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ABSTRACT

Open source licensing determines how open source systems are reused, distributed,
and modified from a legal perspective. While it facilitates rapid development, it
can present di�culty for developers in understanding due to the legal language of
these licenses. Because of misunderstandings, systems can incorporate licensed
code in a way that violates the terms of the license. Such incompatibilities
between licensing can result in the inability to reuse a particular library without
either relicensing the system or redesigning the architecture of the system. Prior
e↵orts have predominantly focused on license identification or understanding the
underlying phenomena without reasoning about compatibility in a broad scale.

The work in this dissertation first investigates the rationale of developers and
identifies the areas that developers struggle with respect to free/open source
software licensing. First, we investigate the di↵usion of licenses and the prevalence
of license changes in a large scale empirical study of 16,221 Java systems. We
observed a clear lack of traceability and a lack of standardized licensing that led to
di�culties and confusion for developers trying to reuse source code. We further
investigated the di�culty by surveying the developers of the systems with license
changes to understand why they first adopted a license and then changed licenses.
Additionally, we performed an analysis on issue trackers and legal mailing lists to
extract licensing bugs. From these works, we identified key areas in which
developers struggled and needed support.

While developers need support to identify license incompatibilities and understand
both the cause and implications of the incompatibilities, we observed that
state-of-the-art license identification tools did not identify license exceptions. Since
these exceptions directly modify the license terms (either the permissions granted
by the license or the restrictions imposed by the license), we proposed an approach
to complement current license identification techniques in order to classify license
exceptions. The approach relies on supervised machine learners to classify the
licensing text to identify the particular license exceptions or the lack of a license
exception.

Subsequently, we built an infrastructure to assist developers with evaluating
license compliance warnings for their system. The infrastructure evaluates
compliance across the dependency tree of a system to ensure it is compliant with
all of the licenses of the dependencies. When an incompatibility is present, it notes
the specific library/libraries and the conflicting license(s) so that the developers
can investigate these compliance warnings, which would prevent distribution of
their software, in their system. We conduct a study on 121,094 open source
projects spanning 6 programming languages, and we demonstrate that the
infrastructure is able to identify license incompatibilities between these projects
and their dependencies.
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Chapter 1

Introduction

Software reuse allows for rapid development by leveraging existing components. These

components can be modified (i.e. derivative work) or incorporated into another system.

To protect the original authors, the code contains a license to describe under which condi-

tions the code can be modified, distributed, and utilized. However, software licenses each

contain di↵erent restrictions, which introduce the potential for incompatibilities. Without

a license, software would be subject to copyright laws, which would inhibit modifying and

redistributing the software. The license limits the scope of copyright under certain condi-

tions specified in the text of the license. In this dissertation, we focus on free/open source

licenses and how to support developer with the challenges that they face when reusing or

distributing free/open source software.

In this work, the term “free/open” refers software licenses under a free license and an

open source license. In order for a license to be considered free, it must satisfy the criteria

specified by the Free Software Foundation [44]. It is important to note that “free” is not

a matter of financial cost, but “is a matter of liberty” [44]. Similarly, open source licenses

meet the open source definition as defined by the Open Source Initiative [26]. In general,

these two definitions have significant overlap and almost all open source licenses also

satisfy the free software license criteria. It is the usage of these free/open source licenses

that determines whether a piece of software is free/open source, and not just whether the
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source code is available. For example, the source code may be available online in GitHub,

but it is still closed source if it does not include a license.

Although two licenses may be free/open source licenses, it does not guarantee that they

are compatible with each other. There are two type of free/open source licenses: permissive

and restrictive. A key di↵erence between these types of licenses are that restrictive licenses

require that any software using and distributing that code or binary to have the same

license (e.g., GPL-2.0 ). Otherwise, a developer would not be able to legally distribute

the software. Additionally, compliance can be made more di�cult, because the direction

of reuse matter. By direction, software licensed with GPL-3.0 can contain depend on

software licensed with Apache-2.0, but the opposite (i.e., Apache-2.0 software depending

on GPL-3.0 software) would not be allowed.

In addition to compliance, there are di↵erent ways of documenting the licensing of

software and the lack of standardization can also cause di�culty. For example, developers

can include the license text in the header of the source code of each file, but they may not

have a license file in the root directory. Alternatively, one project may place the license

in a README file, while another has its own LICENSE file. Furthermore, there can be

mismatches or inconsistencies between the licenses in the source code and the license files.

While there are initiatives, like SPDX, that are trying to address some of the problems,

there is limited support for developers with respect to automatically identifying potential

licensing issues that would prevent the distribution of their software.

Previous work has investigated license identification and the current state-of-the-art

has 96% precision. The approach was developed by German et al. [106] and utilizes

pattern-matching and critical terms to identify licenses. Other tools also exist [107]

[146], but Ninka currently is considered the most precise tool.

The problem of identifying the license of a binary has also been investigated by Di

Penta et al. [99], by utilizing Google Code Search to infer the license of byte-code. While

the approach presented promising results, Google Code Search no longer exists, and so the

approach is not currently feasible. However, it motivates the need to trace byte-code to

3



source code in order to extract licensing. While Davies et al. [98] focus on identifying the

version of java archives, their approach establishes provenance from byte-code by using

anchored class signatures. They addressed a key drawback of existing clone detection -

scalability.

Di Penta et al. [100] analyzed the revision history of six open source systems and

extracted license migration patterns. While the authors were unable to classify the mi-

grations into generalizable patterns, they were able to empirically demonstrate that the

systems experience changes in license type and license version. German et al. [104] ex-

plored cloned code fragments between Linux, and FreeBSD and OpenBSD to investigate

the licensing implications of the code fragment migrations. The authors observed that the

migrations occurred most prevalently in the movement toward a more restrictive license.

Manabe et al. [119] investigated license changes among FreeBSD, OpenBSD, Eclipse, and

ArgoUML and concluded that each system had a di↵erent change pattern. This research

demonstrates that licensing changes exist in large system and that while there are patterns,

they might be application specific.

The analysis of license incompatibilities has been briefly investigated in prior work.

German et al. [105] investigated how incompatibilities are handled by developers. They

constructed a model with the advantages and disadvantages of specific change patterns

to suggest when a license change is appropriate. German et al. [103] also investigated

license incompatibilities in the packages of Fedora Linux. They explored the consistency

between declared package licenses and the actual source licenses, and they were able to

identify confirmed incompatibilities between packages used as dependencies. These results

indicate that license compatibility is a problem in open source development and there is

a need for tools to support developers with license compliance.

Since the licensing of a project may change during evolution and maintenance, it is im-

portant to understand the reason for these changes. Combining the results of the previous

work, there can be hypothesized reasons for the changes, but it lacks empirical evidence

to make any sound claims. While reuse and dependencies are likely to impact license
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changes, it is important to understand in what way and to what extent. Our preliminary

work aimed at answering these questions and analyzing changes in licensing on a much

larger dataset (16,221 Java systems) [153] [152]. Prior work proves the presence of incom-

patibilities, especially due to dependencies. However, it relied upon explicit dependency

information as opposed to extracting the dependencies.

Our research will aid developers by automating the analysis of their system. The work

in this dissertation focuses on assisting developers with free/open source licenses and does

not consider closed source licenses. Our goal is two-fold: first, we want to automatically

audit the system and guarantee license compliance; second, we want to support developers

in fixing license incompatibilities. The approach needs to identify the correct licensing

of the source as well as understand the way in which the code is being utilized (e.g.,

dependency or derivative work). Subsequently, licenses must be analyzed in conjunction

with their use case to determine the validity of a violation. These license violations would

be presented to the developer listing the component and the conflicting license. These

steps allow developers to understand where and why a component is incompatible.

In summary, this dissertation makes the following research contributions:

• Empirical Studies. The first part of the dissertation was a set of empirical stud-

ies to uunderstand phenomena related to license usage and license changes as well

as the di�cult that developers experience with licensing. We identified prevalence

of licenses and the migration patterns on a large set of Java systems. Addition-

ally, the work surveyed practitioners to understanding the practitioners’ perspective,

which has widely been ignored from prior studies. We utilized approaches for large

scale mining of software repositories as well as qualitative analysis based on formal

grounded theory [95] principles. These studies show that developers experience a

diverse set of problems with licensing. Two key insights were a general lack of un-

derstandability of the implications of various licenses (even simpler licenses) as well

as the impact of external factors, such as commercial partners.
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• Catalog of Licensing Bugs. From the empirical studies, it is apparent that

developers experience many problems with licensing and struggle understanding the

litigious nature of these licenses. We investigated issue trackers and legal mailing

lists to understand these problems that may prevent distributing software or lead

to di�culty for developers when understanding software licensing. We performed a

formal open coding that resulted in a catalog of 7 categories with 21 sub-categories.

This work demonstrates that developers lack the necessary support when trying to

understanding software licensing and when trying to determine if they are reusing

software properly.

• Improving License Identification. While current state-of-the-art tools, like

ninka [106], have achieved a high accuracy for license identification, these exist-

ing approaches were not designed to identify the presence of a license exception.

We designed a machine learning based approach to classify license exceptions or the

lack of exception (i.e., standard license) in order more accurately provide compliance

analysis. Additionally, our preliminary analysis of license exceptions that utilized a

broad heuristic search for license exception was able to identify new license excep-

tions that had not been previously listed among the known exceptions.

• License Compliance Infrastructure. To assist developers with software licens-

ing, we built an infrastructure to analyze license compatibility of a system. The

approach relies upon a compatibility matrix, which consists of pair-wise analysis of

compatibility between licenses, to generate warnings of potential license incompati-

bilities. The approach further analyzes the system to extract all of the dependencies

along the dependency tree. Such an analysis is critical for a compliance engine, since

a project needs to comply with all of the licenses of the reused software. Thus, it

is important to ensure that a project’s dependencies do not have a potential incom-

patibility as well, since the system would inherit those potential incompatibilities.

It then presents the developer a report of warnings with the components that are
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responsible for the potential incompatibility as well as their licenses so that the

developer can investigate further and remedy the potential licensing issues.

7



Chapter 2

Empirical Studies

In this chapter, we present a set of empirical studies conducted to understand phenomena

related to software licensing within evolving systems. We first are interested in the di↵usion

of free/open source licenses within a large dataset of Java projects. Additionally, we

investigate the extent to which these licenses change. While we can glean insights from

the empirical observations, the rationale behind choosing a particular license or changing

licenses can be influenced by many external factors. For example, the Apache Foundation

asserts that all contributions must be licensed under the Apache-2.0 license (although

they do allow some exceptions for “non-essential” code). Additionally, developers may

design their software system with the goal of commercial integration, leading to a more

permissive license (e.g., MIT license).

The empirical studies aim to identify the di�culty that developers face with respect to

free/open source licensing in order to guide researchers interested in assisting developers

with licensing issues. The empirical results demonstrate a lack of traceability of license

changes that could directly impact developers reusing existing code within their system.

Similarly, we identify that there is an inherent bias that developers have towards using

particular licenses. While it may be easy for a developer to relicense their own source

code in order to utilize an external dependency, this recommendation may conflict with a

personal bias and the developer may opt to change dependencies to achieve compliance.
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Finally, we observe that the litigious nature of the text of licenses are di�cult for develop-

ers. It is important for tools to contextualize license incompatibilities in such a way that

developers understand how they violated the terms of the license(s).

2.1 Free/Open Source Software License Usage and License

Changes

When developers (or organizations) decide to make a project available as open source,

they can license their code under one or many di↵erent existing licenses. The choice may

be dictated by the set of dependencies that the project has (e.g., what libraries it uses),

since those dependencies might have specific licensing constraints to those that reuse them.

For instance, if a project links (statically) some GPL code, then it must be released under

the same GPL version; failing to fulfill such a constraint could create a potential legal

risk. Also, as shown by Di Penta et al. [100], the choice of the licenses in a free/open

source project may have a massive impact on its success, as well as on projects using

it. For example—as it happened for the IPFilter project [29]—a highly restrictive license

may prevent others from redistributing the project (in the case of IPFilter, this caused

its exclusion from the OpenBSD distributions). An opposite case is the one of MySQL

connect drivers, originally released under GPL-2.0, whose license was modified with an

exception [127] to allow the driver’s inclusion in other software released under some open

source licenses, which would otherwise be incompatible with the GPL (e.g., the original

Apache license). In summary, the choice of the license—or even a decision to change an

existing license—is a crucial crossroad point in the context of software evolution of every

free/open source project.

In order to encourage developers to think about licensing issues early in the devel-

opment process, some forges (e.g., GitHub) have introduced mechanisms such as the

possibility of picking the project license at the time the repository is created. Also, there

are some web sites (e.g., http://choosealicense.com) helping developers to choose a li-
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cense. Furthermore, there are numerous research e↵orts aimed at supporting developers in

classifying source code licenses [107, 106] and identifying licensing incompatibilities [103].

Even initiatives such as the Software Package Data Exchange (SPDX) [36] have been

aimed at proposing a formal model to document the license of a system. However, despite

of the e↵ort put by the open source community, researchers, and independent companies,

it turns out that developers usually do not have a clear idea on the exact consequences of

licensing (or not) their code using a specific license, or they are unsure (for example, on

how to re-distribute code licensed with a dual license among the other issues [153]).

This work reports the results of a large empirical study aimed at quantitatively and

qualitatively investigating when and why licenses change in open source projects, and

to what extent is it possible to establish traceability links between licensing related-

discussions and changes. First, we perform a quantitative analysis conducted on 16,221

Java projects hosted on GitHub. To conduct this study, we first mined the entire change

history of the projects, extracting the license name (e.g.,GPL or Apache) and version

(e.g.,v1, v2), when applicable, from each of the 4,665,611 files involved in a total of

1,731,828 commits. Starting from this data, we provide quantitative evidence on (i) the

di↵usion of licenses in free/open source systems, (ii) the most common license-change pat-

terns, and (iii) the traceability between the license changes to both the commit messages

and the issue tracker discussions. After that, following an open coding approach inspired

by grounded theory [95], we qualitatively analyze a sample of commit messages and issue

tracker discussions likely related to license changes. Such a qualitative analysis has been

performed on 1,160 projects written in seven di↵erent languages: 159 C, 91 C++, 78 C#,

324 Java, 166 Javascript, 147 Python, and 195 Ruby projects. The results of this analysis

provide a rationale on why developers adopt specific license(s), both for initial licensing

and for licensing changes.

Our findings below suggest that determining the appropriate license of a software

project is far from trivial and that a community’s usage and expectations can influence

developers when picking a license. We also observe that licensing expectations may be
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di↵erent based on the programming language. Although choosing a license is considered

important for developers, even from early releases of their projects, forges and third party-

tools provide little or no support to developers when performing licensing-related tasks,

e.g., picking a license, declaring the license of a project, changing license from a restrictive

one towards a more permissive one (or vice versa) and, importantly, keeping track of the

rationale for license changes.

Complete details of the design of the study can be found in our ICPC’15 and EMSE’17

publication [152, 149]

2.1.1 RQ1: What is the usage of di↵erent licenses in Java Systems from

GitHub?

Using the MARKOS code analyzer [90], we extracted the licensing of each file at commit-

level for each project. Fig. 2.1 depicts the percentage of licenses that were first introduced

into a project in the given year, which we refer to as relative license usage. We only

report the first occurrence of each license committed to any file of the project. To ease

readability, the bars are grouped by permissive (dashed bars) or restrictive licenses (solid

bars). Additionally, we omit data prior to 2002 due to the limited number of projects

created during those years in our sampled dataset.

For the year 2002, we observed that restrictive licenses and permissive licenses had been

used approximately equally with a slight bias towards using restrictive licenses. Although

the LGPL-2.1 and LGPL-2.1+ variants are restrictive licenses, they are less restrictive

than their GPL counter-part. The LGPL specifically aimed at ameliorating licensing

conflicts that arose when linking code to a non-(L)GPL library. Instead, the various

versions of the GPL license require the system to change its license to the same version

of the GPL, or else the component would not legally be able to be redistributed together

with the project source code. Thus, it suggests a bias toward using less restrictive licenses

even among the mostly used copyleft licenses. By the subsequent year (2003), a clear

movement towards using less restrictive licenses can be seen with the wider adoption of
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Figure 2.1: Relative license usage of the analyzed Java projects between 2002 and 2012
(dashed pattern representing permissive licenses).

the MIT license as well as the Apache-1.1 license. Additionally, we observe that the LGPL

is still prominent, while the CMU, CPL-1.0, and GPL-2.0+ licenses were declining.

During the following five years (2004-2008), the Apache-2.0, CDDL-1.0, EPL-1.0,

GPL-3.0, LGPL-3.0, and DWTFYW-2 licenses were created. For the same observation

period, Bavota et al. found that the Apache ecosystem grew exponentially in terms of

number of lines of code of their source code [89]. This observation may contribute to

the rapid di↵usion of the Apache-2.0 license among free/open source projects written in

Java (other languages may not exhibit this behavior during the same time period). We

observed a growth that resulted in the Apache-2.0 license accounting for approximately

41% of licensing in 2008. Overall, we observe a tendency towards using permissive licenses,

since ⇠55-60% of licenses attributed were permissive during our time frame of analysis,

excluding 2002.
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Another interesting observation was that the newer version of the GPL (GPL-3.0 or

GPL-3.0+) had a lower relative usage compared to its earlier version until 2011. Addi-

tionally, the adoption rate was more gradual than for the Apache-2.0 license that appears

to supersede Apache-1.1 license. However, the LGPL-3.0 and LGPL-3.0+ do not have

more popularity than prior versions in terms of adoption, despite the relative decline of the

LGPL-2.1 ’s usage starting in 2010. Our manual analysis of commits highlighted explicit

reasons that pushed some developers to choose the LGPL license. For instance, a devel-

oper of the hibernate-tools project when committing the addition of the LGPL-2.1+

license to her project wrote:

The LGPL guarantees that Hibernate and any modifications made to Hibernate

will stay open source, protecting our and your work.

This commit note indicates that LGPL-2.1+ was chosen as the best option to balance the

freedom for reuse and guarantee that the software will remain free.

Conversely, we observed the abandonment of old licenses and old license versions as

newer free/open source licenses are introduced. For example, Apache-1.1 and CPL-1.0

become increasingly less prevalent or no longer used among the projects. In both cases, a

newer license appears to replace the former license. While the Apache-2.0 o↵ers increased

protections (e.g., protections for patent litigation), the EPL-1.0 and the CPL-1.0 are the

same license, with the only di↵erence that IBM is replaced by the Eclipse Foundation

as the steward of the license. Thus, the two licenses are intrinsically the same from a

legal perspective, and most likely projects migrated from the CPL to the EPL; this would

explain why the EPL adoption grew as the CPL usage shrunk.

Finally, we observed fluctuations in the the adoption of the MIT license. As the

adoption of permissive licenses grew with the introduction of the Apache-2.0 license,

it first declined in adoption and was followed by growth to approximately its original

adoption. Ultimately, we observed a stabilization of the MIT usage at approximately 10%

starting in 2007.
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Table 2.1: The results of the augmented Dickey-Fuller test to determine stationary or
explosive trends in the license usage.

License Stationary trend Explosive Trend
(p-value) (p-value)

Apache-1.1 0.14 0.86
Apache-2.0 0.98 0.02
BSD 0.73 0.27
CDDL v1 0.42 0.58
CMU 0.05 0.95
CPL-1.0 0.43 0.57
EPL-1.0 0.07 0.93
DWTFYW-2.0 0.99 0.01
MPL-1.0 0.90 0.10
MPL-1.1 0.32 0.68
NPL-1.1 0.55 0.45
svnkit+ 0.78 0.22
zend-2.0 0.01 0.99
MIT 0.97 0.03
GPL-1.0+ 0.05 0.95
GPL-2.0 0.67 0.33
GPL-2.0+ 0.66 0.34
GPL-3.0 0.98 0.02
GPL-3.0+ 0.69 0.31
LGPL-2.0 0.99 0.01
LGPL-2.0+ 0.67 0.33
LGPL-2.1 0.35 0.65
LGPL-2.1+ 0.54 0.46
LGPL-3.0 0.63 0.37
LGPL-3.0+ 0.52 0.48

In order to determine whether the proportions for a given license exhibited a stationary

trend, or a clearly increasing trend over the observed years, we performed ADF-tests.

Results are reported in Table 2.1, where significant p-values (shown in bold face) in the

second column indicate that the series is stationary (H0s rejected), while significant p-

values in the third column indicates that the series has an explosive, i.e., clearly increasing,

trend (H0e rejected). The results indicate that:

• Almost no license is exhibiting a stationary trend. The results only show significant

di↵erences for the zend-2.0 license, which is not particularly popular, and a marginal

significance for CMU, CPL-1.0 and GPL-1.0+.

• Confirming the discussion above, we have a clearly increasing trend not only for
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permissive licenses such as Apache-2.0 and MIT but also for new versions of restric-

tive licenses facilitating the integration with other licenses (in particular, GPL-3.0,

which eases the compatibility with the Apache license, as well as LGPL-2.0, which

facilitates compatibility when code is integrated as a library). We also see an in-

crease for DWTFYW-2.0, but this can be likely due to cases in which developers do

not have a clear idea about the license to be used.

Summary for RQ1. For the analyzed Java projects, we observed that generally

using permissive licenses, like Apache-2.0 and MIT, were more prevalent than restrictive

licenses . Additionally, the permissiveness or restrictiveness of a license can impact the

adoption of newer license versions, where permissive licenses are more rapidly adopted.

Conversely, restrictive licenses seem to maintain a greater ability to survive in usage as

compared to the permissive licenses, which become superseded. Restrictive (GPL-3.0)

or semi-restrictive (LGPL-2.0) licenses that facilitate integration with other licenses also

exhibit an increasing trend. Finally, we observed a stabilization in the license adoption

proportions of particular licenses, despite the exponential growth of the GitHub code base.

2.1.2 RQ2: What are the most common licensing change patterns?

We analyzed commits, where a license change occurred in one of the files, with a two-

fold goal (i) analyze license change patterns to understand both the prevalence and types

of licensing changes a↵ecting software systems, and (ii) understand the rationale behind

these changes. Overall, we found 204 di↵erent atomic license change patterns. To analyze

them, we identified the patterns having the highest proportion across projects (i.e., global

patterns) and within a project (i.e., local patterns). We sought to distinguish between

dominant global patterns (Table 2.2) and dominant local patterns (Table 2.3) to study,

on one hand, the overall trend of licensing changes and, on the other hand, to understand

specific phenomena occurring in certain projects.

The global patterns were extracted by identifying and counting the presence of a
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pattern only once per project and then aggregating the counts over all projects. For

instance, 823 projects in our dataset experienced at least one change (each) from No

license ! Apache-2.0, thus the final count (globally) for the pattern is 823. The most

dominant global patterns were either a change from either no license or an unknown

license to a particular license, or a change from either a particular license to no license or

an unknown license. Table 2.2 shows the top ten global patterns. We observe that the

inclusion of Apache-2.0 was the most common pattern for unlicensed or unknown code.

Clearly, this is likely due to the specific programming language (i.e., Java) exploited by

the sample of projects we quantitatively analyzed.

Table 2.2: Top ten global atomic license change patterns.

Top Patterns (Overall) Frequency
no license or unknown ! Apache-2.0 823
Apache-2.0 ! no license or unknown 504
no license or unknown ! GPL-3.0+ 269
GPL-3.0+ ! no license or unknown 181
no license or unknown ! MIT 163
no license or unknown ! GPL-2.0+ 113
GPL-2.0+ ! no license or unknown 111
MIT ! no license or unknown 98
no license or unknown ! EPL-1.0 94
no license or unknown ! LGPL-2.1+ 91
Top Migration Patterns Between Licenses Frequency
GPL-3.0+ ! Apache-2.0 25
GPL-2.0+ ! GPL-3.0+ 25
Apache-2.0 ! GPL-3.0+ 24
GPL-2.0+ ! LGPL-2.1+ 22
GPL-3.0+ ! GPL-2.0+ 21
LGPL-2.1+ ! Apache-2.0 16
GPL-2.0+ ! Apache-2.0 15
Apache-2.0 ! GPL-2.0+ 13
MPL-1.1 ! MIT 11
MIT ! Apache-2.0 11

Table 2.2 also shows the most common global migrations when focusing the attention

on changes happened between di↵erent licenses. We observe that the migration towards

the more permissive Apache-2.0 was a dominant change among the top ten atomic license

changes for global license migrations. An interesting observation is the license upgrade

and downgrade between GPL-2.0+ and GPL-3.0+. GPL-3.0 is considered by the Free
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Table 2.3: Top ten local atomic license change patterns between di↵erent licenses.

