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ABSTRACT

Software evolves and therefore requires an evolving field of Software Engineering.
The evolution of software can be seen on an individual project level through the
software life cycle, as well as on a collective level, as we study the trends and uses
of software in the real world. As the needs and requirements of users change, so
must software evolve to reflect those changes. This cycle is never ending and has
led to continuous and rapid development of software projects. More importantly, it
has put a great responsibility on software engineers, causing them to adopt
practices and tools that allow them to increase their efficiency. However, these
tools suffer the same fate as software designed for the general population; they
need to change in order to reflect the user’s needs. Fortunately, the demand for
this evolving software has given software engineers a plethora of data and artifacts
to analyze. The challenge arises when attempting to identify and apply patterns
learned from the vast amount of data.

In this dissertation, we explore and develop techniques to take advantage of the
vast amount of software data and to aid developers in software development tasks.
Specifically, we exploit the tool of deep learning to automatically learn patterns
discovered within previous software data and automatically apply those patterns
to present day software development. We first set out to investigate the current
impact of deep learning in software engineering by performing a systematic
literature review of top tier conferences and journals. This review provides
guidelines and common pitfalls for researchers to consider when implementing DL
(Deep Learning) approaches in SE (Software Engineering). In addition, the review
provides a research road map for areas within SE where DL could be applicable.
Our next piece of work developed an approach that simultaneously learned
different representations of source code for the task of clone detection. We found
that the use of multiple representations, such as Identifiers, ASTs, CFGs and
bytecode, can lead to the identification of similar code fragments. Through the use
of deep learning strategies, we automatically learned these different representations
without the requirement of hand-crafted features. Lastly, we designed a novel
approach for automating the generation of assert statements through seq2seq
learning, with the goal of increasing the efficiency of software testing. Given the
test method and the context of the associated focal method, we automatically
generated semantically and syntactically correct assert statements for a given,
unseen test method.

We exemplify that the techniques presented in this dissertation provide a
meaningful advancement to the field of software engineering and the automation of
software development tasks. We provide analytical evaluations and empirical
evidence that substantiate the impact of our findings and usefulness of our
approaches toward the software engineering community.
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Chapter 1

Introduction

1.1 Overview

Software engineering (SE) research investigates questions pertaining to the design, devel-

opment, maintenance, testing and evaluation of software systems. As software applications

pervade a wide range of industries, both open- and closed-source code repositories have

grown to become unprecedentedly large and complex. This results in an increase of unstruc-

tured, unlabeled, yet important data including requirements, design documents, source

code files, test cases and defect reports. Previously, the software engineering community

has applied traditional machine learning (ML) techniques to identify interesting patterns

and unique relationships within this data. Unfortunately, the process of implementing ML

techniques can be time consuming and is limited with regard to the representations that

can be manually engineered from analyzed data. With recent improvements in compu-

tational power and the amount of memory available in modern computer architectures,

an advancement to traditional ML approaches has arisen called Deep Learning (DL). DL

represents a fundamental shift in the manner by which machines learn patterns from data

by automatically extracting salient features for a given computational task as opposed to

relying on human intuition. DL approaches are characterized by architectures comprised

of several layers that perform mathematical transformations, according to sets of learnable

2



parameters, on data passing through them. These computational layers and parameters

form models that can be trained for specific tasks by updating the parameters according

to a model’s performance on a labeled set of training data. Given the immense amount of

data in software repositories that can serve as training data, DL techniques have ushered

in advancements across a range of tasks in software engineering research.

The use of DL as a tool for software development can allow for effective and efficient

software production since it has the potential to extend to every part of the software life

cycle. However, the SE community has taken advantage of this tool without much regard

for its limitations. This is in part due to the mystical, black-box nature of DL algorithms,

which are difficult to visualize and often include complex parameterization. The challenges

of applying DL models differs from that of customary approaches since a majority of the

complexity associated with the implementation is composed of selecting the appropriate

model architecture and correctly evaluating the model’s performance. The selection and

implementation of these model architectures can be a convoluted task because they are

heavily dependent on the large numbers of parameters, which can have significant bearing

on model performance. Therefore, SE researchers have been met with frustration when

trying to determine when DL is beneficial, as well as how to apply the most effective

architecture. In this dissertation, we look to demystify the use of DL algorithms and

provide clarity for when a DL solution may be applicable. Our goal is not to limit the use

of DL in SE research, but rather to identify the limitations so that software engineers can

use this tool to its fullest potential without exceeding its capabilities.

The clear purpose for the use of DL in SE is automation. These models do not merely

automate a SE task, rather, they use data to automate the generation of a solution to

the SE task. This shifts the burden of engineering a solution from the developer to the

machine. This monumental shift in responsibility reduces the amount of human error and

can more accurately account for the patterns within the data that are undetectable from

a developer’s perspective. The applications of DL to improve and automate SE tasks

and the dire need of developer support for creating, testing, and maintaining DL projects
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more broadly points to an apparent synergy between ongoing research in SE and DL. This

dissertation will serve as an example of this synergy and will exemplify the power of DL in

SE when applied within the proper constraints, thus facilitating the further usage of DL

within the SE research community.

1.2 Motivation - Why Deep Learning?

The use of statistically based approaches to model software and its artifacts is a well estab-

lished notion. The practicality of using these statistical approaches intrinsically involves the

use of natural language processing (NLP), which brings up the question "is software natu-

ral?" Many SE papers have studied the idea of "natural" software [174, 77, 126, 225, 101]

to justify or refute the use of natural language models on software. However, the intro-

duction of canonical machine learning (ML) and eventually DL algorithms, shored up the

weaknesses of NLP methods in two significant ways. The first is the ability to account for

longer-range dependencies of variable length data, while NLP models can only account for

the immediate context. The second is the capability of learning a richer notion of similar-

ity across different contexts of data, while NLP algorithms are more rigid in their ability

to detect similar data [20]. Both limitations of NLP algorithms significantly hinder the

ability to effectively model software repositories. Therefore, a large influx of canonical ML

and DL based strategies were applied to SE tasks to evaluate the increased performance

from NLP.

Prior to the use of DL strategies, canonical ML approaches were at the forefront of

applications to SE tasks. These algorithms require the user to manually identify and

compile expressive features to describe the data, which the ML algorithm will then use to

generate meaningful representations. For example, consider the task of image classification

where the goal is to determine the type of an animal within a picture. Although not strictly

a SE task, image classification highlights the principals of feature engineering that are

inherent to the design of canonical ML based approaches. Designing a machine learning
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algorithm with hand-crafted features to accomplish such a task can be cumbersome, as a

human would have to extract the salient image features (e.g., lines, colors, etc) as shown

in figure 1.1. These features will likely be important for recognizing patterns delineating

different classes of data. Furthermore, even if effective features are discovered, the class

divisions of the data may be difficult to learn via simple (e.g. linear, logistic) functions and

may instead require a more complex kernel that could be difficult or effectively impossible

to properly learn without a richer representation of data features. This process, known

as feature engineering, can be lengthy and lead to a large amount of technical debt for

real-world ML systems [238].

Figure 1.1: Feature engineering an image of a tucan.

SE research can require the analysis of complicated, feature rich data, so the reliance

on feature engineering is not always plausible. Therefore, there is a need for automated

approaches which can extract as many, or as few, salient features as necessary to accurately

classify data. DL has shown to be an effective solution for the feature engineering problem

while maintaining the ability to accurately represent large, heterogeneous, datasets in situ.

Considering the complexity of software repositories, SE research needs approaches based

on the science of building machines to automatically discover discriminatory features as

opposed to the traditional art of intuitive feature engineering. These approaches learn
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kernels rather than simply applying kernels [45]. Along with the advancement toward

automatic feature engineering, DL algorithms transition from the use of shallow architec-

tures to the use of hierarchical representations. This advancement in the complexity of the

architecture allows SE researchers to better conceptualize software repositories. Thus, we

can more accurately model software artifacts toward the goal of automating SE tasks for

developers.

While these DL techniques bring with them unprecedented advancements, they also

bring with them unprecedented and opaque complexity. Thus, SE researchers need to

gain a better understanding of where DL has been both effectively and ineffectively used

to support SE tasks in order to learn successful data collection, processing, architectures,

representations used, as well as neglected tasks that serve as prime candidates for future DL

applications with large impact. The rapid adoption of DL based approaches has outpaced

the analysis of applicability and limitations. SE researchers have applied this new technique

before contemplating the applicability to the specific SE task or the limitations which can

be difficult to determine. There is a need within the SE community to stop and evaluate

what SE tasks DL has been applied to, and more importantly, what challenges were faced

when applying these complex architectures. With this evaluation, DL algorithms can be

more accessible to SE researchers with the understanding of how and when they can be

applied to SE tasks.

1.3 Applications

The purpose of the work presented in this dissertation focuses on two major goals, both

of which propel the use of DL for SE (DL4SE) research:

1. To propagate the knowledge and experience from previous implementations of DL in

SE that will further drive the analysis of complex SE repositories
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2. To demonstrate the analysis and automation of software engineering tasks for de-

velopers through the use of DL algorithms, which removes the obstacle of manual

feature extraction

To exemplify the need for continued research in DL4SE, we present work in the domain of

software maintenance and software testing. These domains reflect back on the idea that

DL can be applied to every faction of the software development life cycle. Although these

works display advancement within their particular factions of the software development

life cycle, they also represent the idea of automating developer focused tasks through DL

modalities. We will show that through the numerous amount of software artifact data

available, we can build successful systems that learn high-level, invariant features used

specifically for the tasks of clone detection and test code generation.

Figure 1.2: Traditional Programming vs. Software 2.0 Programming.

The overarching idea of these two areas contributes to the changing dynamic of software

development and thus software engineering, coined by Andrej Karpathy as Software 2.0

[143]. Software 2.0 represents a transition away from traditional programming and moves

toward automated programming through the use of DL. Figure 1.2 shows how traditional

software engineering has been built on an idea of decomposition through the instructions
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of programming. We take a larger task, break it down into smaller tasks and solve those

smaller tasks. Programs are engineered to represent how we decompose the problem into

these smaller, solvable tasks. A traditional program will accept data as input, then perform

a set of instructions to manipulate, identify, classify and arrange the data into a meaningful

solution we call an output. DL turns this paradigm on its head. Now, rather than writing

a set of instructions to interact with the data, we merely give the machine the data and

our expected output for this data. In turn, the machine writes the program to manipulate,

identify, classify and arrange the data. Now the output of the machine is the algorithm

for generating the desired output.

Finally, we will highlight an emerging field of SE dedicated to the advancement and

aid of developers implementing DL models. We refer to this field as SE4DL (Software

Engineering for Deep Learning). Although our work focuses on the realm of DL4SE, the

flaws and limitations seen in this realm points to a need for effective software maintenance

and testing for DL architectures. Thus, we hope this dissertation serves as a medium

between SE and DL to demonstrate that not only does SE research benefit from the

powerful algorithms of DL, but that DL implementations can benefit from practices of SE.

1.4 Contributions and Outline

To accomplish the first goal set out by this dissertation, we design and conduct a systematic

literature review (SLR) of DL4SE. This SLR serves to quantify and qualify the use of DL

approaches to solve SE tasks. The intellectual contribution of this work is to determine

novel patterns and proceedings pertaining to the components of learning [14]. This analysis

should aid future SE researchers to systematically decompose and apply a DL approach

to a SE task. Additionally, we note the challenges referenced by authors relating to the

data preparation and creation of the DL model. Together, these findings reveal a research

roadmap that identifies potential future research directions for DL in SE. Additionally,

we provide guidelines for the implementations of these complex models along with some
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intuition on which complex architectures could be best suited for different types of SE

artifacts. Although not explicitly a part of the DL4SE SLR, we also report a number of

papers related to SE4DL. We briefly explore how a variety of works have addressed some

of the unique problems that DL implementations have. Particularly, this body of work

aims to better visualize and understand the inner-workings of a DL algorithm as well as

provide a better testing structure to ensure the model’s accuracy.

To accomplish the second goal set out by this dissertation, we design, build and em-

pirically evaluate two DL based approaches which aim to aid developers in software main-

tenance and software testing. In particular, these approaches automate the detection of

similar code fragments based on multiple representations of source code and the construc-

tion of semantically and syntactically correct assert statements within test methods. We

demonstrate the intellectual contributions of these works by:

• Mining large, open-source, software repositories for distinct software artifacts.

• Effectively synthesizing SE artifacts into feature rich inputs to our DL based ap-

proaches.

• Packaging a DL framework to train, test and inference our DL model.

• Evaluating our DL model to ensure end-to-end automation that aids developers in

the tasks of clone detection and assert statement generation.

In Chapter 2 we discuss the background related to DL as it is applied in this dis-

sertation. We begin by introducing related works for SLRs and the resources currently

available to SE researchers when applying DL solutions. Additionally, we review related

work pertaining to the task of code clone detection and test case generation. This provides

the reader with the necessary information to understand the DL models implemented in

chapters 4 and 5.

In Chapter 3 we perform a systematic literature review for the SE community, which

unveils a prominent research roadmap of DL4SE. This study involves SE related works from
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major international conferences and journals to gather the most representative collection

of papers from all areas of SE. This SLR also addresses the challenges and methods of

implementing and reporting on the use of DL based solutions in SE. This should serve as a

resource for researchers in SE who wish to implement a DL model but are inquisitive about

what problems can be addressed and what is vital when reporting their findings. Lastly,

this work reveals the emerging field of SE we call SE4DL. We find that many researchers

have identified problems with DL implementations and are using unique SE methods to

better test and understand these complex models.

In Chapter 4 we introduce our novel technique for the identification of similar code

snippets through the use of multiple code representations. This technique involves the

mining of source code from 10 compiled Java projects as well as 46 Java libraries to

determine if we can identify similar code snippets across different libraries. We then

subject the source code to four different types of abstractions that include identifiers,

Abstract Syntax Trees, Control Flow Graphs and Bytecode. We conjectured that each

code representation can provide a different, yet orthogonal view of the same code fragment,

thus enabling a more reliable detection of similarities in code.

In Chapter 5 we developed a novel technique for automatically generating assert

statements for test methods. We mined millions of Java test methods, which contain the

use of the Junit assert package. We then identified the particular focal method for each

assert statement within the test method. With this information, we made use of a neural

machine translation (NMT) model to translate test methods without an assert statement

into semantically and syntactically correct assert statements. Our model, along with the

implementation of a copy mechanism, was able to automatically learn assert statements

even when the model was unable to naturally resolve certain tokens.

In Chapter 6 we discuss future directions of research pertaining to the introduced

topic of software 2.0 as well as SE4DL. Both of these areas within software engineering

are heavily motivated by this dissertation and this work will serve as a medium for those
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desiring to research in either of these areas. Lastly, we will summarize the contributions

and findings of this dissertation.

In addition to the work presented in this dissertation, the author has worked on a variety

of research topics within software engineering over the course of his career as a doctoral

student including: (i) Bug-fixes [262] (ii) Code-changes [260] (iii) Software Testing [265]

and (iv) Software evolution [201].
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Chapter 2

Background

2.1 Deep Learning

In this chapter, we look to expound upon the complex statistical tool of DL and how it

applies to the study of SE. We begin with a brief explanation as to how and why DL

was first applied to unlabeled software artifacts found in online repositories. Once the

SE community discovered the representational power of these DL models, their use to

automate SE tasks dramatically increased. Next, we provide information regarding the

use and practicality of SLRs in the field of SE. Lastly, we discuss the implementation

details and theory behind two DL approaches used in this dissertation. We anticipate that

the background information provided here will foster a smooth transition into the work

presented in chapters 3, 4 and 5.

The progression toward the use of DL stems from the ability to automatically generate

features. This removes the substantial manual effort required to generate the hand-crafted

features that are required for canonical ML approaches. DL models also distinguish them-

selves from other statistically based models in their ability to capture long range depen-

dencies within data and learn feature rich representations of software artifacts [20]. DL

representations can be viewed as an extension of the perceptatron, an idea that was first

proposed in 1965 [132]. However, the coined phrase of Deep Learning was not introduced
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until 1986 [74]. Although the introduction of DL was fairly early, its debut for modeling

complex software repositories was not presented until 2015 by White et al. [286]. This

work stimulated the use of DL to model software artifacts, demonstrating some of the

advantages over information retrieval and natural language models.

The introduction of DL into SE brought about a series of works applying these models

to a variety of tasks. White et al. [284] used DL, and in particular, representation learning

via a recursive autoencoder for the purpose of code clone detection. The authors represent

each source code fragment as a stream of identifiers and literal types (from the AST leaf

nodes). Another work by Lam et al. [158] focuses on bug localization using both DL

and Information Retrieval (IR) techniques. Rather than manually defining features, the

IR technique, revised Vector Space Models (rVSM), collects these features which capture

textual similarity. Then, a deep neural network learns how to map terms from the bug

reports to tokens within the source code. Allamanis et al. [17] proposed an approach for

suggesting meaningful class and method names. To accomplish this, identifiers in code

are assigned a continuous vector, which considers the local context as well as long range

dependencies by a neural log-bilinear context model. Then, identifiers which have similar

vectors or embeddings will also appear to have similar contexts. However, in order to

capture the global context of source code tokens, features are engineered which requires

correct configuration and representation when integrated into the model. Building upon

this previous work, Allamanis et al. [22] used an Attentional Neural Network (ANN)

combined with convolution on the input tokens for assigning descriptive method names.

Their approach allows for automatic learning of translation invariant features. Lastly, Gu

et al. [109] used DL to avoid feature engineering in order to learn API usage scenarios

given a natural language query. The approach encodes a query or annotation of the code

into a fixed length context vector. This vector helps to decode an API sequence which

should correlate with the query. Thus, once the model is trained, a natural language query

will result in the correct API usage scenario for the context given in the query. We present
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only a few DL approaches to demonstrate the breadth and depth of DL applications in

SE.

In the present day, there are a variety of different models and DL strategies to address

many SE tasks. We perform a SLR to gain insight into which specific DL strategies have

been implemented and provide some guidance on how to implement DL in SE for future SE

research. Additionally, this dissertation presents two impactful DL approaches to detect

code similarity and generate assert statements within test methods. We will review these

two DL frameworks, which make use of recursive autoencoders, recurrent neural networks

and neural machine translation.

2.2 Systematic Literature Reviews

Systematic literature reviews (SLR) have been a staple for the medical community for

the process of summarizing and organizing critical aspects of medical research [1]. Since

then, authors Kitchenham and Charters have adopted similar guidelines and procedures for

conducting SLRs in the software engineering domain [11]. The purpose of SLRs is threefold:

(i) to summarize existing evidence concerning a technology, (ii) to identify gaps or areas for

continued investigation by researchers and (iii) to provide a framework or background for

new research endeavors. Our work encompasses the gathering and evaluation of empirical

research that uses DL in SE.

Many SLRs have been performed in the past on a variety of SE topics including effort

estimation [240, 288, 267], fault prediction [128, 117, 223], software testing [80, 229] and

many others [30, 98, 51]. These works attempt to summarize the landscape of research

within their particular domain at the current time. They map the current approaches

and techniques applied to a specific SE task and identify key challenges for researchers to

continue exploring. However, none of these SLRs investigate the use of a single construct

applied to multiple software engineering tasks. Rather, the software engineering task is
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the focal point of the review and a thorough analysis of the approaches and techniques are

reported.

The study that has the closest relation to our work is by Allamanis et al. [19], who

performed a SLR on machine learning (ML) and probabilistic models toward program-

ming languages. The work the authors survey includes techniques that have approached

the modeling of source code similar to the modeling of natural language. After the identi-

fication of such approaches, the authors begin to summarize how these models have been

applied to SE tasks such as clone detection and program synthesis. They then highlight

the unique challenges and limitations of these models when applied to the aforementioned

SE tasks.

In our SLR, we systematically analyze the work done in applying DL to a particular

SE task. Similar to Allamanis et al., we look to identify techniques that have been used

as solutions to numerous SE problems. We specifically look for DL based implementations

and do not consider the broader body of work consisting of ML based approaches. Since

DL has quickly risen as a popular tool to model complex software artifacts, we wanted

to give researchers a resource that would summarize the body of work already performed,

identify important challenges and limitations when applying these models, and distill out

future research opportunities to apply DL in SE. To the best of our knowledge, no SLR

exists for these applications.

2.3 Recursive Autoencoders

In this section, we present the architecture for recursive autoencoders which are used

extensively in chapter 4. Recursive auto-encoders are a type of deep believe network

(DBN) that creates a representation of features from an input vector [246, 247]. In a

DBN, the layers of nodes communicate with previous and subsequent layers, but there

is no communication between nodes of the same layer, which remains true for recursive

autoencoders. To better understand what a recursive autoencoder does, it is important
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to recognize the function of this type of DL model. A recursive autoencoder will take a

sequence of tokens as input, and for many tasks in SE, this results in an input sequence

of source code tokens. These tokens are then abstracted and compressed into a smaller

representation, however, this representation can also be decoded to reconstruct the original

input. An overview of this algorithm can be seen in figure 2.1 where x4 and x5 are combined

into a n-dimensional feature vector z, which can be decoded into x̂4 and x̂5. The decoding

process should result in the original input tokens represented by x4 and x5.

Figure 2.1: Recursive Autoencoder

A recursive autoencoder performs this compression at multiple different levels. Rather

than encoding the entire sequence at one time, the sequence is compressed over a series

of time steps. In figure 2.1 this results in the combination of two representations into the

single encoding z at time step 1. Then, in the next time step, the algorithm combines

the encodings z and x4 to create a new encoding. This eventually results in a single en-

coding that can represent an entire sequence. The purpose of this model is to represent

data with a smaller and unique feature vector. Then, feature vectors can be mapped into
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an n-dimensional space and clustered based on their distance to other mapped vectors.

Training a recursive autoencoder measures the amount of loss there is between the orig-

inal input sequence and the decoded output sequence. This loss is minimized over many

different input encodings and subsequent decodings via a learning algorithm such as back

propagation. In chapter 4, we will revisit the specific implementation applied to the task

of clone detection.

2.4 Recurrent Neural Networks

Chapter 5 explores the use of recurrent neural networks for the purpose of learning the

generation of assert statements in test methods. We look to provide background infor-

mation regarding these complex models here. Recurrent neural networks (RNN) have, in

many ways, advanced the way that we represent and embed software artifacts. Unlike the

recursive autoencoders, this type of DL model considers the context of previous tokens

in order to predict the next token. Additionally, recurrent neural networks are a type of

supervised learning, meaning that the dataset we use to train these models are labeled.

These labels are what we train the model to predict when given a particular input sequence.

The type of RNN this work uses is a long short-term memory network (LSTM) which was

discovered in 1997 [127]. This network outperformed multiple traditional models for tasks

such as speech and handwriting recognition [236, 171]. Due to its success, these models

were quickly identified as a tool for advancements in machine translation [252].

Unlike NLP models, which were the primary models used to represent source code

before DL, the context of every previous token is considered. Figure 2.2 found in White

et al. [286] describes how a RNN unrolled provides meaningful context to the next token

predicted by the model. Here, the token ω(5) is being predicted by the model. The red

node γ is the previous token’s hidden state, which is comprised of the hidden state for every

token before it. The current hidden state (grey node) computes its non-linear activation

as a function of the input token (α) and the previous hidden state (γ). This process

17



results in the next predicted token. This type of model is very effective in representing

sequential tokens that are dependent on the tokens before them. Therefore, these DL

models are an excellent choice for modeling the software artifact of source code. The

applicability of RNNs to software artifacts has been applied to many different SE tasks,

including software traceability [111], API usage [109], bug-fixes [262], mutation operators

[265], malware detection [168], test input generation [146] and code clone detection [284].

In this work, we utilize the power of RNNs for the task of neural machine translation.

Figure 2.2: RNN Unfolded

2.5 Neural Machine Translation

Neural machine translation is the DL framework presented in chapter 5. Our NMT im-

plementation is comprised of the RNNs discussed in the previous section. Specifically,

NMT is an end-to-end deep learning approach that specializes in modeling sequential data

in order to perform a specific task [204]. Therefore, it is commonly used for the tasks

involving the need for automated translation, text summarization and image captioning.

NMT was introduced by Kalchbrenner et al. [140], Sutskever et al. [253], and Cho et

al. [64] who defined RNN models for machine translation. The most famous architecture
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and the model we incorporate in chapter 5 is by Bahdanau et al. [32] published in 2015.

NMT is comprised on an encoder that will encode a sequence of tokens into a fixed-length

vector and a decoder that will translate that embedding back into translated tokens. A

common example of this pipeline can be seen when translating Chinese to English. Figure

2.3 visualizes this process of translation.

Figure 2.3: Neural Machine Translation Model

To begin the NMT translation process, it is important to understand the components

that comprise this complex framework. Let’s begin with the first component known as the

bi-directional encoder. The bi-directional encoder is comprised of two RNNs. The first

RNN learns the sequence of tokens in a standard forward pass, while the second RNN learns

the sequence of tokens in a reverse pass. These models then combine their final states and

create a single embedding, which is fed to the decoder. The decoder is the next major

component of the NMT framework and is comprised of another RNN. This RNN predicts

the set of output tokens, given the embedding created by the bi-directional encoder. The

decoder not only considers the input embedding, but also a context vector and any tokens

which have already been resolved by the decoder. The context vector represents the impact

that the input tokens have on the prediction of the output tokens. In figure 2.3 this is
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shown by the lines with varying thickness. The thicker lines represent a greater influence

a token in the embedding has on the current token the decoder is attempting to generate.

This context vector is created by the attention mechanism incorporated into the model.

All components of the model are trained together and are optimized by minimizing the

negative log-likelihood of the targeted terms, while the weights are updated using stochastic

gradient decent.

2.5.1 Open Vocabulary Problem

NMT suffers from a number of limitations which constrain its use and implementation.

One such problem NMT faces is the open vocabulary problem. The NMT model can only

consider a finite amount of tokens that will populate the source and target sequences.

NMT models generate output from a probability distribution over words. This means that

a large number of words to consider significantly slows down the optimization of the model.

The oxford English dictionary estimates there to be around 250,000 unique English words,

and many of these are uncommon or obsolete [2]. However, when modeling source code,

developers are not limited to a finite vocabulary. Therefore, to take advantage of the NMT

framework when modeling source code, we must artificially limit the vocabulary used. A

number of processes to limit the vocabulary have been adopted in a variety of SE works

[62, 115, 265, 262].

2.5.2 Multiple Predictions with Beam Search

One limitation of the NMT model is the ability to extract different, possible translations

based on a single input sequence. Traditionally, NMT models decode the output token in

a greedy way, choosing the token with the highest probability at the current time step.

However, this may not lead to the correct result in every case. To increase the model’s

accuracy and effectiveness, we utilize a strategy named beam search [226]. When using

beam search, rather than always choosing the token with the highest probability, this

method keeps the top k hypothesis at each time step for what the decoded token could be.
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Figure 2.4: Beam Search Example

Therefore, rather than the model generating a single sequence of the most probable source

code tokens, the model can generate k sequences as potential translations. Formally, let

Hk be the set of k hypothesis decoded until time step t:

Hk = {(α1
1 . . . α

1
t ), (α

2
1 . . . α

2
t ), (α

k
1 . . . α

k
t )}

At each time step t+1, there are V possible new tokens for each hypothesis. Therefore,

we have a total of k · V potential hypotheses.

Ct+1 :=
k⋃

i=1

{(αi
1, . . . , α

i
t, 1), . . . , (α

i
1, . . . , α

i
t, V )}

The candidate sets are decoded such that we keep k sequences that represent the

highest probability candidates. This process happens at every time step until we reach

a special end token that signifies the process has stopped. In our work, we consider k

translations to potential assert statements. Since beam search is an approximate search

algorithm, the larger the k the more likely the algorithm will generate a correct translation.

However, there is no way to automatically determine the proper translation from the set

of k hypothesis and thus puts a greater strain on the developer.
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Consider the example shown in figure 2.4 where we show a beam width of k = 3.

This example is taken in the context of our NMT model that predicts assert statements.

Assuming the input to the NMT model is the test method in the upper-left corner of

the figure, the beam search mechanism attempts to predict 3 possible assert statement

translations. Beginning with the START token, beam search starts by generating the top-

3 candidates for the first token (i.e., org, assert, (). At time step 2, beam search extends

all three hypotheses, as the top-3 highest probability tokens ( sum, ., 1 ) follows the

previous tokens found in each of the three beams. However, at time step 3, the third beam

does not generate one of the top-3 highest probability tokens, so the beam is terminated

(denoted by red circle). This process continues until the algorithm encounters an end of

sequence token. The resulting sequences can be seen by following the green nodes until

the yellow terminating node is reached.

2.6 Automatically Generating Assert Statements

In this section, we provide context and motivation for the learned generation of an assert

statement for a particular test method which will be discussed in chapter 5. This work

lies within the SE task of software testing, which is a vital component of the software life

cycle. Software testing is widely studied in software engineering and focuses on topics from

automatic test code generation [29] to automatic generation of test data for software [153].

However, software testing is an incredibly complex and systematic process that is often

articulated through the use of hierarchical testing levels. Figure 2.5 shows this hierarchy

where the first level is unit testing. This type of testing focuses on individual units of

software with the intention of validating each unit as it is designed.

Although unit tests are a fundamental step in the process of software testing, the ability

to test individual components of functionality is a crucial step toward more complex types

of software testing. Assert statements provide the ability to capture the logic and func-

tionality of the underlying code base within unit tests. Therefore, generating meaningful
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Figure 2.5: Software Testing Hierarchy

assert statements is necessary to detect potential faults. Despite the importance of unit

tests, they can be incredibly time consuming and a laborious process for the developer. In

order to reduce this burden on developers, automated tools such as Evosuite [94], Randoop

[213] and Agitar [5], attempt to automatically generate entire test suites.

