Detecting Bad Smells in Sou
Gode Using Change History
Information

Fabio Palomba, GabrielgB;
Rocco Oliveto, Andrea




Historical Information
for Smell deTection




f







[Abbes et al. CSMR 2011]

An Empirical Study of the Impact of Two
ntipatterns, Blob and Spaghetti Code,
On Program Comprehension

Marwen Abbes™, Foutse Khomh®, Yann-Gaél Guéhéneuc”, Giuliano Antonic
Dépt. d'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Canada
Dept. of Elec. and Comp. Engineering, Queen’s University, Kingston, Ontario, Cana

terns wre “poor” solutions to recurring
gn problems which are conjectured in the literature to
make object-oriented systems harder aintain, However,
tle quantitative evidence exists to support this conjecture.
We performed an empirical stud) investigute whether
the occurrence of antipatterns does indeed affect the under-
andability of systems by developers during comprehension
and maintenance Lasks, We designed and conducted three
experiments, with 24 subjects each, to collect data on the
performance of developers on basic Lasks related to program
prehension and assessed the impact of two antipatterns
and of their combinations: Blob and Spaghetti Code. We
mensured the developers’ performance with: (1) the NASA
task load index for their effort; (2) the time that they
spent performing their tasks; and, (3) their percentages of
correct answers, Collected data show that the occurrence of

Another exam
whic

while the combination of two antipatterns im-

ntly developers. We conclude that developers

pe with one antipattern but that combinations of
patterns should be uvoided possibly through detection

Keywords-Antipatterns, Blob, Spaghetti Code, Program
smprehension, Program Muintenance, Empirical Software
Engineering,

relate tc

source

Bad Smells hinder code
comprehensibility




[Khombh et al. EMSE 2012}

An exploratory study of the impact of antipatterns
on class change- and fault-proneness

Foutse Khomh - Massimiliano Di Penta -
Yann-Gaél Guéhéneuc - Giuliano Antoniol

bstract Antipa
ted systems harde
in object-c

mells increase change and
fault proneness




.\\"‘
Nov ™

g
‘

\ (A
L AAAA
»

AN

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3. MAY/JUNE 2006 347

Identification of Move Method
Refactoring Opportunities

Nikolaos Tsantalis, Student Member, IEEE, and Alexander Chatzigeorgiou, Member, IEEE

Abstract—Placerment of atiributes/methocs within classes in an cbject-crientec systerm is usually guided by conceptual criteria ang
akied by appropriate matrics, Moving state and bahavior batwaen classes can help reduce coupling anc Increase cohesion, but it is
neatrrdal to icentify where such refaciorings sheuld be applied. In this paper, we propese a methedolegy for the identication of Move
Method refactoring cpportunities that constitute a way for sohing marry common Feature Envy bad smells. An aigorithm that employs
the notion of distance betwaen system entities (attrioutes/methods) anc classes extracts a list of bahavior-presaning refactenngs
basad on the examination of & set of precondtions. In practice, a software system may exhibit such problems in many dfferent places.
Therefore, our approach measures the effect of all refacioring suggestions basec on a novel Entity Placemant matric that quaniities
how wel entities have been placed in system classes. The proposed methodology can be regarded as a semi-aulomatic approach
since the designer wil eventually dacice whather a suggestec refactoring should be applied or not based on concaptual or othar design
qualty criteria. The evaluation of the proposed approach has been performed considering qualitative, metric, conceptual, and
afficlency aspects of the suggested refactonngs in @ number of opan-s5ourca projects.

1 INTRODUCTION

A(((\Kmxn to several principles and laws of cbject-
oriented design [18], [25], designers should always
strive for low coupling and high cohesion. A number of
empirical studies have investigated the relation of coupling
and cohesion metrics with external quality indicators. Basili
et al. [3] and Briand et al. [7] have shown that coupling
metrics can serve as predictors of fault-prone classes.
Briand et al. [8] and Chaumun et al. [12] have shown high
positive correlation between the impact of changes (ripple
effects, changeability) and coupling metrics. Brito e Abreu
and Melo [11] have shown that Coupling Factor [10] has
very high positive correlation with defect density and
rework. Binkley and Schach [4] have shown that modules
with low coupling (as measured by Coupling Dependency
Metric) require less maintenance effort and have fewer
maintenance faults and fewer runtime failures. Chidamber
et al. [14] have shown that high levels of coupling and lack
of cohesion are associated with lower productivity, greater
rework, and greater design effort. Consequently, low
coupling and high cohesion can be regarded as indicators
of geod design quality in terms of maintenance.

