Improving Code Readability

Models with Textual Features

Simone Scalabrino, Mario Linares-Vasquez, Denys Poshyvanyk, Rocco Oliveto

- =
Software maintenance
accounts for

; e :
g o F P,
3 e
5 3
i %
I & ;
P . F o R
: I £ A T
o | g =
B i, P 4
3 : - g i
& ;-’:'_ T i it £ i . il L
W 3 T s & Y
o |
i . Temar a
T i
N F
3
& - E
e p T SN
&) o}
n) e I?:
&
&
T I t
_-"
K

of the costs of a project

for (int i=1;i<=100;i++) {
int a=((528>>1%15-1)&1)*4;
int b=((-2128340926>>(1%15)*2)&3)*4;
System.out.println("FizzBuzz".substring(a,b)+(a==b?i:""));

What does it do?

Not really clear...

What about this one?

for (int i=1;i<=100;i++) {
String fizzBuzz = “";

if (i % 3 == 0)
fizzBuzz += “Fizz";

if (1 %5 == 0)
fizzBuzz += “Buzz”;

if (fizzBuzz.isEmpty())
fizzBuzz += 1;

System.out.println(fizzBuzz);

Why IS it easier
to understand?

Code readability

TEE SPECIAL ISSUE ON THE [SSTA 2108 BEST FAFERS

Learning a Metric for Code Readability

Raymond PL. Buse, Westley Weimer

Absiract—n this paper, we explore the conceps of code rearsbilty and invessigae i1 relation o saftware qualily With data coecied

fram 120 human anncestare, wa derive assceialians between
Using

features. we cons¥uct an automated readabilty me:

©n average, ai predicting roacablly fudgments. Furtherrare, we o
saftware qualty: code changes, autsealed defect reparts, and dafect log

2 mimple

et of local cods featurs

human ratons of resdabisy.

this metric corelaies sirangly wih fiee meazures of
ages. We meazure mese comeitons an oer 22

il ines of cod, a3 wel s longitudnally. over many reloases of seiected prajects. Finally, we dacuss the mplcasons of fhis sty

For exampe, our d:

Importan! than smple biark lines 1o lccal jucgmenss of readatily:

Index Terms.

st that comments, in of themsebves, are less

sofiware readabilty. program urderstanding, machine learming. solwase maintenance, code meirics, FindBugs

1 INTRODUCTION
Wl def rendability as a human judgment of how

easy a text is 10 understand. The readability of &
progeam i related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 0% of the total lifeeycle cost of
a software product [4]. Aggarwal claims thal source
code readability and documentation readability are both
critical to the maintainability of & project [1). Other
researchers have noted that the act of reading code is
the mast P of all maintenanc
activities [B], [33], [35]. Readability is so significant, in
fact, that Elshoff
many commercia

nd Marcolty, after recognizing that
programs were much more difficult
to read than necessary, proposed adding a development
phase in which the program is made more readable [10]
Knight and Myers suggested that one phase of soft-
ware inspection should be a check of the source code
for readability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group t the
development team, observing that, *without established
and consistent guidelines for readability, individual re-
[16]

We hypothesize that programmers have some intu-
itive notion of this concept, and that program features
such as indentation (e, & in Python [40], choiee of
ientifier names [44], and comments are likely to
part. Dikstea, for example, claimed that the readability
uf a program depends largely upon the simplicity of

wiewers may not be able to help much

of Campter Scie
b

he conjectured that got
v understanding), and

its sequencing control (eg
unnecessarily complicates. prog

mployed that notion to help molivate his top-down
approach to system design [9]

