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ABSTRACT

The ability to reproduce experiments in software engineering research is a hidden
issue in validating and improving on new approaches. The lack of tool support,
data availability, implementation-specific details, and even minute environment
differences all contribute to problems for researchers attempting to investigate new
ideas. In this thesis, I present examples of how unpublished details of an approach
can drastically change the results. To address this issue, I promote the use of
TraceLab, a research instrument designed to perform and share software
engineering experiments in their entirety with accurate results. I leverage
TraceLab’s ability to extend its framework with new tools and functionality to
create a new Component Library (CL) and Component Development Kit (CDK)
designed to provide researchers with all of the tools necessary to evaluate and
improve new techniques. To discover which tools to include, I perform a
systematic mapping study of publications from a subset of top international
software engineering conferences in the past 10 years. Based on these results, I
implemented the most popular tools and techniques in the CL and CDK. I show
that by using the CL and CDK in TraceLab, 37% of the approaches identified in
the mapping study can be completely recreated, with an additional 37% of
approaches missing only 1 technique. Lastly, I reproduce examples of existing
software engineering approaches that provides a working body of knowledge in
order to drive new research.
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TRACELAB:

REPRODUCING EMPIRICAL SOFTWARE ENGINEERING RESEARCH



Chapter 1

Introduction

The field of software engineering in academic research is blossoming as modern

technology becomes increasingly ingrained in our daily lives. This has resulted in

a wealth of new ideas and interest, as evidenced by the large number of software

engineering conferences and growing number of software engineering research groups

at campuses across the globe. In the private sector, technology companies such as

IBM1, Microsoft2, and Google3 have their own branches dedicated to research. All

of this has produced a large body of work which continues to grow every year.

As a science, software engineering strives to improve our lives through the

use of technology. Unfortunately, one of the main tenets of the scientific method –

reproducibility – remains rarely achievable. Each research group has its own customs

and practices, data formats, homegrown tools, and projects. This makes sharing the

specifics of a tool or technique difficult and time consuming, not only with external

researchers but also with collaborators and even project members within the group.

Sharing with the community at large through conferences and publications is limited

1http://www.research.ibm.com/
2http://research.microsoft.com/
3http://research.google.com/

1

http://www.research.ibm.com/
http://research.microsoft.com/
http://research.google.com/
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to the paper or article itself. The tools, data, and even technical specifications of a

technique are almost never provided. The internal settings of the experiment and

even the environment in which the experiment is run remain undocumented [1].

The effects of this situation result in outside researchers wasting valuable time and

resources reimplmenting established work from scratch, or to quote the old adage:

“Reinventing the wheel.”

Clearly, there exists a need for standardization in software engineering research.

The Center of Excellence for Software Traceability (CoEST)4 has taken this chal-

lenge head-on. Researchers at DePaul University5 have been developing a research

instrument in collaboration with Kent State University6, University of Kentucky7,

and the College of William & Mary. This research instrument, called TraceLab, is

funded by a grant from the the National Science Foundation (NSF) [2]. The main

goals of TraceLab are to facilitate collaboration between researchers and jump-start

the research process by providing a robust framework to perform experiments in

software engineering. TraceLab provides many of the tools needed for software en-

gineering research straight out of the box and comes with a software development

kit (SDK) to create new ones [3, 4, 5].

TraceLab heralds a major shift in the way software engineering research is con-

ducted. In this thesis, I provide motivations for transparency within the academic

field of software engineering research. I describe and encourage the use of Trace-

Lab as a foundational tool for performing academic research. I perform a survey of

modern software engineering publications in the fields of traceability link recovery,

program comprehension, feature location, and duplicate bug detection for the pur-

poses of creating a collection of common tools for use in TraceLab. I describe the

4http://www.coest.org/
5http://www.depaul.edu/
6http://www.kent.edu/
7http://www.uky.edu/

http://www.coest.org/
http://www.depaul.edu/
http://www.kent.edu/
http://www.uky.edu/
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structure and function of these tools, collectively known as the Component Library.

Finally, I provide examples of reproducing previous research using the Component

Library in TraceLab.

The rest of this thesis is organized as follows: Chapter 2 describes previous work

in examining software engineering research and provides a comparison of tools sim-

ilar to TraceLab. Chapter 3 provides a motivating example enumerating the issues

in the current state of software engineering research. Chapter 4 describes in detail

the different aspects of TraceLab and how it can be used for software engineering

research. Chapter 5 details the process and results of a systematic mapping study of

software engineering research techniques and approaches. Chapter 6 describes the

structure and function of a new component library developed for TraceLab based

on the results of the mapping study. Chapter 7 presents examples of reproducing

previous software engineering research using TraceLab and the component library.

Finally, the thesis concludes with Chapter 8.



Chapter 2

Related Work

This chapter discusses the existing work that examines the state of software

engineering research, investigating the problems with reproducibility and evaluating

commonly used tools in software engineering research in comparison to TraceLab.

2.1 Studies in Reproducibility

There have been several meta-studies in the research community investigating

problems with the state of academic research and their effects on the ability to

reproduce and drive new research.

In a survey of feature location techniques by Dit et al. [6], the authors found

that only 38% of the papers they surveyed performed a comparison of the approach

proposed in the paper to previously established approaches. Without this compari-

son, it is nearly impossible to determine whether a new approach is valid or whether

it results in statistically significant improvement. Furthermore, the authors found

that 5% of the surveyed papers performed a comparison using the same data as the

previous approaches. Using different datasets could further cloud the validity of new

approaches.

4
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In a study by Robles [7], every paper accepted to the Working Conference

on Mining Software Repositories (MSR) from 2004-2009 was investigated in search

of reproducible approaches. Robles found that a majority of published submissions

contained evaluations that were impossible to reproduce due to various factors, such

as unavailable datasets, lack of tool support, and critical implementation details that

were missing from the paper. Furthermore, only two papers from that time period

made their data and tools publicly available.

D’Ambros et al. [8] evaluated a set of defect prediction approaches and found it

difficult to compare the results among different approaches. The authors proposed

that many of the approaches they studied were not evaluated correctly, either pre-

senting the results of the approach by itself or in comparison to a small number of

others.

Mytkowicz et al. [9] investigated the field of compiler optimization for the ef-

fects of ommiting seemingly unimportant aspects of the approach on the results of

the experiment. Leaving out minute details, such as internal compiler settings or

the order of objects processed by the linker, can greatly effect the outcome of an

experiment in unexpected ways. Without this knowledge, it may be difficult or even

impossible to accurately recreate an approach.

Barr et al. [10] discussed issues in the academic community with sharing re-

search, such as the fear of being beaten to new findings by another research group.

They compared the field of software engineering to other fields, such as medicine

and physics, and discussed the benefits of sharing within those communities. The

authors proposed different methods of facilitating collaboration and encourage the

practice within software engineering research.

González-Barahona and Robles [11] investigated why certain approaches are

reproducible and why others are difficult, attempting to determine which character-

istics effect the reprodicibility of a study. The authors proposed a methodology for
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evaluating these characteristics and interpreting the results of the classification.

Borg et al. [12] performed a mapping study investigating publications that used

information retrieval techniques in their approach. They found that most studies do

not perform an evaluation on datasets with more than 500 artifacts and identified

a need for industrial case studies. They encouraged researchers to publicly provide

the datasets and tools used in their evaluations and provide a set of guidelines to

raise the quality of publications in the field of software engineering research.

To address the problems presented in these papers, several benchmarking datasets

have been made publicly available [6, 8, 13, 14, 15, 16, 17]. While these datasets

provide a common data source to perform evaluations on, they do not solve all of

the problems of reproducibility.

2.2 Research Tools

There are many tools commonly used in experimental research. The search for

the “right” tool depends on the needs of the researcher for a particular task. While

this may work perfectly for an individual experiment, the effort required dramat-

ically increases once researchers begin attempting to reproduce or build off of the

work of others. This is due to the variety and scope of tools that researchers use, in

addition to the problems of specific settings, environments, and data formats. This

section discusses some commonly used tools and compares them against TraceLab.

The R Project [18] is a programming language and environment designed to

perform statistical computing tasks on large-scale data. The tool is primarily com-

mand based, with the ability to produce charts and graphs. There are a multitude

of user-contributed libraries for performing specialized tasks, including a variety

of common software engineering research tasks. However, R does not feature an

experimental design and can be difficult to reproduce when shared due to the num-
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ber of libraries and different versions. Additionally, researchers must learn a new

programming language when performing experiments in R.

Matlab [19] is similar to R Project but is geared more towards scientific com-

puting tasks. It has more in-depth data analysis tools, such as 3-dimensional visual-

ization. Experiments using Matlab run into the same issues as R, including forcing

experimenters to learn an entirely new programming language.

WEKA [20] is a collection of machine learning algorithms and visualization tools

in Java. WEKA features a graphical interface composed of tools to perform specific

tasks. As an additional feature, WEKA provides a data-flow based interface called

KnowledgeFlow. This view is a canvas of tools connected to perform a series of

tasks, much in the same manner as TraceLab. However, WEKA lacks tools specific

to software engineering research and does not have many of the useful sharing and

extensibility features of TraceLab.

RapidMiner [21] builds on top of WEKA’s machine learning library and offers

an improved interface specifically for designing and executing experiments. It offers

the data mining and classification techniques from WEKA combined with statistical

computing from R Project. It also provides methods for creating new plugins for

use in experiments. However, RapidMiner is not specialized for software engineering

research and does not have the sharing features of TraceLab.

Simulink [22] is a tool for simulating embedded systems. It features a model-

based design with pluggable components and runs on top of Matlab. However,

it is designed for a different domain and does not contain the features that make

TraceLab desirable.

GATE [23] is a natural-language processing tool for extracting information from

text-based sources. Although this task is similar to many software engineering re-

search tasks, it does not contain domain-specific knowledge and lacks the experi-

mental design aspect of TraceLab.
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Yahoo! Pipes [24] is a website data aggregation tool that allows users to col-

lect and modify data from the web. Different components can be connected and

configured to perform various tasks, such as collecting articles from a blog feed and

providing suggestions to related sites. User-made pipes may be published and shared

on the web. Yahoo! Pipes is entirely web-based and requires a Yahoo! account.

Although it contains many similar features to TraceLab, it is designed for an entirely

different purpose and does not contain functionality from the software engineering

research domain.

Kepler [25] is a workflow-oriented tool that allows researchers to model exper-

iments with pluggable components, much like TraceLab. Kepler is developed for

many different operating systems and allows users to create and share their own

components. The main difference between TraceLab and Kepler is that Kepler is

oriented towards scientific computing in math and physics. For this reason, it is not

suitable for software engineering research tasks.

Tool GUI Plat. License Repos. Lang. OS

GATE N D,API OSS Y J W,L,M
Kepler Y D,API OSS Y J,R,C,Mat W,L,M
Matlab N D C Y Mat W,L,M
R Project N D OSS Y R W,L,M
RapidMiner Y D,API OSS N J W,L,M
Simulink Y D C Y C,Mat,F W,L,M
TraceLab Y D,API OSS Y MS,J,R,Mat W,L,M
WEKA Y D,API OSS N J W,L,M
Yahoo! Pipes Y W F Y - -

Table 2.1: Comparison of research tools to TraceLab

Table 2.1 shows a comparison of features between other tools and TraceLab.

