
Rethinking User Interfaces for Feature Location
Fabian Beck∗, Bogdan Dit†, Jaleo Velasco-Madden‡, Daniel Weiskopf∗ and Denys Poshyvanyk‡

∗VISUS, University of Stuttgart, Germany
†Boise State University, Boise, ID, USA

‡The College of William and Mary, Williamsburg, VA, USA
Email: fabian.beck@visus.uni-stuttgart.de, bogdandit@boisestate.edu, jnvelascomadde@email.wm.edu,

weiskopf@visus.uni-stuttgart.de, denys@cs.wm.edu

Abstract—Locating features in large software systems is a
fundamental maintenance task for developers when fixing bugs
and extending software. We introduce In Situ Impact Insight (I3),
a novel user interface to support feature location. In addition
to a list of search results, I3 provides support for developers
during browsing and inspecting the retrieved code entities. In situ
visualizations augment results and source code with additional
information relevant for further exploration. Developers are able
to retrieve details on the textual similarity of a source code
entity to the search query and to other entities, as well as
the information on co-changed entities from a project’s history.
Execution traces recorded during program runs can be used as
filters to further refine the search results. We implemented I3
as an Eclipse plug-in and tested it in a user study involving 18
students and professional developers that were asked to perform
three feature location tasks chosen from the issue tracking system
of jEdit. The results of our study suggest that I3’s user interface is
intuitive and unobtrusively supports developers with the required
information when and where they need it.

I. INTRODUCTION

Feature location [1] and impact analysis [2] are two funda-
mental activities that need to be performed during a mainte-
nance task (e.g., implementing a new feature, fixing a bug),
and involve finding the source code entities that need to be
changed for the maintenance task. These activities are difficult
and time consuming, especially for large software systems.
Therefore, developing techniques to support developers during
maintenance tasks is paramount, and a lot of effort has been
dedicated towards developing such techniques [3]. The typical
output of such techniques is a list of code entities (e.g.,
methods) that should be considered by the developers. But for
developers, a list of methods is not the end but rather the start
of the feature location process. Currently, the only further tool
support addresses the reformulation of queries [4], [5], [6], [7]
and the refinement of the search space [8]. Developers are left
without much help to determine which of the methods really
need to be changed and why; most previous feature location
approaches considered developer interaction as a ‘black box’.

In this paper, we introduce In Situ Impact Insight (I3),
a novel user interface to better support developers when
performing feature location. The main contribution is that I3
explains the search result to the users, allows for filtering of the
results with respect to different execution scenarios, and relates
code entities to each other (Figure 1). I3 uses visualization
and other advanced user interface elements to present search
results. In situ visualization augments the source code and

?feature location
technique

search
query

list of
code entities

code
changes

standard approach

I3 approach

explain relatefilter

Fig. 1. Standard feature location process and our proposal of supporting the
developer in understanding and navigating the search results.

the list of results with small diagrams. Detail views describe
the textual similarities between a search query and a method,
or between two methods. Also, developers can gain insights
about change impact based on the change history of methods.

Our approach is based on state-of-the-art feature location
integrating textual, historical, and dynamic information [9],
[10] (Section III). We modeled the iterative feature location
process as inter-connected cognitive tasks (Section IV). The
user interface, implemented as an Eclipse plug-in, is designed
to support these tasks (Section V). In a user study involving 18
participants, we tested the usefulness of I3 on three realistic
feature location tasks for the popular text editor jEdit (Sec-
tion VI). The feedback of the participants indicates that I3’s
interface is easy to use and unobtrusively supports developers
with the required information from different data sources
(Section VII). I3 drastically differs from previous feature
location interfaces in the general approach of presenting the
results to the developers (Section VIII).

II. RELATED WORK

The feature (or concept) location process is a fundamental
first step towards addressing software maintenance tasks, and
researchers have approached this problem from different di-
rections. A systematic survey of feature location techniques is
described by Dit et al. [3]. These automatic or semi-automatic
techniques use textual [11], [12], [13], [14], [15], [16], [17],
[18], dynamic [19], [20], historical information [21], [22], or
hybrid approaches [23], [24], [12], [13], [4], [20], [25], [26],
[27], [28], [29], [30], [31].

beckfn
Typewriter

beckfn
Typewriter

beckfn
Typewriter
ICPC 2015

Researchers already addressed the user interfaces and vi-
sualization of the results produced by feature location tools.
Sando [5], [7] and CONQUER [4], [6] help refine the query
by suggesting co-occurring terms and synonyms. MFIE [8]
is a faceted search approach that allows for focusing the
search result with respect to a variety of facets. Our approach,
I3, however, is most closely related to FLAT3 [32] and its
extension ImpactMiner [10]: execution traces are used to filter
the search results and co-change information to find related
code entities. The main difference of I3 to previous approaches
is that the goal is not to come up with the perfect list of search
results, but to consider the list as only the starting point of
feature location. A detailed discussion, pointing out differences
in the use of data sources, data representations, and evaluation,
is provided as part of Section VIII.

Another avenue pursued consisted of conducting user stud-
ies to evaluate how developers perform feature location [33],
[34], [35], [36], [37], [38], [39], [40], [41]. For instance, Ko et
al. [35] conducted an exploratory study investigating how de-
velopers understand unfamiliar code during maintenance tasks,
and reported that developers seek, relate, and collect relevant
information when performing these tasks. Similar findings are
reported by Wang et al. [41] who present a generalized model
(consisting on phases, patterns, and actions) on how developers
perform feature location. Li et al. [37] investigated help-
seeking task structures and strategies, information sources,
process models, and information needs of developers during
software development tasks.

A sizeable body of work has been devoted to investigate the
vocabulary of the source code [42], [43] in order to support de-
velopers during the process of formulating and reformulating
queries. Haiduc et al. [44] used machine learning to propose a
technique that recommends a reformulation strategy for a par-
ticular query based on the properties of the query. Stolee et al.
[45], [46], [47], [48] proposed an approach that uses an SMT
solver and symbolic analysis to identify the program fragments
that adhere to query defined by developers as a set of inputs
and expected outputs. Ge et al. [5] enhanced the Sando search
tool [7] to recommend queries based on the dictionary of the
software system, the term co-occurrence matrix, verb-direct-
object pairs, a software engineering thesaurus, and a general
English thesaurus. CodeExchange [49] aims at constructing
a network of social and technical information relevant to the
code. Although I3 was not designed to automatically suggest
reformulations, it provides visual feedback to help with the
task, for instance, by (i) highlighting the words from the query
that were found in the code base and by (ii) showing the
frequency of search terms and the terms of a particular method.

Our approach uses in situ software visualizations (i.e., small
visualization embedded into the code and other elements of
the IDE providing additional information where required)
to preview textual search similarities and change history of
methods. In general, small visualizations embedded in text
are known as Sparklines [50]. While pretty printing and code
highlighting are common visual aids in text editors, recently,
in situ visualization were also used to augment source code,

for instance, to encode static software metrics [51], dynamic
software metrics [52], runtime consumption [53], or values of
numeric variables [54]. However, to the best of our knowledge,
in situ visualizations have never been used for feature location.