Pattern Frequency
GPL-2.0+ ! GPL-3.0+ 36
GPL-2.0+ ! LGPL-3.0+ 15
LGPL-3.0+;Apache-2.0 ! Apache-2.0 12
GPL-3.0+;Apache-2.0 ! Apache-2.0 12
GPL-2.0+ ! LGPL-2.1+ 10
GPL-1.0+ ! LGPL-2.0+ 9
GPL-2.0+ ! GPL-3.0+ 9
GPL-3.0+ ! Apache-2.0 8
GPL-3.0+ ! GPL-2.0+ 8
GPL-3.0+ ! LGPL-3.0+ 8

Software Foundation as a compatible license with the Apache-2.0 license1. Due to the large

usage of the Apache license in Java projects, this pattern is quite expected. However, the

migration GPL-3.0+ ! GPL-2.0+ is interesting, since it not only still allows for the

project to be redistributed as GPL-3.0 but also allows for the usage as GPL-2.0, which

is less restrictive, as well.

Regarding the local patterns (Table 2.3), the frequencies were computed by first iden-

tifying the most frequent (i.e., dominant) pattern in each project, and then counting the

number of times a specific pattern is the most frequent across the whole dataset. For

instance, the GPL-1.0+ ! GPL-3.0+ pattern is the most frequent in 36 projects from

our dataset. Table 2.3 summarizes the most common local migrations. The migrations

appear to be toward a less restrictive license or license version. The low frequency of the

atomic license change local patterns indicates that migrating licenses is non-trivial. It can

also introduce problems with respect to reuse. For example, we observed a single project

where GPL-1.0+ code was changed to LGPL-2.0+ a total of nine times. LGPL is less

restrictive than GPL, when the code is used as a library. Thus, if parts of the system

are GPL, the developer must comply with the more restrictive and possibly incompatible

constraints.

Until now, we considered atomic license changes among any file in the repository.

This was needed since most of the analyzed projects lack of a specific file (e.g., license.txt)

1http://gplv3.fsf.org/wiki/index.php/Compatible_licenses
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declaring the project license. To extract the declared project license, we considered a file in

the top level directory named: license, copying, copyright, or readme. When just focusing

on projects including such files, we extracted 24 di↵erent change patterns. Table 2.4

illustrates the top eight licensing changes between particular licenses (i.e., we excluded

no license or unknown license from this table) for declared project licenses. We only

considered the top eight, since there was a tie between five other patterns or the next

group of change patterns. We observe that the change from Apache-2.0 ! MIT was the

most prevalent license change pattern, and the co-license of MIT with Apache-2.0 is the

second most prevalent one. Interestingly, this pattern was not dominant in our file-level

analysis, although the Grounded Theory analysis provided us support for this pattern.

The MIT license was used to allow commercial reuse, while still maintaining the open

source nature of the project. It is important to note that the Apache-2.0 license does

facilitate commercial reuse; however, others clauses, like the one related to patents, may

account for the preference towards the MIT license for commercial reuse.

The pattern of GPL-2.0+ ! GPL-3.0+ (Top-3 in Table 2.4) was expected since it was

tied for the most prevalent among global atomic license changes. Similarly, the patterns

of MIT/X ! Apache-2.0, GPL-3.0+ ! Apache-2.0, and Apache-2.0 ! GPL-3.0 were

also among the top eight global changes. Another notable observation is that license

changes are frequently happening toward permissive licenses. Excluding the five changes

from Apache-2.0 ! GPL-3.0+ and GPL-2.0+ ! GPL-3.0+, the remaining changes for

the top eight are either a licensing change from a restrictive (or copyleft) license to a

permissive license or a licensing change between two di↵erent permissive licenses.

Summary for RQ2. The key insight from the analysis of atomic license change

patterns observed on the studied Java projects is that the licenses tend to migrate toward

less restrictive licenses.
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Table 2.4: Top eight license change patterns in a declared license file of a project (li-
cense,copying,copyright, or readme file), excluding no license or unknown license.

Pattern Frequency
Apache-2.0 ! MIT 12
Apache-2.0 ! MIT ;Apache-2.0 8
GPL-2.0+ ! GPL-3.0+ 7
MIT ! Apache-2.0 6
GPL-3.0+ ! Apache-2.0 6
MIT ;Apache-2.0 ! Apache-2.0 5
Apache-2.0 ! GPL-3.0+ 5
GPL-3.0+ ! MIT 3

2.1.3 RQ3: To what extent are licensing changes documented in commit

messages or issue tracker discussions?

Table 2.5 reports the results of the identification of traceability links between licensing

changes and commit messages/issue tracker discussions. We found a clear lack of trace-

ability between license changes in both the commit message history and the issue tracker.

In both data sources, we first extracted the instances (i.e., commit messages and issue

tracker discussions) where the keyword “license” appears or where a license name was

mentioned (e.g., “Apache”). In the former case, we are identifying potential commits or

issues that are related to licensing, while the latter attempts to capture those related to

specific types of licenses.

By using the first approach, we retrieved 70,746 commits and 68 issues; while looking

for license names, we identified 519 commits and 712 issues. However, these numbers are

inflated by false positives (e.g., “Apache” can relate to the license or it can relate to one of

the Apache Software Foundation’s libraries). For this reason, we then looked for commit

messages and issue discussions containing both the word “license” as well as the name

of a license. This resulted in a drop of the linked commit messages to 399 and in zero

issue discussions. Such results highlight that license changes are rarely documented by

developers in commit messages and issues.

We also investigated whether relevant commits and issues could be linked together. We

linked commit messages to issues when the former explicitly mentions fixing a particular
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issue (e.g., “Fixed #7” would denote issue 7 was fixed). We observed that this technique

resulted in a large number of pairs between issues and commits; thus, our observation

of a lack of license traceability is not simply an artifact of poor traceability for these

projects. To further investigate the linking, we extracted the commit hashes where a

license change occurred and attempted to find these hashes in the issue tracker’s comments.

Since the issue tracker comments contain the abbreviated hash, we truncated the hashes

appropriately prior to linking. Our results indicated only one match for an open issue and

zero matches for closed issues.

Finally, we attempted to link changes to issues by matching date ranges of the issues to

the commit date of the license change. The issue had to be open prior to the change and

if the issue had been closed the closing date must have been after the change. However,

we did not find any matches with a date-based approach.

Summary for RQ3. For the analyzed Java projects, both the issue tracker discussions

and commit messages yielded very minimal traceability to license changes, suggesting that

the analysis of licensing requires fine-grained approaches analyzing the source code.

2.1.4 RQ4: What rationale do these sources contain for the licensing

changes?

In this section, we firstly present the taxonomy that resulted from the open coding of

commit messages and issue tracker discussions. This analysis has been performed on

1,637 commit messages and 486 issue tracker discussions from 1,160 projects written in

seven programming languages, and aims at modeling the rationale of license adoption and

changes. Secondly, we present our findings when looking at the commits that introduce

atomic license changes in the analyzed Java projects.

Analyzing Commit Messages and Issue Discussions Table 2.6 reports the cat-

egories obtained in the open coding process. In total, we grouped commit messages and

issue tracker discussions into 28 categories, and organized them into seven groups that will

be described in detail in the rest of this section. Additionally, 430 commits and 161 issue
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Table 2.5: Traceability between licensing changes and commit messages or Issue tracker
discussion comments.

Data
Source

Linking Query Links

Commit Commits with the keyword “license” 70746
Messages Commits containing new license name 519

Commits containing new license name and the keyword “li-
cense”

399

Issue
Comments from closed issues containing the keyword “li-
cense”

0

Tracker Comments from closed issues containing the new license 0

Comment
Comments from closed issues containing the new license and
the keyword “license”

0

Matching
Comments from open issues containing the keyword ”li-
cense”

68

Comments from open issues containing the new license 712
Comments from open issues containing the new license and
the keyword “license”

16

Issue
Closed comments opened before license change and closed
before or at license change

197

Tracker Open comments open before the license change 2241

Date-
based

Comments from closed issues open before the license change
and closed before or at the license change with keyword “li-
cense”

0

Matching
Comments from open issues open before the license change
with keyword “license”

0

Issue
Comments in closed issues containing the keyword ”Fixed
#[issue num]”

66025

and
Comments in open issues containing the keyword ”Fixed
#[issue num]”

3407

Commit
Comments in closed issues containing the commit hash
where the license change occurs

0

Matching
Comments in open issues containing the commit hash where
the license change occurs

1
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Table 2.6: Categories defined through open coding for the Issue tracker discussion com-
ments and Commit notes.

Category
C C++ C# Java Javascript Python Ruby Overall

I C I C I C I C I C I C I C I C

Generic License Additions
Choosing License 1 0 0 0 0 0 6 0 2 0 1 0 1 0 11 0

License Added 1 22 3 19 0 15 25 75 22 34 9 34 1 33 59 232

License Change
License Change 2 14 1 8 1 5 3 14 4 9 2 6 2 18 15 74

License Upgrade 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4

License Rollback 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3

Removed Licensing 0 3 0 3 0 4 0 6 1 8 0 2 0 3 1 29

Changes To Copyright
Copyright Added 0 6 0 3 0 2 0 0 0 2 0 2 0 0 0 15

Copyright Update 2 24 0 7 1 6 5 89 2 7 2 4 1 8 13 138

License Fixes
Link Broken 7 0 2 0 0 0 1 0 16 0 1 0 19 0 46 0

License Mismatch 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Fix Licensing 4 2 0 1 0 2 1 3 2 0 0 1 2 1 9 10

License File Modifica-

tion

0 11 0 8 0 14 0 0 1 11 1 7 1 29 3 80

Missing Licensing 1 1 0 0 0 3 2 0 7 0 12 0 4 1 26 5

License Compliance
Compliance Discus-

sion

1 9 0 5 1 1 0 1 0 3 0 1 0 0 2 20

Derivative Work In-

consistency

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

Add Compatible Li-

brary

0 1 0 0 0 0 3 0 0 0 0 2 0 0 3 3

Removed Third-Party

Code

3 13 1 8 0 1 0 1 0 2 0 4 0 3 4 32

License Compatibility 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 0

Reuse 1 1 1 0 0 0 17 0 1 0 1 0 0 0 21 1

Dep. License Added 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Dep. License Issue 2 0 0 0 0 0 1 0 1 0 0 0 0 0 4 0

Clarifications/Discussions
License Clarification 2 0 2 1 1 0 19 0 2 1 4 0 2 0 32 2

Terms Clarification 0 0 0 0 0 0 5 0 2 0 0 0 0 0 7 0

Verify Licensing 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2

License Agreement 0 0 0 0 0 0 2 0 2 0 0 0 0 0 4 0

Request to License Project
Licensing Request 1 0 0 0 0 0 0 0 4 0 0 0 6 0 11 0

License Output For The End User
Output Licensing 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
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discussions identified by means of pattern matching as potentially related to licensing were

classified as false positives. This is mainly due to the wide range of matching keywords

that we used for our filtering to identify as many commits/issues as possible. Finally, for

16 commits and two issue discussions that were related to licensing, it was not possible,

based on the available information, to perform a clear categorization. Thus, they were

excluded from this study.

In the following, we discuss examples related to the various groups of categories.

Generic license additions. This group of categories concerns cases in which a license

was added in a file, project or component where it was not present, as well as discussions

related to choosing the license to be added in a project. One typical example of commit

message, related to the very first introduction of a software license into the repository,

mentioned:

“Added a license page to TARDIS.” [42]

Other commit messages falling in this category were even precise in reporting the exact

license committed into the repository, e.g.,:

“Add MIT license. Rename README to include rst file extension.” [35]

Finally, commit messages automatically generated by the GitHub’s licensing feature were

present, e.g.,:

“Created LICENSE.md.”

While commit messages show the addition of a license to a project, they do not provide

the rationale behind the specific choice. This can be found, sometimes, in the discussions

carried out by the developers in the issue trackers to establish the license under which their

project would be released. For example, one of the issue discussions we analyzed was titled

“Add LICENSE file” [43] in the project web-workshops, and the issue opener explained

the need for (i) deciding the license to adopt and (ii) involve all projects’ contributors in

such a decision:
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“A license needs to be chosen for this repo. All contributors need to agree with

the chosen license. A list of contributors is enclosed below.”

Doubts and indecision about which license to adopt were also evident in several of the

issue discussions that we manually analyzed:

“What license to use? BSD, GNU GPL, or APACHE?” [9]

Interestingly, one developer submitted an issue for the project InTeX entitled “Dual

license under LGPL and EPL” [18] that related to adding a new license to balance code

reuse of the system, while avoiding “contagious” licensing (the term “contagious” was

used by the original developer of the system). The developer commented:

“Your package is licensed under GPL. I’m not a lawyer but as far as I under-

stand the intention of the GPL, all LaTeX documents compiled with the InTeX

package will have to be made available under GPL, too. [...] I think, you want

users to publish changes they did at your code. A dual license under LGPL and

EPL would ensure that a) changes on your code have to be published along with

a binary publication and b) that your code can be used in GPL and non-GPL

projects. See JGraphT’s relicensing for more background.”

This response demonstrates a potential lack of understanding regarding the license im-

plications to compiled LaTeX and proposes dual-licensing as a solution. However, the

original developer also indicates a lack of legal background and is not willing to o↵er a

dual-license based on his understanding stating:

“Thank you for your interest. I not a lawyer myself either, but my intentions

are:

1. I want changes to the source code of InTeX to be made available so that

others can benefit from them too.

2. I do not want any “contagious” copyright of documents compiled with In-

TeX. However, I’ve always thought of InTeX as a (pre)compiler, and given
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this GPL FAQ answer, I think licensing the compiler’s source code under GPL

does not limit or a↵ect the copyright of the documents it is used to process.

Unless you can prove me wrong about this, I will close this issue.”

Thus, the developer responds by providing his understanding of the GPL by referencing

a response by GNU regarding compiled Emacs2. However, the developer does indicate an

openness to adding a new license if the GPL would in fact be applied to generated LaTeX

documents. This example is particularly interesting, since it shows the original developer’s

rationale for picking the GPL as well as the di�culty that developers have with respect

to licensing.

License Change. This group of categories concerns cases in which (i) a licensing state-

ment was changed from one license towards a di↵erent one; (ii) a license was upgraded

towards a new version, e.g., from GPL-2.0 to GPL-3.0; (iii) cases of license rollback (i.e.,

when a license was erroneously changed, and then a rollback to the previous license was

needed to ensure legal compliance); and (iv) cases in which for various reasons developers

removed a previously added license.

Most commit messages briefly document the performed change, e.g., “Switched to a

BSD-style license”, “Switch to GPL”. Some others, partially report the rationale behind

the change:

“The NetBSD Foundation has granted permission to remove clause 3 and 4

from their software”

The commit message explains that permission has been granted for the license change

by the NetBSD Foundation. However, the committer does not explain the reason for the

removal of the two clauses. Other commits are instead very detailed in providing full

picture of what happened in terms of licensing:

2http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#CanIUseGPLToolsForNF
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“Relicensed CZMQ to MPLv2 - fixed all source file headers - removed COPY-

ING/COPYING.LESSER with GPLv3 and LPGv3 + exceptions - added LI-

CENSE with MPLv2 text - removed ztree class which cannot be relicensed -

(that should be reintroduced as foreign code wrapped in CZMQ code).”

The commit message from the project CZMQ [8] is very informative, reporting the former

license (i.e., GPL-3.0 and LGPL-3.0 ), the new license (i.e., MPL-2.0 ), and the removal

of the ztree class since it is unable to be relicensed. This license change demonstrates

a move towards a more permissive license, which has been shown to be prevalent in our

study of Java projects.

We also found commit messages reporting the rationale behind specific license changes,

such as the following commit from the project nimble [25]:

“Change in project License from AGPL 3.0 to Apache 2.0 prior to first public

release. Several factors influenced this decision the largest being community

building and making things as easy as possible for folks to get started with the

project. We don’t however believe Open Source == Free and will continue to

investigate the best way to commercialize this. Restrictive copy-left licenses

aren’t however the answer.”

While the developers want to enable external developers to reuse the system, they are

also interested in commercializing the software product. The developers acknowledge that

copy-left licenses do not meet their needs.

For License Rollback, we observed that the project PostGIS reverted back licensing to

a custom license [30]. The commit does not o↵er rationale since it simply states:

“Restore original license terms.”

From the analysis of the commit emerged that the author had re-licensed the system

under the GPL earlier and subsequently reverted back the licensing to his own custom

license. However, it is not clear if this rollback was due to a misappropriation of GPL, an

incompatibility in the system, or to other factors.

26



Additionally, we found commit messages illustrating that license removals do not nec-

essarily indicate that the licensing of the system was removed. For instance:

“Removing license as it is declared elsewhere” [34]

“Remove extra LICENSE files

One repository, one license. No need to put these on the box either.” [10]

“Remove licenses for unused libraries” [7]

In these cases, the system contains redundant or superfluous license files that can be

removed. This observation highlights that strictly analyzing the license changes that have

happened in the history of a software system could (wrongly) suggest that the system

has migrated toward closed-source. The third commit message, instead, indicates that

licenses were removed due to unused code, which required those licenses. Such cases, in

which a project is adopting unnecessary licenses due to third-party libraries no longer

needed, should be carefully managed since it may discourage other developers to reuse the

project, especially if the unnecessary licenses are restrictive.

Changes to Copyright. This group of categories includes commits/issues related to

simple changes/additions applied to the copyright statement, like copyright year, or au-

thors. Changes to a list of author names occur to indicate names of people who provided

a substantial contribution to the project, therefore claiming their ownership. Previous

work indicated that often such additions occur in correspondence of large changes per-

formed by contributors whose names are not mentioned yet in the copyright statement

[129]. Changes to copyright years have also been previously investigated, and are often

added to allow claiming right on source code modified in a given year [100].

License Fixes. This group of categories is related to changes in the license mainly due

to various kinds of mistakes or formatting issues, as well as to cases in which a licensing
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statement was accidentally missing (note that this is di↵erent to cases of license addition

in which the license was originally intended to be absent from the project).

For example, in this group, we observed cases of issues discussing license mismatch,

where developers found conflicting headers or conflicts between the declared license and

the license headers. In the former case, a developer posted an issue to the project gtk-

sourcecompletion’s issue tracker [15]:

“The license states that this is all LGPL-3, but the copyright headers of the

source files say otherwise (and some are missing). Is this intentional, or should

these all be under the same license? I’ve included licensecheck output below.”

Subsequently, the issue poster listed files in the system with GPL, LGPL, and no copyright.

Additionally, he indicated cases where the Free Software Foundation address was incorrect

as well. We observed a similar situation in another project: a developer opened the issue

“LICENSE file doesn’t match license in header of svgeezy.js” [40] to svgeezy’s issue tracker

and stated:

“The LICENSE file specifies the MIT license, but the header in svgeezy.js says

it’s released under the WTFPL. Which is the correct license?”

In this second case, we observe that the declared license and source header are not con-

sistent. However, the issue has not been resolved at the time of writing this paper and so

we cannot report the resolution or any feedback o↵ered by the original developers of the

system.

Other interesting cases are the ones related to the fix of missing licenses. Often devel-

opers are made aware of missing licenses via the issue tracker by projects’ users reporting

the issue. Sometimes, the complete project may be unlicensed, leading to discussions like

the one titled “GNU LGPL license is missing” from the project rcswitch-pi [33]:

“Under which license is this source code published? This project is heavily

based on wiring-pi and rc-switch: rc-switch: GNU Lesser GPL wiring-pi: GNU
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Lesser GPL The GNU Lesser GPL should be added:

http://www.gnu.org/licenses/lgpl.html”

Based on the project’s characteristics (i.e., its foundations on previously existing projects),

the developer recommends the addition of the missing LGPL license.

The commits and issues falling in the License File Modification category are related to

changes applied to the license file type or name. For example, developers may change the

license file from the default LICENSE.md file generated by GitHub to a .txt or .rtf. Addi-

tionally, developers change the file name often to make it more meaningful as illustrated

in this commit message of the project Haml [17]:

“Renamed the LICENSE to MIT-LICENSE so you don’t have to open the file

to find out what license the software is released under. Also wrapped it to 80

characters because I’m a picky [edited]” (quote edited for language)

Other typical changes concern the renaming of the COPYRIGHT file to LICENSE or the move

of the license file in the project’s root directory. These cases do not indicate changes

towards a di↵erent license or in general any change to the license semantics, but only in

the way in which the license is presented.

License Compliance. This group of categories is probably the most interesting to

analyze, and concerns categories related to discussions and changes because of license

compliance. Specifically, other than generic compliance discussions, there are cases in

which (i) a derivative work’s legal inconsistency was spotted or discussed; (ii) a compatible

library is added to replace another incompatible library from a licensing point of view;

(iii) third-party code is completely removed when no legally-compliant alternative was

possible; (iv) cases of discussion related to license compatibility in the context of reuse;

and (v) cases in which an added dependency or an existing dependency has conflicts with

the current license.
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A very interesting example is the issue discussion entitled “Using OpenSSL violates

GPL licence” in the project SteamPP [38]. Surprisingly, the developer of the project

initially commented:

“gnutls and libnss have terrible documentation and I don’t consider this a pri-

ority issue anyway. If you would like to submit a pull request, then be my

guest.”

Despite this initial reaction, the OpenSSL library was replaced by Crypto++ within a

week in order to meet the licensing requirements.

Examples of third-party libraries removed due to licensing issues are also prevalent in

commit messages, e.g.,:

“Remove elle(1) editor, due to an incompatible license.” [22]

The incompatibility in this case was due to elle’s clause explicitly reporting: “NOT be sold

or made part of licensed products.”. Additionally, we saw the commit from the project

wkhtmltopdf-qt-batch, where files were removed due to a recommendation by the project’s

legal sta↵: “Remove some files as instructed by Legal department” [45]. This shows that

license compliance may not be always straightforward to developers and that they may

need to rely on legal council in order to determine whether licensing terms have been met.

We also observed changes in the system’s licensing aimed at satisfying compliance with

third-party code in the project gubg [16]:

“Changed the license to LGPL to be able to use the msgpack implementation

in GET nv.”

Similarly, we found issue tracker discussions about conflicting licenses or about the

compatibility of licenses between the project and third-party libraries. Interestingly, there

was an issue opened by a non-contributor of the project android-sensorium [4], stating:

“Google Play Services (GMS) is proprietary, hence not compatible with GNU

LGPL. (The jar inside the Android library referred to in the project.properties).
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F-Droid.org publishes the ....o3gm package, but we cant publish this without

removing this library.”

Thus, the license incompatibility not only created a potential license violation for the

project but also prevented the non-contributor from cataloging the system among projects

hosted on F-Droid [11], a well-known forge of free/open source Android apps.

Additionally, we observed issues related to reuse, where one contributor suggests a

dual license to allow for greater reuse in other applications. The contributor of the project

python-hpilo [32] stated,

“Due to incompatibility between GPLv3 and Apache 2.0 it is hard to use

python-hpilo from, for instance, OpenStack. It would therefore be helpful if

the project code could also be released under a more permissive license, like for

instance Apache 2.0 (which is how OpenStack is licensed)”

The other contributors subsequently utilized the thread to vote and ultimately agreed

upon the dual license. Not only does this example indicate the consideration for reuse but

it also demonstrates that licensing decisions are determined by most of the developers and

not by a single developer. It is also important to note that GPL-3.0 and Apache-2.0 are

not consider incompatible by the Free Software Foundation.

Conversely, we also observed an interesting discussion in which the issue posted in the

project patchelf [28] asked “Is it possible for you to change GPL to LGPL? It would help

me using your software.”. The developer posting the question was developing a system

licensed under the BSD license with which GPL would not be compatible. A contributor

refused to change licensing by stating: “GPL would not be compatible”. Moreover, one

of the contributors explained that changing licensing is non-trivial by responding:

“It wouldn’t be easy to change the license, given that it contains code from

several contributors, who would all need to approve of the change.”
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Again, this response highlights the importance for all contributors to approve a license

change. However, reaching an agreement among all contributors might be far from trivial,

due to personal biases developers could have with respect to licensing [153].

