 23(1), 2014.

[15] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. Methodbook:

Recommending move method refactorings via relational topic models. TSE, 40(7),

2014.

[16] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using

abstract syntax trees. ICSM’98.

[17] Y. Bengio. Deep learning of representations: Looking forward. SLSP’13.

[18] Y. Bengio. Learning deep architectures for AI. FTML, 2(1), 2009.

[19] Y. Bengio. Practical recommendations for gradient-based training of deep architec-

tures. CoRR, abs/1206.5533, 2012.

[20] Y. Bengio, A. Courville, and P. Vincent. Unsupervised feature learning and deep

learning: A review and new perspectives. CoRR, abs/1206.5538, 2012.

[21] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language

model. JMLR, 3, 2003.

115

BIBLIOGRAPHY

[22] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gra-

dient descent is difficult. TNN, 5(2):157–166, 1994.

[23] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR,

13(1):281–305, 2012.

[24] S. Bhatia and R. Singh. Automated correction for syntax errors in programming

assignments using recurrent neural networks. CoRR, abs/1603.06129, 2016.

[25] C. Bishop. Pattern Recognition and Machine Learning. 2006.

[26] C. Bishop and J. Lasserre. Generative or discriminative? Getting the best of both

worlds. Bayesian Statistics, 8:3–24, 2007.

[27] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes. Language-independent

clone detection applied to plagiarism detection. SCAM’10.

[28] D. Cai and M. Kim. An empirical study of long-lived code clones. FASE/ETAPS’11.

[29] J. Campbell, A. Hindle, and J. Amaral. Syntax errors just aren’t natural: Improving

error reporting with language models. MSR’14.

[30] J. Campos, A. Riboira, A. Perez, and R. Abreu. GZoltar: An eclipse plug-in for

testing and debugging. ASE’12.

[31] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function

identifiers. WCRE’99.

[32] J. Carver, D. Chatterji, and N. Kraft. On the need for human-based empirical vali-

dation of techniques and tools for code clone analysis. IWSC’11.

[33] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezzè. Automatic recovery

from runtime failures. ICSE’13.

[34] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè. Automatic workarounds for web

applications. FSE’10.

116

BIBLIOGRAPHY

[35] D. Chatterji, J. Carver, and N. Kraft. Claims and beliefs about code clones: Do we

agree as a community?: A survey. IWSC’12.

[36] G. Chen, C. Chen, Z. Xing, and B. Xu. Learning a dual-language vector space for

domain-specific cross-lingual question retrieval. ASE’16.

[37] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy and scalability simultaneously

in detecting application clones on android markets. ICSE’14.

[38] S. Chen and J. Goodman. An empirical study of smoothing techniques for language

modeling. ACL’96.

[39] P. Clarkson and A. Robinson. Language model adaptation using mixtures and an

exponentially decaying cache. ICASSP’97.

[40] C. Corley, K. Damevski, and N. Kraft. Exploring the use of deep learning for feature

location. ICSME’15.

[41] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. 3

edition, 2009.

[42] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie. XIAO: Tuning code clones at

hands of engineers in practice. ACSAC’12.

[43] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and D. Poshyvanyk. Enhancing soft-

ware traceability by automatically expanding corpora with relevant documentation.

ICSM’13.

[44] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley. The development of a

software clone detector. IJAST, 1(3/4), 1995.

[45] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by

latent semantic analysis. JASIS, 41(6), 1990.

117

BIBLIOGRAPHY

[46] F. Deissenbock and M. Pizka. Concise and consistent naming [software system

identifier naming]. IWPC’05.

[47] B. Dit, M. Revelle, and D. Poshyvanyk. Integrating information retrieval, execution

and link analysis algorithms to improve feature location in software. EMSE, 18(2),

2013.

[48] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for

detecting duplicated code. ICSM’99.

[49] R. Dyer, H. Nguyen, H. Rajan, and T. Nguyen. Boa: A language and infrastructure

for analyzing ultra-large-scale software repositories. ICSE’13.

[50] J. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[51] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its

use in optimization. TOPLAS, 9(3), 1987.

[52] C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn. CACHECA: A cache language

model based code suggestion tool. ICSE’15.

[53] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. ICSE’08.

[54] M. Gabel and Z. Su. A study of the uniqueness of source code. FSE’10.

[55] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia. On integrating orthogonal

information retrieval methods to improve traceability recovery. ICSM’11.

[56] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hash-

ing. VLDB’99.

[57] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. AIS-

TATS’11.

[58] C. Goller and A. Küchler. Learning task-dependent distributed representations by

backpropagation through structure. ICNN’96.