The GUI column indicates whether or not the tool uses a graphical user interface to

perform experiments (Yes, No). The Plat. column describes the intended platform

of the tool (Desktop, API use, Web-based). The License column indicates what
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kind of license is required to use the tool (Commercial, Open Source Software,

Free to use). The Repos. column indicates whether or not the tool provides a

repository of user-made plugins (Yes, No). The Lang. column lists the different

programming languages that the tool supports (C/C++, Java, Fortran, Matlab,

MicroSoft .NET, R). Finally, the OS column lists the different operating systems

that the tool is available to run on (Windows, Linux, Mac).



Chapter 3

Motivating Example

To illustrate the problems of reproducing software engineering research, this

chapter details a motivating example of one of the most commonly-used information

retrieval techniques for traceability link recovery, the Vector Space Model (VSM) [26].

Many publications contain approaches that use VSM, but either do not specify which

steps they used, or may mention that certain steps are “commonly used” in the field

but do not implement those steps themselves. This example will investigate the ef-

fects on the results of different weighting schemes and preprocessing techniques

which, if not specified, can greatly change the outcome of an experiment.

3.1 Overview of Vector Space Model

The Vector Space Model is the most common of information retrieval (IR)

techniques used for document-to-document relationship recovery. In its simplest

form, this technique creates a term-by-document matrix describing the corpus of

documents (Figure 3.1). Each column in the matrix represents a single document,

and its rows represent the terms found in the entire corpus. Thus each cell in the

matrix is the frequency of that particular term in the document. The benefit is

10
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that documents can now be considered as distributions of terms and many different

mathematical techniques can be applied to and inferred from the data [26].

d1 d2 d3 d4 d5 d6 d7 d8

t1 8 7 6 0 5 4 6 6
t2 4 6 4 6 2 1 4 8
t3 7 0 2 7 7 0 5 0
t4 5 6 5 5 6 0 2 5
t5 5 3 0 4 2 7 0 6
t6 7 4 6 0 4 1 5 5

Figure 3.1: term-by-document matrix

A common practice in VSM is to weight the term-by-document matrix to em-

phasize important terms and trivialize terms that do not add to the meaning of the

document. Weighting can be performed in a number of ways, which are investigated

in Section 3.2.

To compute the similarity between a pair of artifacts, VSM calculates the cosine

of the document vectors via the Euclidean dot product formula (Equation 3.1).

Since none of the terms in the document are negative, the cosine of the angle is

bound within [0, 1], providing a concrete range for comparison between pairs of

documents. Calculating the cosine similarity between pairs of documents and sorting

the resulting list provides a ranked-list of candidate links between documents.

If the relationships between documents are already known, the effectiveness of

a technique can be measured via precision (Equation 3.2) and recall (Equation 3.3).

Precision measures the percentage of links returned that are correct and recall mea-

sures the percentage of all correct links that were returned. When recall is plotted

against precision for different cutpoints in the ranked list, the resulting graph forms

a precision-recall curve which can be used to visually determine the effectiveness of

a technique.
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sim( ~A, ~B) =

∑n
i=1 ai × bi√∑n

i=1 (ai)
2 ×

√∑n
i=1 (bi)

2
(3.1)

P =
|correct ∩ retrieved|

|retrieved|
(3.2)

R =
|correct ∩ retrieved|

|correct|
(3.3)

3.2 Comparison of Weighting Schemes

This section compares the effects of different weighting schemes on the results

of computing document-to-document relationships.

3.2.1 Types of weighting schemes

No weighting Once the term-by-document matrix is created, it is perfectly valid

to use the term counts within documents for comparison. This method does not

gain any of the benefits of weighting techniques that attempt to promote or diminish

the contributions of certain terms within the matrix.

tf-idf The standard weighting scheme in software engineering research is tf-idf [27],

which emphasizes terms that appear frequently in a document but diminishes the

contribution of terms common across all documents. In this scheme, documents in

the matrix are normalized by setting the most common term to 1 and dividing all of

the other terms in the document by its former value (Equation 3.4). This results in

a document consisting of term frequencies (tf). Then the document frequencies (df)
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are computed by recording the total number of times a term is used throughout

the whole corpus (Eq. 3.5). The df are used to calculate the inverse document

frequencies (idf) (Eq. 3.6). Then each tf-weighted term in the document is multiplied

by its idf, resulting in a tf-idf weight for each term in the document (Eq. 3.7).

tf(t, d) =
f(t, ~d)

max{f(w, ~d) | w ∈ ~d}
(3.4)

df(t) = |{t ∈ ~d, ~d ∈ {D} | tf(t, ~d) 6= 0}| (3.5)

idf(t, {D}) = log2

|D|
df(t)

(3.6)

tfidf(t, ~d, {D}) = tf(t, ~d)× idf(t, {D}) (3.7)

Boolean queries Another practice when using VSM is to treat one set of docu-

ments as a known entity and use another set of documents as queries, attempting

to identify which of the known documents are related to the queries. The known

documents are indexed with tf-idf weights. The queries, being unknown beforehand,

are given boolean weights. The two matrices must be modeled carefully to ensure

that their row indexes correspond to the same terms. Terms that appear in the

query are assigned a 1, and terms that are missing are assigned a 0. Any additional

terms that were not in the known documents are extended to the known matrix and

assigned 0.

3.2.2 Results

Figure 3.2 shows the effects of different weighting schemes on computing rela-

tionships between requirements documents and source code in EasyClinic, which is

a software system designed to manage medical offices. EasyClinic has been used in

the 2009 TEFSE Challenge [28] for evaluating software traceability techniques.
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This evaluation was run with the full preprocessing suite of techniques listed

in Section 3.3 (cleanup, splitting, stemming, and stopwords removal). Although

tf-idf is a clear winner in this example, the results of IR-based traceability are often

dataset-dependent. Without disclosing which weighting scheme a researcher used in

an approach, other researchers attempting to reproduce the approach may run into

challenges in getting similar results.
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Figure 3.2: Results of different weighting schemes tracing from requirements to
source code
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3.3 Comparison of Preprocessing Techniques

This section compares the effects of different preprocessing techniques on the

results of computing document-to-document relationships.

3.3.1 Preprocessing techniques

No preprocessing Although some sort of preprocessing is normally performed, it

is possible to use VSM without any form of preprocessing. The term-by-document

matrix is constructed out of the raw data, resulting in separate terms such as

“found”, “FOUND”, “found.”, “found,”, and “founding”.

Basic cleanup This technique turns raw documents into “bag-of-words” docu-

ments that have all symbols and punctuation removed. Unless identifier splitting

is performed as well, terms are usually converted to lowercase in this stage. This

results in combining the terms in the above example to “found” and “founding”.

Identifier splitting A common practice in software development is to create vari-

able or method names that describe their function. Different capitalization schemes

are employed, such as “CamelCase,” “pascalCase,” and “CAPITALCase.” Splitters

can recognize these schemes and separate compound identifiers into their individ-

ual words. Studies have been performed investigating the effectiveness of different

identifier splitting methods [29, 30].

Stopwords removal Some words are considered to not contribute to the meaning

of the text, or they are so common that they increase the noise of the results.

Predefined lists of these “stopwords” can be removed from the text in an attempt

to increase the effectiveness of an approach, in addition to standalone numbers and

terms less than a certain length. In natural language text, an example of these



16

could be articles, prepositions, or pronouns. In source code, certain programming

commands are common within the code, such as “for,” “if,” or “return.” Removal of

these terms results in a smaller search space, but are difficult to know beforehand.

Word stemming Words often change form when used in different parts of speech

or tenses, without changing the basic meaning of the word. For example, the word

“find” can also appear as “found,” “finds,” or “finding.” Word stemmers attempt to

find the common root of these words and reduce them to a singular form. Thus, all

of the words in this example will be stemmed to the root word “find.” An example

of a popular stemmer is the Porter English stemming algorithm [31].

3.3.2 Results

Figure 3.3 shows the effects of different weighting schemes on computing rela-

tionships between requirements documents and source code in EasyClinic. Except

for the Raw (no preprocessing) technique, every other technique uses the basic

cleanup technique. These techniques may be used in different combinations, further

changing the accuracy of the results. This evaluation uses the tf-idf weighting scheme

from Section 3.2 and exemplifies the same issues with not disclosing preprocessing

techniques for reproduction purposes.

These examples provide merely a small sampling of the issues that can effect

the results of an approach. Tiny details such as different weighting schemes or even

the order of events in an approach can drastically change the outcome. If these

details are not given in the paper, researchers can become frustrated by spending a

long time getting inconsistent results when trying to reproduce the approach or try

new ideas.
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Chapter 4

TraceLab

TraceLab [3, 4, 5] is a “Software Traceability Instrument to Facilitate and

Empower Traceability Research and Technology Transfer” in development by re-

searchers at DePaul University in collaboration with Kent State University, the

University of Kentucky, and the College of William & Mary. TraceLab was devel-

oped to enable researchers to quickly design experiments in software engineering

research by providing a set of tools and resources in an easy-to-use framework. Re-

searchers can effortlessly add to or modify experiments, providing ways to build on

existing experiments and investigate new ideas. Furthermore, TraceLab provides an

accessible way to share entire experiments with others, providing the tools, data,

and exact settings of the experiment for reproducibility. TraceLab is already used

by researchers all over the world (Fig. 4.1).

This chapter details the features of TraceLab, including an in-depth descrip-

tion of how researchers can use the tools and develop their own experiments and

components. Finally, I will describe my own contributions to the TraceLab project.

18
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Figure 4.1: Distribution of TraceLab users worldwide as of April 2013

4.1 Overview

At its core, TraceLab is a visual workbench for running experiments in software

engineering research. TraceLab presents experiments in the form of a graph com-

posed of tools that share data throughout experiment execution. Experiments may

be packaged and shared to ensure reproducibility. Figure 4.2 shows a screenshot of

the layout of TraceLab.

4.1.1 Experimental Graph

The heart of a TraceLab experiment is in its workflow of tools. Independent

tools and techniques are represented in TraceLab as components, shown as ovals

in Figure 4.2 and Figure 4.3. An experiment is a directed precedence graph of

components. Execution begins at the “Start” node and flows through every path to

the “End” node, which completes the experiment. Since it is a precedence graph,

each node must wait for all of the incoming edges to complete before executing.

This ensures that the previous techniques have completed and the correct data is
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Figure 4.2: Layout of TraceLab workbench

available.

Components in TraceLab are implicitly parallelizable. Each component is given

its own copy of the data and is run in a separate thread. Therefore, when two com-

ponents branch out from a parent component (such as components “Load data 1”

and “Load data 2” in Figure 4.3) they each will run concurrently and independently.

This is built into the TraceLab framework, so researchers and component developers

do not need to take any special action to acheive this benefit.

TraceLab provides many control flow elements to allow for dynamic experiment

flow. Goto decisions (Fig. 4.4) allow flow redirection to any of the outgoing nodes

based on a given condition. If statement decisions (Fig. 4.5) go one step further by

directing the flow to one of a number of subgraphs (called scopes) based on a given

condition. Scopes provide independent experiment graphs that execute in their own



21

Figure 4.3: Sample experiment in TraceLab

namespace and once completed, return to the parent graph. Similarly, While loops

(Fig. 4.6) repeatedly execute the scope as long as the given condition is true.

Figure 4.4: Goto decision in TraceLab

4.1.2 Component Library

The component library (shown in the top-left of Figure 4.2) lists all of the tools

and techniques available to the researcher for use in an experiment. Components

may be categorized by multiple tags, both by component developers and users. To

use a component in an experiment, users need only to drag-and-drop the component

from the component library and connect it into the workflow.