Coupling or cohesion problems manifest themselves in
many different ways, with Feature Envy bad smell being the
most common symptom. Feature Envy is a sign of violating
the principle of grouping behavior with related data and
occurs when a method is “more interested in a class other
than the one it actually is in” [17]. Feature Envy problems

s are with the Department of Appised Informatics, Unsversity of
34006 Thessalomiks, Grovee.
82, wom.gr, schatBuom.gr,

Manwscnipt received 15 Agr. 2008; revised 5 Dve. 2008; accepdad 15 Dwe

Ossher

don on Nunmg 'lvvvm‘~ of this ¢ i
'c.-‘mm. Log Numder T
WO/TSE.2009.1

Index Terms—Move Method refacioring, Feature Envy, object-oriented design, Jaccard distance, design quality.

can be solved in three ways [17]: 1) by moving a method to
the class that it envies (Move Method refactoring); 2) by
extracting a method fragment and then moving it to the
class that it envies (Extract + Move Method refactoring);
and 3) by moving an attribute to the class that envies it
{Move Field refactoring). The correct application of the
appropriate refactorings in a given system improves its
design quality without altering its extemal behavior.
However, the identification of methods, methed fragments,
or attributes that have to be moved to target classes is not
always trivial since existing metrics may highlight cou-
pling/cohesion problems but do not suggest specific
refactoring opportunities.

Qur methodology considers only Move Method refactor-
ings as solutions to the Feature Envy design problem.
Moving attributes (fields) from one class to another has not
been considered, since this strategy would lead to contra-
dicting refactoring suggestions with respect to the strategy
of moving methods. Moreover, fields have stronger con-
ceptual binding to the classes in which they are initially
placed since they are less likely than methods to change
once assigned to a class.

In this paper, the notion of distance between an entity
(attribute or method) and a class is employed to support the
automated identification of Feature Envy bad smells. To this
end, an algorithm has been developed that extracts Move
Method refactoring suggestions. For each method of the
system, the algorithm forms a set of candidate target classes
where the method can possibly be moved by examining the
entities that it accesses from the system classes (system
classes refer to the application or program under considera-
tion excluding imported libraries or frameworks). Then, it
iterates over the candidate target classes according to the
number of accessed entities and the distance of the method
from each candidate class. Eventually, it selects as the final

Putisted by he IE

.

'1 ‘..,'.3, g

.,

4.

§ N s TN
T ) i
- '‘yy. ( |
: 4 .‘ /, I " :
ity
" P
b ] SRR THANSACT OMS Oh SORTWARS SNGAESRING Y & M MNLAEY SRR Wy w010

DECOR: A Method

for the Specification

and Detection of Code and Design Smells

Naoue! Moha, Yann-Gadl Guéheéneuc, Laurence Duchien, and Anne-Frangolse Le Meur

Abswast—Code and cesign anall ore poor schifons 10 recuring imoiemenistion end dosign proiems, Thay mey hinder he

EVOIUNCN O A SYReM Dy FRng 1Rae o sobwias angines's

LYY Oul CNANJES. W RICPCSA TVER CONYELBONS B2 16 Masearn

Sede relidid X CO%0 AT Sl Tl 1) UREOOR, & rahor Tud armBodant 4 etk 3l Ba Shgs neciiisry o0 1 specicaten
and geiction of oods arc desgn amele, 2) DOTEX, & delection lachnigus thal ineartines 1is sathed, ead 3) an emairical valction
In tor of precaien ond recall of DOTEX. The origraity of DTTTC atems Fom the abilty for sclwase sngirons © szecty srala o »