118

BIBLIOGRAPHY

[59] J. Goodman. Classes for fast maximum entropy training. CoRR, cs.CL/0108006,

2001.

[60] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of

automated program repair: Fixing 55 out of 105 bugs for $8 each. ICSE’12.

[61] C. Le Goues, W. Weimer, and S. Forrest. Representations and operators for im-

proving evolutionary software repair. GECCO’12.

[62] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep API learning. FSE’16.

[63] R. Gupta, S. Pal, A.Kanade, and S. Shevade. Deepfix: Fixing common C language

errors by deep learning. AAAI’17.

[64] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. 2

edition, 2009.

[65] V. Hellendoorn, P. Devanbu, and A. Bacchelli. Will they like this? Evaluating code

contributions with language models. MSR’15.

[66] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen. Data clone detection and

visualization in spreadsheets. ICSE’13.

[67] M. Hermans and B. Schrauwen. Training and analysing deep recurrent neural net-

works. NIPS’13.

[68] A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software.

ICSE’12.

[69] G. Hinton. Learning distributed representations of concepts. COGSCI’86.

[70] G. Hinton. Connectionist learning procedures. AI, 40(1-3):185–234, 1989.

[71] G. Hinton, J. McClelland, and D. Rumelhart. Parallel distributed processing: Ex-

plorations in the microstructure of cognition, Vol. 1. chapter Distributed Represen-

tations. 1986.

119

BIBLIOGRAPHY

[72] K. Hotta, J. Yang, Y. Higo, and S. Kusumoto. How accurate is coarse-grained clone

detection?: Comparison with fine-grained detectors. IWSC’14.

[73] M. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker. Automatically min-

ing software-based, semantically-similar words from comment-code mappings.

MSR’13.

[74] B. Hsu. Language Modeling for Limited-data Domains. PhD thesis, 2009.

[75] X. Huo, M. Li, and Z. Zhou. Learning unified features from natural and programming

languages for locating buggy source code. IJCAI’16.

[76] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with test suite

effectiveness. ICSE’14.

[77] O. İrsoy and C. Cardie. Opinion mining with deep recurrent neural networks.

EMNLP’14.

[78] F. Jelinek. Statistical Methods for Speech Recognition. 1997.

[79] F. Jelinek and R. Mercer. Interpolated estimation of Markov source parameters from

sparse data. In Proceedings of the Workshop on Pattern Recognition in Practice,

1980.

[80] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate

tree-based detection of code clones. ICSE’07.

[81] L. Jiang and Z. Su. Automatic mining of functionally equivalent code fragments via

random testing. ISSTA’09.

[82] L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related bugs.

FSE’07.

[83] J. Johnson. Identifying redundancy in source code using fingerprints. CASCON’93.

120

BIBLIOGRAPHY

[84] J. Johnson. Substring matching for clone detection and change tracking. ICSM’94.

[85] J. Johnson. Visualizing textual redundancy in legacy source. CASCON’94.

[86] M. Jordan. Serial order: A parallel distributed processing approach. Technical

report, Institute for Cognitive Science, University of California, San Diego, 1986.

[87] D. Jurafsky and J. Martin. Speech and Language Processing. 2 edition, 2009.

[88] R. Just, D. Jalali, and M. Ernst. Defects4J: A database of existing faults to enable

controlled testing studies for Java programs. ISSTA’14.

[89] R. Just, D. Jalali, L. Inozemtseva, M. Ernst, R. Holmes, and G. Fraser. Are mutants

a valid substitute for real faults in software testing? FSE’14.

[90] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based

code clone detection system for large scale source code. TSE, 28(7), 2002.

[91] C. Kapser and M. Godfrey. “Cloning considered harmful” considered harmful: Pat-

terns of cloning in software. EMSE, 13(6), 2008.

[92] S. Katz. Estimation of probabilities from sparse data for the language model com-

ponent of a speech recognizer. TASSP, 35(3):400–401, 1987.

[93] Y. Ke, K. Stolee, C. Le Goues, and Y. Brun. Repairing programs with semantic code

search. ASE’15.

[94] H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: Memory comparison-based clone de-

tector. ICSE’11.

[95] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of copy and

paste programming practices in OOPL. ISESE’04.

[96] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone

genealogies. FSE’05.

121

BIBLIOGRAPHY

[97] P. Koehn. Statistical Machine Translation. 2010.

[98] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code.

SAS’01.

[99] R. Koschke. Frontiers of software clone management. FoSM’08.

[100] R. Koschke. Survey of research on software clones. Dagstuhl Seminar Proceed-

ings, 2007.

[101] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix

trees. WCRE’06.