Each component has a set of metadata that identifies it within TraceLab. The

primary identifier is the component’s name, which appears in the component library

and on the component node within the experiment. Components contain additional

information such as a description, author, and versioning information.
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Figure 4.5: If statement decision in TraceLab

Each component must declare its inputs and outputs. For example, if a com-

ponent takes in two sets of artifacts and produces a ranked list of similarities

between the two, it must explicitly declare two TLArtifactsCollection objects

as input (perhaps named “SourceArtifacts” and “TargetArtifacts”) and declare a

TLSimilarityMatrix as output. This allows TraceLab to evaluate the experiment

graph before running it, checking for valid inputs and flow errors. If a component

declares an input that is not an output of any preceding components, TraceLab will

catch the error before the experiment starts.

Additionally, components may declare a configuration object that describes ad-

ditional settings when running the experiment. A common practice in TraceLab is

to declare data as inputs and outputs to and from the Workspace (Section 4.1.3)

and settings–such as technique-specific parameters–as configurations.

The component metadata, declared inputs, and configuration parameters can

be viewed and edited in the information pane for each component (Figure 4.7).

More detail about the component library is given in Chapter 6. Information

about building custom components is given in Section 4.2.1.
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Figure 4.6: While loop in TraceLab

4.1.3 Workspace

The workspace (shown in the bottom left of Figure 4.2) is the data-sharing

interface that allows components to communicate with one another during the course

of experiment execution. Components can load and store data from and to the

workspace only for their declared inputs and outputs. Data may also be read from

the workspace for use in a control-flow node. Any information in the workspace

may serialized to disk as an XML file for later use. Additionally, some data types

can be viewed from the workspace by clicking on their workspace entry. Additional

information about workspace data is given in Section 4.2.2.

4.1.4 Component Log

The component log (shown in the bottom right of Figure 4.2) is a convenient

way to display messages to the user during experiment execution. There are different

levels of severity that can be written to the log, such as info, trace, debug, warning,

and error. Each log entry displays the component name, severity, message, and

optionally an exception dialogue describing an uncaught exception and a stack trace.
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Figure 4.7: Info pane in TraceLab

4.1.5 Packaging Feature

In order to share a TraceLab experiment, all of the necessary information must

be included. Therefore, the packaging feature of TraceLab allows a user to collect

and specify the datasets and custom components used in the experiment. This

information is included with the experiment in an all-in-one package that can be

sent to other users and run exactly the same as the original researcher.

4.2 User-defined Components and Types

TraceLab ships with a software development kit (SDK) that allows users to

define their own custom components and types in .NET languages1, Java2, and (via

plugins) R [18] and Matlab [19]. This section will describe in detail how to create,

register, and use these components in TraceLab. The descriptions here primarily

deal with implementations in C#, with a section summarizing use of other languages.

1http://www.microsoft.com/net
2http://www.java.com/

http://www.microsoft.com/net
http://www.java.com/
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4.2.1 Components

All components in TraceLab must inherit from the BaseComponent abstract

class defined in the TraceLab SDK. Classes inheriting from BaseComponent must

override the Compute() method, which should contain the main functionality of the

component and is called from TraceLab during experiment execution. Component

classes may also override PreCompute() and PostCompute() to pre-allocate and

dispose of resources. These methods are called immediately before and after the

Compute() method. The abstract class also gives the component class access to the

workspace and informs TraceLab of any configuration settings.

In order for TraceLab to recognize a class as a component for use in an exper-

iment, the class must declare a [Component] attribute which contains information

about the component’s name, description, author, version, and optional configura-

tion object. Any inputs and outputs from and to the workspace must be declared

with individual [IOSpec] attributes describing the input or output name and data

type. Lastly, components may optionally declare [Tag] attributes for automatic

categorization in the component library.

Finally, TraceLab needs to know where to look for custom components. After

compiling, libraries containing components should be placed in a registered com-

ponent directory. These directories are defined in TraceLab’s settings menu and

user-defined directories can be added or removed.

Figure 4.8 shows an example component class definition for use in TraceLab.

I leverage the ability to create user-made components and types by creating the

TraceLab Component Library described in Chapter 6.
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[Component(Name = "Vector Space Model",

Description = "Calculates the tf-idf weighted cosine 

similarities of two TLArtifactsCollections.",

Author = "SEMERU; Evan Moritz",

Version = "1.0.0.0",

ConfigurationType = typeof(VSMComponentConfig))]

[IOSpec(IOSpecType.Input , "SourceArtifacts",

typeof(TLArtifactsCollection))]

[IOSpec(IOSpecType.Input , "TargetArtifacts",

typeof(TLArtifactsCollection))]

[IOSpec(IOSpecType.Output , "Similarities",

typeof(TLSimilarityMatrix))]

[Tag("Tracers.InformationRetrieval")]

public class VSMComponent : BaseComponent

{

private VSMComponentConfig _config;

public VSMComponent(ComponentLogger log)

: base(log)

{

_config = new VSMComponentConfig ();

Configuration = _config;

}

public override void Compute ()

{

TLArtifactsCollection sourceArtifacts =

(TLArtifactsCollection)Workspace.Load("SourceArtifacts");

TLArtifactsCollection targetArtifacts =

(TLArtifactsCollection)Workspace.Load("TargetArtifacts");

TLSimilarityMatrix sims = VSM.Compute(sourceArtifacts ,

targetArtifacts , _config.WeightingScheme);

Workspace.Store("Similarities", sims);

}

}

Figure 4.8: TraceLab component class
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[Serializable]

[WorkspaceType]

public class BiGram

{

public string Caller { get; private set; }

public string Callee { get; private set; }

private BiGram () { }

public BiGram(string caller , string callee)

{

Caller = caller;

Callee = callee;

}

}

Figure 4.9: TraceLab types class

4.2.2 Types

Data types must be registered with TraceLab before they can be used in

the workspace. These types must declare a [WorkspaceType] attribute so that

TraceLab will recognize them as workspace types. Types must also declare a

[Serializable] attribute so that data may easily be transferred between the

workspace, components, and disk. Figure 4.9 shows an example of a user-defined

type. It is important to note that any custom types that do not need to be used in

the workspace (such as intermediate data used in an algorithm) do not need to be

registered with TraceLab. Types libraries must also be placed in a registered types

directory and are usually separate in libraries from the components.

Workspace types may also have a custom visualization for inspection after an

experiment has run. TraceLab’s built-in types all have visualizations that can be

accessed by double clicking the entry in the workspace. Custom types may also

have their own visualizations, which requires knowledge of the GUI framework of

the platform the user is running on.



28

4.2.3 Languages

.NET languages

Any .NET language that compiles to a Dynamic Linked Library (DLL) may

be used to create user-defined components and types. This includes Visual Basic,

C++, C#, and F#.

Java

TraceLab comes with the IKVM.NET3 virtual machine so that developers can

create components and types in Java. The main difference between the C# and

Java (in terms of implementing components for TraceLab) is that Java uses anno-

tations instead of attributes and does not support properties (ie. implicit getters

and setters). This second feature is emulated in the Java version of the TraceLab

SDK by using explicit getters and setters for those properties. After compiling the

Java components, the JAR file is converted to a DLL through IKVM. When called

in TraceLab, the Java code is actually run in the IKVM virtual machine.

R

Although tools like R.NET exist for running R code in .NET languages, they

impose additional external dependencies on TraceLab and the development environ-

ment. In addition, TraceLab has no built-in mechanism for recognizing components

writter in R. To address this issue, I have created a lightweight language plugin for

R (named RPlugin) that allows R scripts to be run from TraceLab. Component

classes are written as normal (in .NET), and any R scripts that need to be run

interface with the plugin. RPlugin makes calls to an existing implementation of R

and has a framework for passing data and running scripts in R. RPlugin is included

3http://www.ikvm.net/

http://www.ikvm.net/
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with the TraceLab Component Library described in Chapter 6.

Matlab

The developers of TraceLab have created a Matlab plugin similar to RPlugin

that can run Matlab scripts from .NET. As of this writing, the Matlab plugin is

not included in any TraceLab distribution nor the TraceLab Component Library

described in Chapter 6, but is available from them by request.

4.3 Contributions

As a collaborator of the TraceLab project, I have had many opportunities to

contribute directly. Through use and experimentation, I have provided valuable

feedback that influenced the direction of development. To date, I have submitted 31

bug reports and feature requests, and was able to contribute directly to TraceLab’s

code by fixing 5 of them myself. The SEMERU research group and I have worked

hard to promote TraceLab’s use in top-tier international software engineering confer-

ences. My influence with the project ultimately led TraceLab’s developers to allow

our group to entirely restructure the component library and include it with future

TraceLab releases. My experiences with TraceLab have led to the compilation of

this thesis.

Furthermore, many of the papers I have co-authored have implemented their

approaches in TraceLab and shared online.

• TraceLab: An Experimental Workbench for Equipping Researchers to Innovate,

Synthesize, and Comparatively Evaluate Traceability Solutions [5] presents trace-

lab as a tool for performing evaluations in traceability link recovery.

• Toward actionable, broadly accessible contests in Software Engineering [4] presents
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TraceLab as a tool for organizing and performing contests in traceability link re-

covery in order to encourage the community to drive new solutions.

• A TraceLab-Based Solution for Creating, Conducting, and Sharing Feature Lo-

cation Experiments [32] presents TraceLab as a tool for expanding TraceLab to

new areas of software engineering research.

• Using Structural Information to Improve IR-based Traceability Recovery [33] in-

cludes an evaluation in TraceLab for analyzing the effects of including structural

information in traceability link recovery.

• Configuring Topic Models for Software Engineering Tasks in TraceLab [34] presents

the TraceLab implementation of a technique for configuring topic models using

genetic algorithms.

• Enhancing Software Traceability By Automatically Expanding Corpora With Rel-

evant Documentation (submitted to ICSM’13, under review) investigates the ef-

fects of expanding software artifacts with API documentation to increase the

accuracy of traceability link recovery.

• Supporting and Accelerating Reproducible Research in Software Maintenance us-

ing TraceLab Component Library (submitted to ICSM’13, under review) is the

companion paper to this thesis.



Chapter 5

Surveying the Needs of the

Research Community

For TraceLab to be an effective research tool, it must come with a collection of

the most popular tools and techniques used in state of the art software engineering

research. To evaluate which tools are needed, a survey of publications in top-tier

software engineering conferences from the past 10 years reveals the most commonly-

used building blocks for experiments in software engineering.

In this chapter I perform a formal mapping study examining the use of common

techniques in software engineering research. A mapping study is different from

a systematic literature review in that literature reviews aim to answer a specific

research question by extracting and analyzing the results of primary studies [35],

for example, a review of studies analyzing development effort estimation techniques

to see which ones work the best [36]. In contrast, mapping studies attempt to

address more abstract research topics by classifying the methodologies and findings

into general categories. Mapping studies are useful to the research community in

that they provide an overview of trends within the search space [37]. Furthermore,

31
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they may be used as a starting point by researchers looking to improve the field

by describing common methodologies and perhaps discovering untapped areas that

others have missed.

The primary motivation of this mapping study is to analyze the the current

state of software engineering research – focusing on the areas that fall within the

SEMERU research group’s expertise in software evolution and maintenance (SEM)

– in order to compile a comprehensive library of tools for use in TraceLab. The

following sections of this chapter describe the methodology, primary studies, and

results of a systematic mapping study covering representative papers in software

engineering research.

5.1 Methodology

I use the systematic mapping process found in Peterson et al. [37] to drive the

study. The process consists of five stages: (1) defining research questions, (2) search

for papers, (3) screening criteria, (4) classification, and (5) data extraction.