III. FEATURE LOCATION TECHNIQUE

Our I3 approach implements a feature location technique
that uses textual, dynamic, and historical information [9], [10].
Since I3 is integrated into Eclipse as a plug-in, the implemen-
tation is based on Java. This section briefly summarizes the
technical realization of the feature location engine and data
retrieval, while the following sections describe how the data
is presented to the users.

Information Retrieval: We rely on Information Retrieval
(IR) to provide a list of methods ranked based on their textual
similarity to a search query [9], [55]. First, we take advantage
of the Eclipse Java Development Tools (JDT) to extract all the
methods from a software project. Second, using Lucene [56],
we build a corpus at method-level granularity, preprocess it
(i.e., remove special characters, split identifiers [57], remove
English and Java stop words, and apply the Porter stemmer)
and generate the indexed corpus. Third, given a search query,
we use Lucene to compute textual similarities between the
query and the methods of the software system. We finally
retrieve a sorted list of search results.

Dynamic Analysis: In order to allow filtering of the results
produced by the IR technique [9], [19], we provide developers
with a mechanism to use the Eclipse Test and Performance
Tools Platform (TPTP) to collect full traces of specific execu-
tions of software (i.e., they capture all the methods executed
from the time the software starts until it is stopped by the
developer). Once the list of methods from an execution trace
is extracted, the developer can choose to rank these executed
methods based on their similarity to the search query. Note
that the use of dynamic information is optional.

Mining Software Repositories: The historical information
about a software system, which is used as input for I3,
is extracted in a similar way as described in our previous
work [9], [58]. First, we retrieve all the commits and metadata
from the version control system (in our case, SVN), including
commit log message, author, list of modified files, and the
actual changes. Second, for each commit, we identified the
list of methods that had their content modified, using a tool
based on the Eclipse Abstract Syntax Tree (from Eclipse JDT).
Third, the list of methods modified for each revision is used as
input to compute which methods frequently changed together
(i.e., co-change relation).

IV. COGNITIVE TASK ANALYSIS

Feature location is not the end in itself, but rather a part of a
larger sense-making process that enables a developer to make
informed decisions on code changes. To better understand
the process, we specialize cognitive tasks taken from a more
general model [59] for feature location. This Cognitive Task
Analysis enables us to understand key activities behind feature
location and provide good theoretical basis for designing a

search

and filter

read and
extract

follow relations

calls

textually similar

co-change

textual information retrieval

filter by execution trace

augmented source code

details on demand

[IDE functionality]

Cognitive Tasks I3 Task Support

Fig. 2. Foraging loop of a Cognitive Task Analysis of a sensemaking
process [59] applied to feature location.

user interface and visualizations supporting these activities,
which can be considered as a form of support for distributed
cognition [60]. In particular, we fit the foraging loop designed
by Pirolli and Card [59] for intelligence analysis to feature
location. It describes the process of seeking, understanding,
and relating information. In its original version, it consists of
the tasks search and filter, read and extract, search for rela-
tions, and search for information. In case of feature location,
we identified the following inter-connected tasks (Figure 2):

Search (and Filter): The feature location process starts
with a search, which is covered by the IR method in our
approach. Optionally, filtering the results may restrict them
to a smaller subset, here provided through execution traces.

Read and Extract: Following search and filter, initial
information can be extracted from the search results by reading
method names. But to really understand whether a method is
relevant, developers need to look into the source code. This
process could lead to reformulating the search query. The
task of understanding the search results is facilitated in our
approach by visually augmenting the results and the code.

Follow Relations: Search results are not independent of
each other, but connected. While the IDE already allows
following relations such as method calls, our approach adds
other relations that can be relevant for feature location—
textually similar or co-changed methods. Following relations
generally leads back to task read and extract.

These tasks largely conform to those originally pro-
posed [59]. Only search for information is only indirectly
covered by the reformulation of a search query, which we only
see as a variant of the formulation of the original search query
being part of search (and filter). Pirolli and Card [59] further
describe a sensemaking loop, which follows after the foraging
loop. Since it includes building a mental model or theory of the
collected information, it, however, reaches beyond what our
feature location approach may support. Applying this theory in
our context is supported by Lawrance et al. [61] who found in
a study that information foraging as formulated by Pirolli and
Card [62] much better describes the strategies developers use
for debugging, in particular, in the early stages of navigating
through the code before starting to fix the bug.

V. I3 VISUAL USER INTERFACE

The main contribution of this paper is proposing a novel
user interface for feature location that handles and visualizes
several sources of information relevant for the task. Results
need to be represented, explained, and made explorable. As
a consequence, our implementation of the proposed approach
closely merges into an IDE, namely, Eclipse: in addition to
a search view, the source code in the editor view becomes
visually augmented with information that explains the search
result and points to other possibly relevant code. Figure 3 gives
an overview of the user interface. On the right side, a search
view allows to begin the feature location activity by entering
a search query (A). Results are presented in the list below
(C) and can be filtered by execution traces (B). Search results
are also indicated in the editor view by highlighting query
terms. The method list and the editor view are enriched with
in situ visualizations (D; Figure 4) that provide a preview of
additional information related to textual similarity to the search
query and change history of the methods. Moreover, details of
these visualization techniques can be retrieved on demand in
tooltip dialogs (Figure 5 and 6).

A. Search Interface

As indicated in Figure 2, the starting point of each feature
location process is a search of a textual description of the
task, formulated as a query by the developer. Also, longer
descriptions of the tasks can be used (e.g., description of a
bug report, phrases from documentation). For this reason, the
search field is a multi-line text field (Figure 3, A). During the
feature location process—in particular, as a consequence of
the task read and extract (Figure 2)—the search query might
be corrected, specified in more detail, or alternated otherwise.
After running the search, terms excluding stop words are
printed in bold to give feedback to the users which terms have
been really considered by the search engine.

The results, in the form of a list of methods, are presented
below the search field. The methods are ordered by similarity
ranking to the search query as provided by the Lucene search
engine [56]. Supporting the filter task (Figure 2), they can
be restricted to collected execution traces, available in a
drop-down combo box (Figure 3, B): methods that were not
executed in the respective recorded program run are removed
from the list of results. For each method, the name, type of
parameters, and return type are provided in the first line of
each list entry. The second line further references the class
and package containing the method. In front of the method
and class names, Eclipse-specific icons are used to encode
visibility properties and other modifiers. At the right side of
an entry in the result list, a small visualization indicates that
more details are available on demand (see Section V-B). By
clicking on one of the search results, the corresponding method
is opened and centered in the source code editor. All code
belonging to methods that are part of the search results is
highlighted with a blue background to discern it from other
code. Terms in the source code that directly match one of the
terms in the query are highlighted with darker blue. Further,

A

B

C

D

Fig. 3. User interface of I3 enriching Eclipse with an additional view for method search consisting of a search field (A), a filter selection (B), and a list of
search results (C); search results are also highlighted and visualized in the editor (D).

Search
Similarity

Change History

daysweeksmonthsyears

7 days4 weeks12 monthsage:

method change
(darkness: number of changes)

Fig. 4. Enlarged and annotated version of an in situ visualization of a method.

every method signature is augmented with an situ visualization
equivalent to those used in the search results (Figure 3, D).