We also observed a case related to derivative work, where the license di↵ered from

the original system’s licensing (category: Derivative Work Inconsistency). A developer

created the issue “Origin and License Issue” for the project tablib [41] to which he o↵ered

support, but first noted:

“While tablib is MIT-licensed, there are several potential provenance and li-

cense issues with Oo, XLS and XLSX formats that tablib embeds. I have

collected some of these potential issues here. This is at best ... byzantine. [...]

https://bitbucket.org/ericgazoni/openpyxl/ is reported as being derived from

PHPExcel which is LGPL-licensed at https://github.com/PHPO�ce/PHPExcel

but openpyxl is not LGPL but MIT-licensed. If this is really derived then there

is a possible issue as the license may be that of the original not of the deriva-

tive.”

The issue poster lists the various components used with their licensing to point out in-

compatibility issues, and in particular those related to the derivative code that the system

utilizes.

Clarifications/Discussions. This group of categories contains issues related to clari-

fying the project’s licensing, the terms or implications of the licensing, and the agreement

between contributors made in a Contributor License Agreement (CLA). License Clarifica-

tion were about the actual license of the project and typically occurred when the system

did not contain a license file (i.e., a declared project license). For example, one project’s

user created the issue “Please add a LICENSE file” for the Mozilla’s project 123done [2]

stating:

“The repo is public, but it’s not easy to find out how I’m allowed to use or
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share the code.

Could you add a LICENSE file to make it easier for users to understand how

you’d like it to be used?”

Similarly, another project, pyelection, has the issue “What license is this code released

under?” [31] with no further comments from the poster. Thus, we observe that developers

use the issue tracker as a mean to understand the licensing and request an explicit licensing

file.

Another surprising issue discussion is related to understanding the terms of a license.

The issue was posted to the neunode’s issue tracker [23] by an external developer looking

to reuse the code and asked:

“We are impressed with what you’ve done with neu.Node and are interested in

using it for o✏ine mapping applications. However, we work at a company that

has more than 1M$ in revenue. Your license terms say MIT for companies

with less than 1M$ in revenue (which is not an approach I’ve seen before).

Please could you clarify the license terms for a company that is larger that

that? We’re trying to make some decisions on our direction at the moment,

so a quick response would be appreciated if possible.”

Interestingly, the license terms set conditions based on the money value of the company

looking to reuse the code. In this case, the external developer’s company exceeds the

threshold. The original developer indicates that his software is intended to benefit the

developer community as a whole, and more specifically students and individuals. The

original developer gave two options: (i) a large check without maintenance support, or (ii)

detail descriptions of the product, a compelling argument for giving a free license to reuse

the system, and acknowledgment in the description. Thus, the original developer is not

interested to financial gain (though, he could reasonably be convinced at the right price),
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but rather wants to support the open source community and receive credit for his work.

It is important to note that this license is not a free/open source license.

We identified a category of License Agreement. This scenario arises when an external

developer to the project submits some code contribution to the project, and the project

contributors require that developer to complete a Contributor License Agreement (CLA)

to avoid licensing/copyright disputes. We observed a discussion related to updating the

textual information of the project’s CLA with respect to country designations [6]. Sim-

ilarly, in our previous Java study [152], a developer submitted a patch, but it could not

be merged into the system until that developer filled out the CLA [19]. A CLA makes

it explicit that the author of a contribution is granting the recipient project the right to

reuse and further distribute such contribution [91]. Thus, it prevents the contributed code

from becoming a ground for a potential lawsuit.

Request to License Project. This group contains issue discussions in which a de-

veloper asks for a license or a license file. While these are similar to reuse, it di↵ers since

the developers do not necessarily state that they want to reuse the system, since it is

possible that they want to contribute as well. Thus, these are more generic requests for

the developer to attribute a license to the system without explaining the reason for such

a request. For example, we found the issue titled “No license included in repository” for

the project jquery-browserify [20] in which the poster commented:

“Would you consider adding a license to the repository? It’s currently missing

one and according to TOS.

[Not posting a license] means that you retain all rights to your source code

and that nobody else may reproduce, distribute, or create derivative works from

your work. This might not be what you intend.

Even if this is what you intend, if you publish your source code in a public
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repository on GitHub, you have accepted the Terms of Service which do allow

other GitHub users some rights. Specifically, you allow others to view and fork

your repository.

If you want to share your work with others, we strongly encourage you to

include an open source license.

If you don’t intend on putting a license up that’s fine, but if you do want to

use an open source license please do so. I’d be happy to fork/PR for you if you

just let me know which license you want to put in (MIT/BSD/Apache/etc.)”

This comment demonstrates that licensing also impacts derivative work and can prevent

other developers from contributing to a system. This is an important distinction, since

findings and prior work [152, 153, 137] demonstrate that licensing could be an impediment

to reuse and not an impediment to contribute towards a project/system.

License output for the end user. This category describes a unique case where an

issue was posted regarding the output of the license to the end user. The issue stated:

“This output could be read by monitoring tools, for example to automatically

warn about expiration (although Phusion also emails expiration warnings, the

desired upfront time for the warning is not configurable like that).” [27]

Unlike the previous categories, this issue relates to end user licensing the software. The

contributor of the system suggests the inclusion of a feature to aid in monitoring the license

expiration. Interestingly, this category shows that developers also consider licensing from

the impact on the “client” using the system. This aspect of understanding the impact of

licensing on the “client” or end user has also been unexplored in prior studies.
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2.1.4.1 Analysing Commits Implementing Atomic License Changes in Java

Systems

In this analysis, we specifically targeted commit messages where a licensing change oc-

curred so that we could understand the rationale behind the change. We did not apply a

keyword for these commit messages since we knew they were commits related to changes

in licensing. When reading these commits, we also included the atomic license change

pattern that was observed at that particular commit to add context. We observed new

support for the existing categories and the results are reported in Table 2.7. We refer to

new support as commit messages indicating new rationale for the existing categories.

As for the License Change group of categories, we observed general messages indicating

a license change occurred and in some cases explicitly stating the new license, such as the

following commit messages:

“Rewrite to get LGPL code.”

“Changed license to Apache v2”

These two commit messages do not o↵er rationale, but they at least indicate the new

license that has been attributed to the system. So, a developer inspecting the change

history would be able to accurately understand the particular license change.

Since we observed many instances of no license ! some license, the prevalence of

License Added was expected. However, these License Added commit messages resembled

the License Change messages since they often did not include a clear rationale (i.e., while

being part of the License Added category, their level of detail was similar to the License

Change category). For example, a developer asserted the Apache-2.0 license to the headers

of the source files across his project, but his commit message simply stated:

“Enforce license”
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Table 2.7: Categories defined through open coding for the commit messages in which a
license change occurred. The results are presented as part of full the taxonomy.

Category Commits
Generic License Additions
Choosing License 0
License Added 63
License Change
License Change 9
License Upgrade 1
License Rollback 1
License Removal 19
Changes To Copyright
Copyright Added 0
Copyright Update 1
License Fixes
Link Broken 0
License Mismatch 0
Fix Missing Licensing 9
License File Modification 0
Missing Licensing 1
License Compliance
Compliance Discussion 0
Derivative Work Inconsistency 0
Add Compatible Library 0
Removed Third-Party Code 1
License Compatibility 0
Reuse 0
Dep. License Added 0
Dep. License Issue 0
Clarifications/Discussions
License Clarification 0
Terms Clarification 0
Verify Licensing 0
License Agreement 0
Request to License Project
Licensing Request 0
License Output For The End User
Output Licensing 0

37



In the case of License Removal, we observed that licenses were removed due to code

clean up, files deletion, and dependencies removal. For example, we observed the removal

of the GPL-2.0 license with the following commit message,

“No more smoketestclientlib”

It indicates the removal of a previously exploited library. Additionally, licenses were

removed as developers cleaned up the project.

Fix Missing Licensing is related to a license addition, but it occurred when the author

intended to license the file, but forgot either in the initial commit or in the commit

introducing the licensing. For example, one commit message stated:

“Added missing Apache License header.”

This indicates that the available source code may inaccurately seem unlicensed.

Additionally, License Upgrade refers to license change, where the version of the license

is modified to the most recent. In this particular case, we observed a change from GPL-

2.0+ to GPL-3.0+. The commit message stated:

“...Change copyright header to refer to version + 3 of the GNU General Public

License and to point readers at the + COPYING3 file and the FSF’s license

web page.”

While the commit message describes the version change, it does not supply rationale.

Instead, the message is a log of the changes.

An important observation from the second round of our analysis was the ambiguity

of commit messages. For example, we observed a commit classified as Copyright Update

stating,

“Updated copyright info.”

However, this commit corresponded to a change in licensing from GPL-2.0 to LGPL-2.1+.

This case both illustrates the lack of detail o↵ered by developers in commit messages, and
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it illustrates that an update can be more significant than adding a header or changing a

copyright year.

Since we sampled commits from all Java projects, it was infeasible to sample a larger

representative number of commit messages. Thus, augmenting the second round by con-

sidering commits in which an atomic license change occurred benefited the taxonomy by

targeting relevant commits better. However, we were able to sample statistically represen-

tative sample sizes in this work due to pre-filtering the projects. The results corroborate

the representativeness, since we observed the same categories.

Another important observation that appears to support the supposition from our trace-

ability analysis that developers remove licensing related issues from the issue tracker is

that we found links that were removed in the period of time between our crawling and our

data analysis. These were categorized as Link Broken and amounted to 45 of the overall

issues. It is also possible that these cases represent developers that utilize external bug

tracking systems as well.

Summary for RQ4. While our open coding analysis, based on grounded theory,

indicated some lack of documentation (e.g., prevalence of false positives) and poor quality

in documentation with respect to licensing in both issue tracker discussion and commits

notes, we formally categorized the available rationale. We also found that the rationale

may be incomplete or ambiguously describe the underlying change (e.g., “Updated copy-

right info” representing a change between di↵erent licenses). Finally, we observed that

issue trackers also served as conduits for project authors and external developers to discuss

licensing.

2.2 Practitioner Perspective on Initial Licensing and Chang-

ing Licensing

At some point, the creators of free/open source software must choose a license that: 1)

expresses the developers’ philosophy; 2) meets their deployment goals, and 3) is consistent
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with the licenses of the components reused by that software. However, choosing a license

is not an easy process. Developers do not necessarily have a clear idea on the exact con-

sequences of licensing (or not licensing) their code under a specific license; for instance,

developers ask questions on Question & Answer (Q&A) websites looking for advice on

how to redistribute code licensed with a dual license among the other issues (e.g., ques-

tion 2758409 in Stack Overflow [110] and question 139663 in the StackExchange site for

programmers [140]). Also, the problem of license incompatibility between components is

not trivial (see [105] for a detailed description of this problem).

During the evolution of a software system, its license might change. In Chapter 2.1, we

empirically showed—for software hosted in GitHub— license changes occur in free/open

source software. Stemming from the results that we previously captured by analyzing

licensing and their changes in software repositories [152], the goal of this work is to under-

stand when and why changes in licensing happen. Specifically, this work reports the results

of a survey of 138 developers with the aim of understanding (i) when developers consider

adding a license to their project, (ii) why they choose a specific license for their projects,

and (iii) factors influencing license changes. The 138 participants are the respondents

from a set of 2,398 invitees, i.e., 5.75% of the invitees. We identified such developers by

sampling 16,221 Java projects on GitHub, and then subsetting to 1,833 projects where the

license changed over time. Of these 138 developers, 52 developers o↵ered insights to the

aforementioned questions, while the remaining developers reinforced that licensing deci-

sions are not necessarily made by all contributors, but by a subset that are the copyright

holders.

The main findings of this study are as the following:

1. Developers frequently license their code early, but the main rationale for delaying

licensing is usually to wait until the first release;

2. Developers have strong intrinsic beliefs that a↵ect their choice of licenses. Also,

free/open source foundations, such as the Apache Software Foundation, the Free
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Figure 2.2: Distribution of commits with license adoptions (log scale).

Software Foundation, and the Eclipse Software Foundation exert a powerful influence

on the choice of a license;

3. We observed that the change of a license(s) of a system is predominantly influenced

by the need to facilitate reuse (mostly in commercial systems);

4. Developers experience di�culties in understanding the licensing terms and dealing

with incompatible licenses.

Complete details of the design of the study can be found in our ICSME’15 publication

[153]

2.2.1 RQ1: When and why do developers first assert a licensing to their

project?

Fig. 2.2 shows the distribution of the number of commits in which licenses were introduced

into the projects within our dataset (e.g., a license introduced during the tenth commit will

be represented by the number 10). We present the raw commits in log scale due to outliers

from large commit histories. At least 25% (first quartile) of the projects were licensed in

the first commit (Fig. 2.2). The median was also at two commits and third quartile was

at five commits. This observation indicates that free/open source projects are licensed

very early in the change history with over 75% of the projects having a license by the

fifth commit. Assuming (but this might not be always the case) that the observed history
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corresponds to the entire project history, this result suggests that licensing is important

to developers. It is interesting to note that the mean commit number for adding a license

is 21 and the maximum value is 8623 commits. These two values are indicators of a long

tail with a small number of projects that consider licensing late in the change history.

Table 2.8 reports the responses to Question 3 (Q3) of our survey in which we tried to

ascertain the rationale behind the initial project licensing. 30.8% of developers indicated

that the community influences the initial licensing. One explanation for the high preva-

lence of this response is that certain free/open source communities stipulate and enforce

that a particular license must be used. For example, the Apache Software Foundation

requires that its projects or the code contributed to their projects are licensed under the

Apache-2.0 license. Instead, the Free Software Foundation promotes the use of the GPL

and LGPL family of licenses.

19.2% of developers chose the license with the goal of making their project reusable

in commercial applications. These responses also indicate a bias toward more permissive

licenses that facilitate such usage while restrictive licenses can discourage such usage, since

they require that a system is licensed under the same terms. This finding provides a partial

explanation for the tendency toward using more permissive licenses that we observed in

our previous work [152].

The results of our survey also show that licensing-related decisions are impacted by

inherent developer bias. 15.4% of developers supplied answers that we categorized as

moral-ethical-beliefs. An example of this category was the response by one developer indi-

cating, “I always use GPL-3.0 for philosophical reasons.” Similarly, a di↵erent developer

echoed this comment stating “I always licence GPL, moral reasons.”

Satisfying a dependency constraint (i.e., the need to use a license based on the license

of dependencies) was a relevant reason (9.6% - 7.7% picking the explicit option and 1.9%

with an “Other” response categorized as dependency constraint). This result is important,

since little work has been done to analyze licensing across software dependencies. This

problem also poses challenges in both identifying all of the necessary dependencies as well
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as the license(s) of those dependencies. Some automated build frameworks like Maven [87]

or Gradle [14] attempt to ameliorate this di�culty by listing dependencies in a file that

drives the building process (e.g., Project Object Model file in Maven). However, licensing

is not a required field in those files.

The remaining answers to this question described situations in which the license was

inherited by the initial founders and persisted over time. Also, the companies have policies

to specifically dictate a licensing convention. In the latter case, the respondent indicated

that “company (...) policy is Apache-2.0” (company name omitted for privacy). It was

also interesting to see that nobody choose a license based on requests by outsiders.

Lastly, we identified a category in licensing changes that related to license adoption

and not changes. 7.7% of developers respond to our question on licensing changes that

indicated the license was missing and it was added in a later commit. For this case, we

added (License Addition) to the category for Q4 in Table 2.8. The developers noted that

“Setting the license was just forgotten in the first place” and “Accidentally didn’t include

explicit licence in initial commit”. These cases are also important, since it can create

inconsistencies within the system or mislead non-contributors that the project is unlicensed

or licensed under incompatible terms. This result further reinforces that developers view

early license adoption as important, but the lack of a license may be a mistake.

Summary for RQ1 We observed that developers consider licensing early in the change

histories of free/open source projects. While there are projects that assert a license after

a larger number of commits, 75% of our dataset had a license asserted within the first

five commits. Thus, the data suggests that most of the projects adopt licenses among

the very first commit activities. The initial licensing is predominantly influenced by the

community to which a developer is contributing. Subsequently, commercial reuse is a

common factor, which may reinforce the prevalence of permissive license usage. While

reuse is a consideration, non-contributors do not seem to impact the initial licensing

choice. We also found that the inclusion of a particular dependency can impact the initial

licensing of a project.
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2.2.2 RQ2: When and why do developers change the licensing of their

project?

Fig. 2.3 shows the distribution of when licenses were changed in the projects within our

dataset (i.e., Some license!Some Other License). As in the previous section, we present

the raw commit number in which the changes occurred (log scale due to outliers from

large commit histories). Interestingly, the minimum value was the second commit (i.e.,

a license changed right after its addition in the first commit). More generally, 25% of

license changes occur in the first 100 commits. The median value is 559 commits while the

mean is 3,993 commits. The third quartile (2,086 commits), quite smaller than the mean,

suggests a long tail of license changes occurring late in the projects’ change histories. The

maximum commit number with a license change was commit 56,746. Numbers at this

extreme would cause the larger mean value compared to the median. Overall, the data

suggests that certain projects change licenses early in the change history; however, the

license changes are much more prevalent in later commits.

Figure 2.3: Distribution of commits with license changes (log scale).

Table 2.8 shows the responses to Question 4 (Q4) of our survey in which we investigated

the rationale behind license changes. Allowing reuse in commercial software was the most

common reason behind licensing changes (32.7%). This option was also the second most

prevalent for choosing the initial license (19.2% of developers). Combining these two

results, it is clear that the current license of a project is heavily a↵ected by its need

to be reused commercially. As previously stated, this result qualitatively supports the
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observation from our previous work [152], where we observed that projects tend to migrate

toward less-restrictive licenses.

7.7% of developers changed licensing due to community influence. This response was

a more significant factor for the initial choice in licensing, but it further emphasizes the

impact that a community can assert. One developer commented, “community influence

(contributing to Apache’s projects)”. Similarly, two developers commented about the influ-

ence the Eclipse Foundation exercised over license changes in their projects. Interestingly,

one developer reported: “I wanted to use the most common one for OSS Java projects”.

This response suggests that a particular license may pick up more momentum and spread

for a particular language. Interestingly, we observed that 7.7% of the developers were

willing to change the licensing due to requests from non-contributors. The fact that this

response was more prevalent for changing licensing than choosing the initial license may be

influenced by outsiders waiting until a project is stable or mature before inquiring about

particular licensing.

We also observed that both the change in license(s) of a dependency or using a new

dependency prompted developers to change licenses (5.8% of developers for both cases).

This observation further demonstrates the di�culty or impact that dependency can have

with respect to licensing. It also suggests that there could be inconsistencies between the

licensing of a system and its dependencies.

Moral-ethical-beliefs are also a reason for 5.8% of developers. Interestingly, we ob-

served both the beliefs of developers and beliefs of a philantropist, who is funding the

project’s development. While one developer acknowledged, “I simply wanted to pick a

’free’ license and chose Apache without much consideration,” another developer indicated

that “Philanthropic funders encouraged us to move to GPL3, as well as our own internal

reflection on this as we came to understand GPL3 better.” In the former example, it is

notable that the developer’s concern was not the impact of the Apache license in particu-

lar, but primary motivator was any free license (i.e., free/open source license). The latter

indicates that the individuals funding the projects can influence the licensing. While the
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developers were not coerced to change to the GPL-3.0, they were still influenced by the

beliefs of the individuals funding the system’s change history.

Summary for RQ2 We observed that developers change licensing later in the change

history of the free/open source projects. While there are projects that change licensing

early, our first quartile was 100 commits and third quartile was 2,086 commits, demon-

strating more substantial development occurred before changing licensing. Developers

seem to change licensing to support reuse in commercial systems. While community influ-

ence still impacts changing licensing, it appears to be a less significant factor with respect

to license adoption. Based on our survey results, the reasons behind changing licensing

are more diverse and more evenly distributed among the topics than we observed in the

selection of the initial license.

2.2.3 RQ3: What are the problems that developers face with licensing

and what support do they expect from a forge?

Table 2.9 shows the results for Questions 5-7 (Q5-Q7) that investigate both the problems

that developers experience with licensing and expected licensing support from the forge.

In Q5, we investigated the problems related to licensing that developers have experi-

enced. 23 out of 52 developers (44.2%), explicitly mentioned “No problem” in the “Other”

field. For those who recognized problems, the main reason was the inability of others to

use the project due to its license (17.3%). Since developers consider this a problem, it

suggests that developers are interested in allowing broad access to their work. However,

they may be constrained due to desired protections (e.g., patent protection from Apache-

2.0 or GPL-3.0 ) or external factors, like the licensing of dependencies (external since the

developers cannot change those licenses).

Additionally, developers indicated that choosing the correct license was di�cult for

them (13.5%). The litigious nature of the text of these licenses can lead to misinter-

pretations by developers. For example, the Apache Foundation states on their webpage

that “The Apache Software Foundation is still trying to determine if this version of the
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Apache License is compatible with the GPL” [5]. Additionally, 5.8% developers indicated

that they experienced misunderstandings with respect to license compatibility. To make

matters worse, 9.6% of the developers experienced compatibility problems with depen-

dencies. Therefore, developers not only faced di�culty while determining the appropriate

license, but they also misunderstood the compatibility among licenses and experienced

incompatibility between their project’s licensing and a desired dependency’s licensing.

Developers also experienced di�culties with their users misinterpreting or not under-

standing the terms of their license. One developer stated that “Users do not read/understand

the license, even though it is a most simple one.” This result poses two possible problems

— either users (i.e., developers looking to reuse the code) ignore the actual licensing text

or they struggle to interpret even the easier licenses. The former would demonstrate a

bigger problem in that users do not take licensing seriously, while the latter demonstrates

that the di�culty in understanding licensing is more extensive than just very litigious

licenses. Reinforcing the second scenario, another developer noted the problem was “Just

the usual challenges of talking with potential commercial partners who do not understand

the GPL at all”. By phrasing the comment with the usual challenges, it suggests that the

developer had repeated experience with partners unable to understand licensing. This is

not necessarily an isolated case, but rather potentially widespread experience shared by

other developers.

Regarding the support provided by the forge, in this case GitHub, we investigated the

impact of a feature added to help document the license of a project—see Q6 in Table

2.9. This feature was added as a response to the criticism from some practitioners [130].

While 36.5% of developers did not have access to the feature at the time they created

their project, the interesting result is that more than half (51.9%) of developers were not

influenced by the availability of such a tool. Additionally, the “Other” responses indicated

that the feature would not have had an impact on their choice (3.8%) and a single developer

specifically chose not to license her project, leading to a combined 58% of developers that

were una↵ected by this feature. Thus, our data suggests that this GitHub feature did not
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Table 2.8: Developer Involvement and Rationale for Choosing or Changing Licenses.
Survey Results for Questions 1 to 4.

Question/Answer #D %
Q1. Were you involved in changes occurring to parts of the sys-
tem that underwent license changes?

138

Yes 75 54.3%
No 63 45.7%
Q2. Were you involved in determining the license or change in
license of the project or some of its files?

138

Yes 76 53.7%
No 62 46.3%
Q3. How did you determine/pick the initial license for your
project or files in your project?

52

Dependency constraint 4 7.7%
Community influence (e.g., contributing to Apache projects) 16 30.8%
Requests by non-contributors to reuse your code 0 0%
Interest of reuse for commercial purposes 10 19.2%
Other (please specify) 22 42.3%
— Closed-source 1 1.9%
— Company-policy 2 3.8%
— Dependency-constraint 1 1.9%
— Inherit-license 3 5.8%
— Moral-ethical-belief 8 15.4%
— Project-Specific 2 3.8%
— Social-trend 2 3.8%
— None 3 5.8%

Q4. What motivated or caused the change in license? 52
License of dependencies changed 3 5.8%
Using a new library imposing specific licensing constraints 3 5.8%
Allow reuse in commercial software 17 32.7%
Requests by non-contributors to reuse your code 4 7.7%
Other (please specify) 25 48.1%
— Change-to-license-text 2 3.8%
— Community-influence 4 7.7%
— Fix-incorrect-licenses 1 1.9%
— Improve-clarity 1 1.9%
— Missing-license (License Adoption) 4 7.7%
— Moral-Ethical-belief 3 5.8%
— More-permissive-license 1 1.9%
— New-license-version 2 3.8%
— Personal-Preference/Project-specific 1 1.9%
— Private-to-public-project 1 1.9%
— Promote-Reuse 1 1.9%
— Unclear 1 1.9%
— None 3 5.8%
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Table 2.9: Problems with Licensing and Expected Support from a Forge. Survey Results
for Questions 5 to 7

Question/Answer #D %
Q5. What problems (if any) have you experienced due to license
selection in terms of code reuse?