5.1.1 Definition of Research Questions

This section enumerates the research questions I wish to answer with the map-

ping study. Since the goal is to discover the breadth and usefulness of different

techniques in software evolution and maintenance, I formulate the following research

questions (RQs):

RQ1. What types of techniques are common to experiments in software evolu-

tion and maintenance research?

RQ2. What individual techniques are used across many SEM experiments?

RQ3. How do experiments in SEM research differ across different sub-domains?
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RQ1 attempts to identify high-level categories containing groups of techniques

designed to perform similar research tasks. RQ2 instead focuses on individual tech-

niques and aims to identify the most common techniques used in experiments in the

mapping study. RQ3 is intended to compare and contrast how techniques are used

in different high-level research tasks, such as traceability link recovery or feature

location.

For the purposes of this thesis, a technique is defined as an individual action per-

formed within an approach. An approach, therefore, is the collection of techniques

that form the main contribution of a paper. Finally, an evaluation is composed of

the metrics computations, statistical analyses, and comparison techniques used to

analyze the performance of an approach.

5.1.2 Conducting the Search

The goal is to identify modern software engineering techniques shared across

many experiments in SEM research. Therefore, I begin by searching the last 10

years of top-tier international software engineering conferences (see Table 5.1). As

recommended by [35], I also include ”snowballing” discovery - following references

to related work.

5.1.3 Screening Criteria

The formost method used for selecting papers in the study was determining

whether or not the research in the paper fell under one of the following high-level

tasks in software evolution and maintenance research: traceability link recovery,

feature location, program comprehension, and duplicate bug report detection. Gen-

erally, this can be done by reading the title, abstract, keywords, and introduction.

This is the primary criteria for papers to be included in the search.
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Given the primary research task of constructing a suite of tools to aid in soft-

ware engineering research, papers were also evaluated based on the difficulty of

implementing the paper’s techniques in TraceLab. This determination was based

on a number of factors, including lack of implementation details, lack of tool avail-

ablility, or techniques that required user interaction. Furthermore, techniques that

required a significant amount of time or resources to reproduce were not considered

at this time. This is the primary reason for papers to be excluded from the search.

The complete list of papers used in the mapping study can be found in Sec-

tion 5.2.

5.1.4 Classification

There are two independent levels of classification used in the mapping study.

First is the classification of the papers themselves. The papers (and the approaches

contained within) are categorized by the high-level SEM tasks they address. These

categories form natural boundaries for evaluating RQ3 and show the usefulness of

our contributions across different domains.

The second form of classification I wish to investigate is the categorization of

similar techniques within software engineering research experiments. For example,

a word stemmer, an identifier splitter, and a stopwords remover may all fall into

the general category of textual preprocessors. This classification will help to answer

RQ1 and RQ2.

5.1.5 Data Extraction

Each paper in the study is analyzed and the results are recorded in a series of

tables. Section 5.2 records the papers surveyed, grouped by SEM task. Section 5.3

records the individual techniques found in each paper, grouped by categorization of
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technique.

5.2 Papers

Table 5.1 shows the distribution of papers from each conference. Tables 5.2,

5.3, 5.4, and 5.5 list the papers surveyed in the mapping study, grouped by software

engineering task. Each entry shows the paper’s reference number, citation count,

and title. Papers within each table are ordered by publication date.

The high-level software engineering tasks under investigation are as follows.

Traceability link recovery is the process of recovering lost or missing links be-

tween software requirements and source code artifacts. This kind of requirements

traceability usually defined as “the ability to describe and follow the life of a re-

quirement” [38]. Program comprehension involves the ability to understand

what is happening in a program’s source code. Feature location is the ability to

identify relevent source code artifacts that implement a specified feature of the soft-

ware [39]. Duplicate bug report detection refers to the practice of evaluating

incoming program defect reports to determine whether a pre-existing report that

addresses the same problem has already been filed [40]. These topics constitute the

areas that I and the rest of the SEMERU research group have extensive knowledge

and experience.



36

Count Abbreviation Conference

1 ASE Automated Software Engineering
2 CSMR European Conference on Software Maintenance and

Reengineering
1 EMSE Empirical Software Engineering
6 ICSE International Conference on Software Engineering
9 ICPC International Conference on Program Comprehension
3 ICSM International Conference on Software Maintenance
2 MSR Working Conference on Mining Software Repositories
1 TEFSE International Workshop on Traceability in Emerging

Forms of Software Engineering
1 TSE Transactions in Software Engineering
1 WCRE Working Conference on Reverse Engineering

27 Total

Table 5.1: Mapping study: conferences



37

Traceability Link Recovery
Ref. Cit.* Title
[41] 45 A Traceability Technique for Specifications
[42] 21 On the Role of the Nouns in IR-based Traceability Recovery
[43] 57 On the Equivalence of Information Retrieval Methods for Auto-

mated Traceability Link Recovery
[44] 57 Software Traceability with Topic Modeling
[45] 8 Improving IR-based Traceability Recovery Using Smoothing Filters
[46] 1 Combination Approach for Enhancing Automated Traceability
[47] 18 On Integrating Orthogonal Information Retrieval Methods to Im-

prove Traceability Recovery
[33] NA Using Structural Information and User Feedback to Improve IR-

based Traceability Recovery
[48] NA How to Effectively Use Topic Models for Software Engineering

Tasks? An Approach Based on Genetic Algorithms
[34] NA Configuring Topic Models for Software Engineering Tasks in Trace-

Lab
* Google Scholar, 4/23/2013

Table 5.2: Mapping study: traceability link recovery papers

Program Comprehension
Ref. Cit.* Title
[29] 46 Mining Source Code to Automatically Split Identifiers for Software

Analysis
[49] 31 Using Latent Dirichlet Allocation for Automatic Categorization of

Software
[50] 22 Supporting Program Comprehension with Source Code Summariza-

tion
[51] 3 Using IR Methods for Labeling Source Code Artifacts: Is It Worth-

while?
* Google Scholar, 4/23/2013

Table 5.3: Mapping study: program comprehension papers
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Feature Location
Ref. Cit.* Title
[39] 246 An Information Retrieval Approach to Concept Location in Source

Code
[52] 92 Feature Location via Information Retrieval based Filtering of a Sin-

gle Scenario Execution Trace
[53] 176 Feature Location using Probabilistic Ranking of Methods based on

Execution Scenarios and Information Retrieval
[54] 31 An Exploratory Study on Assessing Feature Location Techniques
[55] 33 On the Use of Relevance Feedback in IR-Based Concept Location
[30] 16 Can Better Identifier Splitting Techniques Help Feature Location?
[56] 4 Clustering Support for Static Concept Location in Source Code
[57] 2 A Comparison of Stemmers on Source Code Identifiers for Software

Search
[32] 4 A TraceLab-Based Solution for Creating, Conducting, and Sharing

Feature Location Experiments
[58] 4 Integrating Information Retrieval, Execution and Link Analysis Al-

gorithms to Improve Feature Location in Software
* Google Scholar, 4/23/2013

Table 5.4: Mapping study: feature location papers

Duplicate Bug Detection
Ref. Cit.* Title
[40] 144 Detection of Duplicate Defect Reports Using Natural Language Pro-

cessing
[59] 150 An Approach to Detecting Duplicate Bug Reports using Natural

Language and Execution Information
[60] 4 A comparative study of the performance of IR models on duplicate

bug detection
* Google Scholar, 4/23/2013

Table 5.5: Mapping study: duplicate bug detection papers
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5.3 Results

Tables 5.6, 5.7, 5.8, 5.9, and 5.10 list the individual techniques found in each

paper, grouped by the categorization of the technique. Each entry is comprised of

the paper’s reference number and marks indicating that the approach in the paper

uses a technique. Papers are ordered by publication year within each software

engineering task.

5.3.1 Technique categorization

The mapping study identified five different high-level categories of techniques:

data preprocessors, artifacts comparison techniques, results postprocessors, metrics

calculations, and a category simply known as “miscellaneous.”

Preprocessors Data preprocessing techniques primarily convert the raw data into

a different form that will be usable by other techniques in the approach. For text-

based approaches, this could involve extracting comments and identifiers from source

code, removing stopwords, and other methods of text manipulation. For structural

approaches, this could involve parsing an execution trace or calculating a static de-

pendency graph. These techniques usually run before the main bulk of the approach.

Artifacts comparison A majority of approaches involve some kind of compar-

ison between software artifacts to determine relationships between them. These

techniques usually take in a set of software artifacts (such as source code or require-

ments documents) as input and produce a set of suggested relationships between

documents. These suggestions may include a confidence score, which is useful for

ordering the suggestions based on how strong the score is.
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Postprocessors Some techniques build upon the results of a comparison tech-

nique and further modify the suggested links between artifacts. They may take into

acccount additional information to promote certain links or perform some kind of

link pruning to remove false positives.

Metrics Metrics are the measures by which an approach is evaluated. Without

this, it would be impossible to determine whether a given approach was useful or

not. In order to perform an informative evaluation, the same metrics must be run for

different approaches, otherwise the evaluations are not comparing the same thing.

Metrics are generally not part of an approach, but are used to perform evaluations

between approches.

Miscellaneous These techniques do not fall into any clear category. From the

techniques identified in this survey, these techniques are comprised of either (a)

complex combinations of different techniques, or (b) techniques used for comparison

purposes only (ie. not part of the approach).

5.3.2 Analysis

The categorization of techniques given in Section 5.3.1 addresses RQ1. To ana-

lyze RQ2, the Tables 5.6-5.10 of techniques include counts for how many approaches

implement that technique. From these results, it can be seen that every single ap-

proach uses some kind of textual processing techniques. This makes sense, because

software engineering approaches primarily operate on source code, documentation,

and other text-based data. More than half of approaches implement stopwords re-

movers, term stemmers, and identifier splitters. Seven approaches incorporate some

kind of structural information in their approach, using dependency graphs from ei-

ther execution traces or static analysis. 88% of approaches use Vector Space Model,
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Latent Semantic Indexing, or both.

In terms of evaluating an approach, there is a clear distinction between met-

rics used in different SEM domains. In the areas of traceability link recovery and

duplicate bug report detection, every single approach uses some form of precision

and recall metrics, although they may include additional metrics in their evaluation.

60% of feature location approaches implement the effectiveness measure metric given

in Poshyvanyk et al [53]. Only 30% of papers present some form of statistical anal-

ysis in their evaluation. Note that “statistical analysis” is a general term covering

a broad range of tests to determine the statistical improvement of an approach. I

include them here as a single technique to investigate how many papers include

statistical tests. These observations address RQ3.
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Preprocessors
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[41] 3 3 3 . . . . . . . . . . . . . . .
[42] 3 3 3 3 . . . . . 3 . . . . . . .
[43] 3 3 3 . . . . . . . . . . . . . . .
[44] 3 3 3 . . . . . . . . . . . . . . .
[45] 3 3 3 3 . . . 3 . . . . . . . . .
[46] 3 . . . . . . . . . 3 3 . . . . . .
[47] 3 3 3 3 . . . . . . . . . . . . . .
[33] 3 3 . . . 3 . . . . . . . . . . . .
[48] 3 . . . . . . . . . . . . . . . . .
[34] 3 . . . . . . . . . . . . . . . . .
[29] 3 . . 3 . . 3 . . . . . . . . 3 . .
[49] 3 3 . 3 . . . . . . . . . . . . . .
[50] 3 3 3 3 . . . . . . . . . . . . 3 .
[51] 3 3 3 3 . . . . . . . . . . . . . .
[39] 3 . . 3 . . . . . . . . . . . . . .
[52] 3 3 . 3 3 . . . . . . . . . . . . .
[53] 3 3 . 3 . . . . . . . . . . . . . .
[54] 3 . . . 3 3 . . . . . . . . . . . .
[55] 3 3 3 3 . . . . . . . . . . . . . .
[30] 3 3 3 3 3 . 3 . . . . . . . . . . .
[56] 3 3 3 3 . 3 . . . . . . . . . . . .
[57] 3 . 3 . . . . . 3 . . . 3 3 3 . . .
[32] 3 3 3 3 3 . . . . . . . . . . . . .
[58] 3 3 3 3 3 3 . . . . . . . . . . . .
[40] 3 3 3 . . . . . . . . . . . . . . 3

[59] 3 3 3 . 3 . . . . . . . . . . . . .
[60] 3 3 3 . . . . . . . . . . . . . . .