While several automated tools such as Evosuite [94], Randoop [213] and Agitar [5]

have been proposed to automatically generate test methods, these tools embed their own

methods for synthesizing assert statements. Evosuite, one of the most popular automated

test generation tools, uses a mutation-based system to generate appropriate assert state-

ments. In particular, it introduces mutants into the software and attempts to generate

assert statements able to kill these mutants. Evosuite also tries to minimize the number

of asserts while still maximizing the number of killed mutants [94].

Randoop is another automated test generation tool that creates assertions with in-

telligent guessing. This technique applies feedback-directed random testing by analyzing

execution traces of the statement it creates. Essentially, a list of contracts, or pieces of

logic that the code must follow, are used to guide the generation of assert statements.

These contracts are very similar to user defined assert statements. However, the contracts

only provide the logic. The Randoop program creates a syntactically correct assert state-
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ment that tests the user’s provided logic pertaining to the test method. Differently from

Evosuite and Randoop, Atlas applies a deep learning-based approach, with the goal of

mimicking the behavior of expert developers when writing assert statements.

Recent research has evaluated the ability of state-of-the-art automated techniques for

test generation to capture real faults [239, 26]. They found that the quality of the generated

assert statements are one of the primary reasons that automatically generated tests failed

to uncover real faults. Another recent study conducted by Shamshiri et al. [239] highlights

the importance of high-quality, complex assert statements when detecting real faults. The

authors compare the abilities of both exception and assert statements as fault finding

mechanisms. They note that three automated approaches (Evosuite, Randoop, Agitar)

detect more faults through the use of an assert statement, however, insufficiencies in the

automatically generated asserts led to many bugs going undetected [239]. Thus, this work

makes two important conclusions: (i) assert statements are an important component of

automated test case generation techniques, as they are the main vehicle through which

faults are detected; (ii) the current quality of assert statements generated by automated

testing techniques are often not of high enough quality to detect real faults.

A complimentary study performed by Almasi et al. [26], tested Evosuite and Randoop’s

ability to detect 25 real faults in an industrial software system. The study found that Evo-

suite was able to detect 56.4% and Randoop was able to detect 38.0% of the faults within

that system. Of particular note was the author’s qualitative evaluation, which showed that

nearly half of the undetected faults could have been detected with a more appropriate as-

sert statement. Additionally, the authors solicited feedback from developers, asking them

how the generated tests could be improved. The general consensus among the respondents

was that automated testing strategies failed to generate meaningful assert statements. The

authors also presented hand-written test methods to developers for comparison, and they

commented that "the assertions are meaningful and useful unlike the generated ones".

These findings demonstrate a clear need for automated techniques that generatemeaningful

assert statements to complement existing test generation approaches.
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One of the limitations that tools such as Evosuite, Randoop and Agitar have is that

they rely on heuristics or "intelligent" randomness in order to generate assert statements.

This type of generation does not take into account the learnable components of test and

focal methods, and thus leads to more simplistic asserts. Therefore, we leverage a NMT-

based DL technique to generate asserts that can test the complexities contained within the

context of the test and focal method. This strategy results in an assert which possesses

the ability to accurately evaluate the logic of the focal method, leading to more useful unit

tests and a higher quality test suite.
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Chapter 3

Systematic Literature Review in

Deep Learning for Software

Engineering

3.1 Introduction

Software engineering (SE) research investigates questions pertaining to the design, devel-

opment, maintenance, testing and evaluation of software systems. As software applica-

tions pervade a wide range of industries, both open- and closed-source code repositories

have grown to become unprecedentedly large and complex. This results in an increase of

unstructured, unlabeled, yet important data including requirements, design documents,

source code files, test cases and defect reports. Previously, the software engineering com-

munity has applied traditional machine learning (ML) techniques to identify interesting

patterns and unique relationships within this data to automate or enhance many tasks typi-

cally performed by developers. Unfortunately, the process of implementing ML techniques

can be a tedious exercise in careful feature engineering, wherein researchers experiment

with identifying salient pieces of data that can be leveraged to help solve a given prob-

lem or automate a given task. With recent improvements in computational power and
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the amount of memory available in modern computer architectures, an advancement to

traditional ML approaches has arisen called Deep Learning (DL). Deep Learning repre-

sents a fundamental shift in the manner by which machines learn patterns from data by

automatically extracting salient features for a given computational task, as opposed to re-

lying upon human intuition. Deep Learning approaches are characterized by architectures

comprised of several layers that perform mathematical transformations on data passing

through them. These transformations are controlled by sets of learnable parameters that

are adjusted using a variety of learning and optimization algorithms. These computational

layers and parameters form models that can be trained for specific tasks by updating the

parameters according to a model’s performance on a labeled set of training data. Given

the immense amount of unstructured data in software repositories that can serve to un-

cover hidden patterns, DL techniques have ushered in advancements across a range of

tasks in software engineering research including automatic software repair [263], code sug-

gestion [107], defect prediction [276], malware detection [169], feature location [69], among

many others [187, 271, 179, 285, 289, 114, 258, 182]. We refer to this emerging field of

research that leverages deep learning to improve or automate SE tasks as Deep Learning

for Software Engineering (DL4SE).

Given the successes of DL approaches on benchmark computer vision (CV) and natural

language processing (NLP) tasks, they have become quite popular as a general form of

software development in many industries. That is, developers and engineers are continuing

to leverage DL-based systems to solve problems that are difficult to tackle analytically via

traditional algorithm design or programming (self-driving vehicles, facial recognition, etc.).

Unfortunately, the very characteristics that make DL attractive and highly effective carry

with them trade-offs related to interpretability and testability. In other words, while these

models can often perform well for complex tasks, current challenges exist in interpreting

why these models make the decisions they do, and in testing them to find where they fall

short. Furthermore, the definition of a “development” cycle for DL models is still emergent,

and understanding the best practices and outstanding challenges is essential to ensure
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that researchers and practitioners properly allocate resources to supporting DL developers

and solving the most pressing challenges. For example, DL models are inherently data

driven, wherein most of the implementation effort is composed of selecting the appropriate

model and acquiring or creating a large labeled dataset to train the model. However,

the selection and implementation of these model architectures can be a complex task

due to the relatively large number of parameters, which can have significant bearing on

model performance that must be selected. Additionally, the collection and preparation of

a suitable dataset, and the subsequent representation of this data in a DL framework [164],

can comprise a substantial effort in and of itself. Proper data collection, preprocessing and

representation can be crucial to the implementation of effective DL models as the level of

abstraction of the input data has the potential to reveal or hide latent features that the

model could learn. The above aspects show the complexities behind the engineering for DL-

related projects, and clearly highlight the need for established best practices and intuitive

automated developer tools that provide developers an effective platform for creating and

reusing DL models. We refer to the area of research that aims to improve development

practices for DL-based systems as Software Engineering for Deep Learning (SE4DL). While

research in SE has begun to move toward supporting DL systems, particularly in the area

of testing [258, 273, 145], a clear enumeration of current practices and open challenges is

needed to help guide the SE and DL research communities towards the most impactful

problems.

The clear applications of DL to improve and automate SE tasks and the dire need

of developer support for creating, testing, and maintaining DL projects more broadly

points to a clear synergy between ongoing research in SE and DL. However, in order to

effectively chart the most impactful path forward for research at the intersection of these

two fields, researchers need a clear map of what has been done, what has been successful,

and what can be improved. For instance, researchers would benefit from knowing which

SE areas DL has been applied to and what types of models are optimal when analyzing

different types of SE data. There are many DL algorithms, all posing different trade-offs
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and benefits within the context of their applications. SE researchers could gain immense

benefit from understanding past successes (and failures) of these applications to further

advance automation of new SE tasks. On the other hand, DL researchers and practitioners

would benefit from understanding the open challenges and engineering practices related to

the emerging development cycle of DL models. A better understanding of these existing

challenges, alongside a characterization of the DL development cycle is absolutely essential

to ensure more reliable and practical DL implementations in industry, and more fluid

reproducible research in Deep Learning.

In an effort to map and guide research at the intersection of DL and SE, we conducted a

systematic literature review to identify and systematically enumerate the synergies between

the two research fields. We do this through the creation of a detailed taxonomy of past

work on DL techniques applied to SE tasks, and subsequently identified open challenges and

best practices for applying DL techniques to SE-related data. Additionally, we analyzed

the impacts of these DL based approaches and discuss the difficulties encountered with

reproducibility of these studies.

We organized our work around four types of Research Questions (RQs) that are fun-

damentally centered upon the components of learning. That is, we used the various com-

ponents of the machine learning process as enumerated by Yaser Abu-Mostafa’s book,

Learning From Data [12], to help ground the creation of our taxonomy and exploration of

the topic. Our overarching interest was to identify best practices and promising research

directions for applying DL frameworks to SE contexts, as well as to identify the direction

of emerging work that applies principles from SE research to improve the DL develop-

ment process. Clarity in these respective areas will give researchers the tools necessary to

effectively apply DL models to SE tasks.

To answer the RQs, we focused primarily on the primary studies classified as DL4SE.

We created a taxonomy of these studies that highlights important concepts and methodolo-

gies applied to the types of software artifacts analyzed, the learning models implemented

and the evaluation of these approaches. We discovered that while DL in SE has been
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successfully applied to many SE tasks, there are common pitfalls and missing details when

implementing these complex models. Therefore, in addition to the taxonomies that de-

scribe how the components of learning have been addressed, we provide insight into com-

monly missed steps and how to avoid them when considering a DL approach. From this,

we can provide the SE community with important guidelines for applying DL models that

address issues such as sampling bias and data snooping, overfitting and underfitting of the

learning models, and the over engineering of DL architectures. Our goal is to empower SE

researchers in their ability to create more robust and reliable DL approaches that address

interesting SE tasks.

With regards to SE4DL, we found initial research that has begun to address the follow-

ing DL development tasks of (i) requirements engineering, (ii) design, (iii) implementation,

(iv) testing, and (v) maintenance of software. Specifically, we found that recent research

has focused on the testing and interoperability of these models. This stems from the in-

herent abstract nature of DL models and their ability to model target functions which

are intractable for human minds. We discussed these works at length and attempted to

give insight into the troublesome limitations when testing DL approaches. However, since

these approaches do not actually implement a DL based approach, we did not include

them in our DL4SE classifications. Our entire SLR process can be found in figure 3.2,

which explains the process for developing the RQs and describes the steps taken in order

to synthesize the necessary information gathered from the primary studies.

The remainder of our survey is structured as follows: Section 3.2 discusses the synthesis

of the RQs this SLR looks to answer, which are paralleled to the components of learning;

Section 3.3 explains our systematic process for extracting and analyzing the primary stud-

ies that comprise our taxonomy of DL in SE; Section 3.4.1 begins the generation of our

taxonomy by analyzing the SE tasks that DL has been applied to; Section 3.4.2 analyzes

the type of data that DL approaches use and how that data is being represented to the

DL model; Section 3.4.4 focuses on the learning models that are used to address SE tasks;

Section 3.4.5 discusses the impacts and performance of DL approaches in SE; Section 3.4.6
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begins a discussion around the factors that contribute to the difficulty of reproducibility

of DL applications in SE; Section 3.5 provides future researchers with steps that should be

taken and common pitfalls when applying DL in SE; Section 3.6 discusses a new emerging

field in SE, where SE concepts are applied to the field of DL engineering; Section 3.7 fo-

cuses on the primary studies which were found by our search string but are not included

in the taxonomy of DL in SE; finally, Section 3.8 summarizes our results and highlights

interesting, potential directions for the field of DL4SE.

3.2 RQ Synthesis

The synthesis and generation of research questions is a quintessential step to any sys-

tematic literature review (SLR). When studying how DL has affected SE, we wanted to

formulate RQs that would naturally highlight a taxonomy of DL in SE, establish coherent

guidelines for applying DL to SE tasks and address common pitfalls when implementing

these complex models. Therefore, we sought to allow the components of learning to guide

the development of our RQs and tailor those questions to specifically analyze DL used in

the context of SE. The components of learning are a ML formalization introduced by Yaser

Abu-Mostafa [13] as a way to enumerate the conditions for learning. We also wanted to

address what components of learning the primary studies in SE are missing or are not ade-

quately reporting on. Failure to adequately consider or report the components of learning

when applying a DL approach in SE could lead to difficulty in reproducibility and threaten

the validity of the results.

The first component of learning is an unknown target function, which represents the

relationship that is desired to be learned. This component is closely linked to the task

that the learning approach is being applied to. From analysis of the target function to be

learned, one can infer the input and output of the model, the type of learning, hypothetical

features to be extracted from the data and potential architectures to be used. To encompass

the essence of this component of learning, our first RQ was:
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RQ1: What types of SE tasks have been addressed by DL-based approaches?

In understanding what SE tasks have been analyzed, we were able to naturally present

a taxonomy of what tasks have yet to be explored using a DL based approach. We were

also able to infer why certain SE tasks may present unique challenges for DL models and

the target users of these DL approaches, given the SE task they address.

Unknown Target Function
!: # → %

Training Examples
#!, %! … #", %"

Learning 
Algorithm

(
Final Hypothesis
)(#) ≈ !(#)

Hypothesis Set
-

Figure 3.1: The Components of Learning

A natural next step from analyzing the unknown target function is to explore the data

being presented to the model to learn this unknown target function. Here, we primarily

focused on studying the input and output training examples and the techniques used in DL

approaches to prepare the data for the model. An understanding of the training examples

presents greater insight into the target function while also giving further intuition about

what the potential features to be extracted are and DL architectures that can be used to

extract those features. A taxonomy of the data used, how it was extracted and how it

was preprocessed should encourage new ideas or techniques to better capture the features

of the data points, resulting in a more accurate model of the target function. Thus, our

second RQ was:
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RQ2: How are software artifacts being extracted, prepared and used in DL

based approaches for SE tasks?

Within this RQ we explored multiple facets of the extraction and preprocessing steps by

breaking this RQ down into three sub-question. The first sub-question discussed the dif-

ferent types of data that are being used in DL based approaches. Given the plethora of

software artifacts stored in online repositories, it is important to know which of those ar-

tifacts are being analyzed and modeled with a DL architecture. Our second sub-question

addressed how data is being extracted and pre-processed into a format that the DL model

can appropriately learn from. Analyzing the extraction of the data will present researchers

with potential tools and techniques to mine similar types of data for different DL appli-

cations within SE. Additionally, the representation of data is somewhat dependent on the

DL architecture and its ability to extract features from that representation, which gives

importance to the discussion of the relationship between DL architectures and the data

they process. Our third sub-question explored what type of exploratory data analysis is

conducted to help inform model design and training. It is important to note that DL

algorithms are data hungry, but the quality of the learned hypothesis is a product of the

quality of data the model learns from. Therefore, we looked to explore techniques to

mitigate problems associated with the data, such as sampling bias and data snooping.

Next, we encompassed both the third and fourth components of learning, the learning

algorithm and hypothesis set, into a single research question because we felt that they

were highly related to one another. The learning algorithm is the process of navigating the

hypothesis set for the best fit model to the data. These are primarily mathematical models

that use a probability distribution over the input to appropriately approximate the optimal

hypothesis from the hypothesis set. The hypothesis set is a set of all hypotheses, based on

the learning algorithm, that the input can be mapped to. This set changes because it is

a function of the possible outputs given the input space, and is dependent on the learning
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algorithm’s ability to model those possible outputs. Together the learning algorithm with

the hypothesis set is referred to as the learning model, thus, our third RQ asked:

RQ3: What deep learning models are used to support SE tasks?

We also wanted to make an important distinction within the learning model to address the

variety of architectures used and the optimizations applied to those architectures in order

to model the appropriate hypothesis set. We broke down RQ3 into three sub-questions,

which addressed the aforementioned attributes of the learning model separately. Firstly, we

asked what types of model architectures are used to perform automated feature engineering

of the data within various SE tasks. Here, we looked at the variations of architectures to

relate them to the data they analyzed and the task they addressed. We also used this RQ

to present how the type of architecture chosen to model a particular target function relates

to the types of features that are being extracted from the data. Secondly, we looked into

the different learning algorithms and training processes that are used in order to optimize

the models. This is where we addressed the variety of different learning algorithms whose

responsibility is to properly capture the hypothesis set for the given input space. The

different optimization algorithms and training processes used to tune the weights of the

model are an important step for finding the target hypothesis that best represents the

data. Lastly, we analyzed the methods used to combat overfitting and underfitting. This

question addressed one of the major concerns with using DL algorithms and their tendency

to overfit or underfit the data they model. Within SE, we wanted to know what techniques

the authors are implementing to combat these well understood limitations.

Our fourth RQ addressed the component of learning known as the final hypothesis.

The final hypothesis is the target function learned by the model that is used to predict

the target of previously unseen data points. Measuring the effectiveness of DL models

can encourage the use of DL in areas of SE that DL has not yet been applied. We also

felt that we could provide an indication toward the advantages of certain data formatting,
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DL architectures or techniques that have been successful for certain SE tasks in the past.

Thus, our fourth RQ was:

RQ4: How well do DL tasks perform in supporting various SE tasks?

The purpose of this RQ is to analyze the effectiveness of DL applied to SE tasks, how-

ever, this can be a difficult and complex. We attempted to answer this overarching RQ

by first addressing the “baseline” techniques that are used to evaluate new DL models and

discovering what metrics are used in those comparisons. An evaluation that contains a

comparison with a "baseline" approach, or even non-learning based solution, is important

for determining the increased effectiveness of applying a new DL framework. Additionally,

the metrics used to quantify the comparison between DL approaches should be known

so that future implementations of DL in SE know how to quantify their increased effec-

tiveness. Our second sub-question explored how DL based approaches are impacting the

automatization of SE tasks and in which way these models promote generalizability to

different sets of data. Generalizability of DL approaches in SE is vital for the usability of

these models. If the state of the art DL approach is only applicable within a narrowly de-

fined set of circumstances, then there may still be room for improvement on this solution.

Lastly, we wanted to explore common mistakes made by overengineering the DL model and

analyzing the trade-off of model complexity with accuracy. We look at DL architectures

through the lens of Occam’s Razor principal, which states that the least complex model

that is able to learn the target function is the one that should be implemented [224].

Our last RQ encompassed all of the components of learning by asking a discussion

question related to the reproducibility of DL approaches in SE. SE as a field has made a

significant effort toward publishing works that are reproducible. However, DL models can

be very complex and we wanted to determine if there were important details left out of

the primary studies we analyzed. Therefore, we asked the question:

RQ5: What common factors contribute to the difficulty when reproducing DL

studies in SE?

35



Our goal was to identify common components of implementing a DL based approach which

are absent from the primary studies. Particularly, we addressed two important attributes:

what primary studies are not reproducible and why, as well as what primary studies are not

replicable and why. Reproducibility is the ability to take the exact same model with the

exact same dataset from the primary study and produce the same results. Replicability is to

follow the methodology described by the primary study such that a similar implementation

can be generated potentially on a different dataset. This RQ helps the SE community to

understand what factors are being insufficiently described or absent all together within the

DL approach, leading to difficulty in reproducing or replicating the primary study.

Lastly, we looked to generate a set of guidelines, not only for the implementation of

DL in SE, but also how to report the model in a way that values reproducibility. These

guidelines start with the identification of the SE task to be studied and provide a step by

step process through evaluating the new DL approach. Due to the high variability of DL

approaches and the SE tasks they are applied to, we only provide generalizable steps that

should be performed for future implementations of DL in SE. In addition, we provided

checkpoints throughout this process that address common pitfalls or mistakes that future

SE researchers can avoid when implementing these complex models. Our hope is that

adhering to these guidelines will lead to future DL approaches in SE with an increased

amount of clarity and reproducibility.

3.3 Methodology

In this paper we performed a systematic literature review of deep learning in software

engineering, which discusses the open issues involving the use of these complex models to

address software engineering tasks. We applied a systematic methodology to our litera-

ture review in order to uphold the integrity of our analysis and provide a reproducibility

aspect to this work. Within the field of SE, SLRs have become a standardized practice to

communicate the past and present state of a particular area within SE. These standards
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were developed by Kitchenham’s work, Guidelines for Performing Systematic Literature

Reviews in Software Engineering [149], which contains the guidelines and strategies used

in this review.

The full breakdown of our methodology in conducting the SLR can be seen in figure

3.2. As is described in Kitchenham’s guidelines, we synthesized research questions (RQs)

before beginning the searching process, which helped to naturally guide the SLR procedure

and focused the search only to primary studies that helped answer these RQs. From here,

we performed the following steps when conducting our review:

• Searched for primary studies

• Filtered studies through our inclusion criteria

• Performed snowballing and manual additions to the body of work

• Applied our exclusion criteria and quality analysis of the remaining studies

• Extracted relevant data and analyzed that data from the final set of studies

• Synthesized and created a taxonomy of DL in SE

3.3.1 Searching for Primary Studies

The next step in the methodology was to begin searching for primary studies that would aid

in the ability to properly address the synthesized RQs. We first began by identifying venues

we would like to search. We chose venues which have a high standard for peer reviewed

research, as well as a high influence over the field of SE. Therefore, we considered research

from the SE conferences of ICSE, ASE, FSE, ICSME, ICST, MSR, and ISSTA. In addition,

we considered research from the SE journals of TSE, TOSEM, EMSE, and IEEE Software.

Lastly, we considered the top conferences dedicated to machine learning and deep learning

implementations. We did this in order to capture papers focused on the creation of a DL

approach, that also apply that approach to a SE task. The conferences we considered in the
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Figure 3.2: SLR Methodology

ML/DL field were ICML, ICRL, and NIPS. Once we established the venues to search, we

developed a search string to query each database for relevant research. The development

of the search string was determined based on terms that relate to the RQs we wanted

to answer. We empirically evaluated multiple search strings using a variety of derived

terms and found the string ("Deep" OR "Learning" OR "Neural") to return the most

relevant primary studies. At this point, we were ready to begin querying the respective

conferences and journals for primary studies. Most of the venues we searched were found

in four online databases: arXiv, IEEE Xplore, ACM Digital Library and SpringerLink.

The fourth database we searched was Google Scholar, which was mainly used to access the

primary studies contained within the ML/DL conferences.

The four major databases we considered provided a mechanism for advanced searching

that can be used in conjunction with the search string. Although there are nuances amongst

each database, the method for gathering studies was consistent. The search string provided

an initial filtering of the primary studies, then additional features of the advanced search

allowed us to add discriminatory criteria. These additional features are how we limited our

search results by year and venue. In addition to the three major databases, we searched
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Google Scholar for papers within ICML, ICRL and NeurIPS through the Publish or Perish

software [266]. To search these three conferences, we had to augment our search string with

SE terms that would only return papers addressing a SE task. We gathered these terms

from ICSE (International Conference on Software Engineering), since they are used as

topics for technical track paper submissions. We iterated through each term and appended

it to our search string. The results of that search were manually inspected for relevant

papers to SE. After searching the databases with the specified search string, our initial

results yielded 1,184 relevant studies.

3.3.2 Filtering Through Inclusion Criteria

In this step of the SLR, we defined the inclusion criteria that determined which primary

studies would be included in our taxonomy. To an extent, part of our inclusion criteria was

already used to extract the primary studies. The year and the venue were used in advanced

searches to filter out extraneous research that our search string returned. However, after

the search phase concluded, we filtered our results based on a more strict set of inclusion

criteria. This ensured that the primary studies would be a useful addition to the taxonomy

and would contain the necessary information to answer the RQs. A full list of the inclusion

and exclusion criteria can be viewed in table 3.1.

Table 3.1: SLR Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Study is published in the year range 2009-2019. Study was published after January 1, 2009 or before
April 1, 2019.

Study clearly defines a SE task that is addressed with
a DL based approach. Study does not solve a SE task.

Study was published in the predefined venues. Study is outside the scope of software engineering or
is published in an unaccepted venue.

Paper must identify and address the implementation
of the DL framework.

Paper does not fully implement, evaluate or address
the implementation of a DL approach.
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The primary studies gathered through the use of the search string, the snowballing

method, or through manual addition were subjected to the same criteria for inclusion.

Three of the primary authors divided the works and labeled them for inclusion based on

reading the abstract and methodology of the paper. A second author then reviewed each

classification. If the classifications between the two authors were in disagreement, then

all authors reviewed and discussed this work until a unanimous consensus was achieved.

At the end of this phase of the SLR, we were able to include 127 primary studies for

consideration.

3.3.3 Snowballing and Manual Additions

Our next step in the process was snowballing and the inclusion of manually added papers.

After extracting primary studies from the specified venues and subjecting those studies

to our inclusion criteria, we performed snowballing on the resulting studies. Snowballing

helped to ensure we were gathering as much related research as possible. Our snowballing

process looked at every reference within the studies passing our inclusion criteria and

determined if any of those references also passed our inclusion criteria. Lastly, using our

expert knowledge of the field, we manually added any related works that were missed

by our systematic process. We performed this manual addition for completeness of the

survey and made note of which studies were manually added in our taxonomy. From

performing snowballing, we were able to add 18 new pieces of research to include in our

SLR. In addition, we manually added three relevant pieces of work that were not captured

by either our search string or snowballing. This resulted in 148 primary studies.

3.3.4 Exclusion Criteria and Quality Analysis

At this stage, we applied our exclusion criteria to determine if there were any primary

studies which were inadequate to be a part of our taxonomies. This involved a significant

manual analysis to closely analyze how each study incorporated the use of DL when ana-

lyzing a SE task. Particularly, we found many studies that only used a DL based approach

40



as a means for evaluation. We also found instances where DL was discussed as an idea

or part of the future work of a study. We therefore excluded these works to ensure that

every paper we analyzed implemented and evaluated a full DL approach to address a SE

task. This resulted in 84 studies, all of which were included in the data extraction and

taxonomy synthesis phases. In figure 3.3 we show the breakdown of venues that our final

84 studies came from.

ASE FSE ICLR ICML ICSE ICSME MSR NIPS TSE EMSE ISSTA ArXiv

Figure 3.3: Venue distribution of DL4SE

3.3.5 Data Extraction and Analysis

Our next step in the SLR methodology was to extract the necessary data from the primary

studies. This step involved the development of an extraction form where the authors

agreed about specific information to extract from reading the papers. We would then use

this information to create complete taxonomies of DL in SE. Each author was tasked with

extracting data from a subset of the 84 primary studies classified as DL4SE. However,
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the results of the extraction phase were confirmed by at least two additional authors to

ensure that all important details were gathered and that papers were properly represented

by the taxonomy. We then performed data analysis of our extracted data to determine

the types of relationships between features. We explain our process of data analysis in the

next section.

3.3.5.1 Data Analysis

Our final task was to analyze the data extracted from the SLR process. We performed

Exploratory Data Analysis (EDA) in conjunction with Confirmatory Data Analysis (CDA),

in order to obtain descriptive statistical attributes of our dataset. The mined facts and

associations allowed us to ascertain and support the conclusions of this SLR.

The Systematic Literature Review of DL4SE required formal statistical modeling to

refine the answers for the proposed research questions and to help formulate new hypothe-

ses to be addressed in the future. Hence, we introduced DL4SE-DA, a set of statistical

processes and data mining pipelines that uncovered hidden relationships among the liter-

ature reporting a DL based approach in SE. Such hidden relationships were collected and

analyzed to illustrate the state-of-the-art DL techniques employed in the SE context.

Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases,

or KDD [92]. The KDD process extracts knowledge from a DL4SE structured database.

This structured database was the product of multiple iterations of data gathering and

collection from the inspected literature. The KDD involves five stages:

1. Selection. This stage was led by the taxonomy process explained in the beginning

of this section. After collecting all the papers and creating the taxonomies, we

organized the data into 35 features or attributes that you find in the repository. In

fact, we manually engineered features from the DL4SE papers. Some of the features

we considered were: venue, year published, type of paper, metrics, data-scale, type

of tuning, learning algorithm, SE data, and so on.
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2. Preprocessing. We applied a preprocessing technique that transformed the features

into the correct type (nominal), removed outliers (papers that do not belong to the

DL4SE), and re-inspected the papers to extract missing information produced by the

normalization process. For instance, we normalized the feature “metrics” into “MRR”,

“ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and

“Other Metrics”. “Other Metrics” refers to unconventional metrics found during the

extraction. Similarly, the same normalization was applied to other features like

“SE Data” and “Reproducibility Types”. This separation into more detailed classes

contributes to a better understanding and classification of the paper by the data

mining tasks or methods.

3. Transformation. In this stage, we omitted the use of any data transformation

method. We performed a Principal Component Analysis (PCA) to reduce 35 features

into 2 components for visualization purposes.

4. Data Mining In this stage, we used two distinct data mining tasks, Correlation

Analysis and Association Rule Learning. We decided that the goal of the KDD

process should be oriented to uncover hidden relationships on the extracted features

Correlations and Association Rules. A clear explanation is provided in the subsection

“Data Mining Tasks for the SLR of DL4SE”.

5. Interpretation/EvaluationWe used the Knowledge Discover to automatically find

patterns in our papers that resemble “actionable knowledge”. This actionable knowl-

edge was generated by conducting a reasoning process on the data mining outcomes.

This reasoning process produced an argument support analysis formally found in our

online repository [280].

We used RapidMiner [10] as our software tool to conduct the data analysis and the

procedures and pipelines for using this tool are published in our repository. Before carrying

out any mining tasks, we decided to address a basic descriptive statistics procedure for each

43



feature. These statistics exhibit basic relative frequencies, counts, and quality metrics. We

revised 4 quality metrics: ID-ness, Stability, Missing, and Text-ness. ID-ness measures to

what extent a feature resembles an ID, where as the “title” is the only feature with a high

ID-ness value. Stability measures to what extent a feature is constant (or has the same

value). Missing refers to the number of missing values. Finally, Text-ness measures to

what extent a feature contains free-text. The results for each feature could be navigated

once the SRL process was ran in RapidMiner. We employed two well-established data

mining tasks to better understand our data: Correlations and Association Rule Learning.

