

FLAT3: Feature Location and Textual Tracing Tool

Trevor Savage
College of William and Mary

Department of Computer Science
P.O. Box 8795

Williamsburg, VA 23187-8795
1+757-221-3455

tcsava@cs.wm.edu

Meghan Revelle
College of William and Mary

Department of Computer Science
P.O. Box 8795

Williamsburg, VA 23187-8795
1+757-221-3467

meghan@cs.wm.edu

Denys Poshyvanyk
College of William and Mary

Department of Computer Science
P.O. Box 8795

Williamsburg, VA 23187-8795
1+757-221-3476

denys@cs.wm.edu

ABSTRACT

Feature location is the process of finding the source code that

implements a functional requirement of a software system. It

plays an important role in software maintenance activities, but

when it is performed manually, it can be challenging and time-

consuming, especially for large, long-lived systems. This paper

describes a tool called FLAT3 that integrates textual and dynamic

feature location techniques along with feature annotation

capabilities and a useful visualization technique, providing a

complete suite of tools that allows developers to quickly and

easily locate the code that implements a feature and then save

these annotations for future use.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – enhancement, restructuring, reverse engineering,

and reengineering

General Terms

Documentation, Design

Keywords

Program comprehension, concept location, information retrieval,

dynamic analysis, software evolution and maintenance

1. INTRODUCTION
During software maintenance, it is very common for developers to

search for source code that is relevant to their task. When their

task pertains to modifying, extending, or adding functionality,

their search is known as feature (or concept) location [1, 2]. For

example, assume a developer working on an open source text

editor needs to modify the file saving feature. The developer first

needs to find the existing source code that implements file saving

before he can make any changes. If the developer has never

worked with this particular feature before, he will not know where

to begin and may spend a great deal of time and effort manually

searching for the feature’s source code before being able to make

any changes.

To aid developers in this situation, automated feature location

techniques have been proposed to reduce the amount of time and

effort spent searching for a feature’s implementation. Some of

these approaches employ information retrieval (IR) to search a

body of text, such as source code, for sections that are relevant

[9]. Other techniques analyze dynamically-collected execution

traces to identify a feature’s implementation [6, 20]. IR and

dynamic analysis have also been combined to form hybrid feature

location techniques [1, 8].

To make these feature location approaches more accessible to

developers, we have created FLAT3, the Feature Location and

Textual Tracing Tool. It is an Eclipse1 plug-in that supports three

well-established feature location techniques: 1) information

retrieval (IR), 2) dynamic collection of execution traces, and 3) a

combination of IR and dynamic tracing known as SITIR (Single

Trace + Information Retrieval) [8]. Feature location via IR

involves textually searching a project’s source for code that is

similar to a query that describes a feature. Dynamic feature

location entails running the software and invoking the feature of

interest to capture a trace of the source code that was executed.

FLAT3 also implements SITIR, which integrates textual and

dynamic feature location techniques so that they can be used

together effectively.

In addition to providing support for multiple feature location

techniques, FLAT3 also supports annotating and saving relevant

search results. The tool permits developers to create and name

features to which the source code implementing them can be

linked. This feature mapping functionality allows developers to

save their feature location results and avoids the need to

repeatedly search for a given feature’s implementation.

FLAT3 makes two significant contributions that current feature

location tools do not provide. Existing tools generally support

one way of searching (i.e., IR only or dynamic tracing only).

FLAT3 makes both the IR and dynamic techniques available, and

it also integrates them. FLAT3’s second contribution is its feature

annotation function. While there are some tools that provide this

functionality [14, 16], they are not coupled with feature location

techniques, and existing feature location tools do not provide

1 http://www.eclipse.org/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To

copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

ICSE '10, May 2-8, 2010, Cape Town, South Africa

Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

mechanisms for saving the mappings of features to source code.

FLAT3 is a complete suite of feature location, annotation, and

visualization tools.

2. FLAT
3

FLAT3 is implemented as an Eclipse plug-in. Figure 1 gives an

overview of FLAT3’s architecture. The tool combines the

functionality of several existing libraries and applications. It uses

information retrieval from the Lucene2 library to locate and rank

code by similarity to a user’s query. FLAT3 also uses MUTT3 to

capture execution traces of feature-specific scenarios and test

cases. FLAT3’s feature annotation capability is based on

ConcernMapper4 and ConcernTagger5, Eclipse plug-ins that allow

for the creation of concern (feature) models and for source code to

be linked to features. By integrating these existing tools, FLAT3

provides developers with a way to easily search for features’

implementations and annotate their findings for future reuse.

