

On Improving (Non)Functional Testing

Qi Luo

Nanchang, Jiangxi, China

Master of Engineering, Tsinghua University, China, 2011
Bachelor of Engineering, Beihang University, China, 2008

A Dissertation presented to the Graduate Faculty of
The College of William & Mary in Candidacy for the Degree of

 Doctor of Philosophy

Department of Computer Science

College of William & Mary
May, 2018

© Copyright by Qi Luo 2018

ABSTRACT

Software testing is commonly classified into two categories, nonfunctional
testing and functional testing. The goal of nonfunctional testing is to test
nonfunctional requirements, such as performance and reliability. Performance
testing is one of the most important types of nonfunctional testing, one goal of
which is to detect the phenomena that an Application Under Testing (AUT)
exhibits unexpectedly worse performance (e.g., lower throughput) with some
input data. During performance testing, a critical challenge is to understand the
AUT’s behaviors with large numbers of combinations of input data and find the
particular subset of inputs leading to performance bottlenecks. However,
enumerating those particular inputs and identifying those bottlenecks are
always laborious and intellectually intensive. In addition, for an evolving
software system, some code changes may accidentally degrade performance
between two software versions, it is even more challenging to find problematic
changes (out of a large number of committed changes) may lead to
performance regressions under certain test inputs. This dissertation presents a
set of approaches to automatically find specific combinations of input data for
exposing performance bottlenecks and further analyze execution traces to
identify performance bottlenecks. In addition, this dissertation also provides an
approach that automatically estimates the impact of code changes on
performance degradation between two released software versions to identify
the problematic ones likely leading to performance regressions.

Functional testing is used to test the functional correctness of AUTs.
Developers commonly write test suites for AUTs to test different functionalities
and locate functional faults. During functional testing, developers rely on some
strategies to order test cases to achieve certain objectives, such as exposing
faults faster, which is known as Test Case Prioritization (TCP). TCP
techniques are commonly classified into two categories, dynamic and static
techniques. A set of empirical studies has been conducted to examine and
understand different TCP techniques, but there is a clear gap in existing
studies. No study has compared static techniques against dynamic techniques
and comprehensively examined the impact of test granularity, program size,
fault characteristics, and the similarities in terms of fault detection on TCP
techniques. Thus, this dissertation presents an empirical study to thoroughly
compare static and dynamic TCP techniques in terms of effectiveness,
efficiency, and similarity of uncovered faults at different granularities on a large
set of real-world programs, and further analyze the potential impact of program
size and fault characteristics on TCP evaluation. Moreover, in the prior work,
TCP techniques have been typically evaluated against synthetic software
defects, called mutants. For this reason, it is currently unclear whether TCP
performance on mutants would be representative of the performance achieved
on real faults. To answer this fundamental question, this dissertation presents
the first empirical study that investigates TCP performance when applied to
both real-world faults and mutation faults for understanding the
representativeness of mutants.

TABLE OF CONTENTS

Acknowledgements vii

Dedication viii

List of Tables ix

List of Figures xiv

1 Introduction 2

2 FOREPOST: Finding Performance ProblemsAutomatically with Feedback-

Directed Learning Software Testing 9

2.1 Background and Motivation . 13

2.1.1 State of the Art and Practice 13

2.1.2 A Motivating Example . 14

2.2 The FOREPOST Approach . 17

2.2.1 An Overview of FOREPOST 17

2.2.1.1 Obtaining Rules . 17

2.2.1.2 Identifying Bottlenecks 19

2.2.2 Blind Source Separation . 20

2.2.3 Independent Component Analysis 22

2.2.4 FOREPOST and FOREPOSTRAND Architecture and Workflow 23

2.2.5 The Algorithm for Identifying Bottlenecks 26

2.3 Evaluation . 27

i

2.3.1 Research Questions . 27

2.3.2 Subject AUTs and Experimental Hardware 29

2.3.3 Research Question 1 . 31

2.3.4 Research Question 2 . 33

2.3.5 Research Question 3 . 35

2.4 Results . 36

2.4.1 Research Question 1 . 36

2.4.2 Research Question 2 . 40

2.4.3 Research Question 3 . 45

2.5 Threats to Validity . 47

2.5.1 Internal Validity . 47

2.5.2 External validity . 48

2.5.3 Construct Validity . 49

2.6 Utilizing FOREPOST in Cloud Computing 49

2.7 Related Work . 51

2.8 Conclusion and Discussion . 54

2.9 Bibliographical Notes . 55

3 Automating Performance Bottleneck Detection using Search-Based Ap-

plication Profiling 56

3.1 Problem Statement . 57

3.1.1 Background on Input-Sensitive Profiling 57

3.1.2 Analyzing Profile Data for Bottlenecks 58

3.1.3 The Problem Statement . 60

3.2 Our Approach . 61

3.2.1 Overview of GA-Prof . 61

3.2.2 Using Genetic Algorithms in GA-Prof 62

ii

3.2.2.1 Background on Genetic Algorithms 63

3.2.2.2 Why We Use Genetic Algorithms in GA-Prof 63

3.2.2.3 Automating Profiling Using GAs 64

3.2.3 Identifying Performance Bottlenecks 66

3.2.4 GA-Prof’s Architecture and Workflow 68

3.3 Empirical Evaluation . 69

3.3.1 Subject Applications . 70

3.3.2 Methodology . 70

3.3.3 Variables . 72

3.3.4 Threats to Validity . 73

3.4 Empirical Results . 74

3.4.1 Searching Through Input Combinations 75

3.4.2 Understanding Performance Bottlenecks 77

3.4.3 Comparing GA-Prof to FOREPOST 80

3.5 Related Work . 81

3.6 Conclusion and Discussion . 83

3.7 Bibliographical Notes . 84

4 Mining Performance Regression Inducing Code Changes in Evolving

Software 85

4.1 Problem Statement . 87

4.1.1 State of the Art and Practice 88

4.1.2 An Example Performance Regression 89

4.1.3 The Problem Statement . 90

4.2 Approach . 91

4.2.1 An Overview of Our Approach 91

4.2.2 Search-based Input Profiling for Performance Regressions . 92

iii

4.2.3 Identifying Performance Regression Inducing Changes via

Mining . 94

4.2.4 Workflow of PerfImpact . 97

4.3 Evaluation . 99

4.3.1 Research Questions . 99

4.3.2 Subject AUTs . 100

4.3.3 Methodology . 100

4.4 Empirical Results . 103

4.4.1 Finding Performance Regression Inputs 103

4.4.2 Identifying Code Changes 105

4.5 Threats to Validity . 108

4.6 Related Work . 110

4.7 Conclusion and Discussion . 111

4.8 Bibliographical Notes . 113

5 HowDo Static and Dynamic Test Case Prioritization Techniques Perform

on Modern Software Systems? An Extensive Study on GitHub Projects 114

5.1 Background & Related Work . 119

5.1.1 Static TCP Techniques . 121

5.1.2 Dynamic TCP Techniques 123

5.1.3 Empirical studies on TCP techniques 125

5.1.4 Mutation Analysis . 127

5.1.5 Metrics for TCP techniques 129

5.2 Empirical Study . 130

5.2.1 Research Questions (RQs): 130

5.2.2 Subject Programs, Test Suites and Faults 131

5.2.3 Design of the Empirical Study 133

iv

5.2.4 Tools and Experimental Hardware 141

5.3 Results . 142

5.3.1 RQ1 &RQ2 &RQ3: Effectiveness of Studied TechniquesMea-

sured by APFD and APFDc at Different Granularities 143

5.3.1.1 Results at Test Class Level 143

5.3.1.2 Results at Test Method Level 147

5.3.2 Impact of Subject Program’s Size 151

5.3.3 Impact of Software Evolution 152

5.3.4 Impact of Mutant Quantities on TCP Effectiveness 156

5.3.5 Impact of Mutant Types on TCP Effectiveness 158

5.3.6 Similarity between Uncovered Faults for Different TCP tech-

niques . 161

5.3.7 Efficiency of Static TCP Techniques 164

5.4 Threats to Validity . 165

5.5 Lessons Learned . 168

5.6 Conclusion and Discussion . 170

5.7 Bibliographical Notes . 171

6 Assessing Test Case Prioritization on Mutants and Real Faults 172

6.1 Background & Related Work . 176

6.1.1 TCP Problem Formulation 176

6.1.2 Studied TCP Techniques . 177

6.1.3 Threats to the Validity of Mutation-Based TCP Performance

Evaluations . 177

6.1.4 Studies Examining the Relationship Between Mutants and

Real Faults . 178

6.2 Empirical Study . 180

v

6.2.1 Research Questions (RQs): 180

6.2.2 Study Context . 181

6.2.3 Methodology . 183

6.2.3.1 RQ1: TCP Effectiveness on Real Faults 184

6.2.3.2 RQ2: Representativeness of Mutants 185

6.2.3.3 RQ3: Effects of Fault Properties 186

6.2.4 Experiment Tools and Hardware 188

6.2.4.1 Mutation Analysis 188

6.2.4.2 Implementation of TCP Techniques 188

6.2.4.3 Hardware . 189

6.3 Results . 189

6.3.1 RQ1: TCP Effectiveness on Real Faults 189

6.3.2 RQ2: Representativeness of Mutants 190

6.3.3 RQ3: Effects of Fault Properties 192

6.3.3.1 Effects of Coupling Between Mutants and Real Faults192

6.3.3.2 Effect of Different Mutation Operators 193

6.4 Threats to Validity . 195

6.5 Lessons Learned . 198

6.6 Conclusion and Discussion . 200

6.7 Bibliographical Notes . 200

7 Conclusion 201

vi

vii

ACKNOWLEDGEMENTS

I would like to thank my advisor Denys Poshyvanyk, who guided me, supported
me, and encouraged me during my whole Ph.D. life. I will never forget the
moments when he guided me through the challenges of being a Ph.D.: wrote a
research paper, prepared a research presentation, and tackled the various
obstacles I faced in my research. He helped me become a qualified independent
researcher and encouraged me during the tough times. Thank you, Denys, for
everything.

I would like to thank my committee members, Massimiliano Di Penta, Xu Liu,
Peter Kemper, and Evgenia Smirni. Thank you for your valuable suggestions,
questions, and feedback which helped me improve my work significantly.

I would like to thank my collaborators: Lingming Zhang, Kevin Moran, Mark
Grechanik, Du Shen, and also all the SEMERU members. Thank you for all your
comments, discussions, and advices to help me make my work stronger.

Finally, my deepest gratitude goes to my parents, Xiaoping Luo and Luanli Jin.
Thank you for your accomplishment, support, encouragement, and endless love.
I would not be the person I am today without you.

viii

To my parents

LIST OF TABLES

2.1 Characteristics of the insurance application Renters. 29

2.2 Independent variables in sensitivity analysis. 35

2.3 Selected rules that are learned for Renters and JPetStore. 36

2.4 Precision for FOREPOST when nu=5 and np=10 44

2.5 Recall for FOREPOST when nu=5 and np=10 44

2.6 F-score for FOREPOST when nu=5 and np=10 44

3.1 ComparingGA-Prof and FOREPOST for detecting performance bot-

tlenecks in JPetStore (JP) and DellDVDStore (DS). All numbers are

averaged over multiple runs. “# of Methods” indicates the number

of injected bottlenecks that are captured by one certain technique.

“Final Ranks” indicates the ranks of injected bottlenecks in the final

ranked list. 80

4.1 The stats of the subject programs. 100

4.2 The time difference between two versions for random inputs (Rd)

and PerfImpact selected inputs (PI) in JPetStore (JP) and Agilefant

(AF). 105

4.3 Examples of code changes in Agilefant. 107

4.4 Performance regression testing approaches. 112

5.1 The List of Contributions . 120

ix

5.2 The stats of the subject programs: Size: #Loc; TM: #test cases at

method level; TC: #test cases at class level; All: #all mutation faults;

Detected: #faults can be detected by test cases. 127

5.3 Muation Operators Used . 132

5.4 Studied TCP Techniques . 134

5.5 Results for the ANOVA and Tukey HSD tests on the average APFD

and APFDc values at test-class level, which are depicted in Figure

5.1. The last column shows the results for Kendall tau Rank Corre-

lation Coefficient τb between the average APFDc and average APFD.141

5.6 Results for the ANOVA, and Tukey HSD tests on the average APFD

and APFDc values at test-method level, which are depicted in Fig-

ure 5.2. The last column shows the results for Kendall tau Rank

Correlation Coefficient τb between the average APFDc and average

APFD. 141

5.7 The results of Wilcoxon signed rank test on the average APFD val-

ues for each pair of TCP techniques. The techniques T1 to T9 refer

to TPcg−tot, TPcg−add, TPstr, TPtopic−r, TPtopic−m, TPtotal, TPadd, TPart,

TPsearch respectively. For each pair of TCP techniques, there are

two sub-cells. The first one refers to the p-value at test-class level

and the second one refers to the p-value at test-method level. The p-

values are classfied into three categories, 1) p>0.05, 2) 0.01<p<0.05,

3) p<0.01. The p-values for categories p>0.05 and p<0.01 are pre-

sented as p>0.05 and p<0.01 respectively. If a p-value is less than

0.05, the corresponding cell is shaded. 146

5.8 The results of Wilcoxon signed rank test on the average APFDc

values for each pair of TCP techniques. This table follows exactly

the same format as Table 5.7. 146

x

5.9 Results for the ANOVA and Tukey HSD tests on the average APFD

and APFDc values at test-class level across smaller subject pro-

grams. The last column shows the results for Kendall tau Rank

Correlation Coefficient τb between the average APFDc and average

APFD. 150

5.10Results for the ANOVA and Tukey HSD tests on the average APFD

andAPFDc values at test-class level across larger subject programs.

The last column shows the results for Kendall tau Rank Correlation

Coefficient τb between the average APFDc and average APFD. . . 151

5.11Results for the ANOVA and Tukey HSD tests on the average APFD

and APFDc values at test-method level across smaller subject pro-

grams. The last column shows the results for Kendall tau Rank

Correlation Coefficient τb between the average APFDc and average

APFD. 151

5.12Results for the ANOVA and Tukey HSD tests on the average APFD

and APFDc values at test-method level across larger subject pro-

grams. The last column shows the results for Kendall tau Rank

Correlation Coefficient τb between the average APFDc and average

APFD. 152

5.13Results for average APFD values on different sizes ofmutation faults.

The last column shows the results for Kendall tau Rank Correlation

Coefficient τb between the average APFD values with different sizes

of mutation faults and the average APFD values shown in Tables 5.5

and 5.6. 156

5.14Results for average APFDc values on different sizes of mutation

faults. This table follows the same format as Table 5.13. 157

xi

5.15Results for average APFD values on different types of mutation

faults. The last column shows the results for Kendall tau Rank Cor-

relation Coefficient τb between the average APFD values with differ-

ent types of mutation faults and the average APFD values shown in

Tables 5.5 and 5.6. 158

5.16Results for average APFDc values on different types of mutation

faults. The last column shows the results for Kendall tau Rank Cor-

relation Coefficient τb between the average APFDc values with dif-

ferent types of mutation faults and the average APFDc values shown

in Tables 5.5 and 5.6. 159

5.17The classification of subjects on different granularities using Jaccard

distance. The four values in each cell are the numbers of subject

projects, the faults of which detected by two techniques are highly

dissimilar, dissimilar, similar and highly similar respectively. The

technique enumeration is consistent with Table 5.7. 164

5.18The classification of subjects on different granularities using Jaccard

distance. The four values in each cell are the numbers of subject

projects, the faults of which detected by two techniques are highly

dissimilar, dissimilar, similar and highly similar respectively. The

technique enumeration is consistent with Table 5.7. 165

5.19Execution costs for the static TCP techniques. The table lists the

average, min, max, and sum of costs across all subject programs

for both test-class level and test-method level (i.e., cost at test-class

level/cost at test-method level). Time is measured in second. . . . 165

xii

6.1 The stats of the subject programs: #Real: #real-world faults; #All:

#all mutation faults; #Detected: #mutation faults can be detected by

test cases; #Subsuming: subsuming mutants. 181

6.2 Studied TCP Techniques. 183

6.3 Average APFD & APFDc values for all eight TCP techniques, for

both real, mutation fault and subsuming mutation fault detection,

across all subject programs. Additionally, the grouping results for

the TukeyHSD test are shown in capitalized letters (e.g., AB). S.Mutants

refers to subsuming mutants. 188

6.4 Results of the ANOVA analysis and the Kendall τb Coefficient for the

overall APFD(c) values shown in Table 6.3. 190

6.5 Results for the Kendall τb RankCorrelation Coefficient between APFD(c)

values for TCP techniques on detecting mutation faults and detect-

ing each type of real faults described in Section 6.2.3.3. 190

6.6 Results for the Kendall τb RankCorrelation Coefficient between APFD(c)

values for TCP techniques on detecting real faults and detecting

each type of mutation faults. 194

xiii

LIST OF FIGURES

2.1 A speech model of blind source separation. 20

2.2 Schematics of the ICA matrix decomposition. 23

2.3 The architecture andworkflow of FOREPOST and FOREPOSTRAND.

FOREPOST does not contain the step 14. 24

2.4 The summary of the results for Empirical Study 1. 37

2.5 Average execution times (in second) for different groups of injected

bottlenecks (i.e.,bottlenecks#1 and bottlenecks#2), where np = 10

and nu = 5. 40

2.6 Average execution times (in second) when controlling different in-

dependent variables. 42

2.7 Comparison between FOREPOST using uniform or different bottle-

necks for JPetStore. The red boxplots refer to bottlenecks#1. The

green boxplots refer to bottlenecks#2. 44

2.8 Average execution times (in second) for FOREPOST and FORPOSTRAND,

where np = 10 and nu = 5. 45

2.9 Comparison between FOREPOST and FOREPOSTRAND for JPet-

Store. 47

2.10Comparison between FOREPOST and FOREPOSTRAND for Dell

DVD Store. 47

3.1 A pseudocode example of input-sensitive profiling. 58

3.2 The architecture and workflow of GA−Prof. 69

xiv

3.3 Execution elapsed time measured in seconds for subject AUTs. We

compare average elapsed times of each transaction in first and last

generations for each application. The x-axis corresponds to the first

and last generations, and y-axis corresponds to systems’ average

elapsed time. The results for all three subject applications are aver-

aged over 30 runs. Subfigure (a), (b) and (c) corresponds to JPet-

Store, DellDVDStore and Agilefant, respectively. 76

3.4 The results for elapsed execution time across every generation for

each application, measured in seconds. The x-axis corresponds

to generations, and y-axis corresponds to average elapsed time.

Subfigure (a), (b) and (c) corresponds to JPetStore, DellDVDStore

and Agilefant, respectively. 77

3.5 Distribution of the quantity of captured injected bottlenecks. The

x-axis corresponds to the number of injected bottlenecks that are

captured by one certain GA−Prof run. The y-axis corresponds to

the number of GA−Prof runs. Subfigure (a), (b) and (c) corresponds

to JPetStore, DellDVDStore and Agilefant, respectively. 78

3.6 Understanding the trend of ranks of injected bottlenecks. The x-axis

corresponds to generations, and y-axis corresponds to the rank of

bottlenecks. In each subfigure, the rank of the method is shown in

black circles. The standard deviation at each generations is shown

in black vertical lines and whiskers. The fit straight line is shown is

blue dashed lines. 79

4.1 A performance regression example due to possible thread blocking. 89

4.2 Examples of URLs and a chromosome in our GA implementation.

Each number in the chromosome refers to a unique URL ID. 92

xv

4.3 The examples of GA operators, crossover and mutation. 93

4.4 Three sample execution traces of an AUT. 96

4.5 The workflow of PerfImpact. 98

4.6 The box-and-whisker plots represent time differences between two

released versions across generations on JPetStore (JP) and Agile-

fant (AG). 103

4.7 The box-and-whisker plots represent the ranks of the changes in

Table 4.3. The x-axis represents the generations, and the y-axis

represents the ranks. Smaller values that appear on y-axis imply

higher ranks. 104

4.8 The figures show the average of total execution times of the changes

in Table 4.3. This total execution time of one change is the total ex-

ecution time of all methods in its respective impact set. The blue

dots show the average of total execution time in old version of Ag-

ilefant (v3.2), and the red dots show the average of total execution

time in new version of Agilefant (v3.3 or v3.5). The curves are the fit-

ting curves generated using Polynomial Function model. The inputs

were selected in the last generation. The x-axis represents the av-

erage of total execution time, and the y-axis represents the number

of users. Time is measured in seconds. 105

4.9 Examples of code changes in Agilefant. (a) shows the source code

of change (f) in Table 4.3, and (b) shows the source code of change

(d) in Table 4.3. 106

xvi

5.1 The box-and-whisker plots represent the values of APFD andAPFDc

for different TCP techniques at test-class level. The x-axis repre-

sents the APFD and APFDc values. The y-axis represents the dif-

ferent techniques. The central box of each plot represents the val-

ues from the lower to upper quartile (i.e., 25 to 75 percentile). . . . 143

5.2 The box-and-whisker plots represent the values of APFD andAPFDc

for different TCP techniques at test-method level. The x-axis rep-

resents the APFD and APFDc values. The y-axis represents the

different techniques. The central box of each plot represents the

values from the lower to upper quartile (i.e., 25 to 75 percentile). . . 144

5.3 The box-and-whisker plots represent the values of APFDc for differ-

ent TCP techniques at different test granularities. The x-axis repre-

sents the APFDc values. The y-axis represents the different tech-

niques. The central box of each plot represents the values from the

lower to upper quartile (i.e., 25 to 75 percentile). 145

5.4 Test-Class-level test prioritization in evolution 153

5.5 Test-Method-level test prioritization in evolution 154

5.6 Average Jaccard similarity of faults detected between static and

dynamic techniques across all subjects at method and class-level

granularity. 161

5.7 Counts and percentage for different types of mutation faults across

all subjects at cut point 10% for class-level granularity. The types

of mutation faults are classified based on the mutation operators

shown in Table 5.3. 162

xvii

5.8 Counts and percentage for different types of mutation faults across

all subjects at cut point 10% for method-level granularity. The types

of mutation faults are classified based on the mutation operators

shown in Table 5.3. 162

6.1 APFD(c) values for TCP techniques in terms of detecting different

types of real faults. 192

6.2 Examples of bug fixing changes. 194

6.3 Average APFD(c) values across different mutation operators refer-

enced as: NC = NegateConditional, RC = RemoveConditional, CC

= ConstructorCall, NVM = NonVoidMethodCall, M = Math, MV =

MemberVariable, IC = InlineConstant, I = Increments, AP = Argu-

mentPropagation, CB = ConditionalsBoundary, S = Switch, VMC =

VoidMethodCall, IN = InvertNegs, RV = ReturnVals, and RI = Re-

moveIncrements. 196

xviii

On Improving (Non)Functional Testing

Chapter 1

Introduction

Software testing is one of themost important tasks in software evolution andmaintenance.

Developers commonly perform two types of testing: functional testing [192, 307, 130, 100]

and nonfunctional testing [56, 151, 50, 312, 13]. This dissertation introduces a set of

testing approaches and empirical studies to understand and improve both of those two

types of testing.

The goal of nonfunctional testing is to test non-functional requirements, such as relia-

bility and scalability [9]. There are many types of non-functional testing, like load testing

[85, 211], performance testing [179, 213, 98, 135], stress testing [262], etc. In this dis-

sertation, I focus on improving performance testing, the goal of which is to identify the

phenomena that an Application Under Testing (AUT) exhibits unexpectedly worse perfor-

mances (e.g., longer execution time or lower throughput) [196, 197, 114]. In performance

testing, software engineers commonly rely on profilers, i.e., tools that insert instructions

into the AUT to obtain frequency, memory usage, and elapsed execution time of method

calls. When profiling, software engineers perform the following actions: 1) instrument the

AUT with a profiler and run the instrumented AUT using some input values and 2) from the

collected measurements, determine which methods are responsible for excessive execu-

tion time and resource usage. Simply put, all AUT’s methods are sorted in a descending

order by their execution times and the top N methods on this list are declared bottlenecks

2

and investigated further by engineers.

A weakness of this process is that its success for detecting bottlenecks depends on

the chosen set of input values for the AUT. A critical challenge is to profile nontrivial

applications with large numbers of combinations of their input parameter values. Many

nontrivial applications have complex logic that programmers express by using different

control-flow statements, which are often deeply nested. In addition, these control-flow

statements have branch conditions which contain expressions that use different variables

whose values are computed using some input parameters. The complete performance

analysis could be achieved if an AUT was profiled with all allowed combinations of val-

ues for its inputs. Unfortunately, this is often infeasible because of the enormous number

of combinations; for example, 20 integer inputs whose values range from zero to nine

give us 1020 combinations. It is arduous to choose specific values of input parameters

to profile the executions of these applications in order to obtain bottlenecks. Moreover,

this procedure is always manual, intellectually intensive and laborious. Also, its effec-

tiveness is limited and it increases the cost of application development. To address this

problem, input-sensitive profiling was introduced where the sizes of their inputs and the

values of the input parameters are varied to uncover performance problems in the AUT

[302, 66, 175]. However, little effort has been put into identifying the performance bot-

tlenecks under those specific input values. In addition, during software evolution, the

source code of a system frequently changes due to bug fixes or new feature requests,

which may accidentally degrade the performance of a newly released software version. It

is challenging to find problematic changes (out of a large number of committed changes)

that may be responsible for performance regressions under certain test inputs.

When performing functional testing, developers test a method or a function to examine

if the outputs are shown as expected [5]. There are different types of functional testing,

such as regression testing [296, 70], smoke testing [207, 209], sanity testing [104], and

usability testing [304, 97]. This dissertation focuses on Test Case Prioritization (TCP),

one of the most important approaches of regression testing [306, 247, 192, 172]. The

3

goal of TCP is to reorder test cases for maximizing a pre-defined objective function, such

as exposing faults earlier or reducing the execution time cost [193, 192]. TCP techniques

are broadly classified into two groups: dynamic techniques [247, 247, 145, 184] and static

techniques [311, 178, 266]. Typically, dynamic techniques apply a certain test prioritiza-

tion algorithms (e.g., total and additional greedy algorithms, genetic algorithms) on run-

time execution information (e.g., test coverage) to prioritize the test cases. While dynamic

techniques can be powerful, they may not be applicable to some software systems due

to absent coverage information or time-consuming process. Recently, researchers pro-

posed a set of TCP techniques that rely on static information extracted from source code

[311, 178, 266], and conducted a set of empirical studies to further analyze these TCP

techniques [247, 92, 82, 243, 266].

However, there is a clear gap in the existing empirical studies: i) static TCP tech-

niques have not been systematically studied against the dynamic techniques; ii) no study

has comprehensively shown the impact of different test granularities, program sizes, fault

characteristics, efficiency and the similarities in terms of uncovered faults on static tech-

niques; iii) previous studies have not evaluated TCP techniques on a large set of real-

world software systems; iv) no study has deeply analyzed the impact of software evolu-

tion on TCP domain. In addition, these TCP techniques typically are evaluated in terms

of detecting synthetic program faults, called mutants, instead of real faults. The use of

mutants in the evaluation of TCP approaches may lead to a potential threat to validity ex-

tracted from the mutant analysis. It is unclear whether the mutants are representative for

the real faults in TCP evaluation. In essence, the correlation of the performance of TCP

techniques in detecting mutants may not imply to the similar correlation in detecting real

faults. But none of the prior research studies has investigated how TCP techniques per-

form on detecting real faults and whether the performance of TCP techniques on mutation

fault detection is representative of their performance on real fault detection.

To minimize the existing gaps mentioned above, this dissertation i)proposes novel

approaches, namely FOREPOST [196] (Chapter 2), GA-Prof [258] (Chapter 3), and Per-

4

fImpact [197] (Chapter 4), which utilize Machine Learning (ML) algorithms and Genetic

Algorithms (GA) to find specific combinations of input data for exposing performance prob-

lems, and then use Independent Component Analysis (ICA) and Change Impact Analy-

sis (CIA) to further analyze execution traces for identifying performance bottlenecks or

the problematic code changes leading to performance bottlenecks; and ii) presents two

large-scale empirical studies: one compares static and dynamic TCP techniques at dif-

ferent test case granularities on a set of real-world software systems [193, 194] (Chapter

5), and the other one compares the performance of TCP techniques in terms of detecting

real faults and mutation faults in order to investigate the representativeness of mutants in

TCP evaluation (Chapter 6). This work is supported in part by the NSF CCF-1218129.

In summary, this dissertation makes the following contributions:

• Three Input-Sensitive Performance Testing Approaches (Nonfunctional Test-

ing). This dissertation proposes a set of novel approaches, namely FOREPOST

(Chapter 2), GA-Prof (Chapter 3), and PerfImpact (Chapter 4) to find specific com-

binations of input data for exposing performance problems and to further analyze

the corresponding execution traces in order to identify problematic code. In par-

ticular, FOREPOST and GA-Prof detect performance bottlenecks in single-version

scenario, while PerfImpact identifies performance regressions in an evolving sys-

tem. Moreover, we further utilize FOREPOST to build model for an AUT explored in

the cloud and create rules for programmers to improve provisioning strategies that

guide the cloud to (de)allocate resources to this AUT. This work was published in the

2015 International Symposium on Software Testing and Analysis (ISSTA) [258], the

13th International Conference onMining Software Repositories (MSR) [197], the 7th

ACM/SPEC on International Conference on Performance Engineering (ICPE) [116],

and Empirical Software Engineering (EMSE) 2017 [196].

• Two Empirical Studies for TCP Techniques (Functional Testing). To the best

of our knowledge, we conduct the first extensive empirical study (Chapter 5) aim-

5

ing at empirically evaluating four static TCP techniques and comparing them with

four state-of-art dynamic TCP techniques at different test-case granularities (e.g.,

method and class-level) in terms of effectiveness, efficiency, and similarity of faults

detected. This study was performed on 58 real-word Java programs encompass-

ing 714 KLoC. It evaluates effectiveness of TCP in terms of two popular metrics

(Average Percentage of Faults Detected (APFD) and its cost cognizant APFDc) to

investigate the potential impact of different metrics on TCP evaluation. It also inves-

tigates the potential impacts of fault characteristics (e.g., fault quantities and types),

program characteristics (e.g., program sizes) and software evolution on TCP do-

main.

In addition, this dissertation presents the first empirical study which compares the

performance of TCP techniques in terms of real fault detection to their mutation-

based performance to determine whether mutation faults are representative of real

faults in TCP domain (Chapter 6). The context of our study includes eight well-

studied TCP approaches, 75k+ mutation faults, and 357 real-world faults from five

open-source Java programs in the Defects4J dataset. The impacts for both of mu-

tant coupling and mutation operator types on TCP performance are examined in

this study. We extract several meaningful learned lessons from these two studies

which will help guide future research in TCP domain, especially regarding TCP and

mutation analysis. Some of the key learned lessons are summarized as follows:

– Test granularity impacts the effectiveness of TCP techniques. In general, for

both of APFD and APFDc values, TCP techniques on method-level granularity

are able to detect faults sooner. Thus, using method-level granularity or even

exploring finer granularities would help researchers and developers achieve

better performance for TCP techniques.

– The performance of TCP techniques is not consistent across different subject

programs. One TCP technique may outperform other techniques on some

6

subjects but perform worse on other subject programs. This finding implies

that program characteristics may affect TCP performance and suggests that

for a specific subject program it may be necessary to investigate the poten-

tial relationship between program characteristics and the performance of TCP

techniques in order to choose the best one.

– The mutant characteristics (i.e., mutant quantity and type) do not impact the

performance of TCP techniques in terms of APFD(c) values. Moreover, the

program characteristics (e.g., program size) and the software evolution have

little impact on TCP evaluation. This observation would guide researchers to

design valid experimental settings in the future.

– The similarities of the top prioritized test cases from different TCP techniques

are quite low. That is, there is only a small number of common faults detected

by the top ranked test cases from different TCP techniques. This prompts fur-

ther research into the potential for combining different types of TCP techniques

(or strategies) to achieve better performance.

– In the evaluation of TCP techniques, the mutants may not be representative for

real faults, implying that the conclusions of some prior mutant-based studies

may not be realistic. We suggest that researchers and developers should re-

visit their previous mutant-based results and involving real faults for their future

research.

– The representativeness of mutants varies across different TCP metrics (i.e.,

APFD(c)). In general, the correlation between real faults and mutants is quite

low in terms of APFD values, but this correlation is median to strong when

considering APFDc values. This finding suggests that researchers could use

APFDc metrics to evaluate TCP techniques for mutant-based analysis to make

the conclusion more realistic in the future.

– The program characteristics may determine the representativeness of mutants

7

in TCP domain. It is possible that building a fault model based on program

characteristics and developing the types of mutation operators based on such

fault model in order to improve the representativeness of mutants in TCP or

even software testing domain.

The first study was published in the ACM SIGSOFT International Symposium on the

Foundations of Software Engineering (FSE) 2016 [193]. The extended version of

this study is accepted at IEEE Transactions on Software Engineering (TSE) 2018

[194].

8

Chapter 2

FOREPOST: Finding Performance

Problems Automatically with

Feedback-Directed Learning

Software Testing

The goal of performance testing is to find performance bottlenecks, when an application

under test (AUT) unexpectedly exhibits worsened characteristics for a specific workload

[217, 281]. One way to find performance bottlenecks effectively is to identify test cases

for finding situations where an AUT suffers from unexpectedly high response time or low

throughput [150, 36]. Test engineers construct performance test cases, and these cases

include actions (e.g., interacting with GUI objects or invoking methods of exposed inter-

faces) as well as input test data for the parameters of these methods or GUI objects [138].

It is difficult to construct effective test cases that can find performance bottlenecks in a

short period of time, since it requires test engineers to test many combinations of actions

and input data for nontrivial applications.

Developers and testers need performance management tools for identifying perfor-

mance bottlenecks automatically in order to achieve better performance of software while

9

keeping the cost of software maintenance low. In a survey of 148 enterprises, 92% said

that improving application performance was a top priority [297, 252]. In a recent work,

Zaman et al. performed a qualitative study that demonstrated that performance bottle-

necks are not easy to reproduce and that developers spend more time working on them

[300]. Moreover, Nistor et al. found that fixing performance bottlenecks is difficult and

better tools for locating and fixing performance bottlenecks are needed by developers

[230, 228, 188, 189, 187]. As a result, different companies work on tools to alleviate

performance bottlenecks. The application performance management market is over 2.3

billion USD and growing at 12% annually, making it one of the fastest growing segments

of the application services market [33, 103]. Existing performance management tools col-

lect and structure information about executions of applications, so that stakeholders can

analyze this information to obtain insight into performance. Unfortunately, none of these

tools identifies performance bottlenecks automatically. The difficulty of comprehending

the source code of large-scale applications and their high complexity lead to performance

bottlenecks that result in productivity loss approaching 20% for different domains due to

application downtime [117].

Considering that source code may not even be available for some components, engi-

neers concentrate on black-box performance testing of the whole application, rather than

focusing on standalone components [14, 140]. Depending on input values, an application

can exhibit different behaviors with respect to resource consumption. Some of these be-

haviors involve intensive computations that are characteristic of performance bottlenecks

[313]. Naturally, testers want to summarize the behavior of an AUT concisely in terms of

its inputs. In this way, they can select input data that will lead to significantly increased

resource consumption, thereby revealing performance bottlenecks. Unfortunately, find-

ing proper rules that collectively describe properties of such input data is a highly creative

process that involves deep understanding of input domains [18, page 152].

Descriptive rules for selecting test input data play a significant role in software testing

[42], because these rules approximate the functionality of an AUT. For example, a rule for

10

an insurance application is that some customers will pose a high insurance risk if these

customers have one or more prior insurance fraud convictions and deadbolt locks are

not installed on their premises. Computing an insurance premium may consume more

resources for a customer with a high-risk insurance record that matches this rule versus

a customer with an impeccable record. The reason is that processing this high-risk cus-

tomer record involves executing multiple computationally expensive transactions against

a database. Of course, we use this example of an oversimplified rule to illustrate the idea.

However, even though real-world systems exhibit much more complex behavior, useful

descriptive rules often enable testers to build effective performance bottleneck revealing

test cases.

We offer a novel solution for Feedback-ORiEnted PerfOrmance Software Testing (FORE-

POST) by finding performance bottlenecks automatically through learning and using rules

that describe classes of input data that lead to intensive computations. FOREPOST is an

adaptive, feedback-directed learning testing system that learns rules from an AUT’s ex-

ecution traces. These rules provide insights into properties of test input data that lead to

increased computational loads in applications, and are used to automatically select test

input data for performance testing. Moreover, we introduce an alternative version, namely

FOREPOSTRAND, which considers both random input data and the specific inputs based

on generated descriptive rules. The intuition here is that we believe involving random in-

put data would be helpful to cover more AUT execution paths, identifying more potential

performance bottlenecks.

This chapter makes the following contributions:

• We propose a novel approach, FOREPOST, that collects and utilizes execution

traces of the AUT to learn rules that describe the computational intensity of the

workload in terms of the properties of the input data. These rules are used by an

adaptive automated test script automatically, in a feedback loop, to steer the exe-

cution of the AUT by selecting input data based on the newly learned rules.

11

• We propose another version of the approach, FOREPOSTRAND, which combines

of random input data with the input data selected by using learned rules. We expect

that involving random input data would be useful to explore more potential compu-

tationally intensive executions.

• We propose a novel algorithm to identify performance bottlenecks, which have sig-

nificant contributions to the executions with worse performance.

• We applied FOREPOST to two open-source application benchmarks, JPetStore

and Dell DVD Store. FOREPOST automatically found rules that steered executions

of JPetStore and Dell DVD Store towards input data that increased the average

execution time by 78.2 % and 333.3 %, and identified more injected performance

bottlenecks, as compared to random testing. We also conduct a controlled experi-

ment to analyze the impact of independent variables on the power of FOREPOST

to identify performance bottlenecks.

• We conducted a controlled experiment to compare FOREPOST to FOREPOSTRAND.

The experimental results demonstrate that FOREPOSTRAND helps improve the ac-

curacy of identifying bottlenecks at the expense of finding less computationally ex-

pensive bottlenecks.

• We introduced a framework, namely PRESTO, for performance testing in cloud. It

utilizes FOREPOST to automatically build behavioral models for AUTs during per-

formance testing to understand the relationship between behaviors with cloud pro-

vided resources, and recommend provisioning strategies that guide the cloud to

(de)allocate resources for AUTs. The experimental results show that PRESTO is

able to create rules for provisioning resources to maintain AUT’s throughputs at the

desired level.

12

2.1 Background and Motivation

In this section we describe the state of the art and practice in performance testing, show

a motivating example, and formulate the problem statement.

2.1.1 State of the Art and Practice

The random testing approach, as its name suggests, involves the random selection of test

input data for input parameter values, which was shown remarkably effective and efficient

for testing and bug finding [43]. It is widely used in industry, and has been proved to be

more effective than systematic testing approaches [121, 120, 236]. Concurrently, another

implementation of performance testing involves selecting a small subset of “good” test

cases with which different testing objectives can be achieved [162]. Specifically, more

performance bottlenecks can be found in a shorter period of time. Good test cases are

more likely to expose bugs and to produce results that yield additional insight into the

behavior of the application under test (i.e., they are more informative and more useful for

troubleshooting). Constructing good test cases requires significant insight into an AUT

and its features and useful rules for selecting test input data.

Performance testing of enterprise applications is manual, laborious, costly, and not

particularly effective. Several approaches were proposed to improve the efficiency of per-

formance testing [174, 37, 152]. For example, operational profile models the occurrence

probabilities of functions and the distributions of parameter values, which has been intro-

duced to test most frequently used operations [174]. Rule-based techniques are effective

for discovering performance bottlenecks by identifying the problematic patterns from the

source code, such as misunderstandings in API calls or problematic call sequences [152].

However, these techniques always work for some specific types of performance bottle-

necks, not widely used in industry. In practice, a prevalent method for performance testing

is intuitive testing, which is a method for testers to exercise the AUT based on their intu-

ition and experience, surmising probable errors [67]. Intuitive testing was first introduced

13

in 1970s as an approach to use the experience of test engineers to focus on error-prone

and relevant system functions without writing time-consuming test specifications. Thus it

lowers pre-investment and procedural overhead costs [67]. When running many different

test cases and observing application’s behavior, testers intuitively sense that there are

certain properties of test cases that are likely to reveal performance bottlenecks. How-

ever, one of the major risk of intuitive testing is losing key people (i.e., key testers). The

knowledge and experience of test engineers are gone when they leave the company.

Training new testers is time-consuming and expensive. Thus, it is necessary to distill the

properties of test cases that reveal performance bottlenecks automatically to avoid los-

ing money and time. Distilling these properties automatically into rules that describe how

these properties affect performance of the application is a subgoal of our approach.

In psychology, intuition means a faculty that enables people to acquire knowledge

by linking relevant but spatially and temporally distributed facts and by recognizing and

discarding irrelevant facts [280]. What makes intuitive acquisition of knowledge difficult

is how relevancy of facts is perceived. In software testing, facts describe properties of

systems under test, and many properties may be partially relevant to an observed phe-

nomenon. Intuition helps testers to (i) form abstractions by correctly assigning relevancy

rankings to different facts, (ii) form hypotheses based on these abstractions, and (iii) test

these hypotheses without going through a formal process. With FOREPOST, we partially

automate the intuitive process of obtaining performance rules.

2.1.2 A Motivating Example

Consider a renter insurance program, Renters, designed and built by a major insurance

company. A goal of this program is to compute quotes for insurance premiums for rental

condominiums. Renters is written in Java and it contains close to 8,500 methods that

are invoked more than three million times over the course of a single end-to-end pass

through the application. Its database contains approximately 78 million customer profiles,

14

which are used as test input data for Renters. Inputs that cause heavy computations are

sparse, and random test selection often does not perform a good job of systematically

locating these inputs. A fundamental question of performance testing is how to select a

manageable subset of the input data for performance test cases with which performance

bottlenecks can be found faster and automatically.

Consider an example of how intuitive testing works for Renters. An experienced tester

notices at some point that it takes more CPU and hardware resources (fact 1) to com-

pute quotes for residents of the states California and Texas (fact 2). Independently, the

database administrator casually mentions to the tester that a bigger number of trans-

actions are executed by the database when this tester runs test cases in the afternoon

(fact 3). Trying to find an answer to explain this phenomenon, the tester makes a mental

note that test cases with northeastern states are usually completed by noon and new test

cases with southwestern states are executed afterwards (fact 4). A few days later the

tester sees a bonfire (fact 5) and remembers that someone’s property was destroyed in

wildfires in Oklahoma (fact 6). All of a sudden the tester experiences an epiphany – it

takes more resources for Renters to execute tests for the states California and Texas be-

cause these states have the high probability of having wildfires. When test cases are run

for wildfire states, more data is retrieved from the database and more computations are

performed. The tester then identifies other wildfire states (e.g., Oklahoma) and creates

test cases for these states, thereby concentrating on more challenging tests for Renters

rather than blindly forcing all tests, which is unfortunately a common practice now [219].

Moreover, even if the tester detects that the test cases for the states take more execution

resources, it is also important to pinpoint the reason why test cases that consume more

resources. When the tester looks into the execution information of these test cases, he

finds that these test cases always execute some specific methods that take an unexpect-

edly long time to execute. Thereby, the tester identifies the performance bottlenecks and

tries to optimize these methods to save time for testing. Furthermore, it is also helpful

to detect performance bottlenecks if testers find that test cases for some states perform

15

against their intuition. For example, some northern states like Minesota never have wild-

fires, so its insurance quotes relevant with wildfires should be nearing zero. However,

some intensive checking for wildfire area for these states may still be performed. Hence,

it is possible that these test cases invoke some unnecessary methods consuming more

resources than necessary. The testers can look into the corresponding execution traces

to pinpoint the potential performance bottlenecks.

This long and cumbersome procedure reflects what stakeholders have to go through

frequently to find performance bottlenecks. Doing it can be avoided if, in our example

there was a rule that specified that additional computations are performed when the input

data includes a state where wildfires are frequent. The methods invoked by this input data

that take more resource can be pinpointed automatically. Unfortunately, abstractions of

rules that provide insight into the behavior of the AUT and the identification of performance

bottlenecks automatically are difficult to obtain. For example, a rule may specify that

the method checkFraud is always invoked when test cases are good and the values of

the attribute SecurityDeposit of the table Finances are frequently retrieved from the

backend database. This information helps performance testers to create a holistic view

of testing, and to select test input data appropriately, thereby reducing the number of tests.

Thus, these rules can be used to select better test cases and identify the performance

bottlenecks automatically.

Rules for selecting test input data that quickly lead to finding performance bottlenecks

are notoriously difficult to capture. Since these rules are buried in the source code, they

are hard to locate manually. Test engineers must intimately know the functionality of the

subject application under test, understand how programmers designed and implemented

the application, and hypothesize on how the application behavior matches the require-

ments. Without having useful rules that summarize these requirements, it is difficult to

define objectives that lead to selecting good test cases [162]. Moreover, the performance

bottlenecks are also difficult to locate manually, since the tester needs to understand ex-

actly how the AUT executes with the selected input data and analyze each methods to

16

pinpoint the ones which take more resources.

Currently, the state-of-the-art for finding useful rules is to use the experience and the

intuition of the performance test engineers who spent time observing the behavior of AUTs

when running manually constructed test cases. There is little automated support for dis-

covering problems with performance testing. A recent work by Jiang et al. is the first that

can automatically detect performance bottlenecks in the load testing results by analyzing

performance logs [150]. However, the test inputs that cause performance bottlenecks

are not located. Experience and intuition are the main tools that performance test engi-

neers use to surmise probable errors [221, 67]. Our goal is to automate the discovery of

rules and abstractions that can help stakeholders pinpoint performance bottlenecks and

to reduce the dependency on experience and intuition of test engineers.

2.2 The FOREPOST Approach

In this section we give an overview of FOREPOST and FOREPOSTRAND, explain the

detailed algorithm, and describe the architecture and workflow finally.

2.2.1 An Overview of FOREPOST

There are two key ideas behind FOREPOST: 1) extracting rules from execution traces

that describe relations between input data and the corresponding workloads of perfor-

mance tests and 2) identifying bottleneck methods using these rules. Besides learned

rules, FOREPOSTRAND involves random input data to execute more execution paths.

2.2.1.1 Obtaining Rules

As part of the first key idea, the instrumented AUT is initially running using a small number

of randomly selected test input data. Its execution profiles are collected and automatically

clustered into different groups that collectively describe different performance results of

17

the AUT. For example, there can be two groups that are corresponding to good and bad

performance test cases, respectively.

The set of values for the AUT inputs for good and bad test cases represent the in-

put to a Machine Learning (ML) classification algorithm. In FOREPOST, we choose the

rule learning algorithm, called Repeated Incremental Pruning to Produce Error Reduction

(RIPPER) [65], to obtain the rules that guide the selection of test input data in test scripts.

RIPPER is a rule learning algorithm, which is modified from the Incremental Reduced

Error Pruning (IREP) [102]. It integrates pre-pruning and post-pruning into a learning

phrase and follows a separate-and-conquer strategy. Each rule will be pruned right after

it is generated, which is similar to the IREP. But the difference is that it chooses an al-

ternative rule-value metric in the pruning phrase, provides a new stopping condition and

optimizes the initial rule set, which is obtained by IREP.

This input of ML algorithm is described as implications of the form VI1 , . . . , VIk → T ,

where VIm is the value of the input Im and T ∈ {G,B}, with G and B representing good

and bad test cases correspondingly. In fact, T is the summarized score of an execution

trace that describes summarily whether this execution has evidence of performance bot-

tlenecks. The ML classification algorithm learns the model and outputs rules that have

the form I1⊙ VI1 • I2⊙ VI2 • . . . • Ik ⊙ VIk → T , where ⊙ is one of the relational operators

(e.g., > and =) and • is one of the logical connectors (i.e., ∧ and ∨). These rules are

instrumental in guiding the selection of the test input data in test scripts. For example, in

a web application, if I1 refers to a URL request “viewing the page of cat”, and I2 refers to

a URL request “viewing the page of dog”, the rule (I1 = VI1)∧ (I2 > VI2)→ Gmeans that

“viewing the page of cat” VI1 times and “viewing the page of dog” more than VI2 times is

good to trigger performance bottlenecks. The next test cases should be generated based

on this rule. More detailed rules are provided in Table 2.3.

We first repeatedly run the experiment with the randomly selected initial seeds from

the input space, which are different each time. Then, new values are selected from the

input space either randomly, if rules are not available, or based on learned rules. A feed-

18

back loop is formed by supplying these learned rules, which are obtained using the ML

classification algorithm, back into the test script to automatically guide the selection of test

input data. Using the newly learned rules, the test input data is partitioned and the cycle

repeats. The test script selects inputs from different partitions, and the AUT is executed

again. New rules are re-learned from the collected execution traces. If no new rules are

learned after some time of testing, the partition of test inputs is stable with a high degree of

probability. At this point the instrumentation can be removed and the testing can continue,

and the test input data is selected using the learned rules.

2.2.1.2 Identifying Bottlenecks

Our goal is to automatically identify bottlenecks as method calls whose execution seri-

ously affects the performance of the whole AUT. For example, consider a method that

is periodically executed by a thread which checks if the content of some file is modified.

While this method may be one of the bottlenecks, it is invoked in both good and bad test

cases. Thus, its contribution to the resource consumption as the necessary part of the

application logic does not lead to any insight that may resolve a performance problem.

Our second key idea is to consider the most significant methods that occur in good test

cases and that are not invoked, or have little to no significance, in bad test cases, where

the significance of a method is a function of the resource consumption that its execu-

tion triggers. We measure resource consumption as a normalized weighted sum of (i) the

number of times that this method is invoked, (ii) the total elapsed time of its invocations mi-

nus the elapsed time of all methods that are invoked from this method, and finally, (iii) the

number of methods whose invocations are spawned from this method. In FOREPOST,

Independent Component Analysis (ICA) is used to identify the performance bottlenecks.

The detailed algorithm will be explained in sections 2.2.2 and 2.2.3.

19

2.2.2 Blind Source Separation

Large applications contain multiple features, and each of these requirements is imple-

mented using different methods. For example, in JPetStore, the high-level requirements

are “place an order”, “search an item”, or “create an account” et al.. Each AUT’s run

involves thousands of its methods that are invoked millions of times. The resulting execu-

tion trace is a mixture of different method invocations, each of which addresses a part of

some features. These traces are very large. In order to identify most significant methods,

we need an approach that allows us to (i) compress information in these traces and (ii)

automatically break these traces into components that match high-level features in order

to identify the methods with the most significant contributions to these components. Un-

fortunately, using transactional boundaries to separate information in traces is not always

possible (e.g., when dealing with file operations or GUI frameworks). We reduced the

complexity of the collected execution traces by categorizing them into components that

roughly correspond to different features.

We draw an analogy between separating method invocations in execution traces into

components that represent high-level features and a well-known problem of separating

signals that represent different sources from a signal that is a mixture of these separate

signals. This problem is known as blind source separation (BSS) [238, pages 13-18].

Figure 2.1: A speech model of blind source separation.

The idea of BSS is illustrated using a model where two people speak at the same time

in a room with two microphones M1 and M2 as it is shown in Figure 2.1. Their speech sig-

20

nals are designated as source 1 and source 2. Each microphone captures the mixture

of the signals source 1 and source 2, which are the corresponding signal mixtures from

M1 and M2 respectively. The original signals source 1 and source 2 are separated from

the mixtures using a technique called independent component analysis (ICA) [136, 112].

ICA is based on the assumption that different signals from different physical processes

are statistically independent. For example, different features are often considered inde-

pendent since they are implemented in applications as separate concerns [237, 264].

When physical processes are realized (e.g., different people speak at the same time, or

stocks are traded, or an application is run and its implementations of different features

are executed in methods), these different signals are mixed, and these signal mixtures

are recorded by some sensors. Using ICA, independent signals can be extracted from

these mixtures with a high degree of precision.

In this paper we adapt the BSS model to automatically decompose execution traces

into components that approximately match high-level features, and then identifying the

methods with the most significant contributions to these components. Nontrivial applica-

tions implement quite a few high-level features in different methods that are executed in

different threads, often concurrently. We view each feature as a source of a signal that

consists of method calls. When an application is executed, multiple features are real-

ized, and method invocations are mixed together in a mixed signal that is represented by

the execution profile. Microphones are represented by instrumenters that capture pro-

gram execution traces; multiple executions of the application with different input data are

equivalent to different speakers talking at the same time, and as a result, multiple signal

mixtures (i.e., execution traces for different input data with mixed realized features) are

produced. With ICA, not only it is possible to separate these signal mixtures into compo-

nents, but also to define most significant constituents of these signals (i.e., method calls).

We choose ICA because it works with non-Gaussian distributions of data, which is the

case with FOREPOST.

21

2.2.3 Independent Component Analysis

A schematics of the ICA matrix decomposition is shown in Figure 2.2. The equation

x = A · s described the process, where x is the matrix that contains the observed signal

mixtures and A is the transformation or mixing matrix that is applied to the signal matrix

s. In our case, the matrix x is shown in Figure 2.2 on the left hand side of the equal sign,

and its rows correspond to application execution traces from different input data, and its

columns correspond to method invocations that are observed for each trace.