27 20 17 15 6 4 2 1 1 1 1 1 1 1 1 1 1 1

Table 5.6: Mapping study: preprocessing techniques
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Artifact Comparisons
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[41] 3 3 . 3 . . . 3 3 . .
[42] 3 . . 3 . . . . . . .
[43] 3 3 3 3 . . . . . . .
[44] 3 . 3 . . . . . . . .
[45] 3 3 . . . . . . . . .
[46] . 3 . . . . . . . . .
[47] . 3 . 3 3 . . . . . .
[33] . 3 . 3 . . . . . . .
[48] . . 3 . . . . . . . .
[34] . . 3 . . . . . . . .
[29] . . . . . . . . . . .
[49] . . 3 . . . . . . . .
[50] 3 . . . . . . . . . .
[51] 3 3 3 . . . . . . . .
[39] 3 . . . . . . . . . .
[52] 3 . . . . . . . . 3 .
[53] 3 . . . . . . . . 3 .
[54] 3 . . . . . . . . . .
[55] . 3 . . . . . . . . .
[30] 3 . . . . . . . . . .
[56] . 3 . . . . . . . . .
[57] . 3 . . . . . . . . .
[32] 3 3 . . . . . . . . .
[58] 3 . . . . 3 3 . . . .
[40] . 3 . . . . . . . . .
[59] . 3 . . . . . . . . .
[60] 3 3 3 . . . . . . . 3

15 14 7 5 1 1 1 1 1 2 1

Table 5.7: Mapping study: artifact comparison techniques
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Postprocessors
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[41] . . . . . . .
[42] . . . . . . .
[43] . . . . . . .
[44] . . . . . . .
[45] . . . . . . .
[46] . . . . 3 . .
[47] . 3 . . . . .
[33] . . 3 3 . . .
[48] . . . . . . .
[34] . . . . . . .
[29] . . . . . . .
[49] . . . . . . .
[50] . . . . . . .
[51] . . . . . . .
[39] . . . . . . .
[52] 3 3 . . . . .
[53] . 3 . . . . .
[54] 3 . . . . . .
[55] . . . . . . 3

[30] 3 . . . . . .
[56] . . . . . . .
[57] . . . . . . .
[32] 3 . . . . . .
[58] 3 . . . . . .
[40] . . . . . . .
[59] . . . . . 3 .
[60] . . . . . . .

5 3 1 1 1 1 1

Table 5.8: Mapping study: postprocessing techniques
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Metrics
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[41] 3 . . . . . . . .
[42] 3 3 . . . . . . .
[43] 3 . . 3 3 . . . .
[44] 3 . . . . . . . .
[45] 3 3 . . . . 3 . .
[46] 3 . . . . . . . .
[47] 3 3 . 3 3 . . . .
[33] 3 . . . . . . . .
[48] 3 3 3 . . 3 . . .
[34] 3 . . . . . . . .
[29] . . . . . . . . .
[49] 3 . . . . . . . .
[50] . . . . . . . . 3

[51] . . . . . 3 . . .
[39] 3 . . . . . . . .
[52] . . 3 . . . . . .
[53] . . 3 . . . . . .
[54] . . . . . . . . .
[55] . . . . . . . . .
[30] . 3 3 . . . . . .
[56] . 3 3 . . . . . .
[57] . . . . . . . 3 .
[32] . 3 3 . . . . . .
[58] . 3 3 . . . . . .
[40] 3 . . . . . . . .
[59] 3 . . . . . . . .
[60] 3 . . . . . . . .

15 8 7 2 2 2 1 1 1

Table 5.9: Mapping study: metrics techniques
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[41] . . . . . .
[42] . . . . . .
[43] . . . . . .
[44] . 3 . . . .
[45] . . . . . .
[46] . . . . . .
[47] . . . . . .
[33] . . . . . .
[48] 3 . . . . .
[34] 3 . . . . .
[29] . . . . . .
[49] . . . . . 3

[50] . . . . . .
[51] . . . . . .
[39] . . . 3 3 .
[52] . . . . . .
[53] . . . . . .
[54] . . . . . .
[55] . . . . . .
[30] . . . . . .
[56] . . 3 . . .
[57] . . . . . .
[32] . . . . . .
[58] . . . . . .
[40] . . . . . .
[59] . . . . . .
[60] . . . . . .

2 1 1 1 1 1

Table 5.10: Mapping study: miscellaneous techniques



Chapter 6

Component Library and

Development Kit

TraceLab provides extensibility to users through a software development kit

(SDK) that enables them to create new components for use in TraceLab experiments.

I leverage this ability in order to extend TraceLab’s component library with many

common tools and techniques used in software engineering research that are not

included in the base distribution. From the papers and techniques identified in the

mapping study (Chapter 5), I implement a comprehensive library of components and

techniques with the goal of assisting researchers and developers by providing them

with the tools they need to jump start their research. Where possible, I incorporated

existing TraceLab functionality, SEMERU research tools, and implementations of

open source software. When this was not possible, I implemented the tool from

scratch to the best of my ability based on the description in the paper. With

the approval of the developers of TraceLab, the new component library has been

incorporated into the base distribution of TraceLab.

In this chapter I provide (6.1) the details of a Component Development Kit

47
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(CDK) that contains implementations of the techniques found in the study, as well

as many other useful tools; (6.2) a Component Library (CL) that contains wrapper

classes for the CDK techniques to be used in TraceLab as components; (6.3) links to

online documentation and usage examples; (6.4) an invitation to other developers to

extend the component library; and (6.5) an analysis of the coverage of the approaches

in the mapping study when using the CL in TraceLab.

6.1 Component Development Kit

The Component Development Kit (CDK) is a library of commonly-used tools

and techniques in software evolution and maintenance research. These tools are

organized in a well-defined hierarchy and exposed through a public API.

The CDK is separated into high-level tasks. These tasks include data I/O, pre-

processing techniques, artifact tracing techniques, postprocessing techniques, met-

rics calculations, and common utilities (see Figure 6.1). These namespaces are then

further broken down into more specific granularity for the desired task. For exam-

ple, Metrics computations are broken down by SEM domain, such as traceability

or feature location, and tracing techniques are broken down into information re-

trieval (IR), topic models, and web mining algorithms. This design aids component

developers in locating relevant functionality quickly and easily, as well as providing

a framework for including new techniques in the future.

Each technique in the mapping study was evaluated based on paper coverage,

utility, and perceived difficulty in implementation. Some of the techniques that

appear in more than one paper were left out due to various reasons, such complexity,

numerous dependencies, and lack of resources. For as many missing techniques as

possible, I tried to make sure that the expected output of the technique could be

easily imported into TraceLab. Component developers should find that the CDK
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contains many of the tools necessary to aid them in creating a missing technique.

Any new techniques that developers create and wish to incorporate into the CDK

can easily be added (see Section 6.4).

The following paragraphs detail the functionality and tasks of each namespace.

Figure 6.1 shows an overview of the CDK structure in relation to the Component

Library and TraceLab.

I/O The I/O namespace delegates the task of importing and exporting the datatypes

used in TraceLab to and from storage locations. Data may be stored and retrieved

in multiple formats.

Preprocessors The preprocessors namespace deals with transforming raw data

into something usable for techniques further in the experiment. This level is further

broken down into stemmers, identifier splitters, and execution trace analyzers.

Artifacts Comparison The artifacts comparison namespace (which is currently

“Tracers” in the CDK) contains algorithms which compute relationships between

different software artifacts. Generally, these techniques take in one of the standard

TraceLab datatypes (TLArtifactsCollection) and produce a set of candidate links

between artifacts in a TLSimilarityMatrix. This level is further broken down into

information retrieval, topic modeling, and web mining techniques.

Postprocessors The postprocessors namespace is comprised of algorithms that

modify the results of a TLSimilarityMatrix based on additional information. Link

pruning algorithms are not included here; instead, they are present in the

TLSimilarityMatrixUtils utility class in the utility namespace.
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Metrics The metrics namespace has a special inheritance heirarchy in the CDK.

Individual metrics computations (such as precision, recall, and F-measure) must

inherit from the abstract class MetricComputation, which forces them to define

a method of providing both fine-grained and summary results. This structure is

beneficial for use in the Results Visualization component (see Section 6.2). This

level is broken down into common software engineering task, such as traceability

and feature location metrics.

Utilities This namespace contains utility classes that perform common program-

ming tasks related to individual data types.
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Figure 6.1: Visualization of component library hierarchy
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6.2 Component Library

The Component Library (CL) is composed of the component classes and meta-

data described in Section 4.1.2. It acts a layer between TraceLab and the CDK,

adapting the functionality of the CDK to be used within TraceLab. A typical com-

ponent will import data from the workspace, make calls to the CDK, and then

output the results. The structure of the Component Library mirrors the CDK hi-

erarchy, providing a mapping from TraceLab to the CDK. Components appear in

TraceLab’s component library viewer grouped by tags into the same high-level tasks

as the CDK.

The CL is not a 1-to-1 mapping from the CDK. For example, the I/O namespace

in the CDK is split into individual importers and exporters in the component library.

In addition to the major functionality of the CDK, the CL includes a number of

helper components that assisst in programmatic operations within an experiment,

such as incrementing a loop counter or retrieving a string from a list.

Another addition present in the CL is the metrics storage engine. Previously,

the vast number of metrics computations was creating increasingly crowded ex-

periments and workspace entries. The storage engine provides a single point of

entry for storing the results of metrics computations, organized by technique and

dataset. The engine contains functionality for retrieving fine-grained results and

automatically generating summary statistics for use in the Results Visualization

component.

6.3 Documentation

Documentation is often overlooked, both in source code and overall design. In

addition to code examples and API references, documentation provides vital infor-
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mation about a program’s functionality, design, and intended use. An important

contribution to this project is thorough documentation about the CL and CDK in

order to assist new users in learning about TraceLab and help them in developing

their own components and tools. This adds a wealth of knowledge to someone who

wants to use TraceLab and start designing new experiments from components. Doc-

umentation can be found online for the general TraceLab wiki1 and the SEMERU

wiki2.

6.4 Extending the CL and CDK

The CL and CDK do not contain all of the tools that researchers will ever

need. However, their design and implementation alongside TraceLab’s development

framework provide a firm foundation for supporting future research. The CL and

CDK is released under an open source license3 in order to facilitate collaboration

and community contribution. As new techniques are created, they can be added

to the existing framework and thus into TraceLab. TraceLab’s developers and the

SEMERU research group encourage all contributions to the project. See Section 4.2

for more information on extending the TraceLab component library.