3.3.5.2 Correlations

Due to the nominal nature of the SLR features, we were unable to perform classic statisti-

cal correlations on our data (i.e. Pearson’s correlation). However, we adapted an operator

based on attributes’ information dependencies. This operator is known as “mutual infor-

mation” [190]. Similar to covariance or Pearson’s correlation, we were able to represent

the outcomes of the operator in a confusion matrix.

The mutual information measures to what extent one feature knows about another

one. High mutual information values represent less uncertainty; therefore, we built argu-

ments such as “the deep learning architecture used on a paper is less uncertain (or more

predictable) given a particular SE task” or “the reported architectures within the papers

are mutually dependent with the Software Engineering task”.

The difference between correlation and association rules depends on the granularity

level of the data (e.g., paper, feature, or class). The correlation procedure was performed

at the feature level, while the association rule learning was performed at the class or

category level.

3.3.5.3 Association Rule Learning

For generating the association rules, we employed the classic FP-Growth algorithm (FP

stands for Frequent Pattern). The FP-Growth computed frequently co-occurring items
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in our transactional dataset (see DL4SE-Dataset.csv in [280]) with a minimum support of

0.95. These items comprise each class per feature. For instance, the feature “Loss Function”

exhibited a set of classes (or items) such as “NCE”, “Max Log Likelihood”, “Cross-Entropy”,

“MSE”, “Hinge Loss”, “N/A-Loss”, and so on. The main premise of the FP-Growth can be

summarized as: if an item set is frequent (i.e. MSE, RNN), then all of its item subsets are

also frequent (i.e. MSE and RNN).

Once the FP-Growth generated the item sets (e.g. MSE, Hinge Loss), the algorithm

started to check the item sets’ support in continuous scans of the database (DB). Such

support measures the occurances of the item set in the database. The FP-Growth scans the

DB, which brings about a FP-tree data structure. We recursively mined the FP-tree data

structure to extract frequent item sets [118]. Nonetheless, the association rule learning

requires more than the FP-tree extraction.

An association rule serves as an if-then statement (or premise-conclusion) based on

the frequent item set pattern. Let’s observe the following rule mined from our dataset:

“Given that an author used Supervised Learning, we can conclude that their approach is

irreproducible with a support of 0.7 and a confidence of 0.8”. We observe the association

rule has an antecedent (i.e., the item set Supervised Learning) and a consequent (i.e.,the

item set Irreproducible). These relationships are mined from item sets that usually have

a high support and confidence. The confidence is a measure of the number of times that

premise-conclusion statement is found to be true. We tuned both parameters to be greater

than 0.7.

We refute the idea that association rule learning avoids spurious correlations. Regard-

less, we organized the rules into an interconnected net of premises/conclusions to find ex-

planations around techniques and methodologies reported on the papers. Any non-logical

rule is disregarded as well as rules that possess a lower support and confidence.

The results of our exploratory data analysis and source of the information provided in

this SLR can be found in our online repository [280].
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3.3.6 Taxonomy Synthesis

In the next section, we discuss the resulting taxonomies created from the primary studies

found through our systematic approach. We use these taxonomies in order to answer

the RQs presented in the beginning of this work. These RQs naturally define a larger

taxonomy that researchers can use to determine what types of SE tasks can be better

studied using certain DL based approaches, as well as look for future applications of DL

to model complex software artifacts. We oriented the results of our RQs to provide an

understanding about the process of applying a DL based approach in SE.

3.4 Results

3.4.1 RQ1: What types of SE tasks have been addressed by DL-based

approaches?

In this RQ, we explored what types of SE tasks DL based approaches are applied to.

DL models are excellent at identifying an appropriate target hypothesis given complex,

hierarchical, abstract representations of data points. This makes them useful models to

apply to SE tasks, as these models can automatically extract useful, hierarchical features

within SE data that developers or researchers could not find manually. These features can

be used to establish relationships between the facets of input data and target variables.

Those relationships can then be used in the prediction of a target, given an input data

point that was previously unseen by the model.

Out of the 84 papers we analyzed for this SLR, we found 23 separate SE tasks where

a DL based approach had been applied. Figure 3.4 gives a visual breakdown of how many

SE tasks we found within these 84 primary studies across a 10 year period. Unsurprisingly,

there was very little work done between the years of 2009 and 2014. However, even after

the DL breakout paper of AlexNet by Krizhevsky et al. [156] in 2012 showing the useful-

ness of DL in image classification, no work on SE tasks took place until 3 years later in
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Figure 3.4: SE Tasks Per Year

2015. The first SE tasks to use a DL technique was that of Code Comprehension, Source

Code Generation, Source Code Retrieval & Traceability, Bug-Fixing Process, and Feature

Location. Each of these tasks uses source code as their primary form of data, which is due

to its large abundance in online repositories. This is a result of the Software Engineering

community’s shift toward becoming more open sourced, allowing for access to millions of

software projects through popular hubs such as GitHub, Gitlab, and Bitbucket. Access to

a large amount of data and a well understood task is important for DL4SE, since in order

for DL to have an effective application two main components are needed: i) a plethora

of data to support the training of multi-parameter models capable of extracting complex

representations and ii) a task that can be addressed with some type of predictable target.

One of the major benefits of DL implementations is the ability for automatic feature ex-

traction. However, this requires the ability to find data that has a distinct relationship

with the predicted target variable.

It wasn’t until 2017 that DL was being used extensively in solving SE tasks as shown

in Figure 3.4, with a large increase in the number of papers, more than doubling over
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the previous 2 years. During this period, there was also a more diverse set of SE tasks

attempting to be solved, such as Code Smells, Software Security, and Software Categoriza-

tion. However, there are three main SE tasks that have remained active across the years:

Code Comprehension, Source Code Retrieval & Traceability, and Program Synthesis1. The

most popular of the three being Program Synthesis, composing a total of 20 papers out

of the 84 we collected. We suspect that a variety of reasons contribute to the multiple

applications of DL in program synthesis. First and foremost, is that the accessibility to

data is more prevalent. Program synthesis is trained using a set of input-output examples.

This makes for high quality training data, since one can train the DL model to generate a

program, given the set of formal specifications. The second largest reason is having a clear

and established relationship between the training examples and the target program. These

relationships are what deep learning methods thrive on as they can adequately model this

relationship without the need for hand-crafted features.

We display the full taxonomy in Table 3.2, which associates the cited primary study

paired with its respective SE task. Interestingly, we encountered a few tasks that may

not initially seem as though they are SE related. For example, tasks such as image to

structured representation, software security and software energy metrics do not initially

appear directly related to SE. However, upon further analysis we found these tasks to be

highly related to SE and therefore were included in our taxonomy.

When performing our exploratory data analysis, we found the the SE task was the most

informative feature we extracted, meaning that it gave us the greatest insight into what

other features may have been associated. In particular, we found that SE tasks had strong

correlations to data preprocessing (1.80), the loss function used (1.45) and the architecture

employed (1.40). Therefore, we can predict that there are DL framework components that

are better suited to address specific SE tasks. Throughout the remaining RQs, we look to
1We recognize that Program Synthesis does not appear in Y19, however since we did not collect papers

for all of Y19, we are confident that Program Synthesis papers would appear.
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Table 3.2: SE Task Taxonomy

SE Task Papers
Code Comprehension [167, 43, 219, 122, 161, 18, 21, 162]
Souce Code Generation [142, 123, 282, 287, 110, 54]

Source Code Retrieval & Traceability [58, 112, 108, 76, 159, 52]
Source Code Summarization [58, 271, 23]

Big-Fixing Process [166, 202, 48, 76, 159]
Code Smells [179]

Mobile Testing [183]
Traditional Software Testing [102, 71, 242]

Non Code Related Software Artifacts [136, 184, 237, 65, 67, 66]
Clone Detection [170, 285, 232, 99, 176, 261]

Software Energy Metrics [230]
Program Synthesis [100, 50, 294, 78, 250, 203, 227,

178, 36, 79, 49, 270, 61, 125, 28,
300, 241, 88, 89, 173]

Image To Structured Representation [75, 55, 200]
Software Security [119, 297, 53, 99, 120, 72]
Program Repair [46, 274, 120, 264, 181]

Software Reliability / Defect Prediction [116, 277, 281]
Feature Location [70]

Developer Forum Analysis [56, 289, 175, 191]
Program Translation [60]

Software Categorization [27]
Code Location Within Media [211]
Developer Intention Mining [129]

expand upon the associations we find to better assist software engineers in choosing the

most appropriate DL components to build their approach.

Although the applications of DL based approaches to SE related tasks is apparent, there

are many research areas of interest in the SE community as shown in ICSE’20’s topics of

interest2 that DL has not been used for. Yet, many of these topics have no applicability

for a DL based solution, such as Cloud computing, human and social aspects of software

engineering, parallelization, distributed and concurrent systems, etc. These topics are

either out of scope for DL based automation or require more stringent methods that are
2https://conf.researchr.org/track/icse-2020/icse-2020-papers#Call-for-Papers
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not stochastic. Still, some of the interesting topics that we believe can see benefit from DL

approaches have yet to be explored by the research community or are underrepresented.

Topics of this unexplored nature include refactoring and program analysis, whereas topics

which are underrepresented include software testing, both traditional systems and mobile,

software documentation, feature location, and defect prediction. Some possible reasons

why certain SE tasks have yet to gain traction in using DL could be due to the following:

• There is a lack of available, clean data in order to support such DL techniques,

• The problem itself is not well defined, such that a DL model would struggle to be

effectively trained and optimized

• No current architectures are adequately fit to be used on the available data.

3.4.2 RQ2: How are software artifacts being extracted, prepared and

used in DL based approaches for SE tasks?

In this research question, we analyzed the type of data that is modeled by the DL ap-

proaches in SE. We wanted to address a few aspects of how SE data is used, how the data

is extracted or preprocessed, the scale of the data being modeled and the type of learning

based on the data available. All four of these points are a crucial step in understanding

how the approach is able to model specific software artifacts. These points also open up

a discussion about future research toward the improvement of data manipulation and pre-

processing steps to increase accuracy of the DL approaches. In many cases, data must be

cleaned or filtered in such a way that limits the ability for the approach to model a desired

relationship. Since DL models are frequently seen as a black-box in terms of explainability

and interoperability, it is important that the relationships between input and output are

accurately reflected within the dataset.
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3.4.2.1 What types of data are being used?

When analyzing the types of data that were being used in DL based approaches, we

provided a high level classification, along with some intuition, as to why some types of

data were used for particular tasks. We found that overwhelmingly the most common

type of data being used is source code at different granularities. Within this SLR, we

found source code being used at the binary level, code snippet level, method level, class

level and project level. The high volume of approaches that learn from source code do

so for a number of reasons. The first is that source code is plentiful and can be found

from a number of different online repositories. This availability aids in the fact that DL

models are extremely data hungry in order to learn a representative target function. The

second reason is that a majority of SE tasks revolve around the generation, understanding,

debugging and documentation of source code, which makes the desire to automate these

tasks for developers extremely high.
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Figure 3.5: Data Types With SE Tasks

51



We find that out of the 111 uses of data in DL4SE papers, 49 of them are attributed

to source code. The reason that there are 111 uses of data, which is larger than the 84

papers we analyze, is because many primary studies use multiple different data types in

conjunction to learn from. Although source code is the primary type of data that DL

models attempt to learn from, we found that the type of data used is heavily dependent

on the SE task. Thus, the SE tasks that focus on the comprehension, generation, summa-

rization and testing of source code will frequently use some granularity of source code to

comprise their dataset. However, there are many SE tasks that address problems where

source code may not be the most representative type of data to learn from. As an example,

the SE tasks of program synthesis primarily uses input and output examples to comprise

their dataset. This type of data incorporates attributes, which more strongly correlates

to the relationship the engineer desires the model to learn. This pattern continues for SE

tasks that can learn from textual data, software artifacts and repository metadata. Our

exploratory data analysis also highlighted these points. Our analysis demonstrated that

the main data employed in DL4SE papers are input-output (I/O) examples, source code,

natural language, repository metadata and visual data. In fact, these categories of data

types comprised 78.57% of the distribution we found in this SLR. In conjunction with this

finding, execution traces and bug reports represent ∼ 10% of the distribution of data. The

remaining ∼ 12% is comprised of a variety of different data types. The full breakdown of

data types can be viewed in figure 3.5.

Although we find a variety of different data types used, the data must be accessible

in large quantities in order to extract and learn the relevant target hypothesis. With

an increase in the number of online repositories, the ability to access these repositories

has increased over time. This can partially explain the dramatic increase in DL papers

addressing SE tasks, which was a trend discussed in 3.4.1. Interestingly, the growth of

online repositories does not only increase the amount of accessible source code but also

other types of software artifacts. For example, analyzing SE tasks such as software security,

program translation, etc. have only recently been addressed, in part due to the increasing
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amount of accessible online repository data/metadata. We hope to see this trend continue

with new benchmarks and datasets that will be released with future publications.

When exploring online repositories, one attribute of the data that can be problematic

for the use of some DL approaches and should be considered is that the data is frequently

found unlabeled, meaning that there is no inherent target to associate with this data. For

unsupervised learning techniques this is not problematic, however, for supervised learning

techniques this type of data is not usable without first establishing a target label for the

data. The use of unlabeled data from online software repositories was foreshadowed in

previous work [282]. Our findings corroborate this study, as many labeled and unlabeled

datasets are used within DL based approaches to address SE tasks. The use of labeled

versus unlabeled data can be ascertained based on the type of DL model chosen. However,

we find that researchers mined unlabeled data and label it themselves in order to use a

particular DL architecture. With the increase in the number of online repositories and the

variety of unlabeled data within those repositories, we expected the number of DL based

approaches analyzing software artifacts to increase.

Throughout our study, we noticed a few SE artifacts that have not yet been analyzed

through a DL based approach. Specifically, we noticed that software requirements, soft-

ware dependencies and software licensing have not been mined or studied using a DL

architecture. We emplore the SE community to continue to mine and analyze different SE

artifacts for the automatization of SE tasks. The continuation of this process will lead to

more datasets and benchmarks for future DL model comparisons.

3.4.2.2 How is data being extracted and pre-processed into a format that the

DL model can appropriately learn from?

In 3.4.2.1, we analyzed what types of data were being used to model complex relationships

between software artifacts and the target output function as it relates to a specific SE

task. In this RQ, we looked for the mechanism behind the extraction and preprocessing of

this data. DL models extract complex, hierarchical features based on the input data. This
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data is subjected to a number of hidden layers and hidden units, which are responsible for

the feature engineering process. The learning associated with these models is the process

of tuning the weight matrices between the layers. This tuning enables the extraction of the

necessary features to appropriately model the target hypothesis [104]. In many instances,

the preprocessing of data can be handled by tools designed to format input to DL models.

These tools are necessary because DL models cannot accept raw data mined from the

online repositories. Rather, the data is subjected to a preparation and formatting process

before given to the DL model. This is an extremely important step for those applying

DL to SE, since the process can dramatically affect the performance of the model and the

resulting target hypothesis. For example, some primary studies represent source code in an

abstracted format. This abstraction will inherently remove some of the complex features

within the dataset. This process has both pros and cons. Examples of pros are that

abstraction addresses some of the learning problems, such as the open vocabulary problem

and generalizability, that can arise when applying a DL model to a SE task. However, a

limitation of the abstraction process is that it removes some complex, hierarchical features

from the dataset, which can limit the model’s ability to accurately predict the target in

some cases.

The pros and cons of any preprocessing step must be carefully considered before being

implemented. The authors should understand what inherent limitations the preprocess-

ing step can impose on the model. Just as importantly, the preprocessing process must

be documented and explained in order for a study that uses this technique to be repli-

cated or used by developers. If one were to use a DL model without also replicating the

preprocessing steps, the results of the experiment would be inconclusive.

In light of the importance of preprocessing in DL based approaches, we looked to

generate a taxonomy of preprocessing and formatting techniques. We also looked to analyze

the relationships between the SE tasks, types of data and the preprocessing steps taken.

Unsurprisingly, the preprocessing and formatting techniques of data can be highly specific.

This is in part due to the features that the authors look to ascertain from their dataset.
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The desired features should help drive the decision on what preprocessing and formatting

techniques to use. A preprocessing pipeline that removes or overshadows the desired

features from the dataset will ultimately lead to a poor performing model. A breakdown

of the preprocessing and formatting techniques used in the primary studies we analyzed

can be found in figure 3.6.
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Figure 3.6: Preprocessing Techniques by SE Task

It is important to understand that figure 3.6 shows generally how the preprocessing and

formatting techniques break down by SE task. However, within the same preprocessing

technique, there can be small nuances across different studies. There is rarely a standard

method for the ability to preprocess the data in such a way that will fit the desired DL

model. Therefore, we suggest looking into the primary studies for more details pertaining

to a specific preprocessing or formatting technique of interest. However, there are some

dominant techniques researchers use in order to prepare their data to be analyzed by a DL

model. Specifically, the use of tokenization and neural embeddings are popular for a variety

of different tasks. This was expected, since we knew that source code was the primary data
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type used for DL models in SE. Tokenization of that source code is an effective process for

preparing different granularities of code to be fed into a DL architecture.

Even more popular than the use of tokenization was the use of neural embeddings

(57.14% of the distribution). This technique can use canonical machine learning techniques

or other DL architectures to process the data, meaning that the output from these other

models are then used as input to an additional DL architecture. We found that Word2Vec

and recurrent neural networks (RNNs) were the most popular types of models for the

preprocessing of data. Again, this relates to the high amount of sequential data that is

used in SE that DL models can take advantage of. Source code, natural language and

other repository metadata can have a sequential nature, which can be captured by these

techniques. In both cases, the outputs of these models are a series of vectorized numerical

values, which capture features about the data they represent. These vectors do not require

much additional manipulation before they can be used again as input data to another DL

model.

Although tokenization and neural embeddings are the most popular type of prepro-

cessing techniques, there are many more that are required for a different types of data or

SE tasks. The ability to accurately represent the data to the DL model is what provides

training data for the algorithm to learn from. Any alteration to this process can result in

the learning algorithm focusing on different features, leading to an entirely different final

hypothesis.

Our exploratory data analysis discovered that the steps taken in preprocessing were

strongly dependent on the DL architecture used (0.97). Intuitively, this should make sense

since the data must be transformed into a vector that the DL architecture can accept. If

the preprocessing steps and architecture are disjointed, then the model will lack the ability

to accurately and adequately represent the final hypothesis. Therefore, we encourage

future researchers to analyze the preprocessing steps taken by previous authors given the

DL architecture they employed. Vice versa, if certain preprocessing steps need to be
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taken, future researchers should analyze what DL architectures coincide with the resulting

vectorized format of the data.

3.4.3 What type of exploratory data analysis is conducted to help inform

model design and training?

DL models are incredibly efficient at finding patterns in a large set of data without the

intervention of the DL engineer. However, these models have one significant flaw that is

frequently overlooked in the SE community: the quality of the data significantly impacts

the quality of the learned target function. The analysis and quality of data analyzed has

been shown to have adverse effects on machine learning models in the task of code clones

[16], however, the issues discussed in this work transcend the particular SE task. Given

these limitations, it is the responsibility of the researcher to analyze and evaluate the data,

such that it appropriately represents the relationship between input and output. We refer

to problems within the dataset as confounding variables, which can explain the results of

the learned final hypothesis. In this RQ, we analyzed our primary studies to determine if

precautions were taken to limit the number of confounding variables. Primarily, we were

interested to see if there exists any sampling bias or data snooping when applying these

DL models to SE tasks.

First, we wanted to describe the issues involving sampling bias and data snooping. We

found that when DL is applied to SE, there were many instances where there were no

methods to protect against these confounding variables. This leads to doubt surrounding

the results of the primary study and can severely limit the conclusions that can be drawn

from the learned target hypothesis. Sampling bias is a result of collecting data from a

distribution incorrectly or in such a way that it does not accurately represent the distri-

bution due to a non-random selection process [216]. The repercussions of sampling bias

normally results in a target hypothesis that is only useful for a small subset of the actual

distribution of the data. Authors can unknowingly make claims about their predicted

target function, which overestimate the actual capabilities of their model, when sampling
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bias is not appropriately considered. The best mechanism for reducing sampling bias is to

limit the amount of criteria and filtering the data is subjected to. Additionally, extracting

as much useful data as possible will help to effectively train the model and will reduce

sampling bias.

Data snooping is the process of using data more than once for the purpose of train-

ing and testing the model. This means that the data the model was trained on is also

incorporated into the testing and evaluation of the model’s success. Since the model has

already seen the data before, it is unclear whether the model has actually learned the

target hypothesis or simply tuned itself to effectively reproduce the results for previously

seen data points (overfitting). The overall result of data snooping is an overinflated accu-

racy from the model. Therefore, it is important that software engineers apply methods to

reduce data snooping in order to protect the integrity of their results. This can be done

through a simple exploratory data analysis or the removal of duplicate data values within

the training and testing sets.

To evaluate the level at which methods to mitigate sampling bias and data snooping

were already being done, we noted instances within the primary studies where the authors

did some type of exploratory data analysis before training. Ideally, the authors performed

some type of exploratory data analysis in order to identify if the dataset that has been

extracted is a good representation of the target distribution they are attempting to model.

Additionally, data exploratory analysis should provide insight into data snooping of the

model by determining if the training dataset is mutually exclusive from the validation and

testing datasets.

There was a noticeable number of primary studies (over 13) that did not mention or

implement any methods to mitigate sampling bias or data snooping. However, this number

is a bit misleading as we only analyzed primary studies for any sign of exploratory analysis

on their dataset. This exploratory analysis ranged from basic statistical analysis to an in-

depth study about the dataset that looked to remove sampling bias and data snooping. Our

primary objective within this RQ was to bring attention to the oversight of confounding

58



problems within the data. DL models are entirely dependent on the data to properly model

the target hypothesis, thus we wanted to encourage future software engineers to heavily

analyze their dataset and their methods for extraction. We also note that as time has

progressed, the primary studies we analyzed generally included more details about their

data exploration process. We hope to see this trend continue as more DL implementations

are used to address SE tasks.

3.4.4 RQ3: What deep learning models are used to support SE tasks?

In 3.4.4 we looked to investigate the uses and applications of DL models to represent SE

artifacts. We primarily focused on two key aspects of a deep learning framework: the

architecture and the learning algorithm. Analyzing a DL architecture can grant a lot of

insight into the types of features the authors anticipate will be extracted from the dataset.

Additionally, we wanted to empirically determine if certain architectures pair with specific

SE tasks. Additionally, we wanted to know what types of diversities existed within the DL

architectures and why those idiosyncrasies were important when considering the specific

SE task at hand. However, we not only considered the DL architectures, which provided

insight to the automated feature engineering inherent to DL, but we also analyzed the

learning algorithms used in conjunction with those architectures. Specifically, we wanted to

create a taxonomy of different learning algorithms and determine if there was a correlation

between the DL architectures, the learning algorithms and the SE tasks.

3.4.4.1 What types of model architectures are used to perform automated

feature engineering of the data related to various SE tasks?

In 3.4.4.1, we wanted to discuss the kinds of DL models software engineers are using to

address SE tasks. The DL architectural choice is heavily dependent on the type of data

being analyzed and what types of features the researcher desires to automatically extract.

For example, the use of a recurrent neural network (RNN) would automatically extract

features related to the sequentialness of the data being analyzed. Likewise, the use of a
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convolutional neural network would look for capturing the spatial relationship between

pixels of visual data. Thus, knowing the type of architecture allows us to infer the types

of features that will be automatically extracted.

Our main objective in 3.4.4.1 was to see the variety of different architectures applied to

certain SE tasks. We wanted to know if there are some architectures that are more widely

used and of those models implemented, which have shown to have success in modeling the

data. From this analysis, we can determine if there are other DL architectures that have

not been applied to a specific SE tasks, thus providing the SE community with potential

future research directions. However, we first take note of all DL architectures found in the

primary studies, which can be seen in the taxonomy created in figure 3.7.

Figure 3.7: DL Model Taxonomy

Looking into the initial breakdown of the taxonomy, we found that the use of recurrent

neural networks (RNNs) was highly prevalent. RNNs excel in modeling sequential data

since the architecture is formulated such that a weight matrix is responsible for represent-
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ing the features between the sequence of inputs [104]. In particular, source code is highly

sequential and the prediction of the next source code token can be highly reliant on the

surrounding tokens. Since the most used type of data we found in 3.4.2.1 was source code,

it made sense to see many of our primary studies implementing a RNN to model their

data. Another architecture we saw frequently applied to SE tasks was the encoder-decoder

architecture. In this architecture, a datum is translated into a feature rich, latent repre-

sentation, which is then translated back into altered raw data. Encoder-decoder networks

are used for a variety of tasks, but they excel at understanding sequential data. Impor-

tantly, RNNs are normally a vital component of an encoder-decoder model, however, these

models can also incorporate feed forward neural networks, convolutional neural networks

and more. The popularity of this architecture aligns with the findings in 3.4.2.2, where

neural embeddings were a popular form of preparing the data for the DL model. The

encoder’s responsibility is to translate the raw data into a latent representation that the

decoder is capable of understanding and decoding into the target. We frequently found

that neural networks serve as the encoders for this architecture that take raw data and

generate a neural embedding for the decoder. Therefore, since neural embeddings were

such a popular preprocessing technique for data formatting and preparation, it aligns with

the high prevalence of the encoder-decoder DL architecture. In our exploratory data anal-

ysis, we found that SE tasks greatly influences the architecture adopted in an approach.

The mutual information value between the features of a SE task and a DL architecture is

1.40. We also note that the SE research landscape has primarily focused on textual based

problem, which includes source code. This explains why RNNs are used in 40.48% of the

papers analyzed in this SLR. The encoder-decoder architecture was also seen frequently

( 19% of papers), where they take advantage of using RNNs for both the encoder and

decoder portion of the model.

We can glean some of the popular types of architectures through our basic taxonomy,

however, due to the close relationship between the automated features extracted and the

DL architecture, we wanted to explore what architectures are popular within specific SE
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tasks. We found a large variety of different networks that have been applied to different SE

tasks as seen in figure 3.8. As expected, most of the SE tasks having to do with source code

generation, analysis, synthesis, traceability and repair, make use of RNNs and encoder-

decoder models. This is because source code has many features that are embedded in its

sequential nature and these features can be easily captured by RNNs and encoder-decoder

models. Likewise, SE tasks involving the use of images or media data have convolutional

neural networks commonly applied to them.
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Figure 3.8: DL Architectures by Task

We wanted to bring attention to some of the less popular types of DL architectures, such

as: siamese networks, deep belief networks, graphical neural networks and autoencoders.

Many of these architectures have only been applied to a few tasks but it is important to

note that these architectures have only recently gained any interest. We believe that these

networks have a lot of potential when applied to SE tasks and could lead to new research

directions. We also felt it important to mention the lack of deep reinforcement learning

within the SE community. Deep reinforcement learning excels at modeling decision-making
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tasks. One could argue that deep reinforcement learning is perfect for SE since SE is

comprised of decisions about code structure and algorithm implementation. This is a fairly

open area of DL in SE that has not really been explored. Only the SE task of software

security had a DL framework that involved the use of deep reinforcement learning.

In addition to the discussion around the DL architectures and their relations to partic-

ular SE tasks, we wanted to briefly discuss some trends in the explicit and implicit features

extracted from these models. As we discussed in 3.4.2.2, it is common for data to be fed

into DL models only after being subjected to certain preprocessing steps. However, in

supervised learning, once that data has been preprocessed, the DL model automatically

extracts implicit features from the preprocessed data in order to associate those features

with a label or classification. In unsupervised learning, the model extracts implicit features

from the preprocessed data and groups similar datum together as a form of classification.

We refer to the preprocessing steps as highlighting certain explicit features, since these

steps frequently perform dimensionality reduction while maintaining important features.

In our analysis we found the most common techniques for highlighting explicit features to

be tokenization, abstraction, creating a neural embedding or vectorizing a latent represen-

tation. These techniques attempt to highlight explicit features that are uniquely tailored

to the data being analyzed. Once the data is fed into the model itself, the model is respon-

sible for extracting implicit features to learn a relationship between the input data and

target hypothesis. These features are what the weights of a neural network are intended

to represent and are used to model the target hypothesis. For example, an LSTM is going

to find temporal dependencies of tokenized data such that it can use those features to

understand the sequential nature of the data and use that to predict the next token in

a sequence. A Tree-LSTM can learn the temporal dependencies of tree based structures,

such as a program dependency graph (PDG). This allows the model to understand how

the nodes of the tree relate to one another, thus allowing the model to predict additional

nodes or similar tree-like structures. The extraction of explicit and implicit features are
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the reasons that the model is capable of modeling a target function, which can be used to

predict the targets of unseen data points.
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Figure 3.9: DL Architectures by Data Type

Figure 3.9 shows a breakdown of DL architectures by the type of data they are learning

from. This relationship between data and architecture is important since the architectures

is partially responsible for the type of implicit feature being extracted. For example, images

and other visual data are commonly represented with a CNN. This is because CNNs are

especially proficient at modeling the spatial relationships of pixel data. There are many

other trends seen when associating data types and DL architectures. We hope that future

researchers can perform exploratory data analysis and discover the architectures that are

optimal when extracting implicit features from the data. These features can then be used

to model the target function of interest.
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3.4.4.2 What learning algorithms and training processes are used in order to

optimize the models?