[102] J. Krinke. Identifying similar code with program dependence graphs. WCRE’01.

[103] A. Krizhevsky and G. Hinton. Using very deep autoencoders for content-based

image retrieval. ESANN’11.

[104] R. Kuhn and R. De Mori. A cache-based natural language model for speech recog-

nition. TPAMI, 12(6):570–583, June 1990.

[105] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? A study of

identifiers. ICPC’06.

[106] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A generic method

for automatic software repair. TSE, 38(1), 2012.

[107] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553), 2015.

[108] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and

L. Jackel. Backpropagation applied to handwritten zip code recognition. NECO,

1(4):541–551, 1989.

[109] M. Lee, J. Roh, S. Hwang, and S. Kim. Instant code clone search. FSE’10.

122

BIBLIOGRAPHY

[110] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding copy-paste and related

bugs in large-scale software code. TSE, 32(3), 2006.

[111] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and D. Poshyvanyk.

Mining Android app usages for generating actionable GUI-based execution scenar-

ios. MSR’15.

[112] C. Liu, C. Chen, J. Han, and P. Yu. GPLAG: Detection of software plagiarism by

program dependence graph analysis. KDD’06.

[113] F. Long and M. Rinard. Automatic patch generation by learning correct code.

POPL’16.

[114] Lucia, D. Lo, L. Jiang, and A. Budi. Active refinement of clone anomaly reports.

ICSE’12.

[115] A. Marcus and J. Maletic. Identification of high-level concept clones in source code.

ASE’01.

[116] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus. Automatic

repair of real bugs in Java: A large-scale experiment on the Defects4J dataset.

EMSE, 2016.

[117] M. Martinez and M. Monperrus. Astor: A program repair library for Java (demo).

ISSTA’16.

[118] M. Martinez and M. Monperrus. ASTOR: Evolutionary automatic software repair for

Java. CoRR, abs/1410.6651, 2014.

[119] M. Martinez and M. Monperrus. Mining software repair models for reasoning on the

search space of automated program fixing. EMSE, 20(1):176–205, 2015.

123

BIBLIOGRAPHY

[120] M.Martinez, W.Weimer, andM.Monperrus. Do the fix ingredients already exist? An

empirical inquiry into the redundancy assumptions of program repair approaches.

ICSE Companion’14.

[121] S. McConnell. Code Complete. 2 edition, 2004.

[122] C. McMillan, M. Grechanik, and D. Poshyvanyk. Detecting similar software appli-

cations. ICSE’12.

[123] S. Mechtaev, Y. Jooyong, and A. Roychoudhury. Angelix: Scalable multiline pro-

gram patch synthesis via symbolic analysis. ICSE’16.

[124] S. Mechtaev, Y. Jooyong, and A. Roychoudhury. DirectFix: Looking for simple

program repairs. ICSE’15.

[125] R. Miikkulainen and M. Dyer. Natural language processing with modular neural

networks and distributed lexicon. Cognitive Science, 15:343–399, 1991.

[126] T. Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis,

2012.

[127] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-

sentations in vector space. CoRR, abs/1301.3781, 2013.

[128] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocký. Strategies for training

large scale neural network language models. ASRU’11.

[129] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur. Recurrent neural

network based language model. INTERSPEECH’10.

[130] T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, and S. Khudanpur. Extensions of

recurrent neural network language model. ICASSP’11.

[131] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocký. RNNLM - Recurrent

neural network language modeling toolkit. ASRU’11.

124

BIBLIOGRAPHY

[132] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed represen-

tations of words and phrases and their compositionality. NIPS’13.

[133] T. Mikolov, W. Yih, and G. Zweig. Linguistic regularities in continuous space word

representations. NAACL-HLT’13.

[134] N. Milea, L. Jiang, and S. Khoo. Scalable detection of missed cross-function refac-

torings. ISSTA’14.

[135] N. Milea, L. Jiang, and S. Khoo. Vector abstraction and concretization for scalable

detection of refactorings. FSE’14.

[136] A. Mnih and G. Hinton. Three new graphical models for statistical language mod-

elling. ICML’07.

[137] A. Mnih and Y. Teh. A fast and simple algorithm for training neural probabilistic

language models. ICML’12.

[138] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software quality

analysis by code clones in industrial legacy software. METRICS’02.

[139] M. Monperrus. Automatic software repair: A bibliography. Technical report, Inria,

2015.

[140] F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model.

AISTATS’05.

[141] E. Moritz, M. Linares Vásquez, D. Poshyvanyk, M. Grechanik, C. McMillan, and

M. Gethers. Export: Detecting and visualizing API usages in large source code

repositories. ASE’13.