We present a descriptive model of saftware readability
based on simple features that can be extracted autom,
cally from programs. This model of software readability
correlates strongly with human annotators and also with
external (widely avallable) notions of software quality,

such as defect detectors and software changes

To understand why an empirical and ebjeetive model
of saftware readability i useful, consider the use of read-
ability metrics in natural languages. The Flesch-Kincaid
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just & few examples of eeadability metries for ordinary
text, These metrics are all based on simple faetors such as

average syllables per word and average sentence length.
Despite this simplicity, they b ch been show to be
quite useful in practice. Flesch-Kincaid, which has been
in use for over 50 years, has not anly been integrated
inte populae test editors including Miesssoft Word, but
has also beeome a United States governmental standaed.
Agencies, including the Department of Defense, requine
vy documents and . intemnal 4
meet have a Flesch readability grade of 10 or below
(DO MIL-M-38784B). Defense contractors also are often
required to use it when they
These matrics can help
fidence that their docume goals for readability
very cheaply, and have become ubiquitous for that re
son. We believe that similar metrics, targeted specifically

write technieal manuals.

at source code and backed with empirical evidence
for effectivencss, can serve an analogous purpose in
the software domain. Readability metrics fo the niche
areas such as computer generated math [26], treemap
Layout [3], and hypertext [17] have been found useful

We describe the first general readability metric for source
code.

Code readabillity prediction

A Simpler Model of Software Readability

Daryl Posnett Abram Hindle Prem Devanbu
University of California, Davis ~ University of California. Davis ~ University of California, Davis
avis, CA Davis, CA Davis, CA
dpposn: edu ak cesses devanbu@ucdavis.edu

¥ of code sippet
d ngeregated to yield
1

L4 [Inform

[
ived, toke

neral Terms

Human Factars, The

casurcment

Keywords

lala . US4

e,
LAY-201 1, W
T ACM 57814 1105 S100

Code readabillity prediction

A General Software Readability Model

Jonathan Dom

Deparum,

u of Computer Sci

University of Virginia

Abiraci—We present o grneralzable farmal model of sl
ware readubil hman study of 5060 participants.
Renduhility is ﬁuldummul to maintenance, hut remains poorly
understoad. Previoas modcls focased on symbol counts af small
code snippets. By contrast, we appreach code as read on screens
by hamans amd propese o analyze visual, spatial and linguistic
Features. including structural patterns. sizes of code blocks, and
verbal identifier content. We constrisct a readubility metric based
om these netions and show that it agrees with haman judgments
us well as they agree with cach other amd better thun previous
ek, We endily meicereal lentmees of evadal
external motlon of defet density, We address muliple program-
ming Languages and different kength sampes, and evaluste using
m oeder of magaitude more purcipunts than previoas mork. 2l
suggesting sur model is more likely to generalize.

L. INTRODUCTION

Modem software developers spend more tin
nisting software than wiiting new code 1], [2]
fundarmental notion related to the
s critical 1o software maintenance:
code s o necessary first step toward maintaining it
Much research. bath recent and established. has argued that
readability plays a large role in software muintenance. A well
knewwn example s Kauth, who viewed readability as essential
1o his notion of Literste Programeming [4]. He argued that 3
prograrn should be viewed as “a pece of lerature, addressed
e b beings™ and Uit a readable e robust.
mare poriable, [and] more easily maintained”. Haneef argued
in favor of & developiment group dedicated to readability and

maintaining

comprehension of s,

ram

decumentation: “without established and ¢

wistent goidelines
for readabikity, individual reviewers may not be able o help
much” (5] Knight and Myers argued that 3 source-level
check for readability improves portabality, maintainability and
reusability and shoukd thus be a fisst-class phase of software
inspection [6]. Basili er of. showed that
by reading technigues are be
entine developiment phase aimed ot i

of over 100 developers and
aanagers at Microsoft by Buse and Zimasermann fouad tat
0% of responders desire readability as a software analytic
feature, placing it among the top three in their survey [9].
Readability metrics are well-established in the domain of
on-software natural language. Metrics such as the Aute

Readabil
are comi

Index (1) and Flesch-Kincaid Grade Level [11]
iy wsed in con I seftware and poli

nerci

=
All are based on . few simple measurements, such = the
e, or example, Flesch-Kincad
s integrated inlo popular editors such a3 Microsoft Word and
has become o gove
of Defense requiring
a Flesch readability
36754B) In the domain of sofiware, formal
eadabilt are well-sihiished in panicular do
hypertext [12).