In addition to the variety of DL models that can be used within a DL based approach,

the way in which the model is trained is very reliant on the learning algorithm chosen.

The taxonomy associated with the learning algorithm is extremely diverse and can be

classified in three primary ways: by the weights associated with the model and how they

are adjusted, by the way the overall error associated with prediction is calculated, and

by the optimization algorithm, which can systematically adjust the parameters of the

learning algorithm as training progresses. Learning algorithms for a DL approach in SE

are primarily used without any alteration or adjustment and are based in mathematical

principals that adjust the weights of the model. Since researchers in SE are primarily

interested in the use of DL models, rather than adjusting the algorithms that power them,

a large majority of the studies we analyzed share in the use of out-of-the-box learning

algorithms to power their DL framework. The largest commonality among the studies was

the incorporation of the gradient descent algorithm as a way to adjust the weights within

the deep neural network. The breakdown of learning algorithms throughout our SLR can

be found in the following sentences. We found 65/84 of the primary studies used some

version of gradient descent to train their DL model. The remaining studies used gradient

ascent (2/84), VAE (1/84), policy based learning (3/84), a context free grammar learning

algorithm (1/84), and many studies did not explicitly specify their learning algorithm in

the paper (12/84). Our exploratory data analysis revealed that papers published in recent

years (2018 and 2019) have begun to employ learning algorithms that differ from gradient

descent. Instead, they incorporate a reward policy or gradient ascent.

In conjunction with analyzing how the DL approaches adjust their weights, we also

quantified how these approaches calculate the loss of the model’s prediction when com-

pared to the actual target. We found that there are a variety of ways that DL based

implementations calculate error. However, we did find that a majority of the papers we
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analyzed used cross entropy as their loss function (19/84), which was only paired with

gradient descent algorithms. Other common loss functions that were used with gradient

descent algorithms were negative log likelihood, maximum log likelihood, and cosine loss.

There were a number of papers which did not provide any indication about the loss func-

tion within their learning algorithm. We did find that when the primary study was not

using gradient descent as a way to adjust the weights associated with the DL model, the

error functions used became a lot more diverse. For example, the work done by Ellis et

al. learned to infer graphical programs from deep learning hand-drawn images. They used

gradient ascent rather than descent as their learning algorithm and also used surrogate like-

lihood function as a way to calculate the error of the model [89]. We found that the loss

function influences the learning algorithm with a mutual dependence of 0.72 bit. However,

the SE community omits this parameter in 27.38% of the papers we analyzed. We found

that approaches that implement reinforcement algorithms are based on a developed policy,

which calculates the error associated with the action taken by the model and adjusts the

weights to either reinforce or punish that action.

Lastly, we looked at the optimization algorithms to determine if there was any note-

worthy pattern or intuition as to why certain optimization algorithms were used. What we

discovered is that the choice of optimization algorithm is somewhat agnostic to the model,

the weight adjustment algorithm and the error function. In many cases, the optimization

algorithm was not reported within the primary study (54.76% of the time). Unfortunately,

we were not able to ascertain whether optimization methods were never implemented or

were just omited from the paper for space purposes. However, we did analyze the pa-

pers that did provide this information and found that there are four major optimization

algorithms: AdaGrad, AdaDelta, RMSProp and Adam. Below, we briefly address each

optimization algorithm in order to point out potential situations in which they should be

used.

Adagrad is an algorithm that adapts the learning rate based on the impact that the

parameters have on classification. When a particular parameter is frequently involved
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in classification across multiple inputs, the amount of adjustment to those parameters is

lower. Likewise, when the parameter is only associated with infrequent features, then

the adjustment to that parameter is relatively high [87]. A benefit of AdaGrad is that

it removes the need for manual adjustment of the learning rates. However, the way that

AdaGrad calculates how much to adjust the parameters is by accumulating the sum of the

squared gradients. This can lead to summations of the gradient that are too large, which

requires the learning rate to become extremely small.

AdaDelta was formulated out of AdaGrad in order to combat this limitation. Rather

than consider all the sums of the past squared gradients, AdaDelta only considers the

sum of the past squared gradients limited to a fixed size. Additionally, this optimization

algorithm does not require a default learning rate as it is defined by an exponentially

decaying average of the calculated squared gradients up to a fixed size [293].

RMSprop is the next optimization algorithm, however, this algorithm has never been

published or subjected to peer review. This algorithm was developed by Geoff Hinton and

follows the similar logic of AdaDelta. The way in which RMSprop battles the diminishing

learning rates that AdaGrad generates is by dividing the learning rate by the recent average

of the squared gradients. The only difference is that AdaDelta uses the root means squared

error in the numerator as a factor that contributes to the adjustment of the learning rate

where RMSprop does not.

Adam, the last of our optimization algorithms discussed, also calculates and uses the

exponentially decaying average of past squared gradients similar to AdaDelta and RM-

Sprop. However, the optimization algorithm also calculates the exponentially decaying

average of the past gradients. Keeping this average depending on gradients rather than

just the squared gradients allows Adam to introduce a term which mimics the momentum

of how the learning rate is moving. It can increase the rate at which the learning rate is

optimized [148]. We see all four types in DL approaches applied to SE tasks, and did not

identify any particular patterns or associations worth noting.
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3.4.4.3 What methods are employed to combat overfitting and underfitting

of the models?

The two major problems associated with using any type of learning based approach,

whether that be canonical machine learning or deep learning, is overfitting and under-

fitting. Both overfitting and underfitting deal with the idea of generalization, i.e., how

well does a trained ML/DL model perform on unseen data. Overfitting is the process of a

model learning to fit the noise in the training data extremely well, yet not being able to

generalize to unseen data. The model has learned such a proficient approximation for this

noisy data that it has become ungeneralizable to unseen data. However, this is not a good

approximation of the true target function that the model was intending to learn. Under-

fitting involves having a learning model that is unable to approximate the seen training

data in addition to unseen data points. This can occur when the model lacks the necessary

complexity, is overly constrained, or has not had the sufficient training time to appropri-

ately approximate the target hypothesis. Figure 3.103 gives an overview of some general

ways to combat overfitting and underfitting. The figure also addresses what parts of an

ML/DL approach is affected by these techniques. In this RQ, we were interested in the

specific type of ways researchers are combating these two problems in the context of SE

tasks.

Outlined in [13], the use of a validation set is a commonly used method for detecting if

a model is overfitting or underfitting to the data, which is why it is very common to split

data into training, validation and evaluation sets. The splitting of data helps to ensure that

the model is capable of classifying unseen data points. This can be done while performing

training, to ensure that overfitting is not occurring. We see this done in almost every

paper analyzed in our SLR. However, more pertinent and powerful techniques to prevent

overfitting were seen less frequently. Specifically, we were looking for any regularization
3Generated in part from multiple blog posts: https://elitedatascience.com/overfitting-in-machine-

learning, https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-
learning-820b091dc42, https://towardsdatascience.com/dont-overfit-how-to-prevent-overfitting-in-your-
deep-learning-models-63274e552323, https://elitedatascience.com/bias-variance-tradeoff
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techniques or additional methods the authors implemented to prevent the model from

overfitting to the training data. As shown in our overview figure, there were three main

types of regularization. The first regularizes the model, which includes things such as

adding Dropout layers [248] or Batch Normalization [131]. The second regularizes the

data itself, either through adding more data or cleaning the data already extracted. The

third type of regularization is applied to the training process, which modifies the loss

function with L1 regularization, L2 regularization or incorporates early stop training.

As we’ve done with previous components of DL approaches, we wanted to determine if

the SE task had any affect on the techniques to combat overfitting. Figure 3.11 analyzes

the relationship between DL approaches and the techniques that combat overfitting. This

figure shows that there are some techniques that are much more commonly applied to

SE tasks than others. For example, dropout was the most commonly used regularization

technique and is used in a variety of DL approaches that address different SE tasks. This

trend holds true for early stop training, data cleaning and L1/L2 regularization. However,

the trend is somewhat broken in custom methods implemented to combat overfitting. It is

unclear exactly what these custom methods are, but we found their highest prevalence in
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the SE task of program synthesis. We suspected that this is due to the highly specialized

programs that are generated from input-output examples. The specialized data may require

a specific technique that is not considered one of the common regularization methods. In

addition to the aforementioned techniques, we found some unique approaches to combating

overfitting including the use of deep reinforcement learning instead of supervised learning

[61], gradient clipping, lifelong learning [100], changing the loss function [49], pretraining

[272, 242], and ensemble models [136].

Figure 3.11: Overfitting Techniques per Task Type

After analyzing overfitting techniques in relation to SE tasks, we decided to also analyze

the relationship between overfitting techniques and data type. We found a similar pattern

in that there are a variety of techniques to combat overfitting regardless of the data type.

The only exception to this pattern was seen when analyzing natural language, where L1/L2

regularization was predominately the most used regularization technique. The message

from both figure 3.11 and 3.12, is that the techniques to combat overfitting do not have a

strong association with either of these two features. Therefore, we can assume that these

techniques can work in tandem with a variety of SE tasks and data types to prevent the

model from overfitting. The most concerning trend we took away from these two figures
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is the Did Not Discuss category. Given the importance of combating overfitting when

applying a DL approach, it is troublesome that so many primary studies did not make

mention of using these techniques. Although we cannot be sure whether this is a lack of

implementation or merely reporting the use of these techniques, we hope to see this trend

dissipate as DL in SE continues to gain popularity.

Figure 3.12: Overfitting Techniques per Data Type

For the prevention of underfitting, there are not a lot of current techniques that can be

easily applied to the model and training process. However, underfitting greatly depends

on the target function and the amount of time needed to appropriately model the target

hypothesis. Underfitting normally requires finding the model’s optimal capacity. The

optimal capacity is the inflection point where the model starts to overfit to the training

data and performs worse on the unseen validation set. While there are not many techniques

to combat this issue, there are a few key insights to prevent underfitting the data. The

first is to maximize training time without losing the generalizability of the model. As

mentioned previously, this happens when the training process shows increased performance

on the training data, but stagnant or decreased performance on the validation set. Other

techniques include the use of a more complex model or a model more suited for the target
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function, which can be determined by varying the number of neurons, varying the number

of layers, trying different DL architectures, pretraining the model, and search pruning the

search space. From our SLR, the most commonly used underfitting techniques applied

were search pruning the search space of the model [270, 61] and pretraining [272, 242].

Surprisingly, more than 25% of papers did not discuss any techniques used to combat

overfitting or underfitting of their models. Combating this issue is a delicate balancing

act, as attempting to prevent one can begin to cause the other if not done correctly. For

example, having a heavily regularized learning model to prevent overfitting to a noisy

dataset can lead to an inability to learn the target function, thus causing underfitting of

the model. This is also possible while attempting to prevent underfitting. An increase in

the number of parameters within the architecture to increase the complexity of the model

can cause the model to learn a target function that is too specific to the noise of the training

data. Therefore, the incorporation of techniques to address overfitting and underfitting is

crucial to the generalizability of the DL approach. Additionally, reporting on techniques

that combat overfitting and underfitting is important toward the goal of creating replicable

and reproducible DL approaches in SE. Due to the span of learning components that these

techniques affect, knowing which techniques were implemented is an important aspect to

report on.

3.4.5 RQ4: How well do DL tasks perform in supporting various SE

tasks?

In this RQ, we explored the impact that DL has had in SE. It is difficult to quantify and

verify the results of the primary studies we analyzed, however, we can infer the impact of

these approaches based on the metrics used to measure the performance of the models and

the increased automation the approach brings to the SE task. In some regards, this RQ is

task specific because performance is based on the difficulties and progress made within the

SE task being addressed. We wanted to provide researchers with some intuition about how

the current limits of DL in SE can be extended for particular SE tasks. In many instances,
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an increase in performance can have drastic implications on the situations in which the

DL model can be applicable. Likewise, it is important to know what aspects of a SE task

have already been automated by DL models.

We also wanted to provide a comprehensive listing of available baselines and bench-

marks used for the evaluation of deep learning models in SE. By making future researchers

aware of the baselines they can compare to, we hope to foster the promotion of compar-

ative evaluations when looking at different DL approaches addressing similar SE tasks.

Additionally, it is helpful to know what benchmarks exists and are made available for par-

ticular SE tasks. Benchmarks allow for an objective comparison between models looking

at the same data. The use of benchmarks also helps to mitigate problems corresponding

with sampling bias and data snooping. Creating a known listing of available benchmarks

should result in a twofold benefit: the increased analysis and scrutiny of those benchmarks

to ensure high quality data for comparison, and to promote future benchmarks in SE tasks

where they do not exist.

3.4.5.1 What “baseline” techniques are used to evaluate DL models and what

benchmarks are used for these comparisons?

Within this RQ, we were interested in evaluating the applicability and effectiveness of DL

models applied to SE tasks. Looking at the baseline techniques used for comparison, as

well as the evaluation metrics, we can establish a sense of how well a particular approach

compares to another within the same task. Specifically, we found that there are certain

baselines and metrics that are common to use for comparison within specific SE tasks.

A failure to compare against these common baselines can call into question the impact

and superiority of a DL approach over its predecessors. Additionally, we noticed that

there are not many well documented resources for researchers to find common baselines

and benchmarks used in previous approaches. Thus, we highlighted the need for the SE

community to compile and make available these common baselines and benchmarks.
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We looked at our primary studies in DL4SE and noted that baseline approaches are

extremely individualized, even within the same SE task. Some DL4SE papers do not

compare against any baseline approaches while others compare against 3-4 different models.

Therefore, we included the listing of baselines that each paper compared against in our

supplemental material. We found that many of the baseline approaches were canonical

machine learning models or very simple neural networks. We suspected the reason for this

is in part due to DL4SE being a relatively new field, meaning that there were not many

available DL based approaches to compare against. Additionally, the use of canonical

machine learning models as baselines demonstrates the need and benefit of applying DL

to the specific SE task. However, as DL4SE begins to mature, we hope to see the trend

transition to evaluations that include comparisons against previously implemented DL

approaches.

Additionally, we find a reoccurring trend of model implementations being unavailable

to the public. This, in part, explains why there are so many highly individualized, baseline

approaches. Since researchers do not have access to common baselines used for comparison,

they are forced to implement their own version of a baseline. It is possible that baseline

approaches are implemented incorrectly or configured in such a way that gives them a

disadvantage over the newly created approach. Thus, it can be difficult to fully rely on

the results when compared to baseline approaches since many papers did not include any

information about the baselines themselves. Additionally, a unique implementation of the

same baselines could lead to confounding results when looking at improvement over those

baselines. We want to encourage future DL4SE studies to include the details surrounding

the implementation of baseline approaches or to include the implementation in an online

repository.

The use and proper implementation of baseline approaches is essential to a quality eval-

uation of a DL model. However, the data used when comparing two different approaches

is equally important. As we discussed in 3.4.2.2, DL models are very dependent on a high

quality dataset free of sampling bias and data snooping. There is a need within the SE
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Figure 3.13: Benchmark Usage DL in SE

community to objectively evaluate these common benchmarks to ensure that comparisons

between approaches are not skewed due to underlying attributes of the data. Likewise, if

a new dataset or benchmark is introduced for evaluation, it is important that the authors

can verify the quality of the dataset, such that reviewers can determine if it is fit to be

used for comparison with other approaches. As new benchmarks are introduced for spe-

cific SE tasks, we can reduce the amount of exploratory data analysis, since we will have

more data vetted by reviewers. Since DL models themselves are unbiased mathematical

models, any bias or discrimination demonstrated by the DL approach can be attributed

to the preprocessing techniques or the dataset itself. This emphasizes the importance of

reviewers vetting benchmarks that are used in DL4SE studies.

Within our online repository, we included a list of all the benchmarks and baselines

used for each paper within our SLR [280]. The reason we did not include the full list here

is due to a number of unique benchmarks synthesized specifically to evaluate a particular

approach. To solidify this point, we recorded the number of primary studies that used a

previously curated benchmark as opposed to ones that curated their own benchmark. We
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noted that there is an overwhelming amount of self generated benchmarks. Additionally,

we classified self generated benchmarks into those that are publicly available and those

that are not. Unfortunately, we found a large majority of self generated benchmarks may

not be available for public use. The full breakdown of benchmarks used in the primary

studies can be seen in figure 3.13. This trend within DL4SE is worrying as there are

few instances where DL approaches can appropriately compare against one another with

available benchmarks. We hope that this SLR helps future researchers by providing them

with an understanding about which benchmarks are available for an evaluation of their

approach within a specific SE task. Additionally, we urge future researchers to make self

generated benchmarks publicly available, which will provide a much needed resource not

only for comparisons between approaches, but also for available data that a DL framework

can use to train on.

Although the use of previously established benchmarks is not the norm, we did want

to highlight a few benchmarks we saw used multiple times within the primary studies.

For the SE task of clone detection, we found that the dataset BigCloneBench was used

frequently to test the quality of the DL frameworks. Also, for the task of defect prediction,

we saw uses of the PROMISE dataset as a way to compare previous DL approaches that

addressed defect prediction in software. We believe that these two benchmarks are a great

example of how benchmarks can be used in the future. These are popular, well document,

and tested benchmarks that have been used to compare DL approaches within the same

SE task.

The aspect of vetted benchmarks from the primary studies in DL4SE was the least

transparent. In particular, details involving the baselines used in the evaluation were

scarce or nonexistent. Without the implementation details of the baselines and a detailed

analysis of the benchmarks, it is very difficult to objectively compare DL models in their

ability to address certain SE tasks.

Understanding baseline approaches and accessing appropriate benchmarks is a crucial

part of evaluating any DL based approach in SE. However, we also explored the common
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Table 3.3: Metrics Used for Evaluation

Metrics Studies

MMR [142, 58, 123, 159, 70, 107, 52]
BLEU Score [59, 136, 272, 110, 54, 120]
METEOR Score [58, 271]
Precision [263, 179, 170, 119, 159, 18, 285, 289, 276, 112, 76, 232]

[122, 65, 67, 28, 107, 162, 175, 72, 129, 281, 261, 211, 199]
Recall [180, 170, 119, 18, 289, 276, 112, 76, 232, 122, 65, 67]

[28, 48, 162, 175, 176, 72, 129, 281, 52, 261, 211]
F1-Measure [180, 119, 297, 18, 289, 23, 277, 65, 67, 161, 162, 72]

[129, 281, 261]
Accuracy [166, 202, 123, 170, 100, 75, 167, 119, 50, 43, 294, 78]

[250, 203, 46, 227, 219, 56, 289, 178, 79, 76, 49, 270]
[61, 125, 232, 122, 28, 55, 162, 175, 60, 99, 274, 21]
[300, 241, 89, 173, 66, 129, 211, 27, 120]

CIDER [272, 300]
ROC [297, 232, 99, 281]
Root Mean Squared Error [116, 237]
Model Perplexity [282, 287]
Timing [285, 36, 88, 89, 191]
AUC [232, 65, 67, 99, 72, 281]
Macro-averaged Mean Absolute Error (MMAE) [65, 67]
Mean Absolute Error [65, 66]
Top K Generalization [241, 200]
Top K Model-Guided Search Accuracy [241, 181]
Solved Tasks [242, 88, 281]
Other [136, 182, 230, 102, 272, 203, 297, 287, 125, 67, 65, 107]

[53, 71, 274, 66, 261, 200]

metrics used to measure the performance of DL models applied to their respective SE

tasks. In many instances, the metrics chosen to analyze the model are common to the

type of learning. Therefore, many of the supervised learning methods have metrics that

analyze the resulting hypothesis, such as the accuracy, true positives, F1 measure, precision

and recall. These metrics are used to compare the supervised learning algorithms with

the outputs representing the target hypothesis. Intuitively, the type of metric chosen

to evaluate the DL based approach is dependent upon the data type and architecture

employed by the approach. Figure 3.3 describes the distribution of metrics found in this

SLR. We included the top used metrics to give researchers and indication about which

metrics are popular for evaluation. The other category is comprised of the less popular

metrics including: likert scale, screen coverage, total energy consumption, coverage of

edges, rouge-L, CIDER, jicard distance, minimum absolute difference, Kruskal’s υ, cross

entropy, macro-averaged mean cost-error, matthews correlation coefficient, f-rank, top-

k generalization, top-k model-guided search accuracy, median absolute error, spearmans
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rank and confusion matrix. We included these for completeness, but it is important to be

aware that these metrics can be specialized toward evaluating the model’s ability to predict

the specific target outputs. Interestingly, we found that many supervised DL approaches

omit the ROC or AUC evaluations with a condience level of 0.87. This metric should be

included in the comparison with baseline approaches to demonstrate the improvement of

the current approach.

3.4.5.2 How is the impact or automatization of DL approaches measured and

in what way do these models promote generalizability?

The impact of a particular approach in research is somewhat subjective and can be sus-

ceptible to bias. Therefore, we did not look to validate or invalidate any of the research

presented in this SLR. We attempted to objectively look at the claimed impacts that the

authors of these primary studies have made as a way to determine what value the ap-

plication of a DL model had for the SE task addressed. In many cases, DL approaches

contribute a variety of advantages both in correctness and efficiency of addressing a SE

problem. Therefore, we give a brief overview of the potential implications that the primary

studies included within this SLR can have. These implications are primarily pulled from

the claims of the authors about the impacts of their approach.

We classified each primary study into seven categories, which represents the major

contribution of the work. The result of this inquiry can be seen in figure 3.14. We provided

this analysis to show future researchers that DL can contribute to the advancement of the

SE field in multiple ways. However, the most common contribution of a DL4SE study is

the ability to increase automation or efficiency. Interestingly, SE tasks that had multiple

DL implementations frequently claimed another novelty such as an advancement in the

architecture or increased performance over their predecessor.

Our exploratory data analysis of this RQ revealed that the automation impact is de-

pendent on the SE task deduced from a high mutual information of 0.976 bits. This means

that there is a strong association between the SE task and the automation impact of the
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approach. We found three primary objectives that the implementation of a DL model is

meant to address: (i) in 75% of SE tasks observed, a DL approach was implemented with

the main goal of increasing automation efficiency; (ii) in 45.8% of the SE tasks observed,

a DL approach was implemented with the main goal of advancing or introducing a novel

architecture; (iii) in 33% of the SE tasks observed, a DL approach was implemented with

the main goal of replacing human expertise. We discuss this taxonomy so that future

researchers can think about the main objective they intend their DL approach to address.

This objective can be used to help shape the evaluation and the metrics used to quantify

effectiveness.
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Figure 3.14: Impact of DL4SE

Within our SLR, we saw many DL implementations for a variety of tasks. Yet, we

noticed that the primary studies did not put as strong an emphasis on the generalization

of a model as opposed to the other aspects of the DL approach. The generalization of a

model is very important as it outlines the conditions in which the model can be applied to

the task. If a model lacks generalizability, then it may not be applied to data outside of the
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training and testing set. This can make the DL approaches in SE too specific for developers

working on production software. Thus, in this RQ, we analyzed how these primary studies

ensured the generalizability of their model. To do this, we looked for evidence that the

authors considered Occam’s Razor, as well as the efficiency of their model.

Before continuing into our analysis, we wanted to address Occam’s Razor and how

it relates to DL approaches in SE. Occam’s Razor was originally translated to "Entities

should not be multiplied beyond necessity" and is quoted from William of Occam in the

late Middle Ages [235]. In the current age, this concept has been applied to the field

of machine learning to address the over engineering of learning models resulting in less

generalizability. Currently, Occam’s Razor is separated into two Razors: 1) "Given two

models with the same generalization error, the simpler one should be preferred because

simplicity is desirable", 2) "Given two models with the same training-set error, the simpler

one should be preferred because it is likely to have lower generalization error" [85]. When

specifically applied to deep learning, we were interested in determining if the SE task

could have been solved with a less complex model. Unfortunately, it was very difficult to

prove Occam’s Razor in the context of a primary study focused on a SE task. Therefore,

we looked for evidence that Occam’s Razor was considered by the authors but did not

explicitly analyze how the complexity of the model was fully evaluated. In figure 3.15 we

break the primary studies into three groups: 1) those that compare against less complex

models and analyze the results; 2) those that manipulate the complexity of their own model

by testing a variety of layers or nodes per layer; 3) those that did not have any Occam’s

Razor consideration.

Although a majority of the primary studies do consider Occam’s Razor, there are still

almost 25% of DL4SE studies that do not consider Occam’s Razor. It is possible that the

studies we analyzed did not include details about how they considered the complexity of

their model when applied to the specific SE task. However, these details are vital to include

within the primary study, since they provide evidence that DL is appropriate to apply to

the SE task. Without this consideration, it is possible that a canonical machine learning
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No Consideration Varied The Model Model Comparison

Figure 3.15: Evidence of Occam’s Razor

model or a simple statistical based approach may be the optimal solution. Interestingly, in

about 15% of the primary studies, the author’s considered Occam’s Razor by adjusting the

complexity of the model being evaluated. This is done by varying the number of layers,

the number of nodes, the size of embeddings, etc., which all contribute to the complexity

of the approach. The downside to this method is that there is no way to determine if

the extraction of complex hierarchical features is more complex than what is necessary to

address the SE task. The only way to properly answer this question is to compare against

baseline approaches that are not as complex. In our DL4SE studies, this often looked

like a comparison with a canonical ML approach. This further bolsters our point made

in 3.4.5.1, that baseline approaches are essential to establish the validity of a DL based

approach.
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3.4.6 RQ5: What common factors contribute to the difficulty reproduc-

ing DL studies in SE?

This SLR relies on the details given by the authors of DL approaches applied to SE tasks.

As we progressed through our review, we wanted to highlight the importance of reporting

key components for the purpose of reproducibility. Reproducibility is of great importance

to the research community and as DL becomes a more popular tool to model software

artifacts, it is important that papers include the necessary details so that reproducing

the study is possible. DL models can also be extremely complex and highly customizable

to fit the needs of the particular SE task. We wanted to emphasize this point since

even small, nuance changes can lead to drastic affects in the approach’s performance.

These slight alterations do not necessarily refer to the DL model. They also apply to the

extraction and preprocessing of the data, the learning algorithm, the training process and

the hyperparameters, which all have a significant contribution to the overall success of a

DL approach. In this RQ, we surveyed the work of our SLR to determine the important

concepts and details that need to be reported when implementing a DL based approach.

The first and easiest analysis to perform was determining the ability to replicate the

DL4SE approaches. To replicate an approach means to re-implement the approach exactly

as the authors originally did. Due to the variability that each approach can have, the data

and source code should be publicly available in order to deem the work replicable. We

found that out of the 84 primary studies we analyzed, only 28 provided enough information

through an online repository to fully replicate the approach. This means that the vast

majority of DL4SE studies either did not provide the implementation of the approach

or did not provide the dataset to train and test the approach. We also analyzed the

reproducibility of DL4SE studies. We define reproducibility as the ability for someone

within the field of DL4SE to read the study and implement the approach with slight

differences either in the implementation or data representation. In this case, small details

can be missing but the steps to reproduce the approach, it its entirety, should be present.
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We found that 43 out of the 84 studies we analyzed were capable of being reproduced. Out

of the 43 studies that can be reproduced, only 18 of those studies were also replicable. Our

goal here was to further analyze what factors were responsible for the lack of reproducibility

amongst the remaining 41 primary studies. We found that there were ten major factors

that contributed to the lack of reproducibility. The breakdown of this analysis for the

primary studies are show in in figure 3.16.

Learning Algorithm Hyperparameters Architecture Input Metrics Training Process

Implementation Data Extraction Preprocessing Data Filtering Online Repository

Figure 3.16: Contributing Factors to Reproducibility

In figure 3.16 we show areas where DL approaches in SE may be lacking the necessary

details to reproduce or reimplement the approach. The first two areas that contribute to

the difficult of reproducibility pertain to the learning algorithm and the hyperparameters.

The learning algorithm is the way in which the parameters of the model are tuned to appro-

priately estimate the target function. We found that there were missing details pertaining

to either the method of tuning the weights, the way in which the error was calculated or

the optimization algorithm. All three aspects of the learning algorithm can make reim-
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plementation of the approach difficult and prone to errors. Without the proper learning

algorithm, it is likely that any attempt to reproduce the study will vary from the originally

reported results. This is because there are a vast amount of combinations of these three

aspects to the learning algorithm, but all contribute significantly to the reported results

of the study. In addition to the learning algorithm, the hyperparameters are also crucial

as they can have an affect on the learning algorithm and the model architecture. Conse-

quently, if the hyperparameters are not reported, then it is impossible to know how many

parameters contributed to the estimation of the target function, since hyperparameters

control the number of layers and the number of nodes per layer. Additionally, the way

that the learning rate is adjusted is ultimately what controls the parameters that estimate

the target function. An incorrect learning rate can lead to incorrect parameters, which in

turn leads to a completely different target function that is modeled.

Although the details pertaining to the learning algorithm and the hyperparameters is

important, they are not the only details that a DL approach would need to report in order

to be replicated or reproduced. Particularly, the data and the way it was extracted, filtered

and formatted would need to be known in order for a study to be reproduced. DL models

are data driven, meaning that they extract features from the data without any human

intervention. In order for the study to be reproducible, three pieces of information need

to be accessible. The first is the extraction details. In order for a study to be reproduced,

the data must be accessible which means either the dataset must be readily available or

the details about how the data was extracted need to be reported. The second piece of

information that is needed is the preprocessing details. Once the data is extracted, it needs

to be formatted into a representation that the DL model can accept as input. Additionally,

the way that the data is represented to the model, in some part, controls the features that

are able to be extracted. So if the data is represented contrary to the way it was done

in the original study, then the results of the reproduced study would be invalid. The

last attribute of the data that needed to be known was the filtering details. Data can be

inherently noisy and authors will frequently need to filter out noisy data in order for the
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DL model to learn an effective relationship between the input and the target. This process

can involve the removal of certain data points or an entire section of the original dataset

based upon a criteria that the authors set. We discovered that 44/84 primary studies are

missing crucial details about the filtering of their data. Reporting these details related to

the filtering of data should not only include the filtering criteria, but should also explain

the steps and methodology taken to remove this data from the dataset.