52

My license was not compatible with desired dependencies 5 9.6%
Others were unable to use my project unless I re-licensed it 9 17.3%
A dependency changed licenses ad was no longer compatible 1 1.9%
There was a misunderstanding of compatibility between licensing terms of
two licenses

3 5.8%

Choosing the correct license was di�cult/confusing 7 13.5%
Other (please specify) 27 52.9%
— Code-unavailability 1 1.9%
— Lack-of-undersanding-by-Users 2 3.8%
— Unique-New-License 1 1.9%
— No problems 23 44.2%

Q6. Did GitHub’s mechanism for licensing impact your decision
on licensing your project?

52

Yes, it caused me to license my project 3 5.8%
No, I already planned on licensing 27 51.9%
No, I did not want to license at project creation 1 1.9%
Such a mechanism was not yet available when I created my project 19 36.5%
Other (please specify) 2 3.8%
— No impact 2 3.8%

Q7. What kind of support would you expect from the
forge/GitHub to help you managing licenses and licensing com-
patibility issues in your software?

11

None 10 90.9%
License Checker and License Selection Wizard 1 9.1%
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a↵ect/influence developers when licensing (or not) software hosted in GitHub.

Finally, we received 11 responses to our optional question (Q7) concerning whether

forges should provide features that assist the licensing of their software. Since GitHub has

been criticized by practitioners [130] for a lack of licensing consideration, this question

seeks to understand the features that practitioners expect from a forge to this end. 10

out of 11 participants answered ”None”. Of those 10 developers, only one explained that

a third party tool should handle license compatibility analysis. The respondent indicated

that the ideal tool would utilize the various forges and build frameworks to be a dependency

graph of license compatibility stating the following:

“This is the job of a 3rd party tool IMO since neither github nor forge do or should

own all open source deps. A 3rd party tool ideally would know about github, bitbucket,

etc + poms and pom license fields, etc and form a comprehensive dep-graph license

compat view given a node.”

Another developer noted, “None. From our perspective it really isn’t that hard to put

copyright and licence notices in our source files.” This comment is interesting since it

conflicts with results from Q4, where developers indicated that licenses were sometimes

missing or an incorrect license was used.

The only developer wishing support from the forge indicated a desire for a license

compatibility checker and a license selection wizard. This developer commented the desire

for two particular features stating the following:

“1) License compatibility checker - verify the license of your project with the license of

included support software (gems, libraries, includes) and alert user to potential conflicts.

This could also be used for the use case that you want to adopt a piece of software to

add to an existing project - is it compatible? 2) License selection wizard - when you

begin a project, the wizard can ask you a series of questions (do you want to allow

commercial use, do you require mods to be licensed the same as original, etc) and then

suggest a license for the project.”
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While only one developer wanted support from the forge, this single developer’s comments

seem to address many of the problems and di�culty with respect to licensing for which

we found evidence in Q6 of the survey.

Summary for RQ3 Although 44.2% of the developers surveyed indicated that they

have not experienced problems with licensing, the remaining respondents provided a di-

verse set of answers. They primarily were related to license incompatibility or di�culty

understanding the licensing. Lastly, the survey indicated that GitHub’s mechanism to

encourage or aid in licensing was not necessary or unavailable to the surveyed developers.

We also found that most developers did not expect support from the forge, but one did

indicate the desire for a third-party tool. However, one developer did express interest

in forge’s support, and the comments aligned with our results regarding problems that

developers actually faced.

2.3 Discussion

Lack of Traceability of Licensing The analysis of the commit messages and issue

tracker discussions highlighted that the information o↵ered with respect to licensing

choice/change is very often quite limited. A developer interested in reusing code would

be forced to check the source code of the component to understand the exact licensing

or to ask for clarification (using the issue tracker, for example). Additionally, the reason

behind the change is not usually well documented. This detail is particularly important

when a system uses external/third-party libraries, since a license may change during the

addition or removal of those libraries.

The lack of traceability of licensing changes is also important for researchers inves-

tigating software licensing on GitHub. While we cannot generalize to other features, it

does suggest that commit message analysis may be largely incomplete with respect to

details of the licensing-related changes made during that commit. One way to achieve

this for developers is to take advantage of summarization tools such as ARENA [126]
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and ChangeScribe [96, 116]. While ARENA analyzes and documents licensing changes

at release level, ChangeScribe automatically generates commit messages; however, using

ChangeScribe would require extending it to analyze licensing changes at commit level.

Another option is that forges (and software tools in general) verify that every file con-

tains a license and that every project properly documents its license (this feature could

be optional).

Lack of Clear or Standard Way to Document the License Similarly, we ob-

served that external developers would request a license, since the projects appeared to be

unlicensed; however, a subset of these requests were due to licensing being attributed in

a di↵erent manner than external developers expected (e.g., part of the gemspec file for

Ruby projects and not a LICENSE file). We also observed developers adding license files

to parent directories as opposed to headers in the source code as well as appending the

license name to the license file (e.g., LICENSE would be renamed LICENSE.MIT). This way

of declaring a license is particularly used in GitHub project where the system asks the

developer(s) to choose a license, when a project is created, and then it creates the LICENSE

file in the project’s root directory.

These observations indicate a lack of standardization in how licensing is expressed

among both projects in the same language and projects across di↵erent languages. It

suggests that developers need a standardized mechanism to declare the license

of a software project. Third-party tools or forges could support developers by

maintaining this standardized documentation automatically.

Intrinsic Beliefs of the Developers. The first important observation is that the

participants have a bias toward free/open source licensing from an ethical perspective.

52% of the respondents indicated (Q6) that they planned on licensing the project prior to

creation; only 6% of the respondents (Q6) were influenced to license their project due to

GitHub’s licensing feature (i.e., a combo list with license names). Similarly, the “Other”

responses regarding the reason for a project’s initial licensing (Q3) indicated a sense of

obligation. For example, one developer said: “It was the only moral and ethical choice”.
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Delayed Licensing. Developers do not necessarily have to decide to open source from

the beginning and delay doing it. While we empirically observed early license adoption

in general, one developer wrote in an email that they waited to choose a license: “this

project just didn’t have a license on day 1 and it was added at first release.” Similarly, one

developer responded to the survey that licensing changed due to “change private to public

project”. This observation suggests that licensing is still important to these developers,

but it may not be considered relevant until the project reaches a certain level of maturity.

Thus, there is the need for tools to add and verify licensing information of a system at

any given point in time.

Community and Organizational Influence. Our results indicate that communi-

ties, and in particular free/open source foundations (such as the Apache Software Foun-

dation, Eclipse Foundation, and the Free Software Foundation) exert powerful influence

on the choice of a license by its developers. About 31% of the participants responded that

initial licensing is done by following community’s specific licensing guidelines. Improving

or developing on top of existing software from a foundation mostly requires using the same

license aligning with foundation’s philosophy.

Di�culty Understanding Licenses. The survey stresses the need for aid in ex-

plaining licenses and the implications of their use. About 20% of the respondents high-

lighted that licensing is confusing and/or hard to understand (Q5): 13.5% of respondents

indicated that developers—both the authors and the users—find licensing confusing or

di�cult (Q5), and 6% of developers also noted that there were misunderstandings be-

tween license compatibility. Additionally, one “Other” respondent stated, “Users do not

read/understand the license, even though it is a most simple one,” which suggests that

developers experienced misunderstanding whether on their own or by users.

Reuse for Commercial Distribution. The results regarding licensing changes in-

dicated that commercial usage of code is a concern in the open source community. We

found that practitioners used permissive licenses to facilitate commercial distributions, in

some cases they change to a more permissive license for this purpose.
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Dependency Influence. A software system must choose its dependencies to avoid

conflicts due to incompatibilities between the system’s license(s) and the depending com-

ponents’ license(s). Similarly, others will choose to use a particular software system based

on its license. Thus, the change of a license in a system has the potential of creating

a chain reaction: those that use it might need to change their license, or drop it as a

dependency; for the system changing license, the potential pool of reusable components

will change accordingly—it might need to drop a di↵erent dependency, or it might be able

to add a dependency with a previously incompatible license.

Forge’s Support. Most of our respondents do not expect any licensing support from

the forge. It is likely that the individuals that benefit the most from licensing support in

the forge are those who are looking to reuse software. This is supported by our results

that indicate that the license(s) of dependencies is an important consideration, since it

might impact the ability to reuse the dependency or require a change of the license(s) of

the software that uses it. Thus, compliance-oriented features may aid developers to ensure

they can legally reuse software.

Finally, our results demonstrate that external factors like community, license preva-

lence, and licenses of dependencies have an important impact on licensing.

A feature provided by the forge to support domain suggested licensing could benefit

practitioners. Since developers indicated that licensing is di�cult, a more informative fea-

ture could help practitioners determine the appropriate licensing. For instance, the current

licensing support feature provided by GitHub feature is not particularly informative for

developers. Basically, it provides a link to choosealicense.com, but does not provide

further guidance to the developer. Also, it does not cover issues related to compatibilities

at all. Moreover, applications within the same domain may be utilizing some of the same

dependencies or require similar grants for redistribution and reuse. To better support

developers, a forge could include a domain analysis feature to detect similar applications

[120] and suggest to the developer/maintainer the license used by similar systems (if no

other criteria has been considered, such as community or dependencies).
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Chapter 3

Licensing Bugs

In this chapter, we present a new type of bug that we coined as licensing bug, which impact

the ability to distribute software and reuse existing software. Prior empirical studies [85,

100, 103, 105, 135, 136, 137, 149, 152, 153] showed that (i) developers face di�culties

in choosing the appropriate license for their work as well as in understanding the legal

implications behind licenses, and (ii) incompatibilities between licenses can represent a

serious threat from a legal perspective for both free/open source and commercial software.

These two pieces of evidence combined suggest that licensing issues are likely to occur in

software projects and that their e↵ect could be non-negligible. However, there is limited

evidence in the literature about these licensing issues that developers generally face and of

their legal/technical implications [100]. We refer to such issues as licensing bugs, mostly

related to legal incompatibilities of licensed software and to the breach of guidelines that

can prevent software from being distributed or modified (e.g., by preventing a patch from

being accepted). While licensing bugs may not be as pervasive as other types of bugs,

they have the ability to block development and prevent software from being released, and

in the worst case, may result in monetary implications.

In order to understand these licensing bugs, we preformed a large-scale qualitative

study aimed at characterizing licensing bugs, with the goal of understanding the types of

licensing bugs developers face, their legal and technical implications, and how such bugs
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are fixed. In this chapter, we aim at answering the following research question:

• What are the types of licensing bugs faced by developers?

Specifically, we investigate the types of licensing bugs that developers discuss (and try

to solve) in various sources of communications. We aim to define a catalog of licensing

bugs, which includes the impacted stakeholders, the implications and ability to address the

licensing bugs. To this aim, we mined 59,426 discussions (from issue trackers and mailing

lists) carried out by software developers and likely related to licensing bugs. Then, we

manually analyzed — via an open-coding procedure — a statistically significant sample

of 1,200 discussions, randomly selected from the initial set of 59,426 discussions. During

the manual analysis, we transcribed the type of licensing bugs, their implications, and

possible fixes.

As a result of the open coding, we present a catalog of seven categories and 21 sub-

categories of licensing bugs. During our analysis, we observed licensing bugs that had

not been previously addressed in the research community. These licensing bugs relate

to jurisdiction of laws, non-source/non-binary artifacts, and ecosystem policies. We also

observe that the lack of freeness can prevent the distribution of software. In the context

of this paper, freeness refers to a community’s expectations for a license not to impose

unreasonable restrictions on the distribution and the modification of software. In the

global scope of free/open source software, freeness refers to the utilization of a free/open

source license; however, a community can define more stringent guidelines (i.e., not all

free/open source licenses may be viewed as free by a particular community). The term

freeness is not equivalent to gratis (i.e., being without charge or free in a monetary

sense), but it refers to the ability for others to reuse, redistribute, and modify some entity

(typically but not limited to source code and binaries). Additionally, we observed that

the stakeholders related to licensing bugs vary from developers to patch integrators and

lawyers.
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3.1 Design of Study

We aim at addressing the following question: What are the types of licensing bugs faced

by developers? We investigate licensing bugs in FOSS projects, by characterizing them

in terms of types, di�culties they pose, their implications on legal and technical aspects,

and the ability to (or the extent to which) licensing bugs can be addressed (or resolved).

To this, we mined developers’ discussions from (i) issue trackers hosted on GitHub [12]

and Bugzilla [55], and (ii) mailing lists specialized in legal aspects of software products.

All the data used in this study are available in the attached appendix [81].

We defined a catalog of licensing bugs, highlighting their type, the stakeholders that

are impacted by the bugs, the implications of the licensing bugs, and the extent to which

they can be addressed.

3.1.1 Identification of Candidate Licensing Bugs from Developers’ Dis-

cussions

The issue trackers and mailing lists provided us with complementary insights with respect

to licensing bugs. The issue trackers facilitate reporting of the bug, while the mailing

lists provide deeper discussion related to licensing bugs with respect to both legality and

community guidelines. We performed an open coding of the data source to build a catalog

of licensing bugs.

We focused on mailing lists dealing with the discussion of legal aspects of software

products, and in particular: Apache’s legal-discuss [47], Debian’s debian-legal [57], Fe-

dora’s fedora-legal-list [71], Gnome’s legal-list [72], and OpenStack’s legal-discuss [79]. All

the considered mailing lists have publicly available archives storing all messages exchanged

through them. Once the archives were downloaded, we automatically identified discussions

linking each message to the corresponding email thread by exploiting the “Message-id”

field in the “In-reply-to” field. This allowed us to analyze each message in the context of

the discussion, thus favoring an easier interpretation of the legal issue being discussed. In
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total, we had 45,019 candidate messages with licensing bugs.

Concerning the issue trackers, we mined the 136 Bugzilla issue trackers listed in the

Bugzilla’s installation list [51]. To identify issues relevant to licensing, we queried the

Bugzilla’s search functionality using the keyword “license”. This led to the selection of

2,125 candidate licensing bugs. Additionally, we mined the issue trackers of 86,032 projects

hosted on GitHub. We selected projects that (i) are not a fork (to avoid duplications),

and (ii) have at least one star, watcher, or fork (to perform a first cleaning of “toy”

projects) [113]; we then locally cloned these repositories and filtered out all projects with

less than fifty commits, again with the goal of removing trivial projects. Out of the selected

258,057 projects, we considered 86,032 projects that had an issue tracker. In particular,

we crawled the candidate licensing-related issues (including the issue title, description,

metadata, and related discussion) from each issue tracker by using a keyword search

mechanism exploiting specific licensing keywords (e.g., copyright) or license names (e.g.,

GPL) [152]. This keywords-based search resulted in 12,282 candidate licensing-related

issues.

After gathering the data, we randomly selected issues and messages, and performed

a pre-coding. During this step, all authors coded 100 randomly selected issues to create

an initial set of codings, and to ensure that they were utilizing a consistent criteria when

coding issues and messages. Since we observed a high percentage (approximately 67%)

of false positives in this initial pre-coding (i.e., discussions unrelated to licenses), we

performed a pre-filtering to remove false positives. To this aim, one author read a randomly

selected issue or message to determine whether it contained a licensing bug. If the author

concluded that it was a false positive, the issue or discussion was discarded from the

set of issues/messages to be coded. This process was performed repeatedly for each data

source until reaching 400 documents containing a candidate licensing bug from each source,

for a total of 1,200 issues/messages. The number of 400 documents per data source

represents a statistically significant sample with 95% confidence level and a confidence

interval of ±4.42% for Bugzilla issues, ±4.82% for GitHub issues, and ±4.88% for mailing
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list messages (we ensured having a confidence interval smaller or equal to ±5%).

3.1.2 Definition of the Catalog of Licensing Bugs

To devise our catalog of bugs, we manually inspected the 1,200 selected mailing list and

issue tracker discussions (from now on, generally referred to as “discussions”) via an

open-coding procedure [124]. The goal was to categorize the type of licensing bugs. We

divided the 1,200 documents among the authors such that each document was coded by

at least two-authors for two-author agreement, obtaining a list of 21 initial categories

(each discussion belonging to a single category). While we had attempted to filter data

to remove false positives, there were still 78 documents identified as false positives (6.5%)

and 21 tagged as unclear (1.83%). These two categories are omitted from the presented

catalog in the results.

Each discussion was randomly assigned two of the authors to independently categorize

it. After each round, the two authors discussed and resolved conflicts, and generated

categories from the codings. Before solving conflicts, the coding achieved an agreement

ratio of 65%. To determine whether such agreement level was due to chance, we computed

the Cohen’s kappa inter-rater agreement coe�cient [94], which resulted to 0.53 (moderate

agreement).

After, we defined a higher level of abstraction over the set of 21 initial distinct cate-

gories using a card-sorting approach [139]. To this aim, the 21 categories were presented

in a spreadsheet, and two of the authors independently reordered the categories and clus-

tered them. After that, they discussed the clusters they had created, and converged to

a common solution. In the end, this resulted in grouping license bugs into seven distinct

categories, listed in the 21 sub-categories previously identified (Table 3.1).
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3.2 Catalog of Licensing Bugs

We present and discuss the catalog of licensing bugs. Specifically, we present a description

of each licensing bug, the stakeholders most directly impacted by the particular licensing

bug (i.e., the individuals most directly responsible for them and their remediation), the

implications (both legal and technical) of the bugs, and the extent to which they can

be addressed/fixed. Also, we provide examples of discussions related to that particular

category of licensing bug. While previous studies on licensing [153] mostly focused on

developers, we consider di↵erent stakeholders impacted by the bugs:

1. Integrators: developers that are reusing free/open source software within their own

systems;

2. Package Maintainers: developers responsible for maintaining packages and integrat-

ing patches or bug-fixes into existing distributions of software;

3. Distributors: any individual or entity distributing software, which can be a single

developer, a free/open source foundation/community (e.g., Apache), or a company

(e.g., IBM);

4. Developers: this category relates to developers in general, without making specific

distinctions;

5. Lawyers: interpreting licensing in terms of the existing laws or responsible for drafting

new licenses;

6. Lawmakers: people responsible for writing and passing laws;

7. Community: either people involved in a specific open source community, or the open

source community as a whole;

8. Trademark Holders: companies or individuals that have trademarked their name or

logo (e.g., as a means of brand protection).
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The taxonomy is composed of 21 distinct sub-categories organized in 7 distinct high-

level categories (Table 3.1). Due to space limitations, we only discuss a subset of the

sub-categories (14). The complete taxonomy description and frequencies of each category

can be found in the attached appendix [81]. In the reported examples, we have adjusted

formatting (e.g., removing mid-sentence newlines) in some cases, but the wording remains

unchanged. It is important to remark that the results discuss the interpretation of de-

velopers and/or legal practitioners. Therefore, it is possible that the legality of these

interpretations or discussions may change (e.g., new interpretations can cause new le-

gal precedents in the U.S.A.), or the enforceability may change in di↵erent jurisdictions.

Our results have the purpose of discussing these interpretations and implications from

the perspective of the developers and legal practitioners within particular open source

communities.

3.2.0.1 Laws and Their Interpretations

This category comprises licensing bugs related to di↵erent interpretations of licenses pro-

vided by di↵erent people and organizations as well as to how licenses are interpreted under

di↵erent jurisdictions.

3.2.0.2 What is Copyrightable?

Description: Developers experience issues when trying to understand the implications or

scope of copyright coverage. We observed discussions regarding copyright and emulation,

legal consequences of game console emulators, executed programs, or donated code. We

also observed discussions related to textual updates to copyrights, e.g., copyright year

upgrade. We found that the scope of the coverage is not necessarily clear for developers.

While software is copyrightable (the basis of free/open source software licensing), higher-

level design and ideas may fall out of the scope of copyright law. Potential disagreements

on the coverage of copyright protection can potentially lead to the infringement of another
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Table 3.1: Catalog of Licensing Issues with (# of Discussions).

Laws and Their Interpretations (169)
What is Copyrightable? (20)
What is a Derivative Work? (30)
What is the Jurisdiction? (14)
License Interpretation (44)
Clarification Issues (61)

Policies of the Ecosystem (133)
Community Guidelines (34)
Freeness: can I reuse it? (99)

Potential License Violations (129)
Compatibility between Licenses (86)
Other Types of License Violations (43)

Non-source Code Licensing (45)
Documentation Licensing (16)
Font and Media Licensing (29)

Licensing Content (485)
Incorrect Licensing (37)
License Inconsistencies (183)
Licensing Missing (207)
License Textual Issues (46)
Outdated/Obsolete Licensing (12)

Other Intellectual Property Issues (63)
Rights to Use a Contribution (35)
Patent-Related Issues (20)
Trademark (8)

License Semantics (76)
Dual Licensing (16)
License/Clause Implication (60)

entity’s copyright. In an example below, we demonstrate the di�culty to understand the

coverage of copyright for game emulation.

Stakeholders: Developers and lawyers.

Implications: It has been demonstrated that copying as few as 27 lines of code can con-

stitute copyright infringement [123]. Violating these laws can result in legal action against

developers and prevent the distribution or reuse of the system violating the copyright (see

the subsection on License Violation). However, the scope of copyright law (similar to

patent and trademarks) can only be addressed by lawyers, and to truly define the scope

it would require lawmakers to more explicitly or rigidly define the extent of copyright; al-

ternatively, in precedent-based legal systems, prior court rulings may also serve to define

the scope and implications of copyright.
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Examples: In terms of emulation, one individual commented in the thread that emulation

of the games themselves can be illegal,

“That second case is pretty much where we stand with a *lot* of game console em-

ulators out there – the only way to get data to use with them is to break the law.

Wonderful.” [68]

However, another developer posits whether it still complies with copyright law explaining:

“Is it illegal if I own a game cartridge, and dump it? That part probably isn’t; US

copyright law, at least, give me permission to make a backup copy.” [68]

Such an issue requires legal consultation since emulations could be legal in certain cases,

but creating a game emulator could violate a company’s IP. Thus, the determination of

freeness for an emulator would depend upon the dependencies to run the emulator and

the potential IP infringement.

3.2.0.3 What is a Derivative Work?

Description: A derivative work is partially owned by the copyright author on which it

is originally based. In order to be able to distribute a derivative work, its creator needs

a license from the work on which it is based. In fact, one of the most important features

of free/open source licenses is that they should allow the creation and redistribution of

derivative works. However, some licenses place important restrictions on such redistri-

bution (e.g., the GPL family of licenses requires that any derivative work must also be

distributed under the GPL). Therefore, when a software system reuses another product,

the question on whether the former is a derivative work of the latter is critical. This issue

might a↵ect not only software, but also non-software artifacts, like images.

Stakeholders: Distributors, package maintainers, integrators.

Implications: If a product A is a derivative work of product B, the license of product

B can impose restrictions on how product A can be used and licensed to others. Such
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restrictions could mean that product A might not be used or licensed as expected. Or,

if product A is redistributed, it could result in legal liability due to the risk of copyright

infringement. On the other hand, if product A is not a derivative work of product B,

it might be possible to redistribute product B along product A, as long as the license

of product B is properly satisfied. Thus, evaluation of whether a work is considered

derivative work can either result in license violations or incompatibilities if the derivative

work is considered non-free or subject to the terms of an incompatible restrictive license.

To cope with such bugs, when possible developers can use/ask for license exceptions [151].

Examples: Some systems provide clarifications on whether something is considered a

derivative work of another. For example, there has been a long discussion on what is a

derivative work of the Linux kernel. Linus Torvalds clarifies this in the COPYING file,

“NOTE! This copyright does not cover user programs that use kernel services by normal

system calls - this is merely considered normal use of the kernel, and does not fall under

the heading of “derived work”. Also note that the GPL below is copyrighted by the

Free Software Foundation, but the instance of code that it refers to (the Linux kernel)

is copyrighted by me and others who actually wrote it.” [77]

However, there is still plenty of disagreement on this issue [148].

In a discussion regarding firmware being derivative work, one individual cites US copy-

right law and how it defines derivative work and collections. One developer replies:

“However – by this definition, the linux kernel is very definitely a derivative work, and

the firmware is content which has been incorporated into the kernel.” [63]

The developer that presented the legal text follows up saying:

“The kernel (I assume as a whole) is a derivative work of what? I would argue that the

kernel is a compilation of what executes on the host CPU with other parts (boot logos,

fonts, and firmware data). The executable part may be a derivative in part of Adam

Richter’s code, but that does not necessarily make the kernel as a whole a derivative

of his work.” [64]
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The di↵erence in interpretations demonstrates the di�culty distinguishing the extent that

derivative work applies as well as distinguishing between derivative work and collective

work.