By conteast, general descriptive models of overall software
readability are relatively recent, first proposed by Buse er
al. [13] and refived by Posnew er al. (14]. Such models are
standasds (cf. [15]) but are based on combinations
af surface-level syntactic features. such a3 aperatos counts of
line lengths, sim 1o agree with human judgments, and have
been found 1o correlite with external notions of software

s of words and sentences.

metrics for
ains such a5

not coding

quality [16]. Such software readability models do not antempt
to describe programmatic complexity (ef. [17]). which derives

from 5

s and algosthems, but instead focus

o readability as & contrallable aceidental complexity [15]
Despite the sdvantages of a fermal notion of soflware

readability. previous readability metrics do not adequately gen

are tied o shallow
wal presentation
ents of 3

of students [13], [14]. We propose 3
readability model that addiesses all of these concerns while

a
1 du nl aceount for 4

remaining lightweight and applicable

Inuitively, the effectivensss of synax highlighting sug
gests that visual or geometiic farmatting significantly impacts
code readability. Simikarly, the prevalence of variable naming
standards (e.2.. underscores, camel case, Hungarian aolstion)
suggests tial meaningful linguistic information is caplured by
identifiers. We thus propose the first incorporation of
ric. pattern-based and linguistic aspects and features imto an
automated readabality metric. For example. code in which the
operutors in 4 sequence of assignment starements “line
up” wertically on the screen may be viewed as more readable
as iy code in which identifiers contain English syneayms
or code in which comments foem 3 colored rectangular bluck
W propose 1o incerprale su
readability

feawres into our model of

Code readabillity prediction

TEE SPECIAL ISSUE ON THE [SSTA 2108 EEST FAPERS. 1

Learning a Metric for Code Readability

Raymond PL. Buse, Westley Weimer

A Simpler Model of Software Readability A General Software Readability Model

Jonathan Dom
Daryl Posnett Abram Hindle Prem Devanbu Depuriment of Computer Science
Abstrack—in this paper, we explore the concept of code readsiillty and invessigale its relation to safware quallty. With data collected University of California, Davis ~ Univessity of California. Davis Unlvarslty of Ca\lfo"la Davis University of Virginia
fram 120 human annceatars, wa derfve aszoclaions beween 3 simple set of local code features and human rations of eadabiley. Davis, CA Dawis, CA Charlomesuille, Vinginia
Using those Features, we consuct an automased readatiity measure and shaw that It car be BI% efiective, and befter than a human dpposr adu cess.es dmnnu@ucdﬁws edu Pt s
on average, ai prodicting reacabally judgments. Furtherrare, we show that his metric conelaies sirangly with fiee measures of = JadSju virginia edu

saftware qualty: cote changes, autmated defect repors, and defect log messages. We messure these cometons an over 22
milicn lines cf ccde, as wel a3 longibudinall, over many releases of sekected prajects. Finally, we discuss the implications of this sy

For exampie. our 10 themsehres, are less Absirnei—We preses
important than Sl bk s 1 o2 jucsements o raasaiy,

ut o gemcralizable: formal medel of mfls Readabilliy Indsx [10] and FleschKincaid Grade Level [
ware rendubily e o 3 b sy of 3000 pardiiponts e comsonly wsed i commercil soltware. and X

ABSTRACT 1. INTRODUCTION e is fndumental t maintenance. bat remans Pty 31 400 pd on 4 fow slmgle e l‘iml-l::c the
Index machine learring. code metrcs, FindBugs Softwnre readability foed. Frevioes models focused on. symbol cownds af mmall Ly o6 oy and sentences. Foe example, Flasch-Kincaid

1 INTRODUCTION

& define rendability a5 a human judgment of how
easy a text is 10 understand. The readability of a
program is related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 0% of the total lifeeycle cost of
a software product [4]. Aggarwal claims thal source
code readability and documentation readability are both
critical to the maintainability of & project [1). Other
sesearchers have noted that the act of reading code is
the mast of all
activities [n] 133, [35| TReadability is so significant, in
fact, that Elshoff and Marcolty, after recognizing that
many commercial programs were much more difficult
to read than necessaey, propased adding a development
phase in which the program is made more readable [10].
Knight and Myers suggested that one phase of soft-
re inspection should be a check of the source code
for seadability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group to the
development team, observing that, “without established
and consistent guidelines for readability, individual re-
viewers may nok be able to help much” [16]

