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ABSTRACT PAGE

As programmers develop software, they instinctively sense that source code exists that could be

reused if found – many programming tasks are common to many software projects across different

domains. Oftentimes, a programmer will attempt to create new software from this existing source

code, such as third-party libraries or code from online repositories. Unfortunately, several major

challenges make it difficult to locate the relevant source code and to reuse it. First, there is a

fundamental mismatch between the high-level intent reflected in the descriptions of source code, and

the low-level implementation details. This mismatch is known as the concept assignment problem,

and refers to the frequent case when the keywords from comments or identifiers in code do not match

the features implemented in the code. Second, even if relevant source code is found, programmers

must invest significant intellectual effort into understanding how to reuse the different functions,

classes, or other components present in the source code. These components may be specific to a

particular application, and difficult to reuse.

One key source of information that programmers use to understand source code is the set of re-

lationships among the source code components. These relationships are typically structural data,

such as function calls or class instantiations. This structural data has been repeatedly suggested

as an alternative to textual analysis for search and reuse, however as yet no comprehensive strat-

egy exists for locating relevant and reusable source code. In my research program, I harness this

structural data in a unified approach to creating and evolving software from existing components.

For locating relevant source code, I present a search engine for finding applications based on the

underlying Application Programming Interface (API) calls, and a technique for finding chains of

relevant function invocations from repositories of millions of lines of code. Next, for reusing source

code, I introduce a system to facilitate building software prototypes from existing packages, and an

approach to detecting similar software applications.
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Searching, Selecting, and Synthesizing Source Code Components



Chapter 1

Introduction

As programmers develop software, they instinctively sense that source code exists that could be

reused if found – many programming tasks are common to many software projects across different

domains. Oftentimes, a programmer will attempt to create new software from this existing source

code, such as third-party libraries or code from online repositories. Unfortunately, several major

challenges make it difficult to locate the relevant source code and to reuse it. First, there is a

fundamental mismatch between the high-level intent reflected in the descriptions of source code, and

the low-level implementation details. This mismatch is known as the concept assignment problem,

and refers to the frequent case when the keywords from comments or identifiers in code do not

match the features implemented in the code [9]. Second, even if relevant source code is found,

programmers must invest significant intellectual effort into understanding how to reuse the different

functions, classes, or other components present in the source code. These components may be

specific to a particular application, and difficult to reuse.

One key source of information that programmers use to understand source code is the set of

relationships among the source code components. These relationships are typically structural data,

such as function calls or class instantiations. This structural data has been repeatedly suggested

as an alternative to textual analysis for search and reuse, however as yet no comprehensive strat-
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egy exists for locating relevant and reusable source code. In my research program, I harness this

structural data in a unified approach to creating and evolving software from existing components.

For locating relevant source code, I present a search engine for finding applications based on the

underlying Application Programming Interface (API) calls, and a technique for finding chains of

relevant function invocations from repositories of millions of lines of code. Next, for reusing source

code, I introduce a system to facilitate building software prototypes from existing packages, and an

approach to detecting similar software applications.

1.1 A Search Engine for Finding Highly-Relevant Applications

Software contains functional abstractions, in the form of API calls, that support the implementation

of the features of that software, and programmers commonly build these API calls into their appli-

cations. Software with the feature of playing music, for example, is likely to contain API calls from

third-party sound libraries. However, API calls are an untapped resource for source code search;

a majority of source code search engines treat code as plain text, where all words have unknown

semantics. Efforts to introduce structural information such as API calls into source code search

engines have remained largely theoretical, being implemented only on small codebases and not

evaluated by developers in statistically-significant case studies.

In contrast, we designed and implemented Exemplar, a search engine for software applications

[34, 68]. Exemplar addresses an instance of the concept assignment problem because it matches

keywords in queries to keywords in the documentation of the API calls used in the applications.

For example, a query containing keywords related to music will match API calls that implement

various multimedia tasks, and Exemplar will return applications which use those calls, regardless of
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whether those applications actually contain keywords relevant to the query. We built Exemplar with

a repository of 8,310 Java applications, and compared it to a state-of-the-art search engine provided

by Sourceforge in a cross-validation design case study with 39 professional developers. Our results

demonstrate how API calls can be used to improve source code search in large repositories.

1.2 Detecting Similar Software Applications

Retrieving similar or related web pages is a popular feature of search engines. After users submit

search queries, the engine displays links to relevant pages labeled “Similar.” These pages are ranked

as similar based on different factors, including text content, popularity scores, and the links’ position

and size [31]. Existing techniques for detecting similar software applications, for use in source code

search engines, are based solely on the textual content of the code. In contrast, we created an

approach to automatically detect Closely reLated ApplicatioNs (CLAN) [67]. Our approach works

by comparing the API calls used in the applications. By comparing the applications based on their

API usage, we are able to significantly outperform a state-of-the-art approach that uses only text

content.

To navigate the large repositories, as well as the results from search engines, it is useful to group

software systems into categories which define the broad functionality provided by the software. This

categorization helps programmers reuse source code by showing similar software, which may be

used as a reference or alternative. Therefore, we developed a technique using API calls to categorize

software [71]. The advantage to our approach is that it does not rely on textual information from

source code, which may not be available due to privacy concerns or language barriers. This work is

a key step towards helping developers to reuse source code located by search engines.
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1.3 Locating Relevant Functions and Their Usages in Millions of Lines

of Code

The functional abstractions in software are not limited to API calls. Generally speaking, functional

abstractions are the basic units of functionality in source code (e.g., known as functions, methods,

subprocedures, in different languages). More advanced features in software are accomplished by

combining these functions into chains of function invocations. For example, consider the feature

of recording microphone audio and saving it to a file. This feature is unlikely to be implemented

by a single function. Instead, some functions may access the microphone, some functions may

process the audio, and others write the data to a file; these functions will then be connected via

different function calls. When searching for source code, programmers need to see this chain of

function invocations to understand how a feature is implemented. However, current source code

search engines focus on locating individual functions, statements, or arbitrary fragments of code.

My work addresses this shortcoming with a code search system called Portfolio that retrieves

and visualizes relevant chains of function invocations from two open-source repositories of over 710

million total lines of code [69]. Portfolio works by computing a textual similarity value for functions

to a query, and then propagating this value to other functions which are connected via the function

call graph using a technique called spreading activation. In this way, we address the concept assign-

ment problem, in that we locate functions which are relevant to a task, even if those functions do not

contain any keywords. Also, we reduce the manual effort required by programmers to understand

the code, because we show programmers a chain of function invocations that implements the task,

rather than only individual functions. We evaluated Portfolio in a case study with 49 professional

programmers, and found statistically-significant improvement over two commercial-grade engines.
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1.4 Recommending Source Code for Rapid Software Prototyping

Current source code search engines return code relevant to a single feature description that the

programmer needs to implement. However, when programmers reuse code, they often implement

software with multiple, interacting features. Even if a developer locates relevant code for each

of the feature descriptions he or she needs to build, that code may be incompatible and require

substantial modification before code for multiple features can be integrated. In this situation, the

effort required for a developer to understand and integrate the returned source code can drastically

reduce the benefits of reuse.

We introduce a recommender system for source code in the context of rapid software prototyping

[70]. During prototyping, programmers iteratively propose, review, and demonstrate the features of

a software product. Our system helps programmers in two ways. First, we expand the list of feature

descriptions to be implemented by mining repositories for similar sets of feature descriptions. We

use a k-Nearest-Neighbor algorithm to cluster the feature descriptions which our mining tool detects

are frequently implemented in the same projects. Second, we locate source code that implements

multiple features that the programmer specifies. We use a combination of PageRank, set coverage,

and Coupling Between Objects to maximize the coverage of desired features in the recommended

source code, while minimizing the external coupling of that source code. Programmers using the

recommendations from our approach must perform less manual work than with code from other

approaches because our recommendations include multiple features selected by the programmer.



Chapter 2

A Search Engine For Finding Highly

Relevant Applications

2.1 Introduction

Programmers face many challenges when attempting to locate source code to reuse [102]. One

key problem of finding relevant code is the mismatch between the high-level intent reflected in

the descriptions of software and low-level implementation details. This problem is known as the

concept assignment problem [9]. Search engines have been developed to address this problem by

matching keywords in queries to words in the descriptions of applications, comments in their source

code, and the names of program variables and types. These applications come from repositories

which may contain thousands of software projects. Unfortunately, many repositories are polluted

with poorly functioning projects [42]; a match between a keyword from the query with a word in

the description or in the source code of an application does not guarantee that this application is

relevant to the query.

Many source code search engines return snippets of code that are relevant to user queries. Pro-

grammers typically need to overcome a high cognitive distance [52] to understand how to use these

7
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code snippets. Moreover, many of these code fragments are likely to appear very similar [29]. If

code fragments are retrieved in the contexts of executable applications, it makes it easier for pro-

grammers to understand how to reuse these code fragments.

Existing code search engines (e.g., Google Code Search, SourceForge) often treat code as plain

text where all words have unknown semantics. However, applications contain functional abstrac-

tions in a form of API calls whose semantics are well-defined. The idea of using API calls to im-

prove code search was proposed and implemented elsewhere [33, 15]; however, it was not evaluated

over a large codebase using a standard information retrieval methodology [66, pages 151-153].

We created an application search system called Exemplar (EXEcutable exaMPLes ARchive) as

part of our Searching, Selecting, and Synthesizing (S3) architecture [82]. Exemplar helps users

find highly relevant executable applications for reuse. Exemplar combines three different sources

of information about applications in order to locate relevant software: the textual descriptions of

applications, the API calls used inside each application, and the dataflow among those API calls.

We evaluated the contributions by these different types of information in two separate case studies.

First, in Section 2.6, we compared Exemplar (in two configurations) to SourceForge. We analyzed

the results of that study in Section 2.7 and created a new version of Exemplar. We evaluated our

updates to Exemplar in Section 2.8. Our key finding is that our search engine’s results improved

when considering the API calls in applications instead of only the applications’ descriptions. We

have made Exemplar and the results of our case studies available to the public1.

1http://www.xemplar.org (verified 03/28/2011)
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2.2 Exemplar Approach

2.2.1 The Problem

A direct approach for finding highly relevant applications is to search through the descriptions and

source code of applications to match keywords from queries to the names of program variables and

types. This approach assumes that programmers choose meaningful names when creating source

code, which is often not the case [3].

This problem is partially addressed by programmers who create meaningful descriptions of the

applications in software repositories. However, state-of-the-art search engines use exact matches

between the keywords from queries, the words in the descriptions, and the source code of applica-

tions. Unfortunately, it is difficult for users to guess exact keywords because “no single word can

be chosen to describe a programming concept in the best way” [28]. The vocabulary chosen by a

programmer is also related to the concept assignment problem because the terms in the high-level

descriptions of applications may not match terms from the low-level implementation (e.g., identifier

names and comments).

2.2.2 Key Ideas

Suppose that a programmer needs to encrypt and compress data. A programmer will naturally turn

to a search engine such as SourceForge2 and enter keywords such as encrypt and compress.

The programmer then looks at the source code of the programs returned by these search engines to

check to see if some API calls are used to encrypt and compress data. The presence of these API

calls is a good starting point for deciding whether to check these applications further.

2http://sourceforge.net/ (verified 03/28/2011)
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What we seek is to augment standard code search to include help documentations of widely

used libraries, such as the standard Java Development Kit (JDK)3. Existing engines allow users to

search for specific API calls, but knowing in advance what calls to search for is hard. Our idea is to

match keywords from queries to words in help documentation for API calls. These help documents

are descriptions of the functionality of API calls as well as the usage of those calls. In Exemplar, we

extract the help documents that come in the form of JavaDocs. Programmers trust these documents

because the documents come from known and respected vendors, were written by different people,

reviewed multiple times, and have been used by other programmers who report their experience at

different forums [25].

We also observe that relations between concepts entered in queries are often reflected as dataflow

links between API calls that implement these concepts in the program code. This observation is

closely related to the concept of the software reflexion models formulated by Murphy, Notkin, and

Sullivan. In these models, relations between elements of high-level models (e.g., processing el-

ements of software architectures) are preserved in their implementations in source code [77][76].

For example, if the user enters keywords secure and send, and the corresponding API calls

encrypt and email are connected via some dataflow, then an application with these connected

API calls are more relevant to the query than applications where these calls are not connected.

Consider two API calls string encrypt() and void email(string). After the call

encrypt is invoked, it returns a string that is stored in some variable. At some later point a call

to the function email is made and the variable is passed as the input parameter. In this case these

functions are connected using a dataflow link which reflects the implicit logical connection between

3http://www.oracle.com/technetwork/java/javase/downloads/index.html (verified

03/28/2011)
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(a) Standard search engines. (b) Exemplar search engine.

Figure 2.1: Illustrations of the processes for standard and Exemplar search engines.

keywords in queries. Specifically, the data should be encrypted and then sent to some destination.

2.2.3 Motivating Example

Exemplar returns applications that implement the tasks described in by the keywords in user queries.

Consider the following task: find an application for sharing, viewing, and exploring large data sets

that are encoded using MIME, and the data can be stored using key value pairs. Using the following

keywords MIME, type, data, an unlikely candidate application called BIOLAP is retrieved using

Exemplar with a high ranking score. The description of this application matches only the keyword

data, and yet this application made it to the top ten of the list.

BIOLAP uses the class MimeType, specifically its method getParameterMap, because it

deals with MIME-encoded data. The descriptions of this class and this method contain the desired

keywords, and these implementation details are highly-relevant to the given task. BIOLAP does not

show on the top 300 list of retrieved applications when the search is performed with the SourceForge

search engine.

2.2.4 Fundamentals of Exemplar

Consider the process for standard search engines (e.g., Sourceforge, Google code search4, Krugle5)

shown in Figure 2.1(a). A keyword from the query is matched against words in the descriptions

4http://www.google.com/codesearch (verified 03/28/2011)
5http://opensearch.krugle.org (verified 03/28/2011)
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of the applications in some repository (Sourceforge) or words in the entire corpus of source code

(Google Code Search, Krugle). When a match is found, applications app1 to appn are returned.

Consider the process for Exemplar shown in Figure 2.1(b). Keywords from the query are

matched against the descriptions of different documents that describe API calls of widely used

software packages. When a match is found, the names of the API calls call1 to callk are re-

turned. These names are matched against the names of the functions invoked in these applications.

When a match is found, applications app1 to appn are returned.

In contrast to the keyword matching functionality of standard search engines, Exemplar matches

keywords with the descriptions of the various API calls in help documents. Since a typical applica-

tion invokes many API calls, the help documents associated with these API calls are usually written

by different people who use different vocabularies. The richness of these vocabularies makes it more

likely to find matches, and produce API calls API call1 to API callk. If some help document

does not contain a desired match, some other document may yield a match. This is how we address

the vocabulary problem [28].

As it is shown in Figure 2.1(b), API calls API call1, API call2, and API call3 are

invoked in the app1. It is less probable that the search engine fails to find matches in help documents

for all three API calls, and therefore the application app1 will be retrieved from the repository.

Searching help documents produces additional benefits. API calls from help documents (that

match query keywords) are linked to locations in the project source code where these API calls are

used thereby allowing programmers to navigate directly to these locations and see how high-level

concepts from queries are implemented in the source code. Doing so solves an instance of the

concept location problem [61].
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2.3 Ranking Schemes

2.3.1 Components of Ranking

There are three components that compute different scores in the Exemplar ranking mechanism:

a component that computes a score based on word occurrences in project descriptions (WOS), a

component that computes a score based on the relevant API calls (RAS), and a component that

computes a score based on dataflow connections between these calls (DCS). The total ranking score

is the weighted sum of these three ranking scores.

We designed each ranking component to produce results from different perspectives (e.g., ap-

plication descriptions, API calls, and dataflows among the API calls). The following three sections

describe the components. Section 2.4 discusses the implentation of the components and includes

important technical limitations that we considered when building Exemplar. We examine how WOS,

RAS, and DCS each contribute to the results given by Exemplar in Section 2.7. Section 2.7 also

covers the implications of our technical considerations.

2.3.2 WOS Ranking Scheme

The WOS component uses the Vector Space Model (VSM), which is a ranking function used by

search engines to rank matching documents according to their relevance to a given search query.

VSM is a bag-of-words retrieval technique that ranks a set of documents based on the terms appear-

ing in each document as well as the query. Each document is modeled as a vector of the terms it

contains. The weights of those terms in each document are calculated in accordance to the Term Fre-

quency/Inverse Document Frequency (TF/IDF). Using TF/IDF, the weight for a term is calculated as

t f = n
∑k nk

where n is the number of occurrences of the term in the document, and ∑k nk is the sum of
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the number of occurences of the term in all documents. Then the similarities among the documents

are calculated using the cosine distance between each pair of documents cos(θ) = d1·d2

‖d1‖‖d2‖
where d1

and d2 are document vectors.

2.3.3 RAS Ranking Scheme

The documents in our approach are the different documents that describe each API call (e.g., each

JavaDoc). The collection of API documents is defined as DAPI = (D1
API,D

2
API, . . . ,D

k
API). A corpus

is created from DAPI and represented as the term-by-document m× k matrix M, where m is the

number of terms and k is the number of API documents in the collection. A generic entry a[i, j] in

this matrix denotes a measure of the weight of the ith term in the jth API document [94].

API calls that are relevant to the user query are obtained by ranking documents, DAPI that

describe these calls as relevant to the query Q. This relevance is computed as a conceptual similarity,

C, (i.e., the length-normalized inner product) between the user query, Q, and each API document,

DAPI . As a result the set of triples 〈A,C,n〉 is returned, where A is the API call, n is the number

of occurrences of this API call in the application with the conceptual similarity, C, of the API call

documentation to query terms.

The API call-based ranking score for the application, j, is computed as S
j
ras =

p

∑
i=1

n
j
i ·C

j
i

|A| j
, where

|A| j is the total number of API calls in the application j, and p is the number of API calls retrieved

for the query.

2.3.4 DCS Ranking Scheme

To improve the precision of ranking we derive the structure of connections between API calls and

use this structure as an important component in computing rankings. The standard syntax for invok-
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ing an API call is t var=o.callname(p1, . . . , pn). The structural relations between API calls

reflect compositional properties between these calls. Specifically, it means that API calls access and

manipulate data at the same memory locations.

There are four types of dependencies between API calls: input, output, true, and anti-dependence

[75, page 268]. True dependence occurs when the API call f write a memory location that the API

call g later reads (e.g., var=f(. . .); . . .; g(var, . . .);). Anti-dependence occurs when the API call

f reads a memory location that the API call g later writes (e.g., f(var, . . .), . . .; var=g(. . .);).

Output dependence occurs when the API calls f and g write the same memory location. Finally,

input dependence occurs when the API calls f and g read the same memory location.

Consider an all-connected graph (i.e., a clique) where nodes are API calls and the edges repre-

sent dependencies among these calls for one application. The absence of an edge means that there is

no dependency between two API calls. Let the total number of connections among n retrieved API

calls be less or equal to n(n−1). Let a connection between two distinct API calls in the application

be defined as Link; we assign some weight w to this Link based on the strength of the dataflow or

control flow dependency type. The ranking is normalized to be between 0 and 1.

The API call connectivity-based ranking score for the application, j, is computed as S
j

dcs =
n(n−1)

∑
i=1

w
j
i

n(n−1) , where wi is the weight to each type of flow dependency for the given link Link, such

that 1 > wtrue
i > wanti

i > w
out put
i > w

input
i > 0. The intuition behind using this order is that these

dependencies contribute differently to ranking heuristics. Specifically, using the values of the same

variable in two API calls introduces a weaker link as compared to the true dependency where one

API call produces a value that is used in some other API call.
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2.3.5 Integrated Scheme

The final ranking score is computed as S= λwosSwos+λrasSras+λdcsSdcs, where λ is the interpolation

weight for each type of the score. These weights are determined independently of queries unlike

the scores, which are query-dependent. Adjusting these weights enables experimentation with how

underlying structural and textual information in application affects resulting ranking scores. The

formula for S remains the same throughout this paper, and all three weights were equal during the

case study in Section2.5. We explore alterations to Exemplar, including λ, based on the case study

results in Section 2.7.

2.4 Implementation Details

Figure 2.2 shows the architecture of Exemplar. In this section we step through Figure 2.2 and

describe some technical details behind Exemplar.

Two crawlers, Application Extractor and API Call Extractor populate Exemplar with data from

SourceForge. We currently have run the crawlers on SourceForge and obtained more than 8,000

Java projects containing 414,357 files6. The Application Extractor downloads the applications and

extracts the descriptions and source code of those applications (the Application Metadata (1)). The

API Call Extractor crawls the source code from the applications for the API calls that theyuse, the

descriptions of the API calls, and the dataflow amoung those calls (the API Call Metadata (2)). The

API Call Extractor ran with 65 threads for over 50 hours on 30 computers: three machines have two

dual-core 3.8Ghz EM64T Xeon processors with 8Gb RAM, two have four 3.0Ghz EM64T Xeon

CPUs with 32Gb RAM, and the rest have one 2.83Ghz quad-core CPU and 2Gb RAM. The API

6We ran the crawlers in August 2009.
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Call Extractor found nearly twelve million API invocations from the JDK 1.5 in the applications. It

also processes the API calls for their descriptions, which in our case are the JavaDocs for those API

calls.

Our approach relies on the tool PMD 7 for computing approximate dataflow links, which are

based on the patterns described in Section 2.3.4. PMD extracts data from individual Java source

files, so we are only able to locate dataflow links among the API calls as they are used in any one file.

We follow the variables visible in each scope (e.g., global variables plus those declared in methods).

We then look at each API call in the scope of those variables. We collect the input parameters and

output of those API calls. We then analyze this input and output for dataflow. For example, if the

output of one API call is stored in a variable which is then used as input to another API call, then

there is dataflow between those API calls. Note that our technique is an approximation and can

produce both false positive and false negatives. Determining the effects of this approximation on

the quality of Exemplar’s results is an area of future work.

The Retrieval Engine locates applications in two ways (3). First, the input to the Retrieval

Engine is the user query, and the engine matches keywords in this query (5) to keywords in the

descriptions of applications. Second, the Retrieval Engine finds descriptions of API calls which

match keywords 8. The Retrieval Engine then locates applications which use those API calls. The

engine outputs a list of Retrieved Applications (6).

The Ranking Engine uses the three ranking schemes from Section 2.3 (WOS, RAS, and DCS)

to sort the list of retrieved applications (7). The Ranking Engine depends on three sources of

information: descriptions of applications, the API calls used by each application, and the dataflow

7http://pmd.sourceforge.net/ (verified 03/28/2011)
8Exemplar limits the number of relevant API calls it retrieves for each query to 200. This limit was necessary due to

performance constraints. See Section 2.7.4.
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Figure 2.2: Exemplar architecture.

among those API calls (4). The Ranking Engine uses Lucene9, which is based on VSM, to imple-

ment WOS. The combination of the ranking schemes (see Section 2.3.5) determines the relevancy

of the applications. The Relevant Applications are then presented to the user (8).

2.5 Case Study Design

Typically, search engines are evaluated using manual relevance judgments by experts [66, pages

151-153]. To determine how effective Exemplar is, we conducted a case study with 39 participants

who are professional programmers. We gave a list of tasks described in English. Our goal is to

evaluate how well these participants can find applications that match given tasks using three different

search engines: Sourceforge (SF) and Exemplar with (EWD) and without (END) dataflow links as

part of the ranking mechanism. We chose to compare Exemplar with Sourceforge because the latter

has a popular search engine with the largest open source Java project repository, and Exemplar is

populated with Java projects from this repository.

9http://lucene.apache.org (verified 03/28/2011)
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Experiment Group Search Engine Task Set

1

G1 EWD T1

G2 SF T2

G3 END T3

2

G1 END T2

G2 EWD T3

G3 SF T1

3

G1 SF T3

G2 END T1

G3 EWD T2

Table 2.1: Plan for the case study of Exemplar and Sourceforge.

2.5.1 Methodology

We used a cross validation study design in a cohort of 39 participants who were randomly divided

into three groups. We performed three separate experiments during the study. In each experiment,

each group was given a different search engine (i.e., SF, EWD, or END) as shown in Table 2.1.