3.2.0.4 What is the Jurisdiction?

Description: We observed licensing bugs related to the di↵erences in laws across coun-

tries. Copyright, trademark and patent laws are national in scope. While the World

Intellectual Property Organization (WIPO) attempts to unify intellectual property law

around the world, specific issues of the law might be di↵erent from one country to an-

other. Also, software is a↵ected by other laws, such as restrictions on trade. For example,

moral rights are enshrined in the copyright laws of Europe and Canada, but they are not

present in the copyright laws of the United States.

Stakeholders: Distributors, developers, and lawmakers.

Implications: These di↵erences might not be large, but they might have an important

impact on the ability to create and distribute software.They might also have an impact on

any potential litigation (and the choice of jurisdiction). In fact, we observed that clauses

related to choice of jurisdiction were a controversial topic within Debian in terms of their

impact on software’s freeness. However, the distribution may be impacted by external

factors like trade restrictions to a particular country or distribution of what a country

considers sensitive material. While organizations or communities may want to facilitate

global reuse, the organizations and individuals must comply with these trade laws. Also,

government funded work (e.g., supported by a grant) may require release of the software

for public domain domestically (i.e., within the funding country), but the government

may impose restrictions internationally, which can only be addressed by policy changes

by the funding entity. Thus, these cases are predominantly external to developers, but

impose restrictions that must be considered.

Examples: In debian-legal, there is question regarding a texture created by NASA and
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the possibility to reuse the texture. While one person indicates that the copyright would

depend on whether it was done by NASA itself or a contractor (e.g., a contractor of the

Jet Propulsion Laboratory), another person comments:

“While a work may be in the public domain in the U.S., it may be under copyright

elsewhere. So, e.g., while works by the U.S. government may be public domain in

the U.S., they may remain under copyright in other countries. However, the U.S.

government may license their works and thus give permissions with respect to these

foreign copyrights.“ [62]

Thus, the copyright issues become further complicated by the fact that government created

works might only be released domestically into the public domain [46].

Another post in debian-legal suggests that Gentoo was being utilized as a base dis-

tribution in Cuba, since Debian is blocked due to the US embargo with Cuba. Another

person responds:

“It is my understanding that it is illegal under US law to knowingly export software

(free software or otherwise) from the US to Cuba, or to Cuban nationals.” [59]

Even though Gentoo is being utilized instead of Debian, it would seem that both distribu-

tions would not be legally distributable to Cuba. Further follow-up discussion discusses

that Debian is not illegal in Cuba, but the knowing distribution to Cuba is illegal. The

discussion highlights the di�culty understanding the implications of embargoes on soft-

ware and the extent to which (if at all) a distributor could face legal repercussions if that

distributor knew that the software would be distributed to an embargoed country.

3.2.0.5 Policies of the Ecosystem

This category comprises licensing bugs related to the licensing policies of specific open

source communities, e.g., the Apache Software Foundation, Debian, the Eclipse Software

Foundation, or Fedora. The bugs are originated from how a particular community defines

the freeness of software, which can be stricter than utilizing a free/open source license,

and how the community interprets licenses based upon their policies.
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3.2.0.6 Community Guidelines

Description: This category relates to discussions about both the creation and modi-

fication of the guidelines of the ecosystem. These decisions determine the vetting of a

software license’s compatibility with community goals as well as manifests the perspec-

tive of a particular community towards free/open source development. Additionally, this

category pertains discussion related to creating new licenses in order to comply with a

community’s guidelines.

Stakeholders: Community and lawyers.

Implications: Issues in this category have wide reaching repercussions and impact on

a community. Unlike other licensing bugs, these reflect the collaborative e↵ort within

a community to enforce a particular licensing policy. The community needs to protect

itself from legal liability of distributing potentially incompatible code, while also forging

collaborations between the open source community and corporations. Thus, lawyers are

also important in designing the guidelines to legally protect the community from poten-

tially violating licensing. The agreed upon guidelines will have a long term impact in the

community and will serve as a contract that specifies what licensing actions are appropri-

ate and which are not. As a consequence, they have the potential to restrict the pool of

software that can be reused/integrated into a new product.

Examples: We observe an issue with Eclipse’s community restrictions on software licens-

ing. To circumvent the restriction, end-users assume the burden to properly configure

their environment to utilize that software. The developer states:

“A number of projects would like to integrate with external libraries under licenses not

compatible with the EPL (LGPL, ...). What can be done in order to help end-users

come up with a working environment easily? Clearly, * The LGPL library must be

installed from a source hosted outside Eclipse * A CQ must be filed indicating the

dependency as ”works-with” or ”requires” But how can end-users or other clients be
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instructed to get the complete environment going?” [52]

This shows the di�culty in meeting the needs of developers, while also facilitating reuse.

The community guidelines impose practices to impede the use of any restrictively-licensed

(e.g., LGPL, GPL, etc.) software. The community belief is that this mitigates licensing

issues/risks. However, the example also demonstrates that risk-mitigation may come at

the cost of more di�culties for end-users.

3.2.0.7 Freeness: can I reuse it?

Description: Some of the most important questions to ask about a given software system

are: What is its license? Is this license giving me the rights to incorporate the software

into my own product? For example, the Free Software Foundation (FSF) and Open Source

Initiative (OSI) define what, in their opinion, free and open source software (respectively)

is. Furthermore, the FSF has specific guidelines on whether software with various licenses

can be combined/derived along software licenses under the FSF licenses. Debian’s DSFG

indicates what are the characteristics of licenses for software to be integrated in Debian

distributions.

This category a↵ects the integration of many types of artifacts, such as source code,

images (icons, logos), databases, text files, etc. Ultimately, the creation and enactment

of similar guidelines by anybody developing software (whether free/open source or not)

provides an opportunity for an up-front discussion on what legal risks an organization is

willing to take, and, as a consequence, the pool of artifacts that can be reused.

Stakeholders: Integrators, package maintainers, & distributors.

Implications: In the case of Debian and Fedora, software with non-free licenses cannot be

included in the main distribution and must be distributed separately. We observe one type

of discussion relating to the freeness of free/open source licenses, in particular the GPL,

QPL, AGPL, and Artistic License. Additionally, it is important that the entire system

meets the community guidelines, including the needed dependencies. However, source code
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and binaries are not the only artifacts evaluated. Since IP clearance/evaluation extends

to all bundled artifacts (not only source code and binaries), a non-free image or font could

prevent the distribution of the software. Last, but not least, the community discusses

specific clauses concerning how to deal with “Freeness” requirements.

Examples: We observe in RedHat’s Bugzilla tracker that a license of mpage prevents

source code modification, which makes the license non-free. The reporter of the bug

states in the first two comments on the issue tracker:

“mpage included non-free code, Please see Debuan [sic] bug number “805370” details.

I think that this package be a↵ected by debian bug number “805370”...Blocking FE-

Legal, This is license problem.” [53]

In summary, the statement above highlights the impact of the licenses in terms of one’s

ability to re-distribute the software.

We also observed that the “Choice of Venue” clause, which stipulates the location for

a lawsuit regarding license infringement, sparked an extensive debate, since it imposes an

additional restriction on developers reusing the software. At the same time, the absence

of such a clause could penalize the original developer.

During the debate regarding which side can be discriminated against, one developer

cited the opposing situation to a frivolous lawsuit by the original author by stating:

“Whereas the alternative may be that licensors are unable to a↵ord the enforcement

of their license. Would you prefer to discriminate against them?” [58]

While the goal is to prevent disenfranchising someone due to his or her financial status,

the “Choice of Venue” clause is inherently di�cult to evaluate as it is orthogonal to this

factor.

3.2.0.8 Potential License Violations

This section discusses the typical licensing bugs arising because licensing clauses have been

violated, e.g., due to integration with components containing incompatible licenses.
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3.2.0.9 Compatibility between Licenses

Description: This category is related to issues relating to reusing software with di↵er-

ent licenses. These issues arise when a developer utilized dependencies or reused source

code that is not compatible with either the declared license, or with the license of other

reused components. We observe incompatibilities between the license of dependencies to

the systems reusing (or seeking to reuse) them. Additionally, a dependent artifact may

change its licensing, possibly introducing a licensing incompatibility. These bugs also dis-

cuss the compatibility of licenses to understand under what condition software under two

licenses can be used together (if all). These compatibility issues may also be related to a

community’s standards, e.g., Apache Software Foundation requiring the Apache Software

License for submitted contributions.

Stakeholders: Integrators, package maintainers, and distributors.

Implications: These incompatibility issues impact the ability to distribute the software,

since at least one license of reused software is being violated from the incompatibility.

These issues will either stall a patch or prevent a submitted system from being distributed

within a community. These bugs can require substantial e↵ort to fix, depending on the

available replacement options for the violating code or the ability to migrate the software’s

license in order to be compatible with the reused code. To address these issues, the

original developers need to remove the incompatible code/binary and find an alternative

implementation that is licensed under a compatible license. In the case of a community’s

standard, it can also be problematic, since migrating the system’s license can introduce

other violations between dependencies or violate the community guidelines. For example,

a project belonging to the Apache Software Foundation cannot migrate towards the GPL

license. Additionally, a license change can prevent newer releases of a certain library

from being integrated and forcing developers to rollback to a compliant release of that

library. Thus, these issues are not always trivial to fix and can cause a longer delay for a
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contribution to be accepted.

Examples: In an issue on GitHub, a developer comments:

“As mentioned in twbs/bootstrap#2054 as well as here, Bootstrap can not be used

within any GPLv2 project as the Apache License 2.0 is incompatible. This just needs

to be re-licensed under the GPLv3 to resolve this issue.”[50]

The project’s owner acknowledges that the license will be updated during the current

rewriting of part of the code base. Interestingly, another respondent follows up saying

that the compatibility is based on the Free Software Foundation’s interpretation and the

Apache Software Foundation di↵ers; however, the assertion is either misinterpreted or

outdated as the Apache Software Foundation does not assert compatibility with GPL-

2.0 [74].

Similarly, we observe an issue in the Apache mailing list stating:

“Be advised that at least 5 Apache projects appear to depend on a third party library

known as “greenmail” which advertises itself in may [sic] places as being licensed under

the ASL 2.0, however most of the greemail [sic] source files contain headers claiming

LGPL” [48]

The issue relates to a dependency for unit test code (greenmail) and whether it is accept-

able under Apache’s licensing guidelines. The community discussed whether the depen-

dency is acceptable, since the code is not bundled and not distributed. However, the issue

was resolved in a new release of greenmail updating its licensing to ensure that all files

were licensed under Apache-2.0.

3.2.0.10 Other Types of License Violations

Description: This category addresses issues that are considered license violations but

do not fall into the prior category. These bugs are serious in nature and usually require
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removing or rewriting code. Otherwise, it might not be possible to continue distributing

the product. These license violations can also be related to several other categories in our

catalog, e.g., incorrect licensing of derivative work or incorrect interpretations of licensing

clauses. License violations can apply beyond software licensing with potential violations

of the End User License Agreement (EULA).

Stakeholders: Distributors, integrators, and developers.

Implications: License violations prevent software, whether it is a patch or an entire

system, from being distributed. By violating the license, it amounts to illegally distributing

copyrighted material. These violations can only be addressed by the original developer,

since the infringing code must be removed, or the software’s license needs to be changed

(if that addresses the violation). In fact, a Munich district court’s injunction prevented

the distribution of Fortinet Ltd’s software until complying with the GPL [76]. Thus, it

can directly impact a person or company’s ability to distribute their project, and it could

result in other civil penalties. Therefore, these licensing bugs are among the most severe

as they directly impact software distribution and can involve a large technical e↵ort to

remedy the violation.

Examples: We observed a severe violation where it appears that a developer stole code

and removed the original author from the copyright statement of the file(s). The author

posts to the GitHub issue tracker stating:

“Right now you’re in violation of the MIT license that ember-tools uses. http://opensource.org/licenses/MIT

I am the copyright holder of the code you’ve essentially stolen. You have not kept my

name in the copyright holders.”1

The issue demonstrates how violating the terms specified in the license, in this case the

MIT license, results in the code being essentially stolen, since it is misappropriating the

copyright holder by removing him from the copyright notice.

We observed an email thread where ICQ’s EULA prohibits the connection of third-

party software and a developer suggests removing the third-party applications from inclu-

1
Quote anonymized given the sensitive nature to protect the identity.
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sion in Fedora, stating:

“...Thus, keeping in mind, that there is no way to use ICQ-related software w/o explic-

itly violating their license agreement, and there are many other open alternatives (and

even proprietary systems, which permits 3rd party applications), I think that software,

designed to work with explicit requirement to be connected to ICQ network, should be

considered as unacceptable for inclusion into Fedora”[70]

The discussion regarding this draws into consideration whether such restrictions would

then result in the software being non-free.

3.2.0.11 Non-Source Code Licensing

Non-source and non-binary licensing constitute an important aspect of license compliance

that has not been addressed in prior works, which have focused predominantly on the

licensing of source code or inferring the license of binaries. Tools to support software

license compliance should also consider non-code and non-binary artifacts to properly

evaluate license compliance.

3.2.0.12 Documentation Licensing

Description: Documentation, like source code, is also protected by copyright. Hence, it is

necessary to license it. Free/open source licenses must make sure that the documentation

can also be modified and redistributed. While software licenses were designed with source

code in mind, we have observed that they are frequently used to license documentation.

Although developers can utilize the GNU Free Documentation License [73] or a Creative

Commons license [56], not all of the Creative Commons licenses may be considered free

(e.g., Debian indicated that the Creative Commons Attribution License version 1.0 is not

compatible with the Debian Free Software Guidelines), which can cause issues within a

community from distributing the documentation.

Stakeholders: Distributors.
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Implications: These licensing bugs could prevent a package from being accepted for

redistribution by a community, since the redistribution would either constitute distributing

a copyrighted work or distributing an incompatibly licensed work (incompatible in the

sense of community standards). Migrating the documentation’s license may be the easiest

way to address these types of bugs. However, we also observe a potential license violation

for documentation, when the source of the documentation is not available. While the

documentation itself is available, it may not be modifiable according to the terms of the

software license.

Examples: We observe an issue where the documentation (licensed under the GPL) is

provided as a set of HTML files. However, these files were automatically generated. The

individual states:

“...no source code is provided for the .html documentation files. The GPL is explicit on

the definition of source code: ‘The source code for a work means the preferred form of

the work for making modifications to it.’ The term ‘source code’ has a precise meaning

within the GPL, which di↵ers slightly from the everyday use of the term. The html files

are not source code as the term is used in the GPL license, because the documentation

is maintained in a di↵erent form, and converted to html. Html files, while human-

readable, are extremely inconvenient to modify. They are certainly not the ‘preferred

form’ for making modifications.” [69]

Since the HTML was automatically generated, the developer’s comments indicate that

the software license would require the documentation’s source, which is not provided.

However, it is important to note that this example prevents others from redistributing the

software. One developer noted this by responding:

“I don’t see how Trolltech are violating anything though, since they own the copyright.

They just aren’t being particularly useful, so we can’t redistribute the o↵ending html

documents”[67]
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Therefore, the copyright holder can distribute the material. However, the terms of the

license cannot be satisfied, which prevents others from redistributing the documentation.

3.2.0.13 Font and Media Licensing

Description: We observed issues and discussions related to the licensing of fonts and

media (e.g., images and audio). In both cases, we observed issues related to redistribution.

In the case of fonts, we observed potential violations to the font licensing as well as non-

freeness of their licensing. Similar violations occurred for media, along with some confusion

on the interpretation of software licensing in the context of media, e.g., audio. Additionally

(and expectedly), we observed discussions concerning copyrighted images that could not

be re-distributed with software.

Stakeholders: Distributors.

Implications: We observed that the licensing of these artifacts could also impact the

ability to distribute a system. Indeed, these non-source/non-binary artifacts are still

subject to community guidelines compliance, which developers may not realize initially.

In addition, the implications of software licensing is not as clear in the context of non-

source or non-binary entities. For example, interpreting the concept of source code (e.g.,

the GPL-3.0 defines it as “the preferred form of the work for making modifications to it”

[13]) is less clear in the context of audio (i.e., does the audio file itself qualify or does

it require a di↵erent representation as well). To address these issues, non-free fonts or

images might have to be removed, but this also requires developers to find replacements.

Examples: We observed issues related to media resources licensing and copyright images.

In a discussion regarding the “source code” of audio licensed under the GPL-2.0, one

developer noted:

“Unless the creators of the podcast directly edit the MP3–which is rather unlikely–

the MP3 is not the preferred form for modification and putting the MP3 under GPL
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without releasing the raw audio files grants no rights at all. GPLing video has a similar

problem.” [60]

The issue demonstrates the di�culty of utilizing software licenses for media resources,

since the creator may not be aware, as another developer indicates:

“It’s a bug. If the original author puts a video under GPL and doesn’t release the

“source”, you can’t demand it. He’s not bound by the GPL since he can’t violate the

copyright on his own work, so he has no obligation to give you anything.”[61]

However, these bugs may also be due to the creators of the audio or video files being

unaware of this consideration, since they do not store the intermediate files when finished.

3.2.0.14 Licensing Content

This category describes bugs related to how licenses are documented in software projects,

and whether there have been some inconsistencies in doing that.

3.2.0.15 License Inconsistencies

Description: License inconsistencies occur when there is a mismatch between the doc-

umented license and the source code licensing. These licensing bugs may relate to the

location of the licensing file, the usage of licensing-related macros and annotations (e.g.,

in Ruby .gemspec files), licensing headers on the source code, or how multi-licensing is

represented in the specification or documentation. Thus, the system’s licensing may not

cause a license incompatibility, but its content could be misrepresented or incomplete.

Stakeholders: Distributors and package maintainers.

Implications: These licensing bugs typically do not impact the acceptance of a package

or patch (i.e., it does not prevent IP clearance checks). However, they may stall the

software distribution. In particular, certain communities may require the license to be

in a spec file before the community can list and distribute the software. Also, they are

typically issues of documentation (i.e., errors of how to document) more than errors in
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licensing. These licensing bugs are relatively simple to fix, since the original developer(s)

can add the proper annotation, move the license file, or add license headers without having

to modify the actual system (i.e., the source code itself does not require any change).

Additionally, the developer typically receives feedback regarding the inconsistency during

the contribution review process.

Examples: During a package review in RedHat’s Bugzilla tracker, the reviewer evaluated

the licensing and found that there was an inconsistency in the software’s licensing and the

spec file. The reviewer notes at the top of the package review:

“To fix: Licensing is both MIT/BSD and GPLv2 and GPLv2+, latter two are missing

in spec file and in %license.”[54]

While these licensing bugs are relatively trivial to fix as the comment reported above

suggests, it is important to properly enumerate the complete licensing from a package

manager’s perspective.

3.2.0.16 Other Intellectual Property Issues

This category does not pertain specifically to licenses but, rather, it is related to whether

there have been issues in handling intellectual property in a software project, for example

because of how the Contributor License Agreement has been defined, or because of patent

or trademark implications.

3.2.0.17 Rights to Use a Contribution

Description: Many software systems, in order to clarify the provenance of their code have

instituted the requirement that any contribution should be accompanied with a CTA or a

CLA [132]. Contributor License Agreements (CLAs) and Copyright Transfer Agreements

(CTAs) are important for intellectual property (IP) reviews. A CLA stipulates the terms

of contribution (e.g., the legal right to submit the code). We observed three di↵erent

types of bugs in this category: (i) CLA creation, where the project has not established
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a CLA for contributors, (ii) CLA changes, where the CLA itself needs to be amended,

(iii) missing CLA, where a contributor has not submitted a CLA. Alternatively to a CLA,

CTAs transfer the ownership of the copyright from the original author (or current copyright

holder) to another person(s) or legal entity.

Stakeholders: Package maintainers and integrators.

Implications: Projects that require CTAs/CLAs do it to reduce their legal risks. They

require any contributor to (i) guarantee that they have the right of the contribution,

and (ii) license or transfer ownership of the contribution to the project. If this does not

happen, these projects will not merge contributions/patches. Some organizations, e.g., the

Apache Software Foundation and the Eclipse Software Foundation, have strong policies

and workflows to include the submission and verification of CLAs in the contribution

process. It is important to note that CLAs/CTAs are optional in the sense that an

organization is not required to use them. However, it demonstrates that these open source

communities would rather reject contributions than increase the legal risk of distributing

code that may contain a license violation.

Examples: We observed a message posted to appframework ’s issue trackers where a

developer stated:

“If you’re interested in clean IP, you’ll want a CLA before accepting any contributions

– otherwise, you may encounter issues of people contributing code that is not theirs to

contribute. For example, see the Dojo CLA. ” [49]

The issue highlights the importance of having a CLA from the perspective of integrators of

submitted patches. The issue poster states the concern that the IP could be compromised

if the submitter of a patch does not have the right to distribute that code. Lastly, the

poster provides a CLA example to aid the project owners.

3.2.0.18 Patent-Related Issues
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Description: These bugs are related to the use of software patents owned by the licensor

of the software. Software patents protect the ideas and inventions used in the source

code and binaries, while copyright protects its expression. We observed issues related

to patent-clause of licenses, in particular automatic license-termination in the event of

a patent lawsuit. Alternatively, there are also discussions regarding the implications of

patented artifacts.

Stakeholders: Lawyers and distributors.

Implications: Recently, licenses (e.g., GPL-3.0 and Apache-2.0) have started to address

particular issues related to patents, including their litigation. For example, engaging

in patent litigation with work that is derivative or reuses source/binaries under these

licenses will invalidate the license. However, companies such as IBM have written similar

clauses related to automatic license-termination, which sparked further debate on the

freeness of these license (i.e., the ability for an organization to revoke a license at anytime

adds a “restriction” on reuse). The automatic-termination and the debate on freeness

may prevent the distribution of the software. In the first case, the software cannot be

distributed if the license is revoked; in the latter case, the community’s guidelines may

prevent the distribution of the software.

Examples: In debian-legal, a question related to IBM’s license-termination clauses em-

phasizes the di�culty of dealing with software patents:

“It’s not possible to know about what patents cover a work of software because: (a)

the existence of a patent is secret until it’s approved (b) software is just an abstract

collection of energy – it’s what it symbolizes that makes it tread on a patent, or not

(c) patents are written in a fashion which does not make their applicability to a work

of software immediately evident.” [65]

The person explains that patented code would be problematic regardless of a termination

clause within IBM’s license, and suggests it should be acceptable to Debian. However,

the message also demonstrates the di�culty of patented software, since the patent may
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be approved at a later date and the scope/applicability of the patent may require legal

consultation.

3.2.0.19 Trademark

Description: According to the United States Copyright O�ce, “A trademark protects

words, phrases, symbols, or designs identifying the source of the goods or services of

one party and distinguishing them from those of others.” [75]. Primarily, we observe

the discussion related to trademarked names and logos, such as the Debian logo and

package/bundle names.

Stakeholders: Distributors, Communities & Trademark Holders.

Implications: Companies use trademarks to protect their brand, since they prevent ex-

ternal entities from misrepresenting their products or organization. These restrictions can

prove problematic within an community. Organizations want to provide a quality guaran-

tee, but communities like Debian, debate the freeness of these restrictions (i.e., preventing

someone from using the same product name or logo). The concern is predominantly for

the distributor that needs to ensure that trademarks are upheld. However, it also impacts

the community, since the members must determine if these restrictions are in-line with

their guidelines. The trademark holder can license the usage of trademarks and address

these issues.

Examples: For example, Mozilla allows for their Firefox and Thunderbird trademarks

to be used to identify unmodified o�cial releases [78]. Organizations can impose di↵erent

requirements regarding trademark usage, but it can be seen as a mechanism to guarantee

a level of quality similar to the original system [93].

In debian-legal, there are several discussions related to freeness of trademarks. One

commenter replied regarding trademarked names and distributed package names by stat-

ing:
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“Over the years there have been a large number of packages in the archive for software

whose upstream has a trademark on their name, none of whom have granted open-ended

licenses to use these trademarks. We nevertheless have always made a practice of using

those names unmodified as package names and binary names, on the grounds that

these are interfaces that are *not subject to trademark*. This is why, whereas RedHat

ships packages of ’httpd’, Debian has always had packages of ’apache’ even though the

Apache trademark license clearly states that modified versions of the software may not

use the mark. The trademark license is only relevant if we’re doing something that’s

in scope for trademark law in the first place!” [66]

The message highlights the policy of Debian to keep the names and suggesting that such

a usage is analogous to the scope of trademark law. Interestingly, the message also shows

how a company like RedHat takes a more cautious approach to prevent possibly infringing

on trademark restrictions.