Based on the annotations, FLAT3 can also visualize the location of

a feature’s source code across a system’s classes using a map

metaphor similar to the one used in AspectBrowser6. FLAT3’s

features are described in detail below.

2.1 Textual Feature Location
The first way in which FLAT3 allows developers to perform

feature location is textually. FLAT3 textually searches for a

feature’s source code by leveraging the Lucene information

retrieval library. To use this functionality, developers open the

FLAT3 Features view in Eclipse and click on the search toolbar

button. This action opens a dialog box into which developers can

enter a query that describes the feature they are trying to find,

such as “file saving.” After the query is issued, Lucene indexes

Eclipse’s workspace if it has not already been indexed. Indexing

involves creating a document for each method and field consisting

of all the words used in the method or field. Keywords and

common stop words (e.g., “the” and “a”) are removed. Also,

words are split (e.g., “compoundIdentifier” becomes “compound”

and “identifier”) and stemmed (e.g., “searching” becomes

“search”). Each document is converted to a vector, as is the

query. Then, all the document vectors are compared to the query

2 http://lucene.apache.org/java/docs/index.html
3 http://sourceforge.net/projects/muttracer/
4 http://www.cs.mcgill.ca/~martin/cm/
5 http://www1.cs.columbia.edu/~eaddy/concerntagger/
6 http://cseweb.ucsd.edu/~wgg/Software/AB/

vector to determine their similarity, and a score is assigned to each

method or field based on that similarity.

Figure 2 shows FLAT3’s Search/Trace Results view, listing the

results returned by Lucene for the “file saving” query from the

source code of jEdit7, an open source text editor. The results

include the method or field’s name, class, a score of how similar it

is to the query, it’s fully qualified name, and any features with

which it has been previously annotated (not visible in the figure).

The results are ordered by their relevance to the query.

Developers can double click on a result to view that method or

field’s source code. If a result is deemed to be relevant to the

feature of interest, it can be annotated in this view, as will be

explained in Section 2.4. Developers can also refine their results

by searching within the original results with a new query.

2.2 Dynamic Feature Location
In addition to textual feature location, developers can also use

FLAT3 to locate features dynamically. This approach to feature

location uses MUTT, a tracing tool based on the Java platform

debugger architecture8 (JPDA). MUTT runs a subject program on

its own Java virtual machine and collects a trace of runtime

method calls. What is unique about MUTT is the user can control

when to turn tracing on and off with a button.

To perform dynamic feature location in FLAT3, developers first

determine a scenario or test case that invokes the desired feature.

For instance for the file saving feature, a scenario would be to

start jEdit, open a file, make changes, save the file, and exit. To

collect an execution trace, developers right click on the class that

contains the project’s main method and select “Trace with

MUTT,” as in the first part of Figure 3. This will launch the

program along with a separate window with a start/stop button to

control tracing, as in the second part of Figure 3. The start button

should be clicked just before the feature is invoked, and tracing

should be stopped just after the feature’s behavior completes. All

methods that were executed between the start and stop interval are

collected in a trace. Once developers are done tracing, they can

close the application and return to FLAT3 to find a listing of the

methods executed by the scenario. The listing is very similar to

Lucene’s results (see Figure 2) with the exception that no

similarity scores are given. Developers can browse these results

to find relevant methods instead of searching the full source code

of the system. Just as with Lucene’s results, double clicking a

method from the trace opens its source code for viewing. Traces

can be saved and loaded again instead of having to be recollected.

7 http://www.jedit.org/
8 http://java.sun.com/javase/technologies/core/toolsapis/jpda/

Source

CodeFLAT^3User

1

Information

Retrieval

Engine

Tracer

Query

Scenarios

Results

Ranks

Execution

traces

Events

Indexes

2 3

4

5

6

7

Annotations8

Visualization9

Figure 1. Overview of the architecture of FLAT3.

Figure 2. FLAT3’s Search/Trace Results view with a list of

classes, methods, and fields returned by Lucene sorted by

similarity to a query.

2.3 Integrated Feature Location
FLAT3 allows for the integration of its two separate feature location

techniques. Since dynamic feature location in FLAT3 is likely to

return many methods, to narrow the results, it can be integrated with

textual feature location following the SITIR approach [8]. After

collecting an execution trace for a feature, IR is used to rank only

the invoked methods instead of all of the methods in the system. In

FLAT3, after collecting a trace with MUTT, Lucene can be used to

textually search only within the executed methods by clicking the

“Refine Search” button. This opens a dialog in which developers

can enter a query, causing Lucene to compute similarity scores for

the methods in the trace as described in Section 2.1. The methods

are indexed beforehand, and only similarities are computed at this

point. After the scores are calculated, developers are presented with

a list of the trace’s methods ranked by their similarity to the query.