Each element of the matrix x is calculated as xji =
∑n

k=1 λk ·M j
i,k, where λ are nor-

malization coefficients computed for the entire matrix x to ensure 0 ≤ xji ≤ 1, M are

different metrics that are considered for method i in the trace j. For different types of

applications, different metrics can be considered. For example, in a generic application,

matrix x is calculated with three different metrics, the number of times that the method

j is invoked in the trace i (M j
i,1), the total elapsed time of these invocations minus the

elapsed time of all methods that are invoked from this method in this trace (M j
i,2), and

the number of methods that are invoked from this method (M j
i,3). In a database applica-

tion, matrix x can be calculated with two additional metrics, the number of attributes that

this method accesses in the databases (M j
i,4), and the amount of data that this method

transfers between the AUT and the databases (M j
i,5). For example, assume there is a

method a, which is invoked 20 times during the execution, totally takes 32.8 ms to exe-

cute, calls methods b (8.1 ms) and c (2.3 ms), and accesses 12 attributes in the database

for transferring totally 13.7 kb data. According to the equation, its weight is equal to

λ1 · 20+λ2 · (32.8− 8.1− 2.3)+λ3 · 2+λ4 · 12+λ5 · 13.7. Naturally, xji = 0 means that the

method i is not invoked in the trace j, while xji = 1 means that the given method makes

the most significant contribution to the computation in the given trace.

Using ICA, the matrix x is decomposed into a transformation and a signal matrices

that are shown on the right hand side of the equal sign in Figure 2.2. The input to ICA is

the matrix x and the number of source signals, which in our case is the number of features

22

Figure 2.2: Schematics of the ICA matrix decomposition.

(features in the Figure 2.2) implemented in the application. The elements of the matrix A,

Aq
p, specify the weights that each profile p contributes to executing code that implements

the feature q, and the elements of the matrix s, skq , specify the weights that each method

k contributes to executing code that implements the feature q. Methods that have the

highest weights for the given features are considered the most significant and interesting

for troubleshooting performance bottlenecks. This is a hypothesis that we evaluate in

Sections 4.3 and 4.4.

2.2.4 FOREPOST and FOREPOSTRAND Architecture and Workflow

The architecture of FOREPOST and FOREPOSTRAND is shown in Figure 2.3. Solid ar-

rows show command and data flows between components, and numbers in circles indi-

cate the sequence of operations in the workflow. The beginning of the workflow is shown

with the fat arrow that indicates that the Test Script executes the application by simulating

users and invoking methods of the AUT interfaces. The Test Script is written (1) by the

test engineer as part of automating application testing.

Once the test script starts executing the application, its execution traces are collected

(2) by the Profiler, and these traces are forwarded to the Execution Trace Analyzer,

which produces (3) the Trace Statistics. We implemented the Profiler using the TPTP

framework1. These statistics contain information on each trace, such as the number of

invokedmethods, the elapsed time it takes to complete the end-to-end application run, the
1http://eclipse.org/tptp, last checked August 12, 2015

23

Figure 2.3: The architecture and workflow of FOREPOST and FOREPOSTRAND. FOREPOST
does not contain the step 14.

number of threads, and the number of uniquemethods that were invoked in this trace. The

trace statistics are supplied (4) to the module Trace Clustering, which uses the average

execution time to perform unsupervised clustering of these traces into two groups that

correspond to (5) Good and (6) Bad test traces. The user can review the results of

clustering and (7,8) reassign the clustered traces if needed. These clustered traces are

supplied (9,10) to the Learner, which uses a ML algorithm, RIPPER [65], to learn the

classification model and (11) output rules that were described in Section 3.2.1. The user

can review (12) these rules and mark some of them as erroneous if the user has sufficient

evidence to do so. Next, the rules are supplied (13) to the Test Script. In FOREPOST,

once the Test Script receives a new set of rules, it partitions the input space into blocks

according to these rules and starts forming test inputs by selecting one input from each

block. In FOREPOSTRAND, the Test Script is a combination of random input data and

several blocks of input space that correspond to different rules. The major difference in

the architecture of FOREPOSTRAND is that it considers random URLs as input data that

is shown in step (14) does not contain this step (14). We expect that adding the random

input data could enlarge the test coverage to find more potential performance bottlenecks.

24

After generating new input data, the Profiler collects execution traces of these new test

runs. The cycle repeats with new rules that are learned after several passes, and the

input space is repartitioned adaptively to accommodate these rules. We implemented the

ML part of FOREPOST using JRip2, which is implemented by Weka [284].

The test input data is extracted from existing repositories or databases. This is a

common practice in industry, and we confirmed it with different performance testing pro-

fessionals after interviewing professionals at IBM, Accenture, two large health insurance

companies, a biopharmaceutical company, two large supermarket chains, and three ma-

jor banks. Recall that the application Renters has a database that contains approximately

78 million customer profiles, which are used as the test input data for different applications

including Renters itself. We repeatedly ran the experiment with the randomly selected

initial seeds from the input space, which are different each time. The new values are

selected from the input space either randomly, if rules are not available, or are based on

the newly learned rules.

Finally, once the input space is partitioned into clusters that lead to good and bad test

cases, we want to find methods that are specific to good performance test cases and that

are most likely to contribute to bottlenecks. This task is accomplished in parallel to com-

puting rules, and it starts when the Execution Trace Analyzer produces (15) the method

and data statistics of each trace, and then uses this information to construct (16) two

matrices xB and xG for bad and good test cases correspondingly, based on the informa-

tion provided by (17). Constructing these matrices is done as described in Section 2.2.3.

Once these matrices are constructed, ICA decomposes them (18) into the matrices sB

and sG corresponding to bad and good tests. Recall that our key idea is to consider the

most significant methods that occur in good test cases and that are not invoked, or have

little to no significance in bad test cases. Cross-referencing the matrices sB and sG, which

specify the method weights for different features, the Contrast Mining (19) compares the
2http://weka.sourceforge.net/doc.stable/weka/classifiers/rules/JRip.html, last checked Apr

10, 2015

25

method weights in both of good and bad test cases, and determines the top methods that

the performance testers should look at (20) to identify and debug possible performance

bottlenecks. This step completes the workflow of FOREPOST. The detailed algorithm for

identifying bottlenecks, including ICA and Contrast Mining, is shown in the section 2.2.5.

2.2.5 The Algorithm for Identifying Bottlenecks

In this section we describe our algorithm for identifying bottlenecks using FOREPOST and

FOREPOSTRAND. This algorithm clusters the traces based on the trace statistics, and

then generates the matrices for both good and bad test cases. By using the ICA algorithm,

it calculates the weight for each method in both good and bad test cases. If one method

is significant in good test cases but not significant in bad test cases, then we conjecture

that it is likely to be a bottleneck. This algorithm provides a ranked lists of bottlenecks as

its final output. The algorithm FOREPOST is shown in Algorithm 1. FOREPOST takes as its

input the set of captured execution traces, T , and the signal threshold, U , which is used

to select methods whose signals indicate their significant contribution in execution traces.

The set of methods that are potential bottlenecks, B, is computed and returned in line 15

of the algorithm.

In step 2 the algorithm initializes to the empty set the set of bottlenecks and the set

of clusters that contain execution traces that are matched to good and bad test cases.

In step 3 the procedure ClusterTraces is called that automatically clusters execution

traces from the set T into good (Cgood) and bad (Cbad) test case clusters. Next, in steps

4 and 5 the procedure CreateSignalMixtureMatrix is called on clusters of traces that

correspond to bad and good test cases respectively to construct two matrices xb and xg

corresponding to bad and good test cases, as described in Section 2.2.4. In step 6 and 7,

the procedure ICA decomposes these matrices into the matrices sb and sg corresponding

to bad and good test cases, as described in step (15) in Section 2.2.4.

Next, the algorithm implements the Contrast Mining component in steps 8–15, mining

26

all the methods for all the feature components in the decomposed matrices. More specif-

ically, for each method whose signal exists in the transformation and signal matrices that

correspond to good cases, we compare if this method does not occur in the counterpart

matrices for bad test case decompositions. Alternatively, if the same method from the

same component occurs, then the distance between these two signals in the good and

bad test should be quite large. The distance is calculated as shown in equation 2.1, where

M i
g = Mk

b ∧ Rj
g = Rl

b, M = method, g = good, b = bad, R = component, which means the

same method from the same component occurs.

Deg =

NMg∑
i=0

NRg∑
j=0

√(
SLij

g − SLkl
b

)2
(2.1)

In this equation, SL = signal, Deg = distance for each method, NMg = the number of good

methods, NRg = the number of components. We consider this distance as the weight for

each method, and rank all the methods based on their weights, as the step 16 shows.

This ranked list BRANK is returned in line 17 as the algorithm terminates.

2.3 Evaluation

In this section, we state our research questions (RQs) and we describe how we eval-

uated FOREPOST on three applications: the commercial application, Renters, that we

described as our motivating example in Section 2.1.2 and two open-source applications,

JPetStore and Dell DVD Store, which are frequently used as industry benchmarks.

2.3.1 Research Questions

In this paper, we make one major claim – FOREPOST is more effective than random

testing, which is a popular industrial approach. We define “more effective” in two ways:

(i) finding inputs that lead to significantly higher computational workloads and (ii) finding

performance bottlenecks. We seek to answer the following research questions:

27

Algorithm 1: The algorithm for identifying bottlenecks.
1: ForePost(Execution Traces T , Signal Threshold U)
2: B ← ∅, Cgood ← ∅, Cbad ← ∅{Initialize values for the set of bottlenecks, the set of

clusters that co- ntain execution traces that are matched to good and bad test
cases.}

3: ClusterTraces(T) 7→ (Cgood 7→ {tg}, Cbad 7→ {tb}), tg, tb ∈ T, tb ∩ tb = ∅
4: CreateSignalMixtureMatrix(Cgood) 7→ matrix xg
5: CreateSignalMixtureMatrix(Cbad) 7→ matrix xb
6: ICA(xg) 7→ ((Ag, sg) 7→ (Lg 7→ ({< Mg, Rg, SLg >})))
7: ICA(xb) 7→ ((Ab, sb) 7→ (Lb 7→ ({< Mb, Rb, SLb >})))
8: for all eg 7→ {< M i

g, R
j
g, SL

ij
g >} ∈ Lg do

9: for all eb 7→ {< Mk
b , R

l
b, SL

kl
b >} ∈ Lb do

10: if M i
g = Mk

b ∧Rj
g = Rl

b then
11: Calculate Deg

12: B ← B∪ < eg, Deg >
13: end if
14: end for
15: end for
16: Rank B
17: return BRANK

RQ1: How effective is FOREPOST in finding test input data that steer applications to-

wards more computationally intensive executions and identifying bottlenecks with a

high degree of automation?

RQ2: How do different parameters (or independent variables) of FOREPOST affect its

performance for detecting injected bottlenecks in controlled experiments?

RQ3: How effective is FOREPOSTRAND in finding test input data that steer applications

towards more computationally intensive executions and identifying bottlenecks with

a high degree of automation?

The rationale for these RQs lies in the complexity of the process of detecting perfor-

mance bottlenecks. Not all methods are bottlenecks whose execution times are large.

For example, the method main can be described as a bottleneck, since it takes naturally

the most time to execute. However, it is unlikely that a solution may exist to reduce its

execution time significantly. Thus, the effectiveness of bottleneck detection involves not

28

only the precision with which performance bottlenecks are identified, but also in how fast

they can be found and how different parameters affect this process.

In order to address these RQs, we conducted three empirical studies. In this section,

we first describe the subject applications used in the studies, then we cover the method-

ology and variables for each empirical study. The results are presented in Section 4.4.

Table 2.1: Characteristics of the insurance application Renters.
Renters Size NOC NOM NOA MCC NOP
Component [LOC]
Authorization 742 3 26 1 4.65 1
Utils 15,283 16 1,623 1,170 1.52 9
Libs 85,892 284 6,390 5,752 1.68 26
Eventing 267 3 11 1 4.27 1
AppWeb 8,318 116 448 351 1.92 11
Total 110,502 422 8,498 7,275 - 48

2.3.2 Subject AUTs and Experimental Hardware

We evaluate FOREPOST and FOREPOSTRAND on three subject applications: Renters,

JPetStore and Dell DVD Store. Renters is a commercial medium-size application that

is built and deployed by a major insurance company. Renters serves over 50,000 daily

customers in the U.S. and it has been deployed for over seven years. JPetStore and Dell

DVD Store are open-source applications that are often used as industry benchmarks,

since they are highly representative of enterprise-level database-centric applications.

The Renters is a J2EE application that calculates the insurance premiums for rental

condominium. Its software metrics are shown in Table 2.1, where Size = lines of code

(LOC), NOC = number of classes, NOM = number of methods, NOA = number of at-

tributes, MCC = Average McCabe cyclomatic Complexity, NOP = number of packages.

The backend database is DB2 running on the IBM Mainframe, its schema contains over

700 tables including close to 15,000 attributes that contain data on over 78 million cus-

tomers, which are used as the input to FOREPOST. The application accepts input values

29

using 89 GUI objects. The total number of combinations of input data is approximately

1065, making it infeasible to comprehensively test Renters. We used Renters in our moti-

vating example in Section 2.1.2.

JPetStore is a Java implementation of the PetStore benchmark, where users can

browse and purchase pets, and rate their purchases. This sample application is typical

in using the capabilities of the underlying component infrastructures that enable robust,

scalable, portable, and maintainable e-business commercial applications. It comes with

full source code and documentation, therefore, we used it in the evaluation of FOREPOST

and demonstrated that we can build scalable security mechanisms into enterprise solu-

tions. We used iBatis JPetStore 4.0.53. JPetStore has 2,139 lines of code, 386 methods,

36 classes in 8 packages, with the average cyclomatic complexity of 1.224; it is deployed

using the web server Tomcat 6.0.35 and it uses Derby as its backend database.

The Dell DVD Store 45 is an open source simulation of an online e-commerce site,

and it is implemented in MySQL along with driver programs and web applications. For

the evaluation, we injected artificial bottlenecks into Dell DVD Store for experiments. It

contains 32 methods totally, and it uses MySQL as its backend database. For both of the

JPetStore and Dell DVD Store, we have an initial set of URLs as the input for FOREPOST.

The experiments on Renters were carried out at the premises of the insurance com-

pany using Dell Precision T7500with a Six Core Intel Xeon Processor X5675, 3.06GHz,12M

L3, 6.4GT/s, 24GB, DDR3 RDIMM RAM, 1333MHz. The experiments with JPetStore

were carried out using two Dell PowerEdge R720 servers each with two eight-core Intel

Xeon CPUs E5-2609 2.40 GHz, 10M, 6.4GT/s, 32GB RAM, 1066 MHz. The experiments

with Dell DVD Store were carried out using one Thinkpad W530 laptop with an Intel Core

i7-2640M processor, 32GB DDR3 RAM.
3http://sourceforge.net/projects/ibatisjpetstore, last checked Apr 10, 2015
4http://en.community.dell.com/techcenter/extras/w/wiki/dvd-store.aspx, last checked Apr 10,

2015
5http://linux.dell.com/dvdstore/, last checked Apr 10, 2015

30

2.3.3 Research Question 1

Our goal is to determine which approach is better for finding good performance test cases

faster. Given the complexity of the subject applications, it is not clear with what input

data the performance can be worsened significantly for these applications. In addition,

given the large space of the input data, it is not feasible to run these applications on

all the inputs to obtain the worst performing execution profiles. These limitations dictate

the methodology of our experimental design, specifically for choosing the competitive

approaches to FOREPOST. We selected the random testing as the main competitive

approach to FOREPOST, since it is widely used in industry and it has been proved to

consistently outperform different systematic testing approaches [236, 121]. To support

our claims in this paper, our goal is to show, with strong statistical significance, under

what conditions FOREPOST outperforms random testing.

JPetStore is based on the client-server architecture, where its GUI front end is web-

based and it communicates with the J2EE-based backend that accepts HTTP requests

in the form of URLs containing an address to different components and parameters for

those components. For example, a URL can contain the address to the component that

performs checkout and its parameters could contain the session ID. We define a set of

URL requests that originate from a single user as a transaction. The JPetStore backend

can serve multiple URL requests from multiple users concurrently. Depending on the

type of URL requests in these transactions and their frequencies, some transactions may

cause the backend server of JPetStore to take longer time to execute.

To obtain URL requests that exercise different components of JPetStore, we used the

spider tool in JMeter to traverse the web interface of JPetStore, and recorded the URLs

that were sent to the backend during this process. In random testing, multiple URLs were

randomly selected to form a transaction. In FOREPOST, the URL selection process was

guided by the learned rules. We limited the number of URLs in each transaction to 100.

This number was chosen experimentally based on our observations of JPetStore users

31

who explored approximately 100 URLs before switching to other activities. Increasing the

number of certain URL requests in transactions at expense of not including other URL

requests may lead to increased workloads, and the goal of our experimental evaluation

is to show that FOREPOST eventually selects test input data (i.e., customer profiles for

Renters or combinations of URLs for JPetStore and Dell DVD Store) that lead to increased

workloads when compared to the competitive approaches.

When testing JPetStore and Dell DVD Store, URLs in a transaction are issued to

the backend consecutively to simulate a single user. Multiple transactions are randomly

selected and issued in parallel to simulate concurrent users using the system. During the

testing we used different numbers of concurrent transactions, and measured the average

time required by AUT backend to execute a transaction. A goal of this performance testing

was to find combinations of different URLs in transactions for different concurrent users

that lead to significant increase in average time per transaction, which is often correlated

with the presence of performance bottlenecks. Since our experiments involved random

selection of input data, it was necessary to conduct the experiments multiple times and

pick the average to avoid skewed results. We ran each experiment 5 times on each

subject to consider the collected data as a good representative sample

Dependent variables are the throughput or the average number of transactions or runs

that the subject AUTs can sustain under the load, the average time that it takes to execute

a transaction or run the AUT end to end. Thus, if an approach achieves a lower throughput

or higher average time per transaction with some approach, it means that this particular

approach finds test input data which are more likely to expose performance. The effects

of other variables (the structure of AUT and the types and semantics of input parameters)

are minimized by the design of this experiment.

32

2.3.4 Research Question 2

The goal of Empirical Study 2 is to provide empirical evidence to answer the following

two questions. The first one is: can FOREPOST identify injected bottlenecks? To

test the sensitivity of FOREPOST in detecting performance bottlenecks, we introduced

different artificial bottlenecks, such as obvious bottlenecks and borderline bottlenecks.

The obvious bottlenecks are computationally expensive operations that have a clear im-

pact on software performance, but the borderline bottlenecks are the operations that may

or may not be spotted as potential bottlenecks. With different injected bottlenecks, can

FOREPOST identify the borderline bottlenecks correctly? If not, what kind of bottlenecks

can or can not be found?

We added two different groups of delays into JPetStore as bottlenecks. The first group

contains bottlenecks with exactly the same delay, whereas the second group contains

bottlenecks with different length of delays. The bottlenecks#1 contain methods with the

same delay of 0.1s in each bottleneck, and the bottlenecks#2 contain methods with dif-

ferent delays (e.g., 0.05s, 0.1s and 0.15s). The artificial bottlenecks were injected into

nine methods from the 386 probed methods. On the other hand, we injected one group of

bottlenecks with the same delay into Dell DVD Store. Since Dell DVD Store only contains

32 native methods, we decided to inject the artificial bottlenecks into both the Dell DVD

Store source code and the standard libraries (two in source code and three in library). To

make sure that the injected bottlenecks are going to be representative, before injecting

these bottlenecks, we ran FOREPOST on JPetStore to find the original bottlenecks (i.e.,

methods from the original code that were ranked on the top when no artificial bottlenecks

were injected), as well as the original positions of the injected bottlenecks. The injected

bottlenecks are ranked on low positions, that implies that our injected bottlenecks are

not really original bottlenecks and we choose them randomly. After injecting bottlenecks,

some of the artificial bottlenecks are ranked in the top ten results, but the original bottle-

necks are ranked on lower positions , implying that the lengths of delays which we injected

33

are significant enough to be detected.

The second question is: how do different parameters (or independent vari-

ables) in FOREPOST affect its performance for detecting injected bottlenecks? To

answer this question, we introduced a controlled experiment for sensitivity analysis on

FOREPOST. In the sensitivity analysis, we considered the following two key parameters,

namely, the number of profiles collected for learning rules and the number of iterations,

as they affect the effectiveness of the rules. Furthermore, the number of artificial bottle-

necks and the number of usersmay also impact the performance of FOREPOST in both of

finding inputs steering application towards computationally intensive executions and iden-

tifying performance bottlenecks. All in all, four independent variables are investigated in

the sensitivity analysis. Since our experiments involved random selection of input data,

it was important to conduct these experiments multiple times to avoid skewed results. In

this study, we ran each configuration five times and reported the average results.

The values of four independent variables are shown in Table 2.2, where Profiles np

= number of profiles for learning rules, iterations ni = times of learning rules, bottlenecks

nb = number of artificial bottlenecks, users nu = number of users. The first independent

variable is the number of profiles (i.e., np) that needs to be collected in order to enable

learning rules. Intuitively, the number of collected profiles can affect the resulting rules.

For example, the rules extracted from only ten profiles should contain different information

from execution traces or profiles, as compared to the configuration containing 15 profiles.

In our sensitivity analysis, the numbers of profiles are set to 10, 15, and 20. Our goal

is to empirically investigate whether the number of profiles has substantial impact on the

accuracy of FOREPOST.

The second independent variable is called the number of iterations (i.e., ni), which is

defined as the process between the generations of two sets of rules. For example, setting

the number of iterations to two means that FOREPOST uses the ICA algorithm to identify

the bottlenecks after the second round of learning rules. The number of iterations are

set to 1, 2, 3, and 4. Intuitively, the rules tend to converge as the number of iterations

34

increases. Our goal is to analyze the performance of FOREPOST after different numbers

of iterations.

The third independent variable is the number of bottlenecks (i.e., nb), which is the

number of artificial performance bottlenecks injected into subject applications. Artificial

delays were injected randomly into methods for simulating the realistic performance bot-

tlenecks. The numbers of bottlenecks are set to 6, 9, and 12, and all bottlenecks have

the same delay. Our goal is to empirically investigate the performance of FOREPOST on

detecting different numbers of performance bottlenecks. All the artificial bottlenecks are

shown in Appendix of our paper [196].

The fourth independent variable is the number of users (i.e., nu) that send URL re-

quests simultaneously to the subject applications. The numbers of users are set to 5, 10,

and 15. Using multiple users may lead to different AUT performance behaviors, where

multithreading, synchronization and database transactions may expose new types of per-

formance bottlenecks. Our goal is to empirical analyze the performance of FOREPOST

with different numbers of users.

Table 2.2: Independent variables in sensitivity analysis.
factors value

profiles np 10, 15, 20
iterations ni 1, 2, 3, 4
bottlenecks nb 6, 9, 12

users nu 5, 10, 15

2.3.5 Research Question 3

FOREPOSTRAND is a combinational testing approach, which considers both the random

input data and the specific inputs based on generated rules. We instantiated and evalu-

ated FOREPOSTRAND on JPetStore and Dell DVD Store. The main question addressed

is whether considering random inputs in addition to generated rules is useful in terms of

identifying known bottlenecks. In this empirical study, we fixed the independent variables

35

in both of FOREPOST and FOREPOSTRAND to compare these two approaches side by

side.

Table 2.3: Selected rules that are learned for Renters and JPetStore.
Rule Antecedent Cons

R–1
(customer.numberOfResidents ≤ 2)∧

Good(coverages.limitPerOccurrence ≥ 400000)∧
(preEligibility.numberOfWildAnimals ≤ 1)

R–2

(adjustments.homeAutoDiscount = 2)∧

Bad(adjustments.fireOrSmokeAlarm = LOCAL PLUS CENTRAL)∧
(dwelling.construction = MASONRY VENEER)∧

(coverages.limitEachPerson ≤ 5000)

R–3

(coverages.deductiblePerOccurrence ≤ 500)∧

Good(adjustments.burglarBarsQuickRelease = Y)∧
(nurseDetails.prescribeMedicine = Y)∧
(coverages.limitPerOccurrence ≥ 500000)

J–1

(viewItem_EST-4 ≤ 5) ∧ (viewCategory_CATS ≤ 23)∧

Good(viewItem_EST-5 ≤ 6) ∧ (Checkout ≥ 269)∧
(Updatecart ≥ 183) ∧ (AddItem_EST-6 ≥ 252)∧

(viewCategory_EST-6 ≥ 71)

J–2 (viewItem_EST-4 ≤ 5) ∧ (viewCategory_CATS ≤ 0) Bad

2.4 Results

In this section, we describe and analyze the results obtained from our experiments with

Renters, JPetStore and Dell DVD Store. We provide only parts of the results in this paper.

The complete results of all our experiments are shown in my online appendix [11].

2.4.1 Research Question 1

Finding Test Inputs for IncreasedWorkloads. The results for Renters are shown in the

box-and-whisker plots in Figure 2.4 (a) that summarize the execution times for end-to-end

single application runs with different test input data, where the time for end-to-end runs

is measured in seconds. The central box represents the values from the lower to upper

36

(a) Renters applica-
tion

(b) JPetStore application (c) Dell DVD Store application

Figure 2.4: The summary of the results for Empirical Study 1.

quartile (i.e., 25 to 75 percentile). The middle line represents the median. The thicker

vertical line extends from the minimum to the maximum value. We first calculated the

effect size to compare the FOREPOST with RANDOM using Cohen’s d [64]. The result is

1.2. According to Cohen’s definition, the value of the effect size is large (≥ 0.8) implying

that there is a difference between the execution times for RANDOM and FOREPOST. To

further test the NULL hypotheses that there is no significant difference between the exe-

cution time for the random and FOREPOST approaches, we performed statistical tests for

two paired sample means. Before applying paired significance test, we first applied the

Shapiro-Wilk Normality Test [257] to check the normality distribution assumption. The

results show that the sample data does not follow normal distribution even at the 0.01

significance level. Therefore, we chose to use the Wilcoxon Signed-Rank Test [282] to

compare the two sample sets, because it is suitable for the case that the sample data

may not be normally distributed [191]. The results of the statistical test allow us to reject

the NULL hypotheses and accept the alternative hypotheses with strong statistical signifi-

cance (p < 0.0001), which states that FOREPOST is more effective at finding test input

data that steers applications towards more computationally intensive executions

than random testing, thus addressing RQ1.

This conclusion is confirmed by the results for JPetStore and Dell DVD Store that are

shown in Figure 2.4 (b) and (c), where the bars represent average times per transaction in

seconds for the Random and FOREPOST approaches for different numbers of concurrent

37

transactions ranging from 50 to 300. In JPetStore, while in performing random testing, it

takes on average 542.1 seconds to execute 300 transactions. With FOREPOST, execut-

ing 300 transactions takes on average 965.8 seconds, which shows 78.2% increase. In

Dell DVD Store, while performing random testing, it takes on average 100.0 seconds to

execute 300 transactions. With FOREPOST, executing 300 transactions takes on aver-

age 433.3 seconds, which shows 333.3% increase. This implies that FOREPOST outper-

forms random testing by more than one order of magnitude. Random testing is evaluated

on the instrumented JPetStore and Dell DVD Store, so that the cost of instrumentation is

evenly factored into the experimental results. FOREPOST has a large overhead, close to

80% of the baseline execution time, however, once rules are learned and stabilized, they

can be used to partition the input space without using instrumentation.

Identifying Bottlenecks and Learned Rules. When applying the algorithm for identi-

fying bottlenecks (see Section 2.2.5) on Renters, we obtained a list of top 30 methods that

the algorithm identified as potential performance bottlenecks out of approximately 8,500

methods. To evaluate how effective this algorithm is, we asked the insurance company

to allocate the most experienced developer and tester for Renters to review this list and

provide feedback on it. According to the management of the insurance company, it was

the first time when a developer and a tester were in the same room together to review

results of testing.

The reviewing process started with the top bottleneck method, checkWildFire- Area.

The developer immediately said that FOREPOST did not work since this method could not

be a bottleneck for a simple reason – this method computes insurance quotes only for U.S.

states that have wildfires, and FOREPOST selected test input data for northern states

like Minnesota that never have wildfires. We explained that FOREPOST automatically

selected the method checkWildFireArea as important because its weight was significant

in execution traces for good test cases, and it was absent in traces for bad test cases.

It meant that this method was invoked many times for the state of Minnesota and other

northern states, even though its contribution in computing insurance quotes was zero

38

for these states. Invoking this method consumes more resources and time in addition

to significantly increasing the number of interactions with the backend databases. After

hearing our arguments, the developer and the tester told us that they would review the

architecture documents and the source code and get back to us.

A day later they got back with a message that this and few other methods that FORE-

POST identified as bottlenecks were true bottlenecks. It turned out that the implementa-

tion of the Visitor pattern in Renters had a bug, which resulted in incorrect invocations of

the method checkWildFireArea. Even though it did not contribute anything to computing

the insurance quote, it consumed significant resources. After implementing a fix based on

the feedback from FOREPOST, the performance of Renters increased by approximately

seven percent, thus addressing RQ1 that FOREPOST is effective at identifying bot-

tlenecks. More experiments of identifying bottlenecks in FOREPOST presented in the

section 2.4.2 and 2.4.3 also support this conclusion.

Examples of learned rules are shown in Table 2.3, where the first letters of the names

of the AUTs are used in the names of rules to designate to which AUTs these rules belong.

The last column (Cons) designates the consequent of the rule that corresponds to good

and bad test cases that these rules describe. When professionals from the insurance

company looked at these and other rules in more depth, they identified certain patterns

that indicated that these rules were logical and matches some features. For example,

the rules R-1 and R-3 point out to strange and inconsistent insurance quote inputs, where

low deductible goes together with very high coverage limit, and it is combined with the

owner of the condo taking prescribed medications, and with the condo having fewer than

two residents. All these inputs point to situations that are considered higher risk insurance

policies. These classes of input values trigger more computations that lead to significantly

higher workloads.

For JPetSore, rules J-1 and J-2 describe inputs as the number of occurrences of

URLs in transactions, where URLs are shown using descriptive names (e.g., “Checkout”

for the URL that enables customers to check out their shopping carts). It is important that

39

●

●
●

●

●

●

●

●

●

1000

1500

2000

2500

3000

Bottlenecks1 Bottlenecks2

E
xe

cu
tio

n
T

im
e

Iterations:
iter#1
iter#2
iter#3
iter#4

Figure 2.5: Average execution times (in second) for different groups of injected bottlenecks
(i.e.,bottlenecks#1 and bottlenecks#2), where np = 10 and nu = 5.

rules for both applications are input-specific. While we do not expect that rules learned

for one system would apply to a completely different system, training a new set of rules

using the same algorithm should deliver similar benefits.

2.4.2 Research Question 2

Can FOREPOST identify injected bottlenecks? Recall that we injected two groups

of artificial bottlenecks to investigate how FOREPSOT identifies different injected bottle-

necks. The bottlenecks#1 refer to the methods that have same artificial delay, and the

bottlenecks#2 refer to the methods that have different artificial delays. The results are

shown in Fig. 2.5, where different colors represent different iterations. The central box

represents the values from the lower to upper quartile (i.e., 25 to 75 percentile). The mid-

dle line represents the median. As the results show, the execution times for bottlenecks#1

are generally larger than the execution times for bottlenecks#2. The reason is that dif-

ferent delays in these two groups of bottlenecks lead to different AUT behaviors. Some

injected bottlenecks in bottlenecks#1 have longer delays, leading to more computationally

intensive executions as compared to the bottlenecks#2.

We further check the effectiveness of FOREPOST on identifying these two groups

of bottlencks, and the results are shown in in Fig. 2.7. Due to the space limitation, we

40

only show detailed results when the number of iterations is equal to four. More results

can be found in our paper [196]. The precision is measured as the percentage of the

artificial bottlenecks returned in the top methods. The recall is measured as the ratio of

the artificial bottlenecks within the top methods to all the injected bottlenecks. The F-score

is calculated based on the precision and recall (i.e., F − score = 2∗precision∗recall
precision+recall). We set

different cut points (i.e., 2 - 20) to calculate those metrics. For example, if we set the cut

point as ten, it means we only consider the ranks of methods which are in top ten and

the methods outside the top ten are ignored. The results show that FOREPOST can find

more bottlenecks in bottlenecks#1, implying that FOREPOST is able to find more serious

bottlenecks (length of delay in bottlenecks#1 is longer than bottlenecks#2). Moreover,

we observe that the results of bottlenecks#2 vary greatly as compared to the results of

bottlenecks#1. One possible reason is that the injected bottlenecks with different delays

(i.e., bottlenecks#2) make the AUT performance vary, thus FOREPOST may converge

to the different executions for uncovering different performance bottlenecks, leading to

unstable results. On the contrary, FOREPOST always converge to some stable states

when injecting the same performance bottlenecks (i.e., bottlenecks#1).

How do different parameters of FOREPOST affect its performance? To investi-

gate the impacts of various independent variables on the execution time, we control the

value of each independent variable, and present the corresponding results in Fig. 2.6,

where Different colors represent different iterations. The central box represents the val-

ues from the lower to upper quartile (i.e., 25 to 75 percentile). The middle line represents

the median. In this figure, each sub-figure represents the execution time information when

we control the value of each independent variable (e.g., number of profiles, bottlenecks,

and users). In each sub-figure, the x-axis presents the values for the controlled inde-

pendent variable, the y-axis presents the execution time, and boxplots in different color

represent different iteration. Note that the boxplots present the median (line in the box),

upper/lower quartile, and 90th/10th percentile values. From the figure, we can infer the

following observations:

41

2500

5000

7500

10000

X10 X15 X20
Profiles

E
xe

cu
tio

n
T

im
e

Iterations:
iter#1
iter#2
iter#3
iter#4

(a) Average execution times when
controlling the number of profiles.

2500

5000

7500

10000

X6 X9 X12
Bottlenecks

E
xe

cu
tio

n
T

im
e

Iterations:
iter#1
iter#2
iter#3
iter#4

(b) Average execution times when
controlling the number of bottle-
necks.

●

●

●
●

2500

5000

7500

10000

X5 X10 X15
Users

E
xe

cu
tio

n
T

im
e

Iterations:
iter#1
iter#2
iter#3
iter#4

(c) Average execution times when
controlling the number of users

Figure 2.6: Average execution times (in second) when controlling different independent variables.

First, across all the sub-figures, we can find that after the 1st iteration, the execution

time increases dramatically, implying that FOREPOST can find inputs that steer applica-

tions towards computationally intensive executions. But after the 2nd iteration, the execu-

tion times increase slightly, implying that the learnt rules converge to some stable states.

The reason is that the inputs are selected randomly in the 1st iteration. From the 2nd iter-

ation, a number of interesting rules are inferred to cover the hot paths in the system under

test. Thus the execution time increases dramatically. However, from the 2nd iteration, the

majority of the hot paths have been covered by FOREPOST, making the execution time

relatively stable after the 2nd iteration. This also implies that different numbers of itera-

tions do not significantly help identify different behaviors in order to find test input data

that steers applications towards more computationally intensive executions.

When controlling the independent variable of the number of profiles (see Fig. 2.6 (a)),

we find that the execution time does not change much across different number of pro-

files. We also observe an interesting finding that when the number of profiles per iteration

increases, the execution time for various other settings tends to be more stable. For ex-

ample, the boxplot for using 20 profiles is more stable than that for ten profiles. The reason

is that after collecting more profiles, the machine learning results can be more accurate

in guiding meaningful rule generation. Therefore, the empirical results when controlling

the number of profiles demonstrate that FOREPOST becomes more stable when using

more profiles.

42

When controlling the independent variable of the number of bottlenecks (see Fig. 2.6

(b)), we find that the execution time increases gradually and the performance has wider

range when injecting more bottlenecks. One possible reason is that more injected bot-

tlenecks may incur more bottlenecks to be actually executed, leading to longer execution

time. Moreover, the interaction of different bottlenecks can make the AUT’s performance

rather unstable, which enlarges the possible range for the application execution time.

When controlling the independent variable of the number of users (see Fig. 2.6 (c)), we

find that the execution time increases linearly when simulating more users. For example,

when using five users, the average execution time for the inputs selected by FOREPOST

(e.g., the 4th iteration) is around 2500 seconds, while it is approximately 5500 and 7500

seconds when the number of users increases to ten and 15 respectively. Obviously, when

the number of users increases, it would take more time to execute the URL requests

sending by the increased users. We can also find that the execution time becomes more

unstable when simulating ten users as compared to five users. The possible reason is that

when increasing the number of users, the problems of multi-threading, synchronization,

etc., may arise, causing the studied application to have performance bottlenecks of wider

range.

We further check the impact of number of bottlenecks in identifying bottlenecks when

np = 10, and nu = 5. The precision, recall and F-score are shown in Tables 2.4, 2.5, and

2.6. More results can be found in our paper [196]. In each of the three tables, Column

1 lists the different cut points used, Columns 2-5/6-9/10-13 list the corresponding metric

results for FOREPOST when injecting 6/9/12 bottlenecks. According to the three tables,

we have the following observations:

First, the best cut point depends on the number of potential bottlenecks in the applica-

tion under test as well as the number of iterations used in FOREPOST. For example, as

shown in Table 2.6 (nu=5 and np=10), when controlling the number of bottlenecks to be

six, the cut point with the highest F-score value is six after 1st iteration, and four after 2nd

iterations. Similarly, when controlling the number of iterations to be four, the cut point with

43

Table 2.4: Precision for FOREPOST when nu=5 and np=10
Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4
2 100.00 100.00 90.00 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 90.00
4 95.00 65.00 55.00 60.00 100.00 65.00 70.00 75.00 100.00 75.00 80.00 75.00
6 90.00 46.67 40.00 40.00 100.00 50.00 50.00 50.00 100.00 50.00 60.00 56.67
8 72.50 35.00 30.00 30.00 100.00 37.50 37.50 40.00 100.00 40.00 45.00 45.00
10 60.00 28.00 24.00 24.00 88.00 32.00 30.00 32.00 100.00 34.00 36.00 36.00
12 50.00 26.67 20.00 20.00 75.00 26.67 25.00 26.67 100.00 28.33 30.00 30.00
14 42.86 22.86 17.14 17.14 64.29 22.86 21.43 22.86 85.71 24.29 27.14 25.71
16 37.50 20.00 15.00 15.00 56.25 20.00 18.75 20.00 75.00 21.25 23.75 22.50
18 33.33 17.78 13.33 13.33 50.00 17.78 16.67 17.78 66.67 20.00 21.11 20.00
20 30.00 16.00 12.00 12.00 45.00 16.00 15.00 16.00 60.00 18.00 19.00 18.00

Table 2.5: Recall for FOREPOST when nu=5 and np=10
Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4
2 33.33 33.33 30.00 30.00 22.22 22.22 22.22 22.22 16.67 16.67 16.67 15.00
4 63.33 43.33 36.67 40.00 44.44 28.89 31.11 33.33 33.33 25.00 26.67 25.00
6 90.00 46.67 40.00 40.00 66.67 33.33 33.33 33.33 50.00 25.00 30.00 28.33
8 96.67 46.67 40.00 40.00 88.89 33.33 33.33 35.56 66.67 26.67 30.00 30.00
10 100.00 46.67 40.00 40.00 97.78 35.56 33.33 35.56 83.33 28.33 30.00 30.00
12 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 28.33 30.00 30.00
14 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 28.33 31.67 30.00
16 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 28.33 31.67 30.00
18 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 30.00 31.67 30.00
20 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 30.00 31.67 30.00

Table 2.6: F-score for FOREPOST when nu=5 and np=10
Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4
2 50.00 50.00 45.00 45.00 36.36 36.36 36.36 36.36 28.57 28.57 28.57 25.71
4 76.00 52.00 44.00 48.00 61.54 40.00 43.08 46.15 50.00 37.50 40.00 37.50
6 90.00 46.67 40.00 40.00 80.00 40.00 40.00 40.00 66.67 33.33 40.00 37.78
8 82.86 40.00 34.29 34.29 94.12 35.29 35.29 37.65 80.00 32.00 36.00 36.00
10 75.00 35.00 30.00 30.00 92.63 33.68 31.58 33.68 90.91 30.91 32.73 32.73
12 66.67 35.56 26.67 26.67 85.71 30.48 28.57 30.48 100.00 28.33 30.00 30.00
14 60.00 32.00 24.00 24.00 78.26 27.83 26.09 27.83 92.31 26.15 29.23 27.69
16 54.55 29.09 21.82 21.82 72.00 25.60 24.00 25.60 85.71 24.29 27.14 25.71
18 50.00 26.67 20.00 20.00 66.67 23.70 22.22 23.70 80.00 24.00 25.33 24.00
20 46.15 24.62 18.46 18.46 62.07 22.07 20.69 22.07 75.00 22.50 23.75 22.50

●

●

●

●

●

●

●

●

●
●

●

●●● ● ●●●● ●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

● ●

0.25

0.50

0.75

1.00

2 4 6 8 10 12 14 16 18 20
Cut−points

P
re

ci
si

on

(a) Precision for 4th iteration

●

●

●

●

● ● ● ● ● ● ●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

0.2

0.3

0.4

0.5

2 4 6 8 10 12 14 16 18 20
Cut−points

R
ec

al
l

(b) Recall for 4th iteration

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●●0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20
Cut−points

F
sc

or
e

(c) F-score for 4th iteration
Figure 2.7: Comparison between FOREPOST using uniform or different bottlenecks for JPet-
Store. The red boxplots refer to bottlenecks#1. The green boxplots refer to bottlenecks#2.

the highest F-score value is four when injecting six bottlenecks, and six when injecting

twelve bottlenecks.

Second, as the number of iterations increases, FOREPOST tends to miss some in-

jected performance bottlenecks. For example, when using six as the cut point value where

nb = 9, the random inputs (i.e., the 1st iteration) have a F-score of 80.00, but the selected

inputs (e.g., the 2nd iteration) only has a F-score of 40.00. A possible explanation is that

FOREPOST runs a much more manageable and focused subset of input data after gen-

44

erating rules, which means the size of this subset is much smaller and easier to test, but it

can lead to intense computations faster than other subsets. However, since the input data

is limited by the rules, the domain would become smaller if rules are only associated with

a small subset of methods. Although some methods have a high probability to be associ-

ated with the bottlenecks, FOREPOST still does not list them since they are not invoked in

the execution traces. For example, before learning rules, there are 386 methods invoked

in JPetStore. But only 208 methods are invoked after learning rules, which means the

learned rules focused on a subset of input data, therefor less methods are invoked during

the execution. Meanwhile, as observed from Figure 2.6, the average execution times of

selected inputs are quite higher than the average execution times of random inputs (i.e.,

inputs in the 1st iteration), which implies that FOREPOST finds the subset of input data

that lead to intense computations in a short time. So FOREPOST identifies computation-

ally more expensive execution paths as compared to random performance testing at the

expense of lower precision.

●

●

●

●

●

●

●

1000

1500

2000

2500

3000

FOREPOST FOREPOST.RAND

E
xe

cu
tio

n
T

im
e

Iterations:
iter#1
iter#2
iter#3
iter#4

(a) Average execution times on JPetStore.

●

12500

15000

17500

20000

FOREPOST FOREPOST.RAND

E
xe

cu
tio

n
T

im
e

Iterations:
iter#1
iter#2
iter#3
iter#4

(b) Average execution times on Dell DVD Store.

Figure 2.8: Average execution times (in second) for FOREPOST and FORPOSTRAND, where np

= 10 and nu = 5.

2.4.3 Research Question 3

Comparing FOREPOST and FOREPOSTRAND in Finding Test Input for Increased

Workloads. The results for comparing FOREPOST and FOREPOSTRAND are shown in

Fig. 2.8, where different colors represent different iterations. The central box represents

45

the values from the lower to upper quartile (i.e., 25 to 75 percentile). The middle line rep-

resents the median. On JPetStore, the inputs selected by FOREPOST take around 3200

seconds after the 2nd iteration, while inputs selected by FOREPOSTRAND take around

2800 seconds. Although there is no significant difference after the 2nd iteration, the av-

erage execution times of FOREPOST are always larger than those of FOREPOSTRAND.

The results demonstrate that FOREPOST is more effective in finding test input data

that steer applications towards more computationally intensive executions compared with

FOREPOSTRAND. The conclusion is confirmed by the results for Dell DVD Store shown

in Fig. 2.8 (b). Morever, the increase between random inputs and selected inputs in

execution time on Dell DVD Store is smaller as compared to JPetStore since Dell DVD

Store has relatively smaller number of combinations of inputs. Thus, even randomly se-

lected inputs can cover significant part of the computationally intensive executions. All

in all, FOREPOST is more effective in finding inputs to cover computationally intensive

executions, thus addressing RQ3.

Comparing FOREPOST and FOREPOSTRAND in Identifying Bottlenecks. Since

the precision, recall and F-score are quite similar after the 1st iteration since inputs in both

FOREPOST and FOREPOSTRAND, we only show the results of the fourth iteration in this

paper (Fig. 2.9 and 2.10, where each bar represents the average precision/recall/f-score

across five runs of the same setting. The red bars refer to FOREPOST. The green bars

refer to FOREPOSTRAND.). More results can be found in our paper [196]. The results

show that FOREPOSTRAND have all clearly larger values as compared to FOREPOST,

implying that FOREPOSTRAND outperforms FOREPOST in terms of accuracy. As we

mentioned, FOREPOST may miss to identify some bottlenecks since the input data is

generated only based on rules which focus on traces that correspond to computation-

ally intensive executions, while FOREPOSTRAND involves random input data in addition

to the specific input data based on the rules, covering other traces without losing accu-

racy. As our results demonstrated, software testers can choose either FOREPOST or

FOREPOSTRAND based on their goals: either identifying extreme bottlenecks by focus-

46

0.00

0.25

0.50

0.75

1.00

5 10 15 20
Cut−points

P
re

ci
si

on

(a) Precision for 4th iteration

0.0

0.2

0.4

0.6

0.8

5 10 15 20
Cut−points

R
ec

al
l

(b) Recall for 4th iteration

0.0

0.2

0.4

0.6

0.8

5 10 15 20
Cut−points

F
sc

or
e

(c) F-score for 4th iteration
Figure 2.9: Comparison between FOREPOST and FOREPOSTRAND for JPetStore.

0.0

0.2

0.4

0.6

0.8

5 10 15 20
Cut−points

P
re

ci
si

on

(a) Precision for 4th iteration

0.0

0.2

0.4

0.6

5 10 15 20
Cut−points

R
ec

al
l

(b) Recall for 4th iteration

0.0

0.2

0.4

0.6

5 10 15 20
Cut−points

F
sc

or
e

(c) F-score for 4th iteration
Figure 2.10: Comparison between FOREPOST and FOREPOSTRAND for Dell DVD Store.

ing on the more intensive executions or identifying as many bottlenecks as possible at a

time but less intensive executions.

2.5 Threats to Validity

In this section we systematically review three different types of threats to validity to the

studies reported in this paper: internal, external and construct validity.

2.5.1 Internal Validity

The first threat to internal validity relates to the fact that we injected artificial bottlenecks

into the subject software systems. While we injected these bottlenecks randomly, there

is a threat that some of the bottlenecks may not necessarily appear in the “natural” loca-

tions in program paths or where they are likely to appear in some real world scenarios.

However, this particular design allowed us to evaluate FOREPOST in a controlled setting.

Thus, we believe that we sufficiently minimized this threat, and our results are reliable.

In our implementation of profiling system, we used Probekit to inject probes into binary

code for collecting execution traces, which affects the AUT performance behaviors. How-

ever, we only logged for some simple events like current system time for method entry

47

and exit, and the overhead of Probekit was rather negligible. Thus, we believe that the

overhead did not affect the results and current conclusions in our paper.

FOREPOST analyzes execution trace for each test case, and uses machine learning

algorithm to extract rules for selecting test cases that lead to performance bottlenecks. It

is possible that the rules converge to some local input space thus the selected test cases

only steer executions to some specific paths. However, with more execution traces col-

lected, it is possible to obtain more meaningful rules to select test cases uncovering more

performance bottlenecks. Furthermore, it would be interesting to use different techniques

like genetic algorithms to explore the input space. We leave this extension and rigorous

comparison for the future work.

2.5.2 External validity

The main external threat to our experimental design is that we experimented only with

three subject AUTs. The results may vary for AUTs that have different logic or different

architectures. Furthermore, we only have the authority to access the data and source

code of Renters to conduct the experiments in empirical study 1, since it is a closed-

source application that belongs to an insurance company. Thus, we did not perform the

experiments on Renters in empirical studies 2 and 3. Moreover, due to time consuming,

we only perform experiments of sensitivity analysis on JPetStore (requiring more than two

months). This threat makes it difficult to generalize the obtained results. There are many

other different kinds of systems and different types of performance bottlenecks that can

be tested in our experiments. However, since all the applications used are highly rep-

resentative of enterprise-level applications and frequently used as benchmarks [150, 99]

in performance testing research in software engineering, we suggest that our results are

generalizable, at least in part, to a larger population of applications from these domains.

To evaluate the effectiveness of FOREPOST, we only compared FOREPOST with

random testing and FOREPOSTRAND. This constitutes a threat, in that if we compare

FOREPOST to other performance testing approaches, our results may compare differ-

48

ently. Thus, it may be difficult to derive general conclusions based solely on the com-

parisons made. However, the goal of FOREPOST is specific to find input data that leads

to intensive computations which identify bottlenecks; and controlled experiments related

to different performance testing approaches are difficult to compare. Comparing FORE-

POST with FOREPOSTRAND made the controlled experiments feasible and also reliable.

We suggest that it minimized this threat effectively.

2.5.3 Construct Validity

In this chapter, we used the execution time to measure the AUT performance and cluster

execution traces, since the execution time is a representative performance metric and

is widely used in performance testing area. The threat is that we did not consider other

performance metrics. For example, memory leaks may lead to performance bottlenecks

that arise over time, but memory usage is not taken into account in our current version.

The methods that automatically scale or reconfigure themselves may also affect the AUT

performance, introducing performance bottlenecks. However, our approach is not limited

to use only the execution time as performance metric, and it can be extended using other

types of performance metrics, like involving different metrics in matrix x (Section 2.2.3).

We leave this extension as future work.

2.6 Utilizing FOREPOST in Cloud Computing

In cloud computing, stakeholders deploy their software applications on a sophisticated

infrastructure that is owned and managed by third-party providers (e.g., public clouds

such as Amazon AWS) or in-house installations. Two fundamental properties of cloud

computing include provisioning resources to applications on demand and charging their

owners for pay-as-you-go resource usage [30]. The elasticity of cloud refers to its capacity

to scale resources based on a real workload. Many cloud providers claim that their cloud

infrastructures are elastic, i.e., they automatically (de/re)allocate resources, both to scale

49

out and up – adding resources as demand increases, and to scale in and down – releasing

resources as demand decreases. Using elastic clouds, stakeholders pay only for what

they use, when they use it, rather than paying up-front and continuing costs to own and

maintain their hardware/software and supporting technical staff [30, 44, 212].

In practice, even the most elastic clouds are not perfectly elastic [142, 30]. Under-

standing when and how to reallocate resources is a hard problem, since it is generally

impossible to quickly and accurately match resources to applications’ needs. A recent

article underscores this point as it describes its state-of-the-art supervisory system that

monitors various black box metrics and then directs the cloud to initiate scaling opera-

tions based on that data [110]. As a result, some elasticity-related problems for cloud

computing include under-provisioning applications so they lack the resources to provide

appropriate quality of service, or over-provisioning applications so stakeholders end up

holding and paying for more resources than they need. Specifically, although elasticity is

a fundamental enabler of cost-effective cloud computing, existing provisioning strategies

(i.e., rules used to (de)allocate resources to applications) are typically obtained in ad-hoc

fashion by programmers who study the behavior of the application in the cloud. It is a

manual, imprecise, intellectually intensive and laborious effort.

FOREPOST has been shown effective and efficient in building performance behav-

ioral models for AUTs. Thus, we propose a framework, namely Provisioning Resources

with Experimental SofTware mOdeling (PRESTO), to enhance cloud elasticity by learning

and refining models of software applications (via FOREPOST) through performance test-

ing in the cloud and by using these automatically learned models to help programmers

to craft application-specific resource provisioning strategies. That is, PRESTO bridges

a pure black-box cloud resource provisioning to software engineering, where behavioral

models of the application are re-engineered automatically as part of performance testing,

and programmers use these models to create rules for provisioning of resources in the

cloud. We evaluated PRESTO on two open-source web-based applications. The results

suggest that PRESTO is effective and efficient in achieving precise cloud elasticity by

50

using software artifacts for guiding resource provisioning in the cloud. All detailed infor-

mation of PRESTO and experimental results are available in our paper [116] and online

appendix [11].

2.7 Related Work

There are many approaches that aid in generating test cases for testing. Avritzer et al.

proposed an approach that automatically generates test cases and extended it by ap-

plying it into a “performability model”, which is used to track the resource failures [35].

Partition testing is a set of strategies that divides the program’s input domain into subdo-

mains (subsets) from which test cases can be derived to cover each subset at least once

[18]. Closely related is the work by Dickinson et al. [72], which uses clustering analysis

execution profiles to find failures among the executions induced by a set of potential test

cases. Although their work and ours used clustering techniques, our work differs in that

we cluster the execution profiles based on the length of the execution time and number

of methods that have been invoked, and we target performance bottlenecks instead of

functional errors.