3.2.0.20 Licensing Semantics

This section discusses licensing bugs related to di�culty and confusion with the usage of

dual licensing or understanding the implications of either a license or particular clauses of

a license.

3.2.0.21 License/Clause Implications

Description: These licensing bugs relate to understanding the implications of the license

as a whole or a particular clause of a license. These licensing bugs can relate to the

discussion of license migrations, where developers discuss the implications of the license

migration on their system and if the new license would have legal implications on the

current state of the system (e.g., the license migration could result in a license violation

based on licensing constraints from reused code or dependencies). These licensing bugs
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also discuss the implications that a clause, such as the ”or later” clause of the GPL, on a

system in the future.

Stakeholders: Developers and Integrators.

Implications: The litigious nature of licenses can make understanding the implications

of certain licenses di�cult. This can result in developers picking a license that does not

meet their needs or expectations. Similarly, it can prevent developers from adopting or

migrating towards certain licenses based on their uncertainty of the ramifications of such

a decision (e.g., whether the new license is compatible with the licenses of the software’s

dependencies or whether a license satisfies the business model of the developers). Addition-

ally, it may impact integrators trying to reuse the software, since the original developers

may be apprehensive to modifying the license from the lack of understanding. Conversely,

integrators may also misunderstand the implications of a clause, which can inhibit their

reuse of that software.

Examples: We observed developers discussing migrating towards GPL-2.0+ (i.e., GPL

“or later”) in order to facilitate reuse in software licensed under GPL-3.0. However,

the implications of this “or later” clause was also seen as potentially dangerous. One

developer indicated the possible risk of not agreeing with the terms of a future version

of the GPL. Although the protections and restrictions of such a license are unknown, the

clause indicates that the software can be licensed under such terms. Another developer

expresses apprehension towards this stating:

“In fact, you should not trust any third party (even if it is FSF) about future modifica-

tions of the license which have not been taken into account by the copyright holders.”

[80]

The example demonstrates that the importance regarding the implications of a clause,

which may appear harmless initially (as developers in the discussion initially seemed to

open to the change) but could have more a serious long term impact.
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3.3 Related Work

A substantial part of the research work carried out in the software licensing field focused on

the definition of techniques and tools supporting the automatic identification of licenses in

software products. For instance, the FOSSology project [107] exploited machine learning

techniques to automatically classify licenses, thus, supporting the task of license identifica-

tion for a given software. Tuunanen et al. [146] presented ASLA, a reverse engineering tool

supporting the identification of software licenses with an accuracy of 89%. Afterwards,

German et al. [106] proposed Ninka, an approach using sentence matching and currently

representing the state-of-the-art, with a precision of 95%. Di Penta et al. [99] proposed an

approach relying upon code search in order to identify the licensing of jars. Finally, Ger-

man et al. [102] analyzed 523,930 archives in order to understand the impact the accuracy

of identifying FOSS licenses when used in conjunction with proprietary licensing.

Previous work has also analyzed the usage, evolution and inconsistencies of open source

licensing in software projects. Di Penta et al. [100] investigated the migration of licenses

over the course of a project’s lifetime. Their study suggests that licenses changed version

and type during software evolution, but there were no generic patterns generalizable to

the six analyzed FOSS projects. German et al. [105] analyzed 124 open source packages

exploited by several applications to understand how developers deal with license incom-

patibilities. Based on this analysis, they built a model outlining when specific licenses are

applicable and what are their advantages and disadvantages. Later, German et al. [103]

presented an empirical study focused on the binary packages of the Fedora-12 Linux dis-

tribution aimed at (i) understanding if licenses declared in the packages were consistent

with those present in the source code files, and (ii) detecting licensing issues derived by

dependencies between packages. As a result of their investigation, German et al. [103]

were able to find some licensing issues confirmed by Fedora. Manabe et al. [119] analyzed

the changes in licenses of FreeBSD, OpenBSD, Eclipse, and ArgoUML, finding that each

project had di↵erent evolution patterns. Vendome et al. [152] investigated license usage
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and changes in licensing to understand the rationale behind potential usage and changes.

Vendome et al. [153] also investigated when developers pick a particular license or changes

the license(s) and conducted a survey to understand the underlying perspective and ratio-

nale of developers with respect to choosing or changing their system’s licensing. Almeida

et al. conducted a survey to investigate the extent to which developers understand li-

censes [85]. License inconsistencies have also been analyzed in a study by German et al.,

which considered code clones between Linux and two BSD distributions [104] as well as a

study by Wu et al, which considered code clones in Debian 7.5 with inconsistent licensing,

potentially representing license violations [154].

Most of the aforementioned work has focused on C/C++ and Java languages. However,

few studies have focused on other languages, for instance, Mlouki et al. [125] investigated

license violations and their evolution in 857 open source Android apps; 229 releases for

17 of the analyzed apps were found to have license issues, in particular, violations to the

terms of open source licenses. Vendome et al. [151] found 14 di↵erent license exceptions

(i.e., additional grants/restrictions specified by the copyright holders beyond the canonical

license) in 298 files from open source projects developed in six programming languages;

although license exceptions are not prevalent in open source projects, they may introduce

license bugs since they modify the canonical versions of open source licenses.

The study presented in this paper is orthogonal (but complementary) to prior work.

Indeed, we aim at defining a detailed catalog of licensing bugs faced by developers, with

the goal of characterizing them, studying their implications, and how they are fixed. To

the best of our knowledge, this is the first work systematically investigating

the nature and implications of licensing bugs.

3.4 Discussion

The analysis of the commit messages and issue tracker discussions highlighted that the

Copyright laws are complex, and frequently have no simple answer. Some issues are
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relatively well understood (such as copying code from one application) but others are

not. We observed that in some free/open source projects there are discussions in terms

of whether an action has the potential to violate copyright; usually, these discussions are

among developers, who do not necessarily have the proper understanding of copyright

law, and usually lack professional legal advice. The main implication is that there exists

an overall lack of training or education about software licensing, and developers need

to be better trained on copyright law in order to have a better understanding of the

potential risks. Large organizations sponsoring free/open source projects should have legal

advice available to minimize such risks. Similarly, the discussions and (mis)interpretations

illustrate developers would greatly benefit from more support by (semi)automated license

analysis.

Additionally, communities acknowledge these di�culties relating to copyright and de-

fine guidelines to reduce the legal risk of distributing software. Debian achieves this

through the DFSG, which vets potential licenses according to freeness; however, the

Apache Foundation asserts that contributions must all be licensed under the Apache li-

cense. Free/open source projects also contain a review process and can use CLAs/CTAs

as an IP assurance mechanism. Developers should carefully consult the community prac-

tices prior to contributing to decrease the potential licensing-related impediments when

contributing. Future licensing recommenders should incorporate community’s expecta-

tions/conventions.

Di↵erent international laws impact free/open source code reuse. While, in principle,

software can be made available for download everywhere, in some cases, reuse can have

di↵erent legal implications in di↵erent countries, or in some cases, might not even be

permitted outside a given country.

Finally, a software project may comprise artifacts beyond source code, including docu-

mentation or media. Their copyright and license must also be accounted from a compliance

perspective. Also, importantly, if some of these artifacts (e.g., documentation) are auto-

matically generated from a source code, the latter shall be included to consider the whole
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software distribution to be free/open source.
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Chapter 4

Machine Learning-Based

Detection of Open Source License

Exceptions

As described by the License Proliferation Report by the Open Source Initiative [145] and

reported by empirical studies from the research community [153, 152, 135, 137, 136, 105,

103], proliferation of free/open source licenses implies that (i) it is hard for developers

to choose the right license for their projects and goals; (ii) there are incompatibilities

between some licenses that might be a threat for developers’ goals; and (iii) reuse of

free/open source software can lead to projects with multi-license distributions.

One partial solution to the aforementioned issues is the definition and usage of li-

cense exceptions that, when attached to a license, modify it without changing the text of

the license itself [105]. For example, the MySQL database management system faced a

challenging problem: It needed to stop commercial companies from reusing the MySQL

connectors library (required to connect to the database) while still allowing other free/open

source projects to continue using it. The first issue was easily addressed by using the GPL

(since it would require those companies to also release their products under the GPL,

unless they bought a commercial license). However, doing so would also stop projects
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that were not GPL licensed (such as PHP) to continue connecting to the database. The

solution MySQL AB chose was to add an exception to the GPL (the MySQL FOSS Li-

cense Exception) that allows software under certain free/open source licenses (including

the PHP license) to use the connector libraries, e↵ectively altering the scope and impact

of the GPL on such software projects [128].

Licensing usage in free/open source software has been investigated in several studies,

mainly focused on identifying the prevalence and adoption of free/open source licenses

and the developers’ rationale under their licensing choices [135, 137, 136, 152, 153].

However, no previous e↵ort has been devoted to analyze the prevalence/adoption of

license exceptions. Given the large volume of free/open source projects available in forges

(not only for reuse but also for direct usage), license exceptions might result in legal is-

sues when developers/users are neither knowledgeable of the exceptions declared in the

free/open source software nor of the implications. While reliable tools for license identifi-

cation and classification exist [107, 146, 99, 102], and some of these tools can be used to

check for licensing inconsistencies [103], no tool is available to support the identification

and analysis of license exceptions.

In this Chapter, we aim to address two main questions:

• Are the exceptions to free/open source licenses used by the community, which excep-

tions are used, and to what extent?

• Can we automatically detect license exceptions with a high precision and recall?

We address these questions by first performing a large scale mining-based study in

which we analyze the phenomenon of license exceptions from both a quantitative and a

qualitative perspectives. In particular, we analyzed the source code of 51,754 projects writ-

ten in six di↵erent programming languages (Ruby, Javascript, Python, C, C++, & C#)

and hosted on GitHub, looking for usages of the license exceptions reported in the SPDX

list [143]. By using defined heuristics, we found files identified as potentially containing
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license exceptions. Then, we manually inspected the files to (i) remove false positives, and

(ii) categorize the exceptions according to their purpose.

Having assessed the magnitude of the license exception phenomenon used in free/open

source projects, we propose an approach aimed at automatically identifying exceptions (if

any) declared in a license.

Given a licensing statement, our approach exploits the words in its text as predictor

variables for a machine learner that classifies the type of exception (categorical depen-

dent variable) reported in the statement or marks it as “not reporting exceptions”. We

evaluated the precision and recall of our approach using Decision Trees, Naive Bayes,

Random Forest, and Support Vector Machine (SVM). SVM outperformed the other clas-

sifiers, achieving an F-Measure higher than 95%. Since this is the first work to tackle

the identification of license exceptions, we compared our approach with a baseline using

template-matching techniques to identify license exceptions, showing the superiority of

the SVM-based solution.

4.0.1 The Impact of License Exceptions

A license exception, when attached to a license, changes its meaning and implication.

Specifically, an exception can change the requirements of the license (expand them or

narrow them) and/or the grants of the license (again, expand them or narrow them). A

license with an exception e↵ectively becomes another license. However, license identifica-

tion tools have focused on identifying the licenses, and while they identify some exceptions,

there has been no research in this area.

A recent discussion in the SPDX mailing list (SPDX, the Standard Package Description

Language, is intended to create a standard format to document licensing information in

software) focused on a relatively unknown exception created by Sun Microsystems and

used along with variants of the BSD and the MIT license. This exception [39] states

(emphasis is ours) [24]:
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You acknowledge that this software is not designed, licensed or intended

for use in the design, construction, operation or maintenance of any nuclear

facility.

One of the outcomes of this discussion is that this exception appears to restrict the

original license to non-nuclear facilities (“is not [...] licensed [...] for use [...] any nuclear

facility”). While the original license (BSD-like) is open source, the addition of this excep-

tion potentially turns it into non-open source because it appears to contravene clause 6

of the Open Source Definition that requires a license not to discriminate against fields of

Endeavor [26].

License identification tools, Ninka [106] and Fossology [107], report licenses that they

identify, but are oblivious to information that they do not recognize as a license. For

instance, Fossology identifies this Sun license—including the exception—as BSD-style.

This implies that the license is open source, even though the exception potentially makes

it non-open source.

We searched Debian source files to see if this license was being used in open source

systems. We identified two main variations of this exception, and we found it in two

packages of Debian. If this license is considered non-open source, that contravenes the

Debian Guidelines and these packages need to be reviewed for their inclusion in Debian

(we have reported this issue to Debian).

Other exceptions, such as the MySQL FOSS License Exception, and the Java CLASS-

PATH Exception [141] soften the restrictions of the GPL regarding derivative works. A

library that is licensed under the GPL requires any derivative works that use it to be

also licensed under the GPL. The MySQL FOSS License Exception when attached to the

GPL allows the creation of derivative works that link to a library without also having

to be licensed under the GPL as long as the derivative work is licensed under one of the

free/open source licenses the exception lists. The Java CLASSPATH Exception is broader

and allows the creation of derivative works under any license (including commercial) that
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link to libraries (licensed under the GPL plus the Java CLASSPATH Exception). If a

library was licensed under the GPL plus either exception, but the exception is not iden-

tified, potential users of the library would not use it because they would not be willing to

license their software under the GPL (something that the exception allows them to do).

4.1 Empirical Investigation on License Exceptions in GitHub

Projects

The goal of this study is to investigate the phenomenon of license exceptions in free/open

source projects hosted on GitHub. The purpose is to understand the relevance of license

exception usage, identify what kinds of exceptions are being used, and understand impli-

cations of free/open source license exceptions. The perspective is of researchers interested

in supporting developers with respect to license compliance and verification. The context

consists of the change history of 17,984 Ruby, 14,161 JavaScript, 9,349 Python, 4,671 C,

3,690 C++, and 1,902 C# free/open source projects mined from GitHub.

4.1.1 Research Questions (RQs)

We aim at answering the following research question:

• RQ1: How prevalent are license exceptions in free/open source systems? This re-

search question analyzes the prevalence of di↵erent types of exceptions to free/open

source licenses for projects hosted in GitHub and written in the six programming

languages we considered. The goal is to understand license exceptions in practice,

since they have not been investigated in prior studies. Besides quantitatively mea-

suring the di↵usion of di↵erent types of license exceptions, we also contacted the

developers of the systems in which we identified exceptions to understand whether

they are aware of the license exceptions. Additionally, we qualitatively discuss promi-

nent cases that we found in order to better understand the context in which license

exceptions are used.
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4.1.2 Data Extraction Process

In order to identify license exceptions, we analyzed the commit history of 51,754 projects

hosted on GitHub and developed in six of the most popular programming languages on

GitHub [1]. We leveraged the project metadata to filter the repositories such that they

had at least one star, watcher, or fork and were not themselves a fork (i.e., removing

abandoned or personal repositories, and preventing duplication). We locally cloned the

51,754 project repositories to perform our analysis.

For each file fi in the locally cloned repositories, we used Ninka [106] to extract a

comment file Cfi containing all source code comments in fi (and, therefore, the license

header with the exception text, if any). Then, we defined a set of heuristics to identify

(candidate) license exceptions in each comment cj 2 Cfi . The authors defined these

heuristics by manually inspecting the description of the known/accepted license exceptions

listed in SPDX[142]. In particular, we looked for sentences and keywords representing

“markers” for the presence of a (specific) license exception. In the end, we defined the

following heuristics, assuming that a comment cj reports a license exception lek if:

H1 cj contains the exact text (i.e., definition) of a license exception lek;

H2 cj contains the lek’s exception name (e.g., “autoconf” for the Autoconf Exception)

and the token “exception”;

H3 cj contains the string “as a special exception”, a quite common pattern across the

exceptions listed in SPDX.

It is important to note that these three heuristics are purposefully designed to address

recall of license exceptions in order to identify the possible presence of license exceptions

that were not listed by SPDX. H3 was designed such that it might be able to identify

license exceptions not reported in SPDX. Also, as with any heuristic-based approach, our

heuristics can lead to the identification of false positives. We deal with such limitations

by manually analyzing every comment identified by our heuristics as reporting a license
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exception. In particular, our manual analysis (i) validated the presence of the license

exception (i.e., discarded false positives) and (ii) assigned a license exception name. If

a comment reported a license exception without a known name, we assigned a custom

name to the exception. Overall, our heuristics identified 728 files reporting candidate

license exceptions for RQ1; then, we manually analyzed the files, getting 298 (40.9%) files

with license exceptions (true positives). As previously stated, this true positive ratio is

expected, since the heuristics were designed to capture exceptions that were not included

by SPDX (while this reduced precision, we minimized the impact on our findings through

the manual validation). From the 298 files, we identified fourteen unique exception types,

six of which are not documented/reported in the SPDX list.

To answer RQ1, we report the di↵usion of the di↵erent exceptions in the mined repos-

itories when considering them together and separately by di↵erent languages. It is im-

portant to note that the results report only systems with license exceptions and not the

di↵usion of licenses (i.e., we do not consider all licensing of the 51,754 projects, but the

subset that are licensed and have a license exception). Therefore, after the manual vali-

dation, we obtained a set E of tuples Ej = hfi, except, langi with except being the license

exception name, and lang the programming language used in fi.

4.1.3 Results for RQ1: How prevalent are license exceptions in free/open

source systems?

Table 4.1 shows the number of files reporting each of the 14 identified exception types

across five programming languages (JavaScript is omitted, since we did not identify any

exception in projects written in this language) as well as the number of projects (in

parenthesis) containing each exception type.

4.1.3.1 Di↵usion of di↵erent license exceptions

The OpenSSL Exception was the most prevalent, with 89 files having the exception across

two systems. The OpenSSL Exception facilitates linking the licensed code to OpenSSL or
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Table 4.1: Frequencies of license exceptions by language at file and system (in parenthe-
sis) granularity.

Exception Ruby Py. C C++ C# Total
Autoconf 11 (3) 20 (7) 11 (1) 30 (3) 0 (0) 72 (14)
Libtool 3 (1) 0 (0) 2 (1) 3 (2) 0 (0) 8 (4)
dh-Make 0 (0) 3 (3) 2 (1) 0 (0) 0 (0) 5 (4)
TexInfo 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1)
RACC 22 (20) 1 (1) 0 (0) 0 (0) 0 (0) 23 (21)
Bison 6 (2) 0 (0) 0 (0) 2 (1) 0 (0) 8 (3)
Nokia QT LGPL 0 (0) 0 (0) 0 (0) 2 (1) 0 (0) 2 (1)
Nokia QT GPL 0 (0) 0 (0) 0 (0) 49 (1) 0 (0) 49 (1)
Classpath 0 (0) 0 (0) 0 (0) 0 (0) 10 (1) 10 (1)
GUILE 0 (0) 2 (2) 0 (0) 0 (0) 0 (0) 2 (2)
Rails usage 19 (18) 0 (0) 0 (0) 0 (0) 0 (0) 19 (18)
MIF 0 (0) 0 (0) 8 (1) 1 (1) 0 (0) 9 (2)
OpenSSL 0 (0) 88 (1) 0 (0) 1 (1) 0 (0) 89 (2)
WxWin. Lib. 3.1 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1)
Total Files 62 (22) 115 (13) 23 (2) 88 (7) 10 (1) 298 (45)

derivative work that maintain the OpenSSL licensing terms. The Autoconf Exception was

the second most prevalent (72 files containing the exception). This particular exception

removes the copyleft requirement of the GPL when it is being used with a configuration

script generated by Autoconf. The di↵usion of the two exceptions above is not surprising,

as OpenSSL is a widely di↵used library, whereas Autoconf is a popular (and language

independent) tool to generate configure scripts.

The Nokia GPL Exception v1.3, created to govern the redistribution of the Nokia

Qt library, was the third most prevalent (49 files); however, all files reporting it were

from the same project, qtablet. These 49 files were part of the qtanimation framework-

1.0-opensource, which is a third party library for cross-platform software development in

C++.

The RACC Exception (23 files) and Rails Exception (19 files) were the fourth and

fifth most prevalent exception types, respectively. The similarity in frequency is due to

these files being components of the same reused library. Therefore, these two exceptions
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were often found in tandem in the files parser.rb and format.rb belonging to Action

Mailer [3], which facilitates sending and receiving emails in Rails applications. However,

parser.rb was also utilized independently of format.rb. Racc is a parser generator for

Ruby and the RACC Exception excludes the parsers that are generated by Racc from

being licensed under the Ruby license (not yet approved by the Open Source Initiative).

The Rails Exception allows for the usage of a MIT-like alternative license when the source

code is used with the o�cial Rails or systems built upon the o�cial Rails.

The Classpath Exception was the sixth most prevalent (ten files in a single system). It

allows for linking a library to independent modules with requiring the generated binary

from being licensed under the terms of the GPL.

The Macros and Inline Functions Exception (MIF Exception), which allows unre-

stricted reuse of executable that utilize macros, inline functions, or instantiate a template

from the file containing the MIF Exception, was the seventh most prevalent with nine files

containing the exception.

The Bison Exception and Libtools Exception were found in eight files each. The Bison

Exception allows for unrestricted reuse of the Bison skeleton as long as the system is

functionally di↵erent (i.e., not a parser generator), while the Libtools Exception allows for

unrestricted distribution of the file if it belongs to a system built by Libtools. Subsequently,

we observed dh-make Exception, which resembles the RACC Exception di↵ering in that it

applies to dh-make output files instead of Racc output files, and occurs in five files.

The Nokia Qt LGPL Exception and GUILE exception tied with two files. The Nokia

Qt LGPL Exception allows for un-restricted reuse of binary code that (i) utilizes only un-

modified header files, modified code impacting numeric parameters, data structure layout,

or (ii) the modification adheres to the MIF Exception, and (iii) adheres to the LGPL’s Sec-

tion 6 (facilitating reuse of the work as a library). The GUILE Exception is an exception

for the executable generated by linking GUILE Library to other source files to be exempt

from the terms of the GPL (i.e., the generated binary does need to be releases under

the GPL). Finally, there was one file with the TeX Exception, which excludes LaTeX files
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generated by texinfo from being licensed under GPL, and one file with the WxWindows

Library Exception 3.1, allowing for unrestricted reuse of binary code based on the library

that contains this particular exception instead of enforcing the terms of the GPL on the

binary.

4.1.3.2 Distribution of license exceptions across programming languages

For C, we observed 23 exception instances made up of four exception types. The Autoconf

Exception was most prevalent in C (11 files). The second most prevalent was the MIF

Exception (eight files), while both the dh-make Exception and the Libtool Exception were

present in two files.

For C++, we had the greatest variability with eight di↵erent types of exceptions and

the highest overall number of files reporting exceptions (88). The most prevalent was

the Nokia GPL Exception v1.3 with 49 files from the reused Qt Animation Framework.

The Autoconf Exception was second most prevalent in C++ (30 files), followed by the

Libtools Exception (three files). The Nokia Qt LGPL Exception and Bison Exception tied

for fourth (two files), while the OpenSSL Exception and MIF Exception tied for fifth each

with one file.

For C#, we only observed the Classpath Exception in ten files and only from the system

Chefrate. The C# files were reused components for the system’s Png Encoder within the

cross-platform and cross-browser API. Interestingly, the license header of these files also

indicate that they were translated from Java to C# and thus inherited the Classpath

Exception from the original Java implementation.

For Python, we observed five di↵erent types of exceptions resulting in 115 license

exceptions. The OpenSSL Exception was most prevalent with 88 files containing the

exception. The second was the Autoconf Exception with 20 files, while dh-make Exception

was the third (three files). Additionally, we found the GUILE Exception once in two

di↵erent projects, and we observed one file with the WxWindows Library Exception v3.1

and one with the RACC Exception. The latter was the Ruby parser.rb file nested under
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a directory of external libraries.

For Ruby, we found six di↵erent types of exceptions across 62 di↵erent files. The RACC

Exception was most prevalent license exception (22 files) and was closely followed by the

Rails Exception (19 files). The Autoconf Exception was the third most prevalent exception

with 11 files. The fourth was the Bison Exception (six files). The Libtool Exception had

three files containing the license, while the TeX Exception was only attributed to a single

file.

It should be noted that the Autoconf Exception was found in systems written in four

languages with a relatively high prevalence (i.e., top-3 across all four languages). Also,

it seems that the programming language may influence the types of found exceptions.

Indeed, the RACC Exception and Rails Exception are inherently coupled to Ruby files,

which explains their isolation to Ruby (although a Ruby file did contain it in a python

project). Similarly, Nokia’s Qt Framework supports C++ development and contains an

extensive API, impacting both the frequency of the exceptions when the libraries are

reused and the isolation to C++.

4.1.4 An Initial Discussion and Learned Lessons

In this section, we first present feedback collected by surveying developers. Then, we

present a manual categorization of license exceptions by similar features or properties.