We performed exploratory data analysis pertaining to the reproducibility of the studies

contained within our SLR. Here, we attempted to establish patterns for why papers in

SE struggle with irreproducibility. We discovered that SE papers not using visual data,

repository metadata, natural language data, or I/O examples have a strong association with

irreproducibility (0.70) with a relatively high confidence of 0.82. We also found that not

using visual data, repository metadata, or I/O example is strongly associated with lacking

extractions details (0.71) with a high confidence of 0.82. Lastly, we found that not using

vision data or repository metadata was associated with a lack of data preprocessing details

(0.74) with a confidence of 0.81. We describe these associations to bring awareness to the

issues with reproducibility. From these facts found within our exploratory data analysis,

we created guidelines so that future researchers know what information to include when

reporting on their DL based approach in SE.

Lastly, we wanted to promote the idea of open sourced models and datasets. This is

not only the best mechanism for reproducibility, but also grants access to datasets and

DL approaches to future SE researchers. We have mentioned before that DL models are

extremely data hungry. However, there are not many publicly available datasets containing

software artifacts to train DL models on. This not only inhibits the use of DL in SE, but it

also makes comparative studies with different DL models difficult. The lack of data hurts

the evaluation of DL based approaches because there are very few baselines to compare a

newly synthesized model to. This can lead to claims regarding the effectiveness of a DL

implementation that can be difficult to refute or verify. Therefore, we encourage future

researchers to make the datasets and DL models publicly available. We believe that this
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will drive a greater quality of research and allow for verifiable comparisons of DL based

approaches in SE.

3.5 Guidelines for DL in SE

In this section, we provide guidelines for the future use of DL within SE. We first generated

a flow diagram that provides a logical pathway through the entire process of applying DL

in SE. The diagram, seen in figure 3.17, provides the steps that need to be taken, but we

refer back to the sections of our SLR for the specifics behind addressing each component

of learning. In addition to the flow diagram we also compiled additional guidelines, which

can be treated as a sort of checklist, containing certain pitfalls or points to consider when

working through the components of learning. This can be seen in figure 3.18. We do not

claim this as a comprehensive guide, as each implementation of these complex models have

their own nuances. However, we do cover many of the essential aspects of applying DL to

SE and make future researchers aware of the context in which DL can be a useful tool.

After the implementation of the DL model, the reporting process should be complete

and thorough. We want to reiterate what we found in figure 3.16 to help guide future

researchers through the reporting phase of their research. The reporting process should

begin with data extraction. Here, the researchers should note any potential limitations or

biases within the data extraction process. DL models are limited in scope by the data they

analyze, therefore, any restriction on data extraction or additional data filtering should be

well documented. The next phase of the reporting process should address the preprocessing

steps taken to prepare the data for the DL model. Steps within this process should be

explicitly explained to the point where replication is possible. This would include any

abstractions, filters, vocabulary limitations or normalizations that the data is subjected

to. In addition, the researchers should report how they vectorize the resulting data, which

includes the format of the vector or matrix subjected to the DL model.
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After reporting on the data extraction, the data filtering, and its preprocessing steps to

prepare for the DL model, the authors should begin addressing the DL framework. This in-

cludes information about the learning algorithm, DL architecture, hyperparameterization,

optimization methods, and training process. There are many common learning algorithms

used, with the most prevalent being variants of gradient descent. It is important that the

learning algorithm be discussed, as this can significantly affect the results of the model. In

addition to the learning algorithm, the optimization algorithm should also be mentioned.

The optimization algorithm describes the process of adjusting the parameters of the model

which then results in learning. Researchers should also fully elaborate on the DL architec-

ture used in their approach. This elaboration should include things such as the number of

nodes, number of layers, type of layers, activation function, etc. The approach cannot be

replicated without all necessary information pertaining to the architecture and should be

available to the reader. Lastly, authors should report the hyperparameters and training

process. The hyperparameters directly affect the results of the model as their values di-

rectly control the process of the model’s learning. Hyperparameters are adjusted and set

by the author, therefore the process of finding the optimal hyperparameterization, as well

as their final values should be explicitly stated. The reporting process should also include

details pertaining to the training process of the DL model. This can include the number of

training iterations, the time taken to train, and any technique that would help to prevent

overfitting of the model.

In addition to the patterns discovered in this work, our findings corroborate many of

the issues discussed in the study by Humbatova et al. [130] This study analyzed real

faults discovered in DL systems from GitHub. They found three major areas of error

when implementing DL systems: errors in the input, the model and the training process.

Interestingly, they interviewed developers to determine the severity and effort required to

address many of these pitfalls. They found that developers thought the most severe errors

related to the proper implementation of the optimizer, entering in the correct input data

and correctly implementing the models with the right number of layers. However, they
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also learned that developers find these three severe errors took a relatively low amount of

effort to fix [130].

Our research demonstrates the components of learning within DL4SE work that have

been incorrectly implemented or not implemented at all. When taking into consideration

the findings of Humbatova et al., we hypothesize that the amount of effort needed to fix

these problems when applying the DL framework could be the reason it is not performed.

For example, the adjustment and appropriate values of hyperparameters can be an im-

pactful problem when applying a DL model. However, developers rated this issue to be

the third highest in the amount of effort needed to address it. Likewise, we see getting

the training data and training process correct are ranked number two and number one,

respectively, for the most amount of effort required to address the issue. We believe that

following these guidelines and looking at previous implementations of DL in SE will aid

future researchers in knowing how to quickly and effectively address the issues that arise

when applying these complex models.

Our intention with these guidelines is to bring attention to crucial details about apply-

ing DL in SE. The figures and explanation included here is not intended to be a compre-

hensive list of all information to include, rather, it is intended to serve as a basic checklist.

Every DL based approach has its own idiosyncrasies that may or may not be important

to include when reporting on a DL approach in SE. However, all details mentioned in our

guidelines should be readily available in order to encourage reproduction and replication

of the experiments done. We also encourage authors to promote transparency of their ap-

proach by making all datasets, models and implementation scripts available via an online

repository. This will lead to increased quality of future DL research in SE and allow for

more meaningful comparisons of different DL approaches addressing similar SE tasks.
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3.6 SE4DL

When searching for papers that could be classified as DL4SE, we ran across some pri-

mary studies that give way to the new rising field of software engineering for deep learning

(SE4DL). This field has seemingly come to fruition from the issues discovered with au-

tonomous vehicles. Since DL models extract complex, hierarchical features automatically

through a sequence of nonlinear transformations, developers of DL models are not exactly

sure what features are being valued to make the appropriate classification or prediction.

This is why DL models are frequently referred to as a black-box. Data is fed into them,

mathematical concepts drive the learning and training of these models and they are able

to perform classification with a high level of accuracy. This dramatically changes the tra-

ditional paradigm of creating software, which is based on the software life cycle. Previous

software engineering analyzes a problem, designs a program which attempts to solve that

problem, the program is then implemented, tested and maintained. The introduction of

deep learning renders this paradigm of SE useless because the model is what is respon-

sible for generating the program that will solve the task at hand. The developer of the

DL based approach is responsible for giving the algorithm the input and its associated

target or output. The model then learns the appropriate target function, meaning that

it essentially generates the program to model the input and output examples. Since the

developer is not privy to the way in which the DL algorithm generated the program, it is

difficult to test and maintain the program using the traditional software engineering life

cycle paradigm. Specifically, the area of testing software is particularly challenging. The

current methodology for testing DL models is to feed the model data and evaluate the

accuracy on its ability to predict the appropriate target. However, software which has very

minimal room for error, such as that for an autonomous vehicle, cannot be confident in a

method which can only be tested in an ad hoc manner. There is a need for a systematic

methodology that instills confidence in a model, which provides assurance that the model

correctly estimates a target function represented by the data.
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Currently, this type of systematic methodology does not exist. However, software engi-

neers have developed tools and ideologies that can be used to test these black-box models.

Thus, a new field has arisen in SE4DL where the concepts learned from software testing

and maintenance are being applied to the development of software based on DL algorithms.

The process of our SLR captured some of the primary studies that have worked in apply-

ing SE ideals to the models generated by DL algorithms. These works focus on problems

such as concolic testing for deep neural networks, addressing the lack of interoperability

of DL systems by developing multi-granularity testing criteria, generating unique testing

data through the use of generative adversarial networks, detecting bugs in the implemen-

tations of these DL models, seeded mutation of input data to create new testing data,

specifically detecting bugs when using certain ML frameworks such as TensorFlow and

detecting erroneous behaviors in autonomous vehicles powered by deep neural networks

[251, 186, 295, 91, 188, 292, 299, 113, 90, 147, 198, 296, 258]. These pieces of work are

only the beginning of a growing field that will attempt to understand and interpret the

inner-workings of DL models.

3.7 Additional Classifications

In the midst of performing the SLR, we encountered studies which passed our initial

inclusion criteria, but were eventually excluded based on their lack of a DL implementation.

However, there has been debate about what type of implementation qualifies as a DL based

approach. This SLR maintains the definition that deep learning models must automatically

extract complex, hierarchical features from the data it is fed. This implies that the data

must be subjected to multiple, nonlinear transformations by passing it through multiple

hidden layers within a neural network. This type of model would exclude algorithms

that we would consider to belong to one of the following categories: artificial intelligence,

canonical machine learning and representational learning. This hierarchy and definition of

deep learning was taken from Goodfellow et al. [104]. Despite the limitations we set on
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our SLR, we wanted to make the community aware that there are a variety of learning

based approaches that have been applied to the field of SE.

There were two common types of papers we encountered when performing our SLR that

we felt deserved a brief introduction and explanation as to why they were not included.

The first is primary studies which use Word2Vec or some variation of Word2Vec in order

to embed some type of sequential data. While we agree that Word2Vec is an unsupervised

learning algorithm, it fails to extract complex hierarchical features of the input data. This

model is a two layered neural network that excels at creating neural embeddings for words

or other sequential data. This type of model learns the proper embeddings to accurately

represent a set of words as a set of feature vectors, which are in a numerical format that

a DL model could understand. We frequently see this type of embedding technique used

in conjunction with DL models but do not consider it a DL model on its own. The

other type of learning approach we encountered was the use of canonical machine learning

algorithms. These types of algorithms require manual feature engineering and therefore, do

not rely on nonlinear transformations to learn complex hierarchical features automatically.

Although these types of algorithms do require a more substantial manual effort, they

perform relatively well when data is extremely scarce or the developer wants to control

what specific features the model considers when being fed data. Canonical ML methods

are frequently used in SE and are applied to a variety of tasks, but the models do not fit

the criteria to be considered deep learning and are excluded from the study

3.8 Conclusions

This work performed a SLR on the primary studies related to DL4SE from the top soft-

ware engineering research venues. Our work heavily relied on the guidelines laid out by

Kitchenham et al. for performing systematic literature reviews in software engineering.

We began by establishing a set of research questions that we wanted to answer pertaining

to applications of DL models to SE tasks. We then empirically developed a search string
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to extract the relevant primary studies to the research questions we wanted to answer. We

supplemented our searching process with snowballing and manual additions of papers that

were not captured by our systematic approach but were relevant to our study. We then

classified the relevant pieces of work using a set of agreed upon inclusion and exclusion cri-

teria. After distilling out a set of relevant papers, we extracted the necessary information

from those papers to answer our research questions. Through the extraction process and

the nature of our research questions, we inherently generated a taxonomy which pertains

to different aspects of applying a DL based approach to a SE task.

Through the process of our SLR, we discovered the presence of papers using a Word2Vec

like algorithm as well as implementations of canonical ML algorithms. In addition, we

discovered evidence of an emerging field in software engineering: software engineering

for deep learning (SE4DL). SE4DL applies fundamental concepts from software testing

and maintenance to redefine the paradigm of developing software using DL methodologies

rather than the traditional software life cycle. Our hope is that this SLR provides future

SE researchers with the necessary information and intuitions for applying DL in new and

interesting ways within the field of SE. The concepts and relationships described in this

review should aid researchers and developers in understanding where DL can be applied

and what the necessary considerations are when applying these complex models.
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Application of Deep Learning to SE Task 

Identification of 
potential features that 

can be used to establish 
target function 

Identify a specific SE Task you wish 
to analyze. Are there enough online 
repositories that can provide data to 

model a hypothesis? 

Deep Learning may be applicable 
to this problem 

May need to consider an 
alternative mode of analysis.  

Develop a data extraction 
technique to gather specific 

data that can be used to model 
a target function of interest. 

Yes 

No 

Consider the scope and generalization of the data you’re extracting. Did you extract data 
from a wide variety of places? Is there any bias within your extraction methods? Is there 

enough data to warrant a DL model? 

After data extraction, begin the 
preprocessing and formatting 

steps to yield the training 
examples. 

What are the abstract features you are trying to extract? Are you 
limiting sampling bias within the training and testing sets? Are you 
checking for data snooping between the training and testing sets?  

Determine if you are working with labeled or 
unlabeled data, as well as the nature of the data 

(text based, vision-based). This will heavily affect the 
type of DL architecture you may want to implement. 

Separate the dataset 
into a training set, a 
validation set and a 

testing set.  

Generate a 
representation for 

each training 
example. Ensure that 

the representation 
captures the 

features essential for 
modeling the target 

function. 

At this point you should have completed data exploratory analysis. It is important 
that you analyze the attributes of your dataset as it provides insight into what type 

of data examples the target function will model. Additionally, one can check for 
problematic issues such as class imbalance of the data.  

Determine the best architecture to highlight the 
features that are best for modeling the target 

hypothesis. The architecture is what is responsible for 
the automated feature engineering. 

After determining a generalized architecture, you will 
want to decide on a learning algorithm and training 

process. This can involve the manipulation of 
hyperparameters and the efficiency of the model. 

When considering the architecture, learning algorithm and training process, there are two important concepts to be 
aware of. The first is the efficiency of the DL model chosen.  This can partially be addressed by the consideration of 

Occam’s Razor. Comparing your DL model against less complex models (canonical ML and statistical models) can 
provide evidence that your model is the most efficient model possible. The second concept to consider is the 

possibility for overfitting and underfitting. To avoid these problems, techniques such as early stop training, 
hyperparameter searching, data balancing, data augmentation and regularization should be implemented. 

The final step is to determine the hypothesis that best 
generalizes the target function. This target function is 

generated by the model learning the features extracted 
from the training examples. This may include the 

comparison of less complex models. 

Lastly, the evaluation and comparisons with other 
approaches should be completed. This involves the 

identification and comparison of previously used 
benchmarks within the specified SE task. Researchers 

should consider common metrics to evaluate how 
generalizable and accurate the model is.  
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Additional Guidelines for SE Task 

• Software engineering tasks are strongly associated with several other features. In particular, there is a strong association with 
data preprocessing, loss function and architecture [ref].  

• The SE task must contain enough analyzable data to warrant the use of a DL architecture. 
• Deep learning excels at identifying key features that help represent the relationship between the input and output. Ensure that 

you can identify this relationship within the input and target output of your data.  
• Deep learning has been applied to numerous SE tasks in the past. Refer to RQ1 to identify which tasks have been analyzed with 

DL. 

 Additional Guidelines for Data Extraction 

• The most prevalent extraction technique was scraping online repositories or forums for source code, meta data or developer 
written statements. 

• Data extraction should be done using the widest variety of potential sources. Otherwise, the limitation of sources should be 
documented. 

• Be careful to inspect and remove instances of bias within the extraction methods, if there are biases, document the reasoning 
for the bias. 

 Additional Guidelines for Data Preprocessing 

• Data preprocessing is strongly associated with the specified SE task. Therefore, refer to RQ1 to identify the unique associations 
between SE task and preprocessing technique implemented.  

• The most prevalent preprocessing techniques were tokenization and the generation of neural embeddings. 
• Neural embeddings are generated using neural networks, which highlight and abstract features about the dataset into a vector 

format. 
• Tokenization is used primarily with source code or natural language. All other relationships of preprocessing techniques to data 

type can be found in RQ2 of our SLR. 
• The task of data preprocessing will frequently incorporate some type of abstraction, which inherently limits the applications 

and scope of the approach. These limitations should be thoroughly explored and documented. 
• The state of the data after preprocessing will be fed into the DL architecture. Ensure that the vector is in the proper format and 

features have been appropriately represented. 

Additional Guidelines for DL Architecture and Learning Algorithm 

• In SE we find that the most prevalent type of DL architecture is Recurrent Neural Networks (RNNs) and Encoder-Decoder 
models. This is likely because source code is so heavily studied, which RNNs and Encoder-Decoder models excel in.  

• Many architectures in SE have not been thoroughly explored. For instances of which DL architectures have been applied to 
specific SE tasks, refer to RQ 3 of our SLR. 

• We find that the DL architecture is heavily influenced by the SE task being studied. Specific architectures excel at capturing 
specific data types better than others. For example, CNNs naturally capture the relationships of images where as RNNs naturally 
capture the features of sequential textual data.  

• DL architecture and loss function have a significant association with one another. We find that gradient descent is the most 
employed learning algorithm. 

• Do not forget to implement and report on the parameter optimization methods used to optimize the DL model. 
• To limit the model from overfitting, most authors performed a series of techniques. The most popular techniques found were 

early stop training, dropout and L1/L2 Regularization.  

 Additional Guidelines for Evaluation 

• Many DL4SE works compile their own benchmarks for testing their DL-based approach. Many of these benchmarks are 
available for future comparisons with other DL-based approaches. 

• Not many implementations of other DL based approaches are publicly available. A compiled list of publicly available approaches 
can be found in RQ4 of our SLR.  

• The three most common metrics we find used in DL4SE papers is recall, F1 measure, precision and accuracy. However, there are 
many other metrics used, which can be viewed in supplemental material.  

Figure 3.18: Additional Guidelines
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Chapter 4

Learning Code Similarities

4.1 Introduction

Source code analysis is a rock-solid foundation of every software engineering (SE) task.

Source code analysis methods depend on a number of different code representations (or

models), which include, source code identifiers and comments, Abstract Syntax Trees

(ASTs), Control-Flow Graphs (CFGs), data flow, bytecode, etc. These distinct repre-

sentations of code provide different levels of abstraction, which create explicit and implicit

relationships among source code elements. The importance of a specific code representa-

tion is dependent upon the SE task. For example, identifiers and comments encode domain

semantics and developers’ design rationale, making them useful in the context of feature

location [81, 228, 82, 84] and software (re)modularization [40, 39, 38]. Additionally, pro-

grams that have a well-defined syntax can be represented by ASTs, which, in turn, can be

successfully used to capture programming patterns and similarities [205, 209, 25]. Since

there are numerous SE tasks, such as static and dynamic program analysis, change history

analysis, automated testing, verification, program transformation, clone detection etc., it

is important to rely on different available code representations so that different source code

relationships can be properly identified. Yet, many existing solutions to these SE tasks

are based on “hardcoded” algorithms rooted in the underlying properties of the specific
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code representation they use, which in order to work properly, also need to be adequately

configured [214, 278, 215].

While SE researchers regularly use machine learning (ML) or Information Retrieval

(IR) techniques to solve important SE tasks, many of these techniques rely on manually

defined or hand-crafted features. These features then allow for ML-based SE applica-

tions. For example, distinct identifiers are typically used as features in concept location

approaches [83], APIs (a reserved subset of identifiers) are used as features in approaches

for identifying similar applications [193, 269], and AST pattern similarities are used to

enable clone detection and refactoring [197, 97, 134]. However, it should be noted that

all the features are selected via “an art of intuitive feature engineering” by SE researchers

or domain (task) experts. While there are many successful and widely adopted ML-based

approaches that use different code representations to support SE tasks, their performance

varies depending on the underlying datasets [214, 215].

Improvements in both computational power and the amount of memory in modern

computer architectures have enabled the development of new approaches to canonical ML-

based tasks. The rise of deep learning (DL) has ushered tremendous advances in different

fields [165, 195]. These new approaches use representation learning [44] — a significant

departure from traditional approaches — to automatically extract useful information from

the disproportionate amount of unlabeled data in software. The value in circumventing

conventional feature engineering when designing ML-based approaches to SE tasks is two-

fold. Firstly, learning transformations of the data reduces the cost of modeling code, since

software (and various code representations) stores a lot of data to improve the effectiveness

of learning. Secondly, performance is increased because generally, learning algorithms are

more efficient than humans at discovering correlations in high dimensional spaces.

While the number of applications of DL to SE tasks is growing [124, 96, 160, 206, 24,

15, 160, 157, 42, 106, 275], one recent example by White et al. [283] shows that DL can

effectively replace manual feature engineering for the task of clone detection. Existing clone

detection approaches leverage algorithms working on manually specified sets of features,
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and include, for example, text-based [137, 139, 138, 86, 231] string-based [34, 33, 35],

token-based [141, 172, 233, 234], AST-based [290, 41, 154, 134], graph-based [152, 155,

177, 97, 57], or lexicon-based [192] approaches. Instead, DL-based clone detection does not

require any manual specification of features, and is comparable to existing clone detection

approaches [283]. While White et al. did not manually specify any features, they did use

a stream of identifiers and constant code tokens as a way to represent the code.

In this chapter, we posit a fundamental question of whether an underlying code repre-

sentation can be successfully used to automatically learn code similarities. In our approach,

we employ the representations of identifiers, ASTs, CFGs, and Bytecode and use DL al-

gorithms to automatically learn necessary features (rather than “hardcoding” algorithms

or crafting features in ML-based approaches), which in turn, can be used to support SE

tasks. Moreover, we also study whether combinations of the models trained on diverse

code representations can yield more accurate and robust support for the SE task at hand.

Our conjecture is that each code representation can provide a different, orthogonal view

of the same code fragment, thus allowing a more reliable detection of similar fragments.

Being able to learn similarities from diverse code representations can also be helpful in

many practical settings, where some representations are simply not available (e.g., when

only compiled code is available or ASTs cannot be built due to compilation errors) or when

some of the representations are compromised (e.g., code obfuscation would prevent using

identifier-based approaches). Many real-world SE tasks, such as third-party library detec-

tion [189, 31] and code provenance [73] often deal with code having limited representations

available that needs to be analyzed.

While we conduct our experiments on a specific SE task — clone detection — our goal

is not to develop an ultimate clone-detection approach, but rather show that effective DL-

based solutions can be assembled from diverse representations of source code. Specifically,

the noteworthy contributions of this work are as follows:
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1. Deep Learning from different code representations - We demonstrate that it is in-

deed possible to automatically learn code similarities from different representations,

such as streams of identifiers, AST nodes, bytecode mnemonic opcodes, as well as

CFGs. We evaluate how these different representations can be used in a DL-based

approach for clone detection. We argue that our results should be applicable to any

SE approach that relies on analyzing code similarities.

2. Assembling a Combined model - We demonstrate that combined models can be auto-

matically assembled to consider multiple representations for SE tasks (in our example,

code clone detection). In fact, we show that the combined model achieves overall

better results when compared to stand-alone code representations.

3. Inter-project similarities - We also demonstrate that the proposed models can be

effectively used to compute similarities, not only in the context of a single project,

but also to analyze code similarities among different (diverse) software projects (e.g.,

detecting clones or libraries across multiple projects).

4. Model reusability and transfer learning - We demonstrate that we can learn multi-

representation models on available software systems and then effectively apply these

models for detecting code similarities on previously unseen systems.

5. Open science - We release all the data used in our studies [7]. In particular, we

include all the datasets, inputs/outputs, logs, settings, analysis results, and manually

validated data.

4.2 Approach

Our approach can be summarized as follows: First, code fragments are selected at the

different granularities we wish to analyze (e.g., classes, methods). Next, for each selected

fragment, we extract its four different representations (i.e., identifiers, AST, bytecode, and

CFG). Code fragments are embedded as continuous valued vectors which are learned for
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each representation. In order to detect similar code fragments, distances are computed

among the embeddings. Finally, we demonstrate how we effectively combine different

representations for the task of code clone detection and classification.

4.2.1 Code Fragments Selection

Given a compiled code base formed by source code files and compiled classes, code frag-

ments are selected at the desired level of granularity: classes or methods. We start by

listing all the .java files in the code base. For each Java file, we build the AST rooted

at the CompilationUnit of the file. To do this, we rely on the Eclipse JDT APIs. We

use the Visitor design pattern to traverse the AST and select all the classes and methods

corresponding to TypeDeclaration and MethodDeclaration nodes. We discard interfaces

and abstract classes since their methods do not have a bytecode and CFG representation.

While it is possible to extract the other two representations (identifiers and ASTs), we

chose to discard them so that we only learned similarities from code which exhibits all

four representations. In addition, we filter out fragments (i.e., classes or methods) smaller

than ten statements. Similar thresholds have been used in previous work for minimal clone

size [279]. Furthermore, smaller repetitive snippets are defined as micro-clones. Syntactic

repetitiveness below this threshold has simply been considered uninteresting because it

lacks sufficient content [37]. For each code fragment ci ∈ {Classes∪Methods} we extract

its AST node ni and its fully qualified name (signature) si. Identifier and AST represen-

tations are extracted from an AST node ni, while the bytecode and CFG representations

are queried using the fully qualified name si.

4.2.2 Code Representation Extraction

We used the following representations of the source code: (i) identifiers; (ii) ASTs; (iii)

bytecode; and (iv) CFGs. We then performed extraction and normalization as our prepos-

sessing steps for each representation. In this section we describe these two steps for each

selected representation.
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4.2.2.1 Identifiers

In this representation, a code fragment is expressed as a stream (sentence) of identifiers

and constants from the code. Similar representation is used by White et al. [283].

Extraction. Given the code fragment ci and its corresponding AST node ni, we consider

the sub-tree rooted at the node ni. To extract the representation, we select the terminal

nodes (leaves) of the sub-tree and print their values. The leaf nodes mostly correspond to

the identifiers and constants used in the code.

Normalization. Given the stream of printed leaf nodes, we normalize the representa-

tion by replacing the constant values with their type (< int >, < float >, < char >,

< string >).

4.2.2.2 AST

In this representation, a code fragment is expressed as a stream (sentence) of the node

types that compose its AST.

Extraction. Similarly to what was described above, the sub-tree rooted at the node ni

is selected for a given code fragment ci. Next, we perform a pre-order visit of the sub-tree

printing, for each node encountered, its node type.

Normalization. We remove two AST node types: SimpleName and QualifiedName.

These nodes refer to identifiers in the code, and were removed because: (i) they represent

low-level nodes, which are less informative than high-level program construct nodes in

the AST (e.g., VariableDeclarationFragment, MethodInvocation); (ii) they account for

∼46% of the AST nodes leading to a very large yet repetitive corpus; (iii) we target an AST

representation able to capture orthogonal information as compared to the identifier repre-

sentation. The latter is formed for∼77% of terms belonging to SimpleName/QualifiedName

nodes.
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4.2.2.3 CFG

In this representation, a code fragment is expressed as it’s CFG.

Extraction. To extract the CFG representation, we rely on Soot [8], a popular frame-

work used by researchers and practitioners for Java code analysis. First, we extract the

fully qualified name of the class from the signature si of the code fragment ci. We use it

to load the compiled class in Soot. For each method in the class, the CFG G = (V,E)

is extracted, where V is the set of vertices (i.e., statements in the method) and E the

set of directed edges (i.e., the control flow between statements). In particular, the node

represents the numerical ID of the statement as it appears in the method. Since the CFG

is an intra-procedural representation, we see the method-level representation as a graph,

while the class-level representation is a forest of graphs (CFGs of its methods).

Normalization. The CFG represents code fragments at a high-level of abstraction, there-

fore, no normalization is performed.

4.2.2.4 Bytecode

In this representation, a code fragment is expressed as a stream (sentence) of bytecode

mnemonic opcodes (e.g., iload, invokevirtual) forming the compiled code.

Extraction. Let ci be the code fragment and si its signature. If ci is a method, we

extract the fully qualified name of its class from si, otherwise si already represents the

name of the class. Then, the bytecode representation is extracted using the command

javap− c− private < classname > passing the fully qualified name of the compiled

class. The output is parsed, allowing for the extraction of the class- or method-level

representation.

Normalization. In the normalization step we remove the references to constants, keeping

only their opcodes. For example, the instruction putfield#2 is normalized as putfield.

We also separate the opcodes stream of each method with the special tag < M >.
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4.2.3 Embedding Learning

For each code fragment c ∈ {Classes ∪Methods}, we extract its representations: rident,

rAST , rbyte, and rCFG. We learn a single embedding (i.e., vector) for each representation,

obtaining: eident, eAST , ebyte, and eCFG. An embedding represents a code fragment in

a multidimensional space where similarities among code fragments can be computed as

distances.

We use two strategies to learn embeddings for the aforementioned representations. For

identifier, AST and bytecode representations, we use a DL-based approach that relies on

recursive autoencoders [244, 245]. For the CFG representation we use a graph embedding

technique [212].

4.2.3.1 DL Strategy

Let C be the set of all code fragments and R the corpus comprised by the representations

of the code fragments in a representation (rident, rAST , rbyte). For each code fragment

c ∈ C, its representation r ∈ R is a sentence of the corpus R. The sentence r is a stream

of words r = w1, w2, . . . , wj , where wi is a term of the particular representation (i.e., an

identifier, AST node type or bytecode opcode). The corpus is associated with a vocabulary

V containing the unique terms in the corpus.