Then, in the experiments, each group would be asked to use a different search engine than that

group had used before. The participants would use the assigned engine to find applications for

given tasks. Each group used a different set of tasks in each experiment. Thus each participant used

each search engine on different tasks in this case study. Before the study we gave a one-hour tutorial

on using these search engines to find applications for tasks.

Each experiment consisted of three steps. First, participants translated tasks into a sequence of

keywords that described key concepts of applications that they needed to find. Then, participants

entered these keywords as queries into the search engines (the order of these keywords does not

matter) and obtained lists of applications that were ranked in descending order.

The next step was to examine the returned applications and to determine if they matched the

tasks. Each participant accomplished this step by him or herself, assigning a confidence level, C,

to the examined applications using a four-level Likert scale. We asked participants to examine only
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top ten applications that resulted from their searches. We evaluated only the top ten results because

users of search engines rarely look beyond the tenth result [32] and because other source code search

engines have been evaluated using the same number of results [40].

The guidelines for assigning confidence levels are the following.

1. Completely irrelevant - there is absolutely nothing that the participant can use from this re-

trieved project, nothing in it is related to your keywords.

2. Mostly irrelevant - only few remotely relevant code snippets or API calls are located in the

project.

3. Mostly relevant - a somewhat large number of relevant code snippets or API calls in the

project.

4. Highly relevant - the participant is confident that code snippets or API calls in the project can

be reused.

Twenty-six participants are Accenture employees who work on consulting engagements as pro-

fessional Java programmers for different client companies. Remaining 13 participants are graduate

students from the University of Illinois at Chicago who have at least six months of Java experience.

Accenture participants have different backgrounds, experience, and belong to different groups of

the total Accenture workforce of approximately 180,000 employees. Out of 39 participants, 17 had

programming experience with Java ranging from one to three years, and 22 participants reported

more than three years of experience writing programs in Java. Eleven participants reported prior

experience with Sourceforge (which is used in this case study), 18 participants reported prior ex-

perience with other search engines, and 11 said that they never used code search engines. Twenty

six participants have bachelor degrees and thirteen have master degrees in different technical disci-

plines.
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2.5.2 Precision

Two main measures for evaluating the effectiveness of retrieval are precision and recall [114, page

188-191]. The precision is calculated as Pr =
relevant
retrieved

, where relevant is the number of re-

trieved applications that are relevant and retrieved is the total number of applications retrieved.

The precision of a ranking method is the fraction of the top r ranked documents that are relevant to

the query, where r = 10 in this case study. Relevant applications are counted only if they are ranked

with the confidence levels 4 or 3. The precision metrics reflects the accuracy of the search. Since

we limit the investigation of the retrieved applications to top ten, the recall is not measured in this

study.

2.5.3 Discounted Cumulative Gain

Discounted Cumulative Gain (DCG) is a metric for analyzing the effectiveness of search engine

results [1]. The intuition behind DCG is that search engines should not only return relevant results,

but should rank those results by relevancy. Therefore, DCG rewards search engines for ranking

relevant results above irrelevant ones. We calculate the DCG for the top 10 results from each engine

because we collect confidence values for these results. We compute DCG according to this formula:

G = C1 +∑10
i=2

Ci

log2 i
, where C1 is the confidence value of the result in the first position and Ci is

the confidence value of the result in the ith position. We normalize the DCG using the following

formula: NG = G
iG

, where iG is the ideal DCG in the case when the confidence value for the first ten

results is always 4 (indicating that all ten results are highly-relevant). We refer to normalized DCG

as NG in the remainder of this paper.
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2.5.4 Hypotheses

We introduce the following null and alternative hypotheses to evaluate how close the means are for

the confidence levels (Cs) and precisions (Ps) for control and treatment groups. Unless we specify

otherwise, participants of the treatment group use either END or EWD, and participants of the

control group use SF. We seek to evaluate the following hypotheses at a 0.05 level of significance.

H0−null The primary null hypothesis is that there is no difference in the values of confidence level

and precision per task between participants who use SF, EWD, and END.

H0−alt An alternative hypothesis to H0−null is that there is statistically significant difference in the

values of confidence level and precision between participants who use SF, EWD, and END.

Once we test the null hypothesis H0−null , we are interested in the directionality of means, µ, of

the results of control and treatment groups. We are interested to compare the effectiveness of EWD

versus the END and SF with respect to the values of C, P, and NG.

H1 (C of EWD versus SF) The effective null hypothesis is that µEWD
C =

µSF
C , while the true null hypothesis is that µEWD

C ≤ µSF
C . Conversely, the alternative hypothesis

is µEWD
C > µSF

C .

H2 (P of EWD versus SF) The effective null hypothesis is that µEWD
P =

µSF
P , while the true null hypothesis is that µEWD

P ≤ µSF
P . Conversely, the alternative hypothesis

is µEWD
P > µSF

P .

H3 (NG of EWD versus SF) The effective null hypothesis is that µEWD
NG =

µSF
NG, while the true null hypothesis is that µEWD

NG ≤ µSF
NG. Conversely, the alternative hypothesis

is µEWD
NG > µSF

NG.

H4 (C of EWD versus END) The effective null hypothesis is that µEWD
C =

µEND
C , while the true null hypothesis is that µEWD

C ≤ µEND
C . Conversely, the alternative is

µEWD
C > µEND

C .

H5 (P of EWD versus END) The effective null hypothesis is that µEWD
P =

µEND
P , while the true null hypothesis is that µEWD

P ≤ µEND
P . Conversely, the alternative is

µEWD
P > µEND

P .
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H6 (NG of EWD versus END) The effective null hypothesis is that µEWD
NG =

µEND
NG , while the true null hypothesis is that µEWD

NG ≤ µEND
NG . Conversely, the alternative is

µEWD
NG > µEND

NG .

H7 (C of END versus SF) The effective null hypothesis is that µEND
C = µSF

C ,

while the true null hypothesis is that µEND
C ≤ µSF

C . Conversely, the alternative hypothesis is

µEND
C > µSF

C .

H8 (P of END versus SF) The effective null hypothesis is that µEND
P = µSF

P ,

while the true null hypothesis is that µEND
P ≤ µSF

P . Conversely, the alternative hypothesis is

µEND
P > µSF

P .

H9 (NG of END versus SF) The effective null hypothesis is that µEND
NG =

µSF
NG, while the true null hypothesis is that µEND

NG ≤ µSF
NG. Conversely, the alternative hypothesis

is µEND
NG > µSF

NG.

The rationale behind the alternative hypotheses to H1, H2, and H3 is that Exemplar allows users

to quickly understand how keywords in queries are related to implementations using API calls in

retrieved applications. The alternative hypotheses to H4, H5, H6 are motivated by the fact that

if users see dataflow connections between API calls, they can make better decisions about how

closely retrieved applications match given tasks. Finally, having the alternative hypotheses to H7,

H8, and H9 ensures that Exemplar without dataflow links still allows users to quickly understand

how keywords in queries are related to implementations using API calls in retrieved applications.

2.5.5 Task Design

We designed 26 tasks that participants work on during experiments in a way that these tasks belong

to domains that are easy to understand, and they have similar complexity. The following are two

example tasks; all others may be downloaded from the Exemplar about page10.

1. ”Develop a universal sound and voice system that allows users to talk, record audio,

and play MIDI records. Users should be able to use open source connections with each

10http://www.cs.wm.edu/semeru/exemplar/#casestudy (verified 03/28/2011)
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other and communicate. A GUI should enable users to save conversations and replay

sounds.”

2. ”Implement an application that performs pattern matching operations on a character

sequences in the input text files. The application should support iterating through the

found sequences that match the pattern. In addition, the application should support

replacing every subsequence of the input sequence that matches the pattern with the

given replacement string.”

Additional criteria for these tasks is that they should represent real-world programming tasks

and should not be biased towards any of the search engines that are used in this experiment. Descrip-

tions of these tasks should be flexible enough to allow participants to suggest different keywords for

searching. This criteria significantly reduces any bias towards evaluated search engines.

2.5.6 Normalizing Sources of Variations

Sources of variation are all issues that could cause an observation to have a different value from

another observation. We identify sources of variation as the prior experience of the participants with

specific applications retrieved by the search engines in this study, the amount of time they spend

on learning how to use search engines, and different computing environments which they use to

evaluate retrieved applications. The first point is sensitive since some participants who already know

how some retrieved applications behave are likely to be much more effective than other participants

who know nothing of these applications.

We design this experiment to drastically reduce the effects of covariates (i.e., nuisance factors) in

order to normalize sources of variations. Using the cross-validation design we normalize variations

to a certain degree since each participant uses all three search engines on different tasks.
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(a) Confidence level, C. (b) Precision, P. (c) Normalized Discounted

Gain, NG.

Figure 2.3: Statistical summary of the results of the case study for C and P.The center point represents the

mean. The dark and light gray boxes are the lower and upper quartiles, respectively. The thin line extends

from the minimum to the maximum value.

2.5.7 Tests and The Normality Assumption

We use one-way ANOVA, and randomization tests [104] to evaluate the hypotheses. ANOVA is

based on an assumption that the population is normally distributed. The law of large numbers states

that if the population sample is sufficiently large (between 30 to 50 participants), then the central

limit theorem applies even if the population is not normally distributed [103, pages 244-245]. Since

we have 39 participants, the central limit theorem applies, and the above-mentioned tests have

statistical significance.

2.5.8 Threats to Validity

In this section, we discuss threats to the validity of this case study and how we address these threats.
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2.5.8.1 Internal Validity

Internal validity refers to the degree of validity of statements about cause-effect inferences. In

the context of our experiment, threats to internal validity come from confounding the effects of

differences among participants, tasks, and time pressure.

Participants. Since evaluating hypotheses is based on the data collected from participants, we

identify two threats to internal validity: Java proficiency and motivation of participants.

Even though we selected participants who have working knowledge of Java as it was docu-

mented by human resources, we did not conduct an independent assessment of how proficient these

participants are in Java. The danger of having poor Java programmers as participants of our case

study is that they can make poor choices of which retrieved applications better match their queries.

This threat is mitigated by the fact that all participants from Accenture worked on successful com-

mercial projects as Java programmers.

The other threat to validity is that not all participants could be motivated sufficiently to evaluate

retrieved applications. We addressed this threat by asking participants to explain in a couple of

sentences why they chose to assign certain confidence level to applications, and based on their

results we financially awarded top five performers.

Tasks. Improper tasks pose a big threat to validity. If tasks are too general or trivial (e.g.,

open a file and read its data into memory), then every application that has file-related API calls will

be retrieved, thus creating bias towards Exemplar. On the other hand, if application and domain-

specific keywords describe task (e.g., genealogy and GENTECH), only a few applications will

be retrieved whose descriptions contain these keywords, thus creating a bias towards Sourceforge.

To avoid this threat, we based the task descriptions on a dozen specifications of different software
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H Var Approach Samples Min Max Median µ C p

H1 C
EWD 1273 1 4 2 2.35

-0.02 < 0.0001
SF 1273 1 4 1 1.82

H2 P
EWD 76 0.12 0.74 0.42 0.41

0.34 < 0.0001
SF 76 0.075 0.73 0.48 0.46

H3 NG
EWD 76 0.02 0.89 0.47 0.48

-0.05 < 0.0001
SF 76 0 0.83 0.26 0.28

H4 C
EWD 1273 1 4 2 2.35

0.01 < 0.0001
END 1273 1 4 3 2.47

H5 P
EWD 76 0.12 0.74 0.42 0.41

0.41 0.78927
END 76 0.075 0.73 0.48 0.46

H6 NG
EWD 76 0.02 0.89 0.47 0.48

-0.02 0.71256
END 76 0 0.92 0.53 0.52

H7 C
END 1307 1 4 3 2.47

-0.02 < 0.0001
SF 1307 1 4 1 1.84

H8 P
END 76 0.075 0.73 0.5 0.47

0.4 < 0.0001
SF 76 0 0.71 0.24 0.27

H9 NG
END 76 0 0.92 0.53 0.52

0.08 < 0.0001
SF 76 0 0.83 0.26 0.28

Table 2.2: Results of randomization tests of hypotheses, H, for dependent variable specified in the column

Var (C, P, or NG) whose measurements are reported in the following columns. Extremal values, Median,

Means, µ, and the pearson correlation coefficient, C, are reported along with the results of the evaluation of

the hypotheses, i.e., statistical significance, p.

systems that were written by different people for different companies. The tasks we used in the case

study are available for download at the Exemplar website 11.

Time pressure. Each experiment lasted for two hours, and for some participants it was not

enough time to explore all retrieved applications for each of eight tasks. It is a threat to validity that

some participants could try to accomplish more tasks by shallowly evaluating retrieved applications.

To counter this threat we notified participants that their results would be discarded if we did not see

sufficient reported evidence of why they evaluated retrieved applications with certain confidence

levels.

11http://www.xemplar.org, follow the ”About Exemplar” link to the ”Case Study” section.
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2.5.8.2 External Validity

To make results of this case study generalizable, we must address threats to external validity, which

refer to the generalizability of a casual relationship beyond the circumstances of our case study.

The fact that supports the validity of the case study design is that the participants are highly rep-

resentative of professional Java programmers. However, a threat to external validity concerns the

usage of search tools in the industrial settings, where requirements are updated on a regular basis.

Programmers use these updated requirements to refine their queries and locate relevant applications

using multiple iterations of working with search engines. We addressed this threat only partially, by

allowing programmers to refine their queries multiple times.

In addition, it is sometimes the case when engineers perform multiple searches using different

combinations of keywords, and they select certain retrieved applications from each of these search

results. We believe that the results produced by asking participants to decide on keywords and then

perform a single search and rank applications do not deviate significantly from the situation where

searches using multiple (refined) queries are performed.

Another threat to external validity comes from different sizes of software repositories. We

populated Exemplar’s repository with all Java projects from the Sourceforge repository to address

this threat to external validity.

Finally, the help documentation that we index in Exemplar is an external threat to validity be-

cause this documentation is provided by a third-party, and its content and format may vary. We

addressed this thread to validity by using the Java documentation extracted as JavaDocs from the

official Java Development Kit, which has a uniform format.
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2.6 Empirical Results

In this section, we report the results of the case study and evaluate the null hypotheses.

2.6.1 Variables

A main independent variable is the search engine (SF, EWD, END) that participants use to find

relevant Java applications. Dependent variables are the values of confidence level, C, precision, P,

and normalized discounted cumulative gain, NG. We report these variables in this section. The

effect of other variables (task description length, prior knowledge) is minimized by the design of

this case study.

2.6.2 Testing the Null Hypothesis

We used ANOVA[103] to evaluate the null hypothesis H0−null that the variation in an experiment is

no greater than that due to normal variation of individuals’ characteristics and error in their mea-

surement. The results of ANOVA confirm that there are large differences between the groups for C

with F = 129 > Fcrit = 3 with p ≈ 6.4 ·10−55 which is strongly statistically significant. The mean

C for the SF approach is 1.83 with the variance 1.02, which is smaller than the mean C for END,

2.47 with the variance 1.27, and it is smaller than the mean C for EWD, 2.35 with the variance 1.19.

Also, the results of ANOVA confirm that there are large differences between the groups for P with

F = 14 > Fcrit = 3.1 with p≈ 4 ·10−6 which is strongly statistically significant. The mean P for the

SF approach is 0.27 with the variance 0.03, which is smaller than the mean P for END, 0.47 with

the variance 0.03, and it is smaller than the mean P for EWD, 0.41 with the variance 0.026. Based

on these results we reject the null hypothesis and we accept the alternative hypothesis H0−alt .
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A statistical summary of the results of the case study for C, P, and NG (median, quartiles,

range and extreme values) are shown as box-and-whisker plots in Figure 2.3(a), Figure 2.3(b), and

Figure 2.3(c) correspondingly with 95% confidence interval for the mean.

2.6.3 Comparing Sourceforge with Exemplar

To test the null hypothesis H1, H2, H3, H7, H8, and H9 we applied six randomization tests, for C,

P, and NG for participants who used SF and both variants of Exemplar. The results of this test

are shown in Table 2.2. The column Samples shows that 37 out of a total of 39 participants

participated in all experiments and created rankings for P (two participants missed one experiment).

Samples indicates the number of results which were ranked in the case of variable C. For NG,

Samples shows the number of sets of results. Based on these results we reject the null hypotheses

H1, H2, H3, H7, H8, and H9, and we accept the alternative hypotheses that states that participants

who use Exemplar report higher relevance and precision on finding relevant applications than

those who use Sourceforge.

2.6.4 Comparing EWD with END

To test the null hypotheses H4, H5, and H6, we applied two t-tests for paired two sample for means,

for C, P, and NG for participants who used END and EWD. The results of this test are shown in

Table 2.2. Based on these results we reject the null hypothesis H4, and that say that participants

who use END report higher relevance when finding relevant applications than those who use

EWD. On the other hand, we fail to accept the null hypotheses H5 and H6, and say that participants

who use END do not report higher precision or normalized discounted cumulative gain than

those who use EWD.
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There are several explanations for this result. First, given that our dataflow analysis is imper-

fect, some links are missed and subsequently, the remaining links cannot affect the ranking score

significantly. Second, it is possible that our dataflow connectivity-based ranking mechanism needs

fine-tuning, and it is a subject of our future work. Finally, after the case study, a few participants

questioned the idea of dataflow connections between API calls. A few participants had vague ideas

as to what dataflow connections meant and how to incorporate them into the evaluation process.

This phenomenon points to a need for better descriptions of Exemplar’s internals in any future case

studies.

2.6.5 Qualitative Analysis and User Comments

Thirty-five of the participants in the case study completed exit surveys (see Table 2.3) describing

their experiences and opinions. Of these, 22 reported that seeing standalone fragments of the code

alongside relevant applications would be more useful than seeing only software applications. Only

four preferred simply applications listed in the results, while nine felt that either would be useful.

Several users stated that seeing entire relevant applications provides useful context for code frag-

ments, while others read code in order to understand certain algorithms or processes, but ultimately

re-implement the functionality themselves. After performing the case study, we responded to these

comments by providing the source code directly on Exemplars results page, with links to the lines

of files where relevant API calls are used. This constitutes a new feature of Exemplar, which was

not available to the participants during the user study.

Nineteen of the participants reported using source code search engines rarely, six said they

sometimes use source code search engines, and nine regularly. Of those that only rarely use source

code search engines, eight adapted Googles web search to look for code. Meanwhile, when asked
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Question

1 How many years of programming experience do

you have?

2 What programming languages have you used and

for how many years each?

3 How often do you use code search engines?

4 What code search engines have you used and for

how long?

5 How often can you reuse found applications or

code fragments in your work?

6 What is the biggest impediment to using code

search engines, in your opinion?

7 Would you rather be able to retrieve a standalone

fragment of code or an entire application with a

relevant fragment of code in it?

Table 2.3: The seven questions answered by the case study participants during the exit survey. All questions

were open-ended.

to state the biggest impediment in using source code search engines, 14 participants answered that

existing engines return irrelevant results, four were mostly concerned with the quality of the returned

source code, six did not answer, and 11 reported some other impediment. These results support the

recent studies [102] and point to a strong need for improved code engines that return focused,

relevant results. New engines should show the specific processes and useful fragments of code. We

believe that searching by API calls can fill this role because calls have specific and well-defined

semantics along with high-quality documentation.

The following is a selection of comments written by participants in the user study. Scanned

copies of all questionnaires are publicly available on the Exemplar about page.

• “The Exemplar search is handy for finding the APIs quickly.”

• “Many SourceForge projects [have] no files or archives.”

• “A standalone fragment would be easy to see and determine relevance to my needs, but an

entire application would allow for viewing context which would be useful.”

• “[I] typically reuse the pattern/algorithm, not [the] full code.”
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• “Often [retrieved code or applications] give me a clue as to how to approach a development

task, but usually the code is too specific to reuse without many changes.”

• “Often, [with source code search engines] I find results that do not have code.”

• “[I reuse code] not in its entirety, but [I] always find inspiration.”

• “There seems to be a lot of time needed to understand the code found before it can be usefully

applied.”

• “Could the line number reference [in Exemplar] invoke a collapsible look at the code snip-

pet?”

• “With proper keywords used, [Exemplar] is very impressive. However, it does not filter well

the executables and non-code files. Overall, great for retrieving simple code snippets.”

• “Most, if not all, results returned [by Exemplar] provided valuable direction/foundation for

completing the required tasks.”

• “During this experiment it became clear that searching for API can be much more effective

than by keywords in many instances. This is because it is the APIs that determine functionality

and scope potential.”

• “SourceForge was not as easy to find relevant software as hoped for.”

• “[Using SourceForge] I definitely missed the report within Exemplar that displays the match-

ing API methods/calls.”

• “SourceForge appears to be fairly unreliable for projects to actually contain any files.”

• “Exemplar seems much more intuitive and easier to use than SourceForge.”

• “Great tool to find APIs through projects.”

• “It was really helpful to know what API calls have been implemented in the project while

using Exemplar.”

The users were overall satisfied with Exemplar, preferring it to SourceForges search. In Sec-

tion 2.6, we found that they rated results from Exemplar with statistically-significantly higher con-

fidence levels than SourceForge. From our examination of these surveys, we confirm the findings

from our analysis in Section 2.6 and conclude that the participants in the case study did prefer to

search for applications using Exemplar rather than SourceForge. Moreover, we conclude that the

reason they preferred Exemplar is because of Exemplar’s search of API documentation.
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2.7 Analysis of user study results

During our case study of Exemplar (see Section 2.5), we found that the original version of Exem-

plar outperformed SourceForge in terms of both confidence and precision. In this section, we will

explore why Exemplar outperformed SourceForge. Our goal is to identify which components of Ex-

emplar lead to the improvements and to determine how users interpreted tasks and interacted with

the source code search engine. Specifically, we intend to answer the following research questions

(RQ):

RQ1 Do high Exemplar scores actually match high confidence level ranks from the participants?

RQ2 Do the components of the Exemplar score (WOS, RAS, and DCS scores) indicate relevance of

applications when the others do not (e.g., do the components capture the same or orthogonal

information about retrieved software applications)?

RQ3 Is Exemplar sensitive to differences in the user queries when those queries were generated for

the same task by different users?

We want to know how we can optimize Exemplar given answers to these research questions.

Additionally, we want to study how design decisions (such as whether RAS considers the frequency

of API calls, see Section 2.4) affected Exemplar.

2.7.1 Comparing Scores in Confidence Levels

Exemplar computes a score for every application to represent that application’s relevance to the user

query (see Section 2.4). Ideally, higher scores will be attached to applications with greater relevance.

We know from Section 2.6 that Exemplar returns many relevant results, but this information alone

is insufficient to claim that a high score from Exemplar for an application is actually an indicator of
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Figure 2.4: Statistical summary of the scores from the case study of Exemplar. The y-axis is the score given

by Exemplar during the case study. The x-axis is the confidence level given by users to results from Exemplar.

the relevance of that application, because irrelevant applications could still obtain high scores (see

Section 2.9).

To better understand the relationship of Exemplar ranking scores to relevance of retrieved soft-

ware applications, and to answer RQ1, we examined the scores given to all results given by Exemplar

during the user study. We also consider the Java programmers’ confidence level rankings of those

results. The programmers ranked results using a four-level Likert scale (see Section 2.5.1). We

grouped Exemplars scores for applications by the confidence level provided by the case study par-

ticipants for those applications. Figure 2.4 is a statistical summary of the scores for the results,

grouped by the confidence level. These scores were obtained from Exemplar using all 209 queries

that the users produced for 22 tasks during the case study12. We have made all these results available

for download from the Exemplar website so that other researchers can reproduce our analysis and

the results.

12Note that the participants only completed 22 out of 26 total tasks available.
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2.7.1.1 Hypotheses for RQ1

We want to determine to what degree the mean of the scores from Exemplar increase as the user

confidence level rankings increase. We introduce the following null and alternative hypotheses to

evaluate the significance of any difference at a 0.05 level of confidence.

H10−null The null hypothesis is that there is no difference in the values of Exemplar scores of

applications among the groupings by the confidence level.

H10−alt An alternative hypothesis to H10−null is that there is a statistically significant differ-

ence in the values of Exemplar scores of applications among the groupings by the confidence

level.