Load testing is used to determine the AUT performance behaviors under specific work-

loads. Bayan et al. proposed an approach that uses a PID controller to automatically

drive the test cases for achieving a pre-specified level of stress/load for a specific re-

source, such as response time [41]. Another related work by Barna et al. proposed an

autonomic framework to explore workload space and identify the points that cause the

worst case behavior [40]. It contains a feedback loop that generates workloads, monitors

the software system, analyzes the effects of each workload and plans the new workloads.

However, this work focuses on the effects of workloads (i.e., number of requests). Thus,

it does not consider the effects of different types of requests (e.g., browse, buy, pay) in

web applications. The Menasce’s work discusses three important activities, load testing,

benchmarking, and application performance management, on web-based applications,

51

and provides a performance models that illustrates the relationship between workload

and throughput/response time for improving load testing [210]. Briand et al. proposed an

approach that uses genetic algorithms to find combinations of inputs that ensure that com-

pletion times of a specific task’s executions are as close as possible to their deadlines [47].

However, all these approaches do not point out the potential performance bottlenecks in

the AUT. In contrast, FOREPOST explores input space and uses machine learning algo-

rithms to identify the combinations of inputs (i.e., requests in web application) for finding

performance bottlenecks.

Operational profile is commonly used in performance load testing, where a system

can be tested more efficiently because the operations most frequently used are tested

the most [220]. It is a quantitative characterization of how the software will be used,

which indicates the occurrence probabilities of function calls and the distributions of pa-

rameter values. Avritzer et al. proposed an approach that uses operational profiles to

improve performance testing, where an application-independent performance workload

is designed for comparing the existing production with the proposed architecture [37]. In

this approach, operational data are collected in the current production environment, and a

synthetic workload is fabricated which has a profile close to the average profile compiled

by the application in production for the selected operations. However, this work is not

aimed at pinpointing specific methods leading to the different performance behaviors of

the application.

Learning rules helps stakeholders to reconfigure distributed systems online to optimize

for dynamically changing workloads [283]. This work is similar to FOREPOST in using the

learning methodology to learn rules, from only low-level system statistics, which of a set

of possible hardware configurations will lead to better performance under the current un-

known workload. In contrast, FOREPOST uses feedback-directed adaptive performance

test scripts to locate most computationally intensive execution profiles and bottlenecks.

There is a recent work that studied 109 real-world performance bugs and found the

guidance to detect performance bugs [152]. The study demonstrated the root causes

52

of performance bugs, thus the efficiency rules should exist and could be collected from

patches. Then, the extracted rules from real-world performance-bug patches are used to

check performance bottlenecks. These rules are extracted manually, and they are used

to analyze software binary code [152], while FOREPOST extracts rules by using machine

learning algorithms. Furthermore, the study by Zaman et al. [299] compared performance

bugs and the security bugs, and found that performance bugs fixes impacted more files

and took more time, while security bugs were fixed and triaged faster, but reopened and

tossed frequently, required more developers and were more complex overall.

Another technique related to FOREPOST automatically classifies execution data, col-

lected in the field, which comes from either passing or failing program runs [125]. This

technique attempts to learn a classification model to predict if an application run failed us-

ing execution data. Jovic et al. presented an approach, called Lag Hunting, that collects

runtime information such as the stack samples, and analyzes this information to detect

the latency bugs automatically [155]. Malik et al. developed an automated approach

that ranked the subsystems that likely involved performance deviations by using the per-

formance signatures [200]. Subsequently they proposed and compared one supervised

and three unsupervised approaches for detecting performance deviations automatically

for the loading testing in large scale systems, with a smaller and manageable subset of

performance counters [201]. Moreover, Syer et al. recently combined performance coun-

ters and execution logs to detect memory-related issues automatically [263]. On the other

hand, FOREPOST learns rules that it uses to select test input data that steer applications

towards computationally intensive runs to expose performance bottlenecks.

In the recent work, Zhang, Elbaum, and Dwyer generate performance test cases us-

ing dynamic symbolic execution [313]. Similar to FOREPOST, they used heuristics that

guided the generation of test cases by determining paths of executions that can introduce

higher workloads. Zaparanuks and Hauswirth presented algorithmic profiler that identi-

fies the ingredients of algorithms and their inputs, presented the execution cost by using

the repetition tree, and provided the cost function that illustrates the relationship between

53

the cost and the input size, which can be used to identify algorithms with higher algo-

rithmic complexity [303]. Unlike FOREPOST, white-box testing approach are used, thus

requiring access to source code, while FOREPOST is a black-box approach. It is also

unclear how the approach [313] will scale to industrial applications with over 100KLOC.

We view these approaches as complementary, where a hybrid technique may combine

the benefits of both approaches in a gray-box performance testing. This is left for the

future work.

2.8 Conclusion and Discussion

In this chapter, we offer a novel solution for automatically finding performance bottlenecks

in applications using black-box software testing. Our solution, FOREPOST, is an adap-

tive, feedback-directed learning testing system that learns rules from execution traces of

applications. These rules are then used to automatically select test input data for per-

formance testing. Moreover, we also propose FOREPOSTRAND, which combine the se-

lected input data with random input data to cover more potential computationally intensive

executions. We have applied our approaches to a nontrivial closed-source application at a

major insurance company and to two open-source applications in a controlled experiment.

The results demonstrate that performance bottlenecks were found automatically in all ap-

plications and were confirmed by experienced testers and developers. We compared

FOREPOST with FOREPOSTRAND on two open-source applications and confirmed that

while FOREPOSTRAND can identify bottlenecks with higher precision, FOREPOST was

able to find the scenarios that lead to substantially more intense computations, which

could potentially lead to more serious performance bottlenecks in certain situations. Our

results recommend that testers can use FOREPOSTRAND for initial performance test-

ing to outline possible roots of performance bottlenecks and use FOREPOST for more

focused search of scenarios that result in substantial delays in system execution.

54

2.9 Bibliographical Notes

The work summarized in this chapter was done in collaboration with Grechanik et. al from

the University of Illinois at Chicago, which is published in the following papers [196, 198,

116]:

• Qi Luo, Aswathy Nair, Mark Grechanik, and Denys Poshyvanyk. “Forepost: Finding

performance problems automatically with feedback-directed learning software test-

ing.” Empirical Software Engineering (2016): 1-51. This paper is based on the fol-

lowing work: Mark Grechanik, Chen Fu, and Qing Xie. “Automatically finding perfor-

mance problems with feedback-directed learning software testing.” In Proceedings

of the 34th International Conference on Software Engineering (ICSE), pp. 156-166.

IEEE, 2012.

• Qi Luo, Denys Poshyvanyk, Aswathy Nair, and Mark Grechanik. “FOREPOST: a

tool for detecting performance problemswith feedback-driven learning software test-

ing.” In Proceedings of the 38th International Conference on Software Engineering

Companion, pp. 593-596. ACM, 2016.

• Mark Grechanik, Qi Luo, Denys Poshyvanyk, and Adam Porter. “Enhancing rules

for cloud resource provisioning via learned software performance models.” In the

7th ACM/SPEC on International Conference on Performance Engineering, pp. 209-

214. ACM, 2016.

55

Chapter 3

Automating Performance

Bottleneck Detection using

Search-Based Application Profiling

Although FOREPOST is powerful in detecting performance bottlenecks, it may miss some

bottlenecks since it only selects input data based on the learned rules, narrowing down

the executions to the specific paths. In addition, it is difficult to learn a precise model

from a limited set of execution traces as currently done in FOREPOST (see details in

Chapter 2). Inspired by effectiveness of GAs in selecting the optimal solutions as a whole

in testing domain [277, 279], we propose a novel approach for automating performance

bottleneck detection using search-based application profiling. Our key idea is to use a

genetic algorithm (GA) as a search heuristic for obtaining combinations of input param-

eter values that maximizes a fitness function that guides the search process [129]. We

implemented our approach, coined as Genetic Algorithm-driven Profiler (GA−Prof) that

combines a search-based heuristic with contrast data mining [84] from execution traces

to automatically and accurately determine bottlenecks.

This chapter makes the following noteworthy contributions:

• To the best of our knowledge, GA−Prof is the first fully automatic input-sensitive pro-

56

filing approach that explores the input parameter space for detecting performance

bottlenecks automatically.

• We evaluated GA−Prof on three popular open-source nontrivial web applications.

Our results show that GA−Prof effectively explores a large space of possible com-

binations of inputs while accurately detecting performance bottlenecks.

• GA−Prof and experimental results are publicly available at [11].

3.1 Problem Statement

In this section, we provide a background on input-sensitive profiling, discuss peculiarities

of execution trace analysis for uncovering bottlenecks and formulate the problem state-

ment.

3.1.1 Background on Input-Sensitive Profiling

In standard profiling methodology, the input to an application is given as a concrete set of

values or as an abstract description from which all values can be generated. Using this

input data, profilers instrument and run applications to produce flat or call-graph outputs:

the former outputs give a breakdown of resource and time consumption by function while

the latter preserve calling contexts by showing caller-callee dependencies among func-

tions. Profilers that are based on the standard methodology are ubiquitous and easy to

use; however, their key weakness is based on the assumption that all input data is avail-

able in advance, its size is small and finding bottlenecks is orthogonal to the type and the

size of the input data. This assumption reduces the effectiveness of profiling for solving

performance problems.

Input-sensitive profiling departs from the standard profiling metho- dology by inferring

the size or the type of the input that can pinpoint performance problems in a software

application. Consider an example of the pseudocode that is shown in Figure 3.1. Line

57

Figure 3.1: A pseudocode example of input-sensitive profiling.

1 specifies that input variables x, y, z and u are initialized with some values. In line 2,

the value of the variable v is assigned the result of the execution of the method m of A

that takes two parameters: x and y and returns their product. In line 3, if the value of v is

greater than the value of z, components C and B interact by invoking the method m of B and

passing its return value as the parameter to the method h of C. Otherwise, components B

and D interact by invoking the method m of B and passing its return value as the parameter

to the method h of D. A conclusion that can be inferred from profiling this code depends

on specific inputs.

Let us assume that this application is profiled with the input x 7→ 5, y 7→ 2,z 7→ 3. The

methods of the classes A, C and B are invoked, and the method m of A has the highest

elapsed execution time followed by the method m of B. Naturally, these methods are as-

sumed to be bottlenecks; however, while the method m of A and the method m of B are

always invoked and they do not depend on the values of the input data, the method m of

C and the method m of D depend on the result of the evaluation of the branch condition in

line 3. Thus, choosing a different value for the variable z, say 15, may reveal the method

m of C and the method m of D as bottlenecks. Also, a different observation is that the input

variable u is not used in the invoked methods, and its values do not affect the performance

of this program. Thus, knowing how to select input data affects the precision of detecting

bottlenecks.

3.1.2 Analyzing Profile Data for Bottlenecks

Our illustrative example shown in Figure 3.1 demonstrates two ideas. First, it is not

enough to collect performance measurements for some selected input values during pro-

filing – they can be misleading in determining bottlenecks. Consider a situation where a

58

method is invoked many times in different AUT runs for some combinations of input val-

ues. In each separate execution trace the total elapsed execution time of the method may

not put it on the top of the list of bottlenecks, however, when analyzed across different

traces, these methods may be viewed as bottlenecks based on their overall contribution

to the total elapsed execution time.

Second, it is important to distinguish bottlenecks based on their generality versus their

specificity for different input values when using input-sensitive profiling. Some methods

are computationally intensive, they implement some important requirements and they are

invoked for most of the combinations of input data. The method main in Java applications

is an example of a generally invoked method. In our illustrative example that is shown

in Figure 3.1, these are the method m of A and the method m of B. Even though profilers

easily put these methods on top of the list of bottlenecks, there is often little that software

engineers can do to fix these bottlenecks, since these methods are general-purpose.

Another example of such general-purpose bottleneck is a logging facility that records

execution events on a persistent media. While some improvements can be performed

to make a logging facility more efficient, it is often a necessary overhead. Throughout this

paper we call these bottlenecks natural as opposed to artificially injected or those that

result from incorrect implementation of some requirements. The former bottlenecks are

rarely fixed while the latter ones are often considered performance related bugs.

On the other hand, specific bottlenecks are methods that are invoked in response to

certain combinations of input values. These bottlenecks are most difficult to find, since

they involve an exploration of the enormous space of combinations of the input values that

collectively are a small ratio of the total input values space. As it often happens, these bot-

tlenecks remain undetected until the application performance worsens significantly when

deployed in the field and used by customers. An important goal of input-sensitive profiling

is to increase the specificity of determined bottlenecks by finding a small number of com-

binations of input values that lead to exposing worsened performance in certain methods

of the AUT.

59

3.1.3 The Problem Statement

In this paper, we address a fundamental problem of software maintenance and evolu-

tion – how to increase the effectiveness of input-sensitive profiling efficiently. The root

of this fundamental problem is that profiling applications as part of random exploratory

performance testing results in a large number of execution traces, many of which are not

effective (or useful) in determining specific bottlenecks. Selecting a small subset of in-

put values often results in a skewed distribution of performance measurements, leading

to decreased accuracy and low recall for bottlenecks. That is, the output of an input-

sensitive profiler is a list of methods that are sorted in the descending order using some

performance criteria (e.g., elapsed execution time). If the order of the methods on this

list varies significantly from run to run using different input parameter values, the effec-

tiveness of such profiling is low, since engineers cannot easily zero in on performance

bottlenecks.

It is equally important to ensure that the exploration of the input parameter space is

not done indiscriminately, since many generated input values may not be contributing

anything to measuring the effectiveness of the bottleneck detection algorithm. Consider

our motivating example in Figure 3.1, where the input variable u may have many values

therebymagnifying the input space. Clearly, this parameter does not affect themethods in

lines 2-3 and profiling this application with different values for the input variable u reduces

the efficiency of detecting bottlenecks. Thus, not only is it ineffective to explore the input

parameter value space indiscriminately, but it is also highly inefficient (if feasible at all) to

profile applications on all combinations of input values. The core problem is how to guide

the search process for input values, so that profilers keep extracting useful information

for determining and converging on bottlenecks eventually.

Related to the problem of effectiveness and efficiency of input-sensitive profiling is

a problem of detecting specific bottlenecks, i.e., those bottleneck methods that become

visible only for a small number of combinations of input values. Automatically detect-

60

ing highly specific bottlenecks is undecidable and very expensive in general. However,

multiple evidence show that performance engineers use contrast analysis on collected

execution traces, where they analyze correlations among various performance counters

with respect to different load profiles [149]. We partially address the problem of determin-

ing highly specific bottlenecks in this paper.

3.2 Our Approach

In this section, we explain key ideas behind our approach, give background on genetic

algorithms, provide an overview and describe the architecture and workflow of GA−Prof.

3.2.1 Overview of GA-Prof

Search-based algorithms are at the core of GA−Prof to automate application profiling for

detecting performance bottlenecks. There are two key phases in GA−Prof: 1) generating

test inputs to automate application profiling and 2) identifying performance bottlenecks.

Automating application profiling. A goal of our approach is to automate application

profiling by relying on evolutionary algorithms to explore different combinations of the input

parameter values. While exploring these combinations a goal is to maximize a fitness

function that maps input values to the elapsed execution times of the AUT that is run

with these input values. Initially, the instrumented AUT is run with randomly chosen input

values; after collecting execution traces and performance measurements for these runs

GA−Prof evaluates a fitness function for every trace and selects a few sets of inputs that

are more likely to lead to performance bottlenecks (i.e., they increase elapsed execution

times of the AUT). Subsequently, using the GA terminology, GA−Prof evolves to choose

combinations of the input parameter values and run the AUT with them. This process

is repeated continuously, and the collected profiles are analyzed to detect performance

problems in the AUT.

61

To identify potential performance problems, evolutionary algorithms are used to find

good inputs that are likely to steer the application’s execution towards more computa-

tionally expensive paths, especially the paths that contain methods whose executions

contribute to performance problems. Conversely, we define bad combinations of AUT’s

inputs as those that take less time for AUT to execute. Note that definition of good and bad

inputs may be counter-intuitive. By selecting good combinations of inputs and discarding

bad ones, GA−Prof keeps evolving the inputs that trigger more intensive workloads in

the AUT. The conjecture is that traces that correspond to these good input sets are more

likely to be informative at identifying performance bottlenecks.

Identifying performance bottlenecks. Potential performance bottlenecks are de-

tected by using information extracted from multiple traces. Our approach focuses on

specific performance problems (not general performance bottlenecks appearing in every

application run), which affect AUT’s performance significantly. Since the traces are clus-

tered into good traces that consume more resources (e.g., execution time) and the bad

traces that consume less resources, GA−Prof marks a method as a performance bot-

tleneck if it has significant contribution to good traces but less significant contribution to

bad traces (see Section 3.2.2.3). A conjecture is that an AUT’s specific bottleneck will

manifest itself only in a few computationally expensive executions for specific inputs. By

extracting these specific performance bottlenecks from collected traces automatically, we

make GA−Prof favor the highly specific rather than general bottleneck methods.

3.2.2 Using Genetic Algorithms in GA-Prof

We introduce Genetic Algorithms (GAs), explain why we use GAs and discuss how we

utilize GAs in GA−Prof.

62

3.2.2.1 Background on Genetic Algorithms

GAs are based on the mechanism of natural selection [134] and they use stochastic

search techniques to generate solutions to optimization problems. GAs have been widely

used in applications where optimization is required but a solution cannot be easily found.

The advantage of GA is in having multiple individuals evolve in parallel to explore a large

search space of possible solutions. An individual/solution is represented by chromosome,

i.e. a sequence of genes.

There are different variations of GAs, but the core idea is that new individuals (i.e., off-

spring) are generated using fitter existing individuals (i.e., parents). A pre-defined fitness

function [134] is used to evaluate the fitness of each individual based on some fitness

value. Fitter individuals have a better chance to survive. In order to create a new gen-

eration, new individuals are created by applying several operators to existing individuals.

These operators include (i) a selection operator, (ii) a crossover operator and (iii) a mu-

tation operator. The selection operator selects parents based on fitness values. The

crossover operator recombines a pair of selected individuals and generates two new indi-

viduals. The mutation operator produces a mutant of one individual by randomly altering

its gene.

3.2.2.2 Why We Use Genetic Algorithms in GA-Prof

GAs are based on heuristic and optimization-based search over solution spaces. An

alternative to GAs is to use pattern recognition, such as machine learning (ML) algo-

rithms. Specifically, our previous work on FOREPOST showed that it is possible to obtain

performance bottlenecks for nontrivial applications with a high degree of precision using

feedback-directed learning system [115]. With FOREPOST, execution traces for the AUT

are collected, they are assigned to different performance classes (i.e., Good and Bad),

and then ML algorithms are used to learn the model of the AUT that maps classes of in-

puts to different performance behaviors of the AUT (e.g., Good and Bad). Our hypothesis

63

is that GA−Prof is more effective than FOREPOST because determining what combina-

tions of input values reveal performance bottleneck is inherently a search and optimization

problem for which GA algorithms are suited the best. Given the complexity of a nontrivial

application, it is difficult to learn a precise model from a limited set of execution traces.

We confirm this hypothesis with our experimental results in Section 3.4.3. In future work,

we will explore a combination of GA and ML approaches to the problem of input-sensitive

profiling.

3.2.2.3 Automating Profiling Using GAs

A gene representation introduces how we represent AUT’s test inputs. For any AUT,

one test input is usually a combination of multiple input parameters with specified values.

Considering that one chromosome is actually a sequence of genes, we use chromosome

to represent test input. Naturally, each gene of the chromosome represents one input

parameter. The value of each gene could be primary types, such as integers, float or

boolean, or other well defined types. For a specific type of AUT, e.g., a web-based ap-

plication, an input test case is a set of URLs. Therefore, we assign an integer ID to each

URL so that each gene is has an integer value. Naturally, a chromosome of a sequence

of integers actually represents a sequence of URLs.

A fitness function evaluates an individual by computing its fitness value. These fitness

values are used to guide selection and evolution processes. Since performance problems

are more likely to be exposed when it takes longer for the AUT to execute, we favor sets

of input values which trigger more computationally intensive runs of the AUT. As a result,

the fitness value that we use to evaluate each combination of inputs is measured as the

total elapsed time for executing AUT.

A termination criterion determines when to stop evolution. Usually, there is amaximum

limit for the number of generations, meaning that evolution will be terminated when max-

imum allowed number of generation is reached, which we choose experimentally. Also,

64

Algorithm 2: GA−Prof’s algorithm for automating application profiling
1: Inputs: GA Configuration Ω, Input Set I
2: P ← Initial Population(I)
3: while Terminate() == FALSE do
4: P ← Crossover(P, Ω)
5: P ← Mutation(P, Ω,I)
6: for all p ∈ P do
7: F ← FitnessFunction(p)
8: end for
9: P ← Selection(F ,P)
10: end while
11: return P

in order to improve the efficiency of the GA, the evolution process can also be terminated

when the results converge, i.e., their changes among generations become infinitesimal.

In GA−Prof we monitor the average fitness value of every individual in one generation

and we terminate the evolution when results converge.

Our GA implementation includes the following steps: (i) randomly generate an initial

set of AUT’s inputs, (ii) use them to execute AUT and collect execution traces, (iii) cal-

culate the fitness value of to evaluate the quality of each execution trace, and (iv) use

fitness values to guide the evolution and choose new sets of input values. GA−Prof takes

in the complete set of input ranges for the subject application and the GA configurations,

including crossover rate, mutation rate, fitness function and termination criterion. Then,

the algorithm generates an initial population by randomly sampling the gene pool of com-

plete input set. Here is when the evolution begins. The crossover operator takes in a pair

of parent chromosomes, randomly selects a crossover (cutting) point and exchanges the

remaining gene sequence, thus creating two offsprings for a new generation. The total

number of parent pairs is dependent on crossover rate. After that, the mutation operator

takes in an offspring chromosome and changes the value of genes with another value

within the specified range, thus generating a mutant of the offspring chromosome. The

probability of genes being changed is so-called mutation rate. All newly generated indi-

viduals are considered a temporary pool and need to evaluated by the pre-defined fitness

65

function. Each one is assigned with a fitness value and fitter individuals are selected to

form a new generation. The selection is based on tournament selection. To select one

individual, a tournament is run among a random subset of temporary individuals and the

winner is selected, while other individuals are put back to the temporary pool. Multiple

tournaments are needed until the new generation meets required population. Thus, a

new generation is created. This cycle repeats until termination criterion is satisfied and

the final population is returned.

The algorithm of automating application profiling is shown in Algorithm 2. GA−Prof

takes in the complete set of input ranges for the subject application and the GA config-

urations Ω, including crossover rate, mutation rate, fitness function and termination cri-

terion. In Step 2, the algorithm randomly generates an initial population. Starting from

Step 3, the evolution process begins. In Step 4, the crossover operator randomly selects

a crossover point and exchanges the remaining genes for selected patent individuals,

thus creating two new offspring individuals for a new generation. In Step 5, the mutation

operator changes the value of one random gene with another value within the specified

range, thus creating a new (updated) individuals if mutation is triggered. In Step 6-8, the

fitness of each individual is evaluated using the pre-defined fitness function, which is in-

troduced above. The selection of individuals participating in producing offsprings for a

new generation is guided via the fitness values (Step 9). The cycle of Step 3-11 repeats

until termination criterion is satisfied. The final population is returned in Step 11 as the

algorithm terminates.

3.2.3 Identifying Performance Bottlenecks

Our goal is to identify specific bottleneck methods automatically. Recall that bottlenecks

with a high degree of specificity are more valuable to fix during maintenance than natural

or general bottlenecks. Our idea is to detect bottlenecks that are more significant in good

execution profiles and are less significant in bad execution profiles.

66

In order to contrast methods in good/bad execution profiles we rely on the Independent

Component Analysis (ICA) algorithm that can be used to break large execution traces into

sets of orthogonal sets of methods relating to different features of an AUT [137, 115, 113].

ICA algorithm is a computational method that is used to extract components from mixed

signals if these components are independent and satisfy the non-Gaussian distribution.

ICA has been previously used to address concept location [113] and performance testing

problems [115].

The decomposition process is described by the equation ∥x∥ = ∥A∥ · ∥s∥, where ∥A∥

is the transformation matrix that is applied to signal matrix ∥s∥ to obtain signal mixture

matrix ∥x∥. In GA−Prof context, each row in ∥x∥ corresponds to an execution trace and

each column corresponds to a method invoked in each trace. Therefore, each element

in xji reflects the contribution of method i in trace j. Now we solve this reverse problem

by decomposing ∥x∥. The elements in ∥s∥, skp indicate the contribution of method k to

implementing a feature q. Our conjecture is that methods having higher contribution in

given features are likely to be involved in performance problems.

Deg =

√√√√√NMg∑
i=0

NRg∑
j=0

(Sij
Good − Skl

Bad)
2 (3.1)

Since execution traces are clustered into good and bad categories, matrix ∥s∥ are

generated for both of these two clusters, i.e. ∥sGood∥ and ∥sBad∥. Based on these two

matrices, we rely on the Equation 3.1 to compute specificity weight for each method,

whereDeg is the distance for eachmethod,NMGood
is the number of goodmethods,NRGood

is the number of features. Since we consider the distance as the weight for each method,

we favor potential performance bottlenecks that are significant in good execution traces

but not invoked or not significant in bad execution traces. As a result, GA−Prof generates

a ranked list of methods based on their weights. Higher ranked methods are identified as

bottlenecks with a higher degree of specificity.

67

3.2.4 GA-Prof’s Architecture and Workflow

The architecture of GA−Prof is shown in Figure 3.2. Solid arrows indicate command and

data flows between components and the numbers in parentheses indicate the sequence

of operations in the workflow.

Initial input value combinations are chosen at random (1). For each of the input sets,

AUT’s methods are invoked and Profiler collects (2) the execution trace for each individual

solution. We implemented Profiler component in GA−Prof using TPTP framework1. The

execution traces are passed (3) to Execution Trace Analyzer, which uses these traces

to produce (4) Trace Statistics, containing information about method calls, such as the

total number of invocations and the total elapsed self-time for each method. GA analyzer

computes (5) the fitness value for each input is based on the Trace Statistics of its corre-

sponding execution trace. Then the population is evolved using cross-over and mutation

operators and new individuals/offsprings are generated (6).

When the termination criterion is satisfied, potential bottlenecks are identified using

the last generation of individuals (input combinations). However, it should be noticed that

the bottlenecks can be also produced GA−Prof for any given generation. Traces Statistics

are passed (7) to Trace Clustering, and all traces are divided into two groups: good (8)

and bad (9) execution traces. Clustering is done based on computing the median value

of the elapsed execution time. Combining this with Method and Data Statistics produced

(10) by Execution Trace Analyzer, ICA algorithm computes (11)Method Weights for each

method using Equation 3.1. The higher the method’s weight in good execution traces

the higher the possibility that a method is a AUT’s bottleneck. A ranked list of potential

bottleneck methods is generated (12) using their weights and is given to the engineer for

further evaluation.
1https://www.eclipse.org/tptp/

68

Figure 3.2: The architecture and workflow of GA−Prof.

3.3 Empirical Evaluation

This section describes the design of the empirical study to evaluate GA-Prof. We pose

the following three Research Questions (RQs):

RQ1: How effective is GA−Prof in finding sets of inputs that steer profiling applications

towards more computationally intensive executions?

RQ2: How effective is GA−Prof in identifying performance bottlenecks for specific sets of

inputs?

RQ3: Is GA−Prof more effective than competitive approach in identifying performance

bottlenecks?

We introduce the null hypothesis H0 (and consequently alternative hypothesis HA) to

evaluate the statistical significance of the difference in the mean value of elapsed exe-

cution time between random input and GA−Prof generated input for subject applications,

designed to answer RQ1:

H0: There is no statistical difference in the mean values of elapsed execution times trig-

gered by input combinations generated randomly and by GA−Prof, for subject ap-

plications.

69

HA: There is statistically significant difference in the mean values of elapsed execution

times triggered by input combinations generated randomly and by GA−Prof, for sub-

ject applications.

In the rest of this section, we first introduce the subject applications used in the study.

Then, we describe the methodology, inputs and variables. Finally, we discuss the threats

to validity with specific strategies on how we minimized those.

3.3.1 Subject Applications

We evaluated GA−Prof on three subject applications: JPetStore [156], DellDVDStore [4]

and Agilefant [1]. These three applications are all web-based open-source database-

centric applications. In these systems, users rely on a web-based Graphical User Inter-

face (GUI) front-end to communicate with back-end that accepts URLs as inputs. We

deploy JPetStore and DellDVDStore on Apache Tomcat [12] server 6.0.35 and Agilefant

on 7.0.47. JPetStore is a Java implementation of the benchmark, PetStore. In our empiri-

cal study, we used iBatis JPetStore 4.0.5. The system consists of 2,139 lines of code, 384

methods, 36 classes in 8 packages. JPetStore uses Apache Derby [2] as its back-end

database and contains 125 URLs. DellDVDStore is an open-source simulation of an on-

line e-commerce site, which has been used in a number of industrial performance-related

studies similarly to JPetStore [147, 149, 52, 61, 256]. DellDVDStore uses MySQL [8] as

its back-end database and contains 117 URLs. Agilefant is an enterprise-level backlog

product and project management system. It also uses MySQL as its back-end database

and contains 124 URLs. We used Agilefant 3.5.1 in our experiments. It consists of 10,848

lines of code, 2,528 methods and 254 classes in 21 packages.

3.3.2 Methodology

Since we use web-based subject applications, the inputs for these applications are URL

requests. For instance, JPetStore has a web-based client-server architecture. Its GUI

70

front-end communicates with the J2EE-based back-end that accepts HTTP requests in

the form of URLs. Its back-end can serve multiple URL requests from multiple users

concurrently. Each URL exercises different components of the application. For each

subject application, we traversed the web interface and source code of these systems

and recorded all unique URLs sent to the back-end, in order to obtain a complete set of

URL requests.

We define a transaction as a set of URLs that are submitted by a single user. To

answer RQ1, we issued multiple transactions in parallel collecting profiling traces and

computing the total elapsed execution time for the back-end to execute the transactions.

Our goal is to evaluate if GA−Prof can automatically find combinations of URLs that cause

increase in elapsed execution time. In our experiments, we set the number of concurrent

users to five and the number of URLs in one transaction to 50. To answer RQ2, we ran-

domly selected nine methods in each subject application and injected time delays into

them to test whether GA−Prof can correctly identify them. In order to answer RQ3, we

chose FOREPOST [115] as competitive approach (see Section 3.2.2.2). We conducted

comparison experiments on subject applications, with artificial delays injected, and com-

pared the effectiveness of both approaches identifying them.

To choose the delay length and methods to inject bottlenecks into, we ran the subject

applications without injected bottlenecks and obtained a ranked list of methods. On top of

this list we obtained natural bottlenecks. Then, we randomly chose ninemethods which all

ranked very low on the list of profiled methods to avoid natural bottlenecks of the system

and injected artificial delays of five milliseconds into the chosen methods. This delay was

chosen experimentally, so that these methods will become bottlenecks for a small subset

of combinations of the input values.

Since GA−Prof relies on GAs, which are based on randomized algorithms, we had to

conduct our experiments multiple times to ensure statistical significance of the results. We

followed the guidelines for statistical tests for assessing randomized algorithms [28, 29]

when designing the methodology for our empirical study. We repeated the experiments

71

for each subject application for 30 times.

The experiments for JPetStore and Agilefant were carried out using two Dell Pow-

erEdge R720 servers each with two eight-core Intel Xeon CPUs E5-2609 2.40GHz,10M

Cache, 6.4GT/s QPI, No Turbo, 4C, 80W, Max Mem 1066MHz with 32GB RAM that con-

sists of two 16GB RDIMM, 1333 MT/s, Low Volt, Dual Rank, x4 Data Width. The experi-

ments for DellDVDStore were carried out using one Lenovo Y530 laptop with Intel Core2

Duo processor P7350, 2.0 GHz, 3 GB RAM. It typically takes three hours to finish one

run for JPetStore and DellDVDStore, and approximately one day for Agilefant. All com-

parison experiments were conducted on the same experimental platforms to ensure fair

comparison.

The GA is implemented using the JGAP library, which provides a collection of meth-

ods for a wide range of GA purposes2. We used the following GA settings for GA−Prof:

a crossover rate of 0.3, a mutation rate of 0.1, a population of 30 individuals and a tour-

nament selection of size five. We used the total elapsed time as our fitness function, as

described in Section 3.2.2.3. The evolution is terminated if the results do not improve for

ten generations. The maximum number of generations is set to 30 – we chose this value

experimentally based on the duration of AUTs’ runs and the limits of our experimental

platform.

3.3.3 Variables

Dependent variables include the average number of transactions that subject applica-

tions can sustain under the load and the average time that it takes to execute a transac-

tion. There is one main independent variable, that is, bottlenecks. We are interested in

two main indicators of the search process: the variance in the position of the bottleneck

method relative to the top N methods on the list of all profiled methods and the conver-

gence rate to the ultimate position on the list for the bottleneck method among generations

of running the GA.
2http://jgap.sourceforge.net/

72

Consider a situation when an engineer is asked to run a profiler on the AUT. When

selecting input values randomly, a specific execution path can be taken that may not result

in a long elapsed execution time for a bottleneck method to be listed as top N method on

the profile method list. Depending on the selected input data, this method may enter the

top N methods on the list and leave it seemingly randomly, as the input data are selected

at random. Doing so contributes to the large variance in the position of a given method on

the profiled methods list. In contrast, when using a stochastic approach like the GA, we

should observe a trend when the variance gets smaller as the bottleneck method moves

closer to the top of the list. A long term trend should show this direction for a bottleneck

method in our experiments.

3.3.4 Threats to Validity

A threat to validity for our empirical study is that our experiments were performed on

only three open-source web-based applications, which makes it difficult to generalize the

results to other types of applications that may have different logic, structure, or input

types. However, JPetStore and DellDVDStore were used in other empirical studies on

performance testing [147, 149, 256, 61, 52] and Agilefant is representative of enterprise-

level applications, we expect our results to be generalizable to at least this type of web-

based software applications.

Our current implementation of GA−Prof deals with only one type of inputs - URLs,

whereas other programs may have different input types. While this is a potential threat,

in our opinion, this is not a major one, since GA−Prof can be easily adapted to encode

inputs of other types. There is no theoretical limitation that prevents GA−Prof from profil-

ing other types of applications. In order to apply GA−Prof to other applications, one only

needs to modify gene representation approach so that GA−Prof recognizes other types

of input, such as numbers, strings and booleans. However, GA−Prof currently does not

support complex input types, such as inputs with varying lengths. Additionally, it is possi-

73

ble that GA−Prof generates invalid URL sequences through the GA operators. This can

be solved by extracting special constraints of inputs for each AUT to ensure generated

URL sequences are valid, however, it is currently out of the scope of this paper. More-

over, there may be cases where some methods are naturally computationally intensive,

yet they are not performance problems. Our current implementation cannot distinguish

these cases with the real performance problems, since we only used elapsed execution

time to measure method performance. We are planning on addressing these limitations

in the future work.

Artificial delays were injected into randomly chosen methods. This may be a threat for

two reasons. First, performance bottlenecks of web-based applications may result from

external sources, such as network communication and database queries. Second, real

world bottlenecks do not necessarily exist in random spots. However, understanding the

locations of performance bottlenecks within applications is currently out of scope for this

work.

A different threat is that we perform experiments with a fixed number of users and fixed

size of transactions. Using multiple users may lead to discovering new bottlenecks where

multithreading, synchronization, and database transactions may expose new types of

delays. Experimenting with large workloads is a subject of future work and it is orthogonal

to the RQs that we pose, since large workloads will introduce complex interactions among

software components, which is outside the scope of this paper.

In spite of these threats, this empirical study design allowed us to evaluate GA−Prof

in a controlled setting. Thus, we are confident that the threats have been minimized and

our results are reliable.

3.4 Empirical Results

This section describes and analyzes the results of our experiments on three software

systems in order to answer the research questions stated in Section 3.3.

74

3.4.1 Searching Through Input Combinations

The results for JPetStore with injected artificial delays are shown in the box-and-whisker

plots in Figure 3(a), which summarizes the elapsed execution times for the application

for given sets of inputs. In this figure, we are only comparing the first and the last gener-

ations of the evolution, that is, the resulting running times while profiling JPetStore with

random sets of inputs (i.e., the first generation) and evolved input combinations (i.e., the

last generation). For the first generation, where each individual is a randomly generated

transaction, the average elapsed execution time to execute the system using given sets

of inputs is ≈ 4.9 seconds. For the last generation, the average time is ≈ 8.3 seconds,

which shows 69.4% increase. The average elapsed times for JPetStore to execute inputs

in one transaction across every generation is shown in Figure 4(a). The results demon-

strate that GA−Prof is effective in finding combinations of input values that trigger more

intensive workloads.

This conclusion is confirmed by the results for DellDVDStore shown in Figure 3.4.1.

The average elapsed execution time is ≈ 8.1 seconds in the first generation and ≈ 9.3

seconds in the last generation. We can observe the increase in average elapsed time

of approximately 14.8%. This increase is smaller as compared to JPetStore, because

DellDVDStore has a relatively smaller and simpler structure, which means that even with

randomly generated individuals, significant part of the bottleneck methods are triggered

in the first generation, leaving relatively small part of the search space for GA−Prof to

explore. However, for those applications with a large input set (i.e., large search space),

we expect to see a significant increase in elapsed time.

This conjecture is confirmed by the results of Agilefant, shown in Figure 3.4.1. For

the first generation, the mean value of elapsed execution time is ≈ 4.13 seconds, and for

the last generation, the average time is ≈ 58.22 seconds. The increase in mean value

of elapsed execution time is significant because Agilefant is a much larger system as

compared to JPetStore and DellDVDStore, and has a much larger input space. Thus,

75

Figure 3.3: Execution elapsed time measured in seconds for subject AUTs. We compare average
elapsed times of each transaction in first and last generations for each application. The x-axis
corresponds to the first and last generations, and y-axis corresponds to systems’ average elapsed
time. The results for all three subject applications are averaged over 30 runs. Subfigure (a), (b)
and (c) corresponds to JPetStore, DellDVDStore and Agilefant, respectively.

it is more likely that randomly generated combinations of inputs in the first generations

may not necessarily be able to focus on the hot spots. Also, the average elapsed times

for DellDVDStore and Agilefant to execute one transaction across every generation is

shown in Figure 3.4.1 and 3.4.1. As the populations evolve, GA−Prof was consistently

able to find combinations of inputs that steer applications toward more computationally

intensive executions.

To test the null hypothesis H0,JPetStore, we applied t-test for paired sample mean of

the first and last generations from all 30 runs of JPetStore. The p value is p = 1.5e− 21,

allowing us to reject the null hypothesis and accept the alternative hypothesis HA,JPetStore

with strong statistical significance (p < 0.05) that GA−Prof is effective in finding the com-

binations of inputs and steering JPetStore towards more computationally intensive exe-

cutions. Similarly, the t-test results for DellDVDStore and Agilefant are p = 2.9e− 30 and

p = 6.4e− 17. We reject null hypotheses H0,DellDV DStore and H0,Agilefant, and accept the

alternative hypotheses HA,DellDV DStore and HA,Agilefant, thus positively answering RQ1

that GA−Prof is effective in finding sets of inputs that steer profiling applications towards

more computationally intensive executions.

76

Figure 3.4: The results for elapsed execution time across every generation for each application,
measured in seconds. The x-axis corresponds to generations, and y-axis corresponds to average
elapsed time. Subfigure (a), (b) and (c) corresponds to JPetStore, DellDVDStore and Agilefant,
respectively.

3.4.2 Understanding Performance Bottlenecks

As stated in Section 3.2, GA−Prof ranks methods in a descending order and generates

a list of potential bottlenecks. Higher ranking indicates the higher probability of being a

performance bottleneck. Since we inserted artificial delays into selected methods, we

expect these methods (injected bottlenecks) to be ranked higher on the list. We tracked

the ranks of each injected bottleneck across generations and we performed linear fitting

analysis in order to understand variation and trends in rankings of known bottlenecks.

The standard deviation indicates the variation of rankings across generations. For a

given injected bottleneck, we take as input the sequence of its ranks. We calculate the

standard deviation at each generation using the segment of successive five generations,

consisting of the ranks at previous two generations, the current generation and next two

77

Figure 3.5: Distribution of the quantity of captured injected bottlenecks. The x-axis corresponds
to the number of injected bottlenecks that are captured by one certain GA−Prof run. The y-axis
corresponds to the number of GA−Prof runs. Subfigure (a), (b) and (c) corresponds to JPetStore,
DellDVDStore and Agilefant, respectively.

generations. However, for the first two generations and the last two generations, the value

of the standard deviation is assigned to zero because we do not have respective data for

generations before and after respectively.

The linear fitting reflects the trend of rankings as GA−Prof evolves. For each run and

method, we take the sequence of rankings as input and perform linear fitting. A negative

slope shows that a method is converging to the top of the list; a positive slope shows that

a method ends up in lower positions.

If GA−Prof yields a negative slope for the fit straight line for one injected bottleneck,

GA−Prof is considered to “capture” this method. If the slope is positive, GA−Prof is con-

sidered to “miss” this method. We run GA−Profmultiple times for each subject application,

and every GA−Prof run can capture injected bottlenecks. Figure 3.5 shows the distribu-

tion of the quantity of captured injected bottlenecks. In experiments with JPetStore (see

Figure 5(a)), for most of the time, GA−Prof can capture five or six bottlenecks. The prob-

ability of capturing five or more bottlenecks is 80%. The similar distribution pattern can be

observed for DellDVDStore and Agilefant, shown in Figure 5(b) and 5(c). To sum up, the

average number (expectation) of injected bottlenecks that GA−Prof can capture is 5.6,

4.6, and 3.7 for JPetStore, DellDVDStore and Agilefant, respectively.

78

Figure 3.6: Understanding the trend of ranks of injected bottlenecks. The x-axis corresponds to
generations, and y-axis corresponds to the rank of bottlenecks. In each subfigure, the rank of the
method is shown in black circles. The standard deviation at each generations is shown in black
vertical lines and whiskers. The fit straight line is shown is blue dashed lines.

One example of GA−Prof run on JPetStore is shown in Figure 3.6. We can see that at

most times, injected bottlenecks ranked within top 20 of the descending list, which means

that GA−Prof ’s output is stable and reliable. However, there are some cases where the

rank of a bottleneck method is ranked as low as taking the position on the list below 200

and then comes back to the top of the list, for example, Figure 3.4.2. This phenomenon

is expected, since our approach is search-based and it can choose input values for some

generations that are not optimal. GA−Prof approaches to the target (the bottlenecks)

by continuous self-correction. It is expected that sometimes GA−Prof experiences some

“over-correction”, which is when we observe a very low ranking of a method. This is

inevitable, however, it is not a concern. The method will come back later on top of the

list in future generations, as proved by the figures. As a result, GA−Prof will eventually

yield a reliable list of methods where injected bottlenecks are ranked on top. This can

be demonstrated by the fit linear line (blue dashed lines in the figures). In the example

in Figure 3.6, we observe a negative slope for all nine methods, which means that the

ranking of all nine injected bottlenecks are converging to the top of the list as the GA−Prof

evolves. However, we do not expect that GA−Prof would always be able to capture every

single injected bottleneck. A positive slope does not always mean that the method is

missed. Sometimes a method is ranked on top of the list at every generation, leaving no

79

Table 3.1: Comparing GA-Prof and FOREPOST for detecting performance bottlenecks in JPet-
Store (JP) and DellDVDStore (DS). All numbers are averaged over multiple runs. “# of Methods”
indicates the number of injected bottlenecks that are captured by one certain technique. “Final
Ranks” indicates the ranks of injected bottlenecks in the final ranked list.

FOREPOSTGA-Prof config1 config2
JP 5.6 > 1.8 2.2# of Methods DS 4.6 > 4.2 2.6
JP 13.78 < 241.67 145.98Final Ranks DS 10.94 < 12.67 14.80

space for improvement, thus, the slope can not be negative. Sometimes a method may

give way to another method but still stay within top positions of the list. These two cases

do not impair the reliability of the ranked list at all. In summary, results demonstrate that

GA−Prof is effective in identifying injected bottlenecks, thus, positively addressingRQ2.

3.4.3 Comparing GA-Prof to FOREPOST

Recall fromSection 3.2.2.2 that FOREPOST is the closest competitive approach to GA−Prof

that uses machine learning to obtain models that map classes of inputs to performance

behaviors of the AUT [115]. Like GA−Prof, FOREPOST outputs a descending list of po-

tential bottlenecks.

In our comparison experiments, we used two configurations for FOREPOST. In config1,

we used four iterations of learning rules and ten execution traces in between. In config2,

we used four iterations and 15 execution traces. Since FOREPOST experiments are very

time-consuming, we repeated FOREPOST experiments five times for only two subject ap-

plications: JPetStore and DellDVDStore. The results are shown in Table 3.1, where we

compared the following: 1) how many injected bottlenecks are captured (titled as“# of

Method”), and 2) final ranks of injected bottlenecks (titled as“Final Ranks”). Capturing a

bottleneck is defined in Section 3.4.2. By ”final ranks”, we mean the average of all injected

bottlenecks rankings in last generation (GA−Prof) or last iteration (FOREPOST).

Table 3.1 shows that GA−Prof was able to capture, on average, 5.6 injected bottle-

necks in JPetStore, while FOREPOST captured only 1.8 and 2.2 bottlenecks in two re-

80

spective configurations. Similarly, for DellDVDStore, GA−Prof also captured more bottle-

necks. Final ranks are injected bottlenecks’ rankings over multiple runs. Smaller numbers

represent higher positions in the list, indicating higher probability of being performance

problems. For JPetStore, the injected bottlenecks have an average rankings of 13.78

in the list by GA−Prof, and 241.67 and 145.98 by FOREPOST. For DellDVDStore, in-

jected bottlenecks are also ranked higher by GA−Prof. In summary, GA−Prof finds more

bottlenecks than FOREPOST, confirming our initial conjecture, and, thus, positively ad-

dressingRQ3 that GA−Prof is more effective than FOREPOST in identifying performance

bottlenecks.

3.5 Related Work

Profiling, a form of dynamic program analysis, is widely used in software testing, such

as test generation [88, 268, 173], functional fault detection [31, 242, 314, 32, 63, 154],

and non-functional fault detection [287, 66, 222, 71, 190, 123, 291]. Korel provided an

approach that generates test cases based on actual executions of AUT to search for the

values of input variables, which influence undesirable execution flow, by using function

minimization methods [173]. Artzi et al. used the Tarantula algorithm to localize source

codes which lead to failures in web application by combining the concrete and symbolic

execution information [32]. An approach provided by Jiang et al. utilizes execution pro-

filers that possibly contain faults to simplify the program and scale down its complexity

for in-house testing [146]. But these works only focused on functional faults. Coppa et

al. provided an approach to measure how the performance scales with increasing size of

input, and used it to find out performance faults by analyzing the profiles [66, 94]. Liu et al.

designed an innovative system, AutoAnalyzer, to identify existence of performance bot-

tlenecks using clustering algorithms and to locate performance bottlenecks by searching

algorithm [190]. However, these two papers only paid attention to some specific prob-

lems, whereas GA−Prof is aimed at exploring and detecting all possible performance

81

bottlenecks.

Genetic Algorithms (GAs) is widely used in many areas of software engineering

[126], such as software maintenance [185, 215, 231], textual analysis [233], cloud com-

puting [101, 128] and testing [16, 15, 127, 208, 53, 38, 109, 289, 203, 204, 205]. Test

generation is a key point in software testing. Alshahwan et al. used dynamically mined

value seeding into search space to target branches and generate the test data automat-

ically [16]. To achieve higher branch coverage, McMinn et al. used a hybrid global-local

search algorithm, which extended the Genetic Algorithm with a Memetic algorithm, to

generate the test cases [130, 100]. Ali et al. provided a systematic review for the search-

based test case generation, which built a framework to evaluate the empirical search-

based test generation techniques by measuring cost and effectiveness [15]. Briand et al.

applied GAs to stress testing. They developed a method for automatically deriving test

cases to maximize the probability of critical deadline misses [48]. In Wegener et al.’s work

[276, 278, 277], GAs were shown to find unknown execution times, which also used GAs

for selecting test input data and exposing performance problems. However, they looked

for the longest as well as the shortest execution times. Moreover, they did not repeat

their experiments to account for the randomness of GAs. Also, their decision about when

to stop evolution was rather arbitrary. Finally, GA−Prof uses contrast mining to detect

specific bottlenecks across different sets of inputs and profiles.

Performance Testing. Finding and fixing performance problems was shown to be

even more challenging than identifying functional problems [301]. Thus, one critical goal

in performance testing is to automatically generate test cases which may invoke perfor-

mance problems. Burnim et al. provided a complexity testing algorithm for the symbolic

test generation tool, to construct the inputs that lead to the worst-case computational

complexity of the program [50]. Jin et al. extracted efficiency-related rules from 109

real-world performance bugs, and used them to detect performance bugs [151]. Xiao et

al. propose an approach that predicts workload-dependent performance bottlenecks by

using complexity models [285]. Zhang et al. proposed an approach for exposing perfor-

82

mance bottlenecks using test cases generated by a symbolic-execution based approach

[312]. However, unlike GA−Prof, they did not utilize execution information to identify per-

formance problems.

3.6 Conclusion and Discussion

In this chapter, we propose a novel approach for automating performance bottleneck de-

tection using search-based application profiling. Our key idea is to use a genetic algorithm

as a search heuristic for obtaining combinations of input parameter values that maximizes

a fitness function that represents the elapsed execution time of the application with these

input values. We implemented our approach, coined as Genetic Algorithm-driven Profiler

(GA−Prof) that combines a search-based heuristic with contrast data mining from execu-

tion traces to accurately determine performance bottlenecks. We evaluated GA-Prof in

the empirical study to determine how effectively and efficiently it detects injected perfor-

mance bottlenecks into three popular open source web applications: two popular perfor-

mance benchmarks and one enterprise-level application. Our results demonstrate that

GA-Prof effectively explores a large space of the combinations of the input values while

automatically and accurately detecting performance bottlenecks. Moreover, we compare

GA−Prof to FOREPOST, and the experimental results show that GA−Prof is more ef-

fective than FOREPOST because determining what combinations of input values reveal

performance bottlenecks is an inherently search and optimization problem for which GAs

are best suited for.

Recall that chapter 2 presents FOREPOST which extracts rules from execution traces

to generate test data for finding performance problems and identifying bottlenecks. Both

FOREPOST and GA−Prof approaches are aiming at finding specific combinations of in-

put sets that steer application execution to hot paths. However, GA−Prof uses genetic

algorithms for exploring a large space of input combinations in the context of automating

application profiling. Moreover, our experimental results confirm that GA−Prof demon-

83

strate superior results as compared to those by FOREPOST, which is rooted in our origi-

nal conjecture - it is difficult to learn a precise model from a limited set of execution traces

as currently done in FOREPOST.

3.7 Bibliographical Notes

The work summarized in this chapter was done in collaboration with Mark Grechanik

from the University of Illinois at Chicago and Du Shen (the lead author) from the College

of William and Mary. It is published in the following paper [258]:

• Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. “Automating perfor-

mance bottleneck detection using search-based application profiling.” In the 2015

International Symposium on Software Testing and Analysis, pp. 270-281. ACM,

2015.

84

Chapter 4

Mining Performance Regression

Inducing Code Changes in Evolving

Software

During software evolution, a number of code changes are committed, and some of them

may be responsible for performance regressions. A performance regression is a situation

in which an application under test (AUT) exhibits unexpectedly worsened performance in

a new release as compared to the previous version for the same input values and for a

given workload (i.e., the number of users, their requests and frequencies of interactions).

Stakeholders are interested in understanding code changes behind these regressions.

Performance regression testing is challenging due to at least the following reasons.

Firstly, modern software systems evolve rapidly. Many of them follow agile-driven cy-

cles and release new versions in short iterations [54]. With a large number of commits

submitted, the cost of detecting performance regressions and linking code changes to

performance behaviors increases drastically. Therefore, performance regression testing

is usually performed continuously during software maintenance [45, 131]. Secondly, de-

tecting performance regressions and locating the associated code changes for specific

inputs in AUTs with large spaces of input combinations are non-trivial and time-consuming

85

tasks [226].

Let’s consider a simplified scenario for detecting performance regressions. Assume

there are two versions of an AUT, a newly released version (vi+1) and a previous version

(vi). Programmers commit a number of changes between these two versions. Given the

same test inputs, vi and vi+1 the application may exhibit different performance behaviors

with respect to its execution time. The test inputs that lead to worsened performance

(e.g., longer execution time) in vi+1 but not in vi are the desired inputs that may expose

new performance regressions. Their corresponding execution traces are helpful for trou-

bleshooting [131]. In order to find such inputs, stakeholders need to iterate through a large

number of input combinations while mining the execution traces for both of vi and vi+1

with the same inputs to monitor changes in performance for each input set. It is challeng-

ing for stakeholders to mine a large body of execution traces for identifying the ones can

expose potential performance regressions and linking the inputs to these traces. Once

such inputs are found (manually or automatically), the corresponding execution traces

need to be further examined to detect changes responsible for observed performance re-

gressions. Unfortunately, this process is domain and knowledge dependent, oftentimes

manual and expensive.

We propose a novel recommendation system, PerfImpact, to automatically recom-

mend inputs and code changes for programmers that may be closely related to perfor-

mance regressions using a combination of search-based input profiling [258] and change

impact analysis [176]. The search-based input profiling has been extended to execute

two different releases of AUT (vi and vi+1) independently with the same input values,

mine execution traces to link inputs with AUT’s behaviors, and use a genetic algorithm

as a search heuristic for exploring the input value combinations for finding the ones likely

exposing performance regressions.