Pighlereed of sbsyactor ushga o
Using DE

st vocatubary ard doresr-soeclc languape T BACMIICERy gereraling cetecion HgoIiTns
, Wo spacty four weldmoan cosgn smolis: 1o ampatorns Blob, Furctional Docorrpositon, Spaghom Code, and Swes
Arry Knlo, and their 15 underlyieg code anels, and we atemalicdly gerere thor delocion

porthra. We agoly and validale ho

CHBRChon WgErhre I Beens of precir med recall G4 XIRGES V2.7 0, st discuss e orecialon of Pese Wgorthrs on 11 open-
ArTe Byswers

Nox TemS—AMCANEMS, (RS STRls. 0000 SMA K. SPEOICHION MaRMOoMNg. SMecion. ava

INTRODUCTION

OFTWARE systems need to evolve continually to cope with

ever-chargiey reguirements and envinoments. How-
ever, opposite to design patterns [1], code and design smells
—"poar” sciutions to recurring implementation and design
problems—may hinder their evolation by meking i hard
for software engineers 1 carry out changes,

Code and cesign sewls include low-lewd or local
problems sxh as code smells [2], whikh are uwsually
sympeams of moee global design sewlls such as anvi-
petterns [31 Code smedls ere indica: or symptoens of
the possidle presence of design smells. Fowler [2]
presented 22 code smells, structures in the source code
that suggest the possibdity of refectivings. Duplicated
code, long methods, lege classes, and loog parameter Lsts
are just & few symptoms of design smells and opportu-
nitics foe refactarings.

Ove example of a desi,
antipattern, which =
in obpct-oriented program

smell is the Spaghetti Code
procedusal thinking
. Spaghetti Code is revealed

el i lober ar, w really in Betwoen

. i rformatiy
179, mcoenaic
(|rx'r.1ul—“mf
- Dwchaer and A F Le Mo o ,..I WRIA, Lille-Mont Evapee, Paw:

Schontfuper B¢ Yo Hawie Boowe 30, svetar Hler B2 A, 7

Vilkoweste @ Ascy, Frawce

Flam 58650

Evanl ( Laseowce Dwohier, Anee-Fromoose Le_MearOreris fo

g ravited 17 Aug X008

seiter 47 July Joee
preey [
flamicy ropne

wvesed & Mey 200%; scovpiel 19 My

A anticle, plane wend smat b
amber TS E-NOE-(8-00

+

by classes withou! structure that declare long methods
without parametars. The namas of the classes and mathads
may saggest procedural programming. Spaghetti Code
doss not exploit abpct-oriented mechaniams, such as

polymorphism nheritance, and prevents ther use.

We use the term “smells” to derote both code and design
srwlis This use does not exclude that, ina particular context,
a sanell can be the best way to actually desgn or implementa
syssern. For example, parsens genecatad astomatically by
parser generators are often Spaghetti Code, e, very large
classas with very long methods. Yet, although sach classes
“smell.” software engineers must manually eveluate their
posaible pegative impact according to the consext

The detection of smells can substantially raduce the ot
of subsequent activities in the development and mainle
nanoe phases [4]. However, detection in Large sy
very time and resource-consuming and error-prone activity
5] decause smells cut across classes and methods and thelr
descripticns leave much room for interpresation.

Several approaches, as detailed in Section 2, have been
proposed o speily and desect smells, However, they huve
three Emitatons. First, the authors do not explain the
analysis Jeading to the specificatiors of smeds and thw
underlying detecton framework. Second, the trarslation of
the specifications imo detection alporidhms is aften black
box, which prevents replication. Finally. the authors do not
present the resulls of their defoction on a repeesentative set
of smells and systems %0 allow comparison among
appeoachen So far, reposted resulls concesn propeictary
systerns and a mduosd namber of smells

We present three contribubions to overcome these
ction & CORmcvion”
the skeps recessary

OR), a method that describes
for the specification and detection of code and design

3 Cometior

Pk by e bt



some smells are intrinsically
characterized on how code
gvolve over time

v’