[142] D. Movshovitz-Attias and W. Cohen. Natural language models for predicting pro-

gramming comments. ACL’13.

125

BIBLIOGRAPHY

[143] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software engineering re-

search. FSE’13.

[144] A. Nguyen, H. Nguyen, T. Nguyen, and T. Nguyen. Statistical learning approach for

mining API usage mappings for code migration. ASE’14.

[145] A. Nguyen, T. Nguyen, and T. Nguyen. Lexical statistical machine translation for

language migration. FSE’13.

[146] A. Nguyen, T. Nguyen, and T. Nguyen. Migrating code with statistical machine

translation. ICSE Companion’14.

[147] H. Nguyen, A. Nguyen, T. Nguyen, T. Nguyen, and H. Rajan. A study of repetitive-

ness of code changes in software evolution. ASE’13.

[148] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Accurate and efficient

structural characteristic feature extraction for clone detection. FASE’09.

[149] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Clone management

for evolving software. TSE, 38(5), 2012.

[150] T. Nguyen, A. Nguyen, H. Nguyen, and T. Nguyen. A statistical semantic language

model for source code. FSE’13.

[151] T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. SemFix: Program repair via

semantic analysis. ICSE’13.

[152] J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of

Computation, 35(151), 1980.

[153] J. Ossher, H. Sajnani, and C. Lopes. File cloning in open source Java projects:

The good, the bad, and the ugly. ICSM’11.

126

BIBLIOGRAPHY

[154] F. Palomba, M. Linares Vásquez, G. Bavota, R. Oliveto, M. Di Penta, D. Poshy-

vanyk, and A. De Lucia. User reviews matter! Tracking crowdsourced reviews to

support evolution of successful apps. ICSME’15.

[155] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia. How

to effectively use topic models for software engineering tasks? An approach based

on genetic algorithms. ICSE’13.

[156] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia.

Parameterizing and assembling IR-based solutions for SE tasks using genetic al-

gorithms. SANER’16.

[157] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep recurrent

neural networks. CoRR, abs/1312.6026, 2013.

[158] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural

networks. ICML’13.

[159] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier. Spoon: A

library for implementing analyses and transformations of Java source code. SPE,

46:1155–1179, 2015.

[160] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and T. Nguyen. Complete and ac-

curate clone detection in graph-based models. ICSE’09.

[161] D. Pierret and D. Poshyvanyk. An empirical exploration of regularities in open-

source software lexicons. ICPC’09.

[162] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay. Sk_p: A neural program

corrector for MOOCs. SPLASH Companion 2016.

[163] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random search on

automated program repair. ICSE’14.

127

BIBLIOGRAPHY

[164] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibility and

correctness for generate-and-validate patch generation systems. ISSTA’15.

[165] F. Rahman, C. Bird, and P. Devanbu. Clones: What is that smell? EMSE, 17(4-5),

2012.

[166] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu. On the

”naturalness” of buggy code. ICSE’16.

[167] V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language

models. PLDI’14.

[168] M. Rieger. Effective Clone Detection Without Language Barriers. PhD thesis, 2005.

[169] X. Rong. word2vec parameter learning explained. CoRR, abs/1411.2738, 2014.

[170] R. Rosenfeld. A maximum entropy approach to adaptive statistical language mod-

eling. CSL, 10(3):187–228, 1996.

[171] R. Rosenfeld. Two decades of statistical language modeling: Where do we go from

here? 88(8), 2000.

[172] C. Roy and J. Cordy. A survey on software clone detection research. Technical

report, Queen’s University, 2007.

[173] C. Roy, J. Cordy, and R. Koschke. Comparison and evaluation of code clone de-

tection techniques and tools: A qualitative approach. SCP, 74(7), 2009.

[174] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-

propagating errors. Nature, 323(6088):533–536, 1986.

[175] P. Runeson and M. Höst. Guidelines for conducting and reporting case study re-

search in software engineering. EMSE, 14(2), 2009.

[176] R. Salakhutdinov and G. Hinton. Semantic hashing. IJAR, 50(7), 2009.

128

BIBLIOGRAPHY

[177] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue. Finding file clones in FreeBSD

ports collection. MSR’10.

[178] Jürgen Schmidhuber. Learning complex, extended sequences using the principle

of history compression. NECO, 4(2):234–242, 1992.

[179] H. Schwenk and J. Gauvain. Training neural network language models on very

large corpora. HLT’05.

[180] D. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. 2

edition, 2000.

[181] Y. Shi, W. Zhang, J. Liu, andM. Johnson. RNN languagemodel with word clustering

and class-based output layer. EURASIP, 1, 2013.