After the inputs are selected, PerfImpact mines the execution traces generated with

these inputs, and uses change impact analysis to rank each code change based on its

contribution to the AUT’s performance regression(s). The code changes having significant

86

impact on AUT’s performance degradation in vi+1 are marked as problematic for follow-up

code reviews. The goal of PerfImpact is to improve effectiveness of performance regres-

sion testing via identifying input combinations than worsen performance behaviors (i.e.,

longer execution time) in vi+1, and mining the corresponding execution traces to priori-

tize code changes likely responsible for these regressions. It is possible that some code

changes with longer execution time implement new features or fix bugs, not necessarily

leading to performance regressions. Our approach may not precisely locate root cases

behind performance regressions, but provide a ranked list of code changes potentially

leading to regressions that can be used as a starting point for programmers in regression

testing. This chapter makes the following contributions:

• We propose a novel recommendation system, PerfImpact, that relies on search-

based input profiling to expose performance regressions manifested in newer soft-

ware versions, mines the corresponding traces, and uses change impact analysis

to prioritize the code changes likely responsible for these performance regressions;

• We empirically evaluated PerfImpact on different releases of two open-source web

applications, Agilefant (v3.2, v3.3, and v3.5) and JPetStore (v3.0.0 and v4.0.5) containing

numerous real changes. The results demonstrate that PerfImpact is able to effec-

tively explore the combinations of input values and identify performance regressions

between different releases. The results also demonstrate that PerfImpact can ef-

fectively recommend the changes (both real and injected) likely responsible for the

identified regressions;

• We have made the experimental results publicly available in my online appendix

[11].

4.1 Problem Statement

In this section, we survey the state of the art and practice in performance regression

testing, discuss an illustrative example, and describe the problem statement.

87

4.1.1 State of the Art and Practice

Many recent approaches aim at detecting performance regressions by comparing the val-

ues of different performance metrics (e.g., performance counters) in two system versions

[227, 226, 179]. Typically, they execute the same test cases in each version and use con-

trol charts to check if the performance of a target test in vi+1 is similar to the performance of

a baseline test in vi. Other approaches use statistical methods, such as ANOVA, to detect

performance differences between vi+1 and vi [131]. All these approaches require running

a complete set of test cases for detecting regressions. However, since performance test-

ing is usually time-consuming [227], it is imperative to identify a subset of effective inputs

or test cases more likely to exhibit performance regressions. While techniques for se-

lecting regression tests have been proposed and evaluated in the context of functional

testing [91, 168, 185, 288, 290], generating and selecting performance regression tests

still remains a significant challenge.

Understanding which code changes are responsible for particular performance regres-

sions poses to be even more challenging problem. Precisely pinpointing changes (out of

thousands of commits) that may be responsible for performance regressions (for cer-

tain inputs) is a fairly involved task, requiring deep knowledge of the AUT’s source code,

behavioral semantics, and even change history. The closest approach to address this

problem is the one by Huang et al. who proposed a model for estimating the risk of each

commit and tagging commits likely leading to performance regressions [135]. This solu-

tion relies on static analysis and focuses on specific types of performance regressions,

such as dramatic cost difference in intra-procedural paths and loop termination condi-

tions affected by code changes (it does not identify changes responsible for input-specific

bottlenecks).

88

Figure 4.1: A performance regression example due to possible thread blocking.

4.1.2 An Example Performance Regression

Let’s consider the example shown in Fig. 4.1. This example illustrates that understanding

AUT’s behaviors and their relationships to input values (and combinations of inputs) is

critical for detecting performance regressions. The example shows code snippets in two

versions of a system, vi and vi+1. In both versions, lines 1-2 declare method calculate()

as a synchronized method. Line 3 presents input variables a and b, and line 4 the object

item of the type A is instantiated. In vi, lines 5-7 assign a new instance to item; while, in

vi+1, lines 5-7 assign a new instance to item or invoke method getItem() to assign an ex-

isting instance to item, depending on the result of the branch condition in line 5. In both

vi and vi+1, item calls method calculate() in line 8. Note that calculate() is a synchro-

nized method, so if it is called with the same instance in multiple threads simultaneously,

the threads will be blocked. However, in vi+1, item is assigned an existing instance if

the branch condition in line 5 is not satisfied. Thus, when multiple threads are execut-

ing concurrently and sharing the same instance of an item, method calculate() may be

blocked, which can lead to a performance regression for certain inputs of a and b in vi+1,

but not in vi. Moreover, even if the input values leading to this performance regression

are identified, it may be difficult to locate code changes responsible for this performance

regression. If we simply rely on total execution time to evaluate performance, we would

be able to observe performance degradation, for certain inputs, for method calculate().

Yet, in this case, the actual changes responsible for the performance regression are those

in line 5 and line 7 in vi+1.

89

4.1.3 The Problem Statement

In order to prioritize code changes likely responsible for performance regressions, first

we need to find input combinations that execute the code changes which may trigger

performance regressions. As an AUT evolves, a large number of changes are made

between vi+1 and vi, such as code changes, database restructuring, as well as changes

in configuration files, potentially leading to performance regressions. In our paper, we

only focus on the performance regressions caused by code changes. Static analysis

techniques alone may not be suitable to solve this problem, since they are expensive

and oftentimes language-dependent, whereas dynamic analysis techniques are likely to

provide higher precision when understanding AUT’s performance behaviors in terms of

input values for detecting performance regressions. When running vi+1 and vi with the

same inputs, only certain combinations of inputs can trigger specific code changes that

may cause AUT to take longer time to execute in vi+1 as compared to vi. However, for

non-trivial AUTs with large input spaces, the number of permutations of input values is

too large to run in a reasonable amount of time. Also, it is nontrivial to mine a large body

of execution traces for finding the ones likely to expose performance regressions. The

first problem to solve is how to explore the large input space and mine the corresponding

execution traces to effectively find a subset of inputs exposing performance regressions.

After finding the inputs triggering performance regressions, we aim at mining their exe-

cution traces to prioritize code changes associated with these input-specific performance

regressions. The key problem here is how to link all code changes to AUT’s performance

behaviors and understand their impacts on observed performance regressions. Note that

our approach is not precise root causes analysis of performance regressions. Instead, we

propose to improve the effectiveness of performance regression testing for programmers

by recommending a list of code changes likely responsible for performance regressions.

90

4.2 Approach

In this section, we describe our key ideas, algorithms, and the detailed workflow behind

PerfImpact.

4.2.1 An Overview of Our Approach

PerfImpact rests on two key ideas: (1) rely on the search-based input profiling for mining

execution traces to expose the AUT’s performance degradations between two releases,

vi+1 and vi, and detecting input value combinations that maximize these degradations,

and (2) mine execution traces and utilize change impact analysis to identify the code

changes having significant impact on performance degradation for a given set of inputs.

Finding Inputs That Lead to Performance Regressions. The first key idea of Per-

fImpact is to rely on search-based input profiling [258] to mine execution traces for un-

derstanding AUT’s performance behaviors, and use genetic algorithms (GAs) to explore

different combinations of input values for finding the ones that take unexpectedly longer

time to execute in vi+1 but not in vi. Our hypothesis is that the input value combinations

with larger execution time difference among two studied versions are more likely to trigger

performance regressions. While search-based input profiling has been recently used for

detecting performance bottlenecks in a given software version [258], PerfImpact instru-

ments and runs two versions of the AUT with the same inputs independently. PerfIm-

pact also defines a new fitness function aimed at mining execution traces to obtain the

ones using more time to complete in vi+1 than in vi and selecting input combinations as-

sociated with these executions. This fitness function is designed as a proxy for identifying

inputs leading to performance regressions in vi+1.

Identifying Code Change That Induce Performance Regression by Mining Exe-

cution Traces. The second key idea is to find the changes associated with the methods

related to performance degradations. Specifically, PerfImpact obtains execution times of

the invoked methods in vi+1 and vi during profiling and compares their performance dif-

91

Figure 4.2: Examples of URLs and a chromosome in our GA implementation. Each number in
the chromosome refers to a unique URL ID.

ferences respectively. The methods with increased execution time in vi+1, for the same

inputs as in vi, are tagged as potentially “problematic”. Given a code change, PerfIm-

pact relies on dynamic change impact analysis (CIA) [176] to mine execution traces and

estimate a set of methods (i.e., an impact set) that is potentially impacted by this code

change. Then, all the changes between vi+1 and vi are ranked based on the performance

of the methods in their respective impact sets. The changes that have more “problem-

atic” methods in their impact sets are ranked higher. Conversely, the changes that have

fewer or no “problematic” methods in their impact sets are ranked lower. The heuristic

is that the higher ranked changes usually have more significant impact on performance

regressions.

4.2.2 Search-based Input Profiling for Performance Regressions

Search-based input profiling mines a large body of execution traces and utilizes GAs

to automatically search the input space for possible combinations of inputs responsible

for the performance regressions. GAs are evolutionary algorithms that mimic the natural

selection process to search for the solutions to optimization problems [134, 216], and have

been widely used to generate test cases in the software testing domain [127, 139, 130].

In GAs, a solution or an individual is represented as a chromosome, which contains a

sequence of genes. Typically, the initial individuals are generated randomly, and then

GAs exploit a pre-defined fitness function to evaluate each individual. The fitter ones (i.e.,

parents) that have larger fitness values are selected to generate the individuals for the next

generation (i.e., offsprings) via genetic operators, such as crossover and mutation.

92

(a) The crossover operator in GAs.

(b) The mutation operator in GAs.
Figure 4.3: The examples of GA operators, crossover and mutation.

The key idea behind our GA implementation is to identify the input combinations likely

to expose performance regressions. In our implementation, an individual (i.e., a chromo-

some) refers to a test case (or a set of inputs). Each chromosome contains a sequence

of genes, referring to the inputs with different parameters. In case of a web-based ap-

plication that takes URLs as inputs, the example of a chromosome encoding is shown in

Fig. 4.2. Each URL is assigned an unique ID and a chromosome encoding represents a

sequence of URL IDs. An URL input containing different parameters (e.g., URL 3 and 4

shown in Fig. 4.2) will be assigned different IDs. The implementation of crossover and

mutation operators is illustrated in Fig. 4.3. The crossover operator selects a pair of par-

ent chromosomes (i.e., ID sequences) and randomly chooses a cut point to swap these

two sequences. The mutation operator takes a chromosome and changes the value of

a selected gene (i.e., an ID) with another random value. The probabilities of these two

operations are predefined as the crossover and mutation rates.

We define a fitness function to evaluate inputs and promote the ones that are more

likely to trigger performance regressions. PerfImpact first mines execution traces to ex-

tract time information for each combination of inputs, then measures the inputs using the

time difference, which is defined as the difference between the times it takes vi+1 and vi

to execute with the same inputs. The larger the time difference, the higher the probabil-

ity that the corresponding inputs might lead to performance regressions. We define the

fitness function as shown in Eq. 4.1, where Ij is a set of inputs selected from the whole

AUT input set (i.e., Iall), tdj is the time difference for input Ij , tj is the time it takes AUT

93

to execute Ij , the superscripts ‘i’ and ‘i + 1’ refer to vi and the vi+1 software releases

respectively.

tdj = tij − ti+1
j (4.1)

Our GA implementation is outlined in Alg. 3, which takes the whole AUT input set (Iall) and

two releases (vi, vi+1) as inputs, and outputs the sets of inputs (I) for which performance

regressions are observed. In detail, the initial population is selected randomly from Iall (1).

Then crossover and mutation operators are executed with the pre-defined rates (rc, rm)

on the initial population to generate new individuals (3-4). After that, each individual is

sent as an input to vi and vi+1, and two traces are collected during the profiling (5-7). Then

the fitness value is calculated based on the pre-defined fitness function (Eq. 4.1) for each

individual (8-9). The fitter ones are selected to create the next generation (10). The above

process repeats until the termination criterion is reached (2), and then sets of inputs (I)

are returned (11-12). Typically, there are two types of termination criteria. One is a pre-

defined maximum number of generations and the other one is the average fitness value.

When the maximum number of generations is reached or the children’s average fitness

value does not increase significantly as compared to their parents’ average fitness value

(the increased percentage is less than a pre-defined threshold), the evolution process

is terminated. The values of two types of termination criteria are settled experimentally

(Section 4.3.3).

4.2.3 Identifying Performance Regression Inducing Changes via Mining

In general, performance regressions are exposed when some specific methods experi-

ence longer execution time in vi+1. PerfImpact relies on path-based dynamic CIA [176]

to identify the changes leading to performance regressions. For each change, the im-

pact analysis is used to build an impact set containing all the methods that are potentially

impacted by this change. PerfImpact mines execution traces to understand the perfor-

mance of the impacted methods in two releases to rank the changes. The key hypothesis

here is that if the methods in the impact set exhibit longer execution times in vi+1 but not

94

Algorithm 3: The Genetic Algorithm.
Input : Input (Iall), Two software releases (vi, vi+1)
Output: Sets of inputs (I) that might trigger performance regressions.
1: Initial population I ← Iall
2: while Termination criterion is not satisfied do
3: I ← crossover(I, rc)
4: I ← mutation(I, rm, Iall)
5: for all Ij ∈ I do
6: tij ← Run Ij in vi

7: ti+1
j ← Run Ij in vi+1

8: tdj ← ti+1
j − tij , where tdj ∈ TD

9: end for
10: I ← selectPopulation(I, TD)
11: end while
12: return I

in vi, for the same sets of inputs, then it is more likely that a change for this impact set

is responsible for the observed performance regression. Obviously, there may be cases

where multiple inputs and changes are responsible for one or multiple performance re-

gression(s) (i.e., some fault interaction may be present [73]). Note that CIA may not be

helpful to accurately locate the code causing performance regressions. However, our

goal is to pinpoint a starting point (i.e., changes related to observed performance regres-

sions) for a detailed root cause analysis that needs to be performed by developers. In our

paper, the code changes are extracted at the method level granularity. In particular, we

consider changes in a method between vi+1 and vi involving additions, modifications or

deletions to the body, signature, or a return type, excluding comments.

The impact analysis technique that we rely upon in our implementation considers a

change’s impact that propagates along any (and only) dynamic paths that pass through

the change [176]. Given a change c, only the methods, which are called after c and which

are in the call stack after c returns, are added into the impact set. For example, three

execution traces are shown in Fig. 4.4. Given a method a, ae represents a method’s entry

and ar represents a method’s return. x represents the execution termination. In fig. 4.4,

in the first execution, m is called first, then m calls b, b calls c, c calls f , f and c return, b

95

Algorithm 4: Ranking changes for a given set of inputs.
Input : Changes C(c1, c2, ...), Impact sets IM(imc1 , imc2 , ...), Method Statistics.
Output: Ranked lists of changes RC.
1: for all ck ∈ C do
2: for all mq ∈ imck do
3: detmq = mti+1

mq
−mtimq

4: sdetck+ = detmq , where sdetck ∈ SDET
5: end for
6: end for
7: RC ← RANK(C, SDET)
8: return RC

Figure 4.4: Three sample execution traces of an AUT.

returns, m returns, and finally the execution terminates. Assuming that the method c has

been changed, its impact set in the first execution is {b, f ,m}, since f is called after c, and

b, m are in the call stack after c returns. Similarly, its impact set is {a, f , m} in the second

execution, and its impact set is {b, e, m} in the third execution. Thus, the final impact set

for the method c is the union of these three sets, which is {a, b, e, f , m}.

In PerfImpact, a trace is collected for one set of inputs. We considered the trace

segment of one distinct input (i.e., a URL) as an execution, so each trace can be divided

into different executions corresponding to different inputs. In CIA, when one trace contains

multiple executions, the backward and forward searching do not cross the termination

symbol of each execution (i.e., x in Fig. 4.4). For a web application, one set of inputs

refers to a sequence of URLs, thus a trace is collected for each sequence of URLs. Each

trace can be divided into different trace segments for different URLs. For example, if

there are 50 URLs in one set of inputs, the corresponding trace is divided into 50 trace

segments, where each segment refers to one execution used in CIA.

For a given set of inputs, the impact set of each change is estimated using CIA. Per-

fImpact mines execution traces to obtain the performance differences of each method

in the impact set and ranks the code changes based on their impacted methods’ perfor-

96

mance. The performance difference of a method is measured using the difference in its

execution times between vi+1 and vi. PerfImpact ranks the changes based on the sum

of the differences in execution times of all methods in its impact set, which is shown in

Alg. 4. Alg. 4 takes the changes C, the corresponding impact sets IM and method exe-

cution times (execution time for each method would exclude its callee’s execution time)

as inputs, and outputs a ranked list of changes RC. For each change ck in C (line 1), it

calculates the difference in execution time for each method in its impact set imck (line 2).

For example, the method mq ’s difference in execution times (i.e., detmq) is equal to the

method execution time in vi+1, mti+1
mq

, minus the method execution time in vi, mtimq
(line

3). If mq is not invoked in vi, mtimq
is assigned zero. sdetck is the sum of the differences

in execution times of all methods in the impact set imck (lines 4-6). Finally, each code

change (e.g., ck) is ranked based on its value sdetck and Alg. 4 terminates (lines 7-8). Per-

fImpact runs CIA on vi+1 to estimate impact sets of changes, hence the methods deleted

in vi+1 are not included in the impact sets. As a result, the differences in execution times

of these methods are not taken into account while evaluating the impact of changes on

AUT’s performance.

4.2.4 Workflow of PerfImpact

The workflow of PerfImpact is shown in Fig. 4.5. Solid arrows indicate command and

data flows between components, and the numbers in circles indicate the sequence of

operations in the workflow. The dashed arrows denote transition in control flow once GA

termination criteria is satisfied. Initially, sequences of inputs (i.e., individuals) are selected

randomly for the first generation (1). While our paper starts this step (i.e., GA component)

with random inputs, in practice, developers can also supply inputs that reveal performance

bottlenecks in vi (or any other inputs they would like to start with). JMeter [153] simulates

users sending the inputs into two releases of the AUT automatically (2-4). Profileri and

Profileri+1 collect execution traces of each set of inputs on vi and vi+1 respectively (5,

6). Profilers are implemented using Probekit [10], a lightweight profiling tool that injects

97

Figure 4.5: The workflow of PerfImpact.

the code fragments into specific points (e.g., method entry and exit) of the binary code

for collecting the runtime data. Execution Trace Analyzer processes the execution traces

(7) and extracts Trace Statistics (8) for GA Analyzer to evaluate each set of inputs (9).

GA analyzer calculates the fitness value for each set of inputs according to Eq. 4.1 and

selects the fitter ones to generate new inputs. The new inputs are sent back the AUT,

starting the next iteration (10). GAs are implemented using JGAP [7].

After the GA component terminates, which means that PerfImpact finds the inputs

likely to expose performance regressions, the second stage of PerfImpact (i.e., CIA com-

ponent) is initiated with these inputs. By combining the Change information (e.g., full

method names, signatures, return types) (11) and Trace Statistics (12), an Impact Set is

derived for each change for the given inputs, using the Impact Analysis algorithm (13).

Method Statistics are extracted to calculate the execution time in two releases for each

method (14). In Mining phase, PerfImpact integrates Method Statistics (15) with Impact

Sets (16), and uses the Alg. 4 to rank the changes for the given inputs (17). The changes

ranked higher on the list are the ones likely leading to performance regressions. Note that

the CIA component is initiated right after the GAs’ search is terminated, since we expect

mining execution traces for selected inputs to be useful to analyze the impact of each

change on performance regressions. Alternatively, the CIA component can be also run

98

simultaneously while running the GA component. This usage of PerfImpact depends on

two specific scenarios. In the first scenario, when stakeholders want to obtain the final

ranked lists of changes, they can run the CIA component after GA component is termi-

nated, as shown in Fig. 4.5. However, if stakeholders prefer to monitor the impact of

inputs on performance changes, they can run the CIA component for the inputs that are

selected at each generation (second scenario). To evaluate PerfImpact thoroughly, we

choose the second scenario for our empirical study (section 4.3.3).

4.3 Evaluation

In this section, we state our research questions (RQs) and explain how we conducted an

empirical study aimed at evaluating our approach on two open-source applications.

4.3.1 Research Questions

RQ1: How effective is PerfImpact in finding inputs that likely expose performance regres-

sions in vi+1?

RQ2: Can PerfImpact effectively recommend changes between vi and vi+1 likely respon-

sible for performance regressions in vi+1 for a given set of inputs?

To answer RQ1, we introduced the following null (H0) and alternative (H1) hypotheses

aimed at comparing inputs selected by PerfImpact with random inputs. Inputs with larger

time differences (defined in Eq 4.1) are more likely to lead to performance regressions.

The hypotheses are evaluated at a 0.05 level of significance:

H0: There is no statistically significant difference in the time differences for the inputs

generated by PerfImpact and random inputs.

H1: There is a statistically significant difference in the time differences for the inputs gen-

erated by PerfImpact and random inputs.

To answer RQ2, after GA component is finished and changes are ranked, we run AUTs

with the selected inputs to further understand the changes’ impact on performance of two

99

releases. We expect the changes ranked higher would lead to much longer execution

time in vi+1 as compared to vi.

4.3.2 Subject AUTs

We evaluated PerfImpact on two open-source web applications, JPetStore (v3.0.0, v4.0.5)

and Agilefant (v3.2, v3.3, v3.5). The statistics for all subjects are shown in Table 5.2. JPet-

Store [156] is a three-tier Java implementation of PetStore, which is widely used as perfor-

mance benchmark [147, 148, 256, 98]. The GUI front end accepts users’ URL requests,

and the backend executes the requests and communicates with its database. Both JPet-

Store versions are deployed in Tomcat 6.0.35 and rely on Apache Derby 10.6.2.1 [2] as

the backend database. Agilefant [1] is an open source application for managing agile

software development, written in Java. All versions of Agilefant are deployed in Tomcat

7.0.47 with MySQL as the backend database.

4.3.3 Methodology

The first goal of the empirical study is to determine that whether the inputs selected by

PerfImpact are likely to trigger performance regressions. To achieve this goal, we ran

PerfImpact to obtain the inputs and compared them with randomly selected inputs. Ran-

dom inputs are widely used in the testing field as they appear to be remarkably effective

and reliable in test case generation [236, 122]. Time difference (see Eq. 4.1) was chosen

to evaluate both the selected and random inputs. The inputs with larger time differences

were more likely to trigger performance regressions.

Table 4.1: The stats of the subject programs.

Subjects Version #Methods #Classes Inputs(URLs)
Get Post

JPetStore v3.0.0 307 52 115 5JPetStore v4.0.5 407 43
Agilefant v3.2 3,212 382

51 70Agilefant v3.3 3,314 413
Agilefnat v3.5 3,339 408

100

The second goal of the empirical study is to demonstrate that PerfImpact can effec-

tively mine execution traces for ranking the changes that lead to performance regressions

on the top. This goal is twofold. First, we show the ranks of each change across gen-

erations in our GA implementation. With GA search converging, we expect the inputs to

steer AUT executions to expose performance regressions. Thus, we conjecture that the

ranks of some changes would stably converge to some high positions, identified as the

ones highly likely to trigger regressions. Second, after ranking the changes, we show the

changes’ impacts on the performance of two releases with selected inputs (i.e., inputs

selected in the last generation) to see whether the top ones really led to the expected

performance regressions when increasing the workload. The impact of each change on

AUT’s performance was evaluated using its total execution time, which was equal to the

sum of the execution time of all methods in its respective impact set. We expected the

changes ranked higher on the list to have longer total execution times in vi+1, yet shorter

total execution times in vi, which implies that changes with higher ranks impacted many

methods that took longer time to execute in vi+1. Especially when increasing the work-

load, the total execution times in vi+1 is expected to increase nonlinearly, implying that

the performance may be degrading noticeably. We vary a number of users to simulate

several realistic workloads.

We chose three pairs of AUT releases, JPetStore v3.0.0 and v4.0.5, Agilefant v3.2 and

v3.3, and Agilefant v3.2 and v3.5, to evaluate PerfImpact . Two types of changes, real and

injected, were involved. To extract the real changes, we computed diffs for each pair of

releases [3]. Some changes were ignored since their inputs cannot be tested in our exper-

iments (e.g., an input that triggers specific functionality that removes the same data from

database and, hence, causes a database error). As a result, we extracted 68 changes

between JPetStore v3.0.0 and v4.0.5, 24 changes between Agilefant v3.2 and v3.3, and 95

changes between Agilefant v3.2 and v3.5. Furthermore, we also wanted to determine how

well PerfImpact is able to identify the known problematic changes. Thus, we also injected

artificial changes in the second set of experiments. Injecting artificial changes to mimic

101

the real performance regressions has been widely used in evaluating the effectiveness of

performance regression testing techniques [131, 226, 255]. We randomly injected nine

artificial changes (three for each group) into the source code of vi+1 (JPetStore v4.0.5,

Agilefant v3.3 or Agilefant v3.5). All these changes will lead to the synchronization prob-

lems similar in nature to one explained in the illustrative example (section 4.1.2), which

would lead to longer latency during execution. The complete information on the injected

changes is provided in my online appendix [11].

The inputs in our study were URLs, since we focused on web applications. One se-

quence of URLs sent by one user is defined as a transaction. Once URLs are selected

randomly or by PerfImpact, JMeter simulates multiple users sending transactions into

two releases of the AUT, and their backends executing URL requests independently (see

Fig. 4.5). Each transaction contained 50 URLs, and the number of users for the initial

workload was set to five. Since PerfImpact selected random URLs to generate the initial

population, it was necessary to conduct every experiment multiple times to avoid skewed

results. Following the guidelines for using statistical tests to assess randomized algo-

rithms [27, 26], we ran our experiments with the same configurations thirty times on JPet-

Store and ten times on Agilefant. That is, we ran JPetStore with random inputs thirty times

and Agilefant with random inputs ten times. For each time, the number of combinations of

inputs is equal to the number of individuals per generation. After identifying performance

regression inducing changes, we also experiment with increased workloads (5, 10, 15,

20 and 25 users) to analyze these changes’ impacts on performance regressions. The

experiment with the same workload was run five times.

Our genetic algorithm was instantiated with a crossover rate of 0.3 and a mutation rate

of 0.1. There were 30 individuals in each population, and the time difference was used

as the fitness value. We set two criteria experimentally to terminate the GA cycle. First, if

the increment of average time difference was less than or equal to 3% in ten successive

generations, the GAs were terminated automatically. Second, we limited the number of

generations to 30 - since each experiment is computationally expensive (e.g., Agilefant

102

Figure 4.6: The box-and-whisker plots represent time differences between two released versions
across generations on JPetStore (JP) and Agilefant (AG).

needs more than five days to finish one run on our hardware infrastructure).

The experiments on JPetStore were carried out using a Think Pad W530 laptop with

Intel Core i7-3840QM processor 2.80 GHz, 32 GB DDR3 RAM. The experiments on Ag-

ilefant were carried out using two servers with 8 Intel Xeon Core E5-2609 CPU 2.40 GHz,

10 M Cache, 32 GB RAM.

4.4 Empirical Results

This section analyzes the results of our empirical study. More experimental results are

available online [11].

4.4.1 Finding Performance Regression Inputs

Fig. 4.6 shows the results of time differences between two releases across GA genera-

tions on JPetStore and Agilefant. The x-axis represents the generations, and the y-axis

represents time differences between two releases (in seconds). The central box repre-

sents the values from the lower to upper quartile (i.e., 25 to 75 percentile). The middle

line represents the median. The vertical line extends from the minimum to the maximum

103

Figure 4.7: The box-and-whisker plots represent the ranks of the changes in Table 4.3. The x-
axis represents the generations, and the y-axis represents the ranks. Smaller values that appear
on y-axis imply higher ranks.

value. Note that, if a set of inputs leads to larger time difference, this set is likely to trigger

performance regressions. As shown in Fig. 4.6, the time difference increases as the GAs

progress, implying that PerfImpact steered execution of the AUTs to the paths which trig-

gered performance regressions. Specifically, Table 4.2 compares the time differences

of selected inputs in the last generation with the random inputs in the first generation.

The average time differences for the selected inputs are significantly larger than the time

differences for the random inputs (162.35% − 288.72% increase), which clearly demon-

strates that the inputs selected by PerfImpact were more likely to trigger performance

regressions. The values of the standard deviation (SD) of the selected inputs are much

smaller as compared to the random inputs for JPetStore. We suggest that the selected

inputs converge to a stable subset of inputs. However, the values of SD of the selected

inputs are larger as compared to the random inputs in Agilefant. Recall that Agilefant has

relatively more sophisticated architecture than JPetStore. Thus, PerfImpact has more

chances to steer the executions to different paths, leading to larger values of SD. Ad-

ditionally, a paired t-test with one-tailed distribution was performed to compare the time

differences of random inputs and selected inputs. The p − value of these three groups

are significantly smaller than 0.05. Based on these results we reject the null hypothesis.

These results demonstrate that PerfImpact can find the combinations of inputs that were

significantly more effective as compared to random inputs in exposing these performance

regressions.

104

Figure 4.8: The figures show the average of total execution times of the changes in Table 4.3.
This total execution time of one change is the total execution time of all methods in its respective
impact set. The blue dots show the average of total execution time in old version of Agilefant
(v3.2), and the red dots show the average of total execution time in new version of Agilefant (v3.3
or v3.5). The curves are the fitting curves generated using Polynomial Function model. The inputs
were selected in the last generation. The x-axis represents the average of total execution time,
and the y-axis represents the number of users. Time is measured in seconds.

Table 4.2: The time difference between two versions for random inputs (Rd) and PerfImpact se-
lected inputs (PI) in JPetStore (JP) and Agilefant (AF).

App InputsMIN MAX AVG SD P-value

JP3.3.0&4.0.5
Rand 2.13 90.39 32.17 23.77 <1.23E-296PI 66.47 109.22 79.82 6.28

AF3.2&3.3
Rand 25.50 58.22 34.75 6.30 1.37E-236PI 76.84 125.03 100.33 11.19

AF3.2&3.5
Rand 57.07 93.66 70.54 6.70 2.64E-198PI 96.12 134.84 114.52 10.84

4.4.2 Identifying Code Changes

To evaluate PerfImpact’s effectiveness in identifying problematic code changes, we pro-

vide the rankings of six randomly chosen code changes from Agilefant as examples, in-

cluding five real and one injected change. The detailed information on the changes is

shown in Table 4.3. Due to lack of space, the experimental results for other changes can

be found in the online appendix [11]. Fig. 4.7 shows the ranks of these changes across

generations. The central box represents the values from the lower to upper quartile (i.e.,

25 to 75 percentile). The middle line represents the median. The vertical line extends

from the minimum to the maximum value. The blue lines are the fitting lines generated

using generalized linear model. For Agilefant, there are 27 changes (i.e., 24 real and

three injected changes) between v3.2 and v3.3, and 98 changes (i.e., 95 real and three

injected changes) between v3.2 and v3.5, thus the range of ranks in v3.3 was from 1 to 27

105

Figure 4.9: Examples of code changes in Agilefant. (a) shows the source code of change (f) in
Table 4.3, and (b) shows the source code of change (d) in Table 4.3.

and the range of ranks in v3.5 was from 1 to 98. Note that, the methods with smaller values

(close to one) for ranks are ranked higher. Fig. 4.7 shows that the ranks for changes vary

in the first generation, since the inputs are generated randomly. As the GAs progress,

the executions are steered to the paths where the performance regressions are exposed,

thus the ranks of some changes (e.g., change (b), (c), (d) and (e)) become more stable

and converge to the final ranks.

Based on the stable ranks in the last generation, we can easily identify two types of

changes. One change type that has relatively higher ranks (i.e., smaller values on y-axis

in Fig. 4.7), such as changes (b), (c), and (e), is identified as representing problematic

changes. Specially, change (c) is an injected change. We also checked the ranks of other

injected changes. All of them were ranked on the top, demonstrating that PerfImpact can

effectively identify the injected changes. The other change type that has noticeably lower

ranks (i.e., larger values on y-axis in Fig. 4.7), such as change (d), is identified as the

one less likely to trigger performance regressions. Unlike the changes that have stable

ranks in the last generation, change (a) and (f) vary significantly. We further analyzed

their ranks to understand the reason behind these variations. Change (f) had relatively

higher median ranks (middle lines in boxplots), implying that it may trigger performance

regressions for some specific inputs. We will discuss its source code later to show more

details. However, the median ranks of change (a) were close to the bottom (i.e, rank 27

106

in v3.3), implying that it was not invoked for most of the selected inputs and it had less

contribution to performance regressions. PerfImpact tended to discard the inputs less

likely to trigger performance regressions as the GAs progressed, thus the corresponding

methods were not invoked. In conclusion, based on the ranks in the last generation, we

can identify different types of changes.

Table 4.3: Examples of code changes in Agilefant.
Method Name Versions

a fi.hut.soberit.agilefant.business.impl.
v3.2 vs v3.3SearchBusinessImpl.taskListSearchResult

b fi.hut.soberit.agilefant.business.impl.
v3.2 vs v3.3SettingBusinessImpl.retrieveByName

c injected code change v3.2 vs v3.3

d fi.hut.soberit.agilefant.business.impl.
v3.2 vs v3.5StoryHierarchyBusinessImpl.calculateStoryTreeMetrics

e fi.hut.soberit.agilefant.business.impl.
v3.2 vs v3.5ProjectBusinessImpl.retrieveLeafStories

f fi.hut.soberit.agilefant.web.
v3.2 vs v3.5TimesheetAction.generateTree

To demonstrate that the changes with higher ranks were likely to trigger performance

regressions, we ran the selected inputs on AUTs with different workloads (i.e, different

numbers of users) and obtained the average total execution times for each change in two

releases. In general, one change with longer total execution times in vi+1 is more likely

to trigger performance degradation. As the results show in Fig. 4.8, the changes with

higher ranks (e.g., changes (b), (c), (e) and (f)) have much larger averages of the total

execution times in vi+1 (i.e., red lines in Fig. 4.8) as compared to the ones in vi (i.e., blue

lines in Fig. 4.8). We used polynomial functions to fit the results, demonstrating that the

average of the total execution times increased nonlinearly when the workload increased.

The polynomial functions for all examples in Table 4.3 are shown in our online appendix

[11]. Conversely, the changes with lower ranks (e.g., changes (a) and (d)) have relatively

shorter average total execution times in both vi and vi+1. Recall that change (a) was not

invoked by most of selected inputs. Its averages of total execution times in v3.2 and v3.3

were close to zero. As expected, the changes with higher ranks led to longer execution

107

times in vi+1, and the times increased nonlinearly given an increase in the workload.

To further demonstrate that PerfImpact identified the problematic changes effectively,

we looked into the source code of each change. Fig. 4.9 shows two examples of such

code changes. More examples are available in the online appendix [11]. Fig. 4.9 (a)

shows the source code of change (f) in Table 4.3, which was ranked highly for some

selected inputs. As expected, PerfImpact found the inputs that satisfied the if clauses,

which led to different performance in two releases. In v3.2, the method was returned

directly with a Action.ERROR. Instead, in v3.5, it called storeaAllT ime- Sheets to obtain

a collection of Products, and added products’ IDs into selectdBacklogIds. Then, the

execution went through the following steps in change (f). Apparently, change (f) required

more time to execute in v3.5, especially when the size of the products increased, leading

to a performance regression. Note that the inputs that did not satisfy the if clause would

not lead to performance degradation. This example demonstrates that PerfImpact can

find specific inputs that trigger the performance regressions and effectively locate the

problematic changes. Fig. 4.9 (b) shows the source code of change (d) in Table 4.3, which

got relatively lower ranks in PerfImpact. The change was that, in the for loop, the current

iteration would be skipped in v3.5, when story.getId was equal to child.getId. Apparently,

change (d) would not degrade the performance in v3.5, thus it was correctly ranked lower

by PerfImpact. These results show that PerfImpact can be used to effectively identify the

changes that are responsible for performance regressions.

4.5 Threats to Validity

First, our current implementation of PerfImpact only focuses on the identical input values

that are valid for both releases, vi and vi+1. The differences in inputs between two re-

leases, such as the new inputs in vi+1 that may no longer be valid in vi, were not tested,

since they cannot be sent into both of two releases for performance comparison. More-

over, when generating new inputs, some constraints (e.g., the order of URLs in a chro-

108

mosome) must be considered to guarantee that the new inputs are valid. However, our

current implementation deals with some straightforward constraints, such as a login with

a predefined username and the password at the beginning. Testing different inputs be-

tween two releases and considering other constraints are currently out of the scope of

this paper and we leave them for future work.

Second, PerfImpact does not analyze root causes behind detected performance re-

gressions and does not take into account potential interactions among performance re-

gressions [73, 169]. Multiple inputs and changes may be responsible for one or many

performance regressions, thus, our approach may not necessarily be able to capture

cases where the behaviors of performance regressions are changing due to interactions

among those regressions (e.g., a situation where one performance regression obscures

effects of another regression for certain inputs). Also, if an AUT is multithreaded, even if it

runs twice with the same input, the execution time may be different due to multithreaded

interleavings.

Third, in our empirical study, we only applied PerfImpact to several releases of two

open-source web applications. It is hard to generalize the results given that our exper-

iments are based on the two applications (even though we considered five releases of

these two apps in total). However, JPetStore has been widely used as a benchmark in

performance testing [147, 148, 256, 98] and Agilefant is an enterprise-level real-world ap-

plication. Thus, we believe that these applications are representative real-world software

systems. Also, another potential threat is that we only considered one type of inputs (i.e.,

URL requests), since we experimented with web-based applications. However, PerfIm-

pact can be used with other types of applications and inputs (the chromosomes can be

reformatted to accommodate other types of inputs). We leave this extension for future

work.

Finally, we only injected one type of artificial changes to simulate performance re-

gressions. Also we had to discard some real changes since they can not be covered

by PerfImpact. However, we extracted 187 different real changes in the subject appli-

109

cations. Thus, we believe that all the changes (real and injected) used in evaluation

constitute a solid experimental design to support our current conclusions. Furthermore,

PerfImpact only focuses on method-level changes in the native source code. Currently,

PerfImpact does not take into account different granularity and possible changes in the

underlying third-party or standard libraries. While analyzing the impact of changes in un-

derlying libraries on the performance of a client application is an important problem [119],

we leave it for the future work.

4.6 Related Work

Change Impact Analysis is a technique aimed at helping developers to understand the

effects of a change on the rest of the source code [183, 181]. Many CIA approaches

have been proposed [105, 39, 182, 78, 46]. Law and Rothermel proposed a dynamic

path-based impact analysis, which assumes that a change has a potential impact on the

code reachable from this change [176]. Following this approach, Apiwattanapong et al.

presented a method that only considers essential dynamic information by using execute-

after sequences [24]. Ren et al. presented a tool, Chianti, to identify the changes that

induce the failure of one specific test [244]. Zhang et al. introduced FaultTracer, which

adapts spectrum-based fault localization techniques with a CIA-based algorithm to rank

the changes for identifying failure-inducing ones [307, 308, 309]. However, these ap-

proaches do not focus on performance regressions. To the best of our knowledge, Per-

fImpact is the first technique to combine CIA with search-based input profiling to analyze

the impact of changes on an AUT’s performance.

Regression Testing. The default approach for regression testing is to retest all test

cases after releasing a new version, which is an expensive proposition. To solve this

problem, a number of techniques for selecting regression tests have been proposed

[91, 168, 62, 250, 108, 295, 301, 298, 229]. Table 4.4 shows approaches that have

been proposed to support performance regression testing. There are three major dif-

110

ferences between these approaches (see Table 4.4). First, some approaches rely on

profiling of the AUT and some do not. Profiling is a well-established and useful tech-

nique for analyzing the AUT’s behaviors, and is widely used in performance testing field

[179, 213]. PerfImpact uses differential profiling to run the same inputs in two software

versions simultaneously, which enables accurate detections of performance regressions.

Second, some approaches mine information from repositories to identify performance

regressions [98]. However, many software systems may not necessarily maintain well-

structured repositories. PerfImpact detects performance regressions without relying on

the testing history, which makes it applicable to other contexts including testing legacy

systems. Third, performance regression testing is not completed until the code changes

responsible for performance regressions are identified. Yet, only a very few approaches

address this concern. For instance, Huang et al. detect high-risk commits that may lead

to performance regressions using static analysis [135]. However, this work relies on static

analysis and focuses on specific types of performance regressions. A recent work ana-

lyzes root causes behind performance regressions, yet it requires the AUT to maintain an

accurate set of unit tests [131]. On the contrary, PerfImpact does not require unit tests

and relies on dynamic information to automatically and effectively identify actual bottle-

necks (that can be observed and confirmed at run-time) as well as problematic changes.

4.7 Conclusion and Discussion

In this chapter, we propose a novel recommendation system, PerfImpact, aimed at au-

tomatically recommending code changes likely responsible for performance regressions.

Our approach uses search-based input profiling to detect input combinations likely leading

to performance regressions, and mines execution traces to estimate the impact of code

changes on detected performance regressions. As compared to GA-Prof (see chapter

3), which uses GAs to search for input values leading to performance bottlenecks in a

111

Table 4.4: Performance regression testing approaches.

Approaches Analysis Profiling Repository Identify ChangesStatic Dynamic

Our approach · • • · •
Shang et al. [255] • · · ·
Huang et al. [135] • · · · •
Nguyen et al. [225] · • · • •
Heger et al. [131] · • • · •
Lee et al. [179] · • • · •

Nguyen et al. [226] · • · · ·
Foo et al. [98] · • · • ·

Mostafa et al. [218] · • • • •
Mi et al. [213] · • • · ·
Chen et al. [59] · • · · ·

Kalibera et al. [160] · • · · ·
Bulej et al. [49] · • · · ·

Yilmaz et al. [292] · • · · ·

given software release (e.g. vi+1), PerfImpact uses GAs to find the inputs that reveal

performance regressions between two AUT releases (e.g. vi and vi+1) and is designed

to work in the context of software evolution to support performance regression testing. A

performance bottleneck (in vi+1) detected by GA-Prof is not necessarily a performance

regression. Since this bottleneck may already exist in vi, no performance degradation is

involved between two releases. PerfImpact is able to further help developers to ignore

this type of performance problems, and focus on the methods with larger differences in

performance between two releases. Additionally, the goals of these two works are quite

different. GA-Prof identifies the bottlenecks that have significant contributions to longer

execution time, but PerfImpact uses CIA to analyze the impact of code changes on the

problematic methods for identifying the ones that are responsible for actual performance

regressions.

We implemented PerfImpact and tested it on different releases of two open-source

web applications. The results demonstrate that PerfImpact can effectively select the in-

puts exposing performance regressions. Also, the ranked lists of changes computed with

PerfImpact are useful for stakeholders to identify potential changes behind performance

regressions for further inspection and root cause analysis. In the future, we are plan-

ning on conducting further empirical studies to understand characteristics of performance

112

bottlenecks and tailor our proposed approaches to other granularities (e.g., feature-level

[75, 76, 77, 240, 241, 246]) in addition to method-level granularity. For example, we plan

to recover traceability links between performance bottlenecks with features, which would

support software engineers to locate problematic features and further detect more rele-

vant performance bottlenecks.

4.8 Bibliographical Notes

The work summarized in this chapter was done in collaboration with Mark Grechanik from

the University of Illinois at Chicago, which is published in the following paper [197]:

• Qi Luo, Denys Poshyvanyk, and Mark Grechanik. “Mining performance regression

inducing code changes in evolving software.” In the 13th International Conference

on Mining Software Repositories (MSR), pp. 25-36. ACM, 2016.

113

Chapter 5

How Do Static and Dynamic Test

Case Prioritization Techniques

Perform on Modern Software

Systems? An Extensive Study on

GitHub Projects

Modern software evolves at a constant and rapid pace; developers continually add new

features and fix bugs to ensure a satisfied user base. During this evolutionary process, it

is crucial that developers do not introduce new bugs, known as software regressions.

Regression testing is a methodology for efficiently and effectively validating software

changes against an existing test suite aimed at detecting such bugs [192, 307]. One

of the key tasks of the contemporary practice of continuous regression testing, is test

case prioritization (TCP).

Regression test prioritization techniques reorder test executions in order to maximize

a certain objective function, such as exposing faults earlier or reducing the execution

114

time cost [192]. This practice can be readily observed in applications to large industrial

codebases such as at Microsoft, where researchers have built test prioritization systems

for development and maintenance of Windows for a decade [261, 68]. In academia, there

exists a large body of research that investigates the design and evaluate regression TCP

techniques [271, 306, 248, 247, 192, 172]. Traditionally, TCP techniques leverage one

of several code coverage measurements of tests from a pervious software version as a

representation of test effectiveness on a more recent version. These approaches use

this measured test adequacy criterion to iteratively compute each test’s priority, and then

rank them to generate a prioritized list. Researchers have proposed various forms of this

traditional approach to TCP, including greedy (total and additional strategies) [306, 248,

247], adaptive random testing [145], and search-based strategies [184].

While dynamic TCP techniques can be useful in practice, they may not be always ap-

plicable due to certain notable shortcomings, including: 1) the time cost of executing an

instrumented program to collect coverage information [106, 206]; 2) expensive storage

and maintenance of coverage information [206, 311]; 3) imprecise coverage metrics due

to code changes during evolution or thread scheduling of concurrent systems [180], and

4) the absence of coverage information for newly added tests [192] or systems/modules

that disallow code instrumentation [180] (e.g., code instrumentation may break the time

constraints of real-time systems). Thus, to offer alternative solutions that that do not

exhibit many of these shortcomings, researchers have proposed a number of TCP tech-

niques that rely solely upon static information extracted from the text of source and test

code. Unfortunately, since the introduction of purely static TCP techniques, little research

has been conducted to fully investigate the effectiveness of static techniques on modern

software. This begs several important questions in the context of past work on dynamic

techniques, such as: How does the effectiveness of static and dynamic techniques com-

pare on modern real-world software projects? Do static and dynamic techniques uncover

similar faults? How efficient are static techniques when compared to one another? The

answers to these questions are of paramount importance as they will guide future research

115

directions related to TCP techniques.

Several empirical studies have been conducted in an attempt to examine and under-

stand varying aspects of different TCP approaches [247, 92, 82, 243, 266]. However,

there are clear limitations of prior studies that warrant further experimental work on TCP

techniques: 1) recently proposed TCP techniques, particularly static techniques, have not

been thoroughly evaluated against each other or against techniques that operate upon

dynamic coverage information; 2) no previous study examining static TCP approaches

has comprehensively examined the impact of different test granularities (e.g., prioritizing

entire test classes or individual test methods), the efficiency of the techniques, or the sim-

ilarities in terms of uncovered faults; 3) prior studies have typically failed to investigate the

application of TCP techniques to sizable real-world software projects, and none of them

have investigated the potential impact of program size (i.e., LOC) on the effectiveness

of TCP techniques; 4) prior studies have not comprehensively investigated the impact of

the quantities of faults used to evaluate TCP approaches; and 5) no previous study has

attempted to gain an understanding of the impact of fault characteristics on TCP evalua-

tions.

Each of these points are important considerations that call for thorough empirical in-

vestigation. For instance, studying the effectiveness and similarity of faults uncovered for

both static and dynamic techniques could help inform researchers of potential opportuni-

ties to design more effective and robust TCP approaches. Additionally, evaluating a set of

popular TCP techniques on a large group of sizable real-world java programs would help

bolster the generalizability of performance results for these techniques. Another impor-

tant consideration that arises from limitations of past studies is that an increasing number

of studies use mutants as a proxy for real faults to evaluate performance characteristics

of TCP techniques. Thus, understanding the effect that mutant quantities and operators

have on mutation analysis-based TCP evaluations should help researchers design more

effective and reliable experiments, or validate existing experimental settings for contin-

ued use in future work. Therefore, in this paper we evaluate the effectiveness of TCP

116

approaches in terms of detecting mutants.

To answer the unresolved questions related to the understanding of TCP techniques

and address the current gap in the existing body of TCP research we perform an exten-

sive empirical study comparing four popular static TCP techniques, i.e., call-graph-based

(with total and additional strategies) [311], string-distance-based [178], and topic-model

based techniques [266] to four state-of-the-art dynamic TCP techniques (i.e., the greedy-

total [247], greedy-additional [247], adaptive random [145], and search-based techniques

[184]) on 58 real-world software systems. All of the studied TCP techniques were imple-

mented based on the papers that initially proposed them and the implementation details

are explained in Section 5.2.4. It is important to note that different granularities of dy-

namic coverage information may impact the effectiveness of dynamic TCP techniques.

In this paper, we examine statement-level coverage for dynamic techniques, since previ-

ous work [192, 206] has illustrated that statement-level coverage is at least as effective

as other common coverage criteria (e.g., method and branch coverage) in the TCP do-

main. In our evaluation criteria we examine the effectiveness of the studied techniques

in terms of the Average Percentage of Faults Detected (APFD) and its cost cognizant

version APFDc. Additionally, we analyze the implications of these two metrics on effi-

cacy measure of TCP techniques and discuss the implications of this analysis. We also

analyze the impact of subject size and software evolution on the two studied metrics.

Furthermore, during our empirical study, we vary the operator types and the quantities of

injected mutation faults to investigate whether these factors significantly affect the eval-

uation of TCP approaches. We also examine the similarity of detected of faults for the

resultant prioritized sets of test cases generated by our studied TCP techniques at differ-

ent test granularities (e.g., both method and class levels). More specially, we investigate

the total number and the relative percentages of different types of mutants detected by

the most highly prioritized test cases for each TCP technique to further understand their

capabilities in detecting faults with varying attributes. Finally, we examine the efficiency,

in terms of execution time (i.e., the processing time for TCP technique), of static TCPs to

117

better understand the time cost associated with running these approaches.

Our study bears several notable findings. When measuring the average APFD val-

ues across our subject programs, we found that the call-graph-based (with “additional”

strategy) technique outperforms all studied techniques at the test-class level. At the test-

method level, the call-graph and topic-model based techniques perform better than other

static techniques, but worse than two dynamic techniques, i.e., the additional and search-

based techniques. Furthermore, results from these experiments indicate that different

techniques perform differently, in a statistically significant manner, between all studied

TCP techniques based on APFD values. Our results demonstrate that APFDc values are

generally consistent with APFD values at test-class level but relatively less consistent at

test-method level. When examining the effectiveness of TCP approaches in terms of the

cost-cognizant APFDc values, we found that the call-graph-based (with “additional” strat-

egy) technique outperforms all studied dynamic and static techniques at both test-class

and test-method levels, indicating the limitations of dynamic execution information in re-

ducing actual regression testing time costs. While when examining the APFDc values

at the test-method level, we found that the additional and search-based (dynamic) tech-

niques even perform worse than the call-graph-based (with “additional” strategy) tech-

nique. Additionally, while APFDc values vary dramatically across 58 subject programs,

based on the results of our analysis, there are no statistically significant differences be-

tween TCP techniques based on APFDc values at both of test-class and test-method

level when controlling for the subject program. Furthermore, our results indicate that the

test granularity dramatically impacts the effectiveness of TCP techniques. While nearly

all techniques perform better at method-level granularity based on both of APFD and

APFDc values, the static techniques perform comparatively worse to dynamic techniques

at method level as opposed to class level based on APFD values. Our study shows

that subject size and software evolution tend not to largely impact experimental results

measuring TCP performance. Our results also demonstrate that experimental settings re-

garding the fault quantities and types used in typical evaluations of TCP techniques tend

118

not to significantly impact the results of experiments measuring effectiveness. In terms of

execution time, call-graph based techniques are the most efficient of the static TCP tech-

niques. Finally, the results of our similarity analysis study suggest that there is minimal

overlap between the uncovered faults of the studied dynamic and static TCPs, with the

top 10% of prioritized test-cases only sharing≈ 25% - 30% of uncovered faults. Thus, the

most highly prioritized test cases from different TCP techniques exhibit dissimilar capa-

bilities in detecting different types of mutants. This suggests that certain TCP techniques

may be better at uncovering faults (or mutants) that exhibit certain characteristics, and

that aspects of different TCP techniques may be combined together to alter performance

characteristics. Both of these findings are promising avenues for future work. To summa-

rize, this paper makes the following noteworthy contributions summarized in Table 5.1.