B. In Situ Visualization

The goal of the in situ visualizations is to provide a preview
of additional information that is available on demand for
each method. Hence, they should not replace the detailed
information but just allow the developer, when browsing the
list of search results or source code, to quickly decide whether
retrieving those details might be interesting. Being word-sized
graphics, the in situ visualizations can be considered as types
of Sparklines [50]. Each visualization is divided into two parts
as shown in Figure 4:

Search Similarity: The blue bar on the left encodes the
similarity of the method to the search query. Since Lucene
rankings are not limited to a specific interval, we map the
ranking value to the height of the bar based on a hyperbolic
function, where a similarity of 0 produces an (invisible) bar of
height 0, higher values asymptotically approach the maximum
height indicated by the surrounding black border line.

Change History: The other part of the visualization en-
codes more complex information, namely, the full change

history of the method as recorded. Since recent development
is often more relevant than changes that occurred a long
time ago, the timeline does not use a uniform resolution, but
displays the younger history in greater detail. In particular, the
timeline is split into four parts, the rightmost one showing the
changes of the past 7 days (resolution: 1 day), followed to the
left by the changes of the last 4 weeks (resolution: 1 week),
the last 12 months (resolution: 1 month), and the last years
(resolution: 1 year). The different areas of the timeline are
framed by black borders (or gray border in case the method
was not changed in the respective time interval) and drawn
with decreasing height. Time steps are visualized as vertical
lines color-coding the number of changes (the darker, the more
changes; white, no changes).

While the similarity to the search result is displayed for
every method, the change history part is only displayed when
there is at least one commit stored for the method. Based on
the two parts, two different tooltip dialogs provide details on
demand when hovering the mouse over blue bar or the brown
timeline. These dialogs contain lists of methods that support
the follow relations task (Figure 2).

C. Textual Similarity Details

Details for the blue bar give more background on the
vocabulary used in the method as shown in Figure 5. On the
left, the similarity value of the method to the search query
can be retrieved next to the blue bar. Below, all keywords
contained in the identifiers and comments of the method are
listed with decreasing frequency. While keywords matching
the search query are highlighted, the keyword frequency is
encoded in the font size and subscript number. On the right, a
list of methods is shown that are textually similar to the current

Fig. 5. Tooltip dialog showing textual similarity details of a method displayed
when hovering the search similarity visualization of the method.

Fig. 6. Tooltip dialog showing change details of a method displayed when
hovering the change history visualization of the method.

one: the keywords used in the method are taken as a query
for starting a new search, for which the results are shown in
the list. Here, the similarity to the specific search query is
encoded in the green horizontal line at the top of the results—
the blue bars in the search result still encode the similarity to
the initial search, which is still active in background. Again,
methods in the list can be clicked to jump to their source code
representation.

D. Co-change Details

In contrast, the tooltip dialog that appears when moving the
mouse over the timeline visualization of a method provides
details on past changes of the method (Figure 6). The list
on the left further explains the data already displayed in the
visualization: the changes grouped by periods starting with the
most recent ones at the top. For each change, date, author, and
commit message are displayed. The list on the right relates to
other methods that were changed frequently together with the
method in the past. The values encoded in the top brown bars
and used for sorting refers to the so-called confidence of the
co-changes [63]—the percentage of changes of the method
where the other method changed as well. Also this list can be
used for navigating to the source code of the related methods.

VI. USER STUDY DESIGN

We performed a user study to test how I3 would be applied
in practice by software engineers. The primary goal for the
study design was to create a realistic software engineering
scenario with non-trivial complexity. Hence, we used a real
and sufficiently complex software system as a sample project
and took real maintenance tasks from the issue tracking
system as sample tasks for the study. Moreover, we did not
reduce the evaluation to a single (quantitatively measurable)
research question, but aimed at broader understanding of the
feature location process as applicable through our approach. In
particular, we designed the evaluation to answer the following
research questions (RQs):

• RQ1: What information sources do developers use to
identify the methods to change?

• RQ2: Which interaction strategies are applied for the
feature location process?

• RQ3: Is the visual interface easy to understand and use?
What are the obstacles?

• RQ4: How can I3 be applied in practice? What are the
missing features?

The study consisted of (i) an introductory phase familiariz-
ing the participants with I3, (ii) the main part where partici-
pants solved maintenance tasks, and (iii) a final questionnaire
to collect feedback. During the main part, we collected the
participants’ answers and comments to the provided tasks and
logged their interactions with I3. The questionnaire asked for
quantifiable ratings and qualitative free text statements. The
experiment was performed as a distributed user study with
participants running the software on their own computers. We
invited colleagues, industrial professionals, and current and
former graduate students to participate. We designed the exper-
iment to last 90 minutes. However, to reflect a realistic scenario
where software engineers could freely schedule their tasks,
we did not impose hard time constraints. The materials of the
experiment, including the software, tutorial, questionnaire, and
aggregated results are available online1.

A. Study Preface

After a short introduction, participants were asked to read
a tutorial designed as a set of self-explaining slides. Partic-
ipants were allowed to use it as a reference throughout the
experiment. Then, participants started Eclipse as provided in
a software and data bundle. The workspace already included
the sample software project and I3 was initialized with a search
index, execution traces, and historical data, so that participants
did not need to set up anything. To familiarize participants with
the tool and to check whether they understood its features, we
asked them to conduct a number of simple tasks: to perform a
search, to filter methods, to name the most frequent keywords
of a method, to find textually similar methods, to retrieve
certain changes of a method, and to identify co-changed
methods. The participants had to fill in their answers for these
tasks in a text field, which we used to check correctness.

1https://sites.google.com/site/i3featurelocation/

B. Main Part

The main part of the user study consisted of performing
feature location tasks very close to a realistic software engi-
neering maintenance scenario. We decided to use fixing issues,
such as bugs or simple feature improvements, reported in the
issue tracking system of the sample project: First, the issue
description provides a well-defined starting point for feature
location. Second, it is a realistic scenario that the developer
fixing the issue is not familiar with the code and, in particular,
is not the person who initially wrote the code. Third, for
already closed issues, there exists a reference solution of which
methods were needed to be changed to fix the issue.

As a sample project, we selected jEdit, a text editor written
in Java. It is a reasonably large software system, but not too
complex for participants to understand the source code. It has
been already used in related studies [33], [64], [36], [38], [32],
[40]. Code, change information, bug reports, and execution
traces are available as a benchmark dataset [58]. From this
benchmark, we used version 4.3 pre9 of jEdit with a commit
history from 2000-01-15 to 2007-01-20 (SVN revision 1–
8676; we removed duplicate revisions included in the dataset).
To simulate that participants continue development of jEdit 4.3
pre9, we artificially set the date to 2007-01-20 in I3 because
the timeline visualizations depict the recent history in higher
resolution.

We selected three issues from the benchmarks as sample
tasks for the participants of the study to solve. Criteria for the
selection were that the issues cover different features of jEdit,
that the issue reports provide a comprehensive descriptions of
the requested fixes, that the fixes were non-trivial (at least five
methods changed in the reference solution), that the fixes did
not require to add considerable amount of new code, and that
the issues had been fixed after 2007-01-20, but the related code
has been already available in version 4.3 pre9. The following
issues were finally retrieved as a set of tasks for the study:

• Task 1 (Issue 1671312): The issue describes that regular
expressions used in the search dialog do not find matches
of zero length.