Combining two types of feature location techniques employs more

sources of information to find a feature’s implementation than a

standalone approach. Dynamic tracing acts as a filter to IR by

limiting the methods that are ranked to only those that are

executed. This idea was first introduced in the PROMESIR

approach [10] and further refined in SITIR [8].

2.4 Annotating Features
Once a feature’s source code has been found using either textual

feature location, dynamic feature location, or their combination, it

can be annotated and saved with FLAT3. In the Features view,

features can be created and given a name. Then classes, methods,

and fields can be associated with a feature from any of the results

views by right clicking on the method and selecting “Link” and

the name of the feature to which the code belongs. Code can also

be mapped to features through Eclipse’s package explorer, outline

view, and editor. Code can be mapped to multiple features.

Figure 4 shows the Features view, listing the code associated with

the Line Number feature. A feature’s methods are grouped

hierarchically by class. Code can be removed from methods by

right clicking on them and selecting “Unlink” and the name of the

feature. Features and their mappings are saved and can be

revisited when FLAT3 is reopened. Saving the mappings of

source code to features acts as a form of documentation, making it

easier to keep track of and modify features and their

implementations [15].

2.5 Visualization
FLAT3 also provides a visualization functionality that shows the

distribution of a feature or search results across files. The

visualization is accessible by right clicking on a feature and

selecting “Visualize feature...” or by clicking the “Visualize”

button after obtaining results from Lucene or MUTT. FLAT3 uses

the same map metaphor as AspectBrowser [18] to visualize the

location of aspects in files. Figure 5 shows an example of the

FLAT3 visualization. Each box represents a class, and each row

of pixels in a class’ box corresponds to a section of code. If the

row is highlighted in red, it means that code is associated with the

feature or present in the search results. If Lucene’s results are

visualized, the shade of the row of pixels indicates the degree of

similarity of that section of code to the user’s query. This

visualization gives developers a global idea of where a feature of

interest is implemented.

3. RELATED WORK
FLAT3 is based on several existing tools. The Lucene library

provides full-text searches, MUTT collects execution traces, and

ConcernTagger and ConcernMapper [16] lend the ability to

annotate and save feature mappings. These functionalities are

integrated in FLAT3. There are other existing tools that

implement either feature location or annotations, but not both.

IRiSS [12], JIRiSS [11], and Google Eclipse Search [13] are tools

that support feature location via Latent Semantic Indexing (LSI)

Figure 3. Invoking MUTT on jEdit in Eclipse (1) and jEdit

running with MUTT's tracing control button (2).

Figure 4. FLAT3’s Features view showing code associated

with the Line Number feature.

Figure 5. FLAT3’s visualization view showing classes from a

Lucene search that has code similar to the query. The color

of highlighted rows indicates the degree of similarity of the

code to the feature.

[4], an advanced IR method. FLAT3 relies on Lucene, so it is

faster than LSI-based tools. While none of these tools allow for

the saving of located feature code, FEAT [14] and ConcernTagger

do. However, these tools rely on manual feature location. There

are several other feature location tools such as STRADA [5]

which uses dynamic information; JRipples [3] and Suade [19]

which use static analysis; Find-Concept [17] which uses natural

language processing; and Dora [7] which uses textual and static

analysis. However, FLAT3 is unique in that it combines textual

and dynamic feature location with annotations and visualization.

4. CONCLUSION
FLAT3 is a novel tool suite for feature location. It is implemented

as an Eclipse plug-in and combines the functionality of a number

of existing tools in one easy-to-use application. FLAT3 allows

developers to perform feature location textually and dynamically,

to save their results for future reference, and to visualize the

dispersion of features or search results throughout a project.

Future work on FLAT3 includes making it more robust to be able

to index large source code bases, trace larger programs, and save

and update annotations for evolving programs. A user study to

evaluate the tool’s usability is also planned.

5. ACKNOWLEDGEMENTS
FLAT3 incorporates source code from the open source tools

ConcernMapper, ConcernTagger, and MUTT. It also inherits

visualization ideas from AspectBrowser. Alison Smith and Scott

Underwood contributed to an earlier version of the FLAT3 tool.