5.1 Background & Related Work

In this section we formally define the TCP problem, introduce our studied set of subject

studied techniques, and further differentiate the novelty and research gap that our study

fulfills. Rothermel et al. [248] formally defined the test prioritization problem as finding

T ′ ∈ P (T), such that ∀T ′′, T ′′ ∈ P (T) ∧ T ′′ ̸= T ′ ⇒ f(T ′) ≥ f(T ′′), where P (T) denotes

the set of permutations of a given test suite T , and f denotes a function from P (T) to

real numbers. In the next two subsections, we introduce the underlying methodology uti-

lized by our studied static TCP techniques (Section 5.1.1) and dynamic TCP techniques

(Section 5.1.2). Details of our own re-implementation of these tools are discussed later in

Section 3. All studied techniques attempt to address the TCP problem formally enumer-

ated above with the objective function of uncovering the highest number of faults with the

smallest set of most highly prioritized test cases. As defined in previous work [133, 266],

a white-box TCP approach requires access to both the source code of subject programs,

and other types of information (e.g., test code), whereas black-box techniques do not re-

119

Table 5.1: The List of Contributions
Contributions Descriptions
Static vs. Dynamic TCP To the best of the authors’ knowledge, this is the

first extensive empirical study that compares the
effectiveness, efficiency, and similarity of un-
covered faults of both static and dynamic TCP
techniques on a large set of modern real-world
programs;

Impact of Performance Metrics We evaluate the performance of TCP tech-
niques based on two popular metrics, APFD
and APFDc, and understand the relationship
between the performance of these two metrics
for TCP evaluation;

Impact of Test Case Granularity We evaluate the performance of TCP tech-
niques at two different test granularities, and
investigate the impacts of test granularities on
TCP evaluation;

Impact of Program Subject Size We evaluate the impacts of subject size on the
effectiveness of the studied static and dynamic
TCP techniques;

Impact of Software Evolution We evaluate the impacts of software evolution
on the effectiveness of the studied static and dy-
namic TCP techniques;

Impact of the Number of Studied
Faults

We conduct the first study investigating the im-
pact of different fault quantities used in the eval-
uation on the effectiveness of TCP techniques;

Impact of Fault Types We conduct the first study investigating the im-
pact of different fault types used in the evalua-
tion on the effectiveness of TCP techniques;

Practical Guidelines for Future
Research

We discuss the relevance and potential impact
of the findings in the study, and provide a set of
learned lessons to help guide future research in
TCP;

Open Source Dataset We provide a publicly available, extensive on-
line appendix and dataset of the results of this
study to ensure reproducibility and aid future re-
search [11].

quire the source code or test code of subject programs, and grey-box techniques require

access to only the test-code. Most dynamic techniques (including the ones considered in

this study) are considered white-box techniques since they require access to the subject

120

system’s source code. In our study, we limit our focus to white and grey-box static TCP

techniques that require only source code and test cases, and the dynamic TCP techniques

that only require dynamic coverage and test cases as inputs for two main reasons: 1) this

represents fair comparison of similar techniques that leverage traditional inputs (e.g., test

cases, source code and coverage info), and 2) the inputs needed by other techniques

(e.g., requirements, code changes, user knowledge) are not always available in real-world

subject programs. Additionally, we discuss existing empirical studies (Section 5.1.3).

5.1.1 Static TCP Techniques

Call-Graph-Based. This technique builds a call graph for each test case to obtain a

set of transitively invoked methods, called relevant methods [311]. The test cases with

a higher number of invoked methods in the corresponding call-graphs are assigned a

higher test ability and thus are prioritized first. This approach is often implemented as one

of two variant two sub-strategies, the total strategy prioritizes the test cases with higher

test abilities earlier, and the additional strategy prioritizes the test cases with higher test

abilities while excluding themethods that have already been covered by the prioritized test

cases. Further research by Mei et al. extends this work to measure the test abilities of

the test cases according to the number of invoked statements as opposed to the number

of invoked methods [206]. The main intuition behind such an extension is that by allowing

for a more granular representation of test ability (at the statement level) leads to a more

effective overall prioritization scheme. This call-graph based technique is classified as a

white box approach, whereas the other two studied static TCP techniques are grey-box

approaches, requiring only test code. We consider both types of static techniques in this

paper in order to thoroughly compare them to a set of techniques that require dynamic

computation of coverage.

String-Distance-Based. The key idea underlying this technique is that test cases that

are textually different from one another, as measured by similarity based on string-edit

121

distance, should be prioritized earlier [178]. The intuition behind this idea is that textu-

ally dissimilar test cases have a higher probability of executing different paths within a

program. This technique is a grey-box static technique since the only information it re-

quires is the test code. There are four major variants of this technique differentiated by

the string-distance metric utilized to calculate the gap between each pair of test cases:

Hamming, Levenshtein, Cartesian, and Manhattan distances. Based on prior experimen-

tal results [178], Manhattan distance performs best in terms of detecting faults. Thus,

in our study, we implemented the string-based TCP based on the paper by Ledru et al.

[178], and chose Manhattan distance as the representative string distance computation

for this technique. Explicit details regarding our implementation are given in Section 6.2.

Topic-Based. This static black-box technique further abstracts the concept of using test

case diversity for prioritization by utilizing semantic-level topic models to represent tests

of differing functionality, and gives higher prioritization to test cases that contain differ-

ent topics form those already executed [266]. The intuition behind this technique is that

semantic topics, which abstract test cases’ functionality, can capture more information

than simple textual similarity metrics, and are robust in terms of accurately differentiating

between dissimilar test cases. This technique constructs a vector based on the code of

each test case, including the test case’s correlation values with each semantically derived

topic. It calculates the distances between these text case vectors using a Manhattan dis-

tance measure, and defines the distance between one test case and a set of test cases

as the minimum distance between this test case and all test cases in the set. During

the prioritization process, the test case which is farthest from all other test cases is firstly

selected and put into the (originally empty) prioritized set. Then, the technique iteratively

add the test case farthest from the prioritized set into the prioritized set until all tests have

been added.

Other Approaches. In the literature, researchers have proposed various other tech-

niques to prioritize tests based on software requirement documents [25] or system mod-

els [171]. Recently, Saha et al. proposed an approach that uses software trace links

122

between source code changes and test code derived via Information Retrieval (IR) tech-

niques and sorts the test cases based according to the relationships inferred via the trace

links, with tests more cloesly corresponding to changes being prioritized first [251]. These

techniques require additional information, such as the requirement documents, system

models, and code changes, which may be unavailable or challenging to collect. In this

study, we center our focus on automated TCP techniques that require only the source

code and the test code of subjects, including call-graph-based, string-based and topic-

based techniques.

5.1.2 Dynamic TCP Techniques

Greedy Techniques. As explained in our overview of the Call-Graph-based approach,

there are typically two variants of traditional “greedy” dynamic TCP techniques, the to-

tal strategy and additional strategy, that prioritize test cases based on code coverage

information. The total strategy prioritizes test cases based on their absolute code cov-

erage, whereas the additional strategy prioritizes test cases based on each test case’s

contribution to the total cumulative code coverage. In our study, we implemented these

techniques based on prior work by Rothermel et al. [247]. The greedy-additional strat-

egy has been widely considered as one of the most effective TCP techniques in previous

work [145, 306]. Recently, Zhang et al. proposed a novel approach to bridge the gap

between the two greedy variants by unifying the strategies based on the fault detection

probability [306, 124].

Given that these dynamic TCP techniques utilize code coverage information as a proxy

for test effectiveness, and many different coverage metrics exist, studies have examined

several of these metrics in the domain of TCP including statement coverage [247], basic

block and method coverage [82], Fault-Exposing-Potential (FEP) coverage [92], transition

and round-trip coverage [286]. For instance, Do et al. use both method and basic block

coverage information to prioritize test cases [82]. Elbaum et al. proposed an approach

123

that prioritizes test cases based on their FEP and fault index coverage [92], where test

cases exposing more potential faults will be assigned a higher priority. Kapfhammer et

al. use software requirement coverage to measure the test abilities of test cases for test

prioritization [163].

Adaptive Random Testing. Jiang et al. were the first to apply Adaptive Random Test-

ing [58] to TCP and proposed a novel approach, called Adaptive Random Test Case

Prioritization (ART) [145]. ART randomly selects a set of test cases iteratively to build a

candidate set, then it selects from the candidate set the test case farthest away from the

prioritized set. The whole process is repeated until all test cases have been selected. As a

measure of distances between test cases, ART first calculates the distance between each

pair of test cases using Jaccard distance based on their coverage, and then calculates

the distance between each candidate test case and the prioritized set. Three different

variants of this approach exist (min, avg and max), differentiated by the type of distance

used to determine the similarity between one test case and the prioritized set. For ex-

ample, min is the minimum distance between the test case and the prioritized test case.

The results from Jiang et al’s evaluation illustrates that ART with min distance performs

best for TCP. Thus, in our empirical study, we implemented our ART based TCP strat-

egy following Jiang et al.’s paper [145] and chose min distance to estimate the distance

between one test case and the prioritized set.

Search-based Techniques. Search-based TCP techniques introduce meta-heuristic

search algorithms into the TCP domain, exploring the state space of test case combi-

nations to find the ranked list of test cases that detect faults more quickly [184]. Li et al.

have proposed two variants of search-based TCP techniques, based upon hill-climbing

and genetic algorithms. The hill-climbing-based technique evaluates all neighboring test

cases in a given state space, locally searching the ones that can achieve largest increase

in fitness. The genetic technique utilizes an evolutionary algorithm that halts evolution

when a predefined termination condition is met, e.g., the fitness function value reaches a

given value or a maximal number of iterations has been reached. In our empirical study,

124

we examine the genetic-based test prioritization approach as the representative search-

based test case prioritization technique, as previous results demonstrate that genetic-

based technique is more effective in detecting faults [184].

Other Approaches. Several other techniques that utilize dynamic program information

have been proposed, but do not fit neatly into our classification system enumerated above

[141, 267, 224]. Islam et al. presented an approach that reconciles information from trace-

ability links between system requirements and test cases and dynamic information, such

as execution cost and code coverage, to prioritize test cases [141]. Nguyen et al. have

designed an approach that uses IR techniques to recover the traceability links between

change descriptions and execution traces for test cases to identify the most relevant test

cases for each change description [224]. Unfortunately, these TCP techniques require

information beyond the test code and source code (e.g., execution cost, user knowledge,

code changes) which may not be available or well maintained depending on the target

software project. In this paper, we choose dynamic techniques that require only code

coverage and test cases for comparison, which includes three techniques (i.e., Greedy

(with total, additional strategies), ART, and Search-based). Recall that we do not aim to

study the impact of coverage granularity on the effectiveness of dynamic TCPs, and opt

to utilize only statement level coverage information in our experiments. This is because

previous work has established that statement-level coverage is at least as effective as

other coverage types [192, 206].

5.1.3 Empirical studies on TCP techniques

Several studies empirically evaluating TCP techniques [164, 247, 55, 273, 83, 95, 294,

259, 133, 192, 93, 92, 293, 95, 243] have been published. In this subsection we discuss

the details of the studies most closely related to our own in order to illustrate the novelty

of our work and research gap filled by our proposed study. Rothermel et al. conducted a

study on unordered, random, and dynamic TCP techniques (e.g., coverage based, FEP-

125

based) applied to C programs, to evaluate their abilities of fault detection [247]. Elbaum et

al. conducted a study on several dynamic TCP techniques applied to C programs in order

to evaluate the impact of software evolution, program type, and code granularity on the

effectiveness of TCP techniques [92]. Thomas et. al [266] compared the topic-based TCP

technique to the static string-based, call-graph-based techniques as well as the greedy-

additional dynamic technique at method-level on two subjects. However, this study is

limited by a small set of subject programs, a comparison to only one dynamic technique at

method-level only, and no investigation of fault detection similarity, the effects of software

evolution or subject program size among the approaches.

Do et al. have presented a study of dynamic test prioritization techniques (e.g., ran-

dom, optimal, coverage-based) on four Java programs with JUnit test suites. This study

breaks from past studies that utilize only small C programs and demonstrates that these

techniques can also be effective on Java programs. However, findings from this study

also suggest that different languages and testing paradigms may lead to divergent be-

haviors [82]. This group also conducted an empirical study to analyze the effects of time

constraints on TCP techniques [79]. Henard et al. recently conducted a study comparing

white and black-box TCP techniques in which the effectiveness, similarity, efficiency, and

performance degradation of several techniques was evaluated. While this is one of the

most complete studies in terms of evaluation depth, it does not consider the static tech-

niques considered in this paper. Thus, our study is differentiated by the unique goal of

understanding the relationships between purely static and dynamic TCPs.

To summarize, while each of these studies offers valuable insights, none of them pro-

vides an in-depth evaluation and analysis of the effectiveness, efficiency, and similarity of

detected faults for static TCP techniques and comparison to dynamic TCP techniques on

a set of mature open source software systems. This highlights a clear research gap ex-

ists in prior work that conduct empirical studies measuring the efficacy of TCP techniques.

The work conducted in this paper is meant to close this gap, and offer researchers and

practitioners an extensive, rigorous evaluation of popular TCP techniques according to

126

extensive set of metrics and experimental investigations.

Table 5.2: The stats of the subject programs: Size: #Loc; TM: #test cases at method level; TC:
#test cases at class level; All: #all mutation faults; Detected: #faults can be detected by test cases.

Tests Mutants
Subject Programs Size #TM #TC Detected All
P1-geojson-jackson 1,151 44 13 301 717
P2-statsd-jvm-profiler 1,355 29 12 290 708
P3-stateless4j 1,756 61 10 392 696
P4-jarchivelib 1,940 22 12 655 948
P5-JSONassert 1,957 121 10 935 1,116
P6-java-faker 2,069 28 11 392 600
P7-jackson-datatype-joda 2,409 57 8 675 1,212
P8-Java-apns 3,234 87 15 412 1,122
P9-pusher-websocket-java 3,259 199 11 851 1,470
P10-gson-fire 3,421 55 14 847 1,064
P11-jackson-datatype-guava 3,994 91 15 313 1,832
P12-dictomaton 4,099 53 11 2,024 10,857
P13-jackson-uuid-generator 4,158 45 6 802 2,039
P14-JAdventure 4,416 35 10 738 5,098
P15-exp4j 4,617 285 9 1,365 1,563
P16-jumblr 4,623 103 15 610 1,192
P17-efflux 4,940 41 10 1,190 2,840
P18-metrics-core 5,027 144 28 1,656 5,265
P19-low-gc-membuffers 5,198 51 18 1,861 3,654
P20-xembly 5,319 58 16 1,190 2,546
P21-scribe-java 5,355 99 18 563 1,622
P22-jpush-api-java-client 5,462 65 10 822 2,961
P23-gdx-artemis 6,043 31 20 968 1,687
P24-protoparser 6,074 171 14 3,346 4,640
P25-commons-cli 6,601 317 26 2,362 2,801
P26-mp3agic 6,939 205 19 3,362 6,391
P27-webbit 7,363 131 25 1,268 3,833
P28-RestFixture 7,421 268 30 2,234 3,278
P29-LastCalc 7,707 34 13 2,814 6,635
P30-jackson-dataformat-csv 7,850 98 27 1,693 6,795
P31-skype-java-api 8,264 24 16 885 6,494
P32-lambdaj 8,510 252 35 3,382 4,341
P33-jackson-dataformat-xml 8,648 134 45 1,706 4,149
P34-jopt-simple 8,778 511 79 2,325 2,525
P35-jline2 8,783 130 16 3,523 8,368
P36-javapoet 9,007 246 16 3,400 4,601
P37-Liqp 9,139 235 58 7,962 18,608
P38-cassandra-reaper 9,896 40 12 1,186 5,105
P39-JSqlParser 10,335 313 19 15,698 32,785
P40-raml-java-parser 11,126 190 36 4,678 6,431
P41-redline-smalltalk 11,228 37 9 1,834 10,763
P42-user-agent-utils 11,456 62 7 376 688
P43-javaewah 13,293 229 11 6,307 11,939
P44-jsoup-learning 13,505 380 25 7,761 13,230
P45-wsc 13,652 16 8 1,687 17,942
P46-rome 13,874 443 45 4,920 10,744
P47-JActor 14,171 54 43 132 1,375
P48-RoaringBitmap 16,341 286 15 9,709 13,574
P49-JavaFastPFOR 17,695 42 8 46,429 64,372
P50-jprotobuf 21,161 48 18 1,539 10,338
P51-worldguard 24,457 148 12 1,127 25,940
P52-commons-jxpath 24,910 411 39 13,611 24,369
P53-commons-io 27,263 1125 92 7,630 10,365
P54-nodebox 32,244 293 40 7,824 36,793
P55-asterisk-java 39,542 220 39 3,299 17,664
P56-ews-java-api 46,863 130 28 2,419 31,569
P57-commons-lang 61,518 2388 114 25,775 32,291
P58-joda-time 82,998 4,026 122 20,957 28,382
Total 714,414 15,441 1,463 245,012 542,927

5.1.4 Mutation Analysis

Fault detection effectiveness is almost universally accepted as themeasurement by which

to evaluate TCP approaches [19, 158, 192]. However, extracting a suitable set of repre-

sentative real-world faults is typically prohibitively costly. Thus, researchers and develop-

ers commonly evaluate the effectiveness of TCP approaches using mutation analysis, in

127

which a set of program variants, called mutants, are generated by seeding a large num-

ber of small syntactic errors into a seemingly “correct” version of a program. For a given

subject program, mutation operators are utilized to seed these faults (known as mutants)

into an unmodified version of the program. It is said that a mutant is killed by a test case

when this test case is able to detect a difference between the unmodified program and the

mutant. In the context of TCP research, mutation analysis is applied to a subject program

to generate a large set of mutants, each containing a minor fault, and then this set is used

to evaluate the effectiveness of a set of prioritized test cases.

Preliminary studies have shown mutants to be suitable for simulating real bugs in soft-

ware testing experiments in controlled contexts [20, 158], and mutation analysis has been

used to evaluate many different types of testing approaches, including TCP techniques

[92, 266, 133, 192, 272]. For example, Henard et al. utilized mutation analysis to com-

pare white-box and black-box TCP techniques [133]. Lu et al. evaluated the test case

prioritization techniques in the context of evolving software systems using mutation anal-

ysis [192]. Finally, Walcott et al. proposed a time-aware test prioritization technique and

evaluated their approach using mutants [272].

Additionally, recent research has been undertaken that aims to understand the rela-

tionship between different types of mutants (e.g., operators) and whether or not they are

a suitable proxy for real faults [170, 17, 159, 161]. Ammann et al. proposed a frame-

work to reduce redundant mutants and determine a minimal set of mutants for properly

evaluating test cases [17]. Kintis et al. introduced several alternatives to mutation testing

strategies to establish whether they adversely affect measuring test effectiveness [170].

However, pervious studies do not provide comments on the following in the context of

TCP: 1) none of these studies has investigated the impact of the quantity of mutants

utilized in TCP experiments; and 2) previous work has not examined the impact of mu-

tants seeded according to different operators on the effectiveness of TCP approaches. It

is quite possible that TCP may perform differently when detecting different quantities or

types of mutants, particularly across software projects. Addressing these current short-

128

comings of past studies would allow for the verification or refutation of previous widely

used experimental settings for mutation-based TCP evaluations. Thus, we aim to eval-

uate the effectiveness of TCP techniques in terms of detecting different quantities and

types of mutants in order to understand their impact on this quality metric.

5.1.5 Metrics for TCP techniques

The Average Percentage of Faults Detected (APFD)metric is a well-acceptedmetric in the

TCP domain [247, 311, 248, 81, 86, 92, 89], which is used to measure the effectiveness,

in terms of fault detection rate, for each studied test prioritization technique. Formally

speaking, let T be a test suite and T ′ be a permutation of T , the APFD metric for T ′ is

computed according to the following metric:

APFD = 1−
∑m

i=1 TFi

n ∗m
+

1

2n
(5.1)

where n is the number of test cases in T ,m is the number of faults, and TFi is the position

of the first test case in T ′ that detects fault i.

Although APFD has been widely used for evaluating TCP techniques, it assumes that

each test incur the same time cost, an assumption which often doesn’t hold up in practice.

Thus, Elbaum et al. introduced another metric, called APFDc [90]. APFDc is the cost-

cognizant version of APFD, which considers both the test case execution cost and fault

severity. While not as widely used as APFD, APFDc has also been used to evaluate TCP

approaches, resulting in a more detailed evaluation. [96]. APFDc can be formally defined

as follows: let t1, t2, ..., tn be the execution costs for all the n test cases. and f1, f2, ..., fm

be the severities of the m detected faults. The APFDc metric is calculated according to

the following equation:

APFDc =

∑m
i=1 fi ∗ (

∑n
j=TFi

tj − 1
2 tTFi)∑n

i=1 ti ∗
∑m

i=1 fi
(5.2)

129

Similar to Equation 6.1, n is the number of test cases in T , m is the number of faults,

and TFi is the position of the first test case in T ′ that detects fault i. In our empirical study,

we evaluate the performance of TCP techniques based on both of APFD and APFDc,

in order to provide a complete picture of the performance of TCP techniques from the

perspective of both effectiveness and efficiency. Additionally, we further examine the

relationship between these two metrics and the resultant implications for the domain of

TCP research.

5.2 Empirical Study

In this section, we state our research questions, and enumerate the subject programs,

test suites, study design, and implementation of studied techniques in detail.

5.2.1 Research Questions (RQs):

Our empirical study addresses the following RQs:

RQ1 How do static TCP techniques compare with each other and with dynamic tech-

niques in terms of effectiveness measured by APFD?

RQ2 How do static TCP techniques compare with each other and with dynamic tech-

niques in terms of effectiveness measured by APFDc?

RQ3 How does the test granularity impact the effectiveness of both the static and dynamic

TCP techniques?

RQ4 How does the program size (i.e., LOC) impact the effectiveness of both the static

and dynamic TCP techniques?

RQ5 How do static and dynamic TCP techniques perform as software evolves?

RQ6 How does the quantity of mutants impact the effectiveness of the studied TCP tech-

niques?

130

RQ7 How does mutant type impact the effectiveness of the studied TCP techniques?

RQ8 How similar are different TCP techniques in terms of detected faults?

RQ9 How does the efficiency of static techniques compare with one another in terms of

execution time cost?

To aid in answering RQ1 and RQ2, we introduce the following null and alternative hy-

potheses. The hypotheses are evaluated at the 0.05 level of significance:

H0: There is no statistically significant difference in the effectiveness between the studied

TCPs.

Ha: There is a statistically significant difference in the effectiveness between the studied

TCPs.

5.2.2 Subject Programs, Test Suites and Faults

We conduct our study on 58 real-world Java programs from GitHub[6]. The program

names and sizes in terms of lines of code (LOC) are shown in Table 5.2, where the sizes

of subjects vary from 1,151 to 82,998 LoC. Our subjects are larger in size and quantity

than previous work in the TCP domain [192, 133, 266, 178, 145]. Our methodology for

collecting these subject programs is as follows. We first collect a set of 399 Java programs

from GitHub that contain integrated JUnit test cases and can be compiled successfully.

Then, we discarded programs which were relatively small in size (i.e., LOC is less than

1,000), or that had very small numbers of test cases (i.e., less than 15 test cases at method

level and five test cases at class level). Finally, we ran a set of tools to collect both the

static and dynamic information (Section 3.4) and discarded programs for which the tools

were not applicable. After this process we obtained our set of 58 subject programs.

To perform this study, we checked out the most current master branch of each pro-

gram, and provide the version IDs in my online appendix [11]. For each program, we

used the original JUnit test suites for the corresponding program version. Since one of

131

Table 5.3: Muation Operators Used
ID Mutation Operator
M0 Conditional Boundary Mutator
M1 Constructor Call Mutator
M2 Increments Mutator
M3 Inline Constant Mutator
M4 Invert Negs Mutator
M5 Math Mutator
M6 Negate Conditionals Mutator
M7 Non-Void Method Call Mutator
M8 Remove Conditional Mutator
M9 Return Vals Mutator
M10 Void Method Call Mutator
M11 Remove Increments Mutator
M12 Member Variable Mutator
M13 Switch Mutator
M14 Argument Propagation Mutator

the goals of this study is to understand the impact of test granularity on the effectiveness

of TCP techniques, we introduce two groups of experiments in our empirical study based

on two test-case granularities: (i) the test-method and (ii) the test-class granularity. The

numbers of test cases on test-method level and test-class level are shown in Columns 3

& 4 of Table 5.2 respectively.

One goal of this empirical study is to compare the effectiveness of different test prior-

itization techniques by evaluating their fault detection capabilities. Thus, each technique

will be evaluated on a set of program faults introduced using mutation analysis. As muta-

tion analysis has been widely used in regression test prioritization evaluations [306, 80,

192, 310] and has been shown to be suitable in simulating real program faults [20, 158],

this is a sensible method of introducing program defects. We applied all the 15 available

mutation operators from the PIT [239] mutation tool (Version 1.1.7) to generate mutation

faults for each project. All mutation operators are listed in Table 5.3 and their detailed

definitions can be found on the PIT website [232] and on my online appendix [11]. We

utilized PIT to determine the set of faults that can be detected by the test suites for each

of our subject programs. When running the subject program’s JUnit test suite via the PIT

132

Maven plugin, test cases are automatically executed against each mutant, PIT records

the corresponding test cases capable of killing each mutant. By analyzing the PIT reports,

we obtained the information (e.g., fault locations) for each mutation fault and all the test

cases that can detect it. Note that the typical implementation of PIT stops executing any

remaining tests against a mutant once the mutant is killed by some earlier test to save

time. However, for the purpose of obtaining a set of ”killable” mutants, this is undesir-

able. Thus, we modified PIT to force it to execute the remaining tests against a mutant

even when the mutant has been killed. Since not all produced mutation faults can be de-

tected/covered by test cases, only mutants that can be detected by at least one test case

are included in our study. The numbers of detected mutation faults and the numbers of

all mutation faults are shown in Columns 5 and 6 of Table 5.2 respectively. As the table

shows, the numbers of detected mutants range from 132 to 46,429. There are of course

certain threats to validity introduced by such an analysis, namely the the potential bias

introduced by the presence of equivalent and trivial mutants [22, 17]. We summarize the

steps we take in our methodology to mitigate this threat in Section 6.4.

5.2.3 Design of the Empirical Study

As discussed previously (Section 5.1), we limit the focus of this study to TCP techniques

that do not require additional inputs, such as code changes or software requirements

that may require extra effort or time to collect or may be unavailable. We select two

white-box and two black-box static techniques, and four white-box dynamic techniques

with statement-level coverage as the subject techniques for this study, which are listed in

Table 5.4. We sample from both white and black box approaches as the major goal of this

study is to examine the effectiveness and trade-offs of static and dynamic TCPs under the

assumption that both the source code of the subject application, as well as the test cases

are available. It is worth noting that our evaluation employs two versions of the static

topic model-based technique, as when contacting the authors of [266], they suggested

that an implementation using the Mallet [202] tool would yield better results than their

133

initial implementation in R [266]. There are various potential coverage granularities for

dynamic techniques, such as statement-level, method-level and class-level. Previous

research showed that statement-level TCP techniques perform the best [206, 124]. Thus,

in our study, we choose statement-level coverage for the dynamic TCP techniques. We

now describe the experimental procedure utilized to answer each RQ posed above.

Table 5.4: Studied TCP Techniques
Type Tag Description

Static

TPcg−tot Call-graph-based (total strategy)
TPcg−add Call-graph-based (additional strategy)
TPstr The string-distance-based

TPtopic−r Topic-model-based using R-lda package
TPtopic−m Topic-model-based using Mallet

Dynamic

TPtotal Greedy total (statement-level)
TPadd Greedy additional (statement-level)
TPart Adaptive random (statement-level)

TPsearch Search-based (statement-level)

RQ1: The goal of RQ1 is to compare the effectiveness of different TCP techniques, by

evaluating their fault detection capabilities. Following existing work [306, 192], we fixed

the number of faults for each subject program. That is, we randomly chose 500 different

mutation faults and partitioned the set of all faults into groups of five (e.g., a mutant group)

to simulate each faulty program version. Thus, 100 different faulty versions (i.e., 500/5 =

100) were generated for each program. If a program has less than 500 mutation faults, we

use all detected mutation faults for this program and separate these faults into different

groups (five faults per group). For the static techniques, we simply applied the techniques

as described in Sections 5.1 & 5.2.4 to the test and source code of each program to obtain

the list of prioritized test cases for each mutant group. For the dynamic techniques, we

obtained the coverage information of the test-cases for each program. We then used this

coverage information to implement the dynamic approaches as described in Sections 5.1

& 5.2.4. Then we are able to collect the fault detection information for each program

according to the fault locations.

To measure the effectiveness in terms of rate of fault detection for each studied test

prioritization technique, we utilize the well-accepted Average Percentage of Faults De-

tected (APFD) metric in TCP domain [247, 311, 248, 81, 86, 92, 89]. Recall that every

134

subject program has 100 mutant groups (five mutations per group). Thus, we created 100

faulty versions for each subject (each version contains five mutations) and ran all studied

techniques over these 100 faulty versions. That is, running each technique 100 times for

each subject. Then, we performed statistical analysis based on the APFD results of these

100 versions. To test whether there is a statistically significant difference between the ef-

fectiveness of different techniques, we first performed an one-way ANOVA analysis on the

mean APFD values for all subjects and a Tukey HSD test [265], following the evaluation

procedures utilized in related work [206, 192]. The ANOVA test illustrates whether there

is a statistically significant variance between all studied techniques and the Tukey HSD

test further distinguishes techniques that are significantly different from each other, as it

classifies them into different groups based on their mean APFD values [265]. These sta-

tistical tests give a statistically relevant overview of whether the mean APFD values for the

subject programs differ significantly. Additionally, we performed a Wilcoxon signed-rank

test between each pair of TCP techniques for their average APFD value across all sub-

ject techniques, to further illustrate the relationship between individual subject programs.

We choose to include this non-parametric test since we cannot make assumptions about

wether or not the data under consideration is normally distributed.

RQ2: Although APFD has been widely used for TCP evaluation, it assumes that each

test takes the same amount of time, which may not be always accurate in practice. The

goal of this RQ is to examine the effectiveness of TCP techniques in terms of the APFDc

metric, which considers both the execution time and severities of detected faults. We

also compare the results of the APFDc with those of the APFD for understanding the

performance of different types of metrics in the TCP area. However, there is no clearly-

defined way to estimate the severities for the detected faults, and no widely-used tool

to collect this information, making it hard to measure fault severity. Therefore, following

previous work [96], we consider all faults to share the same severity level. Thus, in the

135

context of our empirical study, APFDc reduces to the following equation:

APFDc =

∑m
i=1

∑n
j=TFi

tj − 1
2 tTFi∑n

i=1 ti ∗m
(5.3)

where n is the number of test cases in T , m is the number of faults, TFi is the position

of the first test case in T ′ that detects fault, and i, t1, t2, ..., tn are the execution costs for

all the n test cases. To measure test execution costs, we use the Maven Surefire Plugin

to trace the start and end events of each test to record the corresponding execution time.

Similar as RQ1, we performed both of an one-way ANOVA analysis on the mean AFPDc

values for all subjects and a Tukey HSD test to further understand the whether there is

a statistically significant variance between the performance of the studied techniques in

terms of APFDc values. In addition, we further examined the relationship between the

two metrics, AFPD and APFDc, to understand the differences in effectiveness of TCP

techniques. We utilize the Kendall rank correlation coefficient τ [253] to compare the

results of these two metrics. Kendall rank correlation coefficient τ is commonly used

to examine the relationship between two ordering quantities (i.e., observations of two

variables). The coefficient ranges in value from −1 to 1, with values closer to 1 indicating

similarity and values closer to −1 indicating dissimilarity. When the value is close to 0,

these two quantities are considered independent. For example, in the context of our study,

we have two quantities, APFD and APFDc values. Thus, in the context of our study, if

the values of APFD values across all TCP techniques are similar to APFDc values, the

Kendall tau rank coefficient τ would be closer to 1. Otherwise, it would be closer to −1.

Since there is no guarantee that the relationship between APFD and APFDc values are

linear, we chose Kendall τb coefficient in our study, following prior work [107]:

τb =
nc − nd√

(n(n− 1)/2−
∑

i ti(ti − 1)/2)(n(n− 1)/2−
∑

j uj(uj − 1)/2)
(5.4)

where nc refers to the number of concordant pairs, nd refers to the number of discordant

pairs, ti refers to the number of tied values in ith tie group for the first quantity, and uj

136

refers to the number of tied values in jth tie group for the second quantity.

RQ3 The goal of this RQ is to analyze the impact of different test granularities on the

effectiveness of TCP techniques. Thus, we choose two granularities: test-method and

test-class levels. The test-method level treats each JUnit test method as a test case,

while test-class level treats each JUnit test class as a test case. We examine both the

effectiveness and similarity of detected faults for both granularities.

RQ4 The goal of this RQ is to investigate the impact of different program sizes on the

effectiveness of TCP techniques. Thus, we measure the size for each subject program in

terms of its Lines of Code (LOC). To examine whether TCP technqiues tend to perform

differently on programs of different sizes we classify the programs into two groups, a set

of smaller programs and a set of larger programs. These two groups were created by

ordering our subject programs in increasing order of LOC and splitting the ordered list in

the middle. This results in two groups of 29 subject programs, the first group containing

smaller programs and the second group containing larger programs.

RQ5: The goal of this RQ is to understand the effectiveness of TCP techniques in a

software evolution scenario. To accomplish this we apply different TCP techniques across

different versions of each subject program. More specifically, tests are prioritized using

the information from a given previous program version, and the prioritized set of test cases

is then applied to faulty variants of the most recent program version. The faulty variants

are created using the same methodology described for RQ1. This methodology closely

follows that of previous work [192] and allows us to investigate if the performance of TCP

techniques remains stable, decreases, or increases as software evolves. In our study,

we collect different versions for each subject program exactly following the methodology

proposed in [192]. For each subject, we start from the most current version and collect

one version per ten commits moving backward through the commit history. We then

discard those programs that did not successfully compile and those that are not applicable

to our tools. Due to the extremely large volume of data and the time cost of running

these experiments, we randomly chose 12 subject programs to investigate this research

137

question. Note that the numbers of versions (i.e., 66) and subject programs (i.e., 12) used

in this work are larger than all prior TCP work considering evolutionary scenarios (e.g.,

the recent work by Lu et.al. [192] used 53 versions of 8 real-world programs).

RQ6: The goal of this RQ is to examine the impact of mutant quantity on the effective-

ness for TCP techniques in terms of APFD and APFDc values. In our default experimental

setting, we have 100 groups of mutation faults, and each group contains five mutants fol-

lowing prior work [206, 306, 124, 192]. However, in practice, the number of faults within

a buggy version can be more than or less than five. Therefore, to better understand the

impact of fault quantity per group, we generate different number of faults (i.e., 1 to 10)

within each of the 100 constructed fault groups for each subject program. Note that we

may have less than 100 fault groups when the number of mutants are small for some

subjects. That is, we repeat all our prior experiments 10 times, each time recording the

APFD and APFDc values for all studied techniques under 100 fault groups with a different

number of faults (from 1 to 10). Finally, we perform Kendall rank τb coefficient analysis

to understand the relationship between the results for the mutation groups with different

sizes and the results of the default setting (i.e., with 5 faults within each group). That

is, we perform Kendall analysis to compare each fault-quantity setting (i.e., 100 groups

mutation faults and the size of each fault group varies from 1 to 10) to the mutation faults

with the default setting. Intuitively, if the values of Kendall τb coefficient are close to 1, the

TCP techniques perform similarly between fault groups of varying sizes and fault groups

with the default size, implying that the quantity of mutation faults does not impact TCP

evaluation.

RQ7: The goal of this RQ is to understand the impact of the mutant types (i.e., those

mutants generated with different operators) on the effectiveness for TCP techniques in

terms of APFD and APFDc values. Intuitively, we first classified mutants into different

groups based on their corresponding operators. That is, the mutation faults generated by

the same operators would be classified into the same group. In our empirical study, we

utilized all 15 built-in mutation operators in PIT. Thus, we have 15 types of mutation faults

138

for each subject program. We evaluate TCP techniques across these 15 types of mutation

faults with the default setting, where for each operator we randomly choose 500 mutants

and separate them into 100 groups (each group contains 5 mutation faults). Note that

we may have less than 100 fault groups when the number of mutants are small for some

mutant types. Then, TCP techniques are evaluated based on these groups of mutation

faults. Finally, we compare the results for different types of mutation faults with our default

fault seeding (i.e., randomly including different types of faults) under the same default

setting (i.e., 100 mutated groups and each group contains 5 mutation faults). Similar as

RQ4, we chose Kendall rank tau coefficient to measure the relationship between them to

check if the type of mutation fault impacts TCP evaluation.

RQ8: The goal of this RQ is to analyze the similarity of detected faults for different

techniques to better understand the level of equivalency of differing strategies. It is clear

that this type of analysis is important, as while popular metrics such as APFDmeasure the

effectiveness between two different techniques, this does not reveal the similarity of the

test cases in terms of uncovered faults. For instance, let us consider two TCP techniques

A and B. If technique A achieves an APFD of ≈ 60% and technique B achieves an APFD

of ≈ 20%, while this gives a measure of relative effectiveness, the APFD does not reveal

how similar or orthogonal the techniques are in terms of the faults detected. For instance,

all of the faults uncovered by top ten test cases from technique B could be different than

those discovered by top ten test cases from technique A, suggesting that the techniques

may be complimentary. To evaluate the similarity between different TCP techniques, we

utilize and build upon similarity analysis used in recent work [133, 132] and construct

binary vector representations of detected faults for each technique and then calculate the

distance between these vectors as a similarity measure.

We employ two methodologies in order to give a comprehensive view of the similarity

of the studied TCPs. At the core of both of these techniques is a measure of similarity

using the Jaccard distance to determine the distance between vectorized binary repre-

sentations of detected faults (where a 1 signifies a found fault and a 0 signifies an undis-

139

covered fault) for different techniques across individual or groups of subject programs.

We use the following definition [133]:

J(T i
A, T

i
B) =

| T i
A ∩ T i

B |
| T i

A ∪ T i
B |

(5.5)

where T i
A represents the binary vectorized discovered faults of some studied tech-

nique A after the execution of the ith test case in the techniques prioritized set, and T i
B

represents the same meaning for some studied technique B and 0 ≤ J(T i
A, T

i
B) ≤ 1.

While we use the same similarity metric as in [133], we report two types of results: 1)

results comparing the similarity of the studied static and dynamic techniques using the

average Jaccard coefficient across all subjects at different test-case granularities, and 2)

results comparing each technique in a pair-wise manner for each subject program. For

the second type of analysis, we examine each possible pair of techniques and rank each

subject program according to Jaccard coefficient as highly similar (1.0 - 0.75), similar

(0.749 - 0.5), dissimilar (0.49 - 0.25), or highly dissimilar (0.249-0). This gives a more in-

formative view of how similar two techniques might be for different subject programs. To

construct both types of binary fault vectors, we use the same fault selection methodology

used to calculate the APFD, that is, we randomly sample 500 faults from the set of known

discoverable faults for each subject.

In addition, we also want to understand whether the studied TCP techniques’ most

highly prioritized test cases uncover comparatively different numbers of mutants gener-

ated by different operators. Thus, for different cut points, particularly the top cut points

(e.g. 10%), we examine the both the total number and relative percentages of differ-

ent types of mutants detected by each TCP technique to better understand the types of

mutants which are easily detected by most highly prioritized test cases for different TCP

techniques.

RQ9: The final goal of our study is to understand the efficiency of static techniques, in

terms of execution costs. Note that, we only focus on the efficiency of static techniques,

since dynamic techniques are typically run on the previous version of a program to collect

140

Table 5.5: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc values
at test-class level, which are depicted in Figure 5.1. The last column shows the results for Kendall
tau Rank Correlation Coefficient τb between the average APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.778 0.790 0.777 0.675 0.745 0.738 0.769 0.633 0.765 1.777e-18
0.722HSD A A A B A A A B A

APFDc Avg 0.652 0.679 0.667 0.574 0.657 0.614 0.650 0.612 0.649 0.154HSD A A A A A A A A A

Table 5.6: Results for the ANOVA, and Tukey HSD tests on the average APFD and APFDc
values at test-method level, which are depicted in Figure 5.2. The last column shows the results
for Kendall tau Rank Correlation Coefficient τb between the average APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.764 0.818 0.813 0.781 0.817 0.809 0.898 0.798 0.885 2.568e-28
0.556HSD C B B BC B B A BC A

APFDc Avg 0.638 0.737 0.671 0.678 0.679 0.633 0.708 0.669 0.735 0.053HSD A A A A A A A A A

coverage information, and thus the temporal overhead is quite high and well-studied.

To evaluate the efficiency of static techniques, we collect two types of time information:

the time for pre-processing and the time for prioritization. The time for pre-processing

contains different phases for different techniques. For example, TPcg−tot and TPcg−add

need to build the call graphs for each test case. TPstr needs to analyze the source code

to extract identifiers and comments for each test case. Besides, TPtopic needs to pre-

process extracted textual information and use the R-LDA package and Mallet [202] to

build topic models. The time for prioritization refers to the time cost for TCP on different

subjects.

5.2.4 Tools and Experimental Hardware

We reimplemented all of the studied dynamic and static TCPs in Java according to the

specifications and descriptions in their corresponding papers, since the implementations

were not available from the original authors and had to be adapted to our subjects. Three

of the authors carefully reviewed and tested the code to make sure the reimplementation

is reliable.

TPcg−tot/TPcg−add: Following the paper by Zhang et al. [311], we use the IBM T. J. Watson

Libraries for Analysis (WALA) [270] to collect the RTA static call graph for each test, and

traverse the call graphs to obtain a set of relevant methods for each test case. Then, we

141

implement two greedy strategies (i.e., total and additional) to prioritize test cases.

TPstr: Based on the paper by Ledru et al. [178], each test case is treated as one string

without any preprocessing. Thus, we directly use JDT [143] to collect the textual test

information for each JUnit test, and then calculate the Manhattan distances between test

cases to select the one that is farthest from the prioritized test cases.

TPtopic−r and TPtopic−m: Following the topic-based TCP paper [266], we first use JDT

to extract identifiers and comments from each JUnit test, and then pre-process those

(e.g., splitting, removing stop words, and stemming). To build topic models, we used the

R-LDA package [177] for TPtopic−r and Mallet [202] for TPtopic−m. All parameters are

set with previously used values [266, 60]. Finally, we calculated the Manhattan distances

between test cases, and selected the ones that are farthest from the prioritized test cases.

Dynamic TCP techniques: Weuse the ASMbytecodemanipulation and analysis toolset [34]

to collect the coverage information for each test. Specifically, in our empirical study, it ob-

tains a set of statements that can be executed by each test method or test class. The

greedy techniques are replicated based on the paper by Rothermel et al. [247]. For the

ART and search-based techniques, we follow the methodology described in their respec-

tive papers [145, 184].

Experimental Hardware: The experiments were carried out on Thinkpad X1 laptop with

Intel Core i5-4200 2.30 GHz processor and 8 GB DDR3 RAM and eight servers with 16,

3.3 GHz Intel(R) Xeon(R) E5-4627 CPUs, and 512 GB RAM, and one server with eight

Intel X5672 CPUs and 192 GB RAM. All the execution time information (i.e., both of the

execution time to run TCP techniques and the execution time for each test case) was

collected on the laptop to ensure that the analysis for time costs is consistent.

5.3 Results

In this section, we outline the experimental results to answer theRQs listed in Section 6.2.

142

TPcg-tot TPcg-add TPstr TPtopic-r TPtotal TPadd TPart

A
P

FD

TPsearch

0.25

0.50

0.75

1.00

TPtopic-m

: P1 P58

(a) The values of APFD on test-class level across all subject programs.

TPcg-tot TPcg-add TPstr TPtopic-r TPtotal TPadd TPart

A
P

FD
c

TPsearch

0.25

0.50

0.75

1.00

TPtopic-m

: P1 P58

(b) The values of APFDc on test-class level across all subject programs.

Figure 5.1: The box-and-whisker plots represent the values of APFD and APFDc for different TCP
techniques at test-class level. The x-axis represents the APFD and APFDc values. The y-axis
represents the different techniques. The central box of each plot represents the values from the
lower to upper quartile (i.e., 25 to 75 percentile).

5.3.1 RQ1 & RQ2 & RQ3: Effectiveness of Studied Techniques Measured by

APFD and APFDc at Different Granularities

5.3.1.1 Results at Test Class Level

The values of APFD across all subjects at the test class level are shown in Figure 5.1(a)

and Table 5.5. Based on the results, we observe that, somewhat surprisingly at the test-

class level, the static TPcg−add technique performs the best across all studied TCP tech-

niques (including all dynamic techniques) with an average APFD value of 0.790 (see

Table 5.5). Among the static techniques, TPcg−add performs best, followed by TPcg−tot,

TPstr, TPtopic−m and TPtopic−r. The best performing dynamic technique at class-level is

TPadd followed by TPsearch, TPtotal, and TPart. It is notable that at test-class level gran-

ularity, the most effective static technique TPcg−add performs even better than the most

effective dynamic technique TPadd in terms of APFD, i.e., 0.790 versus 0.769. The experi-

mental results on APFDc values further confirm the above finding. Shown in Figure 5.1(b)

143

TPcg-tot TPcg-add TPstr TPtopic-r TPtotal TPadd TPart

A
P

FD

TPsearch

0.25

0.50

0.75

1.00

TPtopic-m

: P1 P58

(a) The values of APFD on test-method level across all subject programs.

TPcg-tot TPcg-add TPstr TPtopic-r TPtotal TPadd TPart

A
P

FD
c

TPsearch

0.25

0.50

0.75

1.00

TPtopic-m

: P1 P58

(b) The values of APFDc on test-method level across all subject programs.

Figure 5.2: The box-and-whisker plots represent the values of APFD and APFDc for different TCP
techniques at test-method level. The x-axis represents the APFD and APFDc values. The y-axis
represents the different techniques. The central box of each plot represents the values from the
lower to upper quartile (i.e., 25 to 75 percentile).

and Table 5.5, the static TPcg−add technique outperforms all the studied TCP techniques

with an average APFDc value of 0.679, whereas even the most effective dynamic TPadd

only achieves an average APFDc value of 0.650. Furthermore, the Kendall τb Rank Cor-

relation value of 0.722 also demonstrates that APFDc values are generally consistent

with APFD values at the test class level. Therefore, at the test-class level, the call-graph

based strategies can even outperform dynamic-coverage based strategies, which is no-

table. Additionally, overall the static techniques outperform the dynamic techniques at

the test-class level. One potential reason for this is that many program statements are

covered several times by tests at the test-class level, making the traditional dynamic tech-

niques less precise, since they do not consider the number of times that a statement is

covered.

While Figure 5.1 shows the detailed APFD and APFDc values for each studied subject

at test-class level, Figure 5.3(a) further shows the ranges of APFD and APFDc values

across all subjects at test-class level, reflecting the robustness of the studied approaches

144

(a) The values of APFD and APFDc for different TCP techniques across all subject
programs on test-class level.

(b) The values of APFD and APFDc for different TCP techniques across all subject
programs on test-method level.

Figure 5.3: The box-and-whisker plots represent the values of APFDc for different TCP techniques
at different test granularities. The x-axis represents the APFDc values. The y-axis represents the
different techniques. The central box of each plot represents the values from the lower to upper
quartile (i.e., 25 to 75 percentile).

across both metrics. For APFD, the range of average values across all subjects at test-

class level for TPadd is the smallest (i.e.,0.523-0.947), implying that the performance of

TPadd is usually stable despite differing subjects for this metric. Conversely, the ranges of

APFD values for TPstr and TPart are much larger (0.391-0.917 for TPstr, 0.187-0.852 for

TPart), implying that their performance varies across different types of subjects. However,

we observe different trends for the APFDc metric. The ranges of APFDc values are all

much larger than those of APFD values. This is most likely due to the fact that APFDc

considers execution times, which we found to be randomly distributed, resulting in a larger

variation in results across different subjects.

To further investigate the finding that static techniques tend to have a higher variance

in terms of effectiveness depending on the program type, we investigated further by in-

145

Table 5.7: The results of Wilcoxon signed rank test on the average APFD values for each pair of
TCP techniques. The techniques T1 to T9 refer to TPcg−tot, TPcg−add, TPstr, TPtopic−r, TPtopic−m,
TPtotal, TPadd, TPart, TPsearch respectively. For each pair of TCP techniques, there are two sub-
cells. The first one refers to the p-value at test-class level and the second one refers to the p-value
at test-method level. The p-values are classfied into three categories, 1) p>0.05, 2) 0.01<p<0.05,
3) p<0.01. The p-values for categories p>0.05 and p<0.01 are presented as p>0.05 and p<0.01
respectively. If a p-value is less than 0.05, the corresponding cell is shaded.

T2 T3 T4 T5 T6 T7 T8 T9
T1 0.02 <0.01 >0.05 <0.01 <0.01 >0.05 <0.01 <0.01 0.02 <0.01 >0.05 <0.01 <0.01 <0.01 >0.05 <0.01
T2 - - >0.05 >0.05 <0.01 <0.01 <0.01 >0.05 <0.01 >0.05 >0.05 <0.01 <0.01 >0.05 >0.05 <0.01
T3 - - - - <0.01 <0.01 <0.01 >0.05 <0.01 >0.05 >0.05 <0.01 <0.01 >0.05 >0.05 <0.01
T4 - - - - - - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.05 0.02 <0.01 <0.01
T5 - - - - - - - - >0.05 >0.05 0.03 <0.01 <0.01 0.04 0.05 <0.01
T6 - - - - - - - - - - <0.01 <0.01 <0.01 >0.05 <0.01 <0.01
T7 - - - - - - - - - - - - <0.01 <0.01 0.04 <0.01
T8 - - - - - - - - - -- - - - - <0.01 <0.01

Table 5.8: The results of Wilcoxon signed rank test on the average APFDc values for each pair
of TCP techniques. This table follows exactly the same format as Table 5.7.

T2 T3 T4 T5 T6 T7 T8 T9
T1 0.02 <0.01 0.03 >0.05 0.04 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 <0.01 >0.05 >0.05 >0.05 <0.01
T2 - - >0.05 0.01 <0.01 <0.01 >0.05 0.04 >0.05 <0.01 >0.05 >0.05 >0.05 <0.01 >0.05 >0.05
T3 - - - - 0.02 >0.05 >0.05 >0.05 >0.05 0.05 >0.05 0.03 >0.05 >0.05 >0.05 <0.01
T4 - - - - - - <0.01 >0.05 >0.05 >0.05 <0.01 >0.05 >0.05 >0.05 <0.01 <0.01
T5 - - - - - - - - >0.05 0.04 >0.05 >0.05 >0.05 >0.05 >0.05 <0.01
T6 - - - - - - - - - - <0.01 <0.01 >0.05 >0.05 0.01 <0.01
T7 - - - - - - - - - - - - >0.05 >0.05 >0.05 >0.05
T8 - - - - - - - - - - - - - - >0.05 <0.01

specting several subject programs. One illustrative example is that scribe-java scores

0.646 and 0.606 for the average values of APFD under TPstr and TPtopic−r respectively,

which are notably worse than the results of TPcg−tot (0.718) and TPcg−add (0.733). To

understand the reason for this discrepancy, we analyzed the test code and found that

Scribe-java is documented/written more poorly than other programs. For instance, the

program uses meaningless comments and variable names such as ‘param1’, ‘param2’,

‘v1’, ‘v2’ etc. This confirms the previously held notion [266] that static techniques which

aim to prioritize test-cases through text-based diversity metrics experience performance

degradation when applied to test cases written in a poor/generic fashion. It also suggests

that researchers may take the subject characteristics into account when choosing TCP

techniques in future work.

146

5.3.1.2 Results at Test Method Level

To further answer RQ3 we ran all of the subject TCP techniques on the subject programs

at the test-method level so that we can compare to the results at the test-class level

outlined above (see Section 5.3.1.1). The results are shown in Figure 5.2 and Table 5.6.

In terms of APFD, when examining the static techniques with the test-method granularity,

they perform differently as compared to the results on the test-class level. For example,

although TPcg−add still performs the best among static techniques, it is inferior to the most

effective dynamic technique TPadd (0.818 versus 0.898). This finding is consistent with

previous studies [124]. Also, surprisingly, TPtopic−m (0.817) achieves almost the same

average APFD values as TPcg−add, followed by TPstr, TPtopic−r and TPcg−tot respectively.

It is worth noting that the effectiveness of the topic-model based technique varies quite

dramatically depending on the tools used for its implementation: Mallet [202] significantly

outperforms the R-based implementation. Also, there is less variation in the APFD values

at the test-method level compared to those at the test-class level, as shown in Figure 5.2

and Figure 5.3.

In terms of APFDc, the results for test-method level are generally consistent with the

results on test-class level. For example, while TPsearch tend to be the most effective

dynamic technique, the static TPcg−add outperforms all the studied static and dynamic

techniques. The likely reason is that dynamic techniques tend to favor tests with higher

coverage, which tend to cost more time to execute, leading to limited effectiveness in

actual time cost reduction. The results of the HSD analysis on the APFDc values at

the test-method level, indicate that all techniques are grouped into the same level (level

A), implying that different TCP techniques share similar performance based on APFDc

values, which is also consistent with the results of APFDc values at the test-class level.

When examining the ranges of APFDc values for the test-method level (see Fig. 5.2 and

Fig. 5.3), we find the APFDc values vary dramatically between subject programs. When

comparing the results of APFD and APFDc values at the test-method level, the Kendall

147

τb rank coefficient τb is 0.556, impling that the APFDc results are less consistent with the

APFD results at the test-method level. The reason is that test execution time distributions

which are uncontrolled have large impacts the more effective/stable test-method-level

results.

In addition, as a whole, the effectiveness of the dynamic techniques outpaces that

of the static techniques at method-level granularity for the APFD metric, with TPadd per-

forming the best of all studied techniques (0.898). For the cost-cognizant APFDc metric,

although there are no clear trends, the static techniques tend to perform even better than

dynamic techniques, indicating the limitations of dynamic information for actual regres-

sion testing time reduction. Overall, on average, almost all static and dynamic TCPs

perform better on the test-method level as compared to the results on the test-class level

in terms of both APFD and APFDc. Logically, this is not surprising, as using a finer level of

granularity (e.g., prioritizing individual test-methods) gives each technique more flexibility,

which leads to more accurate targeting and prioritization.