4.1.4.1 Developer Awareness of License Exceptions

After identifying the license exceptions, we contacted the developers of the systems and

asked them if they were aware of the license exceptions and if they understood the ex-

ception text (we provided paths to the files with exceptions and the exception name to

the developers). We received feedback from seven developers contributing to five of the

45 projects reporting license exceptions. While the low response rate limits the ability to

draw conclusions from the developer survey, the responses are still useful to understand

the perspective from at least a subset of developers.
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Interestingly, five developers were unaware of the license exceptions. One respondent

thanked us for bringing the license exception to his attention and he expressed his intention

to fix the licensing statement. This case is particularly interesting since it demonstrates

the di�culty that developers may have tracing the licensing constraints of third-party

code and reinforces the need for an automated tool to support the identification of license

exceptions.

Additionally, we asked the developers whether they were able to easily understand the

particular license exception.

While only two respondents replied that they do not understand (and one indicated

that licensing is troubling in general), three respondents expressed their understanding

and a potential ambivalence regarding their understanding (i.e., they indicated they were

uncertain, but provided their interpretation). The responses suggest the di�culty that de-

velopers have when licensing extends to license exceptions, even in cases of more straight-

forward exceptions (e.g., the Autoconf Exception). Additionally, it demonstrates that

certain developers would benefit from licensing tools that provide more contextualized

licensing analysis, especially when exceptions are present.

The developers’ responses demonstrate that license exceptions may not be easily identi-

fied within reused third-party code. Additionally, the implications of the license exceptions

may not be easy for developers to truly understand. While the sample is small and not

generalizable, it does suggest that there are developers, such as package managers, who

would benefit from tools to identify license exceptions and determine license compatibil-

ity.

4.1.4.2 Categorization of License Exceptions

Based on their purpose, we can classify the exceptions found in our study into three major

categories.

Added by a third party and applicable to reused components embedded into

the client software. In this category, we found the Autoconf, Libtool, dh-Make, TexInfo,
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RACC, and Bison Exceptions. In all these cases, exceptions were found in source code

that has been generated by another tool (the tools have the same name as the exception

and they are licensed under the GPL). The goal of these exceptions is to clarify that, even

if the generated output might contain copies of GPL licensed-software, the GPL license

does not a↵ect the software that is using the generated code. For example, Bison, a well-

known parser generator, embeds into its output source of Bison itself. Since it is licensed

as GPL, and the parser must be compiled within the client program, this would require

any client program also to be GPL. The Bison Exception removes this requirement: As

a special exception, you may create a larger work that contains part or all of the Bison

parser skeleton and distribute that work under terms of your choice, so long as that work

isn’t itself a parser generator using the skeleton or a modified version thereof as a parser

skeleton ...

In these cases, the text of the exception is embedded into the code generated by the

tool and is not added by the authors of the software where they have been found. This is

the main reason why these license exceptions are the most prevalent.

Added to clarify or expand use of the software. These exceptions are used as part of

the license of the software where it is found and has been explicitly added by the author of

the software. This includes the Nokia QT LGPL/GPL, WxWindows Lib. 3.1, Classpath,

GUILE, Rails, and the MIF Exceptions. In these cases, the owner of the product is using

the exception to either modify the GPL or to clarify when the terms of the GPL do not

apply. For example, the goal of the ClassPath and the GUILE Exceptions is to indicate

that anybody is free to link to the (unmodified) library without having to release the code

also as GPL.

The QT Exception is more limiting, since it only allows the linking with software that

is licensed under specific free/open source licenses. The MIF Exception (Macros and Inline

Functions Exception) clarifies that reusing templates and inlined macros (creating a copy

of the original source code as part of the template and functions instantiation) is not a

violation of the terms of the GPL:

100



[...] Specifically, if other files instantiate templates or use macros or inline

functions from this file, or you compile this file and link it with other files to

produce an executable, this file does not by itself cause the resulting executable

to be covered by the GNU General Public License. [...]

Added to allow linking to a library under a license that is not GPL compatible.

This category contains only one exception: OpenSSL. OpenSSL is considered to be the

best library in its kind, but its license is not compatible with the GPL. The exception

allows explicitly the authors of GPL code to link OpenSSL even thought the license of

OpenSSL is not compatible with the GPL:

[...] the copyright holders give permission to link the code of portions of this

program with the OpenSSL library under certain conditions as described in each

individual source file, and distribute linked combinations including the two [...].

Given the importance of OpenSSL, its prevalence is not surprising.

4.1.5 Threats to Validity

Threats to construct validity relate to the relationship between theory and observation,

and can be mainly due to imprecision when detecting license exceptions with the textual

heuristics. To mitigate this threat, we manually removed the false positives from the

automatically identified candidate exceptions. In that sense, the results we report are

based on true positives only. However, it is possible that some license exceptions were not

detected by the heuristics.

Threats to external validity relate to the ability to generalize the results from the study,

and we do not assert that the results in this paper are representative of the open source

community. We only analyzed projects written in Ruby, JavaScript, Python, C, C++,

and C#. Other languages and forges as well as commercial systems may exhibit di↵erent

frequencies in terms of license exceptions. However, GitHub is the most popular forge

101



with a large number of public repositories. Developers in other languages and utilizing

other forges may have other perspectives related to license exceptions.

Threats to internal validity relate to internal, confounding factors that would bias the

results of our study. We selected all projects from GitHub meeting the filtering criteria;

therefore, we did not have a bias while selecting projects from a specific domain; however,

because of time considerations we focused only on six programming languages. In the

future work, we aim to expand our analysis to other programming languages, forges, and

specifically investigate libraries.

4.2 Using Machine Learning to Identify License Exceptions

The study in Section 4.1 suggested that license exception identification is a cumbersome

task as it requires developers to sift through a high number of potential false positives

when using heuristics. Additionally, feedback from the developers suggests that an au-

tomated approach would be useful, especially for package maintainers. Automated ap-

proaches for text categorization/classification often rely on supervised learning to derive

a model from labeled data (i.e., text with labels) that can be used to categorize unseen

data [133]. Text categorization has been successfully used in software engineering tasks

such as software categorization [147, 121, 118], defect prediction [122], and developer rec-

ommendation [86, 117]. However, the task of automated classification of software licenses

and license exceptions has not been solved using a machine learning-based approach. As

a matter of fact, while tools to identify licenses exist [107, 146, 99, 106], no technique to

automatically classify license exceptions has been proposed so far.

As we showed in our first study, keyword-based identification of license exceptions is

highly prone to false positives, which suggests that “smarter” approaches should be used.

One first option could be to use template-based identification (similar to Ninka [106]), or

to use predefined queries to detect the license exceptions within a software license text.

Our hypothesis here is that text categorization techniques can be used to detect license
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exceptions by ensuring higher accuracy with respect to techniques based on template-

matching. Therefore, to assist developers in automatically identifying license exceptions,

we implemented a text categorization approach. To validate the accuracy of the approach

when classifying license exceptions automatically, we conducted an empirical study in

which we compare the accuracy of supervised classifiers against a baseline representative

of template-matching techniques.

More formally, the goal of this study is to evaluate a machine learning-based approach

that we devised for license exception identification and compare it against a template-

matching baseline for license exception identification. The perspective is of practitioners

interested in ensuring license compliance of their systems, and the context consists of real

license exceptions from our preliminary study and a synthetic dataset covering all license

exception types.

4.2.1 Research Questions (RQs)

We aim at answering the following two research questions:

• RQ2: What classifier provides the best accuracy for license exception identification

relying on machine learning? We compare the performances of di↵erent classifiers for

identifying license exceptions in licenses text.

• RQ3: Can our machine learning-based approach beat a baseline approach matching

the license exception text? RQ3 aims at understanding whether a machine learning-

based approach provides su�cient benefits to solve the problem of license exception

identification. Thus, we compare it with a baseline approach (BL) that searches for

the license exception text in the licensing statement.

4.2.2 Dataset Construction

In our first study, we did not find real examples for all the types of exceptions listed in

the SPDX list [143]. Also, in some cases, we only found very few instances for a given
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exception (e.g., the Texinfo Exception only had a single instance in our dataset). To train

our machine learning (ML) algorithms by avoiding the “class imbalance problem” [112,

114], we created a dataset composed of real and synthetic license exception instances. In

particular, given a set of software licenses text L, and a set of classes1 representing the

possible exceptions in licenses, we define a data instance for the classification process as a

couple di = hli, eji where li represents a license text and ej the specific license exception

declared in li. We consider 33 license exception types, including the ones in the SPDX

index [143], the ones in Table 4.1, and two variants (one of the FLTK and one of the

Nokia QT GPL exception).

As the classifiers should be able to distinguish when a license text li does not contain

an exception, we included a negative class Not-an-exception to describe the case in which

a data instance di is not representative of any exception (e.g., the canonical text of GPL

does not include a license exception). Therefore, our classifiers consider 34 possible classes

to which a license text li can be assigned - 33 for the exceptions plus the Not-an-exception

class.

Also, note that a license text li is assigned to only one ej , and the motivation for this

is that in our first study we did not find licenses with more than one exception. Therefore,

the classification process we are conducting is single-label.

The procedure we followed to build the dataset for evaluating the proposed approach

is the following:

1. For each ej (i.e., for each possible class) we build an empty bucket B[ej ]; each bucket

contains the corresponding di instances from the real examples and the generated

synthetic instances.

2. We assign the empirically found license exceptions (i.e., di = hli, eji, ej 6= Not-an-

exception) to the corresponding bucket B[ej ].

1
“Class” refers to the target of the classification process (exception type).
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3. Given a target sample size s to achieve within all the buckets, we fill each bucket

B[ej ] with synthetic instances until |B[ej ]| = s. A synthetic example for B[ej ] is

generated by randomly picking a canonical license (as indicated by the Open Source

Initiative [144]) and appending the exception text of ej after the license. This decision

is based on the fact that in our previous study we did not find cases with an exception

preceding a license; additionally, an exception applies to a license so it is reasonable

to expect the license attribution prior to issuing an exception to the license.

4. For the examples in the negative class (i.e., ej = Not-an-exception), we fill the

corresponding bucket by randomly picking canonical licenses, without adding the

exception at the end. We do not aim at identifying the type of a license, since

existing license identification tools can deal with this task.

5. To ensure diversity of the licenses’ text (including the exception text), each element in

B[ej ], 8j 2 [1, 34], is perturbed/mutated by randomly injecting typographical errors.

We set a threshold of 1% of the words to be mutated, while also ensuring that at least

one word was mutated. Prior work shows that scholarly writing texts can achieve

an error rate of 0.2% [131], or 1.1% per word [92]. Therefore, to be conservative, we

picked 1% as for the mutation rate in the texts (a developer is also less likely to review

a header comment with the same detail as a publish work). These text mutations

simulate slight changes that may occur in real data (e.g., di↵erent copyright years or

di↵erent copyright owner). Additionally, typographical errors are reasonable, as in

the case of a license added by the National Institute of Standards and Technology in

which there is a typo having “Untied Stated” instead of “United States” [21]. Finally,

these mutations also allowed us to verify that our dataset did not have duplicated

samples in the training and validation sets by computing SHA1 checksums of the files

in both the training and test data.

6. Finally we split the data from each bucket into training and validation sets, by as-

signing 70% for training and 30% for validation.
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Table 4.2: The distribution of the unique license exception instances in our “real data”
for the evaluation of RQ3. Asterisks signify non-SPDX exceptions.

Exception Unique Instances Exception Unique Instances
Autoconf 2.0 22 Libtool 1
OpenSSL 11 MIF 1
Bison 2.2 2 Nokia Qt GPL* 1
Nokia QT LGPL 2 RACC* 1
Classpath 2.0 1 Rails Usage* 1
dh-make* 1 TexInfo* 1
GUILE* 1 WxWindows 1

In addition to the synthetic dataset, we built a second dataset to be used as test set.

This test set is composed only of real examples of canonical licenses and exceptions that

we found in our preliminary study in the analyzed GitHub projects. Our goal with this

dataset is to measure the generalization error [83] of the classifiers and of the baseline

on “real data”. To construct this dataset, we identified the unique instances from the

results of our first study by computing the SHA1 (Secure Hash Algorithm 1) checksum.

We only included one representative example of each unique instance. Table 4.2 shows the

breakdown of the dataset consisting of real exceptions we used for evaluating the classifiers

and baseline accuracy. For the canonical licenses, we added an instance of each canonical

license to avoid any bias induced by choosing a subset and represent the Not-an-exception

class.

4.2.3 Building the Classifier

To build a classifier, we first extract terms from the licensing statements of the files under

analysis. We perform a preprocessing in which we (i) remove English stop words, and (ii)

weight the terms using the tf-idf weighting scheme [88].

Then, we use the data from our training set to build a machine learning classifier,

using the license words as features (weighted by their tf-idf) and as a dependent variable

the (manually labeled) kind of exception contained in the license.

We consider four machine learning classifiers that have been widely used for text
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categorization [133, 84]: decision trees (DT), Naive Bayes (NB), Random Forest (RF),

and Support Vector Machine (SVM). To build the classifiers, we relied on the Weka [109]

data mining library. The machine learners aim to classify the dataset into 34 classes: six

new exceptions from our preliminary study (marked with an asterisk in Table 4.2), 25 from

SPDX’s index [143], one FLTK Exception variant, Nokia QT GPL Exception variant, and

the Not-an-exception class.

4.2.4 Analysis Method

To answer RQ2, we compared the accuracy of the classifiers in terms of the F-1 score [138],

which is the harmonic mean of precision and recall, and the Receiver Operating Character-

istic (ROC) area [101]; both metrics are widely used in the machine learning community

to evaluate classifiers with an unified metric [138, 101]. The accuracy of the classifiers

was measured with the synthetic dataset described in Section 4.2.2 and with a dataset

composed only of the real examples we found in our preliminary study. The evaluation on

both datasets has the objective to verify whether our results are an artifact of the synthetic

dataset. To measure the sensitivity of the classifiers to the sample size, we trained/tested

the classifiers with samples sizes of 100, 200, 300, 400, 500, 1K, 2K, 3K, 4K, 5K, and 10K

for each class (e.g., |B[ej ]| = 10, 000, 8j 2 [1, 34]). The results for RQ2 are reported in

Section 4.2.5.

Concerning RQ3, since there is no existing approach for identifying license exceptions,

we constructed a baseline (BL) to compare against the machine learning classifiers. The

baseline approach attempts to search for the license exception text of each license excep-

tion. Since we already demonstrated in our preliminary study that a keyword-matching

approach is prone to low precision (see Section 4.1—40.9% of precision), we considered a

more conservative baseline that matches the entire exception text. As for the target text

to match, for each exception, we extracted a canonical example from the real data, and

from the SPDX list when no instance was available in the real data. Subsequently, the

approach matches text of the license exception to ensure the entire text is contained in
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the test file. If the match is confirmed, the text under test is tagged as containing the

exception. As for RQ2, the comparison is done in terms on the F1-score achieved by the

baseline and the classifiers, and by performing sensitivity analysis with di↵erent sample

sizes. The results for RQ3 are reported in Section 4.2.6.

For both RQs, we use statistical tests to measure the significance of the achieved

results. In particular, we use the Wilcoxon signed-rank test [134] (with ↵ = 0.05) in

order to statistically compare each approach with the baseline across the di↵erent sample

sizes. We use the (paired) Wilcoxon test as the comparisons (e.g., SVM vs. BL) are

performed between paired samples. Since we perform multiple pairwise comparisons, we

adjust p-values using the Holm’s correction procedure [111].

In addition, we estimate the magnitude of the observed di↵erences by using the

Cli↵’s Delta (d), a non-parametric e↵ect size measure for ordinal data [108]. Cli↵’s

d is considered negligible for d < 0.148 (positive as well as negative values), small for

0.148  d < 0.33, medium for 0.33  d < 0.474, and large for d � 0.474 [108]. Finally,

to visually corroborate the significance of the di↵erences and the overlapping between

the accuracies achieved by each approach, we computed the confidence intervals of the

accuracies with 95% of confidence.

4.2.5 Results for RQ2: What classifier provides the best accuracy for

license exception identification relying on ML?

Synthetic data. Figure 4.1a shows the F-1 scores achieved across di↵erent sample sizes

for each classifier, and the confidence intervals around the means of the F-1 scores, on

the validation set from the synthetic data. Table 4.3 reports the results of the Wilcoxon

tests (adjusted p-values and Cli↵’s d) for each pairwise comparison. In general, there are

statistically significant di↵erences between NB and the other classifiers; this is confirmed

by the F-1 curves, the ROC areas, the Wilcoxon tests, and the confidence intervals. Con-

cerning the other three classifiers (i.e., RF, SVM, and DT), the results suggest that SVM

and DT, in general, outperform RF when training with samples sizes per class less than
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(a) Synthetic data (Validation set)
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(b) Real data from GitHub projects (Test set)

Figure 4.1: F-1 scores and confidence intervals achieved across di↵erent sample sizes
when testing the analyzed approaches with a) synthetic data (i.e., validation set), and b)
license exceptions extracted from GitHub projects (i.e., test set).

1K. DT and SVM are close in terms of performance for all the sample sizes and their con-

fidence intervals completely overlap each other and the di↵erence is marginally significant

(p-value=0.049). In the dataset with 1K samples per class, the di↵erence between SVM,

decision trees, and random forests become minimal. The ROC area is always > 90% for

all the classifiers except for NB when the dataset has 100 instances per class. Both DT

and SVM exhibit a high precision and recall for all sample sizes. For a sample size of 200

DT outperforms SVM, and they are basically equivalent for a sample size of 5K. While

random forests initially ranked third, it begins outperforming decision trees at sample size

of 2K, excluding a performance drop in performance for a sample size of 5K. NB always

had the lowest precision and recall.

SVM is able to correctly classify 96.28% of the validation set in the worst case, and

classifies 99.99% of the validation data correctly in the best case. The lowest precision

achieved by SVM is 0.974 and the highest is 1 (a value of 1 is achieved when the incorrect

classification was between 0.01% and 0.04%). We observe this drop in terms of magnitude

(from 0.20% to 0.02%) for a sample size of 500. The best results for SVM are for a
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sample size of 2K when it only misclassifies 2 license exceptions. In fact, we observe the

number of incorrectly classified exceptions decreases from sample size 100 until 1K when

it rises before dropping again at a sample size 2K. After sample size 2K, the percentage

of incorrect license exceptions rises from 0.01% to 0.04% of the test set.

We observe that decision trees, random forests, and SVM have a relatively similar

accuracy in classification starting at a sample size of 2K. While SVM outperforms both

random forest and decision trees. Decision trees incorrectly classify between 0.03% and

0.08% of the test set, while random forests incorrectly classify between 0.05% and 0.06%

of the testing data, while SVM incorrectly classifies between 0.01% and 0.04% of the test

set.

Real data. The results of the supervised learners on the real dataset (see Figure 4.1b

and Table 4.3) demonstrate a similar behavior to their results on the validation dataset.

In general, SVM outperforms the other supervised learners on the real data (although

DTs marginally outperforms SVM for sample sizes of 100 and 200). SVM achieves an

F-1 score of 0.997 or 1 for sample sizes 300 and larger (the precision is also 1 for each of

these evaluations). In smaller sample sizes, we observe that DTs outperform RF, but this

behavior switches above training sample size of 2K (inclusive of 2K). The ROC area is

always > 90% for all the classifiers except NB when the dataset has 100, 300, 4K, and 5K

instances per class.

Summary for RQ2. The results demonstrate that SVM, DT, and RF outperform NB

with statistical significance in both validation and testing set. SVM also attains a higher

precision and recall than DT and RF. In terms of the best accuracy, in the validation

set, SVM is the first to achieve a ROC area of 99.99% at sample size of 2K, and a F-1

measure of 1 for datasets of at least 500 instances per class. In the real test set, SVM

always exhibits a F-1 scores greater than 0.95, and a ROC area greater than 97%.
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4.2.6 Results for RQ3: Can our machine learning-based approach beat

a baseline approach matching the license exception text?

Synthetic data. The baseline approach exhibits high precision for all sample sizes in

the dataset, ranging between 0.958 and 0.976. This result is expected since the approach

relies on matching the text of the exception. Thus, it should find the correct match when

the exception is directly copy-pasted. The negative class su↵ers from a high number of

false positives, which harms the overall precision of the baseline approach (it wrongfully

marks the license exceptions as licenses). The recall su↵ers since this type of baseline

does not account for changes like modifications to a copyright year, copyright holder, or

typographical errors in the exception. We observe a recall as low as 0.361 for a sample

size of 100, and it achieves a maximum value of 0.677 for sample size 4K. However, we

observe a decrease in precision at sample size 5K and 10K; the latter case drops to 0.418.

SVM outperforms the baseline in terms of both precision and recall. The precision of

SVM and the baseline approach at sample size 100 is very close, only di↵ering by 0.016,

while the largest di↵erence in precision is 0.0529 at sample size 4K. However, the recall

is much lower for the baseline approach, never able to outperform any of the classifiers

in terms of precision and recall for any of the sample sizes. SVM has more than twice

the recall as compared to the baseline for samples sizes of under 2K (inclusive of 2K)

and sample size 10K. In the best case, SVM still outperforms the baseline in terms of

recall with a di↵erence is approximately 0.3. In terms, of statistical tests, SVM has a

significantly higher classification performance when compared to the baseline (p-value <

0.05 with a large—0.909—e↵ect size).

Real data. In addition to the synthetic comparison, we compare the baseline and the

supervised learners on the real dataset (see Figure 4.1b and Table 4.3). The real dataset

consists of the unique license exceptions identified in the preliminary as well as an example

of each canonical license (canonical licenses are for the negative class). The baseline

(textual-based matching) achieves a precision and recall of 0.73 and 0.54, respectively. We
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observe that the baseline is able to outperform NB in terms of recall and F-1 score for the

NB classifier trained on sample sizes of 100 and 200, and the baseline is able to outperform

NB in terms of precision for sample size of 5,000, which is the only case of the baseline

achieving a better precision than a supervised learner.

Figure 4.1b depicts the F-1 score and confidence intervals for supervised learners and

baseline when classifying the real data. We observe that the DT and SVM have similar

confidence intervals that are tight around the F-1 score. Only NB and the baseline do not

exhibit a significant di↵erence in terms of performance. These results are confirmed by

the confidence intervals shown in Figure 4.1b. These results indicate that the supervised

learners trained on synthetic data can achieve a high precision and recall with respect

to classifying license exceptions and identifying the absence of an exception (i.e., the

negative class). Therefore, a supervised learner integrated after the initial license iden-

tification stage would enable a license compliance engine to determine if the particular

license includes some additional exception to its terms.

Summary for RQ3. The results show that supervised learners trained on synthetic

data were able to outperform a baseline approach when classifying synthetic and real data.

Specifically, supervised learners are able to handle variations, which occur in practice.

Furthermore, the supervised learners outperform the baseline approach on real data.

4.2.7 Threats to Validity

Construct validity threats can be mainly due to bias when sampling our datasets. We

balanced the classes of our dataset and generated synthetic license and license exception

pairs randomly. Additionally, we performed sensitivity analysis by varying sample sizes

between 100 instances per class to 10K instances per class. Internal validity threats can

occur in the creation of the training and test sets. When evaluating the performance of

the classifiers, we considered 70% of the dataset for training and 30% for validation, which

is an accepted practice for evaluating supervised learners. Additionally, we had a separate

testing dataset with real data. For what concerns external validity threats, it is possible
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Table 4.3: Results of the Wilcoxon test (adjusted p-values and Cli↵’s d e↵ect size) for
the pairwise comparisons between the classifiers (DT, NB, RF, SVM) and the baseline
(BL), when using the synthetic data (i.e., validation set), first table, and when using real
license exceptions found in GitHub project (i.e., test set), second table.

Synthetic Data
Comparison p-value Cli↵ ’s d Comparison p-value Cli↵ ’s d

DT vs. NB 0.019 0.884 NB vs. RF 0.010 -0.652
DT vs. RF 0.049 0.214 NB vs. SVM 0.019 -0.966
DT vs. SVM 0.049 -0.454 NB vs. BL 0.010 0.686
DT vs. BL 0.009 0.909 RF vs. SVM 0.019 -0.561
SVM vs. BL 0.010 0.909 RF vs. BL 0.010 0.909

Real Data
Comparison p-value Cli↵ ’s d Comparison p-value Cli↵ ’s d

DT vs. NB 0.010 0.909 NB vs. RF 0.010 -0.835
DT vs. RF 0.022 0.595 NB vs. SVM 0.010 -1.000
DT vs. SVM 0.022 -0.669 NB vs. BL 0.083 0.455
DT vs. BL 0.022 0.909 RF vs. SVM 0.022 -0.835
SVM vs. BL 0.021 0.909 RF vs. BL 0.022 0.909

that the performance of the classifiers on the synthetic dataset does not generalize. Such

a dataset was designed to replicate user errors and aimed to ameliorate the problem of

limited real data.