To learn an embedding for a sentence r, we perform two steps. In the first stage,

we learn an embedding for each term wi (i.e., word embeddings), which comprises the

sentence. In the second stage, we recursively combine the word embeddings to learn an

encoding for the entire sentence r. We now describe these two stages in details.

In the first stage we train a Recurrent Neural Network (RtNN) on the corpus R, where

the size of the hidden units is set to n, which corresponds to the embedding size [196]. The

model, trained on the corpus R, generates a continuous valued vector, called an embedding,

for each word wi ∈ V .
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Figure 4.1: First iteration to encode a stream of tokens.

The second stage involves training a Recursive Autoencoder [244, 245] to encode ar-

bitrarily long streams of embeddings. Fig. 4.1 shows the recursive learning procedure.

Consider the sentence r ∈ R formed by seven terms {w1, . . . , w7}. The first step maps the

stream of terms to a stream of n−dimensional embeddings {x1, . . . , x7}. In the example

in Fig. 4.1, there are six pairs of adjacent terms (i.e., [xi;xi+1]). Each pair of adjacent

terms [x`;xr] is encoded by performing the following steps: (i) the two n-dimensional em-

beddings corresponding to the two terms, are concatenated into a single 2n-dimensional

vector x = [x`;xr] ∈ R2n; (ii) x is multiplied by a matrix ε = [ε`, εr] ∈ Rn×2n; (iii) a βias

vector βz ∈ Rn is added to the result of the multiplication; (iv) the result is passed to a

nonlinear vector function f : z = f (εx+ βz).

The result z is an n-dimensional embedding that represents an encoding for the stream

of two terms, corresponding to x. In the example in Fig. 4.1, x` and xr correspond to the

embeddings x5 and x6 respectively, which in turn, correspond to the terms w5 and w6. In

this steps the autoencoder performs dimensionality reduction. In order to assess how good

z encodes the pair [x`;xr], the autoencoder tries to reconstruct the original input x from

z in the δecoding phase. z is δecoded by multiplying it by a matrix δ = [δ`; δr] ∈ R2n×n

and adding a βias vector βy ∈ R2n: y = δz + βy.
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The output y = [x̂`; x̂r] ∈ R2n is referred to as the model’s reconstruction of the

input. This model θ = {ε, δ, βz, βy} is called an autoencoder, and training the model involves

measuring the Error between the original input vector x and the reconstruction y:

E(x; θ) = ||x` − x̂`||22 + ||xr − x̂r||22 (4.1)

The model is trained by minimizing Eq. (4.1). Training the model to encode streams with

more than two terms requires recursively applying the autoencoder. The recursion can be

performed following predefined recursion trees or by using optimization techniques, such as

the greedy procedure defined by Socher et al. [243]. The procedure works as follows: in the

first iteration, each pair of adjacent terms are encoded (Fig. 4.1). The pair whose encoding

yields the lowest reconstruction error (Eq. (4.1)) is the pair selected for encoding at the

current iteration. For example, in Fig. 4.1, each pair of adjacent terms are encoded (e.g.,

dashed lines) and the pair of terms w5 and w6 is selected to be encoded first. As a result, in

the next iteration, x5 and x6 are replaced by z and the procedure repeats. Upon deriving

an encoding for the entire stream, the backpropagation through structure algorithm [103]

computes partial derivatives of the (global) error function w.r.t. θ. Then, the error signal

is optimized using standard methods.

4.2.3.2 Graph Embedding Strategy

To generate the embeddings for CFG representations we employ the graph embedding

technique HOPE [212] (High-Order Proximity preserved Embedding). We rely on this

technique for two main reasons: (i) HOPE has been shown to achieve good results in

graph reconstruction [105]; (ii) unlike other techniques such as e.g., SDNe, HOPE embeds

directed graphs (as needed in the case of CFGs).

Given a graph G = (V,E), HOPE generates an embedding for each node in the graph.

Next, a single embedding is generated for the whole graph performing mean pooling on

the node’s embeddings. HOPE works by observing a critical property of directed graphs
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known as asymmetric transitivity. This property helps to preserve the structure of directed

graphs by identifying correlations of directed edges. For example, assume three distinct,

directed paths from v1 to v5 . Each of these paths increases the correlation probability

that there exists a directed edge from v1 to v5 , however, the lack of directed paths from

v5 to v1 decreases the probability of there being a direct edge from v5 to v1.

Figure 4.2: HOPE Embedding Technique

HOPE looks to preserve asymmetric transitivity by implementing the highly correlated

metric known as the Katz proximity. This metric gives weights to the asymmetric transi-

tivity pathways, such that they can be captured through the embedding vectors. HOPE

learns two embedding vectors; the source vector and the target vector for each vertex.

These vectors are then assigned values based upon the weights of the edges and their na-

ture (source or target). For example, consider the graph in Fig. 4.2. Each of the solid

lined edges are directed edges and the dotted edges capture the asymmetric transitivity of
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the graph. The vector created for v1 as the target vector will be 0 since no paths lead to v1

as their target. However, the value assigned to v5 target vector will be much higher since

many paths end with v5 as their target. HOPE creates and learns the embeddings of the

graph by using Singular Value Decomposition for each vertex. Then, through mean pooling

on the nodes embeddings, a single embedding for the entire graph can be generated.

4.2.4 Detecting Similarities

Let E be the set of embeddings learned for all code fragments by a particular representation

(i.e., Eident, EAST , Ebyte, ECFG). We compute pairwise Euclidean distances between each

and every pair of embeddings ei, ej ∈ E. The set of distances D are normalized between

[0, 1] and a threshold t is applied to the distances in order to detect similar code fragments.

4.2.5 Combined Models

Each of the four models we built are trained on a single representation and identifies

a specific set of similar code fragments. Such models can be combined using Ensemble

Learning, an ML paradigm where multiple learners are trained to solve the same problem.

In contrast to ordinary machine learning approaches, which try to learn one hypothesis

from training data, ensemble methods try to construct a set of hypotheses and combine

them [298].

A simple class of Ensemble Learning techniques are the algebraic combiners, where

distances computed by several, single-representation models, are combined through an

algebraic expression, such as minimum, maximum, sum, mean, product, median, etc.. For

example, a weighted average sum of the distances computed from each representation can

be computed. Formally, given two code fragments a and b, and their n representations,

one can compute a dissimilarity score ds as follows:

ds(a, b) =
1

n

n∑
i=1

widi(a, b)
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Where di(a, b) is the distance between a and b computed using the i-th representation,

and wi is the weight assigned to the i-th representation. Weights can be set based on the

importance of each representation and the types of similarities we wish to detect.

Single-representation models can also treated as experts and combined using voting-

based methods. Each single-representation model expresses its own vote about the simi-

larity of two code fragments (i.e., are similar vs are not similar) and these decisions are

combined in a single label. Different strategies can be used depending on the goal: (i)

(weighted) majority of voting; (ii) at least one vote (max recall); (iii) all votes needed

(max precision).

The aforementioned strategies are non-trainable combiners. However, given a set of

instances for which the oracle is available, ensemble learning techniques can be employed

to perform training. Random Forest is one of the most effective ensemble learning method

for classification, which relies on decision tree learning and bagging [47]. Bagging (i.e.,

bootstrap aggregating), is a technique that generates bootstrapped replicas of the training

data. In particular, different training data subsets are randomly drawn with replacement

from the entire training dataset. Random Forest, in addition to classic bagging on the

training instances, also selects a random subset of the features (feature bagging). Each

training data subset is used to train a different deep decision tree. For a new instance,

Random Forest averages the predictions by each decision tree, effectively reducing the

overfitting on the training sets.

In the following, we show the effectiveness of combining similarities learned from dif-

ferent representations training two models in the context of clone detection (i.e., a model

classifying clone candidates as true or false positives) and classification (i.e., a model that

other than discerning clone candidates in true or false positives, also classifies the true

positives in their own clone type).

Similarities from different code representations can be useful not only to detect clones,

but also to classify them into types. For example, clone pairs with very high AST similarity,
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but low identifiers similarity are likely to be Type-II clones (possibly parameterized clones,

where all the identifiers have been systematically renamed).

4.3 Experimental Design

Table 4.1: Project Statistics

Project #Classes #Methods Total LOC

ant-1.8.2 1,608 12,641 127,507
antlr-3.4 381 3,863 47,443
argouml-0.34 1,408 8,465 105,806
hadoop-1.1.2 3,968 21,527 319,868
hibernate-4.2.0 7,119 46,054 431,693
jhotdraw-7.5.1 765 6,564 79,672
lucene-4.2.0 4,629 23,769 412,996
maven-3.0.5 837 5,765 65,685
pmd-4.2.5 872 5,490 60,739
tomcat-7.0.2 1,875 15,275 181,023

The goal of this study is to investigate whether source code similarity can be learned

from different kinds of program representations, with the purpose of understanding whether

one can combine different representations to obtain better results, or use alternative rep-

resentations when some are not available. More specifically, the study aimed to address

the following research questions (RQ):

RQ1 How effective are different representations in detecting similar code fragments?

RQ2 What is the complementarity of different representations?

RQ3 How effective are combined multi-representation models?

RQ4 Are DL-based models applicable for detecting clones among different projects?

RQ5 Can trained DL-based models be reused on different, previously unseen projects?
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4.3.1 Datasets Selection

We make use of two datasets: (i) Projects: a dataset of ten Java projects; (ii) Libraries: a

dataset comprised of 46 Java libraries.

4.3.1.1 Projects

This dataset is comprised of ten compiled Java projects extracted from the Qualitas.class

Corpus [256]. We rely on this dataset because it is publicly available and the projects have

been already compiled. This (i) avoids any potential problem/inconsistency in compiling

projects, and (ii) ensures reproducibility. The selection of ten projects aimed at obtaining

a diverse dataset, in terms of application domain and code size. Table 4.1 reports statistics

of the dataset that we use in all our research questions except RQ4.

4.3.1.2 Libraries

This dataset is comprised of 46 different Apache commons libraries [6]. We selected all

the Apache commons libraries, for which we were able to identify both binaries and source

code of the latest available release. We downloaded the compressed files for binaries and

source code. Within the binaries, we located the jar file, which represents the library, and

extracted the .class files. The compressed source code files were simply decompressed.

The list of considered libraries is available in our replication package. We use this dataset

in RQ4 for inter-project clone detection.

4.3.2 Experimental Procedure and Data Analysis

We discuss the experimental procedure and data analysis we followed to answer each

research question.
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4.3.2.1 RQ1:How effective are different representations in detecting similar

code fragments?

Given the projects dataset P = {P1, . . . , P10} and the four code representations R =

{R1, R2, R3, R4}, we extract for each code artifact c ∈ {Classes ∪ Methods} its four

representations r1, r2, r3, r4. Then, for each project Pi we train the representation-specific

model on the code representations at class-level. With the trained models, we subsequently

generate the embeddings for both classes and methods in the project. Therefore, the

code artifact represented as r1, r2, r3, r4 will be embedded as e1, e2, e3, e4, where ei is the

embedding of the i-th representation. We set the embedding size of Identifiers, AST and

Bytecode to 300, while the CFG embedding size to four. The latter is significantly smaller

than the former because (i) CFGs are abstract representations which do not require large

embeddings; (ii) in order to converge towards an embedding representation, HOPE (and

internally SVD) needs the embedding size to be smaller than the minimum number of

nodes or edges in the graph. Pairwise Euclidean distances are computed for each pair of

classes and methods of each system Pi. The smaller the distance, the more similar the two

code artifacts.

In the next step, for each code representationRi, we query the clone candidates from the

dataset P at class and method level. To query the clone candidates, we apply a threshold

on the distances to discern what qualifies as clones. We use the same two thresholds at

class- and method-level (Tclass = 1.00e − 08 and Tmethods = 1.00e − 16, similar to [283])

for each representation. While, ideally, these thresholds should be tuned for each project

and representation, we chose the same thresholds to facilitate the comparison among the

four representations. Once we obtained the two sets of candidates CandClassesi and

CandMethodsi for each representation Ri, we performed the union of the candidate sets of

the same granularity among all the representations: CandClasses =
⋃4

i=1CandClassesi

(the same applies for CandMethods).

110



For each candidate c ∈ CandClasses (or CandMethods) we generate a tuple tc =

{b1, b2, b3, b4} where bi = Trueiffc ∈ CandClassi (i.e., if c is identified as a clone by

Ri) and bi = False otherwise. tc can assume 24 = 16 possible values (i.e., tc = {FFFF,

FFFT, . . . , TTTT}). However, the combination FFFF does not appear in our dataset

since CandClasses and CandMethods are sets containing the union of the clones identified

by all representations, thus ensuring the presence of at least one True value. Therefore,

there are 15 unique classes of values for tc. We use these sets to partition the candi-

dates in CandClasses and CandMethods. Next, from each candidate clones partition,

we randomly draw a statistically significant sample with 95% confidence level and ±15%

confidence interval. The rationale is that we want to evaluate candidates belonging to

different levels of agreement among the representations.

Three authors independently evaluated the clone candidate samples. The evaluators

decided whether the candidates were true or false positives and, in the former case, the clone

type. To support consistent evaluations, we adapted the taxonomy of editing scenarios

designed by Svajlenko et al. [255] to model clone creation and to be general enough

to apply to any granularity level. Given the manually labeled dataset from each of the

three evaluators, we computed the two-judges agreement to obtain the final dataset (e.g.,

a candidate clone was marked as a true positive if at least two of the three evaluators

classified it as such). In order to statistically assess the evaluators agreement, we compute

the Fleiss’ kappa [93]. In particular, we compute the agreement for True and False positive

as well as the agreement in terms of Clone Types. On the final dataset, precision and

recall were computed for each candidate clones partition (e.g., TFFF , FTFF , etc.) and,

overall, for each representation in isolation. We quantitatively and qualitatively discuss

TP/FP pairs for each representation, as well as the distribution of clone types.

4.3.2.2 RQ2:What is the complementarity of different representations?

To answer RQ2 we further analyze the data obtained in RQ1 to investigate the complemen-

tarity of the four representations. First, we compute the intersection and the difference of
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the true positive sets identified with each representation. Precisely, the intersection and

difference of two representations Ri and Rj are defined as follows:

Ri ∩Rj =
|TPRi ∩ TPRj |
|TPRi ∪ TPRj |

% and Ri \Rj =
|TPRi \ TPRj |
|TPRi ∪ TPRj |

%

where TPRi represents true positive candidates identified by Ri. We compute the percent-

age of candidates exclusively identified by a single representation and missed by all the

others:

EXC(Ri) =
|TPRi \

⋃
j 6=i TPRj |

|
⋃

j TPRj |
%

Then, to understand whether these code representations are orthogonal to each other,

we collect all the distance values of each representation computed for each pair of code

fragments (classes or methods) in the dataset. Given these distance values, we compute

the Spearman Rank Correlation [249] between each pair of representations, to investigate

the extent to which distances computed from different representations on the same pairs

of artifacts correlate.

4.3.2.3 RQ3:How effective are combined multi-representation models?

To answer RQ3 we evaluate the effectiveness of two combined models: CloneDetector,

which classifies candidate clones as true/false positives, and CloneClassifier, which provides

information about the type of detected clone (Type-1, 2, 3 or 4). While we are aware that

is its possible to determine a clone type by comparing the sequence of tokens, the purpose

of this classification is to show the potential of the proposed approach to provide complete

information about a clone pair. The two models are trained using the manually labeled

dataset obtained in RQ1, with the distances computed by each representation used as

features and the manual label used as target for the prediction. To train the two models we

rely on Random Forest employing the commonly used 10-fold cross-validation technique to

partition training and test sets. We evaluate the effectiveness of the two models computing
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Precision, Recall and F-Measure for each class to predict (e.g., clone vs not-clone for the

CloneDetector).

4.3.2.4 RQ4:Are DL-based models applicable for detecting clones among dif-

ferent projects?

The goal of RQ4 is two-fold. On the one hand, we want to instantiate our approach in a

realistic usage scenario in which only one code representation is available. On the other

hand, we also want to show that the DL based model can be used to identify inter-project

clones. Indeed, the latter is one of the major limitations of the work by White et al. [283],

where given the potentially large vocabulary of identified-based corpora, the approach was

evaluated only to detect intra-project clones.

We instantiate two usage scenarios both relying on the same Library dataset, and on

training performed on the binaries (bytecode from .class files). In the first scenario, a

software maintainer has to analyze the amount of duplicated code across projects belonging

to their organization. We use the entire Library dataset and filter for inter-project clone

candidates only (i.e., candidates belonging to different projects). Clone candidates are

evaluated by inspecting the corresponding Java files from the downloaded code.

In the second scenario, a software developer is using a jar file (i.e., compiled library)

in their project. The developer has no information about other libraries that could be

redistributed with the jar file, since only compiled code is present. For provenance and/or

licensing issues, the developer needs to address whether the jar file j imports/shadows any

of the libraries in a given dataset L.

To perform this study we select weaver-1.3 as the jar j and the remaining 45 libraries

in the Library dataset as L. We identify similar classes between j and L. Then, to

assess whether the identified classes have actually been imported in j from library x ∈ L,

we downloaded the j’s source code and analyzed the building files (weaver-1.3 relies on

Maven, thus we investigated the .pom files) to check whether the library x is imported as

a dependency in j.
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4.3.2.5 RQ5:Can trained DL-based models be reused on different, previously

unseen projects?

One of the major drawbacks of DL-based models is their long training time. This training

time could be amortized if these models we able to be reused across different projects

belonging to different domains. The major factor that hinders the reusability of such

models is the possible variability in the vocabulary for new, unseen projects. For example,

a language model and a recursive autoencoder trained on a given vocabulary would not

be able to provide adequate results on a vocabulary containing terms not previously seen

during the training phase. Such a vocabulary should be cleaned, either by stripping off the

unknown terms, replacing them with special words (e.g., < unkw >) or using smoothing

techniques. These solutions negatively impact the performance of the models.

While in principle, with enough training data and available time, any of the aforemen-

tioned representation-specific models could be reused on a different dataset (i.e., unseen

project), in practice some representation-specific models are more suitable than others for

reuse. In particular, models trained on representations with a limited or fixed vocabulary

are easier to be reused on different projects. In our study, AST and Bytecode represen-

tations both have a fixed vocabulary, limited respectively by the number of different AST

node types and bytecode opcodes.

To answer RQ5 we perform a study aimed at evaluating the effectiveness of reusing AST

models. We evaluate the effectiveness, showing that a reused model identifies a similar list

of clone candidates as compared to the original model trained on the set projects. We select

the AST representation which was trained on one of the biggest project in the dataset,

RQ1 (i.e., lucene). We use this AST model to generate the embeddings for the remaining

nine projects in the dataset. Using the generated embeddings we compute the distances

and query the clone candidates using the same class- and method-level thresholds used in

RQ1. Then, let LR and LO be the lists of candidates returned from the reused model and
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from the original model, we compute the percentage of candidates in LR that are in LO

and vice versa.

We also show that the combined model CloneDetector, trained on clone candidates

belonging to a single project (hibernate), can be effectively used to detect clones in the

remaining nine systems of the Projects dataset.

4.4 Results

RQ1: How effective are different representations in detecting similar code frag-

ments? Table 4.2 shows the results in terms of precision for different candidate clone par-

titions, where each clone partition includes clones detected only by a given combination

of representations. For example, the first partition FFFT represents the clone candidates

identified by the Bytecode representation, but not by the other three representations. Note

that for the partition with ID = 10 (TFTF ) no class-level clones have been identified.

Table 4.2: Performances for different clone partitions

ID Iden AST CFG Byte Precision %
Methods Classes

1 F F F T 5 49
2 F F T F 9 58
3 F F T T 88 73
4 F T F F 79 63
5 F T F T 95 93
6 F T T F 100 100
7 F T T T 100 100
8 T F F F 95 100
9 T F F T 100 100
10 T F T F 100 -
11 T F T T 100 100
12 T T F F 100 100
13 T T F T 100 100
14 T T T F 100 100
15 T T T T 100 100
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Table 4.2 shows that most of the partitions exhibit a good precision, with peaks of

100%. The notable exceptions are the partitions with ID 1 and 2, referring to clone

candidates detected only by the Bytecode and by the CFG representations, respectively.

We investigated such false positives and qualitatively discuss them later.

Table 4.3 shows the overall results for method- and class-level aggregated by repre-

sentation. The table contains the raw count of True Positives (TP), False Positives (FP)

and clone types identified by each representation. Estimated precision and recall is also

reported in the last two columns of the tables. Note that the results of the single represen-

tation Ri (e.g., Identifier) reported in 4.3 refer to aggregated candidates of table 4.2 where

the representation Ri is the True (e.g., clone partitions ID 8-15).

Table 4.3: Performances for different representations
Methods

Representation FP TP Type I Type II Type III Type IV Precision Recall
Iden 1 201 151 15 35 0 100% 52%
AST 11 292 138 132 19 3 96% 75%
CFG 43 178 69 81 19 9 81% 46%
Byte 46 222 89 77 49 7 83% 57%

Classes

Representation FP TP Type I Type II Type III Type IV Precision Recall
Iden 0 120 23 51 46 0 100% 40%
AST 18 188 18 121 44 5 91% 63%
CFG 24 120 7 65 41 7 83% 40%
Byte 34 217 23 115 77 2 86% 73%

The Identifier-based models achieve the best precision, both when working at method-

and class-level. AST-based models provide the best balance between precision and recall.

In terms of types of clones, Identifier-based models detect the highest number of Type I,

AST-based models identify the highest number of Type II, Bytecode models identify the

highest number of Type III, and CFG models detect the highest number of Type IV. This

suggests that the four representations are complementary, and will be addressed further in

RQ2.
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The data presented in this section is based on the agreement of three evaluators. The

Fleiss’ kappa shows substantial agreement in terms of TP/FP (93% for methods and 65%

for classes) and a moderate/substantial agreement in terms of clone types classification

(75% for methods and 57% for classes). In the following breakdown, we discuss the results

achieved by models using different representations.

Identifiers. The identifiers-based model achieves the best precision both in method-

and class-level results. However its estimated recall is respectively 52% and 40%, meaning

that the model fails to detect a significant percentage of clones. While the recall could

be increased by appropriately raising the threshold (i.e., by adopting a more permissive

threshold) at the expense of precision, we found that this would still not be enough to detect

most of the clones detected by other representations. Indeed, we manually investigated

several TP clone candidates identified by other representations and missed by the Identifier-

based model. We found that the distances computed by the Identifier-based model for

such clones were several orders of magnitude higher than a reasonable threshold (e.g., the

ones we use or the ones used by White et al. [283]). Moreover, a close inspection at the

vocabulary of the candidates showed that they share a small percentage of identifiers, which

in turn, makes them hard to detect with such a representation. Clearly, clone candidates

where pervasive renaming or obfuscation has been performed, would be very difficult to

detect with this model.

Bytecode & CFG. From Table 4.2, we can notice that candidates detected only by

Bytecode or only by CFG models (partitions with ID 1 and 2) tend to be false positives.

The precision for such partitions is 5% and 9% at method-level and 49% and 58% at class-

level. However, when both Bytecode and CFG models detect clones not detected by the

AST and Identifier-based models (partition with ID 3), they achieve reasonable levels of

precision (88% and 73%).

Bytecode and CFG representations have a very high degree of abstraction. Within the

CFG, a statement is simply represented by a node. Similarly, the bytecode is formed by
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low level instructions, which do not retain the lexical information present in the code (e.g.,

a method call is represented as a invokevirtual or invokestatic opcode). Such a level

of abstraction appears to be imprecise for fine granularities such as methods, where the

code fragments might have similar structure but, at the same time, perform very different

tasks. Better results are achieved at class-level, where false positives are mainly due to Java

Beans, thus classes having a very similar structure, i.e., class attributes with getters and

setters acting on them performing similar low-level operations (storing/loading a variable,

creating an object, etc.). While these classes are false positives in terms of code clones,

they still represent a successful classification in terms of learning structural and low-level

similarities from the code. The general lesson learned is that the use bytecode and CFG in

a combined model yield an acceptable precision. Indeed, if bytecode is available (compiled

code) CFGs can be extracted as well.

Table 4.3 also shows that Bytecode and CFG are the representations that detect the

most Type IV clones in our dataset. Again, this is likely due to their high level of abstrac-

tion in representing the code.

AST. AST-based models seem to have the best overall balance between precision and

recall. These models can identify similar code fragments, even when their set of identifiers

(i.e., vocabulary) is significantly different and share almost no lexical tokens. This has

been confirmed by our manual investigation of the candidates. We report several examples

of candidates identified exclusively by the AST model in our online appendix.

RQ2: What is the complementarity of different representations? RQ2:

What is the complementarity of different representations? Table 4.4 reports the

complementarity metrics between the different representations. In particular, on the left

side of table 4.4 we report the intersection of sets of true positive candidates detected by

the four representations. For example, 40% of the true positives are detected by both the

AST and Identifier models. The relatively small overlap among the candidate sets, at both
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method and class granularity (no more than 51%), suggests that these representations

complement each other.

Table 4.4: Complementarity Metrics

Methods
Intersection % Difference % Exclusive %

R1 ∩R2 Iden AST CFG Byte R1 \R2 Iden AST CFG Byte Ri EXC(Ri)

Iden 40 21 36 Iden 17 43 29 Iden 5% (21)
AST 42 44 AST 43 46 38 AST 9% (33)
CFG 36 CFG 36 12 24 CFG 1% (4)
Byte Byte 35 18 39 Byte 1% (2)

Classes
Intersection % Difference % Exclusive %

R1 ∩R2 Iden AST CFG Byte R1 \R2 Iden AST CFG Byte Ri EXC(Ri)

Iden 33 14 42 Iden 19 43 8 Iden 3% (8)
AST 31 51 AST 48 49 19 AST 9% (26)
CFG 34 CFG 43 20 14 CFG 7% (21)
Byte Byte 49 30 52 Byte 7% (21)

The middle section of table 4.4 shows the difference in the sets of true positive can-

didates detected by the four representations. The reported values show the percentage

of true positive clones detected by a certain representation and missed by the other. For

example, 48% of the true positive clones identified by the AST model at class level are not

identified by the Identifier-based model.

Finally, the left section of table 4.4 shows the percentage and number of instances (in

parenthesis) of true positive candidates identified by each representation and missed by all

the others. From these results, we note that there are candidates exclusively identified by

a single representation. Note that the number of instances and percentages are computed

only on the manually validated sample.

Table 4.5 shows the Spearman’s Rank correlation coefficient (ρ) for the different rep-

resentations. While all the computed correlations are statistically significant, their low

value suggests that distances computed with different representations do not correlate and

provide different perspectives about the similarity of code pairs. The strongest correlation
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Table 4.5: Spearman’s rank correlation

ρ(R1, R2) Ident AST CFG Byte

Ident 0.094 0.120 0.069
AST 0.157 0.031
CFG 0.046
Byte

we observe is between the AST and the CFG representations, which is still limited to 0.157

(basically, no correlation).

For example, the classes MessageDestination and ContextEjb were detected only by

the AST representation. They both extend ResourceBase and offer the same functional-

ities. These classes share only a few identifiers (therefore not detected by the Identifier

model) and differ in some if-structures, making them more difficult to detect by CFG and

Bytecode representations. This and other examples are available in our online appendix [7].

RQ3:How effective are combined multi-representation models? Table 4.6 re-

ports the results of the CloneDetector at class- and method-levels. When identifying clone

instances, the model achieves 90% precision and 93% recall at class, and 98% precision

97% recall at method level. The lower performance at class-level could be due to the

smaller dataset available (i.e., 483 methods vs 362 classes). The overall classification per-

formance (i.e., the weighted average of the Clone/Not Clone categories) is also lower for

the class-level (∼85% F-Measure for classes, and ∼96% for methods).

We also trained the model by considering a subset of the representations. In our online

appendix, we provide results considering all possible subsets of features. We found that

single-representation models tend to have worse performance than the combined model,

which was trained on all representations. However, the combinations with Identifiers+AST+{CFG

or Bytecode} obtain results similar to the overall model trained on all representations.

Table 4.7 shows the results of the CloneClassifier at class- and method-levels. At class

level, the CloneClassifier has overall F-Measure of 68%, with average precision of 67% and

recall of 68%. At method level, the model obtains an overall F-Measure of 84%, with an

average precision and recall of 84% across the different categories (i.e., Not Clone and the
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Table 4.6: Performance of the CloneDetector

Methods Classes
Precision % Recall % F-Measure % Precision % Recall % F-Measure %

Clone 98 97 98 90 93 91
Not Clone 90 91 90 61 52 56
Weighted Avg. 96 96 96 85 86 85

four types of detected clones). As expected, the category with the lowest precision and

recall is the Type IV clones for both method and class level, while other clone types achieve

a precision ≥ 74% and a recall ≥ 75%. Single-representation models obtain significantly

worse results in the classification task (with a bigger gap with respect to what observed

for the CloneDetector). All the results are available in our online appendix.

Table 4.7: Performance of the CloneClassifier

Methods Classes
Precision % Recall % F-Measure % Precision % Recall % F-Measure %

Not Clone 89 94 91 59 61 60
Type I 89 88 88 86 78 82
Type II 82 84 83 81 85 83
Type III 74 75 75 61 59 60
Type IV 67 18 29 00 00 00
Weighted Avg. 84 84 84 67 68 68

RQ4:Are DL-based models applicable for detecting clones among differ-

ent projects? We identified several groups of duplicate code across different Apache

commons libraries in the dataset. The largest group of clones is between the libraries

lang3-3.6 and text-1.1. The duplicated code involves classes operating on Strings, for

example: StringMatcher, StrBuilderWriter, StrTokenizer, StrSubstitutor etc., for a total

of 21 shared similar classes identified. We also identified another group of similar classes

between text-1.1 (package diff) and collections4-4.1 (package sequence). In partic-

ular, the class StringsComparator in text-1.1 appears to be a Type III clone of the class

SequencesComparator in collections4-4.1. An example of Type II clone within these

two libraries is instead the pair EditScript and ReplacementsFinder classes. These clones

are classified as Type II, since only package information has been changed.
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The libraries math3-3.6.1 and rng-1.0 contain two shared classes: ISAACRandom

and Gamma/InternalGamma. ISACCRandom is a pseudo-random number generator. The

classes share many similarities across the two libraries, however, they differ on a statement

and structural level. As an example, both classes implement a method which sets a seed.