6.5 Coverage

The CL and CDK was implemented on a subset of the techniques identified in

the mapping study, based on their popularity and the amount of resources I had at

the time. As such, the CL and CDK contains implementations of 23 of the 51 (45%)

techniques identified in the mapping study. Looking at only techniques involved in

1http://coest.org/coest-projects/projects/tracelab/wiki
2http://coest.org/coest-projects/projects/semeru/wiki
3http://www.gnu.org/licenses/gpl.txt

http://coest.org/coest-projects/projects/tracelab/wiki
http://coest.org/coest-projects/projects/semeru/wiki
http://www.gnu.org/licenses/gpl.txt
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an approach (ie. excluding metrics and comparison techniques), the CL and CDK

contains implementations of 20 out of 39 (51%) techniques. Tables 6.1, 6.2, and 6.3

record the techniques in the mapping study that are implemented in the CL and

CDK.

Using the CL and CDK, it is possible to completely reproduce 10 of the 27

(37%) approaches in the mapping study. Of the remaining approaches, 10 of them

(58%, 37% overall) are missing only 1 technique. Table 6.4 shows the breakdown of

implemented techniques of the approaches in the mapping study.
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Name # In TraceLab?

Bag-of-words tokenizer 27 3

Stopwords Remover 20 3

Porter stemmer 17 3

CamelCase splitter 15 3

Latent Semantic Indexing 15 3

Vector Space Model 14 3

Latent Dirichlet Allocation 7 3

Execution trace logger 6 .
Execution trace extractor 5 3

Jensen-Shannon divergence 5 3

Dependency Graph Generator 4 3

Affine transformation 3 3

Genetic Algorithm 2 3

Samurai splitter 2 .
Scenario-based Probabilistic Ranking 2 .
BorderFlow 1 .
combination hueristics 1 .
HITS 1 3

Key phrase extractor 1 .
K-means clustering 1 .
Kstem 1 .
Mstem 1 .
O-CSTI 1 3

PageRank 1 3

Paice stemmer 1 .
Part-of-speech tagger 1 3

Probablistic LSI 1 .
program language parser 1 .
prospective approach 1 .
Random Projection 1 .
Regular expressions 1 .
Relational Topic Model 1 3

Rocchio Relevence Feedback 1 .
SameCase splitter 1 .
smoothing filter 1 3

Snowball Stemmer 1 3

Sufficient Dimensionality Reduction 1 .
thesaurus matching 1 .
UD-CSTI 1 3

Table 6.1: List of approach techniques
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Name # In TraceLab?

Precision / Recall metrics 15 3

statistical analysis∗ 8 .
Effectiveness Measure 7 3

Jaccard overlap 2 .
link overlap metrics 2 .
Principal Component Analysis 2 3

Cliff’s delta 1 .
Pyramid score 1 .
ROC curve 1 .

* Due to the large number of different statistical tests available, I do not include them in the library but provide
functionality for exporting the results to be analyzed offline.

Table 6.2: List of metrics techniques

Name # In TraceLab?

grep 1 .
MUDABlue 1 .
RIPPLES 1 .

Table 6.3: List of comparison techniques
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Ref. Impl. Missing Total %

[41] 6 2 8 0.75
[42] 7 0 7 1.00
[43] 7 0 7 1.00
[44] 5 1 6 0.83
[45] 7 0 7 1.00
[46] 2 3 5 0.40
[47] 8 0 8 1.00
[33] 7 0 7 1.00
[48] 3 0 3 1.00
[34] 3 0 3 1.00
[29] 2 2 4 0.50
[49] 4 0 4 1.00
[50] 5 1 6 0.83
[51] 7 0 7 1.00
[39] 3 0 3 1.00
[52] 6 2 8 0.75
[53] 5 1 6 0.83
[54] 4 1 5 0.80
[55] 5 1 6 0.83
[30] 6 2 8 0.75
[56] 6 1 7 0.86
[57] 4 3 7 0.57
[32] 7 1 8 0.88
[58] 9 1 10 0.90
[40] 4 1 5 0.80
[59] 4 2 6 0.66
[60] 6 1 7 0.88

Table 6.4: Percentage of approaches that can be reproduced with CL & CDK



Chapter 7

Reproducing Software Engineering

Research

This chapter presents examples of recreating existing software engineering ap-

proaches using the Component Library and TraceLab. Each approach is summarized

and the results in TraceLab are compared to the original results, where applicable.

Section 7.1 describes studies in traceability link recovery that compare information

retrieval approaches. Section 7.2 describes the evolution of feature location ap-

proaches using Latent Semantic Indexing. Finally, Section 7.3 provides additional

examples of approaches that can be reproduced in TraceLab. These approaches are

made available online1 as TraceLab experiments.

1http://www.cs.wm.edu/semeru/TraceLab_CDK
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7.1 Investigating Information Retrieval techniques

for software traceability

This section presents existing research involved with investigating different in-

formation retrieval (IR) approaches in the area of traceability link recovery. Sec-

tion 7.1.1 presents background information regarding traceability link recovery. Sec-

tion 7.1.2 presents a comparison of IR techniques from Abadi et al [41]. Section 7.1.3

presents a study in the equivelence of different IR methods by Oliveto et al [43].

Finally, Section 7.1.4 leverages the findings of Oliveto et al. to investigate combining

complementary IR techniques from Gethers et al [47].

7.1.1 Background of software traceability

A quote by O.C.Z. Gotel is often used to define requirements traceability. In

her paper [38] she states,

Requirements traceability refers to the ability to describe and follow the life of
a requirement, in both forwards and backwards direction (i.e. from its origins,
through its development and specification, to its subsequent deployment and
use, and through all periods of on-going refinement and iteration in any of
these phases).

In practical terms, this involves tracking traceability links at all stages of de-

velopment. The most common research involves recovering missing or broken links

towards the end of a project’s life cycle. Since this is extremely difficult to perform

by hand – especially in large software projects with tens of thousands of requirements

– automated solutions are desired.

When investigating traceability links, the artifacts under consideration are

called source and target artifacts. Source artifacts (also referred to as queries)

are usually the high-level documents that need to be linked to source code, such

as requirements or use case documents. Target artifacts are source code documents
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split into the desired level of granularity. For example, if a developer wanted to

trace requirements to specific code classes, he or she could direct the traceability

technique to generate a corpus of artifacts by extracting each class and saving it as a

separate document. The same could be done for method- or package-level artifacts.

The output of a traceability technique is a set of ordered links called a ranked-

list. The list is sorted in decreasing order based on the technique’s confidence level

that the candidate link is a true link. The links at the top of the list have a strong

confidence level and indicate to the developer that there may be a link between

the two artifacts. The developer can then investigate the suggested target artifacts

instead of searching the entire source code repository for possible links.

Software engineering researchers need to be able to evaluate and compare their

techniques. Therefore, they perform studies on software projects that have well-

documented links between requirements and code. These links are used as an oracle

for evaluating the output of a new technique. The most common metrics for this

evaluation are precision and recall, which are described in the Vector Space Model

example in Chapter 3. Plotting a precision-recall curve at each level of recall is a

common method of displaying the results of a technique.

7.1.2 A Traceability Technique for Specifications

Abadi et al. [41] performed an evaluation of 5 different information retrieval

techniques for the purposes of comparing the results of each technique for trace-

ability link recovery. These techniques consisted of the Vector Space Model (VSM),

Latent Semantic Indexing (LSI), Probabilistic LSI (PLSI), Sufficient Dimensional-

ity Reduction (SDR), and Jensen-Shannon similarity (JS). Each technique is experi-

mented with different weighting schemes and parameters. The authors performed an

evaluation on two datasets: SCARI-OPEN, from Communications Research Centre
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Canada [61], and the GNU Classpath implementation of CORBA [62]. The authors

presented the metrics precision, recall, and mean average precision. They concluded

that VSM (tf-idf weighted) and JS (with information-gain) perform the best overall.

Only three of these techniques were implemented in the Component Library.

As such, PLSI and SDR cannot be reproduced at this time. VSM is described in the

motivating example in Chapter 3. LSI [63] is an extension of VSM that performs

Singular Value Decomposition to decompose the original term-by-document matrix

into three reduced matrices. Documents are compared in this reduced space by

cosine similarity. JS similarity was introduced in this paper as a useful information

retrieval technique for traceability link recovery. JS treats documents as probability

distributions and measures the distance between them.

The two datasets used in this evaluation were not available to me at the time of

this writing. Instead, I perform an evaluation of the three IR techniques on eTour,

an electronic tourist guide used in the 2011 TEFSE Challenge [64]. Figure 7.2 shows

the experiment as it appears in TraceLab. The top portion of the graph involves

importing the dataset and performing various preprocessing techniques. The three

components in the middle (Vector Space Model, Jensen-Shannon divergence, and

Latent Semantic Analysis) represent the three IR techniques under study. The

bottom half of the graph involves importing the oracle and computing the results

of the techniques, ending in the results visualization GUI.

Figure 7.1 and Table 7.1 show the results of the evaluation. While VSM is the

top performer, JS is outstripped by LSI. This may be due to a variety of factors,

such as using different datasets and internal weighting schemes. This example shows

some of the problems with reproducing research in software engineering.
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Technique MAP

LSI 0.379
JS 0.294

VSM 0.417

Table 7.1: Abadi et al. Mean average precision of evaluation in TraceLab
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Figure 7.1: Abadi et al. Precision-recall curve of evaluation in TraceLab
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Figure 7.2: Abadi et al. TraceLab experiment
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7.1.3 On the Equivalence of Information Retrieval Methods

for Automated Traceability Link Recovery

Oliveto et al. [43] investigated different IR methods to see if they produced

equivalent results, namely, VSM, LSI, JS, and a topic modeling technique called La-

tent Dirichlet Allocation (LDA) [44]. They performed an evaluation on two datasets,

EasyClinic and eTour. They reported precision and recall of the results in addition

to link overlap metrics. They performed Principal Component Analysis (PCA) to

determine which techniques are equivelent in terms of performance in traceability

link recovery. The authors found that VSM, LSI, and JS are equivelent, while LDA

provides orthogonal results.

This paper contains one of the approaches from the mapping study that can

be entirely reproduced in TraceLab. In addition, the same datasets used in the

evaluation were available to me. Figure 7.3 shows the experiment in TraceLab. The

graph was modified from the experiment in the previous section by adding an LDA

component, a PCA component, and an additional metrics calculation component

for LDA.

Figure 7.4 and Table 7.2 show the results of the evaluation. The precision-recall

curve shows that LDA as configured does not perform as well as the other three IR

methods. Table 7.2a shows the results of PCA as I assumed it was configured -

VSM with tf-idf weights, and 4 principal components. The paper states they use

tf-idf weighting for VSM, and the script to calculate PCA was provided to me by

one of the authors. As the table shows, each IR technique is correlated with its own

PC. Then I surmised that the weighting scheme for VSM could be different, so I ran

it again with no weight, resulting in Table 7.2c. It showed that VSM and JS were

equivelent, but LSI was still correlated with its own PC. I realized that the paper

only reports 2 PCs, so I modified the PCA computation to calculate only 2 PCs,
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resulting in Tables 7.2b and 7.2d. In both cases they show that VSM, JS, and LSI

are highly correlated with PC1, and LDA is correlated with PC2. This is consistent

with the results in the paper. The proportion of variance of each component is

displayed at the bottom of each table.