Every time you make a subclass of one class,
you also have to make a subclass of another

A B

method1() method1()
method2()




Every time you make a subclass of one class,
you also have to make a subclass of another

A B
method1() method1()
method2()

Lﬁ AN

C D
method1() method1()
method3()




Every time you make a subclass of one class,
you also have to make a subclass of another

A

method1()
method2()

4

/

[>

\

C

E

method1()
method3()

method1()
method2()

B
method1()
[ 3
D F
method1() method1()
method5()




for Smell deTection




Ghange History Extractor

log download code analyzer

F Association rulediscovery to

Analysis of change frequency of
capture co-changes between . »
some specific entities
entities




divergent change

Classes containing at least two sets of methods
such that:




Code Smelis Detector
blob

Blohs are identified as classes frequently modified in
commits involving at least another class.







Apache Tomcat

Apache Ant

Edit

Android APls: framework-opt-telephony

Android APls: framework-base

Android APls: framework-support

Android APls: sdk

Android AFIls: tool-base



Apache Tomcat Two Master students manually identified
iInstances of the five smells of interest

Apache Ant

JEdit | We applied HIST on the selected snapshot,
Android APIs: framework-opt-telephony measuring its performances in terms of
| recall, precision, and F-Measure

Android APls: framework-base

Android APIs: framework-support ’\/\/e compared HIST with static code
Android APls: sdk analysis techniques.

| [Android APIs: toolfbase | T l ] l l I
2003 2004 2005 2006 2007 2008 2009 2010 2001 2012 2013

Blob: HIST vs DECOR [Moha et al, TSE 2010]
Feature Envy: HIST vs JDeodorant [Tsantalis et al., TSE 2009]

Divergent Change: HIST vs [Classes having a low cohesion as measured
by the Connectivity metric]

Shotgun Surgery: HIST vs [Classes having at least a method invoking at
least 4 different classes]

Parallel Inheritance: HIST vs [Pairs of classes (i) both belonging to
hierarchies and (i) have the same prefix In the class name]







Il HIST [l DECOR

100

80

60

40

20

Precision



[ | [l HIST\ DECOR [ DECOR \ HIST

100

80

60

40

20

Precision



Il HIST B JDeodorant

100

80

60

40

20

Precision



[ ] [l HIST \ JDeodorant B JDeodorant \ HIST

100

80

60

40

20

Precision



W HIST B CA Technique

100

80

60

40

20

Precision Recall



[ | [l HIST \ CA Technique B CA Technique \ HIST

100

80

60

40

20

Precision Recall



W HIST B CA Technique

100

80

60

40

20

Precision Recall



[ | [l HIST \ CA Technique B CA Technique \ HIST

100

80

60

40

20

Precision Recall



W HIST B CA Technique

100

80

60

40

20

Precisicr



[ | [l HIST \ CA Tecnique B CA Tecnique \ HIST

100

80

60

40

20

Precisicr



| HIST B CA Technique

Avarage F-Measure
100

80

60

40

20

Divergent Change ' Shotgun Surgery Parallel Inheritance ' God Class Feature Envy



Avarage F-Measure

100

80

60

40

20

W HisT

[l CA Technique

Divergent Change

Shotgun Surgery

Parallel Inheritance

God Class

Feature Envy



Gan we define a hybrid
approach to detect
smelis?




.

3 -
.

.

.

-
—
§—
—
&
)
&
&
b —
-
&
&
S
&
-
&
-5
—
—




FEAIITEEIY

@ HiST n JDeodorant @ HIST\ |Deodorant JDeodorant \ HIST

Historical Information
for Smell deTection

Identification of Move Method
Refactoring Opportunities

Can we define a hybrid
approach to detect

n——R

/og download code analyzer

Code Smells Detector

Freguency of Sore

/ iy
changes between ent 5 T entities

RESHIISE™IMINAN

© HIST O CATechnique

68

45

Avarage F-Measure

23

Divergent Change  Shotgun Surgery  Parallel Inheritance  God Class Feature Envy

2
does not change?