In one class, the seed is set by an integer passed through an argument, while the other

class sets the seed by using a combination of the current time and system hash code

of the instance. Gamma and InternalGamma, named respectively to the library they

belong to, are clones since parts of the Gamma class were used to develop InternalGamma.

The developers only took the needed functionalities out of the Gamma class, stripped

it of unnecessary code, and built InternalGamma. Therefore, many of the methods in

Gamma either do not appear or are significantly smaller in InternalGamma. Despite

InternalGamma being significantly smaller than Gamma, our tool was still able to detect

similarity between the two classes.

The libraries codec-1.9 and net-3.6 share the same implementation for the class

Base64, providing encoding/decoding features.

Note that the classes mentioned in this study do not refer to imported libraries but to

actual Java duplicated code (i.e., the source code files are in both libraries).

We also identified false positives in this study, mainly due to small inner classes and

enumerators. Enumerators have a very similar bytecode structure even if containing dif-

ferent constants. They are uninteresting with respect to the goal of this scenario.

Imported and shaded classes. We identified a large list of shared classes between the

library j (weaver-1.3) and the following libraries in the dataset L: collections4-4.1

(373 classes), lang3-3.6 (79), and io-2.5 (13). A closer inspection of the building files

of weaver-1.3 showed that the aforementioned libraries have been imported and shaded.

That is, the dependencies have been included and relocated in a different package name in

order to create a private copy that weaver-1.3 bundles alongside its own code.

RQ5:Can trained DL-based models be reused on different, previously unseen

projects? Table 4.8 shows the percentage of candidates in LR that are also in LO and vice
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versa, both at method- and class-level. Generally, the list of candidates identified by the

reused model and the original models tend to be similar. At method-level, we can see that

97% of the candidates identified by the reused model were also identified by the original

model. Similarly, 93% of the candidates returned by the original model are identified by

the reused model. At class-level we notice smaller percentages. This is mostly due to

the fact that fewer clones are identified at the class-level. For example, for antlr-3.4

the reused model identifies three candidates while the original model only identifies one.

For maven-3.0.5, two candidates are identified by the reused model and only one by the

original model. Still, 90% of the class-level candidates identified by the original models are

detected by the reused model.

Table 4.8: Model Reusability

Project Methods % Classes %
LR ∈ LO LO ∈ LR LR ∈ LO LO ∈ LR

ant-1.8.2 99 88 73 31
antlr-3.4 100 100 33 100
argouml-0.34 99 96 97 73
hadoop-1.1.2 99 95 95 74
hibernate-4.2.0 89 82 30 84
jhotdraw-7.5.1 99 98 82 77
maven-3.0.5 97 84 50 100
pmd-4.2.5 97 99 99 99
tomcat-7.0.2 98 97 87 69

Overall 97 93 58 90

We also show that combined models can be reused on different systems. The CloneDe-

tector model has been trained only on the data available for one project (hibernate) and

tested on all the instances of the remaining projects. It achieved 98% precision and 92%

recall at method-level and 99% precision and 95% recall at class-level.
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4.5 Threats To Validity

Construct validity. The main threat is related to how we assess the complementarity

of the code representations. We mitigate this claim performing different analyses: (i)

complementarity metrics; and (ii) correlation tests.

Internal validity. This is related to possible subjectiveness when evaluating similarities

of code fragments. To mitigate such threat, we employed three evaluators who indepen-

dently checked the candidates. Then, we computed two-judge agreement on the evaluated

candidates. We also qualitatively discuss false positives and borderline cases. Also, all of

our evaluations are publicly available [7].

External validity. The results obtained in our study using the selected datasets might

not generalize to other projects. To mitigate this threat, we applied our approach in differ-

ent contexts and used two different datasets; Projects and Libraries. For Projects, which is

a subset of systems from the Qualitas.class corpus, we selected diverse systems in terms of

size and domain, focusing on popular ones. All the Libraries studied in this work, which

are comprised of all the Apache commons libraries, are publicly available to ensure the

replicability of the study. We did not utilize other clone-focused datasets (e.g., such as

BigCloneBench [254]) because compiled code is required in order to extract the represen-

tations of CFGs and Bytecode. Another threat in this category is related to the fact that

we apply our approach on Java code only. While the representation extraction steps are

implemented for Java, all the subsequent steps are completely language-agnostic because

they rely on a corpus of sentences with arbitrary tokens. In fact, Recursive Autoencoders

have been used in several contexts with different inputs such as natural language, source

code, images etc. We do not compare our approach against code clone detection techniques

since the focus of this paper is to show a general technique on how to learn similarities

from multiple code representations, rather than building a code clone detector tool. Last,

but not least, we focused on four code representations, but there may be others that are

worthwhile to investigate (e.g., data-flow or program dependency graphs).
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4.6 Conclusion

In this chapter, we show that code similarities can be learned from diverse representations

of the code, such as Identifiers, ASTs, CFGs and bytecode. We evaluated the performance

of each representation for detecting code clones and show that such representations are

orthogonal and complement each other. We also show that our model is reusable, therefore,

eliminating the need for retraining the DL approach so that it is project specific. This

eliminates a large timesink, native to DL approaches, and broadens the applicability of

our approach.

Moreover, combined models relying on multiple representations can be effective in

code clone detection and classification. Additionally, we show that Bytecode and CFG

representations can be used for library provenance and code maintainability. These findings

speak to the vast amount of SE tasks which benefit from analyzing multiple representations

of the code. We instantiated our approach in different use case scenarios and datasets.

Our approach inherently highlights the benefits of not only single code representations,

but the combinations of these representations. This work also begins to emphasize the

attributes that different code representations can accentuate. This allows for a more tar-

geted choice by SE researchers of a code representation when applying representation-DL

algorithms to a SE tasks. We believe that learning similarities from different represen-

tations of the code, without manually specifying features, has broad implications in SE

tasks, and is not limited solely to clone detection.
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Chapter 5

Deep Learning Assert Statements

5.1 Introduction

Writing high-quality software tests is a difficult and time-consuming task. To help tame

the complexity of testing, ideally, development teams should follow the prescriptions of the

test automation pyramid [68], which suggests first writing unit tests that evaluate small,

functionally discrete portions of code to spot specific implementation issues and quickly

identify regressions during software evolution. Despite their usefulness, prior work has il-

lustrated that once a project reaches a certain complexity, incorporating unit tests requires

a substantial effort in traceability, decreasing the likelihood of unit test additions [150].

Further challenges exist for updating existing unit tests during software evolution and

maintenance [150].

To help address these issues the software testing research community has responded

with a wealth of research that aims to help developers by automatically generating tests [95,

213]. However, recent work has pointed to several limitations of these automation tools

and questioned their ability to adequately meet the software testing needs of industrial

developers [26, 239]. For example, it has been found that the assert statements generated

by state-of-the-art approaches are often incomplete or lacking the necessary complexity to

capture a designated fault. The generation of meaningful assert statements is one
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of the key challenges in automatic test case generation. Assert statements provide

crucial logic checks in a test case to ensure that the program is functioning properly and

producing expected results. However, writing or generating effective assert statements is

a complex problem that requires knowledge pertaining to the purpose of a particular unit

test and the functionality of the related production code. Thus, an effective technique for

the generation of assert statements requires predicting both the type and logical nature of

the required check, using source and test code as contextual clues for prediction.

To help advance techniques that aid developers in writing or generating unit tests,

we designed Atlas, an approach for automatically generating syntactically and semanti-

cally correct unit test assert statements using Neural Machine Translation (NMT). Atlas

generates models trained on large-scale datasets of source code to accurately predict as-

sert statements within test methods. We take advantage of the deep learning strategy of

NMT, which has become an important tool for supporting software-related tasks such as

bug-fixing [262, 63, 194, 121], code changes [260], code migration [208, 207], code sum-

marization [163, 185, 291], pseudo-code generation [210], code deobfuscation [268, 133]

and mutation analysis [265]. To the best of our knowledge, this is the first empirical step

toward evaluating an NMT-based approach for the automatic generation of assert state-

ments. Specifically, we embed a test method along with the context of its focal method

[222] (i.e., a declared method, within the production code, whose functionality is tested

by a particular assert statement) and we "translate" this input into an appropriate assert

statement. Since our model only requires the test method and the focal method, we are

able to aid developers in automatic assert generation even if the project suffers from a lack

of initial testing infrastructure. Note that our approach is not an alternative to automatic

test case generation techniques [95, 213], but rather, a complementary technique that can

be combined with them to improve their effectiveness. In other words, the automatic test

case generation tools can be used to create the test method and our approach can help in

defining a meaningful assert statement for it.
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To train Atlas, we mined GitHub for every Java project making use of the JUnit assert

class. In total we analyzed over 9k projects to extract 2,502,623 examples of developer-

written assert statements being used within test methods. This data was used to give the

NMT model the ability to generate assert statements that closely resemble those created

by developers. Therefore, not only do we enable efficiency within the software testing

phase but we also facilitate accuracy and naturalness by learning from manually written

assert statements. After we extracted the pertinent test methods containing assert state-

ments from the Java projects, we automatically identified the focal method for each assert

statement based on the intuition from Qusef et al. [222]. We hypothesize that combining

the test method and the focal method should provide the model with enough context to

automatically generate meaningful asserts.

We then quantitatively and qualitatively evaluated our NMT model to validate its use-

fulness for developers. For our quantitative analysis, we compared the models generated

assert statements with the oracle assert statements manually written by developers. We

considered the model successful if it was able to predict an assert statement which is identi-

cal to the developer-written one. Our results indicate that Atlas is able to automatically

generate asserts that are identical to the ones manually written by developers in 31.42%

of cases (4,968 perfectly predicted assert statements) when only considering the top-1 pre-

dicted assert. When looking at the top-5 recommendations, this percentage rises to 49.69%

(7,857).

For our qualitative analysis we analyzed “imperfect predictions” (i.e., predictions which

can differ semantically or syntactically as compared to the assert manually written by

developers) to understand whether they could be considered an acceptable alternative to

the original assert. We found this to be true in the 10% of cases we analyzed. Finally, we

computed the edit distance between the imperfect predictions and original asserts in order

to assess the effort required for a developer to adapt a recommended assert statement into

one she would use. We show that slight changes to the “imperfect” asserts can easily convert
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them into a useful recommendation. To summarize, this paper provides the following

contributions:

• We introduce Atlas, a NMT-based approach for automatically generating assert

statements. We provide details pertaining to the mining, synthesizing, and pre-

processing techniques to extract test methods from the wild, and to train and test

Atlas;

• An empirical analysis of Atlas and its ability to use NMT to accurately generate a

semantically and syntactically correct assert statement for a given test method;

• A quantitative evaluation of the model, and a detailed comparison between modeling

raw and abstracted test methods;

• A publicly available replication package [9] containing the source code, model, tools

and datasets discussed in this paper.

5.2 Approach

We provide an overview of the Atlas workflow for learning assert statements via NMT in

Fig. 5.1. Our approach begins with the mining and extraction of test methods from Java

projects. To do this, we mine GitHub projects that use the JUnit testing framework (Sec.

5.2.1). From those projects, we mine all test methods denoted with the @Test annotation

as well as every declared method within the project (Sec. 5.2.2). We then filter this data,

identify the appropriate focal method context, and generate pairs containing the contextual

test method (i.e., the test method augmented with information about the focal method it

tests) and the relevant assert statement (Sec. 5.2.3 & Sec. 5.2.4). We refer to these pairs

as Test-Assert Pairs (TAPs). Next, we generate two datasets of TAPs: (i) Raw Source

Code, where TAPs are simply tokenized; (ii) Abstract Code, where we abstract the TAPs

through our abstraction process (Sec. 5.2.5). Finally, we train two RNN encoder-decoder
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Figure 5.1: Overview of ATLAS Workflow

models; one using the copy mechanism trained on the Raw Source Code TAPs, and another

using only the attention mechanism trained on the Abstract Code TAPs (Sec. 5.2.6).

5.2.1 GitHub Mining

Our main motivation toward studying Java projects that use the JUnit framework is appli-

cability. As of August 2019 the TIOBE Programming Community Index indicated Java as

the most popular programming language [3]. In addition, a study done by Oracle in 2018,

found that JUnit was the most popular Java library [221]. Hence, curating a dataset of

projects that use Java and JUnit lends to the potential for impact on real-world software

development.

We identified GitHub projects using the JUnit testing framework. Since client projects

can use JUnit by declaring a dependency through Apache Maven [4], we started by using
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the GitHub search API to identify all Java projects in GitHub having at least one pom file

needed to declare dependencies toward Maven libraries. This resulted in the identification

of 17,659 client projects, using 118,626 pom files and declaring ∼1.1M dependencies in

total. We downloaded all the identified pom files and mined them to identify all client

projects declaring a dependency toward JUnit version 4 and all its minor releases. These

dependencies can be easily identified by looking in the pom file for artifacts having the

junit groupId, junit artifactId, and a version starting with “4.”. Using this process, we

collected a total of 9,275 projects. Note that we decided to focus on JUnit v.4 since, in the

mined dataset of pom files, we found that the majority of them had a dependency towards

this version.

5.2.2 Method Extraction

After mining these projects from GitHub, we downloaded the source code and extracted the

relevant test methods using Spoon [218]. This framework allows for source code analysis

through the creation of a meta-model where the user can access program elements. To

access relevant methods, we extract methods beginning with the @Test annotation, which

is inherent to the JUnit framework. After extracting the test methods, we extract every

method declared within the project, excluding methods from third party libraries. The

extracted methods comprise a pool, from which we can determine the focal method of

interest for a particular test method. The reason we only consider methods declared

within the project is two-fold. First, most assert statements are evaluating the internal

information of the project itself rather than information taken from third party libraries

or external packages. Second, it would require a substantial effort to retrieve the method

bodies and signatures from all the third party libraries and external packages. Since our

goal is to learn appropriate assert statements for a given test method and its context,

any test method without an assert statement has been discarded. Also, since this is the

first work in the literature applying NMT to automatically generate assert statements, we

decided to focus on test methods having a single assert statement and, thus, we exclude
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those implementing multiple asserts. While we acknowledge that this is a simplification of

the problem we tackle, we preferred to first investigate the “potential” usefulness of NMT

in a well-defined scenario in which, for example, it is safe to assume that the whole test

method provides contextual information for the unique assert statement it contains. This

assumption is not valid in the case of multiple asserts, and instead requires the development

of techniques which are able to link parts of the test method body to the different asserts

in order to understand the relevant context for each of them. This is part of our future

work. Overall, we collected 188,154 test methods with a single assert statement.

5.2.3 Identifying Focal Methods

Our next task is to identify the focal method that the assert statement, within the test

method, is testing. To accomplish this we implement a heuristic inspired by Qusef et al.

[222]. We begin by extracting every method called within the test method. The list of

invoked methods is then queried against the previously extracted list of methods defined

inside the project, considering the complete method signature. We then assume that the

last method call before the assert is the focal method of the assert statement [222]. In some

instances, the assert statement contains the method call within its parameters. In these

cases, we consider the method call within the assertion parameters as the focal method.

It may appear problematic that we use the line we attempt to predict in order to extract

the focal method (since, in theory, the line to generate should not exist). However, in a

real usage scenario, we assume that the developer can provide the focal method to our

model (i.e., she knows the method she wants to test). Since identifying the focal method

manually for a large number of assert statements is unreasonable, we used the heuristic

previously described in place of manual identification of the focal method. We note this as

a limitation but find it reasonable that either a developer or an automated test generation

strategy would provide this information to our approach.
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5.2.4 Filtering

In this work, we are attempting to generate semantically and syntactically correct assert

statements from the test method and focal method context. Thus, we are creating a model

which must learn relationships from source code. Modeling this type of data presents

certain challenges, such as the open vocabulary problem and the “length of the input”

problem [151]. Usually, these problems are tackled by limiting the vocabulary and the input

length so that the model can adequately learn [252]. We employ similar solutions when

training our model. We filter the data in three distinct ways: i) excluding test methods

longer than 1,000 tokens; ii) filtering test methods that contain an assert statement which

requires the synthesis of unknown tokens; and iii) removing duplicate examples within the

dataset. Every filtering step helps to address NMT-related challenges and have been used in

previous approaches that take advantage of this deep learning based strategy [151, 63, 262].

Our first filtering step is fairly straightforward: we remove all test methods that exceed

1,000 tokens. The second filtering step removes test methods in which the appropriate

assert statement requires the synthesis of one or more unknown tokens. This means that

the syntactically and semantically correct assert statement requires a token that cannot be

found in the vocabulary or in the contextual method (i.e., test method + focal method).

Indeed, there is no way to synthesize these tokens when the model attempts to generate

a prediction. We further explain this problem as well as our developed solution in section

5.2.4.1. Lastly, our third filtering step aims at removing duplicated instances, ensuring

that every contextual method and assert statement pair in our dataset is unique.

5.2.4.1 Vocabulary

We have alluded to the open vocabulary problem which is an inherent limitation of NMT.

This issue arises because developers are not limited in the number of unique tokens they can

use. They are not limited to, for example, English vocabulary, but also create “new” tokens

by combining existing words (e.g., by using the CamelCase notation) or inventing new
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words to comprise identifiers (e.g., V0_new). For this reason, the source code vocabulary

frequently needs to be artificially truncated. To deal with this problem, we studied the

tokens distribution in our dataset, observing that it follows Zipf’s law, as also found by

previous work analyzing open source software lexicons [220]. This means that the dataset’s

tokens follow a power-law like distribution with a long tail, and that many of the TAPs in

our dataset can be successfully represented by only considering a small subset of its 695,433

unique tokens. Based on analyzing the data and on previous findings in the literature [62],

we decided to limit our vocabulary to the 1,000 most frequent tokens. This allows us to

successfully represent all tokens for 41.5% of the TAPs in our dataset (i.e., 204,317 out of

491,649).

This filtering step aimed at removing instances for which the model would need to

generate an unknown token. This can be formally defined as follows: Given a contex-

tual method (i.e., the test method tm and the corresponding focal method fm), we

remove TAPs for which the anticipated assert to generate contains a token t such that

t /∈ { Vglobal∪Vtm∪Vfm}, where V represents the vocabulary. We refer to Vtm∪Vfm as the

contextual method. Each filtering step was due to concrete limitations of state-of-the-art

NMT models. In numbers, starting from ∼ 750 thousand test methods having a single

assert, ∼ 2.5 thousand tests are removed due to their excessive length, and ∼ 280 thousand

due to unknown tokens. Thus, ∼ 37% of the single assert test methods are removed.

5.2.5 Test-Assert Pairs and Abstraction

The next step of our approach consists of preparing the data in such a manner that it can

be provided as input to Atlas’s NMT model. This process involves: i) the concatenation

of the focal method to the test method in order to create the Test-Assert Pair (TAP);

ii) the tokenization of the TAP; and iii) the abstraction of the TAP. Starting from the

first point, it is important to note that not every test method will inherently contain a

focal method being tested. However, for the test methods that do posses a focal method,

we append its signature and body to the end of the test method. While comments and
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whitespaces are ignored, we do not remove any other token from either the test or focal

method. We then proceed to remove the entire assert statement from the test method,

replacing it with the unique token "AssertPlaceHolder". Therefore, the first part of a

TAP consists of the concatenated test and focal method, and the second part consists of

the assert statement to generate.

We generate two separate datasets of TAPs. The first uses the raw source code to

represent the test and the focal method. The second dataset consists of abstracted TAPs,

in which the source code tokens are abstracted to limit the vocabulary and to increase

the possibility of observing recurring patterns in the data. As previous studies have shown

[262], this can lead to an increase in performance without losing the ability to automatically

map back the abstracted tokens to the raw source code.

Our abstraction process tokenizes the input, determines the type for each individual

token, replaces the raw token with its abstraction and finally creates a map from the

abstracted tokens back to the raw ones. Each TAP is abstracted in isolation and has no

affect on the way other TAPs are abstracted. We start by using the javalang tool to

tokenize the input, which allows us to analyze the type of token. This tool transforms the

Java method into a stream of tokens, which is then parsed by the same tool to determine

their type (e.g., whether a token represents an identifier, a method declaration, etc.) [257].

We use these types in order to create an expressive representation that maintains the

structure of the code. In total, there are 13 different types of tokens that we use as part of

our abstraction process (complete list in our replication package [9]). When we encounter

one of these types, we replace the raw source code token with an abstraction term that

indicates the type and number of occurrences of that type of token up to that moment.

In other words, we use a numerical value to differentiate tokens of the same type. For

example, suppose we encounter a token that is determined to be a method call. This token

is replaced with the term METHOD_0, since this is the first type of that token we have

encountered. The next time we encounter a new method call in the same stream of tokens,

it would be assigned the term METHOD_1. In the event where the same token appears
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multiple times within the TAP, it is given the same abstraction term and numerical value.

This means that if the same method is invoked twice in the test or in the focal method and

it is represented with the term METHOD_0, the abstraction will contain “METHOD_0”

twice. Since all TAPs are abstracted in isolation, we can reuse these terms when abstracting

a new TAP, thus limiting the vocabulary size for our NMT model.

Test method + focal method

Abstracted test method + focal method Abstracted assert statement 

Abstracted test method + focal 
method with idioms

Abstracted assert 
statement with idioms

shouldCreateRedMana () { 
   mage.Mana mana = mage.Mana.RedMana (1);
   “<AssertPlaceHolder>” ;
} getRed () { return red ; }

org.junit.Assert.assertEquals(2,                       
mana.getRed())

METHOD_0 () { IDENT_0.IDENT_1 IDENT_2 OP_0 
IDENT_0.IDENT_1.METHOD_1 (INT_0); 
STRING_0; } METHOD_3 () { return IDENT_3 ;}

METHOD_0 () { IDENT_0.IDENT_1 IDENT_2 OP_0 
IDENT_0.IDENT_1.METHOD_1 (1); STRING_0; } 
METHOD_3 () { return IDENT_3 ;}

IDENT_4.IDENT_5.IDENT_6.METHOD_2(INT_1,
                        IDENT_2.METHOD_3())

org.junit.Assert.assertEquals(2, 
                        IDENT_2.METHOD_3())

Assert statement

Learning Process

Figure 5.2: Overview of the abstraction process

In addition to the abstraction terms that replace the raw source code tokens, we take

advantage of idioms in order to create an abstraction that captures more semantic infor-

mation. The inclusion of idioms can also help contextualize surrounding tokens, since some

abstracted tokens may be more likely to appear around a particular idiom. In addition,

idioms help to prevent the exclusion of a TAP due to the synthesis of an unknown token.

For instance, consider the example of abstraction shown in figure 5.2. In the middle of

the figure it is possible to see that INT_1, IDENT_4, IDENT_5 and IDENT_6 only

appear in the abstracted assert statement, but do not appear in the abstracted test and

focal method. If we only relied on the abstraction, we would be unable to resolve these

tokens that are unique to the predicted assert statement. Therefore, we keep the raw value
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of common idioms (i.e., the top 1,000 tokens in our dataset in terms of frequency) in our

abstracted representation, as shown in the bottom part of figure 5.2.

Overall, the vocabulary of the Abstract TAPs comprises 1,000 idioms plus∼100 typified

IDs, while the vocabulary of the Raw Source Code TAPs contains 1,000 tokens.

5.2.6 Sequence to Sequence Learning

Our approach applies sequence-to-sequence learning through a recurrent neural network

(RNN) encoder-decoder model to automatically learn assert statements within test meth-

ods. This model is inspired by Chen et al. [63], which attempts to predict a single line

of code that has a predetermined place holder within the method. The goal of this deep

learning strategy is to learn a conditional distribution of a variable length sequence condi-

tioned on a completely separate variable length sequence P (y1, y2, . . . , ym|x1, x2, . . . , xn).

Where n and m may differ. During training, the model’s encoder is fed the tokenized

input sequence of the test method plus the context of the focal method as a single stream

of tokens (x1, . . . , xn). The assert statement, which is our target output sequence, has

been removed and replaced with a specialized token. The decoder attempts to accurately

predict the assert (y1, . . . , ym) by minimizing the error between the decoder’s generated

assert and the oracle assert statement. This is accomplished by using the negative log

likelihood of the target tokens using stochastic gradient descent [144]. An overview of an

RNN encoder-decoder can be seen in figure 5.1.

5.2.7 Encoder

The encoder is a single layer bi-directional RNN, which is comprised of two distinct LSTM

RNNs. This bidirectionality allows the encoder to consider both the tokens that come

before and the tokens that come after as context for the token of interest. The encoder

takes a variable length sequence of source code tokens X = (x1, x2, . . . , xn) as input. From

these tokens, the encoder produces a sequence of hidden states (h1, h2, . . . , hn) generated

from LSTM RNN cells. These cells perform a series of operations to propagate relevant
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information, including previous hidden states, to the next cell. Due to the bidirectionality

of the encoder, there exists a sequence of hidden states when considering the token sequence

from left to right
−→
hi = f(xi, hi−1) and right to left

←−
hi = f(xi0 , hi0+1). For our model,

each hidden state can be formally described as the non-linear activation of the current

sequence token and the previously synthesized hidden state. Once the hidden state for

each directional pass is found, they are concatenated to derive the finalized hidden state

hi. The sequence of resulting hidden states is propagated through the model as the context

vector. The encoder also applies the regularization technique of dropout at a rate of 0.2.

5.2.8 Attention Mechanism

The context vector C, commonly referred to as an attention mechanism, is computed as a

weighted average of the hidden states from the encoder C =
∑n

i=1 αihi. In this equation α

represents a vector of weights used to denote the influence of different parts of the input

sequence. In this manner, the model can pay greater attention to particular tokens of

the input sequence when attempting to predict the output token yi. The weights which
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influence the attention mechanism are trained over time to help identify the patterns of

contribution from different input tokens.

5.2.9 Decoder and Copy Mechanism

The decoder is a double layer LSTM RNN that learns to take a fixed length context

vector and translates it into a variable length sequence of output tokens. Given a previous

hidden state hî−1, the previous predicted token yî−1 and the context vector C the decoder

generates a new hidden state that can be used to predict the next output token. As done

for the encoder, we apply regularization to the decoder by using dropout at a rate of 0.20,

and the Adam optimizer for learning with a starting learning rate of 0.0001:

hî = f(hî−1, yî−1, C)

The decoder generates a new hidden state each time it predicts the next token in the

sequence until a special stop token is reached. The hidden states are generated using the

equation above. However, these hidden states are also used by the copy mechanism to

help predict the appropriate output token. In particular, the copy mechanism works to

calculate two separate probabilities. The first, is the probability that the next predicted

token in the output sequence should be taken from the vocabulary. The second, is the

probability that the next predicted token in the output sequence should be copied from

the input sequence. With the ability to consider copying tokens from the input sequence

to the output sequence, we can artificially extend the vocabulary of the encoder-decorder

RNN model for the raw dataset. Each sequence inferred from the model now has the ability

to consider any predetermined vocabulary token, in addition to any token from the input

sequence. The downside is that the copy mechanism is a trainable extension of the model,

that learns which input tokens should be copied over. The benefit is that the model can

better deal with rare tokens that would otherwise not appear in the vocabulary.
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shouldParseVersion() {subject.parse(“--
version”); “<AssertPlaceHolder>”;} 
isPrintVersionMode(){return 
printVersionMode;}
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Figure 5.4: Copy Mechanism Example

To further demonstrate how the copy mechanism works, consider figure 5.4. In this

example, we see the vocabulary tokens predicted for each time step vt. For the purpose of

this example we do not consider the translation of the separator tokens. However, in a real

scenario, our model would predict these tokens in identical fashion. The first predicted

token for the output sequence is the org token, which is copied from the vocabulary. This

process is repeated for the junit token, the Assert token and would continue for all further

tokens but the last one (i.e., isPrintVersionMode). The last token is not found anywhere

in the vocabulary. At time step v11 the model recommends the UNK token to indicate that

the highest probability token does not exist within the defined vocabulary. In this case,

the copy mechanism is used to determine which input token has the highest probability

to be the predicted token. In the case shown in the example, the context appended from

the focal method contains this token and it is copied to the output sequence. Without the

copy mechanism, there would have been no way to resolve this example and it would have

been discarded. It is important to note that the copy mechanism is trained along with the

network and requires no effort on the end users.

Also, note that the copy mechanism is only applied to the raw dataset of source code

tokens. The reasoning is that after abstracting the source code, all tokens are available

within the vocabulary. Therefore, the probability that a predicted token would be outside

of the vocabulary, and within the input sequence, is 0%, rendering the copy mechanism
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useless. Rather, our abstraction process serves as a pseudo copy mechanism of typified

IDs. Consider the previous example in figure 5.2 where isPrintVersionMode was not

found anywhere in the vocabulary. In our abstraction process, this token is abstracted

into METHOD_1 and since METHOD_1 is a term contained within our vocabulary the

model has no problem in predicting this token in the output assert statement. Then, when

we map the abstracted assert statement back to raw source code, we replace METHOD_1

with the token isPrintVersionMode without relying on the copy mechanism.

5.3 Experimental Design

The goal of our study is to determine if Atlas can generate meaningful, syntactically and

semantically correct assert statements for a given test method and focal method context.