2.7.1.2 Testing the Null Hypothesis

The results of ANOVA for H10−null confirm that there are statistically-significant differences among

the groupings by confidence level. Intuitively, these results mean that higher scores imply higher

confidence levels from programmers. Higher confidence levels, in turn, point to higher relevance

(see Section 2.5). Table 2.6 shows the F-value, P-value, and critical F-value for the variance among

the groups. We reject the null hypothesis H10−null because the F > Fcritical . Additionally, P < 0.05.

Therefore, we find evidence supporting the alternative hypothesis H10−alt .

Finding supporting evidence for H10−alt suggests that we can answer RQ1. To confirm these

results, however, we grouped the results in terms of relevant (e.g., confidence 3 or 4) and non-

relevant (e.g., confidence 1 or 2), and tested the difference of these groups. A randomization test of

these groups showed a P-value of < 0.0001, which provides further evidence for answering RQ1.

Therefore, we find that higher Exemplar scores do in fact match to higher confidence level rankings

from participants in the user study.
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PC1 PC2 PC3

Proportion 43.8% 31.5% 24.8%

Cumulative 43.8% 75.3% 100%

WOS -0.730 0.675 0.106

RAS 0.995 0.091 -0.039

DCS -0.010 -0.303 0.953

ALL 0.477 0.839 0.263

Table 2.4: Factor loading through Principal Component Analysis of each of the scores (WOS, RAS, and

DCS) that contribute to the final score in Exemplar (ALL).

WOS RAS DCS ALL

WOS 1 -0.741 -0.104 0.142

RAS -0.741 1 -0.046 0.482

DCS -0.104 -0.046 1 -0.005

ALL 0.142 0.482 -0.005 1

Table 2.5: Spearman correlations of the score components to each other and to the final ranking.

2.7.2 Principal Components of the Score

The relevance score that Exemplar computes for every retrieved application is actually a combi-

nation of the three metrics (WOS, RAS, and DCS) presented in Section 2.3. Technically, these

three metrics were added together with equal weights using an affine transformation during the case

study. Ideally, each of these metrics should contribute orthogonal information to the final relevance

score, meaning that each metric will indicate the relevance of applications when the others might

not. To analyze the degree to which WOS, RAS, and DCS contribute orthogonal information to the

final score, and to address RQ2, we used Principal Component Analysis (PCA)[47]. PCA locates

uncorrelated dimensions in a dataset and connects input parameters to these dimensions. By looking

at how the inputs connect to the principal components, we can deduce how each component relates

to the others.

To apply PCA, we ran Exemplar using the queries from the case study and obtained WOS,
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RAS, DCS, and combined scores for the top ten applications for each of the queries. We then used

these scores as the input parameters to be analyzed. PCA identified three principal components;

Table 2.4 shows the results of this analysis. We find that the first principal component is primarily

RAS (99.5% association), the second component is somewhat linked to WOS (67.5% association),

and the third component is primarily DCS (95.3% association). The final Exemplar score (denoted

ALL) is linked to each of the primary components, which we expect because the input parameters

combine to form the Exemplar score. Because WOS, RAS, and DCS are all positively associated

with their own principal components, we conclude that each metric provides orthogonal information

to Exemplar.

We also computed the Spearman correlations[103] for each input parameter to each other. These

correlations are presented in Table 2.5. WOS and RAS are negatively correlated to one another, a

fact suggesting that the two metrics contribute differently to the final ranking score. Moreover,

RAS exhibits moderate correlation to the final Exemplar score, while WOS is at least positively

correlated. DCS, however, is entirely uncorrelated to either RAS or WOS. We draw two conclusions

given these results. First, we answer RQ2 by observing that RAS and WOS do capture orthogonal

information (see PCA results in Table 2.4). Second, because DCS does not correlate to the final

score and because DCS did not appear to benefit Exemplar during the case study (see Section 2.6.4),

we removed DCS from Exemplar. We do not consider DCS in any other analysis in this section.

2.7.2.1 Analysis of WOS and RAS

Given that WOS and RAS contribute orthogonally to the Exemplar score, we now examine whether

combining them in Exemplar returns more relevant applications versus each metric individually.

We judged the benefit of WOS and RAS by computing each metric for every application using the
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(a) WOS (b) RAS

Figure 2.5: Statistical summary of the WOS and RAS scores from the case study of Exemplar.

queries from the case study. We then grouped both sets of scores by the confidence level assigned to

the application by the case study participants in a setup similar to that in Section 2.7.1. Figure 2.5a

and 2.5b are statistical summaries for the WOS and RAS scores, respectively. We introduce the

following null and alternative hypotheses to evaluate the significance of any difference at a 0.05

level of confidence.

H11−null The null hypothesis is that there is no difference in the values of WOS scores of

applications among the groupings by confidence level.

H11−alt An alternative hypothesis to H11−null is that there is a statistically significant differ-

ence in the values of WOS scores of applications among the groupings by confidence level.

H12−null The null hypothesis is that there is no difference in the combined values of RAS

scores of applications among the groupings by confidence level.

H12−alt An alternative hypothesis to H12−null is that there is a statistically significant differ-

ence in the values of RAS scores of applications among the groupings by confidence level.
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F P Fcritical

H10−null 12.31 6E-08 2.61

H11−null 1.97 0.12 2.61

H12−null 8.18 2E-05 2.61

Table 2.6: Results of testing H10−null , H11−null , and H12−null

2.7.2.2 Testing the Null Hypotheses

We used one-way ANOVA to evaluate H11−null and H12−null that the variation in the experiment

is no greater than that due to normal variation of the case study participants choices of confidence

level as well as chance matching by WOS and RAS, respectively. The results of ANOVA confirm

that there are statistically-significant differences among the groupings by confidence level for RAS,

but not for WOS. Table 2.6 shows the F-value, P-value, and critical F-value for the variance among

the groups for WOS. Table 2.6 shows the same values for RAS. We do not reject the null hypothesis

H11−null because F < Fcritical . Additionally, P > 0.05. Therefore, we can not support the alterna-

tive hypothesis H12−alt . On the other hand, we reject the null hypothesis H12−null because the F

> Fcritical . P < 0.05. Therefore, we find evidence supporting the alternative hypothesis H12−alt .

We finish our study of the contributions of RAS, WOS, and DCS by concluding that RAS

improves the results by a statistically-significant amount. Meanwhile, we cannot infer any findings

about WOS because we could not reject H11−null . We did observe specific instances in the case

study where WOS contributed to the retrieval of relevant results when RAS did not (see Section 2.9).

Therefore, we include WOS in the final version of Exemplar, albeit with a weight reduced by 50%

from 0.5 to 0.25. We also increased the weight of RAS by 50% from 0.5 to 0.75 because we found

that RAS contibutes to more relevant results than WOS.
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2.7.3 Keyword Sensitivity of Exemplar

Recent research shows that users tend to generate different kinds of queries [4]. It may be the case

that different users of Exemplar create different queries which represent the same task that those

users need to implement. If this occurs, some users may see relevant results, whereas others see

irrelevant ones. During the case study, we provided the participants with 22 varied tasks. The

participants were then free to read the tasks and generate queries on their own. Exemplar may

retrieve different results for the same task given different queries, even if the participants generating

those queries all interpreted the meaning of the task in the same way. This presents a threat to

validity for the case study because different participants may see different results (and produce

different rankings) for the same task. For example, consider Task 1 from Section 2.5.5. Table 2.7

shows two separate queries generated independently by users during the case study for this task13.

By including more keywords, the author of the second query found three different applications than

the author of the first query. In this section, we will answer RQ3 by studing how sensitive Exemplar

is to variations in the query as formulated by different users for the same task.

First, we need to know how different the queries and the results are for individual tasks. We

computed the query overlap to measure how similar queries are for each task. We defined query

overlap as the pairwise comparison of the number of words, which overlap for each query. The

formula is queryoverlap = |query1
⋂

query2|
|query1

⋃
query2|

where query1 is the set of words is the first query and

query2 is the set of words in the second query. For example, consider the queries “sound voice

midi” and “sound voice audio midi connection gui”. The queries share the words “sound”, “voice”,

and “midi”. The total set of words is “sound voice midi audio connection gui”. Therefore, the query

13We generated the results in Table 2.7 using Exemplar in the same configuration as in the case study, which can be

accessed here: http://www.xemplar.org/original.html (verified 03/28/2011)
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“sound voice midi” “sound voice audio midi connection gui”

1 Tritonus Tritonus

2 Java Sound Res RasmusDSP

3 RasmusDSP Audio Develop

4 TuxGuitar TuxGuitar

5 MidiQuickFix MidiQuickFix

6 Audio Develop Java Sound Res

7 FluidGUI RPitch

8 DGuitar DGuitar

9 Cesar Music and Audio

10 Saiph JVAPTools

Table 2.7: The top ten applications returned by Exemplar for two separate queries. Both queries were gen-

erated by users during the case study while reading the same task. Shaded cells indicate applications in both

sets of results. Application names in bold were rated with confidence level 3 or 4 (relevant or highly-relevant)

by the author of the associated query. Note: Ties of relevance scores are broken randomly; applications with

identical scores may appear in a different order.

overlap is 0.5, or 50%. To obtain the query overlap for a task, we simply computed the overlap

numbers for every query to every other query in the task. The queries were processed in the same

way as they are in Exemplar; we did not perform stemming or removal of stop words.

Because we see different queries for each task, we expect to see different sets of results from

Exemplar over a task. We surmise that if two users give two different queries for the same task,

then Exemplar will return different results as well. We want to study the degree to which Exemplar

is sensitive to changes in the query for a task. Therefore, we calculate the results overlap for each

task using the formula resultsoverlap = |unique−total|
|expected−total| where total is the total number of results

found for a given task, unique is the number of those results which are unique, and expected is

the number of results we expect if all the results overlapped (e.g., the minimum number of unique

results possible). For example, consider the situation in Table 2.7 where, for a single task, two users

created two different queries. In the case study, participants examined the top ten results, meaning

that Exemplar returned 20 total results. At least ten of the results must be unique, which is the
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Figure 2.6: Statistical summary of the overlaps for tasks. The x-axis is the type of overlap. The y-axis is the

value of the overlap.

expected number if Exemplar returned the same set for all three queries. In Table 2.7, however, 13

of the results were unique, results overlap would be 0.7, or 70% overlapped.

Statistical summaries of the results overlap and query overlap are in Figure 2.6. The Spearman

correlations for the overlaps was 0.356. We observe a weak correlation between results and query

overlap, which we expect because more similar queries will most likely cause Exemplar to produce

more similar results. Therefore, to answer RQ3, we do find evidence that Exemplar is sensitive to

differences in the queries, even if those queries were created to address the same task.

2.7.4 Sensitivity to the Number of API Calls

The RAS component of Exemplar is responsible for ranking applications based on the API calls

made in those applications. This component first locates a number of descriptions of API calls which

match the keywords provided in the user’s query. It then matches those API calls to applications

which use those calls. During the case study, we limited the number of API calls that RAS considers

to 200 due to performance overhead. In this section, we analyze the effect this design decision had

on the search results.
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Figure 2.7: A chart of the results overlap from various levels of maxapi. The x-axis is the value of the

overlap. The y-axis is the value of maxapi.

The maximum number of APIs to consider is an internal parameter to Exemplar called maxapi.

To study its effects, we first obtained all 209 queries written by participants in the case study from

Section 2.5. We then set maxapi to infinity (so that potentially every API could be returned) and

ran every query through Exemplar. From this run, we determined that the maximum number of API

calls extracted for any query was 406. We also stored the list of results from this run.

We then ran Exemplar with various entries as input for maxapi ranging between 1 and 40614.

We then calculated the results overlap for the results of each of these runs against the results from

the run in which maxapi was set to infinity. In this way, we computed the percent of overlap of the

various levels of maxapi with case in which all API calls are considered. The results of this analysis

are summarized in Figure 2.7. We observe that when maxapi is set to a value greater than or equal

to 200, the percent overlap is always above 80%, meaning that 80% of the results are identical to

those in the case when all API calls are considered. We set maxapi to 200 in the remainder of this

paper.

14Note that Exemplar produces the same results when maxapi is set to 406 and infinity since 406 was the maximum

amount of API calls returned.
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2.7.5 Sensitivity to Frequency of API Calls

The RAS component ranking considers the frequency of each API call that occurs in each applica-

tion. For example, if an application A makes an API call c twice, and an application B makes an

API call c only once, and c is detemined to be relevant to the user query, then application A will

be ranked higher than B. In Exemplar, we use static analysis to determine the API calls used by an

application. Therefore, we do not know the precise number of times an API call is actually made in

each application because we do not have execution information for these applications. For example,

consider the situation where application A calls c twice and B calls c once. If the call to c in B occurs

inside a loop, B may call c many more times than A, but we will not capture this information.

We developed a binary version of RAS to study the effects this API frequency information may

cause in our case study. The binary version of RAS does not consider the frequency of each API call

in the applications. More formally, the binary RAS calculates the scores according to the formula

S
j
ras =

p

∑
i=1

C
j
i

|A| j
, where |A| j is the total number of API calls in the application j, and p is the number

of API calls retrieved for the query.

We then executed Exemplar using the 209 queries from the case study in Section 2.5 for both

the binary version of RAS and the RAS that considers frequencies of API calls as described in

Section 2.3.3. We computed the results overlap between the results for both. The mean overlap for

the results of every query was 93.2%. The standard deviation was 13.4%. Therefore, we conclude

that the results from Exemplar with the binary version of RAS are not dramatically different from

the frequency-based version of RAS. We use the frequency-based version of RAS in the remainder

of this paper.
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2.8 Evaluation of changes to Exemplar

We made several alterations to Exemplar based on our analysis in Section 2.7. Specifically, we re-

moved DCS, rebalanced the weights of WOS and RAS (to 0.25 and 0.75), and updated the interface

so that project source code is visible without downloading whole projects. We compare the quality

of the results from the updated version of Exemplar against the previous version. In this study, we

refer to the previous Exemplar as ExemplarOLD and the new Exemplar as ExemplarNEW .

2.8.1 Methodology

We performed a case study identical in design to that presented in Section 2.5, except that we evalu-

ate two engines (ExemplarNEW , ExemplarOLD) instead of three (EWN, END, SF). Table 2.8 outlines

the study. We chose END to represent the old Exemplar because END was the best-performing con-

figuration. In this case, we randomly divided 26 case study participants15 into two groups. There

were two experiments, and both groups participated in each. In each experiment, each group was

given a different search engine (e.g., ExemplarNEW or ExemplarOLD) and a set of tasks. The par-

ticipants then generated queries for each task and entered those queries into the specifed search

engine. The participants rated each result on a four-point Likert scale as in Section 2.5. From these

ratings, we computed the three measures confidence (C), precision (P), and normalized discounted

cumulative gain (NG).

15Nine of the participants in this study were graduate students from the University of Illinois at Chicago. Five were

graduate students at the College of William & Mary. Ten were undergraduate students at William & Mary. We reimbursed

the participants $35 after the case study.
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Experiment Group Search Engine Task Set

1
G1 NEW T1

G2 OLD T2

2
G1 OLD T2

G2 NEW T1

Table 2.8: Plan for the case study of ExemplarNEW and ExemplarOLD.

2.8.2 Hypotheses

We introduce the following null and alternative hypotheses to evaulate the differences in the metrics

at a 0.05 confidence level.

H13 The null hypothesis is that there is no difference in the values of C for ExemplarNEW ver-

sus ExemplarOLD. Conversely, the alternative is that there is statistically significant difference

in the values of C for ExemplarNEW versus ExemplarOLD.

H14 The null hypothesis is that there is no difference in the values of P for ExemplarNEW ver-

sus ExemplarOLD. Conversely, the alternative is that there is statistically significant difference

in the values of P for ExemplarNEW versus ExemplarOLD.

H15 The null hypothesis is that there is no difference in the values of NG for ExemplarNEW

versus ExemplarOLD. Conversely, the alternative is that there is statistically significant differ-

ence in the values of NG for ExemplarNEW versus ExemplarOLD.

2.8.3 Results

We applied randomization tests to evaluate the hypotheses H13, H14, and H15. The results of this

test are in Table 2.9. We do not reject the null hypothesis H14 because the P-value is greater than

0.05. Therefore, participants do not report a statistically-significant difference in terms of precision

of the results. On the other hand, we reject the null hypotheses H13 and H15, meaning that partic-

ipants report higher confidence level in the results. Also, the participants report higher normalized

discounted cumulative gain when using ExemplarNEW versus ExemplarOLD.
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H Var Approach Samples Min Max Median µ C p

H13 C
ExemplarNEW 556 1 4 2 2.27

0.05 0.00156
ExemplarOLD 556 1 4 2 2.30

H14 P
ExemplarNEW 40 0 1.00 0.40 0.38

-0.15 0.23738
ExemplarOLD 40 0 0.90 0.30 0.37

H15 NG
ExemplarNEW 40 0.19 1.00 0.47 0.50

-0.15 0.04507
ExemplarOLD 40 0 0.82 0.49 0.46

Table 2.9: Results of randomization tests of hypotheses, H, for dependent variable specified in the column

Var (C, P, or NG) whose measurements are reported in the following columns. Extremal values, Median,

Means, µ, and the pearson correlation coefficient, C, are reported along with the results of the evaluation of

the hypotheses, i.e., statistical significance, p.

The difference in average confidence level between the updated and original versions of Exem-

plar is statistically significant, as seen in Figure 2.8(a), though the difference is very small. The

difference in precision is not statistically significant (see Figure 2.8(b)). One explanation for the

small size of this difference is that both versions of Exemplar return the same sets of applications

to the user. Returning the same set of applications is expected because both ExemplarNEW and

ExemplarOLD use the same underlying information to locate these applications (e.g., API calls and

project descriptions). The order of the results is also important, and the new version of Exemplar

does return the more-relevant results in higher positions, as reported by the normalized discounted

cumulative gain (NG, see Figure 2.8(c)).

Table 2.10 illustrates an example of the improvement made by ExemplarNEW . This table in-

cludes the results for the same query on both engines as well as the confidence level for the ap-

plications as reported by a participant in the case study. The normalized discounted cumulative

gain is higher in this example for ExemplarNEW than ExemplarOLD. Even though a majority of the

applications are shared by both sets of results, ExemplarNEW organizes the results such that the

most-relevant applications appear sooner.
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(a) Confidence level, C. (b) Precision, P. (c) Normalized Discounted

Gain, NG.

Figure 2.8: Statistical summary of C, P, and NG from the case study evaluating the new version of Exemplar.

The y-axis is the value for C, P, or NG from the case study. The x-axis is the version of Exemplar.

2.8.4 Participant Comments on ExemplarNEW

Seventeen of the case study participants answered the same exit survey from Table 2.3. The re-

sponses generally support those which we discuss in Section 2.6.5: roughly half of the participants

reported rarely or never using source code search engines, and of those a majority prefer to use

Google. The top reason cited for not using source code search engines was the preceived poor qual-

ity results given by those engines. These results, along with those in Section 2.6.5, are a strong

motivation for improvements in source code search engines.

In addition to rebalacing the weights of the ranking components in ExemplarNEW , we made

the source code of the applications immediately available through the engine. The following are

comments provided by participants regarding these changes. We conclude from these comments

that (1) users prefer to see source code along with relevant applications, and (2) API calls helped

participants determine the relevance of results.
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“glyph painting”

ExemplarOLD ExemplarNEW

Jazilla 1 Jazilla 1

DrawSWF 4 DrawSWF 4

Image inpainting 1 McBilliards 3

SandboxPix 1 Waba for Dos 3

McBilliards 3 BioGeoTools 1

Waba for Dos 3 TekMath 2

BioGeoTools 1 SWTSwing 0

TekMath 2 Java2C 0

SWTSwing 0 JSpamAssassin 0

DESMO-J 0 netx 0

NG Top 6 0.5143 0.5826

NG Top 10 0.4247 0.4609

Table 2.10: The search results from a single query from the second case study; applications are listed with the

assigned confidence levels. A case study participant generated the query and provided the relevancy rankings

when evaluating ExemplarOLD. Applications with a confidence level zero were not able to be accessed by the

participant, and are discarded during our analysis. We ran the same query on ExemplarNEW . The confidence

levels for the results of ExemplarNEW are copied from the confidence levels given by the participant who ran

ExemplarOLD. NG represents the normalized discounted cumulative gain for the top 6 (all evaluated, zeros

discarded) and top 10 (all retrieved, zeros included).

• “Very convenient to be able to open to view source files immediately. Much much more

convenient to user.”

• “[WOS in ExemplarOLD] got in the way quite a bit”

• “I definitely like viewing code in the browser better”

• “[ExemplarNEW ] is really useful since we can know which API we should choose.”

• “[API calls] are very useful if the call is relevant, a lot of API calls had nothing to do with the

task.”

• “[API calls] are very useful for determining initial area of source code which should be ex-

amined.”

2.8.5 Suggestions for Future Work

The participants in the case study had several suggestions for Exemplar, and we have incorporated

these into our future work. One participant asked that we filter “trivial” results such as API calls

named equal() or toString(). Another suggested that we provide descriptions of API calls
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directly on the results page. A participant also requested a way to sort and filter the API calls; he

was frustrated that some source code files contain “the same type-check method many times.”

2.9 Supporting Examples

Table 2.11 shows the results from Exemplar for three separate queries, including the top ten ap-

plications and the WOS and RAS scores for each16. For instance, consider the query connect to

an http server. Only one of the top ten results from Exemplar is returned (see Table 2.11) due

to a high WOS score (e.g., because the query matches the high-level description of the project).

The remaining nine projects pertain to different problem domains, including internet security test-

ing, programming utilities, and bioinformatics. These nine applications, however, all use API calls

from the Java class java.net.HttpURLConnection17. Exemplar was able to retrieve these

applications only because of the contribution from the RAS score.

Other queries may reflect the high-level concepts in a software application, rather than low-level

details. For example, for the query text editor, Exemplar returns six of ten top results without any

matching from RAS (see Table 2.11). While the query does match certain API calls, such as those

in the class javax.swing.text.JTextComponent18, Exemplar finds several text editing

programs, which do not use API calls from matching documentation. Locating these applications

was possible because of relatively high WOS scores.

16We generated the results in Table 2.11 using Exemplar in the same configuration as in the case study, which can be

accessed here: http://www.xemplar.org/original.html
17The documentation for this API class can be found at: http://download.oracle.com/javase/6/docs/

api/java/net/HttpURLConnection.html (verified 03/28/2011
18The documentation for this API class can be found at: http://cupi2.uniandes.edu.co/site/images/

recursos/javadoc/j2se/1.5.0/docs/api/javax/swing/text/JTextComponent.html (verified

03/28/2011)
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“connect to http server” “text editor” “find replace string text files”

Application WOS RAS Application WOS RAS Application WOS RAS

1 DataShare 100% 0% jeHep 52% 89% RText 91% 0%

2 X4technology 0% 100% XNap Commons 0% 100% Nodepublisher 0% 66%

3 jpTools 0% 96% SWediT 92% 0% XERP 44% 18%

4 JMS for j2ms 0% 96% Plugins jext 87% 0% J 54% 0%

5 MicroEmulator 0% 96% PalmEd 87% 0% j-sand 53% 0%

6 ReadSeq bioinfo 0% 95% PowerSwing 0% 85% DocSearch 48% 0%

7 httpunit 0% 95% Graveyard 83% 0% MMOpenGraph 43% 0%

8 WebCQ 0% 95% JavaTextEditor 82% 0% AppletServer 0% 41%

9 WebXSSDetector 0% 95% Eclipse Edit 81% 0% MultiJADS 0% 39%

10 Organism System 0% 90% Comic book edit 65% 15% GalleryGrabber 0% 39%

Table 2.11: The top ten applications returned by Exemplar for three separate queries, along with the WOS and RAS scores for each. The DCS score was

zero in every case. Note: Ties of relevance scores are broken randomly; applications with identical scores may appear in a different order.
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We observed instances during the case study where the negative correlation between WOS and

RAS improved the final search results. Consider Task 2 from Section 2.5.5. For this task, one

programmer entered the query find replace string text files into Exemplar (see Table 2.11). The

first result was a program called RText, which is a programmer’s text editor with find/replace

functionality. The second result was Nodepublisher, a content management system for websites.