• Task 2 (Issue 1999448): It is reported that joining lines
is not working efficiently if a folding mode is used for
collapsing parts of the text.

• Task 3 (Issue 1730845): The issue is requesting the
feature of selecting an entire line or multiple lines through
clicking in the gutter (i.e., the area at the left side of the
editor usually containing line numbers).

The specific question we asked was “Which methods would
you think need to be changed for fixing the above issue?”
and participants provided their answers as a list of methods.
As additional questions, we further wanted to know, which
specific sources of information were relevant for solving the
task and which Eclipse functionalities were used as relevant
additional help. To warrant that participants had understood
the procedure, we started with a simpler, yet also realistic
warm-up task that follows the same question design (results
from this questions are not evaluated in the following).

C. Questionnaire

The study closed with a questionnaire for general feedback.
First, we asked the participants to formulate what they did
and did not like about I3 as free text and wanted to know
if they could imagine an approach like this in their daily
development work. Then, we explored the different features
of the approach based on—among other questions—rating
scales, one for the intuitiveness of the features, one for the
usefulness of the features. We also wanted to learn whether
the participants considered the tasks as realistic software
development scenarios. Finally, we collected some personal
background of the participants, in particular, their professional
occupation and experience in software development.

D. Participants

Twenty participants took part in and completed the user
study. Based on the results from training tasks, for which we
know the correct answers, we excluded 2 participants because
they only answered less than 5 out of the 7 questions correctly.
In the following, we only analyze the answers of the remaining
18 participants: The largest group of participants are PhD
students (8), followed by professional software developers
(3), Master students (3), Bachelor students (2), professors (1),
and researchers (1). They judged their software development
expertise as high: average of 3.9 on a scale from 1 (very low)
to 5 (very high). Also, their Java experience was not much
lower (average of 3.6 on the same scale).

VII. RESULTS

For analyzing the results of the study and answering the
research questions, we applied mixed methods: descriptive
statistics for evaluating quantifiable measures and qualitative
methods summarizing free text answers. All averages reported
in the following are mean values aggregated from rating scales.
The scales were all only labeled for the two extreme values.
Hence, they can be interpreted, at least in approximation, as
interval scales. Additional histograms are provided for the
most important rating scales to further clarify.

The participants agreed that the issue fixing tasks are
realistic: on average 4.4 on a scale from 1 (I do not agree) to
5 (I agree). They attested the tasks to be of medium difficulty:
2.7 on a scale from 1 (too difficult) to 5 (too easy). Since there
are different ways to implement a fix, it is difficult to judge
whether the answers provided as a list of methods are correct.
Using the solution by the original developers, we at least
consider the methods being part of this reference as correct,
but cannot make any statements about the correctness of other
methods (the agreement values provided in the following can
be interpreted as estimated lower bounds of precision values).
For Task 1, participants answered 3.2 methods on average of
which 43% also appeared in the reference; for Task 2, 3.1
methods and 35% agreement; for Task 3, 3.3 methods and 45%
agreement. Hence, the tasks seem to have a comparable level
of difficulty. Abstracting from methods to classes shows that
the answers not matching the reference are often in the context
of the reference answers: a higher agreement is reached if we

TABLE I
RELEVANCE RATINGS OF DATA SOURCES ON A SCALE FROM 1 (TOTALLY IRRELEVANT) TO 5 (HIGHLY RELEVANT) DISCERNED PER TASKS AS WELL AS

AVERAGED; HISTOGRAMS SHOW THE DISTRIBUTION OF THE ANSWERS, PERCENTAGES QUANTIFY RATINGS OF AT LEAST 4 (RELEVANT).

list of methods execution trace source code list of keywords text. similar methods changes co-changed methods

Task 1 4.0 3.3 4.1 2.4 3.3 2.7 3.2

Task 2 4.6 3.1 3.9 2.7 2.9 1.9 2.9

Task 3 4.1 3.1 4.2 2.6 3.2 2.1 2.8

avg 4.2 3.2 4.1 2.5 3.1 2.2 2.9

histogram

relevant (≥4) 81% 44% 74% 26% 44% 17% 39%

1 2 3 4 5

check whether participants found the same classes as changed
in the reference (Task 1: 83%; Task 2: 66%; Task 3: 50%).
However, we did not analyze the ‘correctness’ of the answers
further because there is not only one correct solution, but
multiple ones that are subjective, context-dependent, and do
not necessarily have considerable agreement [65], [66].

RQ1: Information Sources

Investigating the importance of different sources of infor-
mation used in I3, we analyze the ratings of relevance that
participants gave. Table I summarizes these relevance ratings
per task and data source across all participants applying an
average measure. The results show that the list of methods
as retrieved through textual search and the source code form
the most relevant source of information (average relevance of
4.2 and 4.1, being considered as relevant in 81% and 74%
of the cases); this matches the design decision to put textual
search and code highlighting of search results in the main
focus of I3. Less important, but still rated as relevant in about
a third to half of the cases were execution traces (44%),
textually similar methods (44%), and co-changed methods
(39%); again this matches the role of the information in
the user interface because this information is only presented
through additional selection. Although not totally irrelevant,
the list of keywords and the change history of a method are
rated with lower relevance (average relevance of 2.5 and 2.2,
rated as relevant in 26% and 17% of the cases). The histograms
reveal different kinds of distributions for the answers: while
the list of methods and the source code are rated with a high
agreement among the participants, the other data sources show
a broader distribution. This could indicate that particularly
those data sources are more difficult to interpret and helped
only some of the participants. Comparing the tasks, we mostly
observe consistent results, only with a few exceptions: the list
of methods in Task 2 and the list of changes in Task 1 seem
to be considerably more relevant than in the other tasks.

Result 1: The relevance ratings of the data sources
conform to their role in the user interface of I3. The
answers further confirm that not only IR seems to reveal
relevant results, but filtering by execution traces, textually
similar methods, and co-changed methods are rated as
important as well.

search

and filter

read and extract

follow relations

textually similar

co-change

textually similar

co-change

Task 1 Task 2 Task 3 avg

3.4 4.1 3.4 3.6

2.7 3.0 3.6 3.1

2.9 5.1 3.3 3.7

4.5 4.7 3.5 4.2

1.0 1.4 0.8 1.1

1.9 1.2 1.1 1.4

open
tooltip
dialog

click on
method in

tooltip
dialog

use
search
view

Fig. 7. Model from Cognitive Task Analysis (Figure 2) adapted for analysis
and augmented with average usage frequencies for the three tasks of the study.

RQ2: Interaction Strategies

To analyze the applied usage strategies, we map the spe-
cific usage interactions recorded in log files to the high-
level cognitive tasks as derived from Cognitive Task Analysis
(Section IV). Since there are multitudes of ways in Eclipse
to navigate through the code, we only focus on the means
of interaction provided by I3. As a consequence, we slightly
adapt Figure 2 by removing the parts reflecting IDE func-
tionality and specifying the read and extract task in more
detail. Figure 7 shows the adapted version enriched with
usage frequencies of the related functionality. Please note that
‘textually similar’ and ‘co-change’ refer to opening tooltip
dialogs of the respective type for ‘read and extract’ while
the same terms are mapped to clicking on a related method in
these tooltip dialogs for ‘follow relations’.