Finally, to check for statistically significant variations in the mean APFD and APFDc

values across all subjects and confirm/deny our null hypothesis for RQ1 and RQ2, we

examine the results of the one-way ANOVA and Tukey HSD tests. The ANOVA test for

APFD values, given in the second to last column of Tables 5.5 & 5.6, and both values are

well below our established significance threshold of 0.05, thus signifying that the subject

programs are statistically different from one another. This rejects the null hypothesis H0

and we conclude that there are statistically significant differences between different TCP

techniques in terms of APFD. The results of the Tukey HSD test also illustrate the statis-

tically significant differences between the static and dynamic techniques, by grouping the

techniques into categories with A representing the best performance and the following let-

ters (e.g., B) representing groups with worse performance. We see that the groupings are

similar for static and dynamic techniques. In order to illustrate the individual relationships

between strategies, we present the results of the Wilcoxon signed rank test for all pairs

of techniques at both granularity levels in Tables 5.7 and 5.8. The shaded cells repre-

148

sent statistically significant differences between techniques across all the subjects (e.g.,

p < 0.05). The Wilcoxon signed rank test further confirms that different techniques have

statistically different APFD values at both test-class and test-method levels, as indicated

by the shaded boxes. On the contrary, the results for APFDc ANOVA and HSD tests lead

to different observations – different techniques generally do not have statistically different

APFDc values (as shown in Tables 5.5 & 5.6), indicating that both static and dynamic

techniques tend to perform similalrly for APFDc values. The Wilcoxon signed rank test

for APFDc values of all pairs of techniques is shown in Table 5.8. The small number

of shaded cells (i.e., p < 0.05) further confirms that different techniques tend to perform

equivalently for APFDc. The likely reason for this is that APFDc is impacted by an addi-

tional randomly-distributed factor, i.e., tests tend to have randomly distributed execution

times, leading to the observed results. It should be noted that in contrast to our previous

work [193], our results for the HSD show less variance between the different approaches

for APFD at both test-class and test-method level. This means that the approaches were

grouped in fewer differing groups by the HSD test, indicating performance that is more

comparatively similar. This illustrates the affect of generalizing across more subject pro-

grams.

In summary we answer RQ1, RQ2 & RQ3 as follows:

RQ1: There is a statistically significant difference between the APFD values of

the two types (e.g., static and dynamic) of studied techniques. On average, static

technique TPcg−add is the most effective technique at test-class level, whereas dy-

namic technique TPadd is the most effective technique at test-method level. Overall,

the static techniques outperform the dynamic ones at test-class level, but the dynamic

techniques outperform the static ones at test-method level.

149

Table 5.9: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc values
at test-class level across smaller subject programs. The last column shows the results for Kendall
tau Rank Correlation Coefficient τb between the average APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.759 0.764 0.758 0.658 0.729 0.707 0.746 0.629 0.743 5.42E-8
0.5HSD A A A BC AB ABC A C A

APFDc Avg 0.618 0.633 0.653 0.563 0.652 0.558 0.592 0.585 0.591 0.503HSD A A A A A A A A A

RQ2: For the APFDc values, there is no statistically significant difference between

the types of studied techniques. APFDc values are generally consistent with APFD

values at test-class level but relatively less consistent at test-method level. Similar

to the results from RQ1, on average, static TPcg−add technique is the most effective

technique at the test-class level, and the static techniques outperform the dynamic

ones as a whole at test-class level. However, at test-method level, TPcg−add also

performs best overall at the test-method level, indicating the superiority of static tech-

niques to dynamic techniques in actual regression testing time reduction. In addition,

APFDc values vary more dramatically across all subject programs as compared to

AFPD values.

RQ3: The test granularity significantly impacts the effectiveness of TCP tech-

niques in terms of both APFD and APFDc, although the APFDc metric is affected

to a much lesser extent. All the studied techniques perform better at test-method

level as compared to test-class level. There is also less variation in the APFD val-

ues at method-level as compared to class-level, which signifies that the performance

as measured by this metric is more stable at test-method level across the studied

techniques.

150

Table 5.10: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc
values at test-class level across larger subject programs. The last column shows the results for
Kendall tau Rank Correlation Coefficient τb between the average APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.796 0.816 0.796 0.692 0.762 0.769 0.791 0.637 0.787 7.73E-10
0.667HSD B B B B B B A B A

APFDc Avg 0.686 0.724 0.681 0.586 0.661 0.670 0.708 0.640 0.706 0.132HSD A A A A A A A A A

Table 5.11: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc
values at test-method level across smaller subject programs. The last column shows the results
for Kendall tau Rank Correlation Coefficient τb between the average APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.751 0.799 0.799 0.771 0.804 0.797 0.885 0.791 0.878 2.29E-15
0.444HSD B B B B B B A B A

APFDc Avg 0.604 0.700 0.670 0.655 0.673 0.605 0.657 0.645 0.696 0.572HSD A A A A A A A A A

5.3.2 Impact of Subject Program’s Size

Since developers may apply TCP techniques to subject systems in various sizes in prac-

tice, it is important to understand the potential impact of program size on the performance

of TCP techniques. Thus we examine the differences between the performance of our

studied TCP techniques on our 29 smaller subject systems and 29 larger subject sys-

tems. Table 5.9 and Table 5.10 present the TCP results at the test-class level on smaller

and larger subject systems, respectively; similarly, Table 5.11 and Table 5.12 present the

TCP results at the test-method level on smaller and larger subject systems, respectively.

From the tables, we can make the following observations. First, TCP techniques tend

to perform better on larger subject systems than smaller subject systems. For example,

for both test-class and test-method level, all the studied TCP techniques perform better

on larger subject systems in terms of both APFD and APFDc. One potential reason is

that larger subject systems tend to have more tests, leaving enough room for TCP tech-

niques to reach optimization thresholds. This finding also demonstrates the scalability

of the studied TCP techniques. Second, at the test-class level, static TCP techniques

tend to outperform dynamic TCP techniques in terms of both APFD and APFDc on both

subsets of subject systems; in contrast, at the test-method level, static TCP techniques

are inferior than dynamic TCP techniques on both subsets of subjects in terms of APFD,

151

Table 5.12: Results for the ANOVA and Tukey HSD tests on the average APFD and APFDc
values at test-method level across larger subject programs. The last column shows the results for
Kendall tau Rank Correlation Coefficient τb between the average APFDc and average APFD.

Metrics Analysis TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch p-value τb

APFD Avg 0.777 0.837 0.827 0.791 0.829 0.821 0.912 0.805 0.892 3.21E-12
0.333HSD C BC C C C C A C AB

APFDc Avg 0.673 0.774 0.671 0.702 0.686 0.660 0.759 0.692 0.774 0.086HSD A A A A A A A A A

while TPcg−add outperforms all the other studied dynamic and static TCP techniques on

both subsets of subjects in terms of APFDc. This finding is consistent with our findings in

RQ1 and RQ2, indicating that subject size does not impact our findings when comparing

the relative performance of the studied TCP techniques according to APFD and APFDc.

Third, most studied TCP techniques perform better at test-method level as compared to

test-class level in terms of both APFD and APFDc on both subsets of our subjects. This

observation is also consistent with our comparative findings for RQ3.

RQ4: All the studied TCP techniques tend to perform better on larger subject

systems, indicating the scalability of the studied TCP techniques. However, when

comparing the performance of different TCP techniques to each other on either the

large or small programs, we find results consistent to using the entire set of programs

(both in terms of APFD(c) and differing test-case granularities). Thus we can conclude

that program size has little effect when comparing the relative performance of TCP

techniques on a given subject.

5.3.3 Impact of Software Evolution

Figure 5.4 and Figure 5.5 present the impact of software evolution on the studied TCP

techniques at the test-class and test-method levels, respectively. In each figure, each row

presents both the APFD and APFDc results on the corresponding subject. In each sub-

figure, the x-axis presents the versions used as the old version during software evolution

(note that the most recent versions are always used as the new version during software

evolution), while the y-axis presents the APFD or APFDc values. We show the APFD

152

(a) TCP results on geojson-jackson (APFD)

(b) TCP results on geojson-jackson (APFDc)

(c) TCP results on javapooet (APFD)

(d) TCP results on javapooet (APFDc)

Figure 5.4: Test-Class-level test prioritization in evolution

or APFDc distributions of different technique using box-plots of different colors, where

the boxes represent the 25th to 75th percentiles, the centerlines represent the median

values, and the dots represent the outlier points. Due to the limited space, we only show

the results of two subject programs. The results of all twelve subject programs can be

found in my online appendix [11]. Following prior work [192], using different versions as

the old version during software evolution allows us to understand the impact of software

evolution on TCP in details. To illustrate, for a project with n versions, where (n >2), we

will have a set of n− 1 results for applying each studied TCP technique. That is, running

153

(a) TCP results on geojson-jackson (APFD)

(b) TCP results on geojson-jackson (APFDc)

(c) TCP results on javapooet (APFD)

(d) TCP results on javapooet (APFDc)

Figure 5.5: Test-Method-level test prioritization in evolution

TCPs on older program versions and then applying the prioritized set of test cases on the

faulty variants of the most recent version (i.e., the latest versions with mutants) allows

us to understand the performance of TCP techniques in evolutionary scenario. Note that

more recent project versions may have tests not included in older project versions; we

ignore such tests since the studied techniques would not be able to prioritize those tests

based on old project versions.

If software evolution impacts TCP effectiveness, using earlier program versions for

test prioritization would likely be less effective than using more up-to-date versions for test

154

prioritization due to code changes. In other words, APFD/APFDc values should increase

when using newer versions for prioritization. However, we observe no such trend for

either APFD or APFDc for any TCP technique on any studied subject at the test-class or

test-method level. This observation confirms prior work [192, 133] that code changes do

not impact the effectiveness of dynamic TCP techniques in terms of APFD. Furthermore,

our work is the first to illustrate that the same finding holds for static TCP techniques as

well as the more practical APFDc metric. These results most likely arise due to the fact

that all studied TCP techniques approximate fault detection capabilities based on a certain

set of criteria (such as call graphs, textual information, or code coverage), and software

evolution usually does not result in large relative changes between commits for these

different criteria (e.g., some tests may always have higher code coverage throughout

project evolution).

We also find that the performance comparison in terms of APFD between dynamic

and static TCP techniques is not impacted by software evolution. For instance, static

TCP techniques tend to outperform dynamic TCP techniques in terms of both APFD at

the test-class granularity on most subjects, while dynamic TCP techniques tend to out-

perform static TCP techniques in terms of APFD at the test-method granularity on most

subjects. APFDc values tend to exhibit more variance during software evolution. For ex-

ample, for the javapoet subject at test-class level, the static TPstr technique outperforms

all other techniques when using V8 information to prioritize tests for V8, while the dynamic

TPart technique performs the best when using V1 information to prioritize tests for V8. One

potential explanation for this observation is that tests with similar fault detection capabil-

ities may have totally different execution times during evolution, causing high variances

between APFDc values.

RQ5: On average, software evolution does not have a clear impact on the mea-

sured effectiveness of the studied TCP techniques. Corroborating results of RQ1 and

RQ2, we find that the APFD values for techniques tend to exhibit lower variance than

155

Table 5.13: Results for average APFD values on different sizes of mutation faults. The last column
shows the results for Kendall tau Rank Correlation Coefficient τb between the average APFD
values with different sizes of mutation faults and the average APFD values shown in Tables 5.5
and 5.6.

Granularity Sizes TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch τb

Test-class

1 0.772 0.786 0.775 0.67 0.741 0.737 0.771 0.639 0.767 0.944
2 0.776 0.788 0.775 0.671 0.745 0.738 0.771 0.639 0.768 1
3 0.776 0.788 0.777 0.673 0.746 0.738 0.769 0.638 0.766 0.944
4 0.777 0.789 0.777 0.675 0.745 0.739 0.771 0.637 0.768 0.944
5 0.777 0.789 0.778 0.675 0.746 0.739 0.771 0.635 0.767 0.944
6 0.777 0.79 0.777 0.675 0.746 0.738 0.77 0.634 0.767 1
7 0.778 0.79 0.777 0.675 0.746 0.738 0.769 0.633 0.766 1
8 0.778 0.79 0.777 0.676 0.746 0.738 0.77 0.633 0.766 1
9 0.778 0.79 0.777 0.676 0.746 0.738 0.769 0.633 0.766 1
10 0.778 0.79 0.777 0.676 0.747 0.738 0.77 0.634 0.766 1

Test-method

1 0.759 0.82 0.813 0.777 0.814 0.807 0.901 0.798 0.885 1
2 0.763 0.82 0.816 0.781 0.818 0.809 0.902 0.802 0.887 1
3 0.763 0.818 0.814 0.78 0.815 0.81 0.9 0.8 0.886 1
4 0.764 0.819 0.814 0.782 0.817 0.811 0.901 0.802 0.887 1
5 0.764 0.818 0.814 0.782 0.818 0.811 0.9 0.8 0.887 1
6 0.762 0.817 0.813 0.781 0.816 0.809 0.9 0.8 0.886 1
7 0.763 0.817 0.813 0.781 0.816 0.81 0.9 0.8 0.886 1
8 0.763 0.818 0.812 0.781 0.816 0.81 0.899 0.8 0.886 1
9 0.763 0.818 0.812 0.781 0.816 0.81 0.899 0.799 0.885 1
10 0.764 0.818 0.813 0.781 0.816 0.809 0.899 0.799 0.885 1

APFDc values.

5.3.4 Impact of Mutant Quantities on TCP Effectiveness

Prior work examining TCP generally directly seeds a certain number of faults to form a

faulty version (or groups of faulty versions) to investigate TCP effectiveness according to

the APFD or APFDc, similar to the setup used in our study to answer RQ1-RQ3. However,

we wish to further analyze the impacts of the quantity of mutants utilized in experimental

settings and whether or not this impacts the effectiveness of techniques. The experi-

mental results for APFD and APFDc are shown Tables 5.13 and 5.14, respectively. In

each table, Column 1 lists the test-case granularities studied, column 2 lists the number of

mutants seeded into each faulty version/group, columns 3-11 present the APFD/APFDc

results for each studied technique, and finally the last column presents the Kendall τb

Rank Correlation Coefficient between the average values with each fault quantity and our

default settings (shown in Tables 5.5 and 5.6). From the tables, we make the following ob-

156

Table 5.14: Results for average APFDc values on different sizes of mutation faults. This table
follows the same format as Table 5.13.

Granularity Sizes TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch τb

Test-class

1 0.655 0.681 0.668 0.572 0.658 0.619 0.653 0.622 0.652 0.944
2 0.653 0.679 0.668 0.571 0.66 0.616 0.652 0.621 0.652 0.944
3 0.653 0.679 0.669 0.574 0.66 0.617 0.651 0.619 0.65 0.944
4 0.652 0.678 0.667 0.575 0.657 0.617 0.652 0.615 0.651 1
5 0.652 0.678 0.668 0.575 0.659 0.616 0.651 0.614 0.651 1
6 0.653 0.68 0.667 0.575 0.658 0.616 0.65 0.613 0.65 1
7 0.653 0.68 0.667 0.575 0.658 0.616 0.65 0.613 0.65 1
8 0.654 0.681 0.667 0.576 0.659 0.617 0.651 0.613 0.65 1
9 0.654 0.68 0.668 0.576 0.659 0.617 0.651 0.613 0.65 1
10 0.654 0.68 0.668 0.576 0.659 0.616 0.651 0.613 0.65 1

Test-method

1 0.637 0.745 0.671 0.681 0.681 0.634 0.715 0.675 0.739 0.889
2 0.639 0.739 0.675 0.683 0.684 0.634 0.714 0.675 0.739 0.944
3 0.639 0.738 0.672 0.681 0.679 0.634 0.711 0.672 0.738 0.889
4 0.638 0.737 0.671 0.68 0.68 0.634 0.711 0.672 0.737 0.944
5 0.638 0.737 0.672 0.68 0.681 0.635 0.711 0.671 0.738 0.944
6 0.636 0.738 0.671 0.678 0.68 0.634 0.711 0.671 0.737 0.944
7 0.637 0.738 0.671 0.679 0.68 0.635 0.711 0.671 0.737 1
8 0.638 0.739 0.67 0.679 0.68 0.635 0.71 0.671 0.737 0.944
9 0.638 0.738 0.67 0.679 0.679 0.635 0.71 0.67 0.737 0.944
10 0.638 0.737 0.67 0.678 0.679 0.634 0.709 0.67 0.736 1

servations. For both APFD and APFDc values, the mutant quantity does not dramatically

impact the results for all of the studied techniques. For example, at the test-class level,

the average APFD values of TPcg−add range from 0.786 to 0.790 for all the studied fault

quantity settings, while its APFDc values range from 0.678 to 0.681. This finding indicates

that the effectiveness of the studied techniques when seeding any number of mutants into

each group will be roughly equivalent, demonstrating the validity of the mutant seeding

processes of prior TCP work [192, 206, 306, 124]. The largest impact that fault quantities

had were for the APFDc metric at the test-method level. The likely reason for this is that

the test-method level techniques prioritize tests at a finer granularity, and thus are more

sensitive to the impact of execution time. For example, APFDc of fault groups with only

one fault in each group only considers the time to detect only the first fault (while APFDc

of fault groups with 5 faults in each group considers the time to detect all the 5 faults),

leading to the higher variance.

RQ6: The quantity of mutants used, as stipulated in the experimental settings of

mutation analysis-based evaluations of TCP approaches, does not significantly im-

157

Table 5.15: Results for average APFD values on different types of mutation faults. The last
column shows the results for Kendall tau Rank Correlation Coefficient τb between the average
APFD values with different types of mutation faults and the average APFD values shown in Tables
5.5 and 5.6.
Gra. Types TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch τb

Class

NegateConditionals 0.785 0.796 0.792 0.699 0.762 0.749 0.788 0.677 0.784 0.889
RemoveConditional 0.792 0.803 0.794 0.703 0.764 0.755 0.792 0.679 0.788 0.944
ConstructorCall 0.784 0.797 0.787 0.682 0.757 0.74 0.772 0.663 0.766 0.944

NonVoidMethodCall 0.774 0.783 0.774 0.668 0.74 0.731 0.761 0.626 0.756 1
Math 0.782 0.787 0.776 0.685 0.748 0.706 0.775 0.657 0.772 1

MemberVariable 0.798 0.816 0.772 0.69 0.752 0.776 0.794 0.676 0.79 0.778
InlineConstant 0.76 0.778 0.776 0.687 0.752 0.707 0.752 0.641 0.75 0.889
Increments 0.791 0.815 0.792 0.725 0.784 0.726 0.8 0.7 0.796 0.722

ArgumentPropagation 0.775 0.787 0.775 0.676 0.751 0.738 0.769 0.624 0.766 1
ConditionalsBoundary 0.787 0.81 0.809 0.709 0.776 0.737 0.78 0.69 0.778 0.944

Switch 0.859 0.838 0.882 0.822 0.856 0.849 0.867 0.757 0.864 0.5
VoidMethodCall 0.782 0.781 0.771 0.659 0.72 0.757 0.749 0.623 0.748 0.778
InvertNegs 0.744 0.805 0.849 0.669 0.738 0.63 0.757 0.726 0.743 0.667
ReturnVals 0.781 0.802 0.779 0.671 0.748 0.732 0.762 0.651 0.759 1

RemoveIncrements 0.755 0.797 0.761 0.684 0.738 0.685 0.762 0.645 0.759 0.778

Method

NegateConditionals 0.787 0.842 0.845 0.809 0.851 0.829 0.921 0.828 0.911 0.889
RemoveConditional 0.792 0.846 0.848 0.813 0.852 0.834 0.925 0.832 0.914 0.889
ConstructorCall 0.756 0.816 0.8 0.782 0.806 0.791 0.886 0.808 0.873 0.833

NonVoidMethodCall 0.755 0.809 0.811 0.766 0.815 0.804 0.891 0.783 0.874 0.889
Math 0.745 0.801 0.789 0.776 0.795 0.777 0.902 0.809 0.882 0.778

MemberVariable 0.799 0.858 0.837 0.809 0.843 0.838 0.914 0.832 0.905 0.944
InlineConstant 0.735 0.777 0.785 0.766 0.788 0.774 0.881 0.794 0.869 0.667
Increments 0.771 0.853 0.857 0.835 0.865 0.81 0.942 0.854 0.926 0.722

ArgumentPropagation 0.752 0.821 0.824 0.768 0.829 0.81 0.899 0.793 0.881 0.889
ConditionalsBoundary 0.761 0.825 0.827 0.806 0.833 0.809 0.901 0.819 0.89 0.833

Switch 0.86 0.881 0.932 0.871 0.946 0.902 0.968 0.892 0.952 0.778
VoidMethodCall 0.771 0.805 0.792 0.766 0.8 0.81 0.871 0.779 0.862 0.778
InvertNegs 0.752 0.843 0.813 0.69 0.784 0.726 0.849 0.799 0.812 0.611
ReturnVals 0.766 0.842 0.82 0.785 0.819 0.792 0.889 0.803 0.876 0.889

RemoveIncrements 0.737 0.84 0.861 0.807 0.868 0.777 0.935 0.846 0.907 0.722

pact the effectiveness of TCP techniques in terms of either APFD or APFDc, demon-

strating the validity of the fault seeding process of prior work in this context.

5.3.5 Impact of Mutant Types on TCP Effectiveness

In this RQ, we further investigate whether different mutant types may impact TCP results

in terms of either APFD and APFDc. The experimental results for APFD and APFDc

are shown Tables 5.15 and 5.16, respectively. In each table, column 1 lists the test-

case granularities studied, column 2 lists the different types of mutants seeded into each

faulty version, columns 3-11 present the APFD/APFDc results for each studied technique,

158

Table 5.16: Results for average APFDc values on different types of mutation faults. The last
column shows the results for Kendall tau Rank Correlation Coefficient τb between the average
APFDc values with different types of mutation faults and the average APFDc values shown in
Tables 5.5 and 5.6.
Gra. Types TPcg−tot TPcg−add TPstr TPtopic−r TPtopic−m TPtotal TPadd TPart TPsearch τb

Class

NegateConditionals 0.646 0.67 0.671 0.591 0.666 0.614 0.653 0.639 0.652 0.778
RemoveConditional 0.655 0.677 0.673 0.594 0.668 0.62 0.659 0.64 0.658 0.833
ConstructorCall 0.651 0.682 0.672 0.575 0.664 0.609 0.644 0.627 0.64 0.944

NonVoidMethodCall 0.642 0.665 0.652 0.556 0.645 0.598 0.628 0.593 0.625 1
Math 0.658 0.66 0.653 0.576 0.636 0.559 0.635 0.611 0.634 0.778

MemberVariable 0.668 0.699 0.656 0.587 0.66 0.649 0.671 0.641 0.667 0.556
InlineConstant 0.62 0.647 0.651 0.57 0.644 0.567 0.617 0.607 0.619 0.778
Increments 0.636 0.663 0.655 0.584 0.657 0.584 0.639 0.633 0.639 0.667

ArgumentPropagation 0.655 0.668 0.653 0.571 0.66 0.613 0.644 0.593 0.644 0.889
ConditionalsBoundary 0.64 0.673 0.674 0.591 0.655 0.604 0.643 0.639 0.647 0.722

Switch 0.806 0.775 0.803 0.663 0.779 0.736 0.763 0.822 0.759 0.333
VoidMethodCall 0.628 0.631 0.624 0.519 0.602 0.606 0.602 0.579 0.605 0.611
InvertNegs 0.537 0.579 0.705 0.498 0.666 0.472 0.746 0.747 0.714 0
ReturnVals 0.652 0.685 0.661 0.56 0.649 0.603 0.636 0.619 0.635 0.889

RemoveIncrements 0.605 0.639 0.664 0.546 0.628 0.544 0.602 0.649 0.602 0.5

Method

NegateConditionals 0.647 0.749 0.691 0.699 0.7 0.637 0.724 0.694 0.757 0.889
RemoveConditional 0.653 0.753 0.696 0.704 0.706 0.643 0.73 0.701 0.762 0.889
ConstructorCall 0.632 0.728 0.651 0.667 0.658 0.621 0.698 0.68 0.715 0.778

NonVoidMethodCall 0.617 0.716 0.653 0.648 0.664 0.619 0.688 0.637 0.709 0.889
Math 0.631 0.723 0.655 0.679 0.683 0.581 0.722 0.709 0.748 0.778

MemberVariable 0.673 0.773 0.701 0.708 0.703 0.657 0.731 0.715 0.761 0.778
InlineConstant 0.598 0.683 0.622 0.654 0.636 0.573 0.67 0.659 0.699 0.722
Increments 0.606 0.739 0.671 0.706 0.695 0.611 0.731 0.713 0.763 0.667

ArgumentPropagation 0.609 0.709 0.662 0.646 0.674 0.611 0.698 0.64 0.713 0.833
ConditionalsBoundary 0.605 0.716 0.641 0.682 0.661 0.612 0.695 0.68 0.73 0.722

Switch 0.752 0.787 0.786 0.78 0.796 0.768 0.812 0.777 0.839 0.722
VoidMethodCall 0.626 0.683 0.615 0.619 0.63 0.599 0.635 0.613 0.666 0.833
InvertNegs 0.7 0.816 0.6 0.537 0.655 0.651 0.66 0.713 0.752 0.389
ReturnVals 0.63 0.742 0.661 0.671 0.669 0.608 0.687 0.664 0.711 0.889

RemoveIncrements 0.597 0.752 0.699 0.697 0.726 0.575 0.709 0.73 0.743 0.667

and finally the last column presents the Kendall τb Rank Correlation Coefficient between

the average APFD/APFDc values with each fault type and our default settings (shown in

Tables 5.5 and 5.6). From the tables, we can make the following observations. Overall,

the vast majority of the studied mutant types tend to have a medium to high coefficient

(i.e., the range of Kendall correlation coefficient values is from 0.5 to 1.0). This implies that

the performance of TCP techniques when applied to detecting only certain mutant types

highly correlates to the performance observed when applied to detecting all mutants. This

finding indicates that the findings in prior work on TCP (including this work) generally hold

across mutants seeded with differing mutation operators. Second, we also observe that

there are several mutant types with low correlation with our default fault seeding, e.g.,

the Invert Negs Mutator and the Switch Mutator have the lowest correlation in both

159

studied test granularities for both APFD and APFDc. Upon further investigation, we found

one likely explanation to be the small number of mutants generated by such mutators. For

example, the number of Invert Negs Mutator is quite small as compared to other type

of mutation faults (since it is only applicable to the cases of negative numbers), thus the

results are dramatically different as compared to the results of mutation faults with the

default setting. The Switch Mutator also has small Kendall correlation coefficient values

as compared to other mutators. This is due to the fact that like the Invert Negs Mutator –

the number of Switch Mutator faults is quite small as compared to other type of mutation

faults (since it is only applicable to the cases of switches, which are not intensively used

in common programs). Thus, the results are dramatically different as compared to the

results of mutation faults with the default setting. Furthermore, we also observe that some

mutation faults are more subtle than others. For example, the mutation faults created by

Invert Negs Mutator tend to be more subtle than other types of mutation faults. For

example, the Invert Negs Mutator operator simply inverts negation of an integer and

floating point number (e.g., changing “return -i;” into “return i;”), while Non-Void

Method Call Mutator or Void Method Call Mutator directly removes an entire method

invocation. The subtle mutation faults introduced by Invert Negs Mutator can be harder

to detect, making various static and dynamic techniques perform worse on those faults

since the coverage or call graph information won’t provide precise guide for detecting

such subtle faults.

RQ7: The mutation operators used to seed faults, as stipulated in the experi-

mental settings of mutation analysis-based evaluations of TCP approaches, do not

significantly impact the effectiveness of TCP techniques in terms of either APFD or

APFDc, demonstrating the comparative validity of the fault seeding process of prior

work in this context.

160

Ja
cc

ar
d

 s
im

ila
ri

ty
 c

o
e

ff
ic

ie
n

t

0.25

0.50

0.75

1.00

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Cut points

(a) Class-level results.

Ja
cc

ar
d

 s
im

ila
ri

ty
 c

o
e

ff
ic

ie
n

t

0.25

0.50

0.75

1.00

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Cut points

(b) Method-level Results.

Figure 5.6: Average Jaccard similarity of faults detected between static and dynamic techniques
across all subjects at method and class-level granularity.

5.3.6 Similarity between Uncovered Faults for Different TCP techniques

The overall results for the similarity are shown in Figure 5.6. The two figures represent

the results comparing the average Jaccard similarity of the studied static techniques to

the studied dynamic techniques for all subject programs across 500 randomly sampled

faults at different prioritization cut points. These results indicate that there is only a small

amount of similarity between these two classifications of techniques at the higher level

cut points. More specifically, for test-method level, only ≈ 30% of the detected faults are

similar between the two types of techniques for the top 10% of the prioritized test cases,

and at test-class level only about ≈ 25% are similar for the top 10% of prioritized test

cases. This result illustrates one of the key findings of this study: The studied static and

dynamic TCP techniques do not uncover similar program faults at the top cut points of

prioritized test cases. The potential reason for these results is that different techniques

use different types of information to prioritize test cases. For example, the studied static

techniques typically aim to promote diversity between prioritized test cases using sim-

ilarity/diversity metrics such as textual distance or call-graph information. In contrast,

the studied dynamic TCPs consider statement-level dynamic coverage to prioritize test

cases. This finding raises interesting questions for future work regarding the possibility

of combining static and dynamic information and the relative importance of faults that dif-

fering techniques might uncover. It should be noted that different coverage granularities

for dynamic TCPs may also effect the results of similarity, however we leave such an in-

161

TPcg-tot TPcg-add TPstr TPtopic-r TPtotal TPadd TPart

C
o

u
n

t

TPsearch

5k

10k

15k

TPtopic-m

: M0 M14

(a) Counts for different types of mutation faults.

TPcg-tot TPcg-add TPstr TPtopic-r TPtotal TPadd TPart

P
e
rc
e
n
t

TPsearch

50%

100%

TPtopic-m

25%

75%

(b) Percentage for different types of mutation
faults.

Figure 5.7: Counts and percentage for different types of mutation faults across all subjects at
cut point 10% for class-level granularity. The types of mutation faults are classified based on the
mutation operators shown in Table 5.3.

TPcg-tot TPcg-add TPstr TPtopic-r TPtotal TPadd TPart

C
o

u
n

t

TPsearch

5k

10k

15k

TPtopic-m

: M0 M14

(a) Counts for different types of mutation faults.

TPcg-tot TPcg-add TPstr TPtopic-r TPtotal TPadd TPart

P
e
rc
e
n
t

TPsearch

50%

100%

TPtopic-m

25%

75%

(b) Percentage for different types of mutation
faults.

Figure 5.8: Counts and percentage for different types of mutation faults across all subjects at cut
point 10% for method-level granularity. The types of mutation faults are classified based on the
mutation operators shown in Table 5.3.

vestigation for future work. From these figures we can also conclude that the techniques

are slightly more similar at method level than at class level.

To further illustrate this point we calculated the Jaccard coefficients for each pair of

TCPs for each subject program, and show the results in Table 5.17 and Table 5.18. For

each pair of techniques we group the subjects into the categories described in Section

6.2. Due to space limitations, we only show results for the top 10% and top 50% of pri-

oritized test-cases, a complete dataset can be found at [195]. The results confirm the

conclusions drawn from Figure 5.6. It is clear that when comparing the studied static and

dynamic techniques, more subjects are classified into the highly-dissimilar and dissimilar

categories at the cut point top 10% on both of test-method and test-class levels. An-

other relevant conclusion that can be made is that the dissimilarity between techniques is

not universal across all subjects. That is, even though two techniques may be dissimilar

across several subjects, there are some cases where similarity still exists. This suggests

162

that only certain types of programs that exhibit different characteristics may present the

opportunity of performance improvement for TCPs by using both static and dynamic infor-

mation. In addition, at the cut point for the top 50% of prioritized test cases, it obvious that

fewer subjects are classified into the highly-dissimilar and dissimilar categories. This is

not surprising, because as the cut point increases the different techniques tend to discover

more faults, limiting the potential for variance.

There are two potential reasons why we might observe higher numbers of dissimilar

faults detected at the highest cut points: 1) different types of mutants are being detected;

and 2) mutants of the same type in different locations are being detected. To investigate

whether our observations are due to different fault types, we examine the counts and the

percentages for different types of mutants that are detected by top 10% test cases at both

the test-class and test-method level. The results are shown in Figures 5.7 and 5.8. When

observing that the ratio for different types of mutation faults detected by different TCP

techniques, we find that, as a whole, all TCP techniques detect a similar ratio of each

mutant type, implying that mutant type is generally not the cause for the dissimilar faults

at the higher cut points, but rather, mutants of the same type present different locations

in source code are the more likely explanation.

RQ8: The studied static and dynamic TCP techniques tend to discover dissimilar

faults for the most highly prioritized test cases. Specifically, at the test-method level

static and dynamic techniques agree only on ≈ 35% of uncovered faults for the top

10% of prioritized test cases. Additionally, a subset of subjects exhibit higher lev-

els of uncovered fault similarity, suggesting that only software systems with certain

characteristics may benefit from differing TCP approaches. Furthermore, the most

highly prioritized test cases by different TCP techniques share similar capabilities in

detecting different types of mutation faults.

163

Table 5.17: The classification of subjects on different granularities using Jaccard distance. The
four values in each cell are the numbers of subject projects, the faults of which detected by two
techniques are highly dissimilar, dissimilar, similar and highly similar respectively. The technique
enumeration is consistent with Table 5.7.

(a) This table shows the classification of subjects at the cut point 10% on test-class level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

TP1 – – – – 3 2 16 37 11 13 18 16 28 20 3 7 14 18 17 9 11 19 13 15 15 14 16 13 32 18 5 3 15 15 13 15
TP2 3 2 16 37 – – – – 11 14 15 18 27 23 3 5 13 24 14 7 11 20 14 13 14 16 13 15 30 23 4 1 13 17 10 18
TP3 11 13 18 16 11 14 15 18 – – – – 30 13 10 5 12 12 14 20 20 15 12 11 18 18 13 9 33 15 6 4 18 18 12 10
TP4 28 20 3 7 27 23 3 5 30 13 10 5 – – – – 14 15 12 17 26 17 11 4 24 15 15 4 31 13 7 7 24 16 13 5
TP5 14 18 17 9 13 24 14 7 12 12 14 20 14 15 12 17 – – – – 19 24 7 8 21 20 10 7 30 16 7 5 21 20 9 8
TP6 11 19 13 15 11 20 14 13 20 15 12 11 26 17 11 4 19 24 7 8 – – – – 2 13 11 32 28 13 9 8 2 12 14 30
TP7 15 14 16 13 14 16 13 15 18 18 13 9 24 15 15 4 21 20 10 7 2 13 11 32 – – – – 25 16 13 4 0 0 2 56
TP8 32 18 5 3 30 23 4 1 33 15 6 4 31 13 7 7 30 16 7 5 28 13 9 8 25 16 13 4 – – – – 25 15 15 3
TP9 15 15 13 15 13 17 10 18 18 18 12 10 24 16 13 5 21 20 9 8 2 12 14 30 0 0 2 56 25 15 15 3 – – – –
Total 129 119 101 115 122 139 89 114 153 118 100 93 204 132 74 54 144 149 90 81 119 133 91 121 119 112 93 140 234 129 66 35 118 113 88 145

(b) This table shows the classification of subjects at the cut point 10% on test-method level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

TP1 – – – – 3 14 28 13 11 23 17 7 11 29 15 3 12 20 20 6 6 14 19 19 6 19 22 11 21 23 11 3 3 21 20 14
TP2 3 14 28 13 – – – – 7 18 24 9 5 22 26 5 6 19 28 5 1 21 25 11 2 14 23 19 14 21 19 4 3 14 25 16
TP3 11 23 17 7 7 18 24 9 – – – – 4 21 27 6 0 3 17 38 7 16 23 12 4 12 26 16 15 22 20 1 5 12 29 12
TP4 11 29 15 3 5 22 26 5 4 21 27 6 – – – – 6 22 26 4 7 27 21 3 5 26 23 4 12 25 19 2 4 26 22 6
TP5 12 20 20 6 6 19 28 5 0 3 17 38 6 22 26 4 – – – – 7 17 24 10 6 5 34 13 13 24 20 1 7 7 34 10
TP6 6 14 19 19 1 21 25 11 7 16 23 12 7 27 21 3 7 17 24 10 – – – – 1 11 29 17 19 21 16 2 2 11 26 19
TP7 6 19 22 11 2 14 23 19 4 12 26 16 5 26 23 4 6 5 34 13 1 11 29 17 – – – – 10 19 26 3 1 3 6 48
TP8 21 23 11 3 14 21 19 4 15 22 20 1 12 25 19 2 13 24 20 1 19 21 16 2 10 19 26 3 – – – – 13 17 23 5
TP9 3 21 20 14 3 14 25 16 5 12 29 12 4 26 22 6 7 7 34 10 2 11 26 19 1 3 6 48 13 17 23 5 – – – –
Total 73 163 152 76 41 143 198 82 53 127 183 101 54 198 179 33 57 117 203 87 50 138 183 93 35 109 189 131 117 172 154 21 38 111 185 130

5.3.7 Efficiency of Static TCP Techniques

The results of time costs for the studied static techniques at both of test-method and test-

class levels are shown in Table 5.19. Note that, the time of pre-processing for TPcg−tot

and TPcg−add are the same for both method and class levels. As the table shows, all

studied techniques require similar time to pre-process the data at both method and class

levels and to rank test cases on class level. But the times for prioritization are quite

different at method level. We find that TPcg−tot and TPcg−add take much less time to

prioritize test cases (totaling 23.78 seconds and 37.02 seconds), as compared to TPstr

(totalling 78,835.97 seconds), TPtopic−r (totalling 48,310.93 seconds) and TPtopic−m (to-

talling 15,573.71 seconds). In particular, the following three techniques, TPstr, TPtopic−r,

and TPtopic−m take much longer time on some subjects (e.g., P53 and P58). These sub-

jects have a large number of test cases (see Table 5.2), implying that TPstr, TPtopic−r and

TPtopic−m will take more time as the number of test cases increases. Overall, all tech-

niques take a reasonable amount of time to preprocess data and prioritize test cases. At

test-method level, TPcg−tot and TPcg−add are much more efficient. TPstr, TPtopic−r and

TPtopic−m require more time to prioritize increasing numbers of test cases.

164

Table 5.18: The classification of subjects on different granularities using Jaccard distance. The
four values in each cell are the numbers of subject projects, the faults of which detected by two
techniques are highly dissimilar, dissimilar, similar and highly similar respectively. The technique
enumeration is consistent with Table 5.7.

(a) This table shows the classification of subjects at the cut point 50% on test-class level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

TP1 – – – – 0 2 10 46 0 1 10 47 1 6 30 21 1 3 17 37 0 6 17 35 0 2 22 34 2 9 29 18 0 2 22 34
TP2 0 2 10 46 – – – – 1 0 9 48 0 6 28 24 0 2 17 39 0 2 23 33 0 1 17 40 2 7 24 25 0 1 16 41
TP3 0 1 10 47 1 0 9 48 – – – – 1 6 23 28 0 2 11 45 1 4 19 34 1 1 16 40 2 9 21 26 1 1 16 40
TP4 1 6 30 21 0 6 28 24 1 6 23 28 – – – – 0 7 20 31 0 7 32 19 1 3 29 25 4 9 19 26 1 3 29 25
TP5 1 3 17 37 0 2 17 39 0 2 11 45 0 7 20 31 – – – – 0 7 20 31 0 4 17 37 3 7 25 23 0 4 18 36
TP6 0 6 17 35 0 2 23 33 1 4 19 34 0 7 32 19 0 7 20 31 – – – – 0 2 18 38 2 15 28 13 0 2 18 38
TP7 0 2 22 34 0 1 17 40 1 1 16 40 1 3 29 25 0 4 17 37 0 2 18 38 – – – – 2 11 13 32 0 0 0 58
TP8 2 9 29 18 2 7 24 25 2 9 21 26 4 9 19 26 3 7 25 23 2 15 28 13 2 11 13 32 – – – – 2 10 13 33
TP9 0 2 22 34 0 1 16 41 1 1 16 40 1 3 29 25 0 4 18 36 0 2 18 38 0 0 0 58 2 10 13 33 – – – –
Total 4 31 157 272 3 21 144 296 7 24 125 308 8 47 210 199 4 36 145 279 3 45 175 241 4 24 132 304 19 77 172 196 4 23 132 305

(b) This table shows the classification of subjects at the cut point 50% on test-method level.
T1 T2 T3 T4 T5 T6 T7 T8 T9

TP1 – – – – 1 0 20 37 0 3 20 35 1 1 31 25 1 3 17 37 0 1 13 44 0 1 17 40 1 1 23 33 0 1 17 40
TP2 1 0 20 37 – – – – 0 1 10 47 0 1 16 41 0 0 15 43 0 2 16 40 0 0 9 49 0 0 12 46 0 0 10 48
TP3 0 3 20 35 0 1 10 47 – – – – 0 2 18 38 0 0 3 55 0 1 12 45 0 0 6 52 0 1 10 47 0 0 8 50
TP4 1 1 31 25 0 1 16 41 0 2 18 38 – – – – 0 2 12 44 0 2 20 36 0 0 13 45 0 0 14 44 0 0 14 44
TP5 1 3 17 37 0 0 15 43 0 0 3 55 0 2 12 44 – – – – 0 0 16 42 0 0 5 53 0 1 7 50 0 0 6 52
TP6 0 1 13 44 0 2 16 40 0 1 12 45 0 2 20 36 0 0 16 42 – – – – 0 0 10 48 0 0 19 39 0 0 9 49
TP7 0 1 17 40 0 0 9 49 0 0 6 52 0 0 13 45 0 0 5 53 0 0 10 48 – – – – 0 0 3 55 0 0 2 56
TP8 1 1 23 33 0 0 12 46 0 1 10 47 0 0 14 44 0 1 7 50 0 0 19 39 0 0 3 55 – – – – 0 0 2 56
TP9 0 1 17 40 0 0 10 48 0 0 8 50 0 0 14 44 0 0 6 52 0 0 9 49 0 0 2 56 0 0 2 56 – – – –
Total 4 11 158 291 1 4 108 351 0 8 87 369 1 8 138 317 1 6 81 376 0 6 115 343 0 1 65 398 1 3 90 370 0 1 68 395

Table 5.19: Execution costs for the static TCP techniques. The table lists the average, min, max,
and sum of costs across all subject programs for both test-class level and test-method level (i.e.,
cost at test-class level/cost at test-method level). Time is measured in second.

Techniques Pre-processing Test Prioritization
Avg. Min Max Sum Avg. Min Max Sum

TPcg−tot 244.14/244.14 1.21/1.21 13785.86/13785.86 14159.97/14159.97 0.20/0.41 0/0 3.10/10.58 11.37/23.78
TPcg−add 244.14/244.14 1.21/1.21 113785.86/13785.86 14159.97/14159.97 0.18/0.64 0/0 2.87/19.98 10.59/37.02
TPstr 0.35/0.37 0.04/0.04 2.95/2.41 20.04/21.63 4.03/1,359.24 0.01/0.02 115.82/57,134.30 233.76/78,835.97

TPtopic−r 0.41/1.55 0.03/0.09 3.81/14.80 24.99/89.63 0.15/832.95 0/0.01 1.72/40,594.66 8.50/48,310.93
TPtopic−m 1.51/3.79 0.13/0.22 12.10/50.14 87.76/219.93 0.19/268.51 0/0.07 1.98/10,925.26 10.95/15,573.71

RQ9: On test-method level, TPcg−tot and TPcg−add are much more efficient in

prioritizing test cases. TPstr, TPtopic−r and TPtopic−m would take more time when the

number of test cases increases. The time of pre-processing and prioritization on test

class level for all static techniques are quite similar.

5.4 Threats to Validity

Threats to Internal Validity: In our implementation, we used PIT to generate mutation

faults to simulate real program faults. One potential threat is that the mutation faults may

not reflect all “natural” characteristics of real faults. However, mutation faults have been

widely used in the domain of software engineering research and have, under proper cir-

165

cumstances, been demonstrated to be representative of the actual program faults [158].

Further threats related to mutation testing include the potential bias introduced by equiva-

lent and trivial mutants. In the context of our experimental settings, equivalent mutants will

not be detected by test cases. As explained in Section 6.2, we ignore all mutants that can-

not be detected by test cases. Thus, we believe that this threat is sufficiently mitigated. To

answerRQ1-RQ3, we randomly selected 500 faults (100 groups and five faults per group)

for each subject system, which may impact the evaluation of TCP performance. However,

this follows the guidelines and methodology of previous studies [306, 192], minimizing this

threat. Additionally, we also introduce two research questions, RQ4 and RQ5, to investi-

gate the impact of mutant quantities and type on TCP evaluation, allowing us to examine

the validity of past evaluations of TCP effectiveness. In addition, there is a potential threat

that dues to trivial/subsumed mutants (e.g., the ones that are easily distinguished from

the original program) outlined in recent work [133, 234]. The trivial or subsumed mutants

may potentially impact the results (e.g., inflate the APFD values). However, we do not

specifically control the trivial and subsumed mutants, following the body of previous work

in the TCP area [306, 206, 192], since in practice real faults may also be trivial or subsume

each other. In addition, we involve a large set of randomly selected mutants, further miti-

gating this threat to validity. We encourage future studies to further examine this potential

threat.

To perform this study we reimplemented eight TCP techniques presented in prior work.

It is possible that there may be some slight differences between the original authors’

implementations and our own. However, we performed this task closely following the

technical details of the prior techniques and set parameters following the guidelines in

the original publications. Additionally, the authors of this paper met for and open code

review regarding the studied approaches. Furthermore, based on our general findings,

we believe our implementations to be accurate.

Threats to External Validity: The main external threat to our study is that we exper-

imented on 58 software systems, which may impact the generalizability of the results.

166

Involving more subject programs would make it easier to reason about how the studied

TCP techniques would perform on software systems of different languages and purposes.

However, we chose 58 systems with varying sizes (1.2 KLoC - 83.0 KLoC) and different

numbers of detectable mutants (132 - 46,429), which makes for a highly representative

set of Java programs, more so than any past study. Additionally, some subjects were

used as benchmarks in recent papers [251]. Thus, we believe our study parameters have

sufficiently mitigated this threat to a point where useful and actionable conclusions can

be drawn in the context of our research questions. In addition, we seeded mutants using

operators provided in PIT. It is possible that having different types of operators or using

different mutation analysis tool may impact the results of our study. However, PIT is one

of the most popular mutation analysis tools and has been widely used in software testing

research. Thus, we believe our design of the study has mitigated this threat. Finally, while

it would be interesting to investigate the effectiveness of TCPs on detecting real regres-

sion faults, this is a difficult task. A large set of real regression faults is notoriously hard

to collect in practice. The reason is that during real-world software development, the de-

velopers usually run regression tests before committing new revisions to the code repos-

itories, and will fix any regression faults before the commits, leaving few real regression

faults recorded in the code repositories. On the other hand, mutants have been shown

to be suitable for simulating real faults for software-testing experimentation [158, 19] (in-

cluding test-prioritization experimentation [81]). Furthermore, mutation testing is widely

used in recent TCP research work [192, 133]. Thus, in this paper we evaluate TCP effec-

tiveness in terms of detecting mutants, and leave the investigation of TCP performance

on real regression faults as future work.

Finally, we selected four static TCP techniques to experiment with in our empirical

study. There are some other recent works proposing static TCP techniques [25, 251], but

we focus only on those which do not require additional inputs, such as code changes or

requirements in this empirical study. Also, we only compared the static techniques with

four state-of-art dynamic TCP techniques with statement-level coverage. We do not study

167

the potential impact of different coverage granularities on dynamic TCPs. However, these

four techniques are highly representative of dynamic techniques and have been widely

used in TCP evaluation [192, 247, 82], and statement-level coverage has been shown to

be at least as effective as other coverage types [192].

5.5 Lessons Learned

In this section we comment on the lessons learned from this study and their potential

impact on future research:

Lesson 1: Our study illustrates that different test granularities impact the effectiveness

of TCP techniques, and that the finer, method-level, granularity achieves better perfor-

mance in terms of APFD and APFDc, detecting regression faults more quickly. This find-

ing should encourage researchers and practitioners to use method-level granularity, and

perhaps explore even finer granularities for regression test-case prioritization. Addition-

ally, researchers should evaluate their newly proposed approaches on different test gran-

ularities to better understand the effectiveness of new approaches. Moreover, APFDc

values are relatively less consistent with APFD values at test-method level and vary more

dramatically as compared to AFPD values. This suggests that researchers should evalu-

ate the novel TCP approaches in terms of different types of metrics to better investigate

the effectiveness of the novel approaches.

Lesson 2: The performance of different TCPs varies across different subject programs.

One technique may perform better on some subjects but perform worse on other sub-

jects. For example, TPtopic performs better than TPcg−add on webbit, but performs worse

than TPcg−add on wsc. This finding suggests that the characteristics of each subject are

important to finding suitable TCPs. Furthermore, we find that the selection of subject pro-

grams and the selection of implementation tools may carry a large impact regarding the

results of the evaluation for TCPs (e.g., there can be large variance in the performance

of different techniques depending on the subject, particularly for static approaches). This

168

finding illustrates that the researchers need to evaluate their newly proposed techniques

on a large set of real subject programs to make their evaluation reliable. To facilitate

this we provide links to download our subject programs and data at [195]. Additionally,

a potential avenue for future research may be an adaptive TCP technique that is able

to analyze certain characteristics of a subject program (e.g., complexity, test suite size,

libraries used) and modify the prioritization technique to achieve peak performance.

Lesson 3: Our study demonstrates that while TCP techniques tend to perform better

on larger programs, subject size does not significantly impact comparative measures of

APFD and APFDc between TCP techniques. Thus, when the performance of TCP tech-

niques are compared against each other on either large or small programs, similar results

can be expected. This finding illustrates scalability of various TCP techniques. Also, our

experimental results show that software evolution does not have clear impact on compar-

ative TCP effectiveness.

Lesson 4: Our study demonstrates that mutant quantity and type selected in the experi-

mental settings for measuring the effectiveness of TCP techniques does not dramatically

impact the results in terms of APFD or APFDc metrics. This finding provides practical

guidelines for researchers, confirming the comparative validity of the mutant seeding pro-

cess of prior TCP work, and also provides evidence that the fault quantity and type factors

are less important to investigate in future work.

Lesson 5: Our findings illustrate that the studied static and dynamic TCP techniques

agree on only a small number of found faults for the top ranked test-methods and classes

ranked by the techniques, and the most highly prioritized test cases by different TCP

techniques share similar capabilities in detecting different types of mutation faults. This

suggests several relevant avenues for future research. For instance, (i) it may be useful to

investigate specific TCP techniques to detect important faults faster when considering the

fault severity/importance [87, 269, 165] instead of fault types (e.g., different mutant types)

during testing; (ii) differing TCP techniques could be used to target specific types of faults

or even faults in specific locations of a program; and (iii) static and dynamic information

169

could potentially be combined in order to achieve higher levels of effectiveness. Further-

more, the similarity study performed in this paper has not been a core part of many TCP

evaluations, and we assert that such an analysis should be encouraged moving forward.

While APFD and APFDc provide a clear picture of the relative effectiveness of techniques,

it cannot effectively illustrate the difference set of detected faults between two techniques.

This is a critical piece of information when attempting to understand new techniques and

how they relate to existing research.

5.6 Conclusion and Discussion

In this work, we perform an extensive study empirically comparing the effectiveness, ef-

ficiency, and similarity of detected faults for static and dynamic TCP techniques on 58

real-world Java programs mined from GitHub. The experiments were conducted at both

test-method and test-class levels to understand the impact of different test granularities

on the effectiveness of TCP techniques. The results indicate that the studied static tech-

niques tend to outperform the studied dynamic techniques at the test-class level in terms

of both APFD and APFDc metrics, whereas dynamic techniques tend to outperform the

static techniques at test-method level in terms of APFD. APFDc values are generally con-

sistent with APFD values at test-class level but relatively less consistent with APFDc at

test-method level. In addition, APFDc values vary more dramatically across all subject

programs as compared to APFD values. We also observed that subject size, software

evolution, and mutant quantities and types within each faulty group/version do not signifi-

cantly impact comparative measures of TCP effectiveness.Additionally, we found that the

faults uncovered by static and dynamic techniques for the highest prioritized test cases

uncover mostly dissimilar faults, which suggests promising avenues for future work. Fi-

nally, we found evidence suggesting that different TCP techniques tend to perform differ-

ently across subject programs, which suggests that certain program characteristics may

be important when considering which type of TCP technique to use.

170

5.7 Bibliographical Notes

The empirical study presented in this chapter is published in one conference paper [193].

The extended version of this study is currently under journal review. These two papers

are shown as follows:

• Qi Luo, Kevin Moran, and Denys Poshyvanyk. “A large-scale empirical compari-

son of static and dynamic test case prioritization techniques.” In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), pp. 559-570. ACM, 2016.

• Qi Luo, Kevin Moran, Lingming Zhang and Denys Poshyvanyk. “How Do Static

and Dynamic Test Case Prioritization Techniques Perform on Modern Software

Systems? An Extensive Study on GitHub Projects” IEEE Transaction on Software

Engineering (TSE) 2018.