Nodepublisher’s high-level description did not match the query and has a WOS score of 0%.

The query did match several API call descriptions, including calls inside the class java.text.

DictionaryBasedBreakIterator19 which Nodepublisher uses. Conversely, RText con-

tained no API calls with documentation matching the query, but had a relevant high-level descrip-

tion. Since both applications were rated as highly-relevant by the programmer in the case study,

both WOS and RAS aided in finding a relevant result for this query. Specific situations such as this

one support our decision to keep WOS in the final version of Exemplar, even with a reduced weight

(see Section 2.7.2.2). Not all applications with high WOS or RAS scores were relevant, however.

Despite occurring in the top ten list of applications, both MMOpenGraph and AppletServer were

rated with a confidence level of 2 (“mostly irrelevant”) by the author of the query.

2.10 Related Work

Different code mining techniques and tools have been proposed to retrieve relevant software com-

ponents from different repositories as it is shown in Table 2.12. CodeFinder iteratively refines code

repositories in order to improve the precision of returned software components [37]. Codefinder

finds similar code using spreading activation based on the terms that appear in that code. Exemplar

19The documentation for this API class can be found at: http://www.docjar.com/docs/api/java/text/

DictionaryBasedBreakIterator.html (verified 03/28/2011)
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Approach Granularity Corpora Query

Search Input Expansion

CodeFinder [37] M C D Yes

CodeBroker [116] M C D Yes

Mica [106] F C C Yes

Prospector [65] F A C Yes

Hipikat [21] A C D,C Yes

xSnippet [92] F A D Yes

Strathcona [40][41] F C C Yes

AMC [38] F C C No

Google Code F,M,A C,A D,C No

Sourceforge A C D No

SPARS-J [45][46] M C C No

Sourcerer [58] F,M,A C C No

Sourcerer API Search [5] F C,A C No

CodeGenie [56] F,M T C No

SpotWeb [109] M C C Yes

ParseWeb [108] F A C Yes

S6 [87] F C,A,T C Manual

Krugle F,M,A C,A D,C No

Koders F,M,A C,A D,C No

SNIFF [15] F,M C,A D,C Yes

Blueprint [10] F C,A C No

Exemplar [68] F,M,A C,A D,C No

Table 2.12: Comparison of Exemplar with other related approaches. Column Granularity specifies how

search results are returned by each approach (Fragment of code, Module, or Application), and how users

specify queries (Concept, API call, or Test case). The column Corpora specifies the scope of search, i.e.,

Code or Documents, followed by the column Query Expansion that specifies if an approach uses this

technique to improve the precision of search queries.

is different in that we locate source code based on keywords from API documentation. It is not

necessary for Exemplar to find any matching keywords in the source code itself.

Codebroker system uses source code and comments written by programmers to query code

repositories to find relevant artifacts [115]. Unlike Exemplar, Codebroker is dependent upon the de-

scriptions of documents and meaningful names of program variables and types, and this dependency

often leads to lower precision of returned projects.

Even though it returns code snippets rather than applications, Mica is similar to Exemplar since
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it uses help pages to find relevant API calls to guide code search [106]. However, Mica uses help

documentation to refine the results of the search while Exemplar uses help pages as an integral

instrument in order to expand the range of the query.

SSI examines the API calls made in source code in order to determine the similarity of that code

[58]. SSI indexes each source code element based on the identifier names and comments in that

code. Then SSI adds terms to the index of a source element. The new terms come from other source

code elements which use the same set of API calls. Additionally, SSI seeds the index with keywords

from API call documentation. On the other hand, Exemplar matches query keywords directly to API

documentation, and then calculates RAS, which is a ranking based on which projects uuse the API

calls that the matching documentation describes. The fundamental difference between Exemplar

and SSI is that Exemplar bases its ranking on how many relevant API calls appear in the source

code (RAS, Section 3.3), unlike SSI, which ranks source code based on the keyword occurrences in

the source code. Also, Exemplar has been evaluated with a user-study of professional programmers.

SNIFF extends the idea of using documentation for API calls for source code search [33][106]

in several ways [15]. After retrieving code fragments, SNIFF then performs intersection of types

in these code chunks to retain the most relevant and common part of the code chunks. SNIFF

also ranks these pruned chunks using the frequency of their occurrence in the indexed code base.

In contrast to SNIFF [15], MICA [106], and our original MSR idea [33], we evaluated Exemplar

using a large-scale case study with 39 programmers to obtain statistically significant results, we

followed a standard IR methodology for comparing search engines, and we return fully executable

applications. Exemplar’s internals differ substantially from previous attempts to use API calls for

searching, including SNIFF: our search results contain multiple levels of granularity, we conduct a

thorough comparison with the state of art search engine using a large body of Java application code,
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and we are not tied to a specific IDE.

Prospector is a tool that synthesizes fragments of code in response to user queries that contain

input types and desired output types [65]. Prospector is an effective tool to assist programmers

in writing complicated code, however, it does not provide support for a full-fledged code search

engine.

Keyword programming is a technique which translates a few user-provided keywords into a

valid source code statement [59]. Keyword programming matches the keywords to API calls and

the parameters of those calls. Then, it links those parameters to variables or other functions also

mentioned in the keywords. Exemplar is similar to keyword programming in that Exemplar matches

user queries to API calls, and can recommend usage of those calls. Unlike keyword programming,

Exemplar show examples of previous usage of those APIs, and does not attempt to integrate those

calls into the user’s own source code.

The Hipikat tool recommends relevant development artifacts (i.e., source revisions associated

with a past change task) from a project’s history to a developer [21]. Unlike Exemplar, Hipikat is a

programming task-oriented tool that does not recommend applications whose functionalities match

high-level requirements.

Strathcona is a tool that heuristically matches the structure of the code under development to

the example code [40][39]. Strathcona is beneficial when assisting programmers while working

with existing code, however, its utility is not applicable when searching for relevant projects given

a query containing high-level concepts with no source code.

There are techniques that navigate the dependency structure of software. Robillard proposed

an algorithm for calculating program elements of likely interest to a developer [89][90]. FRAN is

a technique which helps programmers to locate functions similar to given functions [96]. Finally,
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XSnippet is a context-sensitive tool that allows developers to query a sample repository for code

snippets that are relevant to the programming task at hand [92]. Exemplar is similar to these al-

gorithms in that it uses relations between API calls in the retrieved projects to compute the level

of interest (ranking) of the project. Unlike these approaches, Exemplar requires only a natural lan-

guage query describing a programming task. We found in this paper that considering the dataflow

among API calls does not improve the relevancy of results in our case.

Existing work on ranking mechanisms for retrieving source code are centered on locating com-

ponents of source code that match other components. Quality of match (QOM) ranking measures the

overall goodness of match between two given components [107], which is different from Exemplar

which retrieves applications based on high-level concepts that users specify in queries. Component

rank model (CRM) is based on analyzing actual usage relations of the components and propagating

the significance through the usage relations [45][46]. Yokomori et al. used CRM to measure the

impact of changes to frameworks and APIs [117]. Unlike CRM, Exemplar’s ranking mechanism

is based on a combination of the usage of API calls and relations between those API calls that

implement high-level concepts in queries.

S6 is a code search engine that uses a set of user-guided program transformations to map high-

level queries into a subset of relevant code fragments [87], not complete applications. Like Exem-

plar, S6 returns source code, however, it requires additional low-level details from the user, such as

data types of test cases.
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2.11 Conclusions

We created Exemplar, a search engine for highly relevant software projects. Exemplar searches

among over 8,000 Java applications by looking at the API calls used in those applications. In

evaluating our work, we showed that Exemplar outperformed SourceForge in a case study with 39

professional programmers. These results suggest that the performance of software search engines

can be improved if those engines consider the API calls that the software uses. Also, we modified

Exemplar to increase the weight of RAS, and performed a second case study evaluating the effects

of this increase. We found that not only does including API call information increase the relevance

of the results, but it also improves the ordering of the results. In other words, Exemplar places the

relevant applications at the top of list of results.



Chapter 3

Detecting Similar Software Applications

3.1 Introduction

Retrieving similar or related web pages is a feature of popular search engines (e.g., Google, Ask.com,

HotBot). After users submit search queries, Google displays links to relevant web pages along with

a link labeled Similar next to each result. These Similar links point to web pages that the

Google similarity algorithm computes by aggregating many factors that include, but are not limited

to, the popularity scores of the retrieved pages, links among the pages, and the links’ positions and

sizes [31]. For example, for the main ACM SigSoft page, Google returns three top similar web sites:

IEEE Computer Society, Software Engineering Institute, and ESEC/FSE 20091.

Detecting similar applications is a notoriously difficult problem, since it means automatically

detecting that high-level requirements for these applications match semantically [44, pages 74,80][62].

This situation is aggravated by the fact that many application repositories are polluted with poorly

functioning projects [42]; a match between words in requirement documents with words in the

descriptions or in the source code of applications does not guarantee that these applications are rel-

evant to the requirements. Applications may be highly-similar to one another at a low-level of the

1Last time checked: September 20, 2011.

59
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implementations of some functions even if they do not perform the same high-level functionality

[29]. Rarely do programmers record any traceability links between software artifacts, which belong

to different applications, to establish their functional similarity.

Knowing similarity between applications plays an important role in assessing reusability of

these applications, improving understanding of source code, rapid prototyping, and discovering

code theft and plagiarism [51, 60, 72, 91, 98]. Enabling programmers to compare automatically how

different applications implement the same requirements greatly contributes to knowledge acquisi-

tion about these requirements and subsequently to decisions that these developers make about code

reuse. Retrieving a list of similar applications provides a faster way for programmers to concentrate

on relevant aspects of functionality, thus saving time and resources for programmers. Programmers

can spend this time understanding specific aspects of functionality in similar applications, and see

the complete context in which the functionality is used.

A fundamental problem of detecting closely related applications is in the mismatch between the

high-level intent reflected in the descriptions of these applications and low-level implementation

details. This problem is known as the concept assignment problem [9]. For any two applications

it is too imprecise to establish their similarity by simply matching words in the descriptions of

these applications, comments in their source code, and the names of program variables and types.

Since programmers typically invest a significant intellectual effort (i.e., they need to overcome a

high cognitive distance [52]) to understand whether retrieved applications are similar, existing code

search engines do not alleviate the task of detecting similar applications because they return only a

large number of different code snippets.

We created a novel approach for detecting Closely reLated ApplicatioNs (CLAN). This paper

makes the following contributions:



61

• A major contribution of our approach is that CLAN uses complete software applications as

input, not only natural language queries. This feature is useful when a developer needs to find

similar applications to a known software application.

• We introduce a new abstraction that is relevant to semantic spaces [43] that are modeled

as existing inheritance hierarchies of Application Programming Interface (API) classes and

packages.

• We extended a well-established conceptual framework of relevance with our new abstraction.

The intuition behind our approach is that if two applications contain functional abstractions

in a form of inheritance hierarchies and packages that contain API calls whose semantics are

defined precisely, and these calls implement the same requirement (e.g., different API calls

from a data compression library), then these applications have a higher degree of similarity

than those that do not have API calls that are related to some requirement. The idea of using

API calls to improve code search was proposed and implemented elsewhere [15, 33, 68];

however, this idea has never been used to compute similarities between software applications.

• Based on this extension, we designed a novel algorithm that computes a similarity index

between Java applications, and we implemented this algorithm in CLAN and applied to 8,310

Java applications that we downloaded from Sourceforge. CLAN is available for public use2.

• We conducted an experiment with 33 Java programmers to evaluate CLAN. The results show

with strong statistical significance that users find more relevant applications with higher pre-

cision with CLAN than those based on the closest competitive approach MUDABlue3 [50]

2http://www.javaclan.net
3http://www.mudablue.net
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and a system that combines CLAN and MUDABlue that we implemented4.

3.2 Our Hypothesis And The Problem

In this section we use a conceptual framework for relevance to define the concept of similarity

between applications, formulate a hypothesis, and describe problems that we should solve to test

this hypothesis.

3.2.1 A Motivating Scenario

A motivating scenario for detecting similar application is based on a typical project lifecycle in

Accenture, a global software consulting company with over 250,000 employees as of February,

2012. At any given time, company consultants are engaged in over 3,000 software projects. Since

its first project in 1953, Accenture’s consultants delivered tens of thousand of projects, and many

of these projects are similar in requirements and their implementations. Knowing the similarity

of these applications is important for preserving knowledge, experience, winning bids on future

projects, and successfully building new applications.

A typical lifecycle of a large-scale project involves many stages that start with writing a proposal

in response to a bid from a company that needs an application. A major part of writing a proposal

and developing a prototype is to elicit requirements from different stakeholders. There are quite a

few competing companies for each bid: IBM Corp, HP Corp, Tata Consultancy Services to name a

few. A winning bid proposal has many components: well-elicited requirements, preliminary models

and design documents, proof of experience of building and delivering similar applications in the

4http://www.clancombined.net
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past. Clearly, a company that submits a bid proposal that contains these components as closely

matching a desired application as possible, will win the bid.

It is important to reuse these components from successfully delivered applications in the past

- doing so will save time and resources and increase chances of winning the bid. It is shown that

over a dozen different artifacts can be successfully reused from software applications [48, pages

3–5]. The process of finding similar applications starts with code search engines that return code

fragments and documents in response to queries that contain key words from elicited requirements.

However, returned code fragments are of little help when many other non-code artifacts are required

(e.g., different (non)functional requirements documents, UML models, design documents).

Matching words in queries against words in documents and source code is a good starting point,

however, it does not help stakeholders to establish how applications are similar at a bigger scale. In

this paper, we refer application as a collection of all source code modules, libraries, and programs

that, when compiled, result in the final deliverable that customers install and use to accomplish

certain business functions. Applications are usually accompanied by non-code artifacts, which are

important for the bidding process. Establishing their similarity at large from different similar com-

ponents of the source code is a goal of this paper.

The concept of similarity between applications is integrated in the software lifecycle process as

follows. After obtaining the initial set of requirements, the user enters keywords that represent these

requirements into a search engine that returns relevant applications that contain these keywords. In

practice, it is unlikely that the user finds an application that perfectly matches all the requirements -

if it happens, then the rapid prototyping process is finished. Otherwise, the user takes the returned

applications and studies them to determine how relevant they are to the requirements.

After examining some returned application, the user determines what artifacts are relevant to
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requirements, and which ones are missing. At this point the user wants to find similar applications

that contain the missing artifacts while retaining similarity to the application that the user has found.

That is, using the previously found application, the initial query is further expanded to include

artifacts from this application that matched some of requirements as the user determined, and similar

applications would contain artifacts that are similar to the ones in the found application.

3.2.2 Similarity Between Applications

We define the meaning of similarity between applications by using Mizzaro’s well-established con-

ceptual framework for relevance [73, 74]. In Mizzaro’s framework, similar documents are relevant

to one another if they share some common concepts. Once these concepts are known, a corpus

of documents can be clustered by how documents are relevant to these concepts. Subsequently

all documents in each cluster will be more relevant to one another when compared to documents

that belong to different clusters. This is the essence of the cluster hypothesis that specifies that

documents that cluster together tend to be relevant to the same concept [110].

Two applications are similar to each other if they implement some features that are described

by the same abstraction. For example, if some applications use cryptographic services to protect

information then these applications are similar to a certain degree, even though they may have other

different functionalities for different domains. Another example is text editors that are implemented

by different programmers, but share many features: copy and paste, undo and redo, saving data in

files using standard formats. A straightforward approach for measuring similarity between appli-

cations is to match the names of their program variables and types. The precision of this approach

depends highly on programmers choosing meaningful names that reflect correctly the concepts or

abstractions that they implement, but this compliance is generally difficult to enforce [3].
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3.2.3 Our Hypothesis

In Mizzaro’s framework, a key characteristic of relevance is how information is represented in docu-

ments. We concentrate on semantic anchors, which are elements of documents that precisely define

the documents’ semantic characteristics. Semantic anchors may take many forms. For example,

they can be expressed as links to web sites that have high integrity and well-known semantics (e.g.,

cnn.com or whitehouse.gov) or they can refer to elements of semantic ontologies that are precisely

defined and agreed upon by different stakeholders.

This is the essence of paradigmatic associations where documents are considered similar if

they contain terms with high semantic similarities [86]. Our hypothesis is that by using semantic

anchors and dependencies among them it is possible to compute similarities between documents

with a higher degree of accuracy when compared to documents that have no commonly defined

semantic anchors in them.

Without semantic anchors, documents are considered as bags of words with no semantics, then

the relevance of these documents to user queries and to one another can be determined by matches

between these words. This is the essence of syntagmatic associations where documents are con-

sidered similar when terms (i.e., words) in these documents occur together [86]. For example, the

similarity engine MUDABlue uses syntagmatic associations for computing similarities among ap-

plications [50]. The problem with this approach is that computed relevance is relatively imprecise

when compared with CLAN as we show in Section 3.5.

3.2.4 Semantic Anchors in Software

Since programs contain API calls with precisely defined semantics, these API calls can serve as se-

mantic anchors to compute the degree of similarity between applications by matching the semantics
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of these applications that is expressed with these API calls. Programmers routinely use API calls

from third-party packages (e.g., the Java Development Kit (JDK)) to implement various require-

ments [15, 25, 33, 68, 106]. API calls from well-known and widely used libraries have precisely

defined semantics unlike names of program variables and types and words that programmers use

in comments. In this paper, we use API calls as semantic anchors to compute similarities among

applications.

3.2.5 Challenges

Our hypothesis is based on our idea that it is better to compute similarity between programs by

utilizing API calls as semantic anchors that come from JDK and that programmers use to imple-

ment various requirements. This idea has advantages over using Vector Space Model (VSM) where

documents are represented as vectors of words and a similarity measure is computed as the cosine

between these vectors [95]. One main problem with VSM is that different programmers can use

the same words to describe different requirements (i.e., the synonymy problem) and they can use

different words to describe the same requirements (i.e., the polysemy problem). This problem is a

variation of the vocabulary problem, which states that “no single word can be chosen to describe a

programming concept in the best way” [28]. This problem is general to Information Retrieval (IR),

but somewhat mitigated by the fact that different programmers who participate in the projects use

coherent vocabularies to write code and documentation, thus increasing the chance that two words

in different applications may describe the same requirement.

The sheer number of API calls suggests that many of these calls are likely to be shared by differ-

ent programs that implement completely different requirements leading to significant imprecision

in calculating similarities. Our study shows that out of 2,080 randomly chosen Java programs in
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Sourceforge, over 60% of these programs use String objects and over 80% contain collection

objects; these programs invoke API calls that these string and collection classes exports [35]. If

similarity scores are computed based on these common API calls, most Java programs would be

similar to one another. On top of that, it is not computationally feasible to compute similarity scores

with high precision for hundreds of thousands of API calls. It is an instance of a problem known as

the curse of dimensionality, which is a problem caused by the exponential increase in processing by

adding extra dimensions to a representational space [84].

Graphically, programs are represented as dots in a multidimensional space where dimensions

are API calls and coordinates in this space reflect the numbers of API calls in programs. The

JDK contains close to 115,000 API calls that are exported by a little more than 13,000 classes and

interfaces that are contained in 721 packages. Computing similarity scores between programs using

VSM in a space with hundreds of thousands of dimensions is not always computationally feasible,

it is imprecise, and difficult to interpret. We need to reduce the dimensionality of this space while

simultaneously revealing similarities between implemented latent high-level requirements.

3.3 Our Approach

In this section we describe our key idea, provide background material on LSI that we use in CLAN,

and explain its architecture.

3.3.1 Key Idea

Our key idea is threefold. First, if two applications share some semantic anchors (e.g., API calls),

then their similarity index should be higher than for applications that do not share any semantic
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anchors. Sharing semantic anchors means more than the exact syntactic match between the same

two API calls; it also means that two different API calls will match semantically if they come from

the same class or package. This idea is rooted in the fact that classes and packages in JDK contain

semantically related API calls; for example, the package java.security contains classes and

API calls that enable programmers to implement security-related requirements, and the package

java.util.zip exports classes that contain API calls for reading and writing the standard ZIP

and GZIP file formats. Thus we exploit relationships between inheritance hierarchies in the JDK

to improve the precision of computing similarity. This idea is related to semantic spaces where

concepts are organized in structured layers and similarity scores between documents are computed

using relations between layers [43]. Moreover, recent work has shown that API classes and packages

can be used to categorize software applications using those classes and packages [71].

Second, different API calls have different weights. Recall that many applications have many

API calls that deal with collections and string manipulations. Our idea is to automatically assign

higher weights to API calls that are encountered in fewer applications and, conversely to assign

lower weights to API calls that are encountered in a majority of applications. There is no need to

know what API calls are used in applications – this task should be done automatically. Doing it

will improve the precision of our approach since API calls that come from common packages like

java.lang will have less impact to skew the similarity index.

Finally, we observed that a requirement is often implemented using combinations of different

API calls rather than a single API call. It means that co-occurrences of API calls in different ap-

plications form patterns of implementing different requirements. For example, a requirement of

efficiently and securely exchanging XML data is often implemented using API calls that read XML

data from a file, compress and encrypt it, and then send this data over the network. Even though
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different ways of implementing this requirement are possible, detecting patterns in co-occurrences

of API calls and using these patterns to compute the similarity index may lead to higher precision

when compared with competitive approaches.

3.3.2 Latent Semantic Indexing (LSI)

To implement our key idea we rely an IR technique called Latent Semantic Indexing (LSI) that

reduces the dimensionality of the similarity space while simultaneously revealing latent concepts

that are implemented in the underlying corpus of documents [24]. In LSI, terms are elevated to

an abstract space, and terms that are used in similar contexts are considered similar even if they

are spelled differently. LSI automatically makes embedded concepts explicit using Singular Value

Decomposition (SVD), which is a form of factor analysis used to reduce dimensionality of the space

to capture most essential semantic information.

The input to SVD is an m× n term document matrix (TDM). Each of m rows corresponds to a

unique term, which in our case is either a class or a package name that contains a corresponding API

call that is invoked in a corresponding application (i.e., document). Columns correspond to unique

documents, which in our case are Java applications. Each element of the TDM contains the weight

that shows how frequently this API call is used in this application when compared to its usage in

other applications5. We cannot use a simple metric such as the API call count since it is biased – it

shows the number of times a given API call appears in applications, thus skewing the distribution

of these calls toward large applications, which may have a higher API call count regardless of the

actual importance of that API call.

5Note that we do not consider the number of times each API call is executed, e.g., in a loop. Instead, we count

occurrences of API calls in source code.
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SVD decomposes TDM into three matrices using a reduced number of dimensions, r, whose

value is chosen experimentally. The number of dimensions for LSI is commonly chosen r = 300

[24, 83]. One of these matrices contains document vectors that describe weights that documents (i.e.,

applications) have for different dimensions. Each column in this matrix is a vector whose elements

specify coordinates for a given application in the r–dimensional space. Computing similarities

between applications means computing the cosines between vectors (i.e., rows) of this matrix.

3.3.3 CLAN Architecture and Workflow

The architecture for CLAN is shown in Figure 3.1. The main elements of the CLAN architecture

are the Java Applications (Apps Archive) and the API call Archive, the Metadata Extractor, the

Search Engine, the LSI Algorithm, and the Term Document Matrix (TDM) Builder. In TDM, rows

represent packages or classes that contain JDK API calls that are invoked in Java applications and

columns represent Java applications. Applications metadata describes different API calls that are

invoked in the applications and their classes and packages. The input to CLAN (i.e., a user query)

is shown in Figure 3.1 with a thick solid arrow labeled (9). The output is shown with the thick

dashed arrow labeled (12).

CLAN works as follows. The Metadata Processor takes as its inputs (1) the Apps Archive with

Java applications and API archive that contains descriptions of JDK API calls. The Metadata Pro-

cessor outputs (2) the Application Metadata, which is the set of tuples <<<package, class>,

API call>,A > linking API calls and their packages and classes to Java applications A that use

these API calls.