The average usage frequencies reveal that a search query
was (re-)formulated 3.6 times per task and filters were set
3.1 times (filters needed to be set again when changing the
search query). This indicates that feature location is applied
as an iterative process. A manual analysis of the of applied
filters shows that the relative high frequencies for filtering are
only partly an effect of consistent usage of this functionality:
some participants gave up on using the feature at all while
others tested different filters one after the other (also those for
other tasks than the current one). Tooltip dialogs are opened
on average about 4 times per task for each type of dialog (3.7
times for textual similarity details and 4.2 times for co-change

TABLE II
INTUITIVENESS AND USEFULNESS RATINGS OF USER INTERFACE

ELEMENTS ON A SCALE FROM 1 (NOT INTUITIVE/USEFUL AT ALL) TO 5
(VERY INTUITIVE/USEFUL) AS AVERAGES AND HISTOGRAMS.

search

result
filtering

high-

lighting of

search

terms

blue bar
timeline

vis.

textual

similarity

details

history

details

4.7 2.6 4.4 4.3 3.7 4.2 4.3

4.7 2.8 3.6 3.8 3.1 3.7 4.0

usefulness

intuitiveness

details). When a tooltip dialog is opened, a relation is followed
in the form of clicking on a related method in about third of
the cases (1.1 of 3.7 times for textual similarity details and
1.4 of 4.2 times for co-change details). We, however, can only
speculate what participants did in the other two thirds of the
cases—reading the information on the left, studying the list of
methods on the right, or they might have opened the dialog
just by accident. The usage frequencies are in general quite
consistent with respect to the three tasks, only that Task 2
tends to require more user interaction with I3, which could
point to a higher degree of difficulty.

For each task, we asked for an extra free text answer to
retrieve built-in functionality of Eclipse that participants con-
sidered as relevant to solve the task. In 69% of the cases, extra
features were named, which we manually classified. The usage
of Eclipse functionality was quite diverse: no item occurred
in more than third of the cases. Most regularly, participants
used local search, opening a declaration of a code entity,
and the call hierarchy (answered in 30%, 22%, and 20% of
the cases). Other functionality is mentioned only occasionally,
such as the outline view (11%), the package explorer (7%),
the type hierarchy (4%), finding references (2%), and JavaDoc
(2%). Interestingly, no participant named the global search
functionality of Eclipse. The answered functionalities, with
the exception of JavaDoc, serve for code navigation and can
be classified into global and local navigation (global: package
explorer, global search; local: call hierarchy, find references,
local search, open declaration, outline, type hierarchy). If
participants named additional Eclipse functionality (69%),
these almost always included local navigation (65%), but only
rarely global navigation (7%).

Result 2: Developers use I3 iteratively to locate features
as intended, where the first part of the foraging loop is
repeated more often than the second part. In the context
of issue fixing tasks, the new means of code navigation
largely replace the Eclipse functionality for global code
navigation and complements local code navigation.

RQ3: Visual Interface Analysis

To investigate specific elements of the I3’s user interface,
we asked participants to rate the intuitiveness and usefulness

on a numeric scale (Table II). With respect to intuitiveness,
we intended to find whether interactions matched the users’
expectations, visualizations were easy to understand, and I3
in general had a flat learning curve. Most features reach good
scores ≥ 4 on a scale from 1 (not intuitive at all) to 5
(very intuitive). Only filtering by execution traces and the
timeline visualizations receive lower ratings (2.6 and 3.7);
the histograms show a broad spectrum of ratings for these
two categories. Analyzing the free text answers describing
obstacles of understanding, we find a simple explanation for
the low rating of filtering: some participants just did not
understand where the execution traces came from (these were
recorded before the experiment and we may have not explained
this clearly enough in the preface of the user study). In
contrast, for the timeline visualization, participants did not
state to have problems to understand them—their complexity
might just required additional explanations as provided in the
tutorial. As the gapped histogram indicates, participants are
divided in their rating of intuitiveness.

The rated usefulness of the user interface elements, as also
provided in Table II, connects the elements to the feature
locations tasks, however, cannot be independent of the data
sources discussed in RQ1. As expected, the usefulness of the
elements largely agrees with the relevance of the underlying
data sources; for instance, the displayed search result contain-
ing the list of methods is rated as most useful (4.7). Further,
the history details (4.0), the blue bar in the in situ visualization
(3.8), textual similarity details (3.7), and the highlighting of
search terms in the code (3.6) tend to be useful. Again, the
filtering by execution traces and the timeline visualization form
an exception with a lower usefulness rating around 3, but with
a broad spectrum of answers. For the in situ visualizations,
we further explicitly asked whether participants liked them: a
manual sentiment analysis of the free text answers revealed
that 11 participants were positive about the visualizations,
but only one participant was negative (the other participants
were indifferent or did not provide any interpretable answer).
While participants seem to agree that the visualizations are
non-obtrusive and provide a good anchor for retrieving details
on demand, in particular for the timeline visualization, they
do not agree whether the visualization as such is useful or not
(both statements can be found in the answers).

Result 3: The general intuitiveness of I3 is rated high,
only filtering by execution traces and timeline visualiza-
tion seem to need some explanation. The presentation of
the search results and the details on demand provided as
tooltip dialogs are considered as useful.

RQ4: Practical Applicability

Generally, we convinced participants that I3 is useful in
practical application: with an average of 4.2 on a scale from
1 (definitely not) to 5 (definitely) participants would use an
approach like ours in their daily work. Summarizing some
of the high-level textual feedback, one participant said that
already “the IR-based search tool is much better than the state-

of-the-art practice” and “I don’t have to go to another view
to get the information I want.” Another participant liked that
“everything is an single view” and somebody remarked that
the tool “is well integrated into Eclipse”. Many participants
also explicitly highlight the way of retrieving relations between
methods, for instance, that it is “very nice to see corresponding
methods instantly” or “I liked the wide array of ways the tool
allows you to draw relationships between methods.” Negative
comments often referred to lacking intuitiveness of filtering
by execution traces: one participant further explained that
“it is a lot to ask users to execute their program before
searching.” Suggested features to further improve the approach
were to add way to filter by a specific package, to integrate
the possibility to exclude keywords, to cluster corresponding
methods, to visualize method calls as a tree or graph, to
select specific time frames for co-changes, to always show
the timeline visualization (not only when searching), and to
manually mark or hide irrelevant search results. Participants
see the main area of application of I3 (among the suggested
answers) in adapting existing features (17 of 18 participants),
in fixing bugs (14), finding code for reuse (13), implementing
a new feature (10), and restructuring/refactoring the program
(7). Three participants additionally recommend to use I3 in
general to understand a new codebase or project.

Result 4: The answers of the participants suggest that our
approach can be leveraged in practice, mainly, to adapt
existing features, to fix bugs, and to find code for reuse.