Additionally, it is important for our approach to be lightweight in order to require as little

overhead as possible if, for example, it is combined with approaches for the automatic

generation of test cases.

The context of our study is represented by a dataset of 158,096 TAPs for the abstracted

dataset and 188,154 TAPs for the raw dataset. These datasets are further broken down

into 126,477 TAPs for training, 15,809 TAPs for validation, and 15,810 TAPs for testing

in the abstract dataset. Likewise, we had 150,523 TAPs for training, 18,816 TAPs for

validation and 18,815 TAPs for testing in our raw dataset. The differences in number of

examples between the two datasets is due exclusively to the removal of duplicates. Since

the abstracted model reuses typified IDs, there is a greater chance for the duplication

of TAPs within the abstracted dataset. Our evaluation aims at answering the research

questions described in the following paragraphs.

RQ1: Is ATLAS able to generate assert statements resembling those man-

ually written by developers? We assess whether Atlas is a viable solution for gen-

erating semantically and syntactically correct assert statements. Therefore, we perform

experiments on real-world test methods and determine if our model can predict the appro-
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priate assert statement. We use both datasets (i.e., raw source code and abstracted code)

to train the encoder-decoder recurrent neural network model. During training, we use our

validation set to determine the optimal parameterization of the NMT model (complete list

of used parameters available in [9]). We then evaluate the trained model on the test set,

which contains examples previously unseen in both the training set and the validation set.

We begin training our model on TAPs, feeding the model the test method and associ-

ated focal method context. We train our model until the evaluation on the validation set

shows that the models parameterization has reached a (near-)optimal state (i.e., the model

is no longer improving the calculated loss for data points outside the training set). This is

a common practice to prevent the effects of overfitting to the training data. Our training

phase results in two separate models, one for predicting raw source code assert statements

and the other for predicting abstracted asserts. Remember that when working with raw

source code, we also implement the copy mechanism, which is not used for abstracted

code. In total, the abstract model trained for 34 hours while the raw model trained for

38 hours. The difference in training time can be attributed to the use and training of the

copy mechanism in conjunction with the lack of abstraction.

Once the model is trained, inference is performed using beam search [226]. The main

intuition behind beam search decoding is that rather than predicting at each time step the

token with the best probability, the decoding process keeps track of k hypotheses (with

k being the beam size). Thus, for a given input (i.e., test method + focal method), the

model will produce k examples of assert statements. We experiment with beam sizes going

from k = 1 to k = 50 at steps of 5.

Given the assert statements predicted by our approach, we consider a prediction as

correct if it is identical to the one manually written by developers for the test method

provided as input. We refer to these asserts as “perfect predictions”. When experimenting

with different beam sizes, we check whether a perfect prediction exists within the k gener-

ated solutions. We report the raw counts and percentages associated with the number of

perfect predictions.
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Note that, while the perfect predictions certainly represent cases of success for our ap-

proach, this does not imply that the “imperfect predictions” all represent failure cases (i.e.,

the generated asserts are not meaningful). Indeed, for the same test/focal method, differ-

ent assert statements could represent a valid solution. Therefore, we sample 100 “imperfect

predictions” and manually analyze them to understand whether, while different from the

original assert statements written by the developer, they still represent a meaningful pre-

diction for the given test method. In particular, we split the “imperfect predictions” into

four sets based on their BLEU-4 score [217] value. The BLEU score is a well-known metric

for assessing the quality of text automatically translated from one language to another

[217]. In our case, the two “languages” are represented by i) the test method and the focal

method, and ii) the generated assert statement. We use the BLEU-4 variant, meaning

that the BLEU score is computed by considering the 4-grams in the generated text, as

previously done in other software-related tasks in the literature [109, 135]. The BLEU

score ranges between 0% and 100%, with 100% indicating, in our case, that the generated

assert is identical to the reference one (i.e., the one manually written by developers). We

use the BLEU score ranges 0-24, 25-49, 50-74 and 75-99 to split the imperfect predictions.

Then, we randomly selected 25 instances from each set and the first author manually eval-

uated them to determine if the generated assert statement is meaningful in the context

of the related test/focal methods. To avoid subjectiveness issues, the 100 instances were

also randomly assigned to four other authors (25 each) who acted as second evaluator for

each instance. Conflicts (i.e., cases in which one of the two evaluators classified the assert

statement as meaningful while the other did not) arose in a single case that was solved

through an open discussion. We report the number of meaningful assert statements we

found in the manually analyzed sample as empirical evidence that imperfect assert state-

ments could still be useful in certain cases. Note that, while there might be authors’ bias in

assessing the meaningfulness of the “imperfect” assert statements (i.e., authors may tend

to be too positive in evaluating the meaningfulness of the asserts), we make our evalua-
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tion publicly available in the replication package [9], to allow the reader to analyze the

performed classification.

RQ2: Which types of assert statements is ATLAS capable of generating?

After obtaining the perfect predictions from RQ1, we analyze the types of assert statements

our model can generate. In particular, we analyze the taxonomy of assert statements

generated by our approach in the context of perfect predictions to determine the types of

assert statements the model is able to correctly predict. We then report the raw counts

and the percentages for each type of assert statement the model can perfectly predict.

Note for this evaluation, we only report results for k = 1, since we found that already

with this beam size the model was able to generate all types of assert statements in the

used dataset.

RQ3: Does the abstraction process aid in the prediction of meaningful assert

statements? Remember that while our abstraction model generates abstracted asserts,

we can map them back to the raw source code at no cost to the developer. Thus, we can

check whether the generated assert is a perfect prediction, as we do for the raw source

code. Besides comparing the performance of the two models, we also analyze whether they

produce complementary results by computing the following overlap metrics:

ppR∩A =
|ppR ∩ ppA|
|ppR ∪ ppA|

ppR\A =
|ppR \ ppA|
|ppR ∪ ppA|

ppA\R =
|ppA \ ppR|
|ppR ∪ ppA|

The formulas above use the following metrics: ppR (ppA) represents the set of perfect

predictions generated using the raw (abstracted) source code dataset; ppR∩A measures the

overlap between the set of perfect predictions generated by using the two datasets; ppR\A

measures the perfect predictions generated on the raw source code but not when using

abstraction (vice versa for ppA\R).

RQ4: What is the effect of using the copy mechanism in our model? With the

addition of the copy mechanism we can perfectly predict assert statements which contain
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tokens only found in the input sequence and not in the vocabulary. Here we want to

quantify the effect of the copy mechanism and see how many assert predictions we would

be capable of producing without its usage. Therefore, we analyze the perfect prediction

set from the raw source code model. If the perfect prediction contains a token not found in

the vocabulary, then we know that its generation was possible due to the usage of the copy

mechanism. We report the raw counts and percentages of the number of assert statements

that were resolved thanks to the use of the copy mechanism.

RQ5: Does ATLAS outperform a baseline, frequency-based approach? As

output of RQ2 we defined a taxonomy of assert statements that our approach is able to

correctly generate in the perfect predictions. We noted that there are eight types of assert

statements that the model is capable of generating. However, the model also predicts the

variables and method calls contained within the assert statement. Therefore, we want to

determine if the most frequently used assert statements found within our dataset (e.g.,

assert(true)), could be used to create a frequency-based approach that outperforms our

learning-based approach.

We analyze the duplicated assert statements generated in our perfect prediction set.

This means that the model generated the same (correct) assert statement for different

test methods provided as input. It is important to highlight here that while the same

assert statement can be used in different test methods, this does not imply that we have

duplications in our datasets. Indeed, while the same assert statement can be used in

different TAPs, the test/focal methods are guaranteed to be unique.

The developed frequency-based approach takes the most commonly found assert state-

ments and applies them as a solution for a given test method. In particular, we take the

top k most frequent assert statements and test if any of them represents a viable solution

for each test method in the test set. In this evaluation we set the same k for both ap-

proaches (i.e., the frequency-based and the learning-based ones). For example, assuming

k = 5, this means that for the frequency-based approach we use the five most frequent
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assert statements as predictions, while for the learning-based approach we set beam size

to five. We report the raw counts of the frequency-based approach as compared to our

NMT-based approach. We compare the two approaches at k = 1, 5, 10.

RQ6: What is the inference time of the model? Our last research question speaks

to the applicability and ease of use of our model. When developing test cases within a

software project, it is unreasonable to expect the developer to spend a considerable amount

of time to set up and run an inference of the model. Therefore, we performed a timing

analysis to assess the time needed to generate assert statements for a variety of beam sizes.

In particular, we used k = 1 to k = 50 with an increment of 5 to test the trade off between

the timing of the model’s inference and the increased prediction results of the model.

Table 5.1: Prediction Classification

Beam Size Raw Model Abstract Model
Peferct Prediction

Percentage
Perfect Prediction

Counts
Perfect Prediction

Percentage
Perfect Prediction

Counts
1 17.66% 3323 31.42% 4968
5 23.33% 4390 49.69% 7857
10 24.73% 4654 55.73% 8812
15 25.53% 4805 58.76% 9291
20 25.88% 4871 60.43% 9554
25 26.19% 4929 61.75% 9764
30 26.43% 4973 62.73% 9918
35 26.63% 5012 63.68% 10068
40 26.81% 5045 64.38% 10179
45 26.91% 5064 64.81% 10247
50 27.01% 5083 65.31% 10327

We record the results in number of seconds and map the increased performance against

the increased time. We do not consider the time it may take for a developer to look at

all resulting predictions of assert statements for different beam sizes. Note that we do not

consider the training time since this is a one time cost that does not affect the usability of

the approach.
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5.4 Results

RQ1 & RQ3 & RQ4: Ability to generate meaningful assert statements, compar-

ison between raw and abstracted dataset, and usefulness of copy mechanism.

Table 5.1 shows the perfect prediction rate for both the “raw model” and the “abstract

model” for beam sizes 1 and 5-50 at increments of 5 (RQ1 & RQ3). As expected, the

perfect prediction rate increases using larger beam sizes, with a plateau reached at beam

size 20 (i.e., only minor increases in performance are observed for larger beam sizes).

When using beam size equal to 1 for the model trained/tested with the raw dataset,

our approach generates 17.66% perfect predictions, resulting in over 3.3k correctly gen-

erated assert statements. The average BLEU score for the asserts predicted when only

considering the top recommendation (i.e., beam size = 1) is 61.85. We also found that the

copy mechanism helps the raw model in generating perfect predictions (RQ4). Indeed, we

determined how many perfect predictions require the use of the copy mechanism, finding

that, when using beam size equals 1, our approach is able to perfectly predict 3323 exam-

ples by using the copy mechanism, and 2439 when only relying on the vocabulary. This

means that the copy mechanism is responsible for resolving 884 perfect predictions, which

constitutes 4.69% of the perfect prediction rate.

For the abstract model, the percentage of perfect predictions goes up to 31.42% (∼5k

correctly generated asserts). Here the average BLEU score is 68.01. Note that we mention

the BLEU scores for completeness, but do not perform a full evaluation using this metric.

Of particular note is the substantial bump in perfect predictions that we obtain as result

of increasing the beam size to five for both models, especially for the abstracted one. For

the latter, in 49.69% of test/focal methods provided as input, one of the generated asserts

is identical to the one manually written by the developer (for a total of 7.9k perfectly

predicted asserts). This indicates the potential of our approach in an automatic “code

completion” scenario, in which the developer could easily pick one of the five recommended

asserts.
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Figure 5.5: Edit Distance between Imperfect Predictions and Ground Truth (Truncated
tail of higher edit distances)

As mentioned in section 5.3, we also analyze the complementarity of the perfect pre-

dictions generated by the raw and the abstracted models when using beam size equals

1. In terms of overlap (i.e., ppR∩A) we found that only 117 examples were captured and

perfectly predicted by both models. Also, 3206 (39.2%) of the perfect predictions are only

generated by the raw model (ppR\A), while 4851 (59.3%) can only be obtained by using the

abstracted model (ppA\R). This shows a surprising complementarity of the two models,

that are able to learn different patterns in the data. The combination of these two different

representations, for example by using a model with two encoders (one per representation)

and a single decoder, may be an interesting direction for future work.

However, the overall higher performance in both BLEU score and perfect prediction rate

of the abstract model shows that it is better able to translate a meaningful assert statement

from the test and focal method context. This is likely due to the different way in which the

two models see the out-of-vocabulary tokens. In the raw dataset they are all represented as

unknown tokens, while in the abstracted dataset they are represented with the associated

type (e.g., METHOD, VAR, INT, etc.). When dealing with out-of-vocabulary tokens, this

helps the abstracted model in learning patterns such as: a "METHOD" token is likely to
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Perfect Prediction Generated by the Abstract Model   

1. METHOD_0 ( ) { org . IDENT_0 . IDENT_1 . conf . IDENT_2 IDENT_3 = new org . IDENT_0 . IDENT_1 . conf . METHOD_1 ( ) ; IDENT_3 . setName ( org . IDENT_0 . IDENT_1 . conf . IDENT_4 . IDENT_5 ) ; "<AssertPlaceHolder>" ; } getName ( ) { return name ; } 
2. org . junit . Assert . assertEquals ( org . IDENT_0 . IDENT_1 . conf . IDENT_4 . IDENT_5 , IDENT_3 . getName ( ) ) 

Perfect Prediction Unabstracted 

3. testName ( ) { org . kefirsf . bb . conf . NamedValue namedValue = new org . kefirsf . bb . conf . NamedValue ( ) ; namedValue . setName ( org . kefirsf . bb . conf . NamedValueTest . NAME ) ; "<AssertPlaceHolder>" ; } getName ( ) { return name ; } 
4. org . junit . Assert . assertEquals ( org . kefirsf . bb . conf . NamedValueTest . NAME , namedValue . getName ( ) ) 

 

 Figure 5.6: Example of a Perfect Prediction Made by the Abstract Model, and its unab-
stracted mapping to actual code

follow a "VAR" and a "." token. For the raw model, this only results in observing “UNK .

UNK”, hindering its ability to learn meaningful patterns in these cases. Due to the better

performance ensured by the abstract model, the subsequent analyses are performed using

this model.

Here, we discuss an interesting example generated by our abstracted model. Figure 5.6

presents the abstracted contextual method in line 1 and the abstracted assert statement

in line 2. Lines 3 and 4 are the result of the unabstraction process, where we map back

the abstracted tokens into raw source code. In this example, the test method is creating a

new object namedValue and setting the NAME attribute of this object. The test method

contains the method call getName, which our heuristic identifies as the focal method and

is appended to the end of the test method. The model then generates an assert statement

that compares the NAME attribute of the new object with the results from the getName

method call. Indeed, the model learns the relationship between the test and focal method

in order to generate a meaningful assert statement which appropriate tests the method’s

logic. This assert statement is a nontrivial example of the model determining what type of

assert statement to generate, as well as the appropriate parameters the assert statement

should contain.

Concerning the manual inspection of the 100 “imperfect predictions”, we found that 10%

of them can represent a valuable assert statement for the provided contextual method, de-

spite them being different from the asserts manually written by developers. Note that,

while a 10% might look like a “negative” result, it is important to understand that these

results are in addition to the already perfectly predicted assert statements. The full eval-

uation of the 100 cases is available in our replication package [9]. Here we discuss a
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representative example, for a provided test/focal method, where our approach generated

the assert statement assertSame(input,result) while the assert manually written by the

developer was assertEquals("Blablabla",result). The input object is present in the

test method, and contains indeed the value "Blablabla". Basically, our model generated an

“easier to maintain” assert, since changes to the value assigned to the input objects do not

require changes to the assert statement. Concerning the difference between assertSame

and assertEquals, the former compares two objects using the == operator, while the latter

uses the equals method that, if not overridden, does also perform the comparison using

the == operator.

Although we have shown that our model can produce meaningful results outside of

the perfect predictions, we wanted to understand “how far” are the imperfect predictions

from the manually written assert statements. Therefore, for each imperfect prediction

generated by the abstract model with k = 1, we computed the number of tokens one needs

to change, add, or delete to convert it into the manually written assert. We found that by

only changing one token it is possible to convert 23.62% of the imperfect assert statements

(i.e., 3660 instances) into perfect predictions. Also, the median of 3 indicates that in half

of the cases, changing only three tokens would be sufficient. Note that the average number

of tokens in the generated assert statements is 17.1. Figure 5.5 shows the distribution of

edit changes needed for the imperfect predictions to become perfect predictions.
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Summary for RQ1, RQ3, & RQ4. Atlas’s abstracted model is able to perfectly

predict assert statements (according to a developer written ground truth) 31.42% and

49.69% of the time for top-1 and top-5 predictions respectively. Conversely, the model

operating on raw source code with the copy mechanism achieved a perfect prediction

rate of 17.66% and 23.33% for top-1 and top-5 predictions respectively. This indicates

the abstracted model performs better overall. However, we also found that models had

a relatively high degree of orthogonality, with 39.2% of all perfect predictions generated

by the raw model, and 59.3% generated by the abstracted model, illustrating that the

copy-mechanism allowed for the prediction of a unique set of assert statements.

RQ2: Which types of assert statements is ATLAS capable of generating?

We also analyzed the types of JUnit4 assert statements that were perfectly predicted.

Here we use the 4,968 perfect predictions generated using the abstract model and beam

size equals one. Table 5.2 shows that our approach was able to correctly predict eight

different types of assert statements, with assertEquals and assertTrue being the most

commonly predicted type of assert statement. Note that some JUnit4 assert types (e.g.,

assertNotSame and assertFail) are not generated by our model because they were not

present in our dataset.

Table 5.2: Types of Predicted Assert Statements
Assert Type Count Total in Dataset
assertEquals 2518 7923
assertTrue 973 2817

assertNotNull 606 1175
assertThat 250 1449
assertNull 238 802
assertFalse 232 1017

assertArrayEquals 102 311
assertSame 49 314

As it can be seen in table 5.2, the distribution of assert statements we are able to predict

is similar to the one of the assert statements in the entire dataset. This result mitigates the

possible threat that our approach is only successful in generating a specific type of assert
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Table 5.3: Learning Based vs. Frequency Based

Beam Size Number of Perfect Predictions
Frequency Model Abstract Model

1 455 4968
5 970 7857
10 1299 8812

statement. Indeed, as shown in table 5.2, the lack of a uniform distribution of data points

in the dataset from which Atlas is learning seems to be the main reason for the skewed

distribution of correctly predicted asserts. The main exception to this trend is represented

by the assertThat statements. We hypothesize that assertThat statements are more

difficult to predict due to the nature of the assert itself. These types of asserts compare a

value with a matcher statement, which can be quite complex, since matcher statements can

be negated, combined, or customized. Despite the complexities of assertThat statements,

the model is still able to perfectly predict 17.2% of the ones seen in the testing set.

Summary for RQ2. We found that assertEquals was the most common type of

assert generated, matching the distribution we were learning from. Our analysis showed

that Atlas is capable of learning every type of assert statement found in developer

written test cases.

RQ5: Does ATLAS outperform a baseline, frequency-based approach? In

this research question we explore whether our abstract model outperforms a baseline,

frequency-based approach (see section 5.3). Table 5.3 shows the results of this comparison.

We note that our DL-based approach outperforms the frequency based approach at each

experimented beam size. The difference in terms of performance is substantial, resulting

in 6.8 (beam size=10) to 10.9 (beam size=1) times more perfect predictions generated by

our approach. For example, when only considering the top candidate assert statement

for both techniques, Atlas correctly predicts 4968 assert statements, as compared to

the 455 of the frequency-based model. The achieved results indicate that Atlas is in

fact learning relationships based on hierarchical features and not being overwhelmed by

repetitive assert statements. We also want to note that Atlas encompassed a majority of
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the assert statements found by the frequency based baseline. Therefore, we do not combine

a frequency based approach with Atlas and believe our implementation to be superior on

its own.

Summary for RQ5. Atlas is able to significantly outperform a frequency-based

baseline prediction technique by a factor of 10.
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Figure 5.7: Seconds per Assert Generation

RQ6: What is the inference time of the model? Our last research question as-

sesses the time required by our approach to generate meaningful assert statements. Given

the previously discussed performance of the experimented models, we computed the gen-

eration time on the abstract model. It is important to note the reported time does not

include the code abstraction nor the mapping of the prediction back to source code, al-

though these operations are typically more efficient than inference. Figure 5.7 shows the

increase in time based on the number of solutions the model generates. These timings

concern the generation of assert statements for 15,810 test/focal methods provided as in-

put. The reported time is in seconds per provided input, and includes the generation of all
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assert statements in the given beam size. For example, assuming a beam size of 5, it would

take around 0.14 seconds to generate all 5 predictions for a particular test/focal method.

These results were computed using a single consumer-grade NVIDIA RTX GPU.

Summary for RQ6. We found that with a beam size of 5, we can generate all predictions

in 0.14 seconds per test method + focal method pairing. When increasing beam size, we

find that the time needed to generate assert statements appears to scale linearly.

5.5 Threats

Construct validity threats concern the relationship between theory and observation, and

are mainly related to sources of imprecision in our analyses. We automatically mined and

parsed the TAPs used in our study. In this process, the main source of noise is represented

by the heuristic we used to identify the focal method for a given assert statement. As said,

in a real usage scenario, this information could be provided by the developer who wrote

the test or by the automatic test case generation tool. Despite the presence of introduced

noise, our approach was still able to generate meaningful asserts, confirming the robustness

of our NMT model.

Internal validity threats concern factors internal to our study that could influence our

results. The performance of our approach depends on the hyperparameter configuration,

that we report in our online replication package [9]. However, given how computationally-

expensive the hyperparameter search was, we did not investigate the impact of the copy

mechanism across all configurations.

External validity threats concern the generalizability of our findings. We did not

compare ATLAS with state-of-the-art test case generation techniques using the heuristics

described in section 5.2 to define appropriate asserts. This comparison would require

a manual evaluation of the correctness of the asserts generated by ATLAS and by the

competitive techniques for automatically generated tests, likely on software of which we
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have little knowledge (assuming Open-Source projects). Furthermore, we would have to

make the subject systems executable (e.g., as required by EvoSuite) which is known to be

difficult. Hence, this would not allow us to scale such an experiment to the size of our

current evaluation. Indeed, our main goal was to empirically investigate the feasibility of

a learning-based approach for assert statement generation. Comparing/combining the two

families of approaches is part of our future work. Finally, we only focused on Java programs

and the JUnit framework. However, ATLAS’s learning process is language-independent

and its NMT infrastructure can easily be ported to other programming languages.

5.6 Conclusion

In this work, we mined over 9k GitHub projects to identify test methods with their related

assert statements. We then used a heuristic to identify the focal method associated with

an assert statement and generated a dataset of Test-Assert Pairs (TAPs), composed by

i) an input sequence of the test and focal method, and ii) a target sequence reporting

the appropriate assert statement for the input sequence. We used these TAPs to create a

NMT-based approach, called ATLAS, capable of learning semantically and syntactically

correct asserts given the context of the test and focal methods.

We found that the model was capable of successfully predicting over 31% of the assert

statements developers wrote by only using the top-ranked prediction. When looking at

the top-5 predictions the percentage of correctly generated assert statements grew up to

∼50%. We also showed that among the “imperfect predictions”, meaning the scenario in

which ATLAS generates assert statements different from the ones manually written by

developers, there are assert statements that either represent a plausible alternative the the

one written by the developer or can be converted into the latter by just modifying a few

tokens (≤ 3 in 50% of cases). Finally, some of the limitations of our approach, as well as

the extensive empirical study we conducted, provide us with a number of lessons learned

that can drive future research in the field:
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Raw code vs. Abstracted code : Our results show that through the abstraction mech-

anism, applications of NMT on code can ensure better performance, as already observed

in previous studies [260, 265, 262]. More interestingly, we found that the two code repre-

sentations are quite complementary, and allow our approach to generate different sets of

“perfect predictions”. This points to the possibility of combining the two representations

into a single model that could benefit from an architecture having two encoders (one per

representation) and a single decoder.

On the possibility of generating multiple assert statements: We investigated this

research direction while working on ATLAS. The main problem we faced was the automatic

identification of the part of test method body that it is relevant for a given assert. Indeed,

while with a single assert we can assume that the whole method body is relevant, this is

not the case when dealing with multiple asserts. Here, a possible heuristic could be to

consider the statements preceding the assert statement a1, but coming after the previous

assert a0, as relevant for a1. However, it is unlikely that the statements coming before

a0 are totally irrelevant for a1. Another possibility we considered was to apply backward

slicing on each assert statement but, unfortunately, this resulted in scalability issues and in

(well-known) problems related to the automatic compilation of open source projects [259].

Approaching this problem is a compelling direction for future work.

Integrating a learning-based approach in tools for automatic test case genera-

tion : As discussed earlier, we foresee two possible usages for ATLAS. First, it can be used

as a code completion mechanism when manually writing unit tests in the IDE. Second, it

could be combined with existing tools for automatic test case generation [94, 213, 5]. We

currently lack empirical evidence to substantiate any claim on the effectiveness of ATLAS

in improving automatically generated tests, which would be an important first step prior

to integration. Additionally, before combining ATLAS with existing tools, it is necessary

to deeply understand the cases in which the two families of approaches (i.e., the ones inte-

grated in the test case generation tool and the learning-based one) succeed and fail. In this

way, learning-based approaches could be used only when needed (i.e., when the standard
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approach implemented in the test case generation tools is likely to fail), thus increasing the

effectiveness of the generated tests. Studying and comparing the strengths and weakness

of the two families of techniques is part of our future research agenda.

The automatic generation of meaningful assert statements is a compelling problem

within the software engineering community. We showed that a learning-based approach

could help aid in this problem, and opened a complementary research direction to the one

already adopted in automatic test case generation tools [94, 213, 5].
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Chapter 6

Conclusions and Future Work

In this dissertation, we presented two distinct DL based approaches for the task of detecting

similar pieces of source code and the automatic generation of assert statements for test

methods. We then presented a systematic literature review, which explores the vast array

of DL solutions for a variety of SE tasks. The goal of this work is to show the practical

applications of DL in SE, but also to consider the future of DL applications and the

potential of applying SE methodologies to these complex models.

We begin this dissertation by focusing on the summarization of the use of DL within

SE. We follow the guidelines set for SLRs by Kitchenham et al. and systematically gather

research that implements a DL based approach for a SE task. We then build a taxonomy

of the research gathered for the SE tasks addressed, the SE artifacts mined and processed

for DL, and the DL architectures used in the approaches. Throughout our review, we

find a number of papers related to the idea of DL but do not fall within the scope of our

study. Although our taxonomy focuses on papers that implement a DL based approach, we

take note of the interesting and emerging field of SE for DL. In many ways, these papers

examine the faulty nature of using DL based algorithms without fully understanding how

they work. As our survey showed, a number of important SE tasks have DL based solutions

applied to them. As a community, we have subjected ourselves to results based analysis

of these models and overlook their shortcomings when applying them to SE problems.
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Therefore, we provide guidelines and instructions for important components of learning to

include and report on. We also provide a clear road map for future directions in DL4SE

research. In the future, we hope the SE community not only looks to evolve and optimize

the use of DL solutions to SE problems, but also reevaluate the way in which we apply these

powerful models. SE research has created methods for developing, optimizing and testing

traditional software projects, however, DL development calls for a shift in the paradigm

of the software development life cycle. This survey finds research papers that indicate the

beginnings of that paradigm shift.

Our next chapter begins by using a recursive autoencoder to find similar pieces of

source code through the use of multiple code representations. We mine 10 pertinent Java

projects and extract their classes and methods. Our next step encodes these code frag-

ments into four separate representations: identifiers, bytecode, AST and CFG. We used

a recurrent neural network to create a continuous value vector for each word within the

code fragment. We then implemented a recursive autoencoder to encode the arbitrarily

long vector of encoded words. The resulting embedding from the recursive autoencoder

maps to a multidimensional space and the similarity to other embedded code fragments

can be calculated based on distance. After we measured this similarity, we combined these

four models via ensemble learning where we demonstrated that considering multiple repre-

sentations allowed us to detect similar code fragments that no single model could entirely

capture. To show the value of considering multiple representations of source code, we ap-

plied our methodology to the process of detecting clones among 10 different Java projects.

We found that we achieve a relatively high precision, recall and F-measure when detecting

clones among these 10 Java projects. More importantly, through PCA, we found that our

ability to detect clones relied on the orthogonal contributions of each representation.

Our last chapter involves the DL strategy of NMT, which encoded a sequence of tokens

into a hidden state that is then translated into different tokens by a decoder. We applied

this methodology to the task of assert statement generation for test methods. We mined

thousands of Java projects from GitHub that used the Junit package. We used the tool
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spoon to extract the test methods and all potential focal methods that the assert statements

evaluate. Next, we used a heuristic to identify the focal method pertaining to the assert

statement we wanted to predict. We then extracted the focal method signature and body

as context, which helped the model to predict an accurate assert statement. We performed

a series of filtering and data preparation steps. We then created two distinct models, one

for raw source code tokens and the other for abstracted source code tokens. These NMT

models took the test method and focal method context as input, and output a syntactically

and semantically correct assert statement. Our evaluation determined how many of the

predicted assert statements were identical to the assert statement written by developers.

We also evaluated the quality of the potential assert statement predictions to determine if

our model could generate asserts tantamount to those written by developers.

For future work, we consider the taxonomies highlighted in the SLR and the SE is-

sues that are not addressed with DL based solutions. We also see a lot of growth and

development in applying SE methodologies to DL software. There is a lot of potential for

researchers to examine Tensorflow, PyTorch, Theano and others for software bugs, imple-

mentation bugs and overarching testing strategies. It is the opinion of this researcher that

DL based approaches will continue to be applied to issues within SE as well as other do-

mains. Therefore, there will be a large opportunity for the development of a new software

development life cycle pertaining to DL.
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