This work is supported by NSF CCF-0916260 and United States

AFOSR grant number FA9550-07-1-0030. Any opinions,

findings and conclusions expressed herein are the authors’ and do

not necessarily reflect those of the sponsors.

6. AVAILABILITY
FLAT3 is free and publicly available for academic use. The most

recent version of the plug-in, its source code, and a user manual

are available at http://www.cs.wm.edu/semeru/flat3.

7. REFERENCES
[1] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification:

An Epidemiological Metaphor", IEEE Trans. on Software

Engineering, vol. 32, no. 9, Sept. 2006, pp. 627-641.

[2] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., "The

Concept Assignment Problem in Program Understanding", in Proc.

of ICSE'94, May 17-21 1994, pp. 482-498.

[3] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V., "JRipples:

A Tool for Program Comprehension during Incremental

Change", in Proc. of IEEE International Workshop on Program

Comprehension, 2005, pp. 149-152.

[4] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,

and Harshman, R., "Indexing by Latent Semantic Analysis",

Journal of the American Society for Information Science, vol. 41,

no. 6, Jan. 1990 1990, pp. 391-407.

[5] Egyed, A., Binder, G., and Grunbacher, P., "STRADA: A

Tool for Scenario-Based Feature-to-Code Trace Detection

and Analysis", in Proc. of ICSE'97, pp. 41-42.

[6] Eisenbarth, T., Koschke, R., and Simon, D., "Locating

Features in Source Code", IEEE Trans. on Software

Engineering, vol. 29, no. 3, March 2003, pp. 210 - 224.

[7] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the

Neighborhood with Dora to Expedite Software Maintenance",

in Proc. of International Conference on Automated Software

Engineering, Nov. 2007, pp. 14-23.

[8] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature

Location via Information Retrieval based Filtering of a Single

Scenario Execution Trace", in Proc. of International Conference

on Automated Software Engineering, Atlanta, Georgia, Nov. 5-9

2007, pp. 234-243.

[9] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An

Information Retrieval Approach to Concept Location in

Source Code", in Proc. of Working Conference on Reverse

Engineering, Delft, The Netherlands, Nov. 9-12 2004, pp.

214-223.

[10] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G.,

and Rajlich, V., "Feature Location using Probabilistic Ranking

of Methods based on Execution Scenarios and Information

Retrieval", IEEE Trans. on Software Engineering, vol. 33, no.

6, June 2007, pp. 420-432.

[11] Poshyvanyk, D., Marcus, A., and Dong, Y., "JIRiSS - an

Eclipse plug-in for Source Code Exploration", in Proc. of

International Conference on Program Comprehension,

Athens, Greece, 2006, pp. 252-255.

[12] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev, A.,

"IRiSS - A Source Code Exploration Tool", in Proc. of IEEE

International Conference on Software Maintenance, Budapest,

Hungary, Sept. 2005, pp. 69-72.

[13] Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., and Liu,

D., "Source Code Exploration with Google ", in Proc. of

International Conference on Software Maintenance,

Philadelphia, PA, 2006, pp. 334 - 338.

[14] Robillard, M. P. and Murphy, G. C., "FEAT: a tool for

locating, describing, and analyzing concerns in source code",

in Proc. of ICSE'03, Portland, OR, pp. 822-823.

[15] Robillard, M. P. and Murphy, G. C., "Representing concerns

in source code", ACM Transactions on Software Engineering

and Methodology vol. 16, no. 1, Feb. 2007, pp. 1-38.

[16] Robillard, M. P. and Weigand-Warr, F., "ConcernMapper:

Simple View-Based Separation of Scattered Concerns", in

Proc. of Eclipse Technology Exchange at OOPSLA, 2005,

pp. 65-69.

[17] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-

Shanker, K., "Using Natural Language Program Analysis to

Locate and Understand Action-Oriented Concerns", in Proc. of

International Conference on Aspect Oriented Software

Development, 2007, pp. 212-224.

[18] Shonle, M., Neddenriep, J., and Griswold, W.,

"AspectBrowser for Eclipse: a case-study in plug-in

retargeting", in Proc. of OOPSLA Workshop on Eclipse

Technology eXchange, 2004, pp. 78-82.

[19] Weigand-Warr, F. and Robillard, M. P., "Suade: Topology-

Based Searches for Software Investigation", in Proc. of

ICSE'08, May 2008, pp. 780-783.

[20] Wilde, N. and Scully, M., "Software Reconnaissance:

Mapping Program Features to Code", Software Maintenance:

Research and Practice, vol. 7, Jan.-Feb. 1995, pp. 49-62.