Term-Document Matrix (TDM) Builder takes (3) Application Metadata as its input, and it

uses this metadata (4) to produce two TDMs: Package-Application Matrix (TDMP) and Class-
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Application Matrix (TDMC) that contain TFIDFs for JDK packages and classes whose API calls

are invoked in respective applications. The LSI Algorithm is applied (5) separately to TDMP and

TDMC to compute (6) class and package matrices ‖C‖ and ‖P‖. That is, each row in these matrices

contain coordinates that represent its corresponding application in a multidimensional space with

respect to either classes or packages of API calls that are invoked in this application.

Class-level and package-level similarities are different since applications are often more similar

on the package level than on the class level because there are fewer packages than classes in the

JDK. Therefore, there is the higher probability that two applications may have API calls that are

located in the same package but not in the same class.

Matrices ‖C‖ and ‖P‖ are combined (7) into the Similarity Matrix using the following formula

‖S‖= λC · ‖S‖C +λP · ‖S‖P, where λ is the interpolation weight for each similarity matrix, and ma-

trices ‖S‖C and ‖S‖P are similarity matrices for ‖C‖ and ‖P‖ respectively. These similarity matrices

are obtained by computing the cosine between the vector for each application (i.e., a corresponding

row in the matrix) and vectors for all other applications. Weights λP and λC are determined inde-

pendently of applications. Adjusting these weights enables experimentation with how underlying

structural and textual information in application affects resulting similarity scores. In this paper we

selected λC = λP = 0.5, thus stating that class and package-level scores contribute equally (8) to

the Similarity Matrix.

The Similarity Matrix, ‖S‖ is a square matrix whose rows and columns designate applications.

For any two applications Ai and A j, each element of ‖S‖, Si j is the similarity score between these

applications that is defined as follows: Si j =























0≤ s≤ 1, if i 6= j,

1, if i = j

.

It took us close to three hours to construct the TDM for MUDABlue using Intel Xeon CPU
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W3540, 2.93GHz with 2GB RAM, less than one hour for TDM for the package- and class-level

TDMs for CLAN. Running SVD on these TDMs took less than three hours for MUDABlue, and

less than 30 minutes for the package- and class-level TDMs for CLAN. For all three TDMs, we

used the same corpus of 8,310 Java projects from SourceForge with 114,146 API calls.

When the user enters a query (9), it is passed to the Search Engine that retrieves relevant

applications (10) with ranks in the descending order using the Similarity Matrix. In addition, the

Search Engine uses the Application Metadata (11) to extract a map of API calls for each pair of

similar applications. This map shows API calls along with their classes and packages that are shared

by similar applications, and this map is given to the user (12).
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Figure 3.1: CLAN architecture and workflow.

3.4 Experimental Design

Typically, search and retrieval engines are evaluated using manual relevance judgments by experts

[66, pages 151-153]. To determine how effective CLAN is, we conducted an experiment with 33

participants who are Java programmers. Our goal is to evaluate how well these participants can

find similar applications to the ones that are considered highly relevant to given tasks using three

different similarity engines: MUDABlue, CLAN, and an integrated similarity engine that combines
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MUDABlue and CLAN.

3.4.1 Background on MUDABlue and Combined

MUDAblue is the closest relevant work to CLAN since it provides automatic categorization for

applications [50]. The cluster hypothesis specifies that documents that cluster together tend to be

relevant to the same concept [110]. To the best of our knowledge, there is no other system that is

competitive to CLAN in that it finds similar applications. We faithfully reimplemented MUDABlue

for our experiment as it is described in the original paper [50].

The original MUDABlue was implemented and evaluated on a small repository of 41 C applica-

tions that were selected from five different categories from Sourceforge. Comparing two similarity

search engines that do not work with the same code base or different granularity levels (i.e., ap-

plications vs. code fragments) might introduce considerable threats to validity. Sourceforge has

a popular search engine and contains a large Java repository online; Apps Archive is populated

with all Java projects from this repository, and we applied MUDABlue as baseline approach to this

archive thus making its set of applications comparable with those of CLAN.

Since Similarity Matrices of MUDABlue and CLAN have the same dimensions, it is possible

to construct a combined matrix whose values are the average of the values of the MUDABlue and

CLAN matrix elements at the corresponding position. The intuition behind this combined approach

lies in integrating two approaches: MUDABlue where every word in the source code of applications

is taken into consideration versus the CLAN approach where only API calls with precisely defined

semantics are considered. A research question is whether this integration produces a superior result

when compared to each of the constituent approaches. Experimenting with this combined Similarity

Matrix allows us to seek an answer to this question about the benefit of the combined approach.
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3.4.2 Methodology

We used a cross validation study design in a cohort of 33 participants who were randomly divided

into three groups. The study was sectioned in three experiments in which each group was given a

different engine to find similar applications to the ones that we provided for given tasks. Each partic-

ipant used a different task in each experiment. Participants translated tasks into key words, searched

for relevant applications using a code search engine, and selected an application that matched their

key words the best. We call this application the source application. Then a similarity engine re-

turned a list of top ten target applications that were most similar to the source application. Thus

each participant used each subject engine on different tasks and different applications in this ex-

periment. Before the experiment we gave a one-hour tutorial on using these engines to find similar

applications.

The next step was to examine the retrieved applications and to determine if they are relevant to

the tasks and the source application. Each participant accomplished this step individually, assigning

a confidence level, C, to the examined applications using a four-level Likert scale. Since this ex-

amination is time consuming, manual and laborious we asked participants to examine only top ten

applications that resulted from searches.

The guidelines for assigning confidence levels are the following.

1. Completely dissimilar - there is absolutely nothing in the target application that the participant

finds similar to the source application, nothing in it is related to the task and the functionality

of the subject application.

2. Mostly dissimilar - only few remotely related requirements are located in source and target

application.
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3. Mostly similar - a somewhat large number of implemented requirements are located in the

target application that are similar to ones in the source application.

4. Highly similar - the participant is confident that the source and the target applications share

the same semantic concepts expressed in the task.

All participants were computer science students from the University of Illinois at Chicago who

had at least six months of Java experience. Twelve participants were upper-level undergraduate

students, and the other 21 participants were graduate students. Out of 33 participants, 15 had pro-

gramming experience with Java ranging from one to three years, and 11 participants reported more

than three years of experience writing programs in Java. Sixteen participants reported prior experi-

ence with search engines, and eight said that they never used code search engines before.

3.4.3 Precision

Two main measures for evaluating the effectiveness of retrieval are precision and recall [114, page

188-191]. The precision, Pr =
# of retrieved applications that are similar

total # of retrieved applications
, i.e., the precision

of a ranking method is the fraction of the top r ranked target applications that are relevant to the

source application, where r = 10 in this experiment, which means that each similarity engine re-

turned top ten similarity matches. Relevant or similar applications are counted only if they are

ranked with the confidence levels 4 or 3. The precision metrics reflects the accuracy of the similar-

ity search. Since we limit the investigation of the retrieved applications to top ten, the recall is not

measured in this study.

We created the variable precision, P as a categorization of the response variable confidence, C.

We did it for two reasons: improve discrimination of subjects in the resulting data and additionally



76

validate statistical evaluation of results. Precision, P imposes a stricter boundary on what is consid-

ered reusable code. For example, consider a situation where one participant assigns the level two to

all returned applications, and another participant assigns level three to half of these applications and

level one to the other half. Even though the average of C = 2 in both cases, the second participant

reports much higher precision, P = 0.5 while the precision that is reported by the first participant

is zero. Achieving statistical significance with a stricter discriminative response variable will give

assurance that the result is not accidental.

3.4.4 Hypotheses

We introduce the following null and alternative hypotheses to evaluate how close the means are for

the Cs and Ps for control and treatment groups, where C and P are the confidence level and the

precision respectively. Unless we specify otherwise, participants of the treatment group use either

MUDABlue or Combined approaches, and participants of the control group use CLAN. We evaluate

the following hypotheses at a 0.05 level of significance.

H0 The primary null hypothesis is that there is no difference in the values of confidence level and

precision per task between participants who use MUDABlue, Combined, and CLAN.

H1 An alternative hypothesis to H0 is that there is statistically significant difference in the values

of confidence level and precision between participants who use MUDABlue, Combined, and

CLAN.

Once we test the null hypothesis H0, we are interested in the directionality of means, µ, of the

results of control and treatment groups. We are interested to compare the effectiveness of CLAN
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(CN) versus the MUDABlue (MB) and Combined (MC) with respect to the values of confidence

level, C, and precision, P.

H1: C of CLAN versus MUDABlue.

H2: P of CLAN versus MUDABlue.

H3: C of CLAN versus Combined.

H4: P of CLAN versus Combined.

H5: C of MUDABlue versus Combined.

H6: P of MUDABlue versus Combined.

The rationale behind the alternative hypotheses to H1 and H2 is that CLAN allows users to

quickly understand why applications are similar by reviewing visual maps of their common API

calls, classes, and packages. The alternative hypotheses to H3 and H4 are motivated by the fact that

if all words from source code are used in the analysis in addition to API calls, it will worsen the

precision with which users evaluate retrieved similar applications. Finally, having the alternative

hypotheses to H5 and H6 ensures that the Combined approach still allows users to quickly under-

stand how similar applications share the same semantic concepts using their common API calls,

classes, and packages.

3.4.5 Task Design

We designed 36 tasks that participants work on during experiments in a way that these tasks belong

to domains that are easy to understand, and they have similar complexity. The authors of this paper

visited various programming forums and internet groups to extract descriptions of tasks from the
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questions that programmers asked. In addition, we interviewed a dozen programmers at Accenture

who explained what tasks they worked on in the past year.

Additional criterion for these tasks is that they should represent real-world programming tasks

and should not be biased towards any of the similarity search engines that are used in this experi-

ment. Descriptions of these tasks should be flexible enough to allow participants to find different

matching applications for similarity search. This criterion significantly reduces any bias towards

evaluated similarity search engines. These tasks and the results of the experiment are available for

download6.

(a) Confidence level, C. (b) Precision, P.

Figure 3.2: Statistical summary of the results of the experiment for C and P.

3.4.6 Tasks

The following two tasks are examples from the set of 36 tasks we used in our experiment.

• Create an application for sharing, viewing, and exploring large data sets that are encoded

using MIME. The data sets may represents blogs or genom sequences. The data can be stored

6http://www.javaclan.net, follow the Experiment link.
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using key value pairs. The application should support retrieving data items by mapping keys

to values.

• Implement a library for checking XPath expressions. The checker should support compil-

ing XPath expressions, evaluating XPath expressions in the context of the specified XML

document and returning the results as the specified type.

3.4.7 Threats to Validity

In this section, we discuss threats to the validity of this experimental design and how we address

and minimize these threats.

3.4.7.1 Internal Validity

Participants. Since evaluating hypotheses is based on the data collected from participants, we

identify three threats to internal validity: Java proficiency, motivation, and the uniformity among

participants.

Even though we selected participants who had working knowledge of Java, we did not conduct

an independent assessment of how proficient these participants were in Java. The danger of having

poor Java programmers as participants of our experiment is that they can make poor choices of

which retrieved applications have higher similarity to the source application. This threat is mitigated

by the fact that all participants from UIC have documented experience working on course projects

that required writing Java code, taking classes on programming with Java, and having experience

working as Java programmers for commercial companies.

Tasks. Improper tasks pose a big threat to validity. If tasks are too general or trivial (e.g.,

open a file and read its data into memory), then every application that has file-related API calls
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will be retrieved, thus inundating participants with results that are hard to evaluate. On the other

hand, if application and domain-specific keywords describe a task (e.g., astronomy and cosmic

vacuum), only a few applications will be retrieved that contain these keywords, thus creating a bias

towards MUDABlue. To avoid this threat, we based the task descriptions on 12 specifications of

different software systems that were written by different people including professional programmers

at Accenture. While this diversification of tasks does not completely eliminate this threat to validity,

it reduces it significantly.

3.4.7.2 External Validity

To make results of this experiment generalizable, we must address threats to external validity, which

refer to the generalizability of a casual relationship beyond the circumstances of our experiment.

The fact that supports the validity of this experimental design is that the participants are representa-

tive of professional Java programmers since some of them have already joined workforce and others

will do soon. A threat to external validity concerns the usage of search tools in the industrial set-

tings, where applications may not use third-party API call libraries. However, it is highly unlikely

that modern large-scale software projects can be effectively developed, maintained, and evolved

without this reuse.

3.5 Results

In this section, we report the results of the experiment and evaluate the null hypotheses.
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Table 3.1: Results of t-tests of hypotheses, H, for paired two sample for means for two-tail distribution, for dependent variable specified in the column Var

(either C or P) whose measurements are reported in the following columns. Extremal values, Median, Means (µ), variance (σ2), degrees of freedom (DF),

and the pearson correlation coefficient (PC), are reported along with the results of the evaluation of the hypotheses, i.e., statistical significance, p, and the

T statistics. A decision to accept or reject the null hypothesis is shown in the last column Decision.

H Var Approach Samples Min Max Median µ σ2 DF PC p T Tcrit Decision

H1 C
CLAN 304 1 4 2 2.42 1.14

321 0.1 4.4 ·10−7 5.02 1.97 Reject
MUDABlue 322 1 4 1 2.03 1.13

H2 P
CLAN 33 0 0.8 0.5 0.47 0.24

32 0.1 0.02 2.43 2.04 Reject
MUDABlue 33 0 0.9 0.3 0.33 0.24

H3 C
CLAN 304 1 4 2 2.42 1.14

321 0.1 0.11 1.6 1.96 Accept
Combined 322 1 4 2 2.3 1.06

H4 P
CLAN 33 0 0.8 0.5 0.47 0.24

32 0.16 0.68 0.41 2.04 Accept
Combined 33 0 1 0.5 0.45 0.24

H5 C
MUDABlue 322 1 4 1 2.03 1.13

321 -0.02 0.002 -3.16 1.97 Reject
Combined 322 1 4 2 2.3 1.06

H6 P
MUDABlue 33 0 0.9 0.3 0.33 0.24

32 0.21 0.04 -2.15 2.04 Reject
Combined 33 0 1 0.5 0.45 0.24
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3.5.1 Results of Hypotheses Testing

We use one-way ANOVA and t-tests for paired two sample for means to evaluate the hypotheses

that we stated in Section 3.4.4.

3.5.1.1 Variables

A main independent variable is the similarity engine (MUDABlue, CLAN, Combined) that partici-

pants use to find similar Java applications. Dependent variables are the values of confidence level,

C, and precision, P.

3.5.1.2 Testing the Null Hypothesis

We used ANOVA to evaluate the null hypothesis H0 that the variation in an experiment is no greater

than that due to normal variation of individuals’ characteristics and error in their measurement.

The results of ANOVA confirm that there are large differences between the groups for C with F =

11.7 > Fcrit = 3 with p ≈ 9.7 · 10−6 which is strongly statistically significant. The mean C for

the MUDABlue approach is 2.03 with the variance 1.12, which is smaller than the mean C for

Combined, 2.3 with the variance 1.13, and it is smaller than the mean C for CLAN, 2.42 with the

variance 1.08. Based on these results we can reject the null hypothesis and we accept the alternative

hypothesis H1.

However, the results of ANOVA confirm that there are insignificant differences between the

groups for P with F = 3.04 < Fcrit = 3.09 with p = 0.052. The mean P for the MUDABlue ap-

proach is 0.33 with the variance 0.06, which is smaller than the mean P for Combined, 0.45 with

the variance 0.06, and it is smaller than the mean P for CLAN, 0.47 with the variance 0.057. Ag-

gregating the values of C into P changes the results of the statistical test making it difficult to reach
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a conclusion, and it requires more precise statistical tests, specifically, t-tests for paired two sample

for means, which we describe below.

A statistical summary of the results of the experiment for C and T (median, quartiles, range and

extreme values) are shown as box-and-whisker plots in Figure 3.2(a) and Figure 3.2(b) correspond-

ingly with 95% confidence interval for the mean.

3.5.1.3 Comparing MUDABlue with CLAN

To test the null hypothesis H1 and H2 we applied two t-tests for paired two sample for means, for

C and P for participants who used MUDABlue and CLAN. The results of this test for C and for

P are shown in Table 3.1. The column Samples shows that the number of samples for CLAN is

smaller than the obtained number of samples for MUDABlue because three participants missed one

experiment. We replaced missing values with the average value for C for CLAN for this experiment.

Based on these results we reject the null hypotheses H1 and H2, and we accept the alternative

hypotheses that states that participants who use CLAN report higher relevance and precision

on finding similar applications than those who use MUDABlue.

3.5.1.4 Comparing MUDABlue with Combined

To test the null hypotheses H5 and H6, we applied two t-tests for paired two sample for means, for

C and P for participants who used the baseline MUDABlue and Combined. The results of this test

for C and for P are shown in Table 3.1. Based on these results we accept the alternative hypotheses

H5 and H6 that say that participants who use Combined report higher relevance and precision

on finding similar applications than those who use MUDABlue.
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3.5.1.5 Comparing CLAN with Combined

To test the null hypotheses H3 and H4, we applied two t-tests for paired two sample for means, for

C and P for participants who used the baseline CLAN and Combined. The results of this test for

C and for P are shown in Table 3.1. Based on these results we accept the null hypotheses H3 and

H4 that say that participants who use CLAN do not report higher relevance and precision on

finding similar applications than those who use Combined.

The result of comparing CLAN with Combined is somewhat surprising. We expected that com-

bining two different methods of computing similarities would yield a better result than each of these

methods alone. We have a possible explanation based on debriefing of the participants. After the ex-

periment a few participants expressed confusion about using the Combined engine, which reported

similar applications even though these applications had no common API calls, classes, or packages.

Naturally, this phenomenon is a result of the MUDABlue’s component of Combined that computes

a high similarity score based on word occurrences while the CLAN’s component provides a low

score because of the absence of semantic anchors. At this point it is a subject of our future work

to investigate this phenomenon in more detail. While combining CLAN and MUDABlue did not

produce noticeable improvements, combining textual and structural information was successful for

tasks of feature location [83] and detecting duplicate bug reports [113].

3.6 Discussion

During the experiment, programmers identified more relevant applications using CLAN than when

using MUDABlue (see Section 3.5). This result points to a key advantage of CLAN: we help pro-

grammers effectively compare two applications by elevating highly-relevant details of these applica-
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tions. Without CLAN, programmers must examine the whole source code of different applications

in order to compare them. Consider the example in Figure 3.3. CLAN returned the application

mbox as the most-similar application to MidiQuickFix for the task of recording music data into

a MIDI file. CLAN marked these applications as similar because they share important elements of

the API (e.g., com.sun.media.sound). For the same task, MUDABlue did not place mbox

even in the top ten similar applications to MidiQuickFix. This example illustrates how CLAN

improves over the state-of-the-art.

Figure 3.3: Part of the CLAN interface, showing the API calls common to two applications. CLAN shows

these calls in order to help programmers concentrate on highly-relevant details when comparing applications.

3.7 Related Work

The five most related tools to our work are those based on CodeWeb by Michail and Notkin [72],

MUDABlue by Kawaguchi et al. [50], Hipikat by Cubranic and Murphy [112] and CodeBroker by

Ye and Fischer [115] and SSI by Bajracharya, Ossher, and Lopez [6]. CodeWeb is an automated

approach for comparing and contrasting software libraries based on matching similar classes and
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functions cross libraries (via name and similarity matching) [72]. This work was inspirational for us

in extending the relevance framework with semantic anchors. In contrast to CodeWeb, CLAN also

uses advanced dimensionality reduction techniques based on LSI and SVD and computes similari-

ties among applications in the context of the complete software repository. SSI creates an index of

code based on the keywords extracted from that code, and then expands that index with keywords

from other code that uses the same API calls [6]. CLAN is different from SSI for three reasons:

1) CLAN locates the applications similar to a given application, and does not require a natural-

language query, 2) CLAN is independent of the keywords chosen in the code, and 3) CLAN has

been evaluated using a standard methodology with programmers against a state-of-the-art approach

(MUDABlue).

Source code search engines have become an active research area in the recent years. While

these approaches are different from CLAN we believe that majority of these approaches may ben-

efit from the ideas implemented in CLAN. Among these source code engines are CodeFinder [37],

Mica [106], Exemplar [68], SNIFF [15], Prospector [65], Suade [89], Starthcona [39], XSnippet

[92], ParseWeb [108], SPARS-J [45], Portfolio [69], Sourcerer [7], S6 [87] and SpotWeb [109].

While none of these approaches retrieve similar applications to a given candidate software appli-

cation, these approaches are effective in retrieving relevant software components from open source

repositories.

Our previous work successfully uses the idea of functional abstraction in a search engine called

Exemplar to find highly relevant applications. However, this idea has never been used to compute

similarities between software applications. Unlike Exemplar, CLAN uses a novel combination of

semantic layers that correspond to packages and class hierarchies, and based on our extension to

Mizzaro’s relevance framework we designed a novel algorithm based on LSI that computes a simi-
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larity index between Java applications.

Other related approaches identify programs that are likely to share the same origin rely on dy-

namic analysis and known as API Birthmarks [98]. However, our approach uses static information

and assumes that similar applications may have been implemented by different software developer

teams. Likewise, software bertillonage is a technique for comparing software components based on

the dependencies of those components [22]. Bertillonage is designed to locate duplicate code, how-

ever, and does not compute the similarity of software which may be related, but is not duplicated.

3.8 Conclusion

We created a novel search system for finding Closely reLated ApplicatioNs (CLAN) that helps users

find similar or related applications. Our main contribution is in using a framework for relevance to

design a novel approach that computes similarity scores between Java applications. We have built

CLAN and we conducted an experiment with 33 participants to evaluate CLAN and compare it with

the closest competitive approach, MUDABlue, and a system that combines CLAN and MUDABlue.

The results show with strong statistical significance that CLAN finds similar applications with a

higher precision than MUDABlue.



Chapter 4

Finding Relevant Functions and Their

Usages In Millions of Lines of Code

4.1 Introduction

Different studies show that programmers are more interested in finding definitions of functions and

their uses than variables, statements, or arbitrary fragments of source code [101]. More specifically,

programmers use different tools including code search engines to answer three types of questions

[100, 99]. First, programmers want to find initial focus points such as relevant functions that im-

plement high-level requirements. Second, programmers must understand how a function is used in

order to use it themselves. Third, programmers must see the chain of function invocations in order

to understand how concepts are implemented in these functions. It is important that source code

search engines support programmers in finding answers to these questions.

In general, understanding code and determining how to use it, is a manual and laborious process

that takes anywhere from 50% to 80% of programmers’ time [19, 23]. Short code fragments that are

returned as results to user queries do not give enough background or context to help programmers

determine how to reuse these code fragments, and programmers typically invest a significant intel-

88
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lectual effort (i.e., they need to overcome a high cognitive distance [52]) to understand how to reuse

these code fragments. On the other hand, if code fragments are retrieved as functions, it makes it

easier for developers to understand how to reuse these functions.

A majority of code search engines treat code as plain text where all words have unknown se-

mantics. However, applications contain functional abstractions that provide a basic level of code

reuse, since programmer define functions once and call them from different places in source code.

The idea of using functional abstractions to improve code search was proposed and implemented

elsewhere [15, 68, 80, 106]; however, these code search engines do not automatically analyze how

functions are used in the context of other functions, despite the fact that understanding the chains

of function invocations is a key question that programmers ask. Unfortunately, existing code search

engines do little to ensure that they retrieve code fragments in a broader context of relevant functions

that invoke one another to accomplish certain tasks.

Our idea is that since programmers frequently ask various questions about functions, a code

search engine should incorporate information about these functions that is used to answer the pro-

grammers’ questions. Browsing retrieved functions that are relevant to queries means that pro-

grammers follow function calls and review declarations, definitions, and uses of these functions to

combine them in a solution to a given task. That is, programmers want to accomplish the whole

task quickly, rather than obtain multiple examples for different components of the task.

For example, consider the query “record compress MIDI file.” Programmers don’t

want to just see examples that compress, and others that record, and others that manipulate MIDI

files. A programmer wants to accomplish the complete task of recording and compressing a MIDI

file. However, among relevant results there are functions that create and save MIDI files, functions

that write data into a file in the MIDI format, and there are multiple functions that compress data.
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Typically, programmers investigate these functions to determine which of them are relevant and

determine how to compose these functions to achieve the goal that is expressed with the query. That

is, a programmer wants to see code for the whole task of how to record MIDI data into a file and

compress it. A search engine can support programmers efficiently if it incorporates in its ranking

how these functions call one another, and displays that information to the user.