171

Chapter 6

Assessing Test Case Prioritization

on Mutants and Real Faults

Regression Testing is defined as the process of running a collection of compact tests,

aimed at testing discrete functionality that underlies a software program, when that pro-

gram changes. This type of testing allows for the discovery of software regressions, faults

that cause an existing feature to cease functioning as expected. Such test suites tend to

be large for complex projects and are often run every time code is checked into a repos-

itory, leading to longer than desired testing times in practice. For example, Google has

reported that, across its code bases, there aremore than twenty code changes perminute,

with 50% of the files changing per month, leading to long testing times [245, 74]. While

this may constitute an extreme example, the practice of running unit test suites upon code

check-ins has been popularized by emerging continuous integration frameworks, and do-

ing this in an efficient and effective manner is important for assuring the agility of projects.

One potential solution to this problem is a set of approaches known as Test Case Prior-

itization techniques which aim to prioritize regression test cases in a test suite to detect

regressions more quickly or reduce testing time.

A large body of research has been dedicated to designing and evaluating TCP tech-

niques [25, 55, 68, 79, 80, 164, 243, 274, 293, 294, 275, 51, 214, 186]. This work en-

172

compasses dynamic techniques that prioritize test cases using code-coverage as a proxy

for testing effectiveness [247, 145, 184], and static techniques that typically prioritize ac-

cording to test case diversity or static call-graph coverage [178, 266, 311]. While the type

of prioritization algorithm may differ across techniques, the evaluation metric for TCP

techniques, the Average Percentage of Faults Detected (APFD) [247, 145], and its cost

cognizant version APFDc [96, 90], are widely used to compare the overall effectiveness

and efficiency of these techniques. APFD is a normalized measure of how quickly a TCP

technique is able to detect a known set of faults (with techniques that uncover more faults

with the highest prioritized test cases having higher APFD values), whereas APFDc fur-

ther considers both test case execution costs and fault severity.

In order for the APFD(c) (i.e., APFD and APFDc) metrics to measure the practical

applicability of TCP techniques in a realistic setting, a reasonably large known set of real

faults is required. Unfortunately, such fault sets may not be readily available for subject

programs that TCP techniques would be evaluated on [157, 254, 158]. Thus, recent TCP

research utilizing these performance metrics uses artificial faults, called mutants, each

comprised of a simple syntactic change to the source code [133, 192, 124, 306, 81]. That

is, researchers commonly perform mutation analysis to obtain a set of mutant programs

and then evaluate TCP techniques by measuring how effective the prioritized set of test

cases are at detecting the injected mutation faults. The use of mutants in the evaluation

of TCP approaches gives rise to potential threats of validity impacting the practicality

and applicability of the approaches in practice, where they would be used to detect real

faults. In essence, the underlying assumption of such evaluations is that there is a strong

correlation between prioritized sets of test cases that kill high numbers of mutants and

sets that detect a high number of real faults. This assumption raises key questions: How

well do TCP techniques perform on real faults?; Is the performance of TCP techniques

on mutation faults representative of their performance on real faults? What properties of

mutants affect the representativeness of this performance?

Previous studies have examined the relationship between real faults and mutation

173

faults in order to understand the applicability of mutants in software testing. In particular,

these studies have investigated: (i) whether mutants are as difficult to detect as real

faults [21, 23]; (ii) whether mutant detection correlates with real fault detection [69, 158];

(iii) whether mutants can be used to guide test case generation [254]; and (iv) whether

tokens contained in patches for real-world faults can be expressed in terms of mutants

[111].

Despite the studies outlined above, there is a clear gap in the existing literature con-

cerning the applicability of mutants to evaluate TCP techniques. This gap can be sum-

marized as follows: First, no previous study has investigated whether mutation faults are

representative of real faults when evaluating TCP approaches. Indeed, such evaluations

aim to measure the rate at which large sets of mutation faults are detected by prioritized

sets of test cases according to APFD(c), fundamentally differing from the experimental

parameters of the studies outlined above. For example, Just et al. [158] focus on the

relationship between real faults and mutants measured by the ability of fault detection

for a whole test suite, which may not imply a similar relationship in terms of APFD(c)

values. Second, TCP approaches have not been previously evaluated in terms of their

capability of detecting real-world faults, indicating that the true, practical performance of

these techniques is largely unknown. Third, prior work has not thoroughly examined the

impact of differing fault properties, such as operator types or mutant coupling levels, on

the evaluation of TCP techniques. It is clear that analyzing how TCP techniques perform

when applied to real faults and investigating the extent to which performance on muta-

tion faults is representative of performance on real faults would help better illustrate the

practicality of such approaches and aid researchers in evaluating TCP techniques more

comprehensively. Furthermore, studying the impact that fault properties have on TCP

performance would shed light on how mutation analysis can be properly applied to best

represent performance on real faults.

To address this gap, we perform an extensive empirical study to understand the effec-

tiveness of TCP techniques when evaluated in terms of real faults, and examine whether

174

mutation faults are representative of real faults when evaluating TCP performance. We

implemented eight well-studied TCP techniques and applied them on (i) a dataset of real

faults, Defects4J [157], containing 357 real faults from five large Java programs, and (ii)

over 35k+ mutants seeded using the Pit [239] mutation testing tool. In the course of this

study, we examine the performance and correlation, in terms of APFD(c), across real

and mutant fault sets with and without controlling for trivial and subsumed mutants. We

further examine how properties of faults, including mutant coupling and operator type,

impact performance and the representativeness of mutants.

The results of this study bear several significant findings, from which we can derive

best practices for future TCP evaluations and important directions for future work related

to mutation testing. First, our results demonstrate that for the five subject programs stud-

ied, mutation-based performance of TCP techniques, as measured by APFD(c), tend to

overestimate performance when compared to performance on real faults unless trivial and

subsumed mutants are removed. When trivial and subsumed mutants are controlled for,

the resulting mutants tend to underestimate performance compared to real faults. How-

ever, these findings tend to vary depending on the subject program. Furthermore, we

find that, as a whole, static TCP techniques tend to outperform dynamic techniques on

real faults, contradicting results from previous studies that use only mutation-based eval-

uation metrics. Second, we have found that the mutation-based APFDc metric exhibits a

stronger positive correlation with real-fault performance than APFD; implying that APFDc,

which considers test execution costs, may better illustrate real-world TCP performance.

Third, when examining the fault sets in terms of mutant coupling and operator type, we

found that the representativeness of mutants (compared to real faults) varies across differ-

ent types of faults within programs. This suggests that different combinations of mutants

could be derived to more closely resemble the real faults that are likely to surface in a

program. Fourth, we found that the correlation of TCP performance between real and

mutation faults differed across subject programs. Thus, indicating that in the context of

TCP, the mutants used were more representative of real faults for some studied subjects

175

than for others. This result advocates that future TCP evaluation techniques should move

toward deriving specific sets of mutation operators using data driven approaches based

on the software domain.

To the best of tour knowledge, this is the first comprehensive empirical study that

evaluates the performance of eight well-studied TCP techniques on a large set of real

faults and compares the results to mutation-based performance in order to determine

whether mutation faults are representative of real faults in TCP domain.

6.1 Background & Related Work

In this section we formally define the TCP problem, introduce the studied TCP techniques,

and discuss the related work.

6.1.1 TCP Problem Formulation

TCP is formally described by Rothermel et al. [249] as finding a prioritized set of test cases

T ′ ∈ P (T), such that ∀′′, T ′′ ∈ P (T)∧T ′′ ̸= T ′ ⇒ f(T ′) ≥ f(T ′′), where P (T) refers to the

set of permutations of a given test suite T , and f refers to a function from P (T) to real num-

bers. While there are many types of existing TCP techniques [83, 86, 124, 165, 260, 307],

one common dichotomous classification, static [141, 311, 178] and dynamic techniques

[82, 89, 93, 172, 224, 259, 271, 306], relates to the type of information used to perform the

prioritization. Static approaches utilize information extracted from source and test code

and dynamic techniques rely on information collected at runtime (e.g., coverage informa-

tion per test case) to prioritize test cases [193]. Additional classifications exist, such as

the distinction between white-box and black-box techniques [133]. The techniques that

require source code of subject programs (or information extracted from source code) are

typically classified as white-box techniques [163]. Conversely, those that only require

program input or output information are classified as black-box techniques. Approaches

that only require test-code have been classified as black-box [193, 133], however, in this

176

paper wemore accurately refer to these techniques as grey-box since they require access

to test code with references to the underlying program. There are also other approaches

[251, 144, 269] that use “non-traditional” information to perform the prioritization, such as

code-changes and requirements, that do not fall neatly into these categories.

6.1.2 Studied TCP Techniques

In the context of our empirical investigation, we selected well-studied white and grey-box

techniques that utilize “traditional” input information (i.e., source code and test code for

static techniques and coverage information for dynamic techniques). We make this de-

cision for the following two reasons. First, “non-traditional” information, such as code

changes or high-level requirements, are not always available for subject programs, which

can limit the applicability of these approaches in certain contexts. Second, choosing well-

studied and understood techniques allows for a more applicable comparison of our results

to prior studies. Together we consider four dynamic white-box techniques that utilize run-

time code coverage for prioritization, two static gray-box techniques that operate only on

test code, and two static white-box approaches that use call-graph information. The four

state-of-the-art dynamic TCP techniques include: (i-ii) greedy TCP (with total and ad-

ditional strategies) [247], (iii) adaptive random TCP (ART) [145], and (iv) search-based

TCPs [184]). The static techniques include: (i-ii) call-graph-based (with total and addi-

tional strategies) [311], (iii) string-based [178], and (iv) topic-model-based TCPs [266]).

Details of the studied TCP techniques are presented in Chapter 5 and the details regard-

ing our implementation of these techniques are in Section 6.2.4.

6.1.3 Threats to the Validity of Mutation-Based TCP Performance Evalua-

tions

There is a large body of work that has addressed the problem of Test Case Prioritization

[251, 144, 286, 92, 206]. The common link in the evaluations of these various techniques

177

is the utilization of fault-detection rates, typically in terms of the APFD(c) metrics [267,

133, 192]. However, due to the fact that finding and extracting real-world faults is an

intellectually intensive and laborious task, real faults are rarely used when evaluating

testing related research [158, 157], including existing work on TCP. Instead, mutation

analysis can be utilized in calculating these fault-detection rates. During mutation analysis

small, automatically-generated syntactic faults are seeded throughout subject programs

according to a set of well-formedmutation operators, then APFD(c) values are calculated

according to the number of mutants that are killed by prioritized test cases. However,

to make results of such an evaluation generalizable in a realistic setting, the APFD(c)

fault-detection rates should correlate with detection rates of real faults. Unfortunately,

in the context of the typical methodology used to evaluate TCP techniques, the relation

between performance on mutation faults and real faults is not well understood. This gives

rise to the potential for threats to the validity of these evaluations relating to (i) the overall

performance of TCP techniques on mutation vs. real faults (is performance over or under-

estimated?); (ii) the correlation of performance on real vs. mutation faults (does amutation

based-analysis properly illustrate the most effective technique on real faults?); and (iii) the

impact that different properties of mutants have on mutation-based performance of TCP

techniques.

6.1.4 Studies Examining theRelationshipBetweenMutants andReal Faults

While our study is the first to examine the representativeness of mutation faults in terms of

real faults as it pertains to the domain of TCP, we are not the first to investigate this rela-

tionship in a general sense. A small but growing number of studies have been dedicated

to understanding the interconnection between mutants and real faults in the broader do-

main of software testing [21, 23, 69, 157, 254, 158, 57]. Daran and Thévenod-Fosse [69]

performed the first empirical comparison between mutants and real faults, finding that the

set of errors and failures they produced with a given test suite are quite similar. Andrews

et al. [21, 23] compared the fault detection capability of test-suites on mutants, real-faults,

178

and hand-seeded faults, reaching two conclusions. First, mutants (if carefully selected)

can provide a good indication of a test suite’s ability to detect real faults. Second, the use

of hand-seeded faults can produce an underestimation of a test suite’s fault detection ca-

pability. Gopinath et al. conducted an empirical study that explored the characteristics of

a large set of changes and bug-fixes and how these related to mutants [111]. The authors

performed a statistical analysis on the distributions of tokens from these extracted faults

and compared them to tokenized faults seeded by traditional mutation operators. This

study concluded that the tokenization of a typical real fault is generally not equivalent to

seeded mutation faults.

Just et al. studied whether a test suite’s ability to detect mutants is coupled with its

ability to detect real faults, controlling for code-coverage [158]. Their results indicate that

mutant detection correlates more closely with real fault detection than with code coverage.

Additionally, their study also provided suggestions regarding how mutant taxonomies can

be improved to make them more representative of real faults through examination of how

mutants are coupled to real faults. Just et al. introduced a valuable dataset of 357 real

faults across five Java programs in an artifact called Defects4J [157], which we utilize in

this paper. Shamshiri et al. conducted an empirical study of automatic test generation

techniques to investigate their ability to detect real faults in the Defects4J [254]. Finally,

Chekham et al. conducted a study examining how mutation, statement and branch cov-

erage correlate to fault revelation [57]. They found that strong mutation testing has the

highest fault revelation capability of these coverage criterion, and fault revelation only

tends to significantly increase once high coverage levels are attained.

While the aforementioned research has investigated several aspects of the relation-

ship between real-faults and mutants, there is no prior work examining the relationship

between real faults and mutants in the context of a typical TCP evaluation methodology.

Thus, it is unclear whether the performance assessment and comparison of TCP tech-

niques, when performed on mutants, is valid when one considers real faults. While prior

studies that examine the relationship between real faults and mutants more generally, it is

179

unclear whether results from these studies hold in the context of TCP, as the experimen-

tal settings in such a case (and hence in our study) fundamentally differ from past work.

More specifically, we re-create the typical evaluation methodology used to assess the ef-

fectiveness of TCP techniques, which involves seeding mutants into a single version of a

program and calculating the APFD(c) metrics. We then compare such metrics computed

using mutants with those computed over real faults, and examine their correlation and

overall utility in assessing TCP performance.

Prior work largely ignores how the performance of these techniques may vary across

mutants with different levels of coupling to real faults or across specific types of mutation

operators. Thus, we investigate whether different levels of mutation coupling or particular

types of mutation operators impact effectiveness measures for mutants or correlation with

real faults. Furthermore, we consider the test execution cost of prioritized test cases

(APFDc) which past studies have not considered. To summarize, this study fills several

existing gaps, both in TCP research, and regarding the relationship between real-faults

and mutants. This leads to several important, unexpected findings, impacting future work

in both areas.

6.2 Empirical Study

The goal of this study is to analyze the extent to which mutation analysis can support

Test Case Prioritization (TCP), as opposed to using data from real faults. The study con-

text consists of data from five Java open source projects (Defect4J [158, 157]), mutants

generated by the PIT [239], and eight TCPs described in Section 6.1.

6.2.1 Research Questions (RQs):

The study aims at answering the following three RQs:

RQ1: How effective are TCP techniques when applied to detecting real faults?

180

Table 6.1: The stats of the subject programs: #Real: #real-world faults; #All: #all mutation faults;
#Detected: #mutation faults can be detected by test cases; #Subsuming: subsuming mutants.

Subject Programs #Real #Detected #Subsuming #All
JFreeChart 26 32,790 1,796 102,629
Closure Compiler 133 82,572 9,731 111,826
Commons Maths 106 80,059 5,016 113,680
Joda-Time 27 24,555 3,066 34,147
Commons Lang 65 25,173 2,129 31,214
Total 357 245,767 21,738 393,496

RQ2: Is the performance of TCP techniques on mutants representative of performance

on real faults?

RQ3: How do the properties of real faults and mutants affect the performance of TCP

techniques?

6.2.2 Study Context

In order to properly evaluate the performance of TCP approaches when applied to de-

tecting real-world faults, our study requires a well understood set of verified, real program

faults preferably containing coupling information between real faults and mutants. To

satisfy this criteria, we utilize the Defects4J [157] dataset, which contains 357 real faults

extracted from five Java subject programs, listed in Table 6.1, and has been utilized in

past studies [158, 254]. Defects4J isolates the real faults from the version control and

bug tracking system of each subject program. For each isolated fault there exists a faulty

program version and a corresponding fixed version. Table 6.1 shows the distribution of

isolated real faults and seeded mutation faults across the five subject programs, with Clo-

sure and Commons Maths representing the largest portion of real faults.

For each real fault (i.e., faulty version), Defects4J provides a test suite including at

least one test case that is able to trigger the fault but pass successfully in the correspond-

ing fixed version. Additionally, it provides the code locations (i.e., method and class

names) that were modified to fix the fault. This facilitates qualitative analysis and root

181

cause determination for the set of real faults. Since a comprehensive test suite is re-

quired for the proper evaluation of TCP approaches, we opted to use the existing JUnit

test cases provided for each (faulty or fixed) program version in Defect4J. Furthermore,

test cases were extracted at test-method granularity rather than the test-class granularity,

as TCP techniques have been shown to perform best under such experimental settings

[193].

The primary goal of this study is to determine how well mutation-based analysis re-

flects the performance of TCP techniques on real faults. More generally, we aim to answer

the following question: “If one prioritizes test cases using mutants, would the this priori-

tized set likely be as effective on real faults?” In order to properly explore this question we

seeded mutants across the fixed versions of all subject systems using the PIT mutation

tool [239] with all built-in operators enabled. We exclude the mutants which are not killed

(i.e., triggered the test case to fail), by any test cases in the existing JUnit test suites for

two reasons: i) to mitigate a potential threat to validity from equivalent mutants, ii) based

on Equations 6.1 and 6.2, these mutants will not affect the APFD(c) values. The num-

ber of detected mutants and the total number of seeded mutants are shown in columns

3 and 5 of Table 6.1 respectively (see our attached appendix for more detailed results).

Furthermore, two recent works outline the potential impact of trivial/subsumed mutants

for mutation-based analysis [234, 133]. Thus, we also compute results when trivial and

subsumed mutants are removed from the original set of seeded mutants. We follow the

methodology defined in prior work [234], which is the best approximation for the removal

of subsuming mutants, as this has been proven an undecidable problem. The number

of subusming mutants is shown in column 4 of Table 6.1. Thus we will discuss results

in terms of two different sets of mutants: the full mutant set, and the subsuming mutant

set. In this study, since the aim is to assess the performance of the methodology used

in evaluating TCP techniques, we performed our mutant seeding in accordance with past

studies [193, 192, 306], applying mutation analysis to the single, most recent fixed version

of each subject program.

182

To perform a comparison between mutants and real faults, for each (real) faulty ver-

sion of a program in Defects4J, we create one mutated program instance, with a randomly

selected mutant. However, given that the selected mutant is a random variable, we re-

peat this process 100 times for each real fault to provide for a reliable statistical analysis

and the best possible approximation for TCP evaluations from prior work (e.g., for Clo-

sure: 133 versions with real faults × 1 mutant × 100 instances = 13,300 total mutants).

For instance, taking JFreeChart program as an example, one mutant was randomly se-

lected from the set of 32,790 mutants able to be detected by at least one test case, until a

set of 26 mutant versions of JFreeChart were accumulated (matching the number of real

faulty versions). This procedure is then repeated 100 times. This results in 100 groups

of 26 mutants, or 2,600 mutants being evaluated for JFreeChart in total. In initial ex-

periments, excluded due to space limitations, we computed the APFD(c) values using 5

randomly seeded mutants per instance (instead of one), following the settings of previous

work [124, 178, 192, 193, 206, 305]. The results for this analysis generally agree with the

presented results, and thus we do not expect that number of mutants per instance will

dramatically impact the results. The intention behind choosing these experimental set-

tings is to evaluate whether past mutant-based methodologies measuring TCP efficacy

would hold for real faults.

6.2.3 Methodology

In this section we describe the experimental methodology used to answer our proposed

research questions.

Table 6.2: Studied TCP Techniques.
Type Tag Description

Static

TCPcg−tot Call-graph-based (total strategy)
TCPcg−add Call-graph-based (additional strategy)
TCPstr The string-distance-based
TCPtopic Topic-model-based

Dynamic

TCPtotal Greedy total (statement-level)
TCPadd Greedy additional (statement-level)
TCPart Adaptive random (statement-level)

TCPsearch Search-based (statement-level)

183

6.2.3.1 RQ1: TCP Effectiveness on Real Faults

The goal of this research question is to investigate the performance of TCP techniques

when they are applied to detect real faults. We first ran these eight TCP techniques on 357

program versions containing real faults to obtain ranked lists of test cases for each faulty

version. The tests are run at the test-method level, since past work has shown method-

level yields more effective TCP results [192, 193]. Then, to measure the effectiveness in

terms of fault detection for each studied technique, we calculated two well-accepted met-

rics, the Average Percentage of Faults Detected (APFD) [247, 92] and its cost cognizant

counterpart APFDc[96, 90]. Formally, APFD is defined as follows: Let T be a test suite

and T ′ is a permutation of T , the APFD value for T ′ is given by

APFD = 1−
∑m

i=1 TFi

n ∗m
+

1

2n
(6.1)

where n is the number of test cases in T ,m is the number of faults, and TFi is the position

of the first test case in T ′ that detects fault i. Intuitively, the higher the APFD value, the

higher the rate of fault detection by the prioritized test cases. In order to derive a more

holistic understanding of the relationship between TCP performance on real faults and

mutants we also consider APFDc. This metric takes both execution cost and fault severity

into account. Since there is no clearly-defined nor widely-used method for estimating fault

severity, we consider severity to be the same for all faults. Therefore, in the context of

this study APFDc reduces to the following formal definition:

APFDc =

∑m
i=1(

∑n
j=TFi

tj − 1
2 tTFi)∑n

j=1 tj ∗m
(6.2)

where tj is the execution cost for the test case ranked at position j in the ranked test

suite. Intuitively, APFDc, as defined above, will be higher for prioritized test suites that

both find faults faster and require less execution time. Since we study five subjects, each

with a different number of real faults, we computed the average APFD(c) values of the

184

different versions across all five systems to understand the effectiveness of each studied

approach. Additionally, to statistically analyze the differences between TCP techniques

in terms of APFD and APFDc values, we perform an Analysis of Variance (ANOVA) and

a Tukey Honest Significant Difference (HSD) test [265] on the average APFD(c) values

across the five subjects. The ANOVA analysis is used to test whether there are statis-

tically significant differences between the performance of TCP techniques when applied

to real faults versus when applied to mutants. The Tukey HSD test classifies the TCP

techniques into different groups based on their performance in terms of APFD(c) values,

further illustrating the relationships between them. For both statistical procedures we

consider a significance level α = 0.05.

6.2.3.2 RQ2: Representativeness of Mutants

The goal of RQ2 is to understand whether mutants are representative of real faults in

the evaluation of TCP techniques. Thus, we applied mutation analysis according to the

description given in Section 6.2.2. As mentioned in Section 6.2.2, two sets of mutants are

examined, the full mutant set and the subsumingmutant set. Then, we ran all studied TCP

techniques on these mutant versions and calculated the average APFD(c) values (see

Equations 6.1 and 6.2) across all 100 mutant groups and across all five subject programs,

in order to examine the mutant-based performance of our studied TCP techniques.

At this point, we are able to evaluate the effectiveness of TCPs in terms of both real

fault and mutant detection according to APFD(c). In order to compare these metrics,

we rely on the Kendall rank correlation coefficient τ [167] to measure the relationship.

This correlation metric is commonly used to measure the ordinal association between

two quantities [166] and has been widely used in the area of software testing for such

purpose [107, 235, 305]. Consider the APFD values of real fault detection and mutation

fault detection across all studied techniques as a set of pairs (R,M), where R is the

APFD/APFDc values of real fault detection andM is the APFD/APFDc values of mutation

185

fault detection. Any pair of (ri,mi) and (rj ,mj) (APFD values for TCPi), where i ̸= j, are

concordant if ri > rj andmi > rj or if ri < rj andmi < mj . They are discordant if ri > rj

and mi < mj or if ri < rj and mi > mj [223]. The Kendall τ rank correlation coefficient

is formally defined as the ratio of the number of concordant pairs less the number of

discordant pairs and the total number of pairs. Thus, its value ranges from −1.0 to 1.0.

Results closer to 1.0 indicate the observations of two variables have similar rank (e.g.,

which in the context of this study translates to similar rates of fault discovery), whereas

when it is closer to −1.0 when the observations of two variables have dissimilar ranks

(e.g., suggesting a negative correlation between fault discovery rates). The two variables

are independent when the value approximates to 0.0. Following the previous work [107],

we chose Kendall τb statistic since it makes adjustments for ties and does not require a

linear relationship.

6.2.3.3 RQ3: Effects of Fault Properties

The goal of this research question is to understand how different properties of faults impact

two phenomena in the context of TCP: (i) the performance of prioritization techniques,

and (ii) the representativeness of mutants as a proxy for real faults (i.e., performance

correlation).

The first fault property we investigated is the level of coupling between real faults

and mutants. In order to determine the level of coupling for real faults to mutation op-

erators, we utilize Just et al.’s previous work [158], which classified the 357 real faults

from the Defects4J dataset into four main coupling levels: (i) those coupled with mutants

(denoted in the study using the keyword “Couple”), (ii) those requiring stronger mutation

operators (denoted as “StrongerOP”), (iii) those requiring new mutation operators (de-

noted as “newOP”), and (iv) and those not coupled with mutants (denoted as “Limitation”)

Formally speaking, a real fault (i.e., a complex fault) is coupled with a set of mutants(i.e.,

simple faults) if a test case that detects all the mutants also detects the real fault [158].

186

We contacted the authors to obtain this classification scheme, which includes 262 real

faults coupled to mutants, 25 real faults requiring stronger mutation operators, seven

real faults requiring new mutation operators, and 63 real faults not coupled to mutants.

In order to examine the impact that fault coupling has on performance, pruning our ini-

tial dataset from the previous two research questions, we calculated APFD(c) values for

each coupling level of real faults and for all mutants considered in RQ2 for each subject

program. In order to examine the correlation between these APFD(c) values, we again

utilize Kendall’s τb coefficient.

The second fault property we examined is themutation operator type. Intuitively, this

investigation should help shed light on which mutation operators are more representative

of real faults in the context of TCP performance. We classified mutation faults based

on their corresponding operators, that is, the mutation faults that are generated by the

same mutation operator are classified into the same group. We consider the 15 built-in

operators in PIT [239], and for each subject program classified all mutant versions into

groups according to these operators. For each subject program and operator type, we

then randomly sampled from these groups until we had a set of faults corresponding to

the number of real faults existent in each subject program respectively. We then repeat

this process 100 times. If there are not enough mutants to create 100 groups, we repeat

this process until we exhaust the mutants. In the end, for each subject program, we

derive 100 mutant groups for each type of operator (given enough mutants), with each

group containing the same number of mutants (all of the same operator type) as real-

faults for the subject. To understand the impact that different types of mutation operators

have on the performance of TCP techniques, we calculated the APFD(c) values based

on the new groups of mutants, and then used the Kendall τb coefficient to understand the

correlation between the APFD(c) values calculated in terms of real faults andmutants. We

also explored the effects of mutant locations, however, we found no significant trends or

correlations. Thus, we forgo discussion of these results in this paper and point interested

readers to our attached appendix.

187

Table 6.3: Average APFD & APFDc values for all eight TCP techniques, for both real, mutation
fault and subsuming mutation fault detection, across all subject programs. Additionally, the group-
ing results for the Tukey HSD test are shown in capitalized letters (e.g., AB). S.Mutants refers to
subsuming mutants.

Faults TCPcg−tot TCPcg−add TCPstr TCPtopic TCPtotal TCPadd TCPart TCPsearch

APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc
0.594 0.480 0.597 0.591 0.696 0.594 0.7 0.635 0.61 0.419 0.583 0.454 0.657 0.677 0.6 0.556Real A BC A ABC A ABC A AB A C A C A A A ABC
0.743 0.598 0.818 0.835 0.834 0.788 0.832 0.802 0.757 0.549 0.897 0.829 0.8 0.841 0.784 0.725Mutant B BC AB A AB AB AB A B C A A AB A B ABC
0.561 0.407 0.612 0.639 0.620 0.572 0.612 0.570 0.534 0.305 0.664 0.565 0.622 0.671 0.578 0.508S.Mutant AB BC AB A AB AB AB AB B C A AB AB A AB ABC

6.2.4 Experiment Tools and Hardware

6.2.4.1 Mutation Analysis

We applied PIT [239] on the latest fixed (i.e., non-faulty) program version across the five

subjects to perform mutation analysis. PIT is a mutation testing system, which is able to

generate mutants for Java programs and run JUnit test cases automatically on the mutant

versions to obtain a set of killed/survived test cases and coverage information.

6.2.4.2 Implementation of TCP Techniques

We reimplemented all studied TCPs in accordance with the technical descriptions in their

corresponding papers (see Sec. 6.1). Three of the authors, and an external expert

on TCP, carefully reviewed the source code, ensuring the reimplementation is reliable.

To collect coverage information, we used the ASM bytecode manipulation and analysis

toolset [34]. In our empirical study, we chose to use statement-level coverage informa-

tion, which produces statements covered by each test method, as this allows for optimal

performance of TCP techniques [193]. Furthermore, we utilize JDT [143] to extract tex-

tual information for each test method, which is used by string-based and topic-based ap-

proaches. Specifically for the topic-based approach, we use Mallet [202] to build an LDA

topic model [177] for each test case, after pre-processing the textual information (e.g.,

splitting, removing stop words and stemming). Following previous research [193], we use

WALA [270] to build RTA call graphs [118] for each test method and traverse each call

graph to obtain its static coverage in order to implement the TCPcg techniques.

188

6.2.4.3 Hardware

The experiments were carried on eight servers with 16, 3.3 GHz Intel(R) Xeon(R) E5-4627

CPUs, and 512 GB RAM, and one server with eight Intel X5672 CPUs and 192 GB RAM.

6.3 Results

In this section, we describe the results of our empirical study as they relate to the proposed

research questions. Additionally, we provide an attached appendix including additional

results and figures. We provide a detailed online appendix with a complete dataset of our

study results [11].

6.3.1 RQ1: TCP Effectiveness on Real Faults

The values of the APFD(c) metrics for real faults are reported at the top of Table 6.3. From

these experimental results we make the following observations. First, for real faults, all

techniques tend to perform better when measured by APFD as compared to APFDc. This

is not surprising, and it is due to the incorporation of execution cost. For some techniques,

in particular TCPtotal and TCPcg−tot, the differences between APFD and APFDc are com-

paratively larger. This observation is most likely due to the fact that these techniques

always prioritize test cases with higher coverage first, leading to longer execution costs

for the top test cases. Thus they have comparatively lower APFDc values, compared to

APFD values.

Second, somewhat surprisingly, the static TCP techniques perform better overall than

dynamic TCP techniques for both metrics. TCPtopic performs best in terms of APFD

(with a value of 0.700) and overall static techniques outperform dynamic ones (0.646 avg

vs. 0.613 avg respectively). Whereas for APFDc, TCPart performs best (with a value

of 0.677), static approaches still outperform dynamic ones (0.575 avg vs. 0.526 avg

respectively). When considering APFD, this finding is of particular interest as it contradicts

prior studies that examined similar techniques [193, 192, 133] in the context of mutation

189

Table 6.4: Results of the ANOVA analysis and the Kendall τb Coefficient for the overall APFD(c)
values shown in Table 6.3.

Faults ANOVA p-value τb

APFD APFDc APFD APFDc
Real 0.011 3.22e-4 - -
Mutant 8.02e-4 3.77e-5 0.143 0.571
S.Mutant 0.011 1.38e-4 -0.071 0.643

Table 6.5: Results for the Kendall τb Rank Correlation Coefficient between APFD(c) values for
TCP techniques on detecting mutation faults and detecting each type of real faults described in
Section 6.2.3.3.

Real Faults Chart Lang Math Time Closure Mean
APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc

Couple 0.429 0.786 -0.071 0.286 0.5 0.429 -0.143 0 0.714 0.714 0.2858 0.443
Limitation -0.214 0.214 -0.214 0.143 0 0.286 -0.071 0.143 0.5 0.286 0.0002 0.2144
StrongerOP 0.214 0.857 0.182 0.327 0 0.357 -0.286 0.5 0.714 0.571 0.1648 0.5224
NewOP 0.109 0.286 - - -0.143 0.286 - - 0.571 0.571 0.179 0.381

faults, which generally conclude that TCPadd performs best. This suggests that in general,

past mutation-based results may not be indicative of techniques’ practical performance

on real faults.

Third, the TCPadd technique does not outperform the TCPtot strategy, again contra-

dicting findings from past studies where the TCPadd has been shown to perform best

overall [193, 249, 92]. Fourth, the results of the Tukey HSD test suggest that for APFD

the performance of the TCP programs do not vary in a statistically significant manner.

However, for APFDc, we found statistically significant differences across techniques for

statistical tests. However, it should be noted that the results of these tests are derived

from a smaller dataset as compared to the traditional method of using thousands of mu-

tation faults, due to the number of faults included in Defects4J.

6.3.2 RQ2: Representativeness of Mutants

The values of the APFD(c) metrics for mutants across the different TCP techniques are

also shown in Table 6.3. From this data, we can make several notable observations.

First, the APFD and APFDc metrics calculated using the full mutant set generally tend to

overestimate performance compared to real faults. This finding is relevant, as it implies

that mutation-based evaluations measuring the performance of TCP techniques that do

190

not control for subsumed and trivial mutants tend to overestimate real-world applicability

of these techniques. Conversely, there is a slight underestimation for the APFD(c) values

calculated using the subsuming mutant set when compared to real faults. Moreover, as

stated in the results of RQ1, the studied TCP techniques perform differently across dif-

ferent fault sets, with the relative performance of both the full mutant set and subsumed

mutant set differing from relative performance on real faults. This is a significant finding

as it suggests that, according to results for our set of five subject programs, a TCP ap-

proach that performs well according to mutation analysis may not exhibit the same

performance on a set of real faults for the same program(s). This suggests that

mutation-based analyses comparing TCP techniques against each other on the same set

of subjects may not generalize on real faults. As we will discuss later, this points to the

need for careful selection of mutants when performing a mutation-based evaluation of

TCP techniques in order to ensure that the results obtained also hold for real faults. In

addition, removing subsumed mutants maybe good for practice, otherwise, performance

will be greatly overestimated.

While the absolute performance in terms of APFD and APFDc may not be similar

when comparing performance on mutants to performance on real faults, it is possible

that that performance is positively correlated between the two fault sets. That is, better

performance on mutation-based faults for TCP techniques, may generally point towards

better performance in terms of real faults. To measure this, we examine the Kendall τb

correlation coefficient across the results from the two types of faults (shown in Table 6.4).

Note that two rankings are considered as independent to one another when τb is closer

to zero. Our results indicate a very weak positive correlation between mutants and real

faults when examining APFD (τb=0.143 for all-killed mutants and for τb=-0.071 subsuming

mutants) and a medium to strong positive correlation when considering APFDc (τb=0.571

for all-killed mutants and for τb=0.643 subsuming mutants). Removing subsumed mu-

tants does not impact the correlation results. This observation implies that, in general,

a mutation-based TCP performance evaluation carried out in terms of APFDc will more

191

Couple

0.4

0.6

0.8

Limitation StrongerOP NewOP

APFD APFDc
0.2

Figure 6.1: APFD(c) values for TCP techniques in terms of detecting different types of real faults.

strongly correlate to performance in terms of APFDc on real faults. However, when rely-

ing on a mutation-analysis based APFD evaluation, as many previous studies do, there is

no guarantee that the results will correlate to similar levels of performance on real faults.

However, as we illustrate in the course of answering RQ3, this correlation tends to vary

across both the studied techniques and mutation operators.

6.3.3 RQ3: Effects of Fault Properties

In this subsection we investigate the effect that different fault properties have on the per-

formance of TCP techniques, and on the relationship between mutants and real faults. As

stated earlier, we discuss results for real faults in terms of different coupling levels, and

mutation faults in terms of operators. In the context of RQ3, we keep all mutants for anal-

ysis instead of subsuming mutants, since the size of subsuming mutants is quite small,

specially when grouping them based on mutation operators. To make sure the statistical

reliability and diversity in terms of mutant types, we show the results for all mutants in this

paper. Interested readers could find the results for subsuming mutants in our attached

appendix.

6.3.3.1 Effects of Coupling Between Mutants and Real Faults

To investigate the effect that coupling has on performance of TCP across real-faults we

consider four different fault types discussed in Section 6.2.3.3. The performance results

192

for the APFD(c) metrics broken down by coupling level are illustrated in Figure 6.1. The

correlation results for APFD(c) across subjects are given in Table 6.5.

As Figure 6.1 shows, TCP techniques perform differently in terms of detecting different

types (e.g., coupling levels) of real faults. This result yields a few notable observations.

First, TCP techniques tend to perform best (in terms of APFD and APFDc values) on real

faults that are classified as needing stronger operators to be properly represented by mu-

tants. This finding is encouraging, as it highlights that the studied approaches are capable

of prioritization schemes that effectively uncover faults which are not closely coupled to

mutants. When examining the correlation results, we find that the APFD τb coefficient

values of coupled real faults are, unsurprisingly, substantially higher than for other types

of real faults. This implies that TCP performance on real faults, which are more tightly

coupled to mutants, is more strongly correlated with performance on mutation faults in

TCP evaluations. However, for APFDc we find that real faults requiring stronger opera-

tors tend to exhibit the highest correlation. Finally, as Table 6.5 shows, the correlation

results vary across different subject programs. For instance, on one hand, the τb values

for Closure are quite large across all levels of coupling, implying that TCP performance

on mutants is more indicative of performance on real faults for this particular subject. On

the other hand, the τb values for Lang are much closer to zero.

6.3.3.2 Effect of Different Mutation Operators

The performance distributions for the APFD(c) metrics across different operators are de-

picted as box plots in Figure 6.3. The correlation results across operators between the

performance of mutants and real faults are shown in Table 6.6. The observations that can

be made from this data help further explain the results of RQ2. The performance results

illustrate that the different TCP techniques tend to exhibit slight performance variances

across different types of mutation operators, with the the Switch and VoidMethodCall oper-

ators trending toward the positive and negative extremes respectively. This result implies

that, even if a researcher is performing only amutation-based analysis, the set of mutation

193

Table 6.6: Results for the Kendall τb Rank Correlation Coefficient between APFD(c) values for
TCP techniques on detecting real faults and detecting each type of mutation faults.

Mutation Faults Chart Lang Math Time Closure Mean
APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc

NegateConditionals 0.357 0.857 -0.143 0.143 0.429 0.571 -0.214 0.286 0.643 0.643 0.214 0.500
RemoveConditional 0.5 0.857 -0.143 0.143 0.429 0.571 -0.214 0.286 0.643 0.643 0.243 0.500
ConstructorCall -0.143 0.714 0 0.286 0.5 0.714 -0.214 0.071 0.714 0.5 0.171 0.457

NonVoidMethodCall 0.214 0.786 0 0.286 0.357 0.5 -0.214 0.286 0.714 0.5 0.214 0.471
Math 0.286 0.714 -0.286 0.286 0.286 0.5 -0.071 -0.071 0.786 0.643 0.200 0.414

MemberVariable 0.214 0.929 -0.786 0.357 0.429 0.5 0.286 0.357 0.5 0.357 0.129 0.500
InlineConstant 0.286 0.929 -0.143 0.286 0.429 0.429 0 0.071 0.786 0.571 0.272 0.456
Increments 0.214 0.714 -0.214 0.143 0.286 0.571 0 0 0.786 0.714 0.214 0.428

ArgumentPropagation 0.143 0.857 0 0.214 0.357 0.286 -0.429 0.286 0.643 0.643 0.143 0.457
ConditionalsBoundary 0.357 0.786 -0.071 0.286 0.429 0.643 0.071 0.214 0.714 0.571 0.300 0.500

Switch 0.214 0.714 -0.214 -0.071 0.429 0.357 -0.214 0.214 0.786 0.429 0.200 0.329
VoidMethodCall -0.143 0.714 -0.214 0.071 0.214 0.571 -0.357 0.357 0.857 0.643 0.071 0.471
InvertNegs 0.357 0.857 0.143 0.071 0.143 0.5 -0.214 0 0.714 0.714 0.229 0.428
ReturnVals 0.357 0.857 -0.429 0.357 0.357 0.714 -0.214 0.286 0.786 0.571 0.171 0.557

RemoveIncrements 0.214 0.786 -0.143 0.071 0.429 0.429 0.143 0.071 0.714 0.714 0.271 0.414

- currentPropertyNames = implicitProto.getOwnPropertyNames();
+ if (implicitProto == null) (
+ currentPropertyNames = ImmutableSet.of();
+ }
+ else {
+ currentPropertyNames = implicitProto.getOwnpropertyNames();
+ }
	 (a) Closure-2 Bug Fix.

- System.arraycopy(array2, 0, joinedArray, array2.length, array2.length)
+ try {
+ System.arraycopy(array2, 0, joinedArray, array2.length, array2.length)
+ } catch (ArrayStoreException ase) {
+ ...
+ ...
+ throw ase; // No, so rethrow original
+ }
	 (b) Lang-37 Bug Fix.

Figure 6.2: Examples of bug fixing changes.

operators selected can cause variations in the results. More importantly, the correlation

results indicate that the degree to which performance on mutation faults correlates to per-

formance on real faults, in terms of APFD(c), varies dramatically across systems as a a

whole, and across different operator types within a single subject. For instance, when

examining APFD values for specific systems, we found that mutation-based performance

for both Closure and Math exhibits a strong positive correlation to performance on real

faults across nearly all mutation operators. At the same time, operators such as Con-

structorCall and VoidMethodCall exhibit a negative correlation within Chart, which tends

194

to have a weak positive correlation overall. Besides differences found in individual pro-

grams, overall the mutation-based APFDc metric is more strongly coupled to real faults

than APFD, corroborating RQ2 results.

Wewanted to further understand the variance between performance correlations across

different subject programs. Intuitively, our findings suggest that the characteristics of a

program may influence how representative mutation-analysis based TCP performance

would be in terms of real faults. Therefore, we examined some of the bug fixing com-

mits for a subject program that showed a strong correlation (Closure) and for a program

that showed negative correlation (Lang). When looking into the fixing commits of these

two subject programs, we found that Closure, being a compiler, trends heavily toward

complex control flows managed by conditionals, compared to Lang, which trends more

towards string and array manipulation. Two illustrative examples of bug fixes are shown in

Figure 6.2. The first example for Closure (i.e., Figure 6.2(a)) shows that developers fixed

this bug by simply modifying conditionals. In particular, the bug shown in Figure 6.2(a)

is exactly the same as one of the PIT mutation operators, i.e., the NonVoidMethodCall

mutator. Bug fixing in Lang mostly involved other more complex changes such as adding

exception handlers due to the nature of its domain (see Figure 6.2(b)). This investigation

suggests that TCP performance correlation between real faults and mutants is low when

it is not possible to seed mutants properly reflecting faults occurring in a given domain or

a program.

6.4 Threats to Validity

Threats to Internal Validity concern potentially confounding factors of the experiments

that might introduce observed effects. One such factor is represented by faults that were

seeded into the programs. We chose PIT to perform mutation analysis, which has differ-

ent types of mutation operators compared to other mutation tools, such as Major [199].

While PIT features many operators common across other tools, it is possible that different

195

APFD APFDc

NC RI

0.6

0.8

1.0

RC CC NVM ICMVM I AP CB S VMC IN RV

Figure 6.3: Average APFD(c) values across different mutation operators referenced as: NC =
NegateConditional, RC = RemoveConditional, CC = ConstructorCall, NVM = NonVoidMethodCall,
M = Math, MV = MemberVariable, IC = InlineConstant, I = Increments, AP = ArgumentPropaga-
tion, CB = ConditionalsBoundary, S = Switch, VMC = VoidMethodCall, IN = InvertNegs, RV =
ReturnVals, and RI = RemoveIncrements.

mutation tools might have led to different observations. We leave exploration of additional

tools as future work.

Internal validity threats also arise due to the assumptionsmade about the validity of the

coupling between mutation faults and real faults obtained from Just et. al.’s study [158].

This is because mutants seeded in the same code where the fault occurred may differ

from the real fault, hence leading to possible misclassifications. Future research could

further examine the affects of real fault-mutant coupling relationships to further mitigate

this threat.

Another potential confounding factor is the fact the studied test suites are written by

developers. However, these test suites have been shown by past work [158] to generally

be of high quality, exhibiting high coverage, mitigating this threat. Additionally, threats

may arise due to the difference between test-suites for real faults and test suites of the

mutation faults. This is because the mutation faults were seeded into the latest version

of the subject programs and in order to perform this study, we had to use the test suite

corresponding to the faulty/fixed versions for real faults. However, previous studies have

shown that the results of mutation-based TCP techniques tend to be similar across pro-

gram versions [192, 133], mitigating this threat.

Threats toConstruct Validity concern the relation between experimental theory/constructs,

and potential effects on observed results. As explained in Section 6.2.3, in the context

of this study we re-implemented all of the TCP techniques following the approach de-

scriptions in their respective papers. Our re-implementations may differ slightly from the

original versions. However, we closely followed the methodology of the previous work,

196

and three authors and one external TCP expert reviewed the code to ensure a reliable

implementation. Executing the studied TCP techniques on all of the program versions

was time-consuming, totaling more than five months of computation time. To make the

GA-based technique tractable we reduced the maximum number of generations to 50.

However, the main goal of this study is to understand the differences between real and

mutation faults in TCP evaluation and search-based TCP shares the same settings on

both of faulty and fixed versions, thus, this detail should not effect the conclusions drawn

from our study.

Threats to External Validity. We limited our focus to eight TCP techniques, which require

only source code, test code, and coverage information to perform prioritization. These

eight TCP techniques are well-understood and widely used/studied in recent research

work [193, 192], and since we aimed to understand how techniques differed from previ-

ous studies when applied to real faults, this is a suitable set of techniques to study. We

encourage researchers to extend this study to additional TCP approaches.

In order to provide a rigorous experimental procedure, we applied mutation analysis

to TCP techniques in particular experimental settings discussed in Sec. 6.2.2 and 6.2.3.

Thus, it is possible that these results may differ for different TCP evaluation methodolo-

gies. However, we chose the experimental methodology set forth in this paper due to the

fact that it has been widely used in previous studies [124, 178, 192, 193, 206, 305] and is

likely to be used in the future.

We use the Defects4J dataset to understand the effectiveness of TCP techniques

in terms of real-fault detection. It is quite possible that there are different types of faults

(varying in complexity) in other subject programs written in other program languages com-

pared to those in Defects4J. However, Defect4J is the largest and most reliable database

of real faults publicly available, containing 357 faults extracted from real-world software

systems and is commonly used in previous research work [157, 254, 158].

We utilize Pit [239] and hence our results are representative of a certain set of mutants.

While Pit utilizes many of the same standard operators as other tools, this study could

197

be expanded in the future to examine additional mutation testing frameworks. It is also

possible that the larger number of mutant versions considered in our study may impact

the results of analysis. However, to mitigate this threat, we fixed the number of mutant

program versions to analyze whether the mutation faults are representative of real faults.

6.5 Lessons Learned

In this section we summarize the pertinent findings of our study into discrete learned

lessons and discuss their potential impact on future work in the TCP area.

Lesson 1: Relative Performance of TCP techniques on mutants may not indicate similar

performance on real faults, depending on the subject program. Our study indicates that,

for the subject programs studied, the relative performance of TCP techniques (following

the popular methodology utilized in our experiments) is not similar between mutants and

real faults. This indicates that a technique which outperformed competing techniques

under the experimental setting of mutation analysis may not achieve similar relative per-

formance on real faults. This illustrates a potential threat to validity for mutation-based as-

sessments of TCP approaches, impacting the generalizability of TCP performance com-

parisons to real program faults. This suggests that future work should proceed in two

directions. First, techniques for carefully selecting mutants should be pursued (see Les-

son 3). Second, there is a clear need for comprehensive datasets of real faults, such

as Defects4J, in order to properly evaluate TCP approaches. Therefore, researchers

could focus on developing reliable automated or semi-automated techniques to extract

and isolate real faults from existing open source software projects, which clearly calls for

a community-wide effort.

Lesson 2: The metrics utilized in mutation-based evaluations of TCP techniques im-

pact the representativeness of performance on real faults. We found that mutation-based

APFD values generally exhibit only a weak positive correlation to APFD values calcu-

lated in terms of real fault discovery, whereas for APFDc this correlation was medium to

198

strong. However, such results varied across subjects programs. This is important as it

signals that when considering the extremely popular APFD metric, mutation-based per-

formance of a particular TCP technique will generally be independent of its performance

on real faults. This means, that in most cases, one cannot use mutation-based APFD to

predict the practical performance of TCP technique on real faults, undermining the util-

ity of carrying out such a performance evaluation in the first place. While one could use

the more strongly correlated APFDc metric, researchers may not always want to include

execution cost in their performance evaluation, instead focusing solely on fault-detection

capabilities. While researchers should carefully consider this threat to validity, there are

exceptions to this general result as indicated by certain subjects. This brings up the third

and most important lesson learned.

Lesson 3: The types of mutation operators utilized for TCP performance evaluationsmust

be carefully selected or derived in order for the results to be representative of performance

on real faults. Our results indicate that correlations in TCP performance between mutants

and real faults vary both across subject programs and across different types of mutation

operators within a specific subject program. This suggests that different characteristics of

subject programs most likely play a role in determining the representativeness of certain

mutation operators for a particular subject (or domain). This is actually a positive outcome

when considering the future applicability of mutation testing to TCP evaluations, as it

shows that under the right circumstances mutation-based TCP can, in fact, be realistic.

However, in order to properly achieve the “correct circumstances” for mutation operators

to be applied, there is future research that needs to be done. This specifically illustrates

the need for the following interconnected research threads: (i) deriving, either manually

or automatically, fault models for specific software systems or domains; (ii) developing

tailored mutation operators based on such fault models; and (iii) seeding mutation faults

by relying on rigorous statistical methods according to observed distributions of faults.

If thoroughly pursued, we believe that research efforts directed toward these goals will

provide for future tools capable of generating mutants that are more representative of

199

real faults, not only in the context of TCP, but also in other areas of software testing.

6.6 Conclusion and Discussion

In this work we conducted the first empirical study investigating the extent to whichmutation-

based evaluations of TCP approaches are realistic. We examined the performance, in

terms of both the APFD and APFDc metrics, of eight different TCP approaches applied

to a dataset of 357 real world faults from the Defects4J dataset and a set of over 35k

mutants. Our results indicate that typical mutation-based evaluations of TCP techniques

tend to overestimate performance on real faults. Furthermore, for the APFDmetric in gen-

eral, performance on mutation faults is not representative of performance on real faults,

though this varied across the studied subject programs. Our results highlight the need

for future work in deriving mutation operators that are tailored toward specific subject pro-

grams or domains, allowing for mutation-based TCP evaluations to be more indicative of

performance on real faults.

6.7 Bibliographical Notes

The empirical study presented in this chapter is currently under review:

• Qi Luo, Kevin Moran, Massimiliano Di Penta, and Denys Poshyvanyk. “Assessing

Test Case Prioritization on Mutants and Real Faults”, under review.

200

Chapter 7

Conclusion

This dissertation presents a set of contributions to performance testing and test case pri-

oritization. It proposes three novel approaches to select specific input data for potentially

exposing performance problems in two scenarios: single-version scenario and evolution

scenario. In single-version scenario, the proposed approaches analyze the corresponding

execution traces of the specific input data to locate problematic methods that have unex-

pected worse performance (e.g., longer execution time). In evolution scenario, the novel

approach relies on change impact analysis to understand the impact of code changes

between versions on performance regressions for identifying the potential problematic

code changes. In addition, this dissertation conducts two empirical studies on a large set

of real-world Java programs to deeply understand the performances (e.g., effectiveness

and efficiency) of TCP techniques and investigate the correlation betweenmutation-based

analysis and real-fault-based analysis in the TCP domain. These key contributions are

summarized as follows:

• Input Sensitive Performance Testing. This dissertation proposes an adaptive,

feedback-directed rule-based learning system, namely FOREPOST, to analyze ex-

ecution traces for extracting human readable rules which express the relationship

between input data and software performance. These rules guide the selection of a

subset of input data for exposing performance bottlenecks. In addition, it proposes

201

an alternative framework of FOREPOST, called FOREPOSTRAND, which involves

some random input data in addition to the specific input data selected based on

rules to trigger performance bottlenecks. The intuition here is that random input

data is potentially helpful to enlarge the testing coverage to avoid skewing the re-

sults. Both of FOREPOST and FOREPOSTRAND are implemented and applied to

a medium-size commercial subject program and two open-source programs. Based

on our experimental results, FOREPOST is able to automatically find more bottle-

necks as compared to random testing. Some of the bottlenecks were confirmed

by experienced testers and developers. FOREPOSTRAND tends to identify the in-

put data with less computationally intensive execution time, but thanks to its partially

non-deterministic selection of input data it is able to detect more performance bottle-

necks as compare to FOREPOST. Furthermore, this dissertation proposes a novel

technique, called GA-Prof, which utilizes genetic algorithms to search the large in-

put data space for finding the specific ones that expose performance bottlenecks.

Our experimental results show that GA-Prof is able to find test cases triggering more

computationally intensive executions and detect more performance bottlenecks as

compared to FOREPOST.