VIII. DISCUSSION

To reflect the result of our work in a broader context, we
finally discuss limitations of the user study and compare I3
systematically to related feature location approaches.

A. Limitations of the User Study

The user study was designed to cover a realistic scenario and
participants confirmed the realism of the tasks. Nevertheless,
certain factors limit the validity of our study. First, we were
only able to test three tasks on a single open source software
project; for instance, the relevance of data sources, quality
of the search results, or the applied usage strategies could
be different for other scenarios. Second, participants were
not familiar with the code nor the project; although this is
a realistic scenario, it might not be the standard case. The
preloaded set up of the data introduced an artificial element
and led to some obstacles (e.g., some participants did not
understand how the execution traces were generated). Third,
participants were mostly graduate students; more experienced,
professional software developers could have different require-
ments for a feature location tool. Finally, the number of
participants is still too small to test numerical differences
for statistical significance—the insights of the user study
have to be generally considered as preliminary before more
authoritative evidence is provided.

Moreover, the user study did not compare I3 to other
approaches like the standard search of Eclipse or competing

advanced feature location tools. Hence, we cannot claim that
our technique is better than others, but only that it can be lever-
aged for feature location, that it received positive feedback,
and that our tool largely replaced the build-in global navigation
and search features of the IDE during the experiment. While,
initially, we planned to conduct a comparison of tools in a
comparative controlled experiment, we finally discarded the
plan for several reasons. First, a fair comparison is hard to
design due to many differences in implementation of the
tools. Second, the results would be difficult to interpret as the
approaches do not differ in one, but a multitude of variables
and characteristics. Third, for valid statistical analyses, the
study would have required a larger number of participants
and a more streamlined experiment setup (i.e., shorter and
less realistic). Instead, we performed a non-comparative study
that allowed us to inspect the individual characteristics of our
approach in more detail. We believe, such an experiment—at
least as a first evaluation—is likely to provide deeper insights
than a comparative study of same scale.

B. Qualitative Comparison of Tools

Nevertheless, differences of our approach to others can
be qualitatively discussed in greater depth. Additional to the
review of related work in Section II, we compare the approach
to those state-of-the-art feature location techniques that include
an advanced user interface. The following discussion is based
on the dimensions of software visualization as introduced in
the taxonomy by Maletic et al. [67]: task, audience, target,
representation, and medium. While task (feature location),
audience (software developers), and medium (standard color
screen) are the same for all tools, the remaining two di-
mensions can be used to systematically discern the visual
user interfaces of the tools. Additionally, we also discuss the
evaluation of the approaches. Table III gives an overview of
these dimensions and lists for each of the tools some meta-data
and characteristics with respect to the dimensions. The sub-
entries for the dimensions were retrieved specialized to feature
location as a superset of the characteristics of all tools.

1) Information Sources (Targets): With respect to informa-
tion sources—or targets as called by Maletic et al. [67]—
I3 incorporates co-change information and execution traces
additional to the standard data source of code and comments
(analogous to ImpactMiner). Sando, in contrast, focuses on the
vocabulary used in the code and comments; thesauri imported
from external source and build by finding co-occurrences of
terms are used to help with query (re-)formulation; similarly,
CONQUER uses co-occurrences. By taking the parsed code
structure into account, MFIE allows to filter parts of the system
based on containment and usage. Hence, the tools focus on
rather different sources, each of them providing potentially
valuable extra information. Comparing the impact of each is
still an open research question.

2) Representation of Information: Available in all tools,
the standard means to represent the retrieved information
is a list of code entities. Highlighting of terms is another
standard feature, either done in the editor itself (CONQUER,

TABLE III
QUALITATIVE COMPARISON OF INTERACTIVE FEATURE LOCATION TOOLS AND THEIR EVALUATION.

target representation evaluation

tool year environment co
de

an
d

co
m

m
en

ts

co
de

st
ru

ct
ur

e

th
es

au
ru

s

co
-c

ha
ng

es

ex
ec

ut
io

n
tr

ac
es

lis
t

of
en

tit
ie

s

hi
gh

lig
ht

in
g

of
te

rm
s

te
rm

su
m

m
ar

ie
s

qu
er

y
su

gg
es

tio
ns

qu
er

y
hi

st
or

y

re
la

te
d

en
tit

ie
s

ch
an

ge
hi

st
or

y

in
si

tu
vi

su
al

iz
at

io
n

fie
ld

st
ud

y

ex
pe

ri
m

en
t

#
pa

rt
ic

ip
an

ts

du
ra

tio
n

(m
in

)

#
is

su
es

#
pr

oj
ec

ts

ba
se

lin
e

co
m

pa
ri

so
n

an
al

yz
e

so
ur

ce
s

an
al

yz
e

re
pr

es
en

ta
t.

an
al

yz
e

in
te

ra
ct

io
n

FLAT3 [32], ImpactMiner [10] 2010/14 Eclipse × × × × × ×
Sando [7], [5], [34] 2012/14 Visual Studio × × × × × × × × 274 × ×
CONQUER [6], [4] 2013/14 Eclipse × × × × × × × 18 45 8/28 5 × ×
MFIE [8] 2013 Web × × × × × × × × 20 120 4 1 × ×
I3 2015 Eclipse × × × × × × × × × × 18 90 3 1 × × ×

I3), in code snippets giving a preview of the code (Sando,
MIEF), or in abstracted visual thumbnail representations of
the code (FLAT3/ImpactMiner). Term summaries such as lists,
trees, or cloud representations are used for representing co-
occurring terms (Sando), organizing the findings in categories
(CONQUER), or summarizing the vocabulary of a code entity
(MFIE, I3). For formulating or rewording a query, a list
of suggested changes or extensions of the query can be
useful (Sando, CONQUER). A query history helps keeping an
overview and jump back to previous queries (Sando, MIEF).
Dependencies or similarities between entities enable finding
related entities or understand interaction between the entities,
based on structural dependencies (MFIE), textual similarity
(I3), or co-changes (ImpactMiner, I3). Finally, I3 is the only
tool that leverages in situ visualizations augmenting the code
and list of search results and shows a commit history of the
code entities. Although I3 is among the most versatile tools
regarding data representation, only few additional views are
required: the representations are tightly integrated in the ex-
isting user interface of the IDE. Adding further representations
like query suggestions and history will not be difficult.

3) Tool Evaluation: While the user interfaces of
FLAT3/ImpactMiner were only evaluated in small case
studies, the other tools were tested in user studies. Sando
was evaluated in a field study analyzing the log files of 274
participants with respect to representations and interactions
(in another study Sando was used, but its user interface
was not evaluated [66]). CONQUER, MFIE, and I3 were
tested in user experiments under more controlled conditions.
The scales of these studies are similar with respect to
participants (18–20). The studies of MFIE and I3 let the
users investigate in-depth (ca. 90–120 min) a small number of
feature location tasks (3–4) for a single project; the study of
CONQUER covers 8 tasks from a larger selection of 28 tasks
from 5 projects in shorter time (ca. 45 min). CONQUER
(compared to simplified version and Eclipse; no statistical
significance difference) and MFIE (compared to Eclipse;
statistical significant differences) are evaluated in comparison
to baseline approaches. Our study evaluated only I3, but
focuses on a detailed qualitative and quantitative analysis of

the data sources, data representations, and interactions. The
comparison CONQUER and MFIE to standard search already
suggested that advanced feature location approaches could
improve the standard. A comparative user study among the
approaches discussed in this section, however, is still lacking.