We created a code search system called Portfolio that supports programmers in finding relevant

functions that implement high-level requirements reflected in query terms (i.e., finding initial focus

points), determining how these functions are used in a way that is highly relevant to the query (i.e.,

building on found focus points), and visualizing dependencies of the retrieved functions to show

their usages. Portfolio finds highly relevant functions in close to 270 Millions LOC in projects

from FreeBSD Ports1 by combining various natural language processing (NLP) and indexing tech-

niques with PageRank and spreading activation network (SAN) algorithms. With NLP and indexing

techniques, initial focus points are found that match key words from queries; with PageRank, we

model the surfing behavior of programmers, and with SAN we elevate highly relevant chains of

function calls to the top of search results. We have built Portfolio and conducted an experiment

with 49 professional C++ programmers to evaluate Portfolio and compare it with the well-known

and successful engines Google Code Search and Koders. The results show with strong statistical

significance that users find more relevant code with higher precision with Portfolio than those with

Google Code Search and Koders. To the best of our knowledge, we are not aware of any existing

code search engines that have been evaluated against and shown to be more accurate than widely

used commercial code search engines, with strong statistical significance and over a large codebase

and using a standard information retrieval methodology [66, pages 151-153]. Portfolio is free and

1http://www.freebsd.org/ports
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available for public use2.

4.2 The Model

The search model of Portfolio uses a key abstraction in which the search space is represented as

a directed graph with nodes as functions and directed edges between nodes that specify usages of

these functions (i.e., a call graph). For example, if the function g is invoked in the function f, then

a directed edge exists from the node that represents the function f to the node that represents the

function g. Since the main goal of Portfolio is to enable programmers to find relevant functions

and their usages, we need models that effectively represent the behavior of programmers when

navigating a large graph of functional dependencies. These are navigation and association models

that address surfing behavior of programmers and associations of terms in functions in the search

graph.

4.2.1 Navigation Model

When using text search engines, users navigate among pages by following links contained in those

pages. Similarly, in Portfolio, programmers can navigate between functions by following edges in

the directed graph of functional dependencies using Portfolio’s visual interface. To model the nav-

igation behavior of programmers, we adopt the model of the random surfer that is used in popular

search engines such as Google. Following functional dependencies helps programmers to under-

stand how to use found functions. The surfer model is called random because the surfer can “jump”

to a new URL, or in case of source code, to a new function. These random jumps are called telepor-

2http://www.searchportfolio.net
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Figure 4.1: Example of associations between different functions.

tations, and this navigation model is the basis for the popular ranking algorithm PageRank [13, 54].

In the random surfer model, the content of functions and queries do not matter, navigations are

guided only by edges in the graph that specifies functional dependencies. Accordingly, PageRank

reflects only the surfing behavior of users, and this rank is based on the popularity of a function that

is determined by how many functions call it. However, the surfing model is query independent since

it ignores terms that are used in search queries. Taking into consideration query terms may improve

the precision of code searching. That is, if different functions share concepts that are related to query

terms and these functions are connected using functional dependencies, then these functions should

be ranked higher. We need a search model that should automatically make embedded concepts

explicit by using associations between functions that share related concepts, and then we combine

this model with the surfing model in Portfolio.

4.2.2 Association Model

The main idea of an association model is to establish relevance among facts whose content does not

contain terms that match user queries directly. Consider the query “record compress music

file.” Among relevant results there are functions that create and save MIDI files, functions that

write data into a file in the MIDI format, and there are multiple functions that compress data. This

situation is schematically shown in Figure 4.1, where the function F contains the term record, the

function G contains the term MIDI, the function P contains the terms music and file, and the
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function Q contains the term compress. Function F calls the function G, which in turn calls the

function H, which is also called from the function Q, which is in turn called from the function P. The

functions F, P, and Q will be returned by a search engine that is based on matching query terms to

those that are contained in documents. Meanwhile, the functions H and G may be highly relevant to

the query but are not retrieved since they have no words that match the search terms. In addition, the

function Q can be called from many other functions since its compression functionality is generic;

however, its usage is most valuable for programmers in the context of the function that is related to

query terms. A problem is how to ensure that the functions H and G end up on the list of relevant

functions.

To remedy this situation we use an association model that is based on a Spreading Activation

Network (SAN) [18, 20]. In SANs, nodes represent documents, while edges specify properties that

connect these documents. The edges’ direction and weight reflect the meaning and strength of

associations among documents. For example, an article about clean energy and a different article

about the melting polar ice cap are connected with an edge that is labeled with the common property

“climate change.” Once applied to SAN, spreading activation computes new weights for nodes (i.e.,

ranks) that reflect implicit associations in the networks of these nodes.

In Portfolio, we view finction call graphs as SANs where nodes represent functions, edges rep-

resent functional dependencies, and weights represent a strength of associations, which includes

the number of shared terms. After the user enters a query, a list of functions is retrieved and sorted

based on the score that reflects the match between query terms and terms in functions. Once Portfo-

lio identifies top matching functions, it computes SAN to propagate concepts from these functions to

others. The result is that every function will have a new score that reflects the associations between

concepts in these functions and user queries.
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4.2.3 The Combined Model

The ranking vectors for PageRank ‖π‖PR and spreading activation ‖π‖SAN are computed separately

and later are linearly combined in a single ranking vector ‖π‖C = f (‖π‖PR,‖π‖SAN). PageRank

is query independent and is precomputed automatically for a function call graph, while ‖π‖SAN is

computed automatically in response to user queries. Assigning different weights in the linear com-

bination of these rankings enables fine-tuning of Portfolio by specifying how each model contributes

to the resulting score.

4.3 Our Approach

In this section we describe the architecture of Portfolio and show how to use Portfolio.

4.3.1 Portfolio Architecture

The architecture for Portfolio is shown in Figure 4.2. The main elements of the Portfolio architecture

are the database holding software applications (i.e., the Projects Archive), the Metadata Builder, the

Function Graph Builder, the SAN and PageRank algorithms, the Visualizer and the key word search

engine. Applications metadata describes functions that are declared, defined and invoked in the

applications and words that are contained in the source code of these functions and comments.

Portfolio is built on an internal, extensible database of 18,203 C/C++ projects that contain close to

2.3Mil files with close to 8.6Mil functions that contain 2,496,172 indexed words. Portfolio indexes

and searches close to 270Mil LOC in these C/C++ projects that are extracted from FreeBSD’s source

code repository called ports3. It is easy to extend Portfolio by adding new projects to the Projects

3http://www.freebsd.org/ports - last checked August 17,2010.
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Figure 4.2: Portfolio architecture.

Archive. The user input to Portfolio is shown in Figure 4.2 with the arrow labeled (7). The output

is shown with the arrow labeled (18).

Portfolio works as follows. The input to the system is the set of applications from the Projects

Archive that contain various functions (1). The Function Graph Builder analyzes the source code

of these applications statically and it outputs (2) the function call graph (FCG) that contains func-

tional dependencies. This operation is imprecise since resolving dynamic dispatch calls and function

pointers statically is an undecidable problem [53]. Since this is done offline, precise program analy-

sis can be accommodated in this framework to achieve better results in obtaining correct functional

dependencies. We conduct the sensitivity analysis of Portfolio and its constituent algorithms in Sec-

tion 4.5.8.1. Next, the algorithm PageRank is run (3) on the FCG, and it computes (4) the rank

vector, ‖π‖PR, in which every element is a ranking score for each function in the FCG.

The Metadata Builder reads in (5) the source code of applications, applies NLP techniques

such as stemming and identifier splitting, and indexes the source code as text resulting (6) in

Projects Metadata. When the user enters a query (7), it is passed to the key word search component

along with the Projects Metadata (8). The key word search engine searches the metadata using

the words in the query as keys and outputs (9) the set of Relevant Functions whose source code

and comments contain words that match the words from the query. These relevant functions (10)
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Figure 4.3: A visual interface of Portfolio. The left side contains a list of ranked retrieved functions and

the right side contains a static call graph that contains these and other functions; edges of this graph indicate

the directions of function invocations. Hovering a cursor over a function on the list shows a label over the

corresponding function on the call graph. Font sizes reflect the score; the higher the score of the function, the

bigger the font size used to show it on the graph. Clicking on the label of a function loads its source code in

a separate browser window.

along with the FCG (11) serve as an input to the algorithm SAN. The algorithm SAN computes

(12) spreading activation vector of scores ‖π‖SAN for functions that are associated with the relevant

functions (10). Ranking vectors ‖π‖PR (14) and ‖π‖SAN (13) are combined into the resulting

vector ‖π‖ (15) that contains ranking scores for all relevant functions. The Visualizer takes (16)

the list of relevant functions that are sorted in descending order using their ranking scores and

(17) the metadata, in order to present (18) the resulting visual map to the user as it is shown in

Figure 4.3.

4.3.2 Portfolio Visual Interface

After the user submits a search query, the Portfolio search engine presents functions relevant to the

query in a browser window as it is shown in Figure 4.3. The left side contains the ranked list of

retrieved functions and project names, while the right side contains a static call graph that contains

these and other functions. Edges of this graph indicate the directions of function invocations. Hov-
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ering a cursor over a function on the list shows a label over the corresponding function on the call

graph. Font sizes reflect the combined ranking; the higher the ranking of the function, the bigger

the font size used to show it on the graph. Clicking on the label of a function loads its source code

in a separate browser window.

4.4 Ranking

In this section we discuss our ranking algorithm.

4.4.1 Components of Ranking

There are three components that compute different scores in the Portfolio ranking mechanism: a

component that computes a score based on word occurrences (WOS), a component that computes

a score based on the random surfer navigation model (PageRank) described in Section 4.2.1, and

a component that computes a score based on SAN connections between these calls based on the

association model described in Section 4.2.2. WOS ranking is used to bootstrap SAN by providing

rankings to functions based on query terms. The total ranking score is the weighted sum of the

PageRank and SAN ranking scores. Each component produces results from different perspectives

(i.e., word matches, navigation, associations). Our goal is to produce a unified ranking by putting

these orthogonal, yet complementary rankings together in a single score.

4.4.2 WOS Ranking

The purpose of WOS is to enable Portfolio to retrieve functions based on matches between words

in queries and words in the source code of applications. This is a bootstraping ranking procedure

that serves as the input to the SAN algorithm.
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The WOS component uses Okapi BM25, which is a ranking function typically used by search

engines to rank matching documents according to their relevance to a given search query [88].

This function is implemented in the Lucene Java Framework which is used in Portfolio, and is

distinguished by TREC for its performance and considered as state-of-the-art in the IR community

[81]. BM25 is a standard bag-of-words retrieval function that ranks a set of documents based on

the relative proximity of query terms (e.g., without dependencies) appearing in each document. The

BM25 score is Swos =
n

∑
i=1

IDF(qi)
f (qi,D) · (k+1)

f (qi,D)+ k · (1−b+b · |D|
µ(|D|))

, where f (qi,D) is the qi’s term

frequency in the document D with the length (i.e., the number of words) |D|, µ(|D|) is the average

document length in the text collection from which documents are drawn, k and b are parameters

whose values are usually chosen 1.2 and 0.75 respectively. Finally, the IDF(qi) is the inverse

document frequency weight of the query term qi.

4.4.3 Spreading Activation

Spreading activation computes weights for nodes in two steps: pulses and termination checks. Ini-

tially, a set of starting nodes is selected using a number of top ranked functions using the WOS

ranking. During pulses, new weights for different nodes are transitively computed from the starting

nodes using the formula N j = Σi f (Niwi j), where the weight of the node N j is equal to the sum of

all nodes Ni that are incident to the node N j with edges whose weights are wi j. The function f is

typically called the threshold function that returns nonzero value only if the value of the argument

is greater than some chosen threshold, which acts as a termination check preventing “flooding” of

the SAN.
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4.4.4 PageRank

PageRank is widely described in literature, so here we give its concise mathematical explanation as

it is related to Portfolio [13, 54]. The original formula for PageRank of a function Fi, denoted r(Fi),

is the sum of the PageRanks of all functions that invoke Fi: r(Fi) = ∑Fj∈BFi

r(Fj)
|Fj|

, where BFi
is the

set of functions that invoke Fi and |Fj| is the number of functions that the function Fj invokes. This

formula is applied iteratively starting with r0(Fi) = 1/n, where n is the number of functions. The

process is repeated until PageRank converges to some stable values or after some number of steps.

Functions that are called from many other functions have a significantly higher score than those that

are used infrequently or not at all.

4.4.5 Combined Ranking

The combined rank is S = λPR‖π‖PR + λSAN‖π‖SAN , where λ is the interpolation weight for each

type of the score. These weights are determined independently of queries unlike the scores WOS

and SAN, which are query-dependent. Adjusting these weights enables experimentation with how

underlying structural and textual information in application affects resulting ranking scores. Exper-

imentation with PageRank involves changing the teleportation parameter that we briefly discussed

in Section 4.2.1.

4.5 Experimental Design

Typically, search engines are evaluated using manual relevance judgments by experts [66, pages

151-153]. To determine how effective Portfolio is, we conducted an experiment with 49 participants

who are C/C++ programmers. Our goal was to evaluate how well these participants could find code
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fragments or functions that matched given tasks using three different search engines: Google Code

Search (or simply, Google)4, Koders5 and Portfolio6. We chose to compare Portfolio with Google

and Koders because they are popular search engines with the large open source code repositories,

and these engines are used by tens of thousands of programmers every day.

4.5.1 Methodology

We used a cross validation experimental design in a cohort of 49 participants who were randomly

divided into three groups. The experiment was sectioned in three experiments in which each group

was given a different search engine (i.e., Google, Koders, or Portfolio) to find code fragments or

functions for given tasks. Each group used a different task in each experiment. Thus each participant

used each search engine on different tasks in this experiment. Before the experiment we gave a one-

hour tutorial on using these search engines to find code fragments or functions for tasks.

Each experiment consisted of three steps. First, participants translated tasks into a sequence of

keywords that described key concepts of code fragments or functions that they needed to find. Then,

participants entered these keywords as queries into the search engines (the order of these keywords

did not matter) and obtained lists of code fragments or functions that were ranked in descending

order.

The next step for participants was to examine the returned code fragments and functions and to

determine if they matched the tasks. Each participant accomplished this step individually, assigning

a confidence level, C, to the examined code fragments or functions using a four-level Likert scale.

We asked participants to examine only the top ten code fragments that resulted from their searches

4http://www.google.com/codesearch
5http://www.koders.com
6http://www.searchportfolio.net
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since the time for each experiment was limited to two hours.

The guidelines for assigning confidence levels are the following.

1. Completely irrelevant - there is absolutely nothing that the participant can use from this re-

trieved code fragments, nothing in it is related to keywords that the participant chose based

on the descriptions of the tasks.

2. Mostly irrelevant - a retrieved code fragment is only remotely relevant to a given task; it is

unclear how to reuse it.

3. Mostly relevant - a retrieved code fragment is relevant to a given task and participant can

understand with some modest effort how to reuse it to solve a given task.

4. Highly relevant - the participant is highly confident that code fragment can be reused and s/he

clearly see how to use it.

Forty four participants are Accenture employees who work on consulting engagements as pro-

fessional programmers for different client companies. Five participants are graduate students from

the University of Illinois at Chicago who have at least six months of C/C++ experience. Accen-

ture participants have different backgrounds, experience, and belong to different groups of the total

Accenture workforce of approximately 203,000 employees. Out of 49 participants, 16 had program-

ming experience with C/C++ ranging from six months to two years, and 18 participants reported

more than three years of experience writing programs in C++. Ten participants reported prior expe-

rience with Google Code Search and three participants with Koders (which are used in this experi-

ment thus introducing a bias toward these code search engines), nine participants reported frequent

use of code search engines, and 16 said that they never used code search engines. All participants

have bachelor degrees and 28 have master degrees in different technical disciplines.
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(a) Confidence level, C. (b) Precision, P.

Figure 4.4: Statistical summary of the results of the experiment for C and P.

4.5.2 Precision

Two main measures for evaluating the effectiveness of retrieval are precision and recall [114, page

188-191]. The precision is calculated as Pr =
# of retrieved functions that are relevant

total # of retrieved functions
, i.e.,

the precision of a ranking method is the fraction of the top r ranked documents that are relevant to

the query, where r = 10 in this experiment. Relevant code fragments or functions are counted only

if they are ranked with the confidence levels 4 or 3. The precision metrics reflects the accuracy of

the search. Since we limit the investigation of the retrieved code fragments or functions to top ten,

the recall is not measured in this experiment.

4.5.3 Hypotheses

We introduce the following null and alternative hypotheses to evaluate how close the means are for

the Cs and Ps for control and treatment groups. Unless we specify otherwise, participants of the

treatment group use Portfolio, and participants of the control group use either Google or Koders.

We seek to evaluate the following hypotheses at a 0.05 level of significance.
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H0 The primary null hypothesis is that there is no difference in the values of confidence level and

precision per task between participants who use Portfolio, Google, and Koders.

H1 An alternative hypothesis to H0 is that there is statistically significant difference in the values of

confidence level and precision between participants who use Portfolio, Google, and Koders.

Once we test the null hypothesis H0, we are interested in the directionality of means, µ, of the

results of control and treatment groups. We are interested to compare the effectiveness of Portfo-

lio versus Google Code Search and Koders with respect to the values of confidence level, C, and

precision, P.

H1 (C of Portfolio versus Google) The effective null hypothesis is that µPort
C = µG

C , while the true

null hypothesis is that µPort
C ≤ µP

C. Conversely, the alternative hypothesis is µPort
C > µG

C .

H2(P of Portfolio versus Google) The effective null hypothesis is that µPort
P = µG

P , while the true

null hypothesis is that µPort
P ≤ µG

P . Conversely, the alternative hypothesis is µPort
P > µG

P .

H3 (C of Portfolio versus Koders) The effective null hypothesis is that µPort
C = µK

C , while the true

null hypothesis is that µPort
C ≤ µK

C . Conversely, the alternative is µPort
C > µK

C .

H4(P of Portfolio versus Koders) The effective null hypothesis is that µPort
P = µK

P , while the true

null hypothesis is that µPort
P ≥ µK

P . Conversely, the alternative is µPort
P < µK

P .

The rationale behind the alternative hypotheses to H1–H4 is that Portfolio allows users to

quickly understand how queries are related to retrieved functions. These alternative hypotheses

are motivated by our belief that if users see visualization of functional dependencies in addition

to functions whose ranks are computed higher using our ranking algorithm, they can make better

decisions about how closely retrieved functions match given tasks.

4.5.4 Task Design

We designed 15 tasks for participants to work on during experiments in a way that these tasks belong

to domains that are easy to understand, and they have similar complexity. The authors of this paper
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visited various programming forums and internet groups to extract descriptions of tasks from the

questions that programmers asked. In addition, we interviewed several programmers at Accenture

who explained what tasks they worked on in the past year. Additional criteria for these tasks is

that they should represent real-world programming tasks and should not be biased towards any of

the search engines that are used in this experiment. Descriptions of these tasks should be flexible

enough to allow participants to suggest different keywords for searching. This criteria significantly

reduces any bias towards evaluated search engines. These tasks and the results of the experiment

are available for download7.

4.5.5 Tasks

The following three tasks are examples from the set of 15 tasks we used in our experiment.

• Implement a module for reading and playing midi files8.

• Implement a module that adjusts different parameters of a picture, including brightness, con-

trast and white balance9.

• Build a program for managing USB devices. The program should implement routines such

as opening, closing, writing and reading from an USB device10.

4.5.6 Normalizing Sources of Variations

Sources of variation are all issues that could cause an observation to have a different value from

another observation. We identify sources of variation as the prior experience of the participants

with specific code fragments or functions retrieved by the search engines in this experiment, past

7http://www.searchportfolio.net, follow the Experiment link.
8http://www.codeproject.com/Messages/1427393/How-Can-I-Read-Midi-File.aspx
9http://www.codeguru.com/forum/showthread.php?t=432339

10http://www.cplusplus.com/forum/general/25172/
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experience in implementing requirements that is similar to one or several of the tasks used in this

experiment, the amount of time they spend on learning how to use search engines, and different

computing environments which they use to evaluate retrieved code fragments or functions. The first

point is sensitive since some participants who already know how some retrieved functions behave

are likely to be much more effective than other participants who know nothing of these functions.

We designed this experiment to drastically reduce the effects of covariates (i.e., nuisance fac-

tors) in order to normalize sources of variations. Using the cross-validation design we normalize

variations to a certain degree since each participant uses all three search engines on different tasks.



1
0
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H Var Approach Samples Min Max Median µ StdDev σ2 DF PCC p T Tcrit

H1 C
Portfolio 1276 1 4 3 2.86 1.07 1.15

1372 0.04 4.2 ·10−108 24 1.96
Google 1373 1 4 2 1.97 1.11 1.23

H2 P
Portfolio 184 0 1 0.7 0.65 0.28 0.08

197 0.12 3 ·10−22 10.9 1.97
Google 198 0 1 0.25 0.35 0.33 0.11

H3 C
Portfolio 1276 1 4 3 2.86 1.07 1.15

1485 0.06 1.1 ·10−26 10.9 1.96
Koders 1486 1 4 2 2.45 1.12 1.25

H4 P
Portfolio 184 0 1 0.7 0.65 0.28 0.8

207 0.041 3 ·10−8 5.76 1.97
Koders 208 0 1 0.5 0.49 0.3 0.09

Table 4.1: Results of t-tests of hypotheses, H, for paired two sample for means for two-tail distribution, for dependent variable specified in the column Var

(either C or P) whose measurements are reported in the following columns. Extremal values, Median, Means, µ, standard deviation, StdDev, variance, σ2,

degrees of freedom, DF, and the pearson correlation coefficient, PCC, are reported along with the results of the evaluation of the hypotheses, i.e., statistical

significance, p, and the T statistics.
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4.5.7 Tests and The Normality Assumption

We use one-way ANOVA, t-tests for paired two sample for means, and χ2 to evaluate the hypotheses.

These tests are based on an assumption that the population is normally distributed. The law of large

numbers states that if the population sample is sufficiently large (between 30 to 50 participants),

then the central limit theorem applies even if the population is not normally distributed [103, pages

244-245]. Since we have 49 participants, the central limit theorem applies, and the above-mentioned

tests have statistical significance.

4.5.8 Threats to Validity

In this section, we discuss threats to the validity of this experiment and how we address these threats.

4.5.8.1 Internal Validity

Internal validity refers to the degree of validity of statements about cause-effect inferences. In

the context of our experiment, threats to internal validity come from confounding the effects of

differences among participants, tasks, and time pressure.

Participants. Since evaluating hypotheses is based on the data collected from participants, we

identify two threats to internal validity: C++ proficiency and motivation of participants.

Even though we selected participants who have working knowledge of C++ as it was docu-

mented by human resources, we did not conduct an independent assessment of how proficient these

participants are in C++. The danger of having poor C++ programmers as participants of our ex-

periment is that they can make poor choices of which retrieved code fragments or functions better

match their queries. This threat is mitigated by the fact that out of 44 participants from Accenture,

31 have worked on successful commercial projects as C++ programmers for more than two years.
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The other threat to validity is that not all participants could be motivated sufficiently to evaluate

retrieved code fragments or functions. We addressed this threat by asking participants to explain in a

couple of sentences why they chose to assign certain confidence level to retrieved, and we discarded

27 results for all search engines that were not properly explained.

Time pressure. Each experiment lasted for two hours. For some participants, this was not

enough time to explore all 50 retrieved code fragments for five tasks (ten results for each of five

tasks). Therefore, one threat to validity is that some participants could try to accomplish more tasks

by shallowly evaluating retrieved code fragments and functions. To counter this threat we notified

participants that their results would be discarded if we did not see sufficient reported evidence of

why they evaluated retrieved code fragments and functions with certain confidence levels.