The comparison with the real data suggests that the perturbation rate of the dataset

may inflate the di↵erences between to licenses with exceptions. It is possible that results

might vary using di↵erent datasets (e.g., from other projects).

4.2.8 Discussion

This study addressed a novel problem of detecting license exceptions. Our results indicate

the e↵ectiveness of supervised learners in identifying (when present) di↵erent types of

license exceptions reported in licensing statements. In general, SVM seems to be the most

applicable supervised learner, since it outperformed the other algorithms. The results

from the evaluation on the real data mimics our results on the synthetic data, which
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contains perturbations. The findings suggest that supervised learners are able to learn

relationships between the terms of a license exception, while allowing for variations.

Results also indicate that keyword-based identification of license exceptions generate

a large number of false positives (59.1%), which is not acceptable for an automated tool

aimed at supporting software developers, especially in large software systems. Similarly,

the recall of a baseline approach by matching the text of the license exception results

in a low recall so it is likely to miss license exceptions. It is important to note that

no other approaches exist and the baseline was designed to represent how a developer

could identify license exceptions (i.e., by pattern matching) without having to devise a

sophisticated approach.

4.2.9 Related Work

Our work is related to prior approaches on license identification and previous empirical

studies on software licenses. Our work is novel in that it is the first one to investigate the

presence of license exceptions in software and to classify them.

License Identification. Several approaches exist to identify the license type and

version of source code and jars, but these approaches do not address license exceptions

[107, 146, 99, 102]. The FOSSology project [107] first utilized machine learning to classify

licenses in order to solve the challenge of license identification. ASLA was also proposed by

Tuunanen et al. [146] with a high accuracy of 89%. Ninka, the state-of-the-art approach

proposed by German et al. [106] utilized sentence matching and was empirically shown to

have a precision of 95%. Di Penta et al. [99] sought to identify the licensing of jars and

proposed an approach employing code search (Google Code, which is no longer available).

Lastly, German et al. [102] investigated the impact of propriety licensing, when used with

free/open source licenses, on the ability to accurately identify the free/open source license

by analyzing 523,930 archives.

It is important to note that these previous approaches focused on the identification of

licenses and not on the identification of license exceptions. Our work aims to complement
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these approaches in order to evaluate whether the identified license contains an exception

or if it is a canonical license. This analysis is vital for license compliance, since it refines

the terms of modification or redistribution of the system.

Empirical Studies. German et al. [105] identified exceptions as a viable method for

licensors to modify a certain license. In that work, the authors proposed a model, based

on their investigation of 124 free/open source packages, to illustrate the applicability

of particular licenses. However, the work does not empirically investigate the existence

of license exceptions. German et al. [103] studied license inconsistencies in Fedora-12

distribution. The authors investigated potential inconsistencies across dependencies and

between packages in the distribution. Importantly, this work demonstrated the importance

of studying license exceptions since the results showed that license exceptions are an

important factor for validating potential license inconsistencies.

Additionally, Manabe et al. [119] investigated license changes in FreeBSD, OpenBSD,

Eclipse, and ArgoUML and found the change patterns were project specific. Vendome

et al. [152] investigated 16,221 free/open source Java systems to understand the license

usage and changes in licensing. Additionally, the work investigated the reason for potential

usage and changes by analyzing commits and issues trackers. Vendome et al. [153] also

performed a survey involving software developers to investigate when developers pick a

particular license or changes the license(s) and to understand the underlying reasons why

developers choose or change licensing of their system.

Other empirical studies focused on license inconsistencies in code clones between Linux

and either OpenBSD or FreeBSD [104] and inconsistencies between the licensing of code

clones in Debian 7.5, suggesting potential violations [154].

4.3 Discussion

We studied—for the first time, to the best of our knowledge—the presence of license

exceptions in 51,754 free/open source systems from six languages. We found 14 di↵erent
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license exception types across 298 files in five of the six languages. While we observed

that certain license exceptions are more prevalent in projects written in specific languages,

we also found that the Autoconf Exception was within the top-3 most prevalent license

exceptions for all of the languages (being Autoconf, a cross-language tool). Additionally,

we also observed the frequent coexistence of the RACC Exception and Rails Exception

due their presence in the same library. These license exceptions directly impact the way

in which software can be reused and are critical for understanding license compliance.

Specifically, these exceptions ameliorate inconsistencies under particular circumstances.

We have sent the new license exceptions for consideration to the SPDX team.

After that, we evaluated the applicability and e↵ectiveness of supervised learners

for the identification of license exceptions. The results indicate that machine learning

classifiers—and specifically SVM and Random Forests—are able to achieve high precision

and recall when identifying the type of license exception as well as determining the lack of

a license exception on real and synthetic data. A license exception classifier can be inte-

grated into a license compliance engine after the initial license identification. In our future

work, we aim to create a solution that integrates an SVM-based classifier for classifying

exceptions into a license identification tool.
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Chapter 5

Automatically Determining

License Compatibility Across

Dependencies

From our prior work outlined in Chapters 2 and 3, we observe a need for a license com-

pliance tool to assist developers with ensuring their system complies with all attributed

licenses. We observed that developers struggle understanding the terms of licenses and

how licenses can be used together [153, 150]. Further complicating issues, free/open source

software licenses and their compatibility are not always interpreted consistently and so

communities also create guidelines with respect to licensing [150]. Because of this di�-

culty, any incompatibilities need to be presented in such a way that is easy for a developer

to understand the problem. Additionally, a prior work also demonstrated the prevalence

of license incompatibilities of projects and their dependencies for Android projects on F-

droid [125]. To assist developer with this process, we built an infrastructure to a evaluate

the compatibility between licenses and automatically identify potential license violations

between a system and its entire dependency tree. Since software needs to comply with

all of the licenses of the code it reuses and redistributes, it is important to consider all

of the dependencies. For example, if SystemA depends on SystemB and SystemB de-
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pends on SystemC , then SystemA must comply with the licensing terms of both SystemB

and SystemC . Similarly, if SystemC contains some license incompatibility, then it would

propagate to SystemB and subsequently SystemA.

The infrastructure first performs the license identification step to extract the licensing

of all of the files utilizing ninka [106] and the proposed approach from Chapter 4 to identify

the licenses and exceptions. Subsequently, we identify the dependencies by parsing the

build files (e.g., pom.xml). We then identify the licensing of the dependencies in order to

evaluate the compatibility between the system and its dependencies. We utilize a pair-

wise matrix, which evaluates if two given licenses are compatible, to perform the license

compatibility analysis. It is important to note that the matrix is not symmetric since the

compatibilities between licenses are directed. Finally, the infrastructure returns a list of

potential incompatibility warnings or it returns that there were no incompatibilities.

In this Chapter, we present a study utilizing the infrastructure to build dependency

trees and to perform the license compatibility analysis across those trees. We aim to

answer the following research questions:

• How prevalent are potential license incompatibilities between a project and its depen-

dency along the entire dependency tree?

• Which license combinations are responsible for these potential license incompatibili-

ties?

In order to answer these research questions, we analyzed over 98 million dependency

relationships belonging to more than 3.6 million projects. We recursively extracted the

dependencies of these projects to build dependencies as well as extracting the unique

set of all dependencies of a certain system throughout its dependency tree. With this

information, we utilize the system’s licensing or the dependency’s licensing to perform the

compatibility analysis between the pairs of licenses. When present, we extract both the

dependency and the licenses that introduces the license incompatibility. It is important

to note that this work di↵ers from [125] in several ways: i) the prior work considered a 14
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licenses pairs for their compatibility analysis, while this work considers the relationships

between 54 di↵erent licenses; ii) this work considers projects in 6 di↵erent languages; iii)

this work considers the compatibility between all of the dependencies along the dependency

chain.

It is important to note that we refer to these as potential license incompatibility warn-

ings and an in-depth analysis is needed to further complement this work to better evaluate

the system’s design in order to confirm the warnings. We observe that incompatibilities

between licenses is quite prevalent in our dataset. We found that 686 projects in our

dataset had a warning of an incompatible license with their dependencies. The mean

number of warnings of license incompatibilities per system is 15 and the median number

of warnings of license incompatibilities per system is 3.

5.1 Evaluating Dependency Trees for License Compatibility

To facilitate a large-scale analysis of multiple ecosystems, we considered the dataset made

available by libraries.io [115], which contains 98,269,642 dependency relationships span-

ning 3,686,361 projects from 36 package managers and 160 programming languages. In

addition to the dependency relationships, it contains project metadata, which includes the

licensing information for 2,215,454 projects. Since the number of dependencies exceeds

the number of projects containing metadata, any missing projects are marked to have an

unknown license. From this dataset, we sampled 6 of the 15 most popular programming

languages according to GitHub’s 2017 analysis [37]. For each project, we recursively build

a dependency tree by traversing all of the project-level dependency relationships. Specifi-

cally, we consider SystemA and extract all of the dependencies. Then, for each dependency

of SystemA, we extract their dependencies. We repeat this process iteratively until there

are no more dependency relationships or we re-visit an already identified dependency (i.e.,

if SystemB and SystemC both depend on SystemD, they would both add SystemD as a

dependency node, but only one instance would fully recurse SystemD). The latter condi-
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tion serves two purposes: i) it serves as a condition to avoid cycles that might generate

an infinite length tree, and ii) it avoids redundant analysis of the same dependencies. In

the presented example, SystemA is compared against all of SystemD’s dependencies when

it analyzes SystemB’s dependencies; thus, it is not necessary to perform this analysis a

second time when analyzing SystemC ’s dependencies.

Figure 5.1 illustrates what a potential dependency tree might look. To build this tree,

we first create the root, which represents the system that is being analyzed. We then

extract its dependencies and create a node for each dependency, linking the dependency

to the dependent system with an edge (the arrow indicating a node is a child). Those

added dependency nodes are then analyzed in the same way to extract and link their

dependencies. As previously stated, this iterative process continues until either all of the

dependencies are linked or a dependency that was already linked is extracted. In Figure

5.1, the root of the tree is the system under analysis (SystemA) and it contains edges to

its dependencies (SystemB and SystemC). Since SystemD is in the set of dependencies

for both SystemB and SystemC , they both have an edge to a node representing SystemD.

However, only one node representing SystemD contains edges to its dependencies (SystemE

and SystemF ).

With these dependency tree, we evaluate the compatibility of the system and its de-

pendencies by performing pair-wise license compatibility comparisons. To accomplish this

pair-wise analysis, our infrastructure built upon an existing licensing compatibility tool [82]

to perform the compatibility analysis between a given system and each of its dependencies

in the system’s dependency tree. For example, if we consider Figure 5.1, the infrastruc-

ture would check SystemA’s compatibility with SystemB then SystemC , individually. It

would then evaluate the compatibility with SystemB and SystemsC ’s dependencies. As

they both depend on SystemD, we only need to check compatibility with SystemD once.

Then, the licensing of SystemA is checked against the licensing of SystemD’s dependencies

for compatibility. We identify the conflicting dependencies and extract the conflicting li-

censing pair (e.g., GPL-2.0 and Apache-2.0 ). Similarly, we can identify the dependencies
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System A

System B System C

System D System D

System E System F

Figure 5.1: Illustrative Example of a Dependency Tree.

that have licenses conflicting with each other by performing this same analysis between

the dependencies. With these pieces of information, we can provide the developer with

warnings of the dependencies that seem to conflict with the system that is being developed

as well as warnings of dependencies that seem to conflict with each other. The latter case

can be useful to a developer when trying to fix the incompatibility, since this conflict may

inhibit migrating licenses as a solution.

5.2 License Inconsistencies Results

When analyzing a project’s license against its dependencies along the whole dependency

tree, we considered projects with at least one warning of a license incompatibility and

we excluded projects that included non-essential frameworks (i.e., they would not be dis-

tributed, like unit testing) and runtime environments in their dependency tree as these

both would generate many false positives. This resulted in a total of 686 projects (7.03%)

having license incompatibility warnings with a dependency. For these projects, we also

investigated how many incompatibilities were present. The number of license incompat-
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ibilities ranged from 1 warning (as expected since we are considering the subset with at

least one incompatibility) to a maximum of 35 incompatibility warnings. The mean and

median number of incompatibility warnings are 17 and 3, respectively. Thus, we observe

that it is common for projects to have multiple potential license incompatibilities.

Table 5.1 shows the number of projects with license incompatibility warnings for the 6

most popular programming languages according to GitHub’s 2018 analysis [37]. Overall,

we observe that 7.03% of these projects contain a warning for a potential license incom-

patibility. By language, we observe a range from 0.20% (C#) to 24.08% (Swift) of projects

with license incompatibility warnings. Interestingly, we observe that Java, C++, C, and

Objective-C have similar rates of potential license incompatibilities, while C# and Swift

di↵er greatly on the extremes. In the case of C#, we only observed 4 projects (0.20%) with

warnings of potential license incompatibilities, while almost a quarter of Swift projects had

license incompatibility warnings.

We observed a total of 13,787 warning for potential license incompatibilities between

a project’s license and the licensing of their dependencies. Table 5.2 shows the top 10

pairs of licenses with the most license incompatibility warnings. We observe that the MIT

license and GPL-3.0 license was the most prevalent potential license incompatibility with

6,077 occurrences (44.08%). In fact, the top-4 license incompatibility pairs account for

85.43% of the license incompatibility warnings. However, the Apache-2.0 and BSD-3-

Clause were also among the top 10 with a dependency licensed under a version of the

GPL. Interestingly, the 4th most frequent pair resulting in a license compatibility was the

pair in the top 10 that was not between a permissive license and the GPL, but it was a

permissive license (MIT ) and the AGPL.

5.3 Threats to Validity

Construct Validity: To reduce the impact of this threat to validity on evaluating license

compatibility, we built our approach upon an existing license compatibility tool. While
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Table 5.1: Frequencies of license incompatibility warnings by language compared against
the total number of projects for each language

Language #Warnings Total Projects %Warnings
Java 256 5,283 4.85%
C++ 12 210 5.71%
C# 4 1,976 0.20%
C 20 306 6.54%
Swift 361 1,499 24.08 %
Objective-C 33 485 6.80%
Total 686 9,759 7.03%

Table 5.2: Top 10 license violation pairs between a project and dependencies in its
dependency chain

Project License Dependency License Occurrences
MIT GPL-3.0 6,077
MIT GPL-2.0 3,600
MIT GPL-2.0+ 1,500
MIT AGPL-3.0 601

Apache-2.0 GPL-3.0 587
Apache-2.0 GPL-2.0 261

BSD-3-Clause GPL-3.0 209
Apache-2.0 GPL-3.0+ 144

BSD-3-Clause GPL-2.0 120
Apache-2.0 GPL-2.0+ 101

the tool was developed by analyzing the compatibility of certain licenses, it has limitations

in the number of license that it can evaluate for compatibility. Additionally, a subset of

projects have missing licensing information. Thus, the analysis might miss certain in-

compatibilities. However, it includes the most popular free/open source software licenses.

Additionally, the extracted dependencies were identified through build files. If these files

are outdated and not maintained, it is possible some dependencies might have been re-

moved or might have been added that are not reflected in the build files. However, these

results represent a snapshot at a point in the system’s development; thus, it demonstrates

the potential incompatibilities that were there at that point in development. Additionally,
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we present these results as warnings for potential license incompatibilities, since certain

architectural design decisions may address the potential license incompatibility. Similarly,

it serves as a warning to a developer since the violation of the license occurs when the

developer distributes the software.

Internal Validity: To reduce this threat, we evaluate the number of warning of

incompatibilities from a set of unique dependencies. This step prevents inflating the

number of warnings from one or a few popular libraries that might appear multiple times

in the dependency tree. Additionally, we present the results for the prevalence of projects

with warnings of potential license incompatibilities in terms of a binary option (warning

or no warning) to avoid misrepresenting the number of warnings when a project may have

multiple warnings for di↵erent dependencies along its dependency tree.

External Validity: We analyzed a large dataset that is cross-language and spans

many popular package managers, but other free/open source projects from di↵erent com-

munities may result in di↵erent observations. The diversity of our dataset in terms of

languages and package mangers as well as the number of projects analyzed gives us con-

fidence in our findings with respect to software that are libraries. However, the dataset

predominantly is focused on libraries and as such these results may not generalize to all

software projects. A broader analysis on other types of systems is required. Also, to gen-

eralize these finding further, it would also be important to conduct license compatibility

analysis in closed source systems as these may also go through a more stringent auditing

process, especially for organizations with strong legal departments.

5.4 Discussion

We presented an infrastructure to evaluate license compatibility in order to warn devel-

opers of a potential license incompatibility between their system and a dependency along

the dependency tree. We utilized the state of the art in license identification [106] and

our prior work detecting license exceptions [151] to identify the licensing of a system.
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The infrastructure utilizes build files to extract the dependencies and subsequently build

the dependency trees. Then, we incorporated a license compatibility tool [82] to eval-

uate the compatibility between the licenses within a project and the licenses across the

dependencies in the dependency chain.

The license compatibility infrastructure was evaluated on a diverse dataset [115] and

it uncovered 686 projects with license incompatibility warnings among projects written

in 6 of the 15 most popular programming languages. We observed that the majority

of these license incompatibility warnings were between projects licensed under the MIT

license and reusing libraries licensed under a version of the GPL or the AGPL. This work

demonstrates that developers could benefit from such a tool to ensure that their software

complies with all of the licenses across their dependencies. It also demonstrates that a

developer should be careful when reusing software because they may use a project that is

seemingly compatible that has incompatibilities along its dependency chain. Future tools

to support developers in identifying replacement libraries could be very useful to help

developers remedy these license incompatibilities. Similarly, it would benefit developers

to extend this analysis to evaluate license compatibility with binaries.

5.5 Bibliographics Notes

The work in this Chapter was performed in collaboration with other members of the

SEMERU group at William and Mary and researchers from the Universidad de los Andes,

University of Sannio, University of Lugano, and the University of Victoria. The study will

be submitted to a future conference.
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Chapter 6

Conclusion

The proposed dissertation makes several research contributions in four main areas: em-

pirical studies, categorizing licensing bugs, license exception identification, and a novel

practical approach for supporting developers with respect to software license compatibil-

ity.

• Empirical Studies: The empirical studies presented in Chapter 2 analyzed the

di�culty and lack of knowledge that developers have when it comes to free/open

source licensing. The results first aim to understand di↵usion of licenses and then how

these license migrate in evolving systems. In addition to compliance and compatibility

constraints, developers are also influenced by external factors such as personal bias

and community participation.These results demonstrate that automated support is

important for developers (as we propose) and that researchers should aim to help

developers with achieving proper licensing while considering external factors (e.g.,

recommending dependencies that also meet licensing preferences or project goals).

• Licensing Bugs: The catalog presented in Chapter 3 demonstrates the issues and

di�culties that developers face with software licensing. These issues are not isolated

to reusing software, but it includes non-source artifacts and interpretations of the

licenses and the implications of those interpretations. Additionally, it outlines how

communities aim to avoid licensing issues by creating guidelines. The work suggests
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that developers would benefit from more education in terms of interpreting and under-

standing software licenses as well as the licenses that can be used together. The work

also illustrates the need for better tool support to assist developers with uncovering

license incompatibilities.

• License Exception Identification: This work proposed a machine learning-based

approach to identify license exceptions, which can complement the existing licensing

identification tools. These license exceptions are important for truly understanding

compatibility, since they can change the permissions or restrictions of the applied

license. The approach itself can be adapted to be utilized after existing techniques,

as it does not rely upon a particular tool, in order to more accurately understand the

licensing of a system.

• License Compatibility: We build an infrastructure to evaluate license compati-

bility between a software system and its dependencies along its dependency chain.

We utilize the infrastructure to conduct a study on free/open source systems to un-

derstand the prevalence of potential license incompatibilities across many languages

and ecosystems. We were able to identify 686 free/open source projects that had

warnings of potential license incompatibility with at least one of their dependencies.

Among 6 of the 15 most popular languages, we see that overall 7.03% of projects have

a license incompatibility warning (ranging from 0.20% to 24.08% when considering

each language individually). Thus, this infrastructure would benefit developers across

several popular programming languages to further investigate and remedy the license

incompatibilities in their software.

This dissertation outlines a road map for future research relating to free/open source

software licensing. The catalog of licensing bugs outlines several unaddressed areas that

require further research to aid developers with software licensing. Additionally, the infras-

tructure built in this dissertation can be extended and adapted in several ways to help

developers at di↵erent points in the development process.
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Linking Binaries to Licensing. The infrastructure is able to evaluate the compatibility

of licensing between components when that licensing is available. In the case of binaries,

the licensing statements do not survive compilation and so additional work is necessary to

link these binaries such that their licensing can be identified. Di Penta et al. demonstrated

that a code search approach could be viable for identifying the licensing of jars [99]. Davies

et al. proposed a technique to link binaries to their source code counterpart [97, 98].

The infrastructure can be extended to incorporate these approaches prior to the license

compatibility analysis of the system’s components.

Community License Enforcement. While the license compatibility matrix serves to

evaluate pairs of licensing, communities can impose stricter interpretations or regulations

on the software that they distribute. Chapter 3 demonstrates how communities, like De-

bian, evaluate freeness according to their own guidelines. The infrastructure could be

adapted to support contributors of these communities so that they comply with these ad-

ditional restrictions. Similarly, the infrastructure can be extended to assist developers with

documenting the licensing of their software as some communities impose a standardized

way of documenting the project’s licensing.

Recommending Replacement Libraries. Currently, the infrastructure analyzes the

system and identifies the incompatibilities in a post-mortem manner. However, the in-

frastructure can be extended to perform this compatibility analysis earlier before the de-

veloper has written a large amount of code to alert the developer of the potential license

incompatibilities. Additionally, the feedback could be augmented by utilizing techniques

from information retrieval and clone detection. With these techniques, it may be possible

to recommend a library with similar functionality that is legally compatible. Thus, the

extended infrastructure would aim to search a large corpus (e.g., mined projects from

GitHub, Bitbucket, and GitLab) for similar code with a compatible license to the system

that was analyzed.
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ware license analysis. Autom. Softw. Eng., 16(3-4):455–490, 2009.

[147] Secil Ugurel, Robert Krovetz, and C. Lee Giles. What’s the code?: Au-

tomatic classification of source code archives. In Proceedings of the Eighth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’02, pages 632–638, New York, NY, USA, 2002. ACM.

[148] Sam Varghese. Linux developer loses gpl suit

against vmware http://www.itwire.com/open-source/

74288-linux-developer-loses-gpl-suit-against-vmware.html, 2017.

[149] Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario

Linares-Vásquez, Daniel German, and Denys Poshyvanyk. License us-

age and changes: a large-scale study on github. Empirical Software Engineering,

22(3):1537–1577, Jun 2017.

[150] Christopher Vendome, Daniel German, Massimiliano Di Penta,

Gabriele Bavota, Mario Linares-Vásquez, and Denys Poshyvanyk. To

143



distribute or not to distribute: Why licensing bugs matter. In 40th IEEE/ACM

International Conference on Software Engineering (ICSE’18), 2018.

[151] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Mas-

similiano Di Penta, Daniel German, and Denys Poshyvanyk. Machine

learning-based detection of open source license exceptions. In Proceedings of the

39th International Conference on Software Engineering, ICSE ’17, pages 118–129,

2017.

[152] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Mas-

similiano Di Penta, Daniel M. Germán, and Denys Poshyvanyk. License

usage and changes: A large-scale study of Java projects on GitHub. In The 23rd

IEEE International Conference on Program Comprehension, ICPC 2015, Florence,

Italy, May 18-19, 2015, pages 31–40. IEEE, 2015.

[153] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Mas-

similiano Di Penta, Daniel M. German, and Denys Poshyvanyk. When

and why developers adopt and change software licenses. In The 31st IEEE Interna-

tional Conference on Software Maintenance and Evolution, ICSME 2015, Bremen,

Germany, September 29 - October 1, 2015, pages 31–40. IEEE, 2015.

[154] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. Germán, and Kat-

suro Inoue. A method to detect license inconsistencies in large-scale open source

projects. In The 12th Working Conference on Mining Software Repositories MSR

2015, Florence, Italy, May 16-17, 2015. IEEE, 2015.

144