Figure 7.3: Oliveto et al. TraceLab experiment
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Figure 7.4: Oliveto et al. Precision-recall curve of evaluation in TraceLab

PC1 PC2 PC3 PC4

VSM 0.55 0.23 0.33 0.73
JS 0.27 0.19 0.92 0.21
LSI 0.88 0.22 0.29 0.31

LDA 0.19 0.96 0.18 0.14

% Var. 0.29 0.26 0.27 0.17

(a) VSM (tf-idf), 4 PC

PC1 PC2

VSM 0.94 -0.06
JS 0.82 -0.04
LSI 0.92 -0.06

LDA 0.56 0.83

% Var. 0.68 0.17

(b) VSM (tf-idf), 2 PC

PC1 PC2 PC3 PC4

VSM 0.86 0.20 0.38 0.27
JS 0.94 0.20 0.25 -0.13
LSI 0.35 0.23 0.91 0.02

LDA 0.20 0.96 0.20 0.02

% Var. 0.45 0.26 0.27 0.02

(c) VSM (no weight), 4 PC

PC1 PC2

VSM 0.95 0.22
JS 0.93 0.18
LSI 0.73 0.41

LDA 0.23 0.96

% Var. 0.58 0.29

(d) VSM (no weight), 2 PC

Table 7.2: Oliveto et al. Primary Component Analysis of IR techniques
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7.1.4 On Integrating Orthogonal Information Retrieval Meth-

ods to Improve Traceability Recovery

Based on the findings of Oliveto et al. [43], Gethers et al. [47] investigated

the effects of combining orthogonal IR techniques. In addition to using VSM and

JS, the authors introduced Relational Topic Model (RTM) [65] as a traceability link

recovery technique. Their approach implemented PCA to determine the level of con-

tribution of each technique, which is then used as a lambda parameter for an affine

transformation between pairs of techniques. The authors performed an evaluation

on four datasets: EAnci, eTour, EasyClinic, and SMOS. They reported precision,

recall, and average precision of the results as well as link overlap metrics. The au-

thors confirmed that VSM and JS are equivelent and find that RTM is orthogonal

to the two. The authors found that using the hybrid approach of VSM+RTM and

JS+RTM significantly increases the accuracy of traceability link recovery.

This paper contains one of the approaches from the mapping study that can

be entirely reproduced in TraceLab. In addition, the same datasets used in the

evaluation were available to me. As in the previous sections, I use eTour for the

evaluation. Figure 7.7 shows the experiment in TraceLab. The graph was modified

from the experiment in the previous section by removing LSI and LDA and adding

an RTM component. Additionally, the different combinations of techniques were

added with affine transformation components. Finally, the metrics components for

each technique were added at the end of the experiment.

Figures 7.6 and 7.5 and Tables 7.3 and 7.4 show the results of the evaluation.

From the precision-recall curve, it can be seen that RTM performs about as well as JS

and VSM with no weight. Differences begin to appear, however, when investigating

the effects of VSM with tf-idf weight, which the paper claims to use. Table 7.3b

shows that each IR method is correlated with its own PC when using tf-idf weight for
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VSM, while Table 7.3a shows that VSM with no weight and JS are both correlated

with PC1, which matches the results published in the paper.

Figures 7.5a and 7.5b show the effects of combining different IR techniques on

mean average precision of traceability link recovery when using VSM with no weight

and tf-idf weight, respectively. Tables 7.4a and 7.4b show an analysis of these results.

When using VSM with no weight, combining VSM and RTM improves the MAP

of traceability link recovery by 10% over standalone VSM and 11% over standalone

RTM, which is consistent with the results shown in the paper. Similar results are

found for combining JS and RTM.

Conversely, when using VSM with tf-idf weight, VSM is the best overall per-

former. Combining VSM with RTM actually reduces accuracy by 7% over stan-

dalone VSM. JS and RTM show great improvement when combined with VSM

over their standalone technique because of tf-idf’s greater accuracy, but are still

not greater than standalone VSM. This can be interpreted as an averaging of two

techniques, rather than an information gain from combining orthogonal techniques.

What can be concluded from this evaluation is that it is very important to provide

all the details and assumptions of an approach in order to ensure reproducibility.

PC1 PC2 PC3

VSM 0.97 0.13 -0.21
JS 0.97 0.13 0.21

RTM 0.30 0.95 0.00

% Var. 0.65 0.32 0.03

(a) VSM (no weight)

PC1 PC2 PC3

VSM 0.91 0.23 0.34
JS 0.32 0.19 0.93

RTM 0.21 0.96 0.18

% Var. 0.33 0.34 0.33

(b) VSM (tf-idf)

Table 7.3: Gethers et al. Primary Component Analysis of IR techniques
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Figure 7.5: Gethers et al. MAP of IR techniques

VSM JS RTM
VSM - -7% +10%

JS -2% - +11%
RTM +11% +7% -

(a) VSM (no weight)

VSM JS RTM
VSM - -14% -7%

JS +21% - +11%
RTM +26% +7% -

(b) VSM (tf-idf)

Table 7.4: Gethers et al. Effect on MAP of combining IR techniques
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7.2 Applications of Latent Semantic Indexing for

feature location in software

This section presents existing research involved with investigating different ap-

plications of LSI for feature location. Section 7.2.1 presents background information

regarding feature location. Section 7.2.2 presents the use of LSI for feature location

by Marcus et al [39]. Section 7.2.3 presents the improvement over standalone LSI

by applying dynamic execution trace information by Liu et al [52]. Finally, Sec-

tion 7.2.4 presents the data fusion technique of combining web mining algorithms

with dynamic execution trace information by Dit et al [58].

7.2.1 Background of feature location

Feature location [39] (also known as concept location) involves locating source

code elements that implement a certain high-level functionality. For example, if

someone wanted to know where a textbox’s autocomplete functionality was located

in the code, he or she could inspect the code, starting with the textbox declaration

and tracing back to a method that calls a database and produces a list of matches.

In practice, the number of features and complexity of design in a program make this

task extremely difficult and time consuming.

Automated solutions are similar to traceability link recovery, except in this case,

the queries are natural language descriptions of a feature and the target documents

are the classes or methods that implement the feature. Approaches produce a similar

ranklist of similarities. However, a separate ranklist is created for each query and

the metrics by which approaches are compared are different. Poshyvanyk et al. [53]

introduce the effectiveness measure, which is defined as the number of methods that

a user has to investigate before locating a relevant method. This is often reported
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as two separate metrics: effectiveness best measure, which is the location of the first

relevant link in the results; and effectiveness all measure, which is the location of

all of the relevant links in the results.

The purpose of this section is to demonstrate the evolution of LSI when used

for feature location. In this approach, source code is transformed into a term-by-

document matrix alongside queries similar to VSM. The matrix is then decomposed

into a product of three other matrices via Singular Value Decomposition, then recon-

structed using two of the submatrices to form a least-squares best fit [66]. Documents

within this space are then compared via cosine similarity, producing a ranked-list of

results.

7.2.2 An Information Retrieval Approach to Concept Loca-

tion in Source Code

Marcus et al [39]. proposed using LSI as a method for identifying relevant

methods for the task of feature location. They performed an evaluation on the

Mosaic web browser [67] using user-made and automatically generated queries. They

compared their approach to static analysis tools and grep, a Unix search utility.

They reported the precision and recall of the results, noting the positions of correct

links.

The TraceLab implementation of this approach is somewhat different than the

original. Firstly, I run the evaluation on jEdit [68], which is a Java-based text editor.

Queries were formulated by extracting bug reports, feature requests, and patch

summaries from a version control repository. Furthermore, I report the effectiveness

measure metric from Poshyvanyk et al[53], as it is used in all future papers. The

approach taken by using LSI remains the same.

Figure 7.8 shows the experiment as it appears in TraceLab. The nodes in the top
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half of the experiment import the data and apply various preprocessing techniques.

The original experiment in the paper only mentions basic cleanup and identifier

splitting, but I added stopwords removal and a term stemmer to be consistent with

the other experiments in this section. After computing LSI, an oracle containing the

correct methods is imported and the effectiveness measures are computed. Finally,

the results are displayed in a GUI.

Table 7.5 shows the effectiveness best measures and effectiveness all measures

of the evaluation in TraceLab. The table shows that the median rank of the first

relevant method is 39, while the median of all ranks is 136. Although the first

relevant method was often at position 0 (ie. the first method returned), a user may

have to investigate many incorrect methods before finding a relevant one.

Percentile Best All

Max 4140 5728
Q3 165.25 508.5

Median 39 136
Q1 4.75 37.25
Min 0 0

Table 7.5: Marcus et al. effectiveness measures of TraceLab evaluation
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Figure 7.8: Marcus et al. TraceLab experiment
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7.2.3 Feature location via information retrieval based filter-

ing of a single scenario execution trace

Liu et al [52] improved on the approach of using LSI for feature location. They

surmised that if a code artifact implements a certain feature, then that code will

be run when the feature is exercised. Therefore, by recording an execution trace

when using a feature, the trace will contain methods relevant to that feature. The

resulting ranklist produced by LSI can then be pruned of all the methods that were

not present in the trace, moving the relevant methods closer to the top of the list.

The authors performed an evaluation on jEdit and Eclipse [69], a Java IDE, and

compared their approach to standalone LSI. The authors reported the effectiveness

measures of each and concluded that LSI with execution traces significantly improves

the effectiveness of feature location.

The TraceLab implementation of this approach uses jEdit, but a different ver-

sion than the one in the paper. I use the queries from the previous section. Figure 7.9

shows the experiment in TraceLab. This experiment was modified from the exper-

iment in Section 7.2.2. The nodes to the left and right of while loop were in the

initial TraceLab implementation. The experiment was modified to include a while

loop that looped over the execution trace of each query and perform the LSI+Dyn

approach. The component to compute metrics for this approach was inserted after

the goldset importer. The results of LSI and LSI+Dyn are then shown side by side

in the results visualization GUI.

Table 7.6 shows the effectiveness measures of LSI and LSI in combination with

execution traces (referred to as “LSI+Dyn” from here on). As the table shows,

LSI+Dyn greatly improves the effectiveness of feature location.
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Percentile Best All
LSI LSI+Dyn LSI LSI+Dyn

Max 4140 2438 5728 3384
Q3 165.25 116 508.5 320.25

Median 39 23 136 94
Q1 4.75 3 37.25 22
Min 0 0 0 0

Table 7.6: Liu et al. effectiveness measures of TraceLab evaluation

7.2.4 Integrating Information Retrieval, Execution and Link

Analysis Algorithms to Improve Feature Location in

Software

Dit et al [58] took the idea of incorporating dynamic information one step

further. They realized that by analyzing the execution traces, a program dependency

graph (PDG) could be created by extracting method call information. Once a PDG

was created, they could use link analysis algorithms borrowed from web mining to

determine which methods in the trace were most important. The two algorithms

they used were PageRank [70] and Hyperlinked-Induced Topic Search (HITS) [71].

PageRank imitates user behavior of navigating links on web pages and calculates

a page’s relative importance from the probability that a user on another page will

follow a link to that page. HITS treats pages as hubs and authorities, where hubs

are pages that have many links to other information and authorities are pages with

information that are pointed to by many other pages. In both cases, methods are

modeled as “pages” and method calls are “links” between pages.

From the results of the link analysis, they filtered the ranklist produced by LSI

by including only a percentage of the most important methods. For example, if

PageRank determined that methods A, B, and C were the most important in the

PDG, then the LSI ranklist would be filtered of all other methods, leaving only A,
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B, and C. This further removes irrelevant methods and moves relevant ones closer

to the top of the list. The results of the standalone technique (ie. the methods are

ranked by their link analysis scores) are also computed.