[182] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard. Automatic error elim-

ination by horizontal code transfer across multiple applications. PLDI’15.

[183] N. Sinha and M. Gupta. Soft Computing and Intelligent Systems: Theory and Ap-

plications. 1 edition, 1999.

[184] J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine

learning algorithms. NIPS’12, pages 2951–2959. 2012.

[185] R. Socher. Recursive Deep Learning for Natural Language Processing and Com-

puter Vision. PhD thesis, 2014.

[186] R. Socher, C. Lin, A. Ng, and C. Manning. Parsing natural scenes and natural

language with recursive neural networks. ICML’11.

[187] R. Socher, J. Pennington, E. Huang, A. Ng, and C. Manning. Semi-supervised

recursive autoencoders for predicting sentiment distributions. EMNLP’11.

129

BIBLIOGRAPHY

[188] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts.

Recursive deep models for semantic compositionality over a sentiment treebank.

EMNLP’13.

[189] A. Stolcke. SRILM—An extensible language modeling toolkit. INTERSPEECH’02.

[190] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization

and momentum in deep learning. ICML’13.

[191] I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent neural net-

works. ICML’11.

[192] J. Svajlenko, J. Islam, I. Keivanloo, C. Roy, and M. Mia. Towards a big data curated

benchmark of inter-project code clones. ICSME’14.

[193] J. Svajlenko and C. Roy. Evaluating clone detection tools with BigCloneBench.

ICSME’15.

[194] Y. Tian, D. Lo, and J. Lawall. Automated construction of a software-specific word

similarity database. CSMR-WCRE’14.

[195] Y. Tian, D. Lo, and J. Lawall. SEWordSim: Software-specific word similarity

database. ICSE Companion’14.

[196] P. Tonella, R. Tiella, and D. Nguyen. Interpolated n-grams for model based testing.

ICSE’14.

[197] L. Trefethen and D. Bau. Numerical Linear Algebra. 1997.

[198] Z. Tu, Z. Su, and P. Devanbu. On the localness of software. FSE’14.

[199] L. van der Maaten and G. Hinton. Visualizing high-dimensional data using t-SNE.

JMLR, 9:2579–2605, 2008.

[200] M. Linares Vásquez, A. Holtzhauer, and D. Poshyvanyk. On automatically detecting

similar Android apps. ICPC’16.

130

BIBLIOGRAPHY

[201] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Problems creating task-

relevant clone detection reference data. WCRE’03.

[202] A.Walenstein and A. Lakhotia. The software similarity problem inmalware analysis.

Dagstuhl Seminar Proceedings, 2007.

[203] S. Wang, T. Liu, and L. Tan. Automatically learning semantic features for defect

prediction. ICSE’16.

[204] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for better configurations: A

rigorous approach to clone evaluation. FSE’13.

[205] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei. Can I clone this piece

of code here? ASE’12.

[206] P. Werbos. Backpropagation through time: What it does and how to do it. 78(10),

1990.

[207] M. White. Deep representations for software engineering. volume 2 of ICSE’15.

[208] M. White, M. Linares-Vásquez, P. Johnson, C. Bernal-Cárdenas, and D. Poshy-

vanyk. Generating reproducible and replayable bug reports from Android applica-

tion crashes. ICPC’15.

[209] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning code frag-

ments for code clone detection. ASE’16.

[210] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk. Toward deep

learning software repositories. MSR’15.

[211] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. Experi-

mentation in Software Engineering: An Introduction. 2000.

131

BIBLIOGRAPHY

[212] J. Xuan, M. Martínez, F. DeMarco, M. Clément, S. Lamelas, T. Durieux, Daniel

Le Berre, and M. Monperrus. Nopol: Automatic repair of conditional statement

bugs in Java programs. TSE, 43(1):34–55, 2016.

[213] J. Yang and L. Tan. Inferring semantically related words from software context.

MSR’12, pages 161–170, 2012.

[214] J. Yang and L. Tan. SWordNet: Inferring semantically related words from software

context. EMSE, 19(6):1856–1886, December 2014.

[215] W. Yang. Identifying syntactic differences between two programs. SPE, 21(7),

1991.

[216] H. Yokoyama, Y. Higo, K. Hotta, T. Ohta, K. Okano, and S. Kusumoto. Toward im-

proving ability to repair bugs automatically: A patch candidate location mechanism

using code similarity. SAC’16, pages 1364–1370, 2016.

[217] D. Zhang and J. Tsai. Machine learning and software engineering. Software Quality

Journal, 11(2):87–119, 2003.

132