IX. CONCLUSION AND FUTURE WORK

We presented a novel user interface for feature location and
evaluated it in a user study. Feature location was modeled
as a cyclic sense-making process. Our approach specifically
supports the cognitive tasks of this process: while a standard
IR-based approach is used for search, execution traces allow
for filtering the results with respect to a specific program
run. Supporting reading the results and extracting information,
search results are highlighted in the code editor and augmented
with in situ visualizations. These visualizations also provide
a starting point for following relations to textually similar or
co-changed methods. The user study shows that the IR-based
approach is the central source of information for I3, and that
extra information available on demand is relevant for retrieving
specific features in the code. The presented user interface is
largely intuitive and the majority of functionalities were clearly
useful for solving the provided feature locations tasks.

In comparison to other tools, I3 has a specific focus on
the exploration of co-change patterns to evaluate the impact
of changes. Its use of in situ visualization for explaining and
relating search results is a unique characteristic among those
tools. Nevertheless, future work should also include integrating
additional representations of other feature location tools such
as query suggestions and filtering by other criteria. This would
finally allow to evaluate the approaches systematically against
each other in controlled experiments. Another avenue of future
research is to explore whether parts of the introduced user
interface are useful in other development scenarios.

ACKNOWLEDGMENT

Fabian Beck is indebted to the Baden-Württemberg Stiftung
for the financial support of this research project within the
Postdoctoral Fellowship for Leading Early Career Researchers.
The authors from W&M are supported in part by the NSF
CCF-1218129 and NSF-1253837 grants.

REFERENCES

[1] T. Biggerstaff, B. Mitbander, and D. Webster, “The concept as-
signment problem in program understanding,” in Proceedings of the
15th IEEE/ACM International Conference on Software Engineering
(ICSE’93), 1993, pp. 482–498.

[2] S. Bohner and R. Arnold, Software Change Impact Analysis. Los
Alamitos, CA: IEEE Computer Society, 1996.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[4] E. Hill, M. Roldan-Vega, J. A. Fails, and G. Mallet, “NL-based
query refinement and contextualized code search results: A user study,”
in Proceedings of the IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering 2014 Software Evolution Week
(CSMR-WCRE’14), 2014, pp. 34–43.

[5] X. Ge, D. Shepherd, K. Damevski, and E. Murphy-Hill, “How the Sando
search tool recommends queries,” in Proceedings of the IEEE Confer-
ence on Software Maintenance, Reengineering and Reverse Engineering
2014 Software Evolution Week (CSMR-WCRE’14), 2014, pp. 425–428.

[6] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails, “CONQUER: A tool
for nl-based query refinement and contextualizing code search results,”
in Proceedings of the 29th IEEE International Conference on Software
Maintenance (ICSM’13). IEEE, 2013, pp. 512–515.

[7] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando: an
extensible local code search framework,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering (FSE’12). ACM, 2012, pp. 15:1–15:2.

[8] J. Wang, X. Peng, Z. Xing, and W. Zhao, “Improving feature location
practice with multi-faceted interactive exploration,” in Proceedings of
the 35th IEEE/ACM International Conference on Software Engineering
(ICSE’13), 2013, pp. 762–771.

[9] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated im-
pact analysis for managing software changes,” in Proceedings of the
34th IEEE/ACM International Conference on Software Engineering
(ICSE’12), 2012, pp. 430–440.

[10] B. Dit, M. Wagner, S. Wen, W. Wang, M. Linares-Vsquez, D. Poshy-
vanyk, and H. Kagdi, “ImpactMiner: A tool for change impact analysis,”
in Proceedings of the 36th ACM/IEEE International Conference on
Software Engineering (ICSE’14), Formal tool demonstration track, 2014,
pp. 540–543.

[11] S. L. Abebe, A. Alicante, A. Corazza, and P. Tonella, “Supporting
concept location through identifier parsing and ontology extraction,”
Journal of Systems and Software, vol. 86, no. 11, pp. 2919–2938, 2013.

[12] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and reuse,”
in Proceedings of the 31st IEEE/ACM International Conference on
Software Engineering (ICSE’09), 2009, pp. 232–242.

[13] ——, “Improving source code search with natural language phrasal
representations of method signatures,” in Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’11), 2011, pp. 524–527.

[14] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan, “The
impact of classifier configuration and classifier combination on bug
localization,” IEEE Transactions on Software Engineering, vol. 39,
no. 10, pp. 1427–1443, 2013.

[15] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization using in-
formation retrieval: An empirical study on linux kernel,” in Proceedings
of the 18th Working Conference on Reverse Engineering (WCRE’11),
2011, pp. 92–96.

[16] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? -
more accurate information-retrieval-based bug localization based on bug
reports,” in Proceedings of the 34th IEEE/ACM International Conference
on Software Engineering (ICSE’12), 2012, pp. 14–24.

[17] D. Poshyvanyk and D. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in
Proceedings of the 15th IEEE International Conference on Program
Comprehension (ICPC’07), 2007, pp. 37–48.

[18] M. Revelle and D. Poshyvanyk, “An exploratory study on assessing
feature location techniques,” in Proceedings of the 17th International
Conference on Program Comprehension (ICPC’09), May 2009, pp. 218–
222.

[19] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location
via information retrieval based filtering of a single scenario execution

trace,” in Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE’07), 2007, pp. 234–243.

[20] D. Poshyvanyk, Y. Guhneuc, A. Marcus, G. Antoniol, and V. Rajlich,
“Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” IEEE Transactions on
Software Engineering, vol. 33, no. 6, pp. 420–432, 2007.

[21] A. Chen, E. Chou, J. Wong, A. Yao, Q. Zhang, S. Zhang, and A. Michail,
“CVSSearch: searching through source code using CVS comments,”
in Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’01), 2001, pp. 364–373.

[22] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Learning from
project history: a case study for software development,” in Proceedings
of the 2004 ACM Conference on Computer Supported Cooperative Work
(CSCW’04). ACM, 2004, pp. 82–91.

[23] S. L. Abebe and P. Tonella, “Natural language parsing of program
element names for concept extraction,” in Proceedings of the 18th IEEE
International Conference on Program Comprehension (ICPC’10), 2010,
pp. 156–159.

[24] E. Hill, L. Pollock, and K. Vijay-Shanker, “Exploring the neighborhood
with dora to expedite software maintenance,” in Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’07), 2007, pp. 14–23.

[25] S. Reiss, “Semantics-based code search,” in Proceedings of the
31st IEEE/ACM International Conference on Software Engineering
(ICSE’09), 2009, pp. 243–253.

[26] M. P. Robillard and G. C. Murphy, “FEAT: a tool for locating, describ-
ing, and analyzing concerns in source code,” in Proceedings of the 25th
International Conference on Software Engineering (ICSE’03), 2003, pp.
822–823.