The authors compared their approach to standalone LSI and LSI+Dyn by per-

forming an evaluation on jEdit, Eclipse, and Rhino [72], a JavaScript engine written

in Java. They reported the effectiveness measures of the standalone techniques as

well as filtering the LSI ranklist with the top and bottom methods of PageRank and

HITS2, varying the amount in 10% steps. They also reported the effect of using

binary weights (ie. assigning a 0 or 1 to a link, depending on if it is called) and

frequency weights (ie. the actual number of times the method is called). They

concluded that using link analysis algorithms to complement the dynamic approach

significantly improves the effectiveness of feature location.

I was able to obtain from the authors the exact same tools and jEdit data used

in the paper. Figure 7.11 shows the experiment in TraceLab. This was built upon

the experiment in the previous section by adding PageRank and HITS components

to the while loop, then creating composite nodes to loop over the top and bottom

filtering techniques. Finally, the metrics calculations were merged into a single

composite component due to the large number of calculations needed (to preserve

space).

Figure 7.10 shows a comparison of some of the original results in the paper and

the results computed in TraceLab. From left to right, the boxplots in Figures 7.10a

and Figure 7.10b represent the effectiveness all measures for the standalone methods

used in the experiment: LSI, LSI+Dyn, Pagerank (frequency), PageRank (binary),

HITS (authorities, frequency), HITS (authorities, binary), HITS (hubs, frequency),

and HITS (hubs, binary). Small variations in the percentiles are due to differences

2The motivation for filtering the top methods returned by link analysis comes from the intuition
that in HITS, methods with high hub scores will in very general classes that perform a variety of
tasks and not relevant to the feature. They apply this to every technique for the sake of comparison.
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in the way outliers were calculated for the graphs, but the results are the same.

Due to the large amount of results, the rest of the results graphs are not shown

here. However, because I had access to the same data and tools from the paper, the

TraceLab evaluation produces the same exact results. The evaluation shows that by

combining web mining algorithms with execution traces and LSI, the effectiveness

of feature location is greatly improved.

(a) Figure 8(c) in Dit et al.
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Figure 7.10: Dit et al. Comparison of results from paper and TraceLab
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7.3 Additional Examples

This section provides additional examples of reproducing research in software

engineering. Section 7.3.1 shows how smoothing filters in the term-by-document

matrix can improve the results of traceability link recovery. Section 7.3.2 shows

the effects of combining structural information about source code with information

retrieval to improve traceability link recovery. Finally, Section 7.3.3 shows how

genetic algorithms can be applied to configure topic models to improve traceability

link recovery.

7.3.1 Improving IR-based Traceability Recovery Using

Smoothing Filters

De Lucia et al [45] proposed a new method of altering the term-by-document

matrix in order to promote and minimize certain terms in the matrix. Their ap-

proach consisted of constructing a smoothing filter to reduce the “noise” within

documents. To do this, they calculated a vector consisting of the average weight

of each term in the matrix, then subtracted that vector from each document in the

matrix. In essence, terms that appear frequently in a corpus are removed, while the

important terms remain. This is done on each set of artifacts independently. They

then computed the cosine similarities between documents.

The authors performed an evaluation of their approach on two datasets, Easy-

Clinic and Pine. They compared their approach to basic VSM and LSI and reported

the precision and recall of the results. They concluded that their approach signifi-

cantly improved the results of traceability link recovery.

This paper contains one of the approaches that can be completely implemented

in TraceLab. Furthermore, I had access to one of the datasets used in the evaluation,

EasyClinic. Figure 7.12 shows the experiment as it appears in TraceLab. After
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importing each of the artifacts types (use cases, interaction diagrams, test cases,

and code classes) and performing various preprocessing techniques, basic VSM and

VSM with the smoothing filter is computed between the source artifacts and code

classes. Finally, the precision-recall curves are computed and displayed in a GUI.

The precision-recall curves of the evaluation are shown in Figure 7.13. Fig-

ure 7.13a shows the effects of the smoothing filter in tracing use cases to code

classes. Figure 7.13b shows the effects of the smoothing filter in tracing interaction

diagrams to code classes. Figure 7.13c shows the effects of the smoothing filter in

tracing test cases to code classes. In the case of tracing use cases and interaction

diagrams to code classes, the smoothing filter significantly improves the results over

basic VSM. The smoothing filter provides no significant improvement over basic

VSM in tracing test cases to code classes. These results are consistent with the

results in the paper.
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Figure 7.12: De Lucia et al. TraceLab experiment
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(b) Interaction diagrams to code classes
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Figure 7.13: De Lucia et al. Precision-recall curves of smoothing filter



86

7.3.2 Using Structural Information and User Feedback to

Improve IR-based Traceability Recovery

Panichella et al [33] investigated improving the results of traceability link re-

covery by modifying the resultant ranklist with structural information. They pro-

posed two methods to do this, Optimistic Combination of Structural and Textual

Information (O-CSTI) and User-Driven Combination of Structural and Textual In-

formation (UD-CSTI).

In O-CSTI, structural relationships between artifacts (such as method call de-

pendencies or inheritance relationships) are used to increase the score (and thus the

position) of related links in the ranklist. For example, if use case A is related to code

class B, C, and D, and the link from A to C is at the top of the ranklist, then the

related code classes B and D are given a bonus to their similarity score, moving them

higher in the list. This bonus is computed automatically – for each source artifact

si in the ranklist, δi is computed from the maximum and minimum similarity scores

for links involving si (Equation 7.1). Then the overall bonus used is the median

value of these deltas. The bonus is applied to related links via Equation 7.2.

δi =
si,max−si,min

2
(7.1)

bonus = score+ score ∗ δ (7.2)

In UD-CSTI, this approach is complemented by user feedback. After computing

the initial ranklist, the user is presented with a link and classifies it as true or

false. The classified link is removed from the ranklist (and added to a new one if

it was true), and the remaining links are updated with the relationship bonus and

reordered. The process continues until all correct links have been retrieved.
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The authors performed an evaluation of their approach on EasyClinic, eTour,

and SMOS. They compared their technique using basic VSM and JS and report

precision-recall curves of their results. They concluded that their approach improves

the results of traceability link recovery.

This paper was published with an implementation in TraceLab. I had access

to the original experiment and data. I perform an evaluation using basic VSM and

EasyClinic. Figure 7.15 shows the experiment in TraceLab. After importing the

data and performing various preprocessing techniques, the initial IR technique is

run. Then the results of the IR technique are sent to the O-CSTI and UD-CSTI

components. The user feedback aspect of UD-CSTI is simulated using the oracle.

Finally, the precision and recall of each technique is computed and displayed in a

GUI.

Figure 7.14 shows the precision-recall curves of tracing use cases to code classes

for basic VSM, O-CSTI, and UD-CSTI. The graph shows that both O-CSTI and

OD-CSTI outperform the standalone IR technique. These results are consistent

with the paper.
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Figure 7.14: Panichella et al. Precision-recall curve of evaluation in TraceLab
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Figure 7.15: Panichella et al. TraceLab experiment
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7.3.3 Configuring Topic Models for Software Engineering

Tasks in TraceLab

Dit et al. [34] presented a method for configuring topic models to improve

traceability link recovery by using genetic algorithms. Such an approach allows topic

models to be configured without know the oracle or information about the dataset a

prioiri. Given a fitness function for the topic model, the genetic algorithm randomly

chooses configuration parameters and runs the model for a set population. The

configurations with the highest fitness score are carried over to the next iteration,

with a chance of mutation to discover new configurations. After a certain number

of iterations, the configuration with the highest fitness funtion is returned.

The authors applied the genetic algorithm to Latent Dirichlet Allocation (LDA),

using a measure from the model’s internals based on the Silhouette coefficient [73] as

the fitness function. They performed an evaluation on EasyClinic, comparing their

approach to a configuration of LDA used from previous work [43]. They concluded

that their approach greatly improves the results of traceability link recovery when

using LDA.

This paper was published with an implementation in TraceLab. I had access

to the original experiment and data. I perform the evaluation on both EasyClinic

and eTour to demonstrate its effectiveness. Figure 7.16 shows the experiment in

TraceLab. After importing the data and performing only basic preprocessing, the

genetic algorithm runs and feeds the resulting configuration parameters to LDA. At

the same time, the baseline LDA from the previous work is computed. Finally, the

precision-recall curves for each technique are calculated and displayed in a GUI.
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Figures 7.17a and 7.17b show the precision-recall curves of tracing use cases to

code classes for EasyClinic and eTour using baseline LDA and configured LDA. The

results show that using the genetic algorithm to compute an ideal set of configuration

parameters greatly improves the results of traceability link recovery when using

LDA.

Figure 7.16: Dit et al. TraceLab experiment (LDA genetic algorithm)
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Figure 7.17: Dit et al. Precision recall curves of using genetic algorithm for LDA
configuration



Chapter 8

Conclusions

In this thesis, I addressed one of the hidden problems in software engineering

research. The inability to reproduce published research – due to lack of detail,

tool or data availability, or even minute settings within an environment – creates

a serious roadblock to validating approaches and driving new ideas. Using the

TraceLab experimental workbench and the software development tools it provides, I

realized the overarching goal of providing a set of clear, precise, and available tools

for performing software engineering research. The advantages such a collection

provides, combined with the usability of TraceLab, allows researchers to execute

and publish experiments that can be validated and built upon by anyone using the

TraceLab framework.

In Chapter 2, I described previous meta-studies investigating issues with repro-

ducibility and validity in software engineering research. Furthermore, I compared

TraceLab with commonly-used research tools and enumerated why they did not

solve these issues. Chapter 3 reiterated the necessity of approaching this problem,

giving concrete examples of why even the smallest details can vastly change the

results of an approach and omitting them creates unknowns.
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In Chapter 4, I detail the workings of the TraceLab project. TraceLab is funded

by the NSF and developed by DePaul University in collaboration with many other

universities around the world, including the College of William & Mary. TraceLab

is a workbench designed to create, execute, and share research within the software

engineering community. I take advantage of the extensibility of this framework to

design and implement a new component library in order to provide the necessary

tools used in software engineering research.

In Chapter 5, I performed a systematic mapping study of software engineering

papers published in top international software engineering conferences in the past

10 years, focusing on the areas of traceability link recovery. I identified the most

common techniques used and analyzed patterns within each area. This information

was used to drive the creation of the Component Library.

Chapter 6 details the Component Library and the underlying Component De-

velopment Kit, which contains many of the tools and techniques identified in the

mapping study as well as other useful tools. Using the CL and CDK, it is possibly to

completely implement 37% of the approaches identified in the mapping study, with

an additional 37% missing only 1 technique. I provide the implementation, source

code, and documentation of the CL and CDK for public download for researchers

to use.

In Chapter 7, I use the CL and CDK in TraceLab to provide concrete examples

of reproducing previous research. I show the use of information retrieval techniques

for traceability link recovery and how they came to be used in combination, showing

the ease of which a TraceLab experiment can be modified to try new ideas. I show

the application of LSI for feature location and how it has evolved into the basis for

extensive and effective data fusion techniques. Finally, I provide additional examples

of previous published research that can be reproduced in TraceLab.

Reproducibility is a major tenet of scientific research. Without it, new ideas
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cannot be validated and built upon. My work attempts to address this issue within

the software engineering community by providing a set of tools in a framework that

contains every detail of an approach, which can be shared and built upon by others.

While the Component Library and CDK do not provide every tool necessary to a

researcher, I believe it provides a strong body of existing knowledge and lays the

foundation for future software engineering research – a future of transparency and

accelerated learning.
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[11] J. M. González-Barahona and G. Robles, “On the reproducibility of empirical
software engineering studies based on data retrieved from development reposi-
tories,” Empirical Software Engineering, vol. 17, no. 1-2, pp. 75–89, 2012.
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