Sensitivity of Portfolio. Recovering functional dependencies automatically introduces impre-

cision, since it is an undecidable problem to recover precise functional dependencies in the presence

of dynamic dispatch and functional pointers [53]. Since the precision of Portfolio depends on the

quality of recovered functional dependencies, we conducted an evaluation of these recovered depen-

dencies with twelve graduate computer science students at DePaul university. We randomly selected

a representative sample of 25 different projects in Portfolio and we asked these students to manually

inspect source code of these projects to determine the precision of FCG computed in Portfolio.

The results of this evaluation show that the precision of recovered functional dependencies is

approximately 76%. While the precision appears to be somewhat lower than desired, it is known that

Pagerank is resilient to incorrect links. Link farms, for example, are web spam where people create

fake web sites that link to one another in an attempt to skew the PageRank vector. It is estimated

that close to 20% of all links on the Internet are spam [36, 93, 8]. However, it is shown that the

PageRank vector is not affected significantly by these spam links since its sensitivity is controlled
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by different factors, one of which is teleportation parameter [30]. To evaluate the effect of incorrect

links on Pagerank vector we conducted experiments where we randomly modified 25% and 50% of

links between functions. Our results show that the metric length of the Pagerank vector (computed

as the square root of the sum of squares of its components) changes only by approximately 7% for

50% of perturbed functional dependencies. A brief explanation is that by adding or removing a

couple of links to functions that are either well-connected or not connected at all, their Pagerank

score is not strongly affected. Investigating the sensitivity of Portfolio as well as improving recovery

of functional dependencies is the subject of future work.

4.5.8.2 External Validity

To make the results of this experiment generalizable, we must address threats to external validity,

which refer to the generalizability of a casual relationship beyond the circumstances of our exper-

iment. The fact that supports the validity of this experimental design is that the participants are

highly representative of professional C/C++ programmers. However, a threat to external validity

concerns the usage of search tools in the industrial settings, where requirements are updated on a

regular basis. Programmers use these updated requirements to refine their queries and locate rel-

evant code fragments or functions using multiple iterations of working with search engines. We

addressed this threat only partially, by allowing programmers to refine their queries multiple times.

In addition, participants performed multiple searches using different combinations of keywords,

and they select certain retrieved code fragments or functions from each of the search results. We

believe that the results produced by asking participants to decide on keywords and then perform a

single search and rank code fragments and functions do not deviate significantly from the situation

where searches using multiple (refined) queries are performed.
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Another threat to external validity comes from different sizes of software repositories. Koders.com

claims to search more than 3 Billion LOC, which is also close to the number of LOC reported by

Google Code Search. Even though we populated Portfolio’s repository with close to 270 Mil LOC,

it still remains a threat to external validity.

4.6 Results

In this section, we report the results of the experiment and evaluate the hypotheses.

4.6.1 Results Of The Experiment

We use one-way ANOVA, t-tests for paired two sample for means, and χ2 to evaluate the hypotheses

that we stated in Section 4.5.3.

4.6.1.1 Variables

The main independent variable is the search engine (Portfolio, Google Code Search, and Koders)

that participants use to find relevant C/C++ code fragments and functions. The other independent

variable is participants’ C++ experience. Dependent variables are the values of confidence level,

C, and precision, P. We report these variables in this section. The effects of other variables (task

description length, prior knowledge) are minimized by the design of this experiment.

4.6.1.2 Testing the Null Hypothesis

We used ANOVA to evaluate the null hypothesis H0 that the variation in an experiment is no greater

than that due to normal variation of individuals’ characteristics and error in their measurement.

The results of ANOVA confirm that there are large differences between the groups for C with F =
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261.3 > Fcrit = 3 with p≈ 5 ·10−108 which is strongly statistically significant. The mean C for the

Google Code Search is 1.97 with the variance 1.14, which is smaller than the mean C for Koders,

2.45 with the variance 1.26, and it is smaller than the mean C for Portfolio, 2.86 with the variance

0.99. Also, the results of ANOVA confirm that there are large differences between the groups for

P with F = 52.5 > Fcrit = 3.01 with p ≈ 8.6 ·10−22 which is strongly statistically significant. The

mean P for the Google Code Search is 0.35 with the variance 0.1, which is smaller than the mean

P for Koders, 0.49 with the variance 0.09, and it is smaller than the mean P for Portfolio, 0.65 with

the variance 0.07. Based on these results we reject the null hypothesis and we accept the alternative

hypothesis H1.

A statistical summary of the results of the experiment for C and T (median, quartiles, range and

extreme values) is shown as box-and-whisker plots in Figure 4.4(a) and Figure 4.4(b) correspond-

ingly with 95% confidence interval for the mean.

4.6.1.3 Comparing Portfolio with Google Code Search

To test the null hypothesis H1 and H2 we applied two t-tests for two paired sample means, in this

case C and P for participants who used Google Code Search and Portfolio. The results of this test

for C and for P are shown in Table 4.1. The column Samples shows different values that indicate

that not all 49 participants participated in all experiments (three different participants missed two

different experiments). Based on these results we reject the null hypotheses H1 and H2 and we

accept the alternative hypotheses that states that participants who use Portfolio report higher

relevance and precision on finding relevant functions than those who use Google Code Search

and Koders.
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C/C++ C per par for relev scores P, average

Expert Google Koders Port Google Koders Port

Yes 10 15.8 17.3 0.38 0.5 0.66

No 7.13 13 15.1 0.3 0.48 0.63

Summ 17.3 28.8 32.4 0.34 0.49 0.645

Table 4.2: Contingency table shows relationship between Cs per participant for relevant scores and Ps for

participants with and without expert C/C++ experience.

4.6.1.4 Comparing Portfolio with Koders

To test the null hypotheses H3 and H4, we applied two t-tests for two paired sample means, in this

case C and P for participants who used Portfolio and Koders. The results of this test for C and for

P are shown in Table 4.1. Based on these results we reject the null hypotheses H3 and H4 that say

that participants who use Portfolio report higher relevance and precision on finding relevant

functions than those who use Koders.

4.6.1.5 Experience Relationships

We construct a contingency table to establish a relationship between C and P for participants with

(2+ years) and without (less than 2 years) expert C++ experience as shown in Table 4.2. To test the

null hypotheses that the categorical variables C and P are independent from the categorical variable

Java experience, we apply two χ2-tests, χ2
C and χ2

P for C and P respectively. We obtain χ2
C = 1.176

for p < 0.556 and χ2
P = 0.48 for p < 0.787. The small values of χ2 allow us to reject these null

hypotheses in favor of the alternative hypotheses suggesting that there is no statistically strong

relationship between expert C++ programming experiences of participants and the values of

reported Cs and Ps. That is, participants performed better with Portfolio than with Google Code

Search and Koders independently of their C++ experience.
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4.6.1.6 Qualitative Evaluation And Reports

Thirty three participants reported that the visualization of functional dependencies in Portfolio is

useful and helped them to evaluate potential reuse of retrieved functions, while 12 respondents did

not find this visualization useful. Out these 33 participants who found it useful, 27 had more than

one year of C++ programming experience, while out of these 12 participants who did not find this

visualization useful, only two had more than one year of C++ experience.

Many participants expressed strong dissatisfaction with Google Code Search. A surprising com-

ment came from several participants who said that they preferred to use standard the Google search

engine rather than Google code search to look for relevant code fragments in text documents that

describe these code fragments. Below are a few comments that participants left on their answer

sheets.

• I was very impressed with the accuracy of Portfolio. It even returned code that I realized I

would need only after seeing it! I will be using this engine in the future.

• I found Google code search to be less efficient than Google! Very few of the retrieved docu-

ments had ANY relevance to the query submitted. Surprisingly (the emphasis of the partici-

pant), both Koders and Portfolio are better compared to Google code.

• The graph idea (in Portfolio) was really good, but would be better if when the mouse goes over

the file or library give some descritpion to summarize info (# of references, # of functions,

etc.).

• (Google code search returns) a lot more results, but quantity isn’t quality. Not many of these

results are useful.

• The “code web” of search results was very helpful for finding out which things to analyze.

• Google code search engine was very hit or miss. It was almost luck when you found what

you were looking for.

• Portfolio provided relevant bits based on the search criteria I entered. The most relevant were

not always displayed on the top of the list. If multiple search criteria were used (i.e., more

than one search query), additional results could have been found.



114

• Portfolio is user-friendly, fast, and easy to use.

• The search engine Portfolio is a good search tool. It either matches with search criteria or

does not match. So developers won’t waste time exploring different projects or functions.

Also Portfolio gives the description of project which gives idea about this project.

• Search results (in Portfolio) were better as compared to Google search. Clicking on the link

takes user to a specific function selected. One thing I liked in Google code search was that

right side panel has marking for keywords and I was able to look at different sections of the

code that have keywords.

4.7 Related Work

Different code mining techniques and tools have been proposed to find relevant software compo-

nents as it is shown in Table 4.3. CodeFinder iteratively refines code repositories in order to improve

the precision of returned software components [37]. Unlike Portfolio, CodeFinder heavily depends

on the descriptions (often incomplete) of software components to use word matching, while Port-

folio uses Pagerank and SANs to help programmers navigate and understand usages of retrieved

functions.

Codebroker system uses source code and comments written by programmers to query code

repositories to find relevant artifacts [115]. Unlike Portfolio, Codebroker is dependent upon the de-

scriptions of documents and meaningful names of program variables and types, and this dependency

often leads to lower precision of returned projects.

Even though it returns code snippets rather than functions, Mica is similar to Portfolio since it

uses API calls from Java Development Kit to guide code search [106]. However, Mica uses help

documentation from third parties to refine the results of the search, while Portfolio automatically

retrieves functions from arbitrary code repositories and it uses more sophisticated models to help

programmers evaluate the potential of code reuse faster and a with higher precision.
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Approach Granularity Search Result

Unit Usage Method

AMC [38] U N W T

CodeBroker [115] P,U Y W,Q T

CodeFinder [37] F,U Y W,Q T

CodeGenie [57] P N W T

Exemplar [68] A Y W,Q T

Google Code Search U N W T

Gridle [85] U N W T

Hipikat [21] P Y W,Q T

Koders U N W T

Krugle U N W T

Mica [106] U,F Y W,Q T

ParseWeb [108] U,F N W,Q T

Portfolio F,P Y P,S,W G

Prospector [65] F N T T

S6 [87] F,P,U Y W,Q T

SNIFF [15] F,U Y T,W T

Sourceforge A N W T

Sourcerer [80] F,P,U Y P,W T

SPARS-J [45][46] F Y P T

SpotWeb [109] U N W T

Strathcona [39] F Y W T

xSnippet [92] F Y T,W T

Table 4.3: Comparison of Portfolio with other related approaches. Column Granularity specifies how

search results are returned by each approach (Projects, Functions, or Unstructured text), and if the usage

of these resulting code units is shown (Yes or No). The column Search Method specifies the search

algorithms or techniques that are used in the code search engine, i.e., Pagerank, Spreading activation, simple

Word matching, parameter Type matching, or Query expansion techniques. Finally, the last column tells if

the search engine shows a list of code fragments as Text or it uses a Graphical representation of search results

to illustrate code usage for programmers.

Exemplar, SNIFF, and Mica use documentation for API calls for query expansion [68, 106, 15].

SNIFF then performs the intersection of types in these code chunks to retain the most relevant and

common part of the code chunks. SNIFF also ranks these pruned chunks using the frequency of their

occurrence in the indexed code base. In contrast to SNIFF, Portfolio uses navigation and association

models that reflect behavior of programmers and improve the precision of the search engine. In

addition, Portfolio offers a visualization of usages of functions that it retrieves automatically from

existing source code, thus avoiding the need for third-party documentation for API calls.
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Web-mining techniques have been applied to graphs derived from program artifacts before. No-

tably, Inoue et al. proposed Component Rank[46] as a method to highlight the most-frequently used

classes by applying a variant of PageRank to a graph composed of Java classes and an assortment

of relations among them. Quality of match (QOM) ranking measures the overall goodness of match

between two given components [107], which is different from Portfolio in many respects, one of

which is to retrieve functions based on surfing behavior of programmers and associations between

concepts in these functions.

Gridle[85] also applies PageRank to a graph of Java classes. In Portfolio, we apply PageRank to

a graph with nodes at function-level granularity and edges as call relationships among the functions.

In addition, we use spreading activation on the call graph to retrieve chains of relevant function

invocations, rather than single fragments of code.

Programming task-oriented tools like Prospector, Hipikat, Strathcona, and xSnippet assist pro-

grammers in writing complicated code [65, 21, 39, 92]. However, their utilities are not applicable

when searching for relevant functions given a query containing high-level concepts with no source

code.

Robillard proposed an algorithm for calculating program elements of likely interest to a devel-

oper [89]. Portfolio is similar to this algorithm in that it uses relations between functions in the

retrieved projects to compute the level of interest (ranking) of the project, however, Robillard does

not use models that reflect the surfing behavior of programmers and association models that improve

the precision of search. We think there is a potential in exploring connections between Robillard’s

approach and Portfolio.

S6 is a code search engine that uses a set of user-guided program transformations to map high-

level queries into a subset of relevant code fragments [87], not necessarily functions. Like Portfolio,
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S6 uses query expansion, however, it requires additional low-level details from the user, such as data

types of test cases.

4.8 Conclusion

We created an approach called Portfolio for finding highly relevant functions and projects from a

large archive of C/C++ source code. In Portfolio, we combined various natural language process-

ing (NLP) and indexing techniques with a variation of PageRank and spreading activation network

(SAN) algorithms to address the need of programmers to reuse retrieved code as functional ab-

stractions. We evaluated Portfolio with 49 professional C/C++ programmers and found with strong

statistical significance that it performed better than Google Code Search and Koders in terms of re-

porting higher confidence levels and precisions for retrieved C/C++ code fragments and functions.

In addition, participants expressed strong satisfaction with using Portfolio’s visualization technique

since it enabled them to assess how retrieved functions are used in contexts of other functions.



Chapter 5

Recommending Source Code for Rapid

Software Prototypes

5.1 Introduction

Rapid prototyping is a software development activity in which programmers build a prototype of a

software product by iteratively proposing, reviewing, and demonstrating the features of that product

[64]. It is designed to help project stakeholders explore the features they would like to include in a

product, and to interact with the prototype in order to discover and specify requirements. As pro-

totypes are generally thrown-away, they must be built quickly and inexpensively, and must provide

the flexibility to easily add or remove features. Other factors, such as efficiency or portability, are

less important as the prototype may not even share the same programming language or hardware

platform as the final product [64]. Therefore, it is essential to minimize the manual effort involved

in building prototypes, and to maximize automation and source code reuse. As such, tool support

for automatically locating and reusing features from open-source repositories offers a tremendous

opportunity for reducing this manual effort [64].

Rapid prototyping is often divided into a horizontal and a vertical phase [78]. In the horizon-
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Figure 5.1: Overview of the architecture of our approach.

tal phase, domain analysts identify an initial set of candidate features for implementation in the

product. These features, which are often cursorily defined, are presented to the stakeholders for

discussion, feedback, and refinement. This activity is often supported by domain analysis tools and

techniques which identify features that are common across similar or competitive software systems

[27, 49, 26]. However, such approaches provide only limited information about the implementa-

tion of those features. In contrast, during the vertical phase of rapid prototyping, developers build

full functionality for a selection of features identified during the horizontal phase. This provides a

much richer user experience, in which project stakeholders can run the software and interact with

the features in order to decide on specific use cases and to identify potential problems.

To reduce programming effort and shorten time-to-market, programmers can find and reuse

existing solutions for their prototypes. Source code search engines have been developed to locate

implementations that are highly-relevant to a feature specified by a programmer (e.g., via a natural-

language query) [58, 69]. However, although these engines are effective for locating single features,

they are not designed for the more complex, yet common case, in which a prototype will incorporate
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a set of interacting features. As a result, existing search engines often return packages that match

only a small subset of the desired features, and developers have to invest considerable effort to

integrate features from several different packages and projects. Under these circumstances, the cost

and effort required for a programmer to comprehend and integrate the returned source code can

significantly reduce the benefits of reuse [52].

In this paper we present a novel recommender system for supporting rapid prototyping. Our

system directly addresses several shortcomings of existing techniques and tools, by integrating the

horizontal and vertical phases of rapid prototyping. Our approach first recommends features, and

then locates and recommends relevant source code. We utilize a hybrid set of algorithms based on

PageRank [54], set coverage, and Coupling Between Objects (CBO) [17] in order to maximize the

coverage of features while proposing a set of packages that minimize the integration effort involved

in building a prototype.

We implemented the recommender system and have conducted a cross-validation user study

with 31 participants to compare the effectiveness of our approach against that of a state-of-the-art

search engine, Portfolio [69]. During the study, users entered product descriptions and selected fea-

tures from those recommended by our system. The users then evaluated the packages recommended

by each of the approaches. Results from the study showed that our approach returned more of the

desired features per recommendation than Portfolio, that a greater proportion of the source code

was relevant to the product description, and that users spent less time evaluating the results from

our approach. Our recommender and user study data online for public use 1.

1http://www.cs.wm.edu/semeru/prefab
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(a) Feature Recommendation and Selection

(b) Module Recommendation

Figure 5.2: Example of Rapid Prototyping in which the user entered the product description “MIDI music

player.”

5.2 Overview

Before describing the specific details of the underlying algorithms, we provide an architectural

overview of our approach. As depicted in in Figure 5.1, there are ten primary steps. Steps (1) and

(2) focus on extracting features and modules from one or more software repositories. First, the

Module Extractor retrieves software modules from one or more repositories (1). These modules are

collections of source code related to a particular application or functionality, such as C# namespaces

or Java packages; in this paper, we focus on Java packages. Next, the Feature Extractor discovers

the set of features implemented in the repositories (2). Each feature describes a common function of

the software such as “email spam detection”. These features are discovered by analyzing the written

specifications of applications in the repositories. Further details are provided in Section 5.3.
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In order to formulate package recommendations, it is necessary to understand the relationships

between features and modules, and also the dependencies between modules. Steps (3) and (4)

therefore focus on discovering these relationships. In step (3) a source code search engine is used

to identify modules that contain specific features and to produce a Module × Feature Matrix that

is used as input to the Feature and Module Recommenders. In step (4) Module Dependencies are

extracted through examining the source code. Further details are provided in Section 5.3.

A user then initiates a request for a recommendation by describing the required functionality

of the product they intend to prototype (5). This description is parsed and then elements of the

description are matched to features known by the recommender system (6). If matching features

are found, they are presented to the user who is asked to confirm or reject their relevance (7).

The feature recommender then generates additional feature recommendations and these are also

presented to the user for feedback. These recommendations support the horizontal phase of rapid

prototyping. A more complete description is provided in Section 5.4.

Our approach also supports the vertical phase of rapid prototyping. In this phase, the selected

features are sent to the Module Recommender (8), and a series of computations are performed in

order to generate a set of module recommendations designed to provide high feature coverage and

low external coupling (9). A detailed explanation of this process is provided in Section 5.5. The

recommended modules are then presented to the user (10).

We illustrate this process from the users’ perspective with a simple scenario showing both fea-

ture and module recommendations for the rapid prototyping of a “MIDI music player.” As depicted

in Figure 5.2(a), the product description was initially matched to features labeled “Music plays in

the background” and “Sound supported”, and once these features were accepted by the user, the

feature recommender suggested three additional features. All recommendations were accepted by
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the user. The module recommender then proposed the three packages shown on the right hand side

of Figure 5.2(b). The projects from which the packages originate are displayed on the left. The GUI

allows the user to see a description of the project as well as browse the Java classes and source code

inside the package.

5.3 Mining Product and Feature Data

In order to construct the recommender environment, two different types of data are extracted from

the software repositories. First, the feature recommender requires rich textual descriptions of fea-

tures to provide meaningful and descriptive information to software developers, and second, the

module recommender requires high quality source code for effective rapid prototyping. Although,

both of these artifact types could be extracted from a single repository, we decided to use separate

repositories in order to optimize the effectiveness of both recommenders. This created the addi-

tional requirement that there would be significant overlap between the features contained in each

repository.

5.3.1 Feature Descriptions

Feature descriptions were extracted from applications in Softpedia2. Although SoftPedia is not a

source code repository; it does provide a repository of product descriptions that include marketing-

like summaries and bullet-point lists of features. In the remainder of the paper we, therefore, refer to

it as a repository. In general, feature descriptions are mined from product documentation. In the case

of Softpedia, we extracted individual sentences from the product summary information and bulleted

2http://www.softpedia.com/
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lists describing features from 117,265 products, categorized under 21 of Softpedia’s predefined

categories and 159 sub categories. Together these formed a set of 493,347 feature descriptors [26].

Many feature descriptors describe similar functionality. For example a product that “monitors

CPU usage in real-time” likely provides similar functionality to one that claims to “show informa-

tion about CPU usage.” Our approach therefore clusters feature descriptors in order to discover a

set of meaningful features. We utilized the incremental diffusive clustering algorithm (IDC) and

feature naming approach described in our prior work [26]. IDC takes an iterative approach. In each

iteration the SPK-Means clustering algorithm is used to cluster the feature descriptors, and then to

identify and retain the “best” cluster based on the cohesiveness and size of the cluster. This cluster’s

dominant terms are then identified and removed from all feature descriptors in order to allow la-

tent topics to emerge in subsequent clustering iterations. The clustering is repeated until no further

meaningful terms remain. All identified clusters represent a single feature, and the feature is named

by identifying the most representative descriptor for the cluster. Using this approach, the Softpedia

data produced a set of 1,135 features.

5.3.2 Source Code Modules

Source code modules were extracted from 13,701 Java applications downloaded from Sourceforge3.

The modules contained 241,655 Java packages and 400 million lines of code. The large size and

public accessibility of both Sourceforge and Softpedia repositories suggests a large overlap in their

domains, meaning that many of the features discovered through analyzing the Softpedia documen-

tation, are implemented in Sourceforge applications.

3http://www.sourceforge.net/



125

5.3.3 Relating Features to Modules

A module is considered related to a feature if that module implements the feature. In order to dis-

cover these relations, we used the Portfolio search engine [69]. Portfolio takes a natural-language

query as input and locates chains of function invocations relevant to that query. For this paper,

we modified Portfolio to locate Java packages, and instantiated it over the source code modules

we mined from Sourceforge. Then, we used the 1,135 features identified by our IDC algorithm

as queries for Portfolio. The Module × Feature matrix is a matrix where the rows are the mod-

ules, the columns are the features, and the cells indicate whether Portfolio detected that feature as

implemented by the package.

5.4 Feature Recommendation

When the user provides a description of the product to be prototyped, the feature recommendation

algorithm constructs an initial profile of the product by using the cosine similarity metric to match

parts of the description to relevant features in our model. We established a threshold score of 0.6

in order for the product to be matched to a feature in keeping with previous practice [26]. As

previously explained, these features are presented to the user in order to confirm that the matching

has been performed correctly.

Given the feature set of the new product, our feature recommender module identifies similar

products and uses their feature profiles to make predictions about the existence of other relevant

features in the new product. In our prior work we used a Product× Feature matrix, based on features

found in the Softpedia products, in order to generate recommendations [26]. The objective of the

recommender system was to suggest features to include in a product. In contrast, the recommender



126

system described in this paper is designed to recommend actual source code packages. Therefore,

although we utilize the algorithm defined in our previous work to recommend features [26], we use

a Product× Feature matrix mined from the open-source repositories. One benefit of this approach is

that recommendations are based on the actual co-occurrence of features in implemented source code,

as opposed to the more abstract and incomplete descriptions of features provided by the Softpedia

product descriptions. Given the Module × Feature matrix generated by the source code search

engine, the feature recommender module merges the rows representing modules originating from a

single product to form a binary Product × Feature matrix, M := (mi, j)P×F , can be generated, where

P represents the number of products mined from Sourceforge (13,701), F is the number of feature

descriptions from Softpedia (1,135), and mi, j is 1 if and only if the feature j is implemented in

product i.