[27] D. Shepherd, Z. Fry, E. Gibson, L. Pollock, and K. Vijay-Shanker, “Us-
ing natural language program analysis to locate and understand action-
oriented concerns,” in Proceedings of the 6th International Conference
on Aspect Oriented Software Development (AOSD’07), 2007, pp. 212–
224.

[28] S. Wang, D. Lo, and L. Jiang, “Code search via topic-enriched depen-
dence graph matching,” in Proceedings of the 18th Working Conference
on Reverse Engineering (WCRE’11), 2011, pp. 119–123.

[29] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Combining probabilistic ranking and latent semantic indexing
for feature identification,” in Proceedings of the 14th International
Conference on Program Comprehension (ICPC’06), 2006, pp. 137–148.

[30] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and web
mining to support feature location in software,” in Proceedings of the
18th International Conference on Program Comprehension (ICPC’10),
2010, pp. 14–23.

[31] B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating information
retrieval, execution and link analysis algorithms to improve feature
location in software,” vol. 18, no. 2. Springer US, 2013, pp. 277–
309.

[32] T. Savage, M. Revelle, and D. Poshyvanyk, “FLAT3: feature location
and textual tracing tool,” in Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering – Volume 2 (ICSE’10),
2010, pp. 255–258.

[33] B. de Alwis, G. C. Murphy, and M. P. Robillard, “A comparative study
of three program exploration tools,” in Proceedings of the 15th IEEE
International Conference on Program Comprehension (ICPC’07), 2007,
pp. 103–112.

[34] X. Ge, D. Shepherd, K. Damevski, and E. Murphy-Hill, “How de-
velopers use multi-recommendation system in local code search,” in
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’14), 2014, p. (to appear).

[35] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, 2006.

[36] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers, “Program
comprehension as fact finding,” in Proceedings of the the 6th Joint
Meting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering
(ESEC/FSE’07), 2007, pp. 361–370.

[37] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,
when and how?” in Proceedings of the 20th Working Conference on
Reverse Engineering (WCRE’13), 2013, pp. 142–151.

[38] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective develop-
ers investigate source code: An exploratory study,” IEEE Transactions
on Software Engineering, vol. 30, no. 12, pp. 889–903, 2004.

[39] M. P. Robillard and G. C. Murphy, “Representing concerns in source
code,” ACM Transactions on Software Engineering and Methodology,
vol. 16, no. 1, 2007.

[40] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “TopicXP: Exploring
topics in source code using Latent Dirichlet Allocation,” in Proceed-
ings of the IEEE International Conference on Software Maintenance
(ICSM’10), 2010, pp. 1–6.

[41] J. Wang, X. Peng, Z. Xing, and W. Zhao, “How developers perform
feature location tasks: a human-centric and process-oriented exploratory
study,” Journal of Software: Evolution and Process, vol. 25, no. 11, pp.
1193–1224, 2013.

[42] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of lexicon
bad smells on concept location in source code,” in Proceedings of the
11th IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM’11), 2011, pp. 125–134.

[43] S. L. Abebe and P. Tonella, “Towards the extraction of domain concepts
from the identifiers,” in Proceedings of the 18th Working Conference on
Reverse Engineering (WCRE’11), 2011, pp. 77–86.

[44] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. D. Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in soft-
ware engineering,” in Proceedings of the 35th IEEE/ACM International
Conference on Software Engineering (ICSE’13), 2013, pp. 842–851.

[45] K. T. Stolee, “Finding suitable programs: Semantic search with
incomplete and lightweight specifications,” in Proceedings of the
34th IEEE/ACM International Conference on Software Engineering
(ICSE’12). IEEE Press, 2012, pp. 1571–1574.

[46] K. T. Stolee and S. Elbaum, “Toward semantic search via SMT solver,”
in Proceedings of the 20th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE’12). ACM, 2012, pp.
1–4.

[47] ——, “On the use of input/output queries for code search,” in Proceed-
ings of the 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM’13), 2013, pp. 251–254.

[48] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Transactions on Software Engineering and Methodology,
vol. 23, no. 3, pp. 26:1–26:45, 2014.

[49] L. Martie and A. Van der Hoek, “Toward social-technical code search,”
in Proceedings of the 6th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE’13), 2013, pp. 101–
104.

[50] E. R. Tufte, Beautiful evidence, 1st ed. Graphics Press, 2006.
[51] M. Harward, W. Irwin, and N. Churcher, “In situ software visualisation,”

in Proceedings of the 21st Australian Software Engineering Conference
(ASWEC’10), 2010, pp. 171–180.

[52] D. Röthlisberger, M. Härry, A. Villazón, D. Ansaloni, W. Binder,
O. Nierstrasz, and P. Moret, “Augmenting static source views in ides
with dynamic metrics,” in Proceedings of the International Conference
on Software Maintenance (ICSM’09), 2009, pp. 253–262.

[53] F. Beck, O. Moseler, S. Diehl, and G. D. Rey, “In situ understand-
ing of performance bottlenecks through visually augmented code,” in

Proceedings of the 21st IEEE International Conference on Program
Comprehension (ICPC’13), 2013, pp. 63–72.

[54] F. Beck, F. Hollerich, S. Diehl, and D. Weiskopf, “Visual monitoring
of numeric variables embedded in source code,” Proceedings of the 1st
IEEE Working Conference on Software Visualization (VISSOFT’13), pp.
1–4, 2013.

[55] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, “An information
retrieval approach to concept location in source code,” in Proceedings of
the 11th IEEE Working Conference on Reverse Engineering (WCRE’04),
2004, pp. 214–223.

[56] (2008) The Apache Software Foundation - Lucene. [Online]. Available:
http://lucene.apache.org

[57] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can better iden-
tifier splitting techniques help feature location?” in Proceedings of the
19th International Conference on Program Comprehension (ICPC’11),
2011, pp. 11–20.

[58] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. Kagdi, “A dataset from
change history to support evaluation of software maintenance tasks,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR’13), Data Track, 2013, pp. 131–134.

[59] P. Pirolli and S. Card, “The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis,” in
Proceedings of International Conference on Intelligence Analysis, vol. 5,
2005, pp. 2–4.

[60] Z. Liu, N. J. Nersessian, and J. T. Stasko, “Distributed cognition as a
theoretical framework for information visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1173–1180,
2008.

[61] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, 2013.

[62] P. Pirolli and S. Card, “Information foraging,” Psychological Review,
vol. 106, no. 4, pp. 643–675, 1999.

[63] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[64] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance
feedback in IR-based concept location,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’09), 2009,
pp. 351–360.

[65] M. P. Robillard, D. Shepherd, E. Hill, K. Vijay-Shanker, and L. Pollock,
“An empirical study of the concept assignment problem,” School of
Computer Science, McGill University, Tech. Rep., 2007.

[66] K. Damevski, D. Shepherd, and L. Pollock, “A case study of paired
interleaving for evaluating code search techniques,” in Proceedings of the
IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering 2014 Software Evolution Week (CSMR-WCRE’14), 2014,
pp. 54–63.

[67] J. I. Maletic, A. Marcus, and M. L. Collard, “A task oriented view of
software visualization,” in Proceedings of the 1st International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT’02),