Besides the performance testing in single-version scenario, this dissertation pro-

poses a novel approach, called PerfImpact, which utilizes genetic algorithms to ex-

pose performance regressions in the context of an evolving system. It first identifies

the specific input data to maximize the time differences between two software ver-

sions for exposing performance degradation. Then it uses change impact analysis

to investigate the impact of code changes between two versions on the performance

degradation for locating the problematic changes. PerfImapct was implemented on

five versions across two open-source subject programs. The experimental results

show that PerfImpact is able to accurately identify input data for exposing regres-

sions and effectively recommend the potential problematic code changes leading to

202

the performance regressions.

• Empirical Studies for Understanding the Performance of TCP Techniques and

the Correlation between Mutation-Based and Real-Fault-Based Analysis. To

the best of our knowledge, this dissertation conducts the first empirical study on

a large set of real-world Java programs to compare static and dynamic TCP tech-

niques at different test case granularities, in terms of effectiveness, efficiency, and

similarity. In addition, it examines the impact of mutation characteristics (e.g., size

and type of mutation faults) and software characteristics (i.e., size of software pro-

grams) on TCP evaluation. Finally, it analyzes the effectiveness of TCP techniques

in terms of APFD and APFDc in software evolution. The experimental results show

that call-graph-based TCP with additional strategy outperforms other TCP tech-

niques at test-class level and coverage-additional technique performs the best at

test method level. In general, the efficiency of TCP techniques at test-class level is

much better than the efficiency at test method level. These two observations imply

that test case granularities impact the performance of TCP techniques and suggest

that developers/researchers need to consider both of these two granularities in the

future. Program size has little effect when evaluating the relative performance of

TCP techniques on a given subject. Thus, when the performance of TCP tech-

niques are compared against each other on either large or small programs, similar

results can be expected. Moreover, the top test cases prioritized from different TCP

techniques share few common detected faults. However, TCP techniques share

similar performances across different types of mutation faults, implying that the de-

fault setting regarding mutation characteristics will not impact the conclusions in

TCP evaluation. Finally, the software evolution does not have clear impact on TCP

evaluation.

In general, TCP techniques are evaluated in terms of APFD and/or APFDc based on

the effectiveness of mutation fault detection. However, the evaluation on mutation

203

fault detection may not be realistic in practice. It is unclear how the TCP techniques

perform on detecting real faults and whether these mutation-fault-based results are

representative for real-fault-based results. Thus, this dissertation presents the first

empirical study to evaluate TCP techniques in terms of real fault detection based on

APFD(c) metrics, and compares the results to the mutation-based results for under-

standing the representative of mutation faults. The results show that mutation faults

are not representative for real faults in TCP domain, especially based on APFD val-

ues. The correlation between mutation and real faults are stronger based on APFDc

values, encouraging future researchers and developers to utilize APFDc instead of

APFD to evaluate TCP techniques. Finally, the representativeness varies across

different subject programs but keeps consistent within one subject program. This

observation suggests that different characteristics of subject programs most likely

play a key role in determining whether certain mutation operators will be represen-

tative of real faults for that particular subject (or domain). It is promising to extract

fault models from subject programs and seed mutants based on these models to

make the mutation faults more representative in TCP domain or even in software

testing area. This dissertation extracts several learned lessons (see in Chapter 1, 5,

and 6) from these findings and observations, which can guide future researchers to

design more realistic experiments and highlight potential ideas for future research.

204

Bibliography

[1] Agilefant, http://agilefant.com/.

[2] Apache derby, http://db.apache.org/derby/.

[3] Beyond compare, http://www.scootersoftware.com/.

[4] Dell dvd store, http://linux.dell.com/dvdstore/.

[5] Functional testing, https://en.wikipedia.org/wiki/Functional_testing.

[6] Github https://github.com.

[7] Jgap, http://jgap.sourceforge.net/.

[8] Mysql, http://www.mysql.com/.

[9] Nonfunctional testing, https://en.wikipedia.org/wiki/Non-functional_

testing.

[10] Probekit, http://www.eclipse.org/tptp/platform/documents/probekit/

probekit.html.

[11] Qi luo dissertation online appendix, https://sites.google.com/email.wm.edu/

qi-dissertation/.

[12] Tomcat, http://tomcat.apache.org/.

205

[13] Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic review of search-based

testing for non-functional system properties. Inform. Softw. Tech., 51(6):957–976,

2009.

[14] Marcos Kawazoe Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds,

and Athicha Muthitacharoen. Performance debugging for distributed systems of

black boxes. In SOSP ’03, pages 74–89, 2003.

[15] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-

Walawege. A systematic review of the application and empirical investigation of

search-based test case generation. TSE, 36(6):742–762, 2010.

[16] Nadia Alshahwan and Mark Harman. Automated web application testing using

search based software engineering. In ASE ’11, pages 3–12, 2011.

[17] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. Establishing theoretical

minimal sets of mutants. In Proceedings of the 2014 IEEE International Conference

on Software Testing, Verification, and Validation, ICST ’14, pages 21–30, Wash-

ington, DC, USA, 2014. IEEE Computer Society.

[18] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Univer-

sity Press, 2008.

[19] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for test-

ing experiments? In Proceedings of the 27th International Conference on Software

Engineering, ICSE ’05, pages 402–411, New York, NY, USA, 2005. ACM.

[20] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for

testing experiments? In ICSE, pages 402–411, 2005.

[21] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is mutation an appropriate

tool for testing experiments? In 27th International Conference on Software Engi-

206

neering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, pages 402–411,

2005.

[22] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami Namin. Us-

ing mutation analysis for assessing and comparing testing coverage criteria. IEEE

Trans. Softw. Eng., 32(8):608–624, August 2006.

[23] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami Namin. Us-

ing mutation analysis for assessing and comparing testing coverage criteria. IEEE

Trans. Software Eng., 32(8):608–624, 2006.

[24] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Efficient

and precise dynamic impact analysis using execute-after sequences. In ICSE ’05,

pages 432–441.

[25] Md. Junaid Arafeen and Hyunsook Do. Test case prioritization using requirements

based clustering. In Proc. ICST, pages 312–321, 2013.

[26] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assess-

ing randomized algorithms in software engineering. STVR ’14, 24:219–250.

[27] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to

assess randomized algorithms in software engineering. In ICSE ’11, pages 1–10.

[28] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to

assess randomized algorithms in software engineering. In ICSE ’11, pages 1–10,

2011.

[29] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assess-

ing randomized algorithms in software engineering. STVR, 2012.

[30] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei

Zaharia. A view of cloud computing. Commun. ACM.

207

[31] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test generation for

effective fault localization. In ISSTA ’10, pages 49–60, 2010.

[32] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Practical fault localization

for dynamic web applications. In ICSE ’10, pages 49–60, 2010.

[33] Caroline Ashley. Application performance management market offers attractive

benefits to european service providers. The Yankee Group, August 2006.

[34] ASM. http://asm.ow2.org/.

[35] Alberto Avritzer, E de Souza e Silva, Rosa Maria Meri Leão, and Elaine J Weyuker.

Automated generation of test cases using a performability model. Software, IET,

5(2):113–119, 2011.

[36] Alberto Avritzer and Elaine J. Weyuker. Generating test suites for software load

testing. In ISSTA, pages 44–57, 1994.

[37] Alberto Avritzer and Elaine J.Weyuker. Deriving workloads for performance testing.

volume 26, pages 613–633, New York, NY, USA, June 1996. John Wiley & Sons,

Inc.

[38] Arthur Baars, Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil McMinn, Paolo

Tonella, and Tanja Vos. Symbolic search-based testing. In ASE ’11, pages 53–62,

2011.

[39] Linda Badri, Mourad Badri, and Daniel St-Yves. Supporting predictive change im-

pact analysis: A control call graph based technique. In APSEC ’05, pages 167–175.

[40] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Autonomic load-testing frame-

work. In Proceedings of the 8th ACM International Conference on Autonomic Com-

puting, ICAC ’11, pages 91–100, New York, NY, USA, 2011. ACM.

208

[41] Mohamad Bayan and João W. Cangussu. Automatic feedback, control-based,

stress and load testing. In Proceedings of the 2008 ACM Symposium on Applied

Computing, SAC ’08, pages 661–666, New York, NY, USA, 2008. ACM.

[42] Kent Beck. Test-Driven Development: By Example. The Addison-Wesley Signature

Series. Addison-Wesley, 2003.

[43] D. L. Bird and C. U. Munoz. Automatic generation of random self-checking test

cases. IBM Syst. J., 22:229–245, September 1983.

[44] Ken Birman, Gregory Chockler, and Robbert van Renesse. Toward a cloud com-

puting research agenda. SIGACT News’09.

[45] B.W. Boehm. Software engineering economics. TSE, SE-10(1):4–21, 1984.

[46] Joshua Branchaud, Suzette Person, and Neha Rungta. A change impact analysis

to characterize evolving program behaviors. In ICSM ’12, pages 109–118.

[47] Lionel C. Briand, Yvan Labiche, and Marwa Shousha. Stress testing real-time sys-

tems with genetic algorithms. In Proceedings of the 7th Annual Conference on Ge-

netic and Evolutionary Computation, GECCO ’05, pages 1021–1028, New York,

NY, USA, 2005. ACM.

[48] Lionel C Briand, Yvan Labiche, and Marwa Shousha. Stress testing real-time sys-

tems with genetic algorithms. In GECCO ’05, pages 1021–1028, 2005.

[49] Lubomír Bulej, Tomáš Kalibera, and Petr Tma. Repeated results analysis for mid-

dleware regression benchmarking. Perform. Eval., 60(1-4):345–358, 2005.

[50] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test genera-

tion for worst-case complexity. In ICSE ’09, pages 463–473, 2009.

[51] Benjamin Busjaeger and Tao Xie. Learning for test prioritization: An industrial case

study. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

209

on Foundations of Software Engineering, FSE 2016, pages 975–980, New York,

NY, USA, 2016. ACM.

[52] Yuhong Cai, John Grundy, and John Hosking. Synthesizing client load models for

performance engineering via web crawling. In ASE ’07, pages 353–362, 2007.

[53] Harold W Cain, Barton P Miller, and Brian JN Wylie. A callgraph-based search

strategy for automated performance diagnosis. In Euro-Par ’00, pages 108–122,

2000.

[54] A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. C. Sharp, and N. Smith. An em-

pirical study of the evolution of an agile-developed software system. In ICSE ’07,

pages 511–518.

[55] Cagatay Catal and Deepti Mishra. Test case prioritization: a systematic mapping

study. Software Quality Journal, 21(3):445–478, 2013.

[56] Ned Chapin, Joanne E. Hale, Khaled Md. Kham, Juan F. Ramil, and Wui-Gee Tan.

Types of software evolution and software maintenance. J. of Softw. Maint. and Evo.

R. P., 13(1):3–30, 2001.

[57] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. An

empirical study on mutation, statement and branch coverage fault revelation that

avoids the unreliable clean program assumption. In Proceedings of the 39th Inter-

national Conference on Software Engineering, ICSE ’17, pages 597–608, Piscat-

away, NJ, USA, 2017. IEEE Press.

[58] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. In Asian Computing

Science Conference, pages 320–329, 2004.

[59] Tim Chen, Leonid I Ananiev, and Alexander V Tikhonov. Keeping kernel perfor-

mance from regressions. In Linux Symposium, volume 1, pages 93–102, 2007.

210

[60] TSE HSUN Chen. Studying software quality using topic models. 2013.

[61] Xi Chen, Chin Pang Ho, Rasha Osman, Peter G. Harrison, and William J. Knotten-

belt. Understanding, modelling, and improving the performance of web applications

in multicore virtualised environments. In ICPE ’14, pages 197–207, 2014.

[62] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. Testtube: A system for

selective regression testing. In ICSE ’94, pages 211–220.

[63] Trishul M Chilimbi, Ben Liblit, Krishna Mehra, Aditya V Nori, and Kapil Vaswani.

Holmes: Effective statistical debugging via efficient path profiling. In ICSE ’09,

pages 34–44, 2009.

[64] Jacob Cohen. Statistical power analysis for the behavioral sciences. Academic

press, 2013.

[65] William W. Cohen. Fast effective rule induction. In Twelfth ICML, pages 115–123,

1995.

[66] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive profiling. In

PLDI ’12, pages 89–98, 2012.

[67] Wieger Cornelissen, Ad Klaassen, Aart Matsinger, and Gerhard van Wee. How to

make intuitive testing more systematic. IEEE Softw., 12(5):87–89, 1995.

[68] Jacek Czerwonka, Rajiv Das, Nachiappan Nagappan, Alex Tarvo, and Alex

Teterev. Crane: Failure prediction, change analysis and test prioritization in prac-

tice – experiences from windows. In Proceedings of the 2011 Fourth IEEE Interna-

tional Conference on Software Testing, Verification and Validation, ICST ’11, pages

357–366, 2011.

[69] Muriel Daran and Pascale Thévenod-Fosse. Software error analysis: A real case

study involving real faults and mutations. In Proceedings of the 1996 International

211

Symposium on Software Testing and Analysis, ISSTA 1996, San Diego, CA, USA,

January 8-10, 1996, pages 158–171, 1996.

[70] Concettina Del Grosso, G Antoniol, and Massimiliano Di Penta. An evolutionary

testing approach to detect buffer overflow. In ISSRE ’04.

[71] Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. Mining hot calling

contexts in small space. In PLDI ’11, pages 516–527, 2011.

[72] William Dickinson, David Leon, and Andy Podgurski. Finding failures by cluster

analysis of execution profiles. In ICSE, pages 339–348, 2001.

[73] Nicholas DiGiuseppe and James A Jones. Fault interaction and its repercussions.

In ICSM ’11, pages 3–12.

[74] Nima Dini, Allison Sullivan, Milos Gligoric, and Gregg Rothermel. The effect of test

suite type on regression test selection. In Software Reliability Engineering (ISSRE),

2016 IEEE 27th International Symposium on, pages 47–58. IEEE, 2016.

[75] Bogdan Dit, Evan Moritz, and Denys Poshyvanyk. A tracelab-based solution for

creating, conducting, and sharing feature location experiments. In Program Com-

prehension (ICPC), 2012 IEEE 20th International Conference on, pages 203–208,

2012.

[76] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature

location in source code: a taxonomy and survey. Journal of Software: Evolution

and Process, 25(1):53–95, 2013.

[77] Bogdan Dit, Meghan Revelle, and Denys Poshyvanyk. Integrating information re-

trieval, execution and link analysis algorithms to improve feature location in soft-

ware. Empirical Software Engineering, 18(2):277–309, 2013.

212

[78] Bogdan Dit, Michael Wagner, Shasha Wen, Weilin Wang, Mario Linares-Vásquez,

Denys Poshyvanyk, and Huzefa Kagdi. Impactminer: A tool for change impact

analysis. In ICSE ’14, pages 540–543.

[79] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. An empirical study of the effect

of time constraints on the cost-benefits of regression testing. In FSE, pages 71–82,

2008.

[80] H. Do and G. Rothermel. A controlled experiment assessing test case prioritization

techniques via mutation faults. In ICSM, pages 411–420, 2005.

[81] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments

of test case prioritization techniques. TSE, 32(9):733–752, 2006.

[82] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case prioritization in

a JUnit testing environment. In ISSRE, pages 113–124, 2004.

[83] Hyunsook Do and Gregg Rothermel. An empirical study of regression testing tech-

niques incorporating context and lifecycle factors and improved cost-benefit mod-

els. In Proc. FSE, pages 141–151, 2006.

[84] Guozhu Dong and James Bailey. Contrast Data Mining: Concepts, Algorithms, and

Applications. 1st edition, 2012.

[85] Dirk Draheim, John Grundy, John Hosking, Christof Lutteroth, and Gerald Weber.

Realistic load testing of web applications. In Conference on Software Maintenance

and Reengineering (CSMR’06), pages 11–pp. IEEE, 2006.

[86] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing test cases for regression

testing. In ISSTA, pages 102–112, 2000.

[87] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying test costs and

fault severities into test case prioritization. In ICSE, pages 329–338, 2001.

213

[88] Sebastian Elbaum and Madeline Hardojo. An empirical study of profiling strategies

for released software and their impact on testing activities. In ISSTA ’04, pages

65–75, 2004.

[89] Sebastian Elbaum, Praveen Kallakuri, Alexey Malishevsky, Gregg Rothermel, and

Satya Kanduri. Understanding the effects of changes on the cost-effectiveness

of regression testing techniques. Software testing, verification and reliability,

13(2):65–83, 2003.

[90] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. Incorporating vary-

ing test costs and fault severities into test case prioritization. In Proceedings of the

23rd International Conference on Software Engineering, ICSE ’01, pages 329–338,

Washington, DC, USA, 2001. IEEE Computer Society.

[91] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test

cases for regression testing. In ISSTA ’00, pages 102–112.

[92] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel. Test case prior-

itization: A family of empirical studies. Software Engineering, IEEE Transactions

on, 28(2):159–182, 2002.

[93] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G Malishevsky.

Selecting a cost-effective test case prioritization technique. Software Quality Jour-

nal, 12(3):185–210, 2004.

[94] Irene Finocchi Emilio Coppa, Camil Demetrescu. Input-sensitive profiling. TSE,

40(12):1185–1205, 2014.

[95] Michael G Epitropakis, Shin Yoo, Mark Harman, and Edmund K Burke. Empirical

evaluation of pareto efficient multi-objective regression test case prioritisation. In

Proceedings of the 2015 International Symposium on Software Testing and Analy-

sis, pages 234–245. ACM, 2015.

214

[96] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. Empirical

evaluation of pareto efficient multi-objective regression test case prioritisation. In

Proceedings of the 2015 International Symposium on Software Testing and Analy-

sis, ISSTA 2015, pages 234–245, New York, NY, USA, 2015. ACM.

[97] Laura Faulkner. Beyond the five-user assumption: Benefits of increased sample

sizes in usability testing. Behavior Research Methods, Instruments, & Computers,

35(3):379–383, 2003.

[98] King Foo, Zhen Ming Jiang, B. Adams, A.E. Hassan, Ying Zou, and P. Flora. Mining

performance regression testing repositories for automated performance analysis.

In QSIC ’10, pages 32–41.

[99] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Ying Zou, and

Parminder Flora. Mining performance regression testing repositories for automated

performance analysis. In Quality Software (QSIC), 2010 10th International Confer-

ence on, pages 32–41. IEEE, 2010.

[100] Gordon Fraser, Andrea Arcuri, and Phil McMinn. A memetic algorithm for whole

test suite generation. JSS, 2014.

[101] Sören Frey, Florian Fittkau, and Wilhelm Hasselbring. Search-based genetic opti-

mization for deployment and reconfiguration of software in the cloud. In ICSE ’13,

pages 512–521, 2013.

[102] Johannes Furnkranz and Gerhard Widmer. Incremental reduced error pruning. In

International Conference on Machine Learning, pages 70–77, 1994.

[103] Jean-Pierre Garbani. Market overview: The application performance management

market. Forrester Research, October 2008.

[104] David Gelperin and Bill Hetzel. The growth of software testing. Communications of

the ACM, 31(6):687–695, 1988.

215

[105] Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk. Integrated

impact analysis for managing software changes. In ICSE ’12, pages 430–440.

[106] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test se-

lection with dynamic file dependencies. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis, pages 211–222. ACM, 2015.

[107] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin

Alipour, and Darko Marinov. Comparing non-adequate test suites using coverage

criteria. In Proceedings of the 2013 International Symposium on Software Testing

and Analysis, ISSTA 2013, pages 302–313, New York, NY, USA, 2013. ACM.

[108] Milos Gligoric, Rupak Majumdar, Rohan Sharma, Lamyaa Eloussi, and Darko Mari-

nov. Regression test selection for distributed software histories. In CAV ’14, pages

293–309.

[109] Patrice Godefroid and Sarfraz Khurshid. Exploring very large state spaces using

genetic algorithms. STTT, 6(2):117–127, 2004.

[110] Google. Auto scaling on the google cloud platform.

https://cloud.google.com/resources/articles/auto-scaling-on-the-google-cloud-

platform.

[111] Rahul Gopinath, Carlos Jensen, and Alex Groce. Mutations: How close are they

to real faults? In Proceedings of the 2014 IEEE 25th International Symposium

on Software Reliability Engineering, ISSRE ’14, pages 189–200, Washington, DC,

USA, 2014. IEEE Computer Society.

[112] Scott Grant, James R. Cordy, and David Skillicorn. Automated concept location

using independent component analysis. In WCRE ’08, pages 138–142, 2008.

[113] Scott Grant, James R Cordy, and David Skillicorn. Automated concept location

using independent component analysis. In WCRE’08, pages 138–142, 2008.

216

[114] Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding performance prob-

lems with feedback-directed learning software testing. In Proceedings of the 34th

International Conference on Software Engineering, ICSE ’12, pages 156–166, Pis-

cataway, NJ, USA, 2012. IEEE Press.

[115] Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding performance prob-

lems with feedback-directed learning software testing. In ICSE ’12, pages 156–166,

2012.

[116] Mark Grechanik, Qi Luo, Denys Poshyvanyk, and Adam Porter. Enhancing rules

for cloud resource provisioning via learned software performance models. In Pro-

ceedings of the 7th ACM/SPEC on International Conference on Performance En-

gineering, ICPE ’16, pages 209–214, New York, NY, USA, 2016. ACM.

[117] The Yankee Group. Enterprise application management survey. The Yankee

Group, 2005.

[118] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph con-

struction in object-oriented languages. In Proceedings of the 12th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA ’97, pages 108–124, New York, NY, USA, 1997. ACM.

[119] Jiaping Gui, Stuart Mcilroy, Meiyappan Nagappan, and William GJ Halfond. Truth

in advertising: The hidden cost of mobile ads for software developers. 2015.

[120] Dick Hamlet. When only random testing will do. In Proceedings of the 1st Inter-

national Workshop on Random Testing, RT ’06, pages 1–9, New York, NY, USA,

2006. ACM.

[121] Richard Hamlet. Random testing. In Encyclopedia of Software Engineering, pages

970–978. Wiley, 1994.

217

[122] Richard Hamlet. Random testing. In Encyclopedia of Software Engineering, pages

970–978, 1994.

[123] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. Performance

debugging in the large via mining millions of stack traces. In ICSE ’12, pages 145–

155, 2012.

[124] Dan Hao, Lingming Zhang, Lu Zhang, Gregg Rothermel, and Hong Mei. A unified

test case prioritization approach. TOSEM, 10:1–31, 2014.

[125] Murali Haran, Alan Karr, Alessandro Orso, Adam Porter, and Ashish Sanil. Ap-

plying classification techniques to remotely-collected program execution data. In

ESEC/FSE-13, pages 146–155, 2005.

[126] Mark Harman. Search based software engineering for program comprehension. In

ICPC ’07, pages 3–13, 2007.

[127] Mark Harman, Yue Jia, andWilliamB Langdon. Strong higher ordermutation-based

test data generation. In FSE ’11, pages 212–222.

[128] Mark Harman, Kiran Lakhotia, Jeremy Singer, David RWhite, and Shin Yoo. Cloud

engineering is search based software engineering too. JSS, 86(9):2225–2241,

2013.

[129] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based software

engineering: Trends, techniques and applications. CSUR, 45(1):11:1–11:61, De-

cember 2012.

[130] Mark Harman and Phil McMinn. A theoretical and empirical study of search-based

testing: Local, global, and hybrid search. TSE, 36(2):226–247, March 2010.

[131] Christoph Heger, Jens Happe, and Roozbeh Farahbod. Automated root cause

isolation of performance regressions during software development. In ICPE ’13,

pages 27–38.

218

[132] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le Traon.

Bypassing the combinatorial explosion: Using similarity to generate and prioritize t-

wise test configurations for software product lines. IEEE Transactions on Software

Engineering, 40(7):650–670, July 2014.

[133] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.

Comparing white-box and black-box test prioritization. In Proceedings of the 38th

International Conference on Software Engineering, ICSE 2016, page to appear,

New York, NY, USA, 2016. ACM.

[134] John H Holland. Adaptation in natural and artificial systems: An introductory anal-

ysis with applications to biology, control, and artificial intelligence. 1975.

[135] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. Performance regres-

sion testing target prioritization via performance risk analysis. In ICSE 2014, pages

60–71.

[136] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and appli-

cations. Neural Netw., 13(4-5):411–430, 2000.

[137] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and

applications. Neural networks, 13(4):411–430, 2000.

[138] IEEE. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Com-

puter Glossaries. January 1991.

[139] Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Briand. Empirical investigation

of search algorithms for environment model-based testing of real-time embedded

software. In ISSTA ’12, pages 199–209.

[140] Rebecca Isaacs and Paul Barham. Performance analysis in loosely-coupled dis-

tributed systems. In In 7th CaberNet Radicals Workshop, 2002.

219

[141] Md Mahfuzul Islam, Alessandro Marchetto, Angelo Susi, and Giuseppe Scanniello.

A multi-objective technique to prioritize test cases based on latent semantic index-

ing. In 2012 16th European Conference on Software Maintenance and Reengi-

neering (CSMR), pages 21–30, 2012.

[142] Sadeka Islam, Kevin Lee, Alan Fekete, and Anna Liu. How a consumer can mea-

sure elasticity for cloud platforms. In ICPE ’12.

[143] JDT. http://www.eclipse.org/jdt/.

[144] Bo Jiang and W.K. Chan. Bypassing code coverage approximation limitations

via effective input-based randomized test case prioritization. In Proc. COMPSAC,

pages 190–199, 2013.

[145] Bo Jiang, Zhenyu Zhang, W. K. Chan, and T. H. Tse. Adaptive random test case

prioritization. In ASE, pages 257–266, 2009.

[146] Lingxiao Jiang and Zhendong Su. Profile-guided program simplification for effective

testing and analysis. In FSE ’08, pages 48–58, 2008.

[147] Zhen Ming Jiang, Ahmed E Hassan, Gilbert Hamann, and Parminder Flora. Auto-

mated performance analysis of load tests. In ICSM ’09, pages 125–134.

[148] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. Auto-

matic identification of load testing problems. In ICSM ’08, pages 307–316.

[149] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. Auto-

matic identification of load testing problems. In ICSM ’08, pages 307–316, 2008.

[150] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. Auto-

mated performance analysis of load tests. In ICSM, pages 125–134, 2009.

[151] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Under-

standing and detecting real-world performance bugs. PIDI ’12, pages 77–88, 2012.

220

[152] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Under-

standing and detecting real-world performance bugs. In Proceedings of the 33rd

ACM SIGPLAN conference on Programming Language Design and Implementa-

tion, pages 77–88, 2012.

[153] JMeter. https://jmeter.apache.org.

[154] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A randomized dy-

namic program analysis technique for detecting real deadlocks. SIGPLAN Not.,

44(6):110–120, 2009.

[155] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch me if you can: perfor-

mance bug detection in the wild. ACM SIGPLAN Notices, 46(10):155–170, 2011.

[156] JPetStore. http://sourceforge.net/projects/ibatisjpetstore.

[157] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing

faults to enable controlled testing studies for java programs. In Proceedings of

the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014,

pages 437–440, New York, NY, USA, 2014. ACM.

[158] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and

Gordon Fraser. Are mutants a valid substitute for real faults in software testing? In

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE 2014, pages 654–665, New York, NY, USA, 2014.

ACM.

[159] Rene Just, Gregory M. Kapfhammer, and Franz Schweiggert. Do redundant mu-

tants affect the effectiveness and efficiency of mutation analysis? In Proceedings of

the 2012 IEEE Fifth International Conference on Software Testing, Verification and

Validation, ICST ’12, pages 720–725, Washington, DC, USA, 2012. IEEEComputer

Society.

221

[160] T. Kalibera, L. Bulej, and P. Tuma. Automated detection of performance regres-

sions: the mono experience. In MASCOTS ’05, pages 183–190.

[161] Gary Kaminski, Paul Ammann, and Jeff Offutt. Improving logic-based testing. J.

Syst. Softw., 86(8):2002–2012, August 2013.

[162] Cem Kaner. What is a good test case? In Software Testing Analysis & Review

Conference (STAR) East, 2003.

[163] Gregory M Kapfhammer and Mary Lou Soffa. Using coverage effectiveness to

evaluate test suite prioritizations. In Proceedings of the 1st ACM international

workshop on Empirical assessment of software engineering languages and tech-

nologies: held in conjunction with the 22nd IEEE/ACM International Conference on

Automated Software Engineering (ASE) 2007, pages 19–20. ACM, 2007.

[164] Jussi Kasurinen, Ossi Taipale, and Kari Smolander. Test case selection and prior-

itization: Risk-based or design-based? In Proceedings of the 2010 ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement,

page 10. ACM, 2010.

[165] R Kavitha and N Sureshkumar. Test case prioritization for regression testing based

on severity of fault. International Journal on Computer Science and Engineering,

2(5):1462–1466, 2010.

[166] M. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–89, 1938.

[167] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93,

1938.

[168] Jung-Min Kim and Adam Porter. A history-based test prioritization technique for

regression testing in resource constrained environments. In ICSE ’02, pages 119–

129.

222

[169] Jung-Min Kim, Adam Porter, and Gregg Rothermel. An empirical study of regres-

sion test application frequency. In ICSE ’00, pages 126–135.

[170] Marinos Kintis, Mike Papadakis, and Nicos Malevris. Evaluating mutation testing al-

ternatives: A collateral experiment. In Software Engineering Conference (APSEC),

2010 17th Asia Pacific, pages 300–309. IEEE, 2010.

[171] B. Korel, G. Koutsogiannakis, and L. Tahat. Application of system models in re-

gression test suite prioritization. In ICSM, pages 247–256, 2008.

[172] B. Korel, L. H. Tahat, and M. Harman. Test prioritization using system models. In

Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International

Conference on, pages 559–568, Sept 2005.

[173] Bogdan Korel. Automated software test data generation. TSE, 16(8):870–879,

1990.

[174] Heiko Koziolek. Operational profiles for software reliability. In Seminar on Depend-

ability Engineering, Germany. Citeseer, 2005.

[175] Tilman Küstner, Josef Weidendorfer, and Tobias Weinzierl. Argument controlled

profiling. In Euro-Par ’09, pages 177–184.

[176] James Law and Gregg Rothermel. Whole program path-based dynamic impact

analysis. In ICSE ’03, pages 308–318.

[177] LDA. https://cran.r-project.org/web/packages/lda/.

[178] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and NadineMandran. Prioritizing

test cases with string distances. Automated Software Engineering, 19(1):65–95,

2012.

223

[179] Donghun Lee, Sang K. Cha, and Arthur H. Lee. A performance anomaly detection

and analysis framework for dbms development. IEEE Trans. on Knowl. and Data

Eng., 24(8), 2012.

[180] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and

Darko Marinov. An extensive study of static regression test selection in modern

software evolution. In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pages 583–594. ACM, 2016.

[181] Steffen Lehnert. A taxonomy for software change impact analysis. In IWPSE-EVOL

’11, pages 41–50.

[182] Bixin Li, Xiaobing Sun, and Hareton Leung. Combining concept lattice with call

graph for impact analysis. Adv. Eng. Softw., 53:1–13, 2012.

[183] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. A survey of code-based

change impact analysis techniques. Softw. Test., Verif. Reliab., 23(8):613–646,

2013.

[184] Z. Li, M. Harman, and R. Hierons. Search algorithms for regression test case pri-

oritisation. IEEE Trans. Software Eng., 33(4):225–237, 2007.

[185] Zheng Li, Mark Harman, and Robert M Hierons. Search algorithms for regression

test case prioritization. TSE, 33(4):225–237, 2007.

[186] Jingjing Liang, Sebastian Elbaum, and Greg Rothermel. Redefining prioritization:

Continuous prioritization for continuous integration. In Proceedings of the 40th In-

ternational Conference on Software Engineering, page to appear, 2018.

[187] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshy-

vanyk. How do developers test android applications? In Software Maintenance

and Evolution (ICSME), 2017 IEEE International Conference on, pages 613–622.

IEEE, 2017.

224

[188] Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys Poshyvanyk.

How developers detect and fix performance bottlenecks in android apps. In Pro-

ceedings of the 2015 IEEE International Conference on Software Maintenance and

Evolution (ICSME), ICSME ’15, pages 352–361,Washington, DC, USA, 2015. IEEE

Computer Society.

[189] Mario Linares-Vasquez, Christopher Vendome, Michele Tufano, and Denys Poshy-

vanyk. How developers micro-optimize android apps. Journal of Systems and Soft-

ware, 130:1 – 23, 2017.

[190] Xu Liu, Jianfeng Zhan, Kunlin Zhan, Weisong Shi, Lin Yuan, Dan Meng, and Lei

Wang. Automatic performance debugging of spmd-style parallel programs. JPDC,

71(7):925–937, 2011.

[191] Richard Lowry. Concepts and applications of inferential statistics. R. Lowry, 2014.

[192] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,

and Lu Zhang. How does regression test prioritization perform in real-world software

evolution? In In Proc. of the ACM/IEEE International Conference on Software

Engineering, ICSE’16, 2016.

[193] Qi Luo, Kevin Moran, and Denys Poshyvanyk. A large-scale empirical compari-

son of static and dynamic test case prioritization techniques. Proceeding of the

24th ACM SIGSOFT International Symposium on the Foundations of Software En-

gineering, 2016.

[194] Qi Luo, Kevin Moran, Lingming Zhang, and Denys Poshyvanyk. How do static and

dynamic test case prioritization techniques perform on modern software systems?

an extensive study on github projects. IEEE Transactions on Software Engineering

(TSE), page to appear, 2018.

225

[195] Qi Luo, Kevin Moran, Lingming Zhang, and Denys Poshyvanyk. Tse’17 online

appendix. http://www.cs.wm.edu/semeru/data/TSE17-TCPSTUDY/.

[196] Qi Luo, Aswathy Nair, Mark Grechanik, and Denys Poshyvanyk. Forepost: Find-

ing performance problems automatically with feedback-directed learning software

testing. Empirical Software Engineering, pages 1–51, 2016.

[197] Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Mining performance regression

inducing code changes in evolving software. In Proceedings of the 13th Interna-

tional Conference on Mining Software Repositories, MSR ’16, pages 25–36, New

York, NY, USA, 2016. ACM.

[198] Qi Luo, Denys Poshyvanyk, Aswathy Nair, and Mark Grechanik. Forepost: A tool

for detecting performance problems with feedback-driven learning software test-

ing. In Proceedings of the 38th International Conference on Software Engineering

Companion, ICSE ’16, pages 593–596, New York, NY, USA, 2016. ACM.

[199] Major. http://mutation-testing.org/.

[200] Haroon Malik, Bram Adams, and Ahmed E Hassan. Pinpointing the subsystems

responsible for the performance deviations in a load test. In Software Reliability

Engineering (ISSRE), 2010 IEEE 21st International Symposium on, pages 201–

210. IEEE, 2010.

[201] Haroon Malik, Hadi Hemmati, and Ahmed E Hassan. Automatic detection of perfor-

mance deviations in the load testing of large scale systems. In Proceedings of the

2013 International Conference on Software Engineering, pages 1012–1021. IEEE

Press, 2013.

[202] Mallet. http://mallet.cs.umass.edu/.

226

[203] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and J. Wegener. Input domain

reduction through irrelevant variable removal and its effect on local, global, and

hybrid search-based structural test data generation. TSE, 38(2):453–477, 2012.

[204] Phil McMinn. Search-based software test data generation: A survey: Research

articles. STVR, 14(2):105–156, June 2004.

[205] Phil McMinn. Search-based software testing: Past, present and future. In ICSTW

’11, pages 153–163, 2011.

[206] Hong Mei, Dan Hao, Lingming Zhang, Lu Zhang, Ji Zhou, and Gregg Rothermel. A

static approach to prioritizing junit test cases. IEEE Trans. Softw. Eng., 38(6):1258–

1275, November 2012.

[207] Atif Memon, Adithya Nagarajan, and Qing Xie. Automating regression testing for

evolving gui software. Journal of Software Maintenance and Evolution: Research

and Practice, 17(1):27–64, 2005.

[208] Atif Memon, Adam Porter, Cemal Yilmaz, Adithya Nagarajan, D Schmidt, and Bal-

achandran Natarajan. Skoll: Distributed continuous quality assurance. In ICSE ’04,

pages 459–468, 2004.

[209] Atif M Memon and Qing Xie. Empirical evaluation of the fault-detection effective-

ness of smoke regression test cases for gui-based software. In Software Mainte-

nance, 2004. Proceedings. 20th IEEE International Conference on, pages 8–17.

IEEE, 2004.

[210] Daniel A Menascé. Load testing, benchmarking, and application performance man-

agement for the web. In Int. CMG Conference, pages 271–282, 2002.

[211] Daniel AMenascé. Load testing of web sites. IEEE Internet Computing, 6(4):70–74,

2002.

227

[212] Haim Mendelson. Economies of scale in computing: Grosch’s law revisited. Com-

mun. ACM.

[213] Ningfang Mi, L. Cherkasova, K. Ozonat, J. Symons, and E. Smirni. Analysis of

application performance and its change via representative application signatures.

In NOMS ’08, pages 216–223.

[214] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino. Fast

approaches to scalable similarity-based test case prioritization. In Proceedings of

the 40th International Conference on Software Engineering, page to appear, 2018.

[215] Brian SMitchell and Spiros Mancoridis. Using heuristic search techniques to extract

design abstractions from source code. In GECCO ’02, pages 1375–1382, 2002.

[216] Melanie Mitchell. An Introduction to Genetic Algorithms. 1998.

[217] Ian Molyneaux. The Art of Application Performance Testing: Help for Programmers

and Quality Assurance. O’Reilly Media, Inc., 2009.

[218] Nagy Mostafa and Chandra Krintz. Tracking performance across software revi-

sions. In PPPJ ’09, pages 162–171.

[219] Thomas E. Murphy. Managing test data for maximum productivity. Technical report,

2008.

[220] John D. Musa. Operational profiles in software-reliability engineering. volume 10,

pages 14–32, Los Alamitos, CA, USA, March 1993. IEEE Computer Society Press.

[221] Glenford J. Myers. Art of Software Testing, volume 10. 1979.

[222] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney. Evalu-

ating the accuracy of java profilers. In PLDI ’10, pages 187–197, 2010.

[223] RB Nelson. Kendall tau metric. Encyclopedia of Mathematics, 2011.

228

[224] Cu D. Nguyen, Alessandro Marchetto, and Paolo Tonella. Test case prioritization

for audit testing of evolving web services using information retrieval techniques. In

Proc. ICWS, pages 636–643, 2011.

[225] Thanh H. D. Nguyen, Meiyappan Nagappan, Ahmed E. Hassan, Mohamed Nasser,

and Parminder Flora. An industrial case study of automatically identifying perfor-

mance regression-causes. In MSR ’14, pages 232–241.

[226] Thanh H.D. Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora. Automated detection of performance regressions

using statistical process control techniques. In ICPE ’12, pages 299–310.

[227] T.H.D. Nguyen, B. Adams, Zhen Ming Jiang, A.E. Hassan, M. Nasser, and P. Flora.

Automated verification of load tests using control charts. In APSEC ’11, pages 282–

289.

[228] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel: Detecting

and fixing performance problems that have non-intrusive fixes. ICSE, 2015.

[229] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and fixing perfor-

mance bugs. In MSR ’13, pages 237–246.

[230] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and fixing perfor-

mance bugs. In Proceedings of the Tenth International Workshop on Mining Soft-

ware Repositories, pages 237–246, 2013.

[231] Mark O’Keeffe andMel ÓCinnéide. Search-based softwaremaintenance. InCSMR

’06, pages 249–260. IEEE, 2006.

[232] PIT Operators. http://pitest.org/quickstart/mutators/.

[233] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys

Poshyvanyk, and Andrea De Lucia. How to effectively use topic models for software

229

engineering tasks? an approach based on genetic algorithms. In ICSE ’13, pages

522–531.

[234] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.

Threats to the validity of mutation-based test assessment. In Proceedings of the

25th International Symposium on Software Testing and Analysis, ISSTA 2016,

pages 354–365, New York, NY, USA, 2016. ACM.

[235] Mike Papadakis, Christopher Henard, and Yves Le Traon. Sampling program in-

puts with mutation analysis: Going beyond combinatorial interaction testing. In

Proceedings of the 2014 IEEE International Conference on Software Testing, Veri-

fication, and Validation, ICST ’14, pages 1–10, Washington, DC, USA, 2014. IEEE

Computer Society.

[236] Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain, Christoph Csallner, Mark

Grechanik, Kunal Taneja, Chen Fu, and Qing Xie. Carfast: Achieving higher state-

ment coverage faster. In Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, FSE ’12, pages 35:1–

35:11, New York, NY, USA, 2012. ACM.

[237] D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15:1053–1058, 1972.

[238] Simon Parsons. Independent component analysis: A tutorial introduction. Knowl.

Eng. Rev., 20(2):198–199, 2005.

[239] PIT. http://pitest.org/.

[240] Denys Poshyvanyk, Malcom Gethers, and Andrian Marcus. Concept location using

formal concept analysis and information retrieval. ACM Transactions on Software

Engineering and Methodology (TOSEM), 21(4):23, 2012.

230

[241] Denys Poshyvanyk and Andrian Marcus. Combining formal concept analysis with

information retrieval for concept location in source code. In Proceedings of 15th

IEEE International Conference on Program Comprehension(ICPC), pages 37–48.

IEEE, 2007.

[242] Michael Pradel and Thomas R Gross. Leveraging test generation and specification

mining for automated bug detection without false positives. In ICSE ’12, pages

288–298, 2012.

[243] Xiao Qu, Myra B Cohen, and Gregg Rothermel. Configuration-aware regression

testing: an empirical study of sampling and prioritization. InProceedings of the 2008

international symposium on Software testing and analysis, pages 75–86. ACM,

2008.

[244] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. Chi-

anti: A tool for change impact analysis of java programs. In OOPSLA ’04, pages

432–448.

[245] Google Report. http://google-engtools.blogspot.com/2011/06/testing-at-speed-

and-scale-of-google.html.

[246] Meghan Revelle, Bogdan Dit, and Denys Poshyvanyk. Using data fusion and web

mining to support feature location in software. In Program Comprehension (ICPC),

2010 IEEE 18th International Conference on, pages 14–23, 2010.

[247] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioritization: an

empirical study. In ICSM, pages 179–188, 1999.

[248] G. Rothermel, R. J. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for

regression testing. TSE, 27(10):929–948, 2001.

[249] G. Rothermel, R. J. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for

regression testing. IEEE Trans. Software Eng., 27(10):929–948, 2001.

231

[250] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selection

technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, 1997.

[251] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. An

information retrieval approach for regression test prioritization based on program

changes. In Proc. of the ACM/IEEE International Conference on Software Engi-

neering, ICSE’15, 2015.

[252] Carey Schwaber, Christopher Mines, and Lindsey Hogan. Performance-driven soft-

ware development: How it shops can more efficiently meet performance require-

ments. Forrester Research, February 2006.

[253] Pranab Kumar Sen. Estimates of the regression coefficient based on kendall’s tau.

Journal of the American Statistical Association, 63(324):1379–1389, 1968.

[254] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and

Andrea Arcuri. Do automatically generated unit tests find real faults? an empiri-

cal study of effectiveness and challenges (t). In Automated Software Engineering

(ASE), 2015 30th IEEE/ACM International Conference on, pages 201–211. IEEE,

2015.

[255] Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. Auto-

mated detection of performance regression using regression models on clustered

performance counters. In ICPE ’15.

[256] Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. Jolt: Lightweight dynamic

analysis and removal of object churn. In OOPSLA ’08, pages 127–142, 2008.

[257] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for nor-

mality (complete samples). Biometrika, 52(3/4):591–611, 1965.

[258] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating perfor-

mance bottleneck detection using search-based application profiling. In ISSTA ’15.

232

[259] Adam M Smith and Gregory M Kapfhammer. An empirical study of incorporating

cost into test suite reduction and prioritization. In Proceedings of the 2009 ACM

symposium on Applied Computing, pages 461–467. ACM, 2009.

[260] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in development envi-

ronment. In ISSTA, pages 97–106, 2002.

[261] Amitabh Srivastava and Jay Thiagarajan. Effectively prioritizing tests in develop-

ment environment. In Proceedings of the 2002 ACM SIGSOFT International Sym-

posium on Software Testing and Analysis, ISSTA ’02, pages 97–106, 2002.

[262] BM Subraya and SV Subrahmanya. Object driven performance testing of web ap-

plications. In Quality Software, 2000. Proceedings. First Asia-Pacific Conference

on, pages 17–26. IEEE, 2000.

[263] Mark D Syer, Zhen Ming Jiang, Meiyappan Nagappan, Ahmed E Hassan, Mo-

hamed Nasser, and Parminder Flora. Leveraging performance counters and exe-

cution logs to diagnose memory-related performance issues. In Software Mainte-

nance (ICSM), 2013 29th IEEE International Conference on, pages 110–119. IEEE,

2013.

[264] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton Jr. degrees

of separation: Multi-dimensional separation of concerns. In ICSE, pages 107–119,

1999.

[265] Tukey HSD test. https://en.wikipedia.org/wiki/Tukey

[266] Stephen W. Thomas, Hadi Hemmati, Ahmed E. Hassan, and Dorothea Blostein.

Static test case prioritization using topic models. EMSE, 19(1):182–212, 2014.

[267] Paolo Tonella, Paolo Avesani, and Angelo Susi. Using the case-based ranking

methodology for test case prioritization. In IEEE International Conference on Soft-

ware Maintenance, ICSM 2009, pages 123–133, 2006.

233

[268] Vipindeep Vangala, Jacek Czerwonka, and Phani Talluri. Test case comparison

and clustering using program profiles and static execution. In FSE ’09, pages 293–

294, 2009.

[269] Sujata Varun Kumar and Mohit Kumar. Test case prioritization using fault severity.

IJCST, 1(1), 2010.

[270] WALA. https://github.com/wala/WALA.

[271] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time aware test

suite prioritization. In ISSTA, pages 1–11, 2006.

[272] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S. Roos.

Timeaware test suite prioritization. In Proceedings of the 2006 International Sym-

posium on Software Testing and Analysis, ISSTA ’06, pages 1–12, New York, NY,

USA, 2006. ACM.

[273] Shuai Wang, David Buchmann, Shaukat Ali, Arnaud Gotlieb, Dipesh Pradhan, and

Marius Liaaen. Multi-objective test prioritization in software product line testing: an

industrial case study. In Proceedings of the 18th International Software Product

Line Conference-Volume 1, pages 32–41. ACM, 2014.

[274] Shuai Wang, David Buchmann, Shaukat Ali, Arnaud Gotlieb, Dipesh Pradhan, and

Marius Liaaen. Multi-objective test prioritization in software product line testing: An

industrial case study. In Proceedings of the 18th International Software Product

Line Conference - Volume 1, SPLC ’14, pages 32–41, New York, NY, USA, 2014.

ACM.

[275] Song Wang, Jaechang Nam, and Lin Tan. QTEP: quality-aware test case prioriti-

zation. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages

523–534, 2017.

234

[276] Joachim Wegener, Klaus Grimm, Matthias Grochtmann, Harmen Sthamer, and

Bryan Jones. Systematic testing of real-time systems. In EuroSTAR ’96, 1996.

[277] Joachim Wegener and Matthias Grochtmann. Verifying timing constraints of real-

time systems by means of evolutionary testing. Real-Time Systems, 15(3):275–

298, 1998.

[278] Joachim Wegener, Harmen Sthamer, Bryan F Jones, and David E Eyres. Testing

real-time systems using genetic algorithms. Software Quality Journal, 6(2):127–

135, 1997.

[279] WestleyWeimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Auto-

matically finding patches using genetic programming. In ICSE ’09, pages 364–374,

2009.

[280] Malcolm R. Westcott. Toward a contemporary psychology of intuition. A historical

and empirical inquiry. Holt, Rinehart and Winston, 1968.

[281] Elaine J. Weyuker and Filippos I. Vokolos. Experience with performance testing of

software systems: Issues, an approach, and case study. IEEE Trans. Softw. Eng.,

26(12):1147–1156, 2000.

[282] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin,

1(6):80–83, 1945.

[283] Jonathan Wildstrom, Peter Stone, Emmett Witchel, and Mike Dahlin. Machine

learning for on-line hardware reconfiguration. In IJCAI’07, pages 1113–1118, 2007.

[284] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, 2005.

[285] Xusheng Xiao, Shi Han, Dongmei Zhang, and Tao Xie. Context-sensitive delta

inference for identifying workload-dependent performance bottlenecks. In ISSTA

’13, pages 90–100, 2013.

235

[286] Dianxiang Xu and Junhua Ding. Prioritizing state-based aspect tests. In Proc. ICST,

pages 265–274, 2010.

[287] Guoqing Xu and Atanas Rountev. Precise memory leak detection for java software

using container profiling. In ICSE ’08, pages 151–160, 2008.

[288] Zhihong Xu, Myra B. Cohen, and Gregg Rothermel. Factors affecting the use of

genetic algorithms in test suite augmentation. In GECCO ’10, pages 1365–1372.

[289] Zhihong Xu, Myra B. Cohen, and Gregg Rothermel. Factors affecting the use of

genetic algorithms in test suite augmentation. In GECCO ’10, pages 1365–1372,

2010.

[290] Zhihong Xu, Yunho Kim, Moonzoo Kim, and Gregg Rothermel. A hybrid directed

test suite augmentation technique. In ISSRE ’11, pages 150–159.

[291] Dacong Yan, Guoqing Xu, and Atanas Rountev. Uncovering performance problems

in java applications with reference propagation profiling. In ICSE ’12, pages 134–

144, 2012.

[292] Cemal Yilmaz, Arvind S Krishna, Atif Memon, Adam Porter, Douglas C Schmidt,

Aniruddha Gokhale, and Balachandran Natarajan. Main effects screening: A dis-

tributed continuous quality assurance process for monitoring performance degra-

dation in evolving software systems. In ICSE ’05, pages 293–302.

[293] Shin Yoo and Mark Harman. Regression testing minimization, selection and prior-

itization: a survey. STVR, 22(2):67–120, 2012.

[294] Dongjiang You, Zhenyu Chen, Baowen Xu, Bin Luo, and Chen Zhang. An empirical

study on the effectiveness of time-aware test case prioritization techniques. In Pro-

ceedings of the 2011 ACM Symposium on Applied Computing, pages 1451–1456.

ACM, 2011.

236

[295] Tingting Yu, Xiao Qu, Mithun Acharya, and Gregg Rothermel. Oracle-based re-

gression test selection. In ICST ’13, pages 292–301.

[296] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. Simrt: An automated frame-

work to support regression testing for data races. In ICSE ’14, pages 48–59.

[297] Noel Yuhanna. Dbms selection: Look beyond basic functions. Forrester Research,

June 2009.

[298] Shahed Zaman. Empirical studies of performance bugs and performance analysis

approaches for software systems. In Master thesis, 2012.

[299] Shahed Zaman, Bram Adams, and Ahmed E Hassan. Security versus performance

bugs: a case study on firefox. In Proceedings of the 8th working conference on

mining software repositories, pages 93–102. ACM, 2011.

[300] Shahed Zaman, Bram Adams, and Ahmed E Hassan. A qualitative study on per-

formance bugs. In Mining Software Repositories (MSR), 2012 9th IEEE Working

Conference on, pages 199–208, 2012.

[301] Shahed Zaman, Bram Adams, and Ahmed E Hassan. A qualitative study on per-

formance bugs. In MSR ’12, pages 199–208, 2012.

[302] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic profiling. In PLDI ’12,

pages 67–76, 2012.

[303] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic profiling. ACM SIGPLAN

Notices, 47(6):67–76, 2012.

[304] Dongsong Zhang and Boonlit Adipat. Challenges, methodologies, and issues in the

usability testing of mobile applications. International Journal of Human-Computer

Interaction, 18(3):293–308, 2005.

237

[305] Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid. Operator-

based and random mutant selection: Better together. In Automated Software Engi-

neering (ASE), 2013 IEEE/ACM 28th International Conference on, pages 92–102.

IEEE, 2013.

[306] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. Bridg-

ing the gap between the total and additional test-case prioritization strategies. In

ICSE’13, pages 192–201.

[307] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. Localizing failure-inducing

program edits based on spectrum information. In Software Maintenance (ICSM),

2011 27th IEEE International Conference on, pages 23–32. IEEE, 2011.

[308] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. Faulttracer: a change impact

and regression fault analysis tool for evolving java programs. In FSE, page 40,

2012.

[309] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. Faulttracer: a spectrum-

based approach to localizing failure-inducing program edits. JSEP, 25(12):1357–

1383, 2013.

[310] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. Faster mutation testing

inspired by test prioritization and reduction. In Proceedings of the 2013 International

Symposium on Software Testing and Analysis, ISSTA 2013, pages 235–245, New

York, NY, USA, 2013. ACM.

[311] Lingming Zhang, Ji Zhou, Dan Hao, Lu Zhang, and Hong Mei. Prioritizing JUnit test

cases in absence of coverage information. In ICSM, pages 19–28, 2009.

[312] Pingyu Zhang, Sebastian Elbaum, and Matthew B Dwyer. Automatic generation of

load tests. In ASE ’11, pages 43–52, 2011.

238

[313] Pingyu Zhang, Sebastian G. Elbaum, and Matthew B. Dwyer. Automatic generation

of load tests. In ASE, pages 43–52, 2011.

[314] Sai Zhang and Michael D Ernst. Automated diagnosis of software configuration

errors. In ICSE ’13, pages 312–321, 2013.

239