5.4.1 Recommending additional Features

Next, our feature recommender module generates an additional set of feature recommendations,

which are presented to the user. This is accomplished using the k-Nearest Neighbor (kNN) algo-

rithm. This method has been shown to be efficient for recommending features and requirements

[14]. For the purpose of feature recommendation, the similarity of the new product and each of the

existing products in the Product × Feature matrix, M, is computed and the top k (20) most similar

products are selected as neighbors of the new product. The binary equivalent of cosine similarity is

used to compute the similarity of the new product p with each existing product n as follows:

similarity(p,n) =
|Fp∩Fn|

√

|Fp| · |Fn|
(5.1)
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where Fp denotes the set of features of product p [105]. After forming the neighborhoods, features

are recommended to the new product using an approach based on Schafer’s technique [97] to predict

the likelihood of feature f being relevant to product p as follows:

pred(p, f ) =
∑n∈nbr(p) similarity(p,n) ·mn, f

∑n∈nbr(p) similarity(p,n)
(5.2)

where n ∈ nbr(p) represents a neighbor of p, and mn, f is an entry in the binary matrix M indicating

whether product n contains feature f . In general, prediction scores will be computed for each

candidate feature, and the features with highest predictions will be recommended.

5.4.2 Evaluating Feature Recommender

To statistically evaluate the performance of the feature recommender based on the integration of

Softpedia and Sourceforge data, we performed a standard leave-one-out cross validation experi-

ment. Given the Product × Feature matrix, M, at each run of the experiment, a random feature is

removed from one of the products and the recommendation algorithm is executed. The results are

then analyzed to see if the recommender was able to recommend back the removed feature. The

Hit Ratio measures the likelihood that the removed feature is recommended as part of the top N

recommendations. In order to calculate the hit ratio, for each test product p, a feature f is ran-

domly removed from the product profile and N recommendations are generated using the remaining

features. If feature f is contained in the recommendation list, then the hit ratio for p is 1.0, oth-

erwise, it is 0.0. The hit ratio of the recommendation algorithm is calculated by averaging over

the hit ratio values of all the test products. Figure 5.3 compares the hit ratio values of our feature
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recommender and a random recommender for different values of N. The results show that there was

a sharp improvement over the random case for the early recommendations, meaning that targeted

features were recommended towards the top of the list of recommendations, and that the feature

recommender was effective.

5.5 Module Recommendation

The module recommender takes as input the list of features agreed upon by the user as a result of the

feature recommendation process and produces a list of recommended packages for use in creating

the desired rapid prototype.

5.5.1 Recommender Goals

Our recommendation algorithm is designed to optimize the following goals in order to minimize the

cost and effort of reusing existing packages in a rapid prototype.
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5.5.1.1 Coverage

The recommended packages should provide coverage of as many targeted features as possible.

5.5.1.2 Minimize number of recommended projects

The overhead involved in downloading, installing, and integrating packages from many different

projects makes it preferable to construct a rapid prototype using packages drawn from as few

projects as possible. Our algorithm, therefore, attempts to minimize the number of projects from

which the recommended packages are drawn.

5.5.1.3 Minimize the external coupling of recommended packages

High external coupling decreases developer comprehension of the package, increases the effort

needed to execute code in the package, and makes it difficult and costly to reuse the packages.

5.5.2 Package Coupling Costs

Before describing our module recommender algorithm we present our technique for computing

package coupling costs. These costs are measured using the Coupling Between Objects (CBO)

metric [17], in which a coupling cost is defined for each package. The total coupling cost for

the package depends upon both direct and indirect couplings of that package to other packages;

however, the dependency chain of coupling costs between packages makes the cost calculation

problem nontrivial. In the following section, we explain how to calculate individual coupling costs,

and then to extend this metric to account for the common case in which multiple packages are

selected from a single project.
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The dependency information between packages can be modeled as a weighted directed graph

G = (V,E) with each vertex v∈V representing a package and each directed edge e∈ E representing

the dependency of one package to another. An edge ei, j from node vi to node v j exists if and only

if one or more classes in package vi use one or more classes in package v j. The weight, wi, j, on the

edge ei, j, represents the CBO between the two endpoints and is defined as the fraction of classes in

vi that use at least one class in v j.

Calculating the coupling cost for packages can be seen as assigning real weights to vertices in

the graph, such that the weight of each vertex is a function of the weights on the outgoing edges

as well as the weights assigned to all of its outgoing neighbors. In this paper, a variation of the

PageRank algorithm [54] is used to compute the vertices weights. The PageRank algorithm was

first developed to support the hyperlink analysis of web pages, such that each page in the web graph

is assigned a numerical weight, between 0 and 1, known as its PageRank, which represents the

relative importance of the page. The PageRank is then used by the search engine to sort and rank

the results for a given query. The PageRank algorithm is commonly referred to as the “random

surfer model”. When a random surfer reaches a page with n outgoing links, he or she will take any

of the outgoing links or will jump to a random page in the graph. The PageRank score for each

page depends on the number of times it has been visited. More formally, in a directed weighted

graph the PageRank score of an arbitrary vertex vi is iteratively computed as in Equation 5.3 until

the algorithm converges:

PageRank(vi) =
1−d

N
+d ∗ ∑

v j∈In(vi)

w ji ∗PageRank(v j)

∑vk∈Out(v j) w jk

(5.3)
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where d is a damping factor that ranges between 0.0 and 1.0. If the damping factor is set to one,

then pages that have no outgoing external links will act as rank sinks and absorb all of the rank in

the system. For this reason, the formula is adjusted so that with some probability, the surfer jumps

to a random node in the graph.

In the original PageRank algorithm, the score of each node in the graph depends on all its

incoming edges. Our problem is different in the sense that the coupling cost of a package depends on

the cost of all the packages that it is using and hence depends on all the outgoing edges. Therefore,

in order to apply the PageRank method, all the edges in the package graph G were first reversed and

then the PageRank scores were computed for the reversed graph. The calculated PageRank scores

are an indication of the relative connectivity level of each package to other packages and so are used

as the coupling cost values.

5.5.3 Project Coupling Costs

Given a set of features, a project can contain useful packages that implement desired features, plus

some additional utility packages that provide essential services to the useful packages, but which do

not directly implement any of the desired features. The coupling cost associated with each project

depends on the combined external coupling of the set of useful packages to their utility packages.

In order to accurately compute this cost, all of the useful packages are merged together in the

graph through removing internal edges that connect the useful packages, and then replacing ex-

ternal edges, i.e. edges between utility packages and useful packages, with edges to or from the

merged package. In the case that a utility package is connected to more than one useful package

through outgoing edges, all these edges are merged into a single edge and the weight of this newly

formed edge is computed as the sum of all outgoing edges to the useful packages. Similarly, all



132

Figure 5.4: Partial reversed package graph for an example project

the incoming edges from the set of useful packages to the utility package are replaced with a sin-

gle edge connecting the merged package to the utility package. After merging all useful packages,

the PageRank scores are recalculated and the project coupling cost for the set of given features is

computed as the PageRank score of the merged package.

Figure 5.4 provides an illustrative example. On the left hand side of the diagram, the re-

versed package graph depicts a set of features, F = { f1, f2, f3, f4}, for which the package set

UP = {p1, p2, p3} are useful and they are connected to other packages that do not implement any

of the desired features. On the right-hand side of Figure 5.4, the graph is shown after the useful

packages are merged.

Unfortunately this approach can be computationally expensive, as PageRank scores need to be

recalculated each time a user issues a new recommendation request. Therefore we considered two

computationally inexpensive cost estimation techniques. The first approach sums the individual

costs of all useful packages in the project and has a tendency for overestimation; while the second

approach underestimates costs by using the cost from the package that exhibits the highest coupling

values. An initial analysis showed that the second approach produced better results and so it was

adopted for all the remaining experiments described in this paper.
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5.5.4 Package Recommendations

Package recommendations are, therefore, made as follows. Given a set of features F = { f1, ..., fn}

, our code search engine finds the set of all relevant packages, PK = {pk1, ..., pkn} and relevant

projects PR = {pr1, ..., prm} where each pki is part of a project in PR.

As a single feature can be implemented in different packages across various projects, the chal-

lenge is to find the optimal set of packages with respect to the objectives and constraints mentioned

in section 5.5.1. By simplifying the problem to find the minimum number of projects that cover

all the features, our problem can be seen as equivalent to the set cover optimization problem which

has been shown to be NP-complete [111]. Furthermore, if the problem were to find the minimum

coupling cost combination of projects that cover all the features, then it would be another variation

of set cover optimization and NP-complete.

The greedy algorithm has previously been used to provide a good approximation of a near-

optimal solution [111]. We, therefore, adopted this approach. Our method, as described in Algo-

rithm 1, iteratively selects the best project at each step and then selects all of the packages in this

project which implement a targeted feature. This process continues until all the targeted features

are covered or there are no more candidate projects to choose from. Our criterion for selecting the

best project is based on the average cost per feature, computed by determining the project coupling

cost as described in section 5.5.3, divided by the number of targeted features implemented by the

project.
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Algorithm 1 Greedy set-cover algorithm

selectedPackages← /0

selectedPro jects← /0

while F 6= /0 do

best← getBestPro ject(PR)
selectedPro jects← selectedPro jects∪best

selectedPackages← selectedPackages∪
use f ulPackages(best,F)
F ← F− coveredFeatures(best,F)

end while

5.6 Evaluation

In addition to the quantitative study reported in Section 5.4.2 of this paper, we also conducted a

qualitative assessment designed to compare the efficacy of our approach against the current state-

of-the-art approach. This kind of assessment relies on expert human judgement and is an accepted

practice for evaluating recommendations [66].

5.6.1 State-of-the-Art Comparison

The current state-of-the-art technique for locating source code that is relevant to a given feature uti-

lizes a source code search engine. For purposes of this study we, therefore, compared our approach

against the Portfolio search engine, which has been shown to outperform Google Code Search and

Koders in studies where developers search for source code relevant to features they need to imple-

ment [69]. We replaced the Package Recommender from our approach with Portfolio by concatenat-

ing the text descriptions of the features selected by the user into a single query. This concatenation

simulates the case where programmers search for code relevant to multiple features by entering

those features into a search engine as a single query. The Java packages recommended by Port-

folio were then presented to the user using the same interface we designed for our approach. In

this way the user interface was identical across the user study regardless of whether the underlying
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recommendations were made by our approach or by the search engine.

5.6.2 Research Questions

The ultimate goal of our rapid prototyping system is to support vertical prototyping through rec-

ommending relevant source code packages. Our approach is designed to maximize the number

of features covered by the returned source code, while minimizing the amount of source code re-

turned that does not directly implement features. Therefore, our study was designed to address the

following research questions (RQs):

RQ1 Are the recommendations from our approach more relevant to the original product description

than the recommendations from the state-of-the-art approach?

RQ2 Does our approach recommend fewer false positives than the state-of-the-art approach?

RQ3 Does our approach provide better feature coverage than the state-of-the-art approach?

RQ4 Do users require less time to understand the recommendations from our approach than from

the state-of-the-art approach?

RQ1 is designed to evaluate the recommendations from our approach in terms of overall rele-

vance to the original product description given by the user. This addresses the possibility that the

recommended source code is relevant to the features selected, but not relevant to the query entered

by the user. RQ2 is designed to evaluate whether the recommended source code implements the

selected features. Each source code package that is returned should implement one or more of the

previously specified features, and our approach attempts to maximize the number of selected fea-

tures implemented per package. RQ3 is designed to evaluate feature coverage. Finally, a stated goal

of our approach is to reduce manual prototyping effort by minimizing the external coupling of the

recommended source code, as well as the amount of that source code. We designed RQ4 to evaluate

the effort in terms of time required to understand the recommendations.
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H Var Approach Samples Min Max Median µ F Fcritical p1 t tcritical p2 Decision

H1 R
Our Approach 331 1 4 2 2.1

25.6 3.85 5e-7 5.06 1.96 <1e-4 Reject
State-of-the-Art 673 1 4 1 1.7

H2 P
Our Approach 128 0 1 0.50 0.59

11.0 3.88 1e-3 3.32 1.97 1e-3 Reject
State-of-the-Art 96 0 1 0.33 0.43

H3 C
Our Approach 331 0 1 0.20 0.29

13.4 3.85 2e-4 3.66 1.96 <1e-4 Reject
State-of-the-Art 673 0 1 0 0.21

H4 T
Our Approach 91 1 38 10 11.5

46.5 3.90 2e-10 6.82 1.98 <1e-4 Reject
State-of-the-Art 62 6 46 20 20.2

Table 5.1: Summary of results from the user study showing relevance (R), precision (P), coverage (C), and time required in minutes (T ). The column

Samples is the number of recommended packages for R and C, the number of queries for P, and the number of queries that users recorded their times for

T . ANOVA results are F , Fcritical , and p1. Student’s t-test results are t, tcritical , and p2.
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Experiment Group Approach Task Set

1
A Our Approach T1

B State-of-the-Art T2

2
A State-of-the-Art T3

B Our Approach T4

Table 5.2: The cross-validation design of our user study. Different participants used different tasks with

different approachs.

5.6.3 Cross-Validation Design of the User Study

A cross-validation design was used in which experts compared the results from our approach to

the results from a state-of-the-art approach. A cross-validation design is important because it limits

potential threats to validity such as fatigue, bias towards tasks, and bias due to unrelated factors (e.g.,

user interfaces). Table 5.2 shows an outline of the experimental design. The study was split into

two experiments, each lasting one hour. The participants were randomly placed into two equally

sized groups, A and B. The approaches and tasks were rotated among the groups such that different

participants used different tasks on different approaches. Also, the participants were prevented

from knowing whether they were evaluating our approach or the state-of-the-art approach to avoid

introducting bias. During the study our approach was denoted as the Green approach and the state-

of-the-art approach as Orange. The approaches shared the same interface and participants saw only

the color denotations.

5.6.3.1 Participants

31 computer science students were recruited from the College of William & Mary to participate

in our user study. Twenty-eight were graduate students, while three were undergraduates. The
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participants had an average of 4.8 years programming experience and 3.4 years experience with

Java. Fourteen reported professional programming experience in various industries.

5.6.3.2 Tasks

The experiments were designed around a set of 12 different tasks. These tasks were roughly equal

in complexity and represented a range of potential prototyping tasks. The following is an example

task from the user study. A complete listing of the tasks and other case study materials may be

downloaded from our online appendix.

Build a video player with adjustable bitrate and other video and audio paramters. Your

program should support multiple video formats and display the video inside a resizable

GUI window.

In each experiment, a participant was assigned one of the two approaches and a set of tasks. The

participant had to formulate a query by defining a set of keywords that represented at least some of

the features needed for the task at hand. The participant then entered the query into the GUI and

selected features relevant to the query. The system then returned a set of recommended packages.

The participants were asked to evaluate the results according to the relevance of the recom-

mended packages, and through specifying which packages implemented each of the targeted fea-

tures.

5.6.4 Metrics and Statistical Tests

The following metrics were collected during the study.
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5.6.4.1 Relevance

The relevance of a recommended package was evaluated by the participants on a four-point Likert

score, rated as an integer from one to four, where four is highly-relevant, three is relevant, two is

largely irrelevant, and one means completely irrelevant. The relevance metric was used to answer

RQ1.

5.6.4.2 Precision

Precision is the percent recommendations which implement at least one of the targeted features.

Precision will be high when the number of false positives (packages that implement no features) is

low; precision is intended to help us answer RQ2.

5.6.4.3 Coverage

Coverage measures the number of features implemented by a recommended package, and is used

to answer RQ3. Coverage is defined as
|FI |
|FS|

, where FI is the set of features implemented by a given

package, and FS is the set of features selected by the user. Coverage is high when the recommended

packages implement a large portion of the features selected by the user.

5.6.4.4 ANOVA

One-way ANOVA and the Student’s t-test [104]were used to evaluate the statistical significance

of differences in relevance, precision, and coverage. ANOVA is a parametric test that assumes

a normally-distributed sample. According to the law of large numbers, the central limit theorem

applies when the sample size is greater than 30 [103]. The study included 31 participants, indicating

that the results are statically-significant.
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5.6.5 Threats to Validity

There are two main threats to internal validity in our study. First, the partipants manually judged

the recommendations and their ratings could be influenced by external factors such as fatigue, prior

knowledge of the approaches being evaluated, programming proficiency, or lack of motivation. We

addressed threats due to fatigue and prior knowledge in the design of our user study by rotating

the tools among different groups of participants and denoting the different tools with only a color,

rather than a name. The programming proficiency participants could also affect results because

users with different proficiency levels could take different factors into consideration. This threat

was minimized by randomly distributing participants to the various groups. Finally, the potential

motivation problem was at least partially addressed by providing a small stipend to participants who

completed the study.

The second main source of threats to internal validity are the tasks. We selected tasks which

were easily understood by the authors, and which are in the scope of the projects in the repositories

we used. Still, tasks that are out of scope or which are too complex to be understood could cause

our recommendation engine to produce low quality results. Therefore, we rotated the sets of tasks

that participants used so that in each experiment, each group used different tasks on different tools.

Also, we ensured that our approach and the state-of-the-art approach both recommended packages

from the same repository.

Sources of threats to external validity include the repositories we used and a potential mis-

match of the features from one repository and the source code in another. Our approach relies on

a search engine to determine which features are implemented in which packages (see Section 5.3).

The search engine we used has shown to perform well in controlled experiments [69], however an
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external threat to validity remains in that the performance may vary on different repositories.

Finally, a threat to external validity exists in that we asked programmers to evaluate the rele-

vance of the features in certain packages returned by our tools. The evaluation was based on the

programmers’ intuition and experience. The programmers may give different responses once they

attempt to build software from the components, because they may discover new information about

the packages once they attempt to reuse the source code. Future studies could improve our under-

standing of these results by monitoring how programmers actually reuse specific components in

their software.

5.7 Empirical Results

Confidence, precision, and coverage were measured for both our approach and a state-of-the-art ap-

proach in a cross-validated user study. The statistical differences were then tested for these metrics.

In this section, we present the results of these tests in order to answer our research questions.

5.7.1 Hypotheses

The following null hypotheses are meant to evaluate the directionality of the difference of means for

relevance, precision, and coverage. These hypotheses are used in the case when ANOVA indicates

a statistically-significant difference in the values of the metrics.

H1 The mean values of relevance are greater for the state-of-the-art approach than for our approach.

H2 The mean values of precision are greater for the state-of-the-art approach than for our approach.

H3 The mean values of coverage are greater for the state-of-the-art approach than for our approach.

H4 The mean time per query (in minutes) is lower for the state-of-the-art approach than for our

approach.
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(a) Relevance (b) Precision

(c) Coverage (d) Time

Figure 5.5: Boxplots showing the relevance, precision, coverage, and time per query (in minutes) reported

during the user study for the two different approaches. The thick white line is the median. The lower dark

box is the lower quartile, while the light box is the upper quartile.

Table 5.1 is a summary of the results from the user study. We reject the three null hypotheses.

For ANOVA, the value of F is greater than Fcritical , and p < 0.05 in all cases. Moreover, for the Stu-

dent’s t-test of directionality, t exceeds tcritical . Therefore, the mean values of relevance, precision,

and coverage are all greater for our approach than the state-of-the-art approach.
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Figure 5.6: A histogram showing the number of features implemented per package, as a percentage of the

total number of packages recommended in the user study. Our approach recommends more packages that

implement multiple features, compared to the state-of-the-art, and fewer that implement no features.

5.7.2 RQ1 - Overall Relevance

In Section 5.7.1 we found that the mean values of relevance were greater for our approach than for

the state-of-the-art approach. This result indicates that our approach recommends packages which

are more-relevant to queries than the state-of-the-art approach. A key difference in the relevance

values is that our approach returns a larger number of packages rated as 4 (that is, highly-relevant),

as shown in Figure 5.5(a). Seventeen percent of the packages from our approach were rated highly-

relevant, while only 7% from the state-of-the-art approach were, and these results were considered

outliers. The tasks required multiple features to be implemented, and it is likely that the users only

rated packages as highly-relevant if those packages implemented many of the necessary features.

However, the state-of-the-art approach, a source code search engine, focuses on locating packages

that are relevant to single features. Thus our approach outperforms the state-of-the-art approach in

terms of relevance to the queries.



144

5.7.3 RQ2 - Recommendations Implementing Features

Precision is a measure of the number of recommended packages which implemented at least one

feature that the user selected (see Section 5.6.4.2). We found that the levels of precision for our

approach were greater than for the state-of-the-art, which suggests that our approach outperforms

the state-of-the-art in terms of the number of recommendations containing useful features. Note

that both approaches recommended a large number of packages which did not include any of the

selected features, as shown in Figure 5.5(b). This result can be expected when recommending source

code because of the difficulty in matching features to source code, and has been widely documented

[9, 1, 102]. On the other hand, for many queries, our approach recommended a large number of

packages which included relevant features. For half of the queries, at least 60% of the packages

included desired features. The state-of-the-art approach performed as well for only 35% of the

queries.

5.7.4 RQ3 - Features Covered by Recommendations

The packages recommended by our approach should implement as many features as possible. We

measured the amount of selected features in each package with the coverage metric, and we found

that our approach has greater levels of coverage that the state-of-the-art, showing that our approach

outperforms the state-of-the-art techniques in terms of features covered by each package recom-

mendation.

Figure 5.5(c) shows the levels of coverage from the user study. While both approaches returned

packages that did not implement the selected features, our approach made recommendations that

covered a larger percentage of the features. For example, 20% of the packages from our approach

implemented at least half of the features selected by the user, compared to 11% of the state-of-
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the-art’s recommendations. A histogram of our results (Figure 5.6) illustrates that our approach

returns packages that implement multiple features. Roughly 30% of recommendations from both

approaches implemented one feature. For packages with more than one feature, our approach out-

performs the state-of-the-art.

5.7.5 RQ4 - Time per Query

We found that the participants in the user study were able to complete their evaluations of the rec-

ommendations in less time when using our approach than when using the state-of-the-art approach.

A stated goal of our approach is to reduce the effort programmers must expend in reusing code for

prototypes, and this result indicates that users of our approach are able to understand the source

code more quickly than with a state-of-the-art approach.

5.8 Related Work

Our technique for rapid prototyping combines domain analysis for horizontal prototyping with

source code recommendation for vertical prototyping. This section gives a brief summary of these

areas.

Domain analysis is the process of analyzing a set of relevant software systems to identify, or-

ganize, and represent features common to systems within a domain [49]. Most approaches involve

either the manual or automated extraction of domain vocabulary from requirements specifications

and then use clustering to identify associations and common domain entities [27], [2]. Some authors

have taken more structural approaches, for example Chen et. al. constructed requirements relation-

ship graphs (RRG) from several different requirements specifications which they then merged into
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a single domain tree [16]. Other researchers, such as Niu et. al. have applied similar techniques to

analyze functional requirements in a product line [79]. In contrast to our approach, these techniques

are generally applied to a set of requirements specifications with associated design documents, code,

and test cases stored in a project repository, making it relatively simple to retrieve code alongside a

list of desired features. However, such approaches are constrained by the scope of an organization’s

project repository, while our approach incorporates hundreds of thousands of project descriptions

and source code packages to identify and recommend a far broader set of features.

Building prototypes from existing source code has long been a goal of rapid prototyping tool

support [63]. Studies of rapid prototyping have shown that programmers often build prototypes

through an iterative process of adding features by using source code examples [11, 55]. This iter-

ative process is known as opportunistic programming [12]. Our approach builds on opportunistic

programming by allowing programmers to locate source code relevant to several features. In ad-

dition, we recommend features that frequently occur in software alongside the features that the

programmer needs to implement. Other techniques have been proposed for locating relevant source

code, including source code search engines. These engines commonly match keywords in user

queries to keywords from source code [37] or documentation [106, 34]. Recent efforts have focused

on improving search results using contextual information either from the programmer’s develop-

ment environment [10, 21], the dependencies of the source code being searched [69, 58], or test

cases and use cases [87, 57].
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5.9 Conclusion

The continuing growth of open source software creates ongoing opportunities for mining useful

domain knowledge and for reusing code across projects. In this paper we have explored the idea

of using these repositories to support rapid prototyping. Our work has demonstrated that different

types of repositories can be used synergistically to create an effective recommender system which

can be used to help developers identify relevant source code packages. It has advanced the current

state of practice in which source code search engines consider only individual features. In contrast,

our approach recommends sets of packages which are designed to facilitate the prototyping and

development tasks, and has demonstrated that source code recommendation can be substantially

improved with algorithms that consider multiple features as selected by the developer.
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