We hypothesize that programmers have some intu-
itive notion of this concept, and that program features
such as indentation (e.g. as in Python [40]), ehoice of
identifier names [34], and comments are likely to play a
part. Dijkstea, for example, claimed that the readability
of a program depends largely upon the simplicity of

® Huse and Weer are with the D

Lniwersiy. uttesul,
-l s, woimer) 5 gl

This reseurcl awas suppuried i Bt mny mat reflect the positiors

atim Seiwc: Pt rarl NS (7764634 wad CNS (08375,

¢ Offce of Sciemiic Resewrel grant FASS50.07-10632, and

t of Compuer Sciene of The
2804

e

i For

I
its sequencing control (e, he conjectured tha |
Programn

employed that nation to help motivate his ko
approach to system design [9]

We present a descriptive model of softwane reac
based on simple features that can be extracted au
cally from programs. This model of software reac o
correlates strongly with human annotators and als
external {widely avallable) notions of software ¢
such as defect detectors and software changes.

To understand why an empirical and ebjective
of saftware readability i useful, consider the use of
ability metrics in natural languages. The Flasch K
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just a few examples of readability metrics for ordinary
text. These metrics are all based on simple factors such as
average syllables pes word and average sentence length.
Diespite this simplicity, they have each been shown to be
quite useful in practice. Flesch-Kincald, which has been
in use for over 50 years, has not only been integrated
into popular text editors including Microsoft Word, but
has also become a United States governmental standaed.
Agencies, including the Department of Defense, requine
many documents and forms, internal and external, to
meel have a Flesch readability grade of 10 o below
(DOD MIL-M-38784B). Defense contractors alse are often
required to use it when they write technical manuals.

These melrics can help organizations gain some con-
fidence that their documents meet goals for readability
vary chuaply, and have become ubiquitous for that rei-
son. We belfeve that similar metrics, targeted specifically
at source code and backed with empirical evidence
for effectivencss, can serve an analogous purpose in
the software domain. Readability metrics for the niche
areas such as computer generated math [26], treemap
Layoul [3], and hypertext [17] have been found useful
We describe the first general readability metric for source
code.

sures, perfanmane: menswres

General Terms

Copyrigh 2011

» property that inflnces Readability of code is of central e
e vead apd tnclneer et i =

x, which are easily extracted s

man Factars, Theary, Measurcment

Keywords

Eendability, Halstead, Entvogy, Replica

mm, <|faumm|mr = ﬂm can provide
s feedb

Permissian 1o mske digital oe band copies of all ar part of this work for
perscsl or claseoum usc s granicd without fee provided that copics ar:

ing & model that is simpler, better performing and theoreti-
o o ¢ sl g ha g ?

it b o0
o s basic information theary. In particular wi

e o P S e

persission anior i fes

SR 11, 21MAY-201 |, Waikiki, Hunolala. USA

M 781 L0305 105 5100

ulability have been
alstead's software scienee metics \2|| W shom

pets. By contrast, we appreach code as read on screens
amalyze visual, spatial and linguistic

¥
 notions and show that it agrees with haman judgments
a5 they agree with each other and better thun previous
‘e identily wniversal fentures of readability and language:
correlates with an

y. We address multiple program-

i our moel is more likely to generalize.

L. INTRODUCTION

1 suftwane developers spend more time muintining
anu evolving existing software than writing new code (1), [2].
[3]. Suftware readabiity. o fundamental nction related to the
comprehension of wat, i critieal W sofiware mintenance:
resding code i 3 necessary firsl step woward maintaining it
Much research. both recent and established. has argued that
readabilty plays a large role in soflwase maintenance. A well—
known example s Kauth, who viewed resdability as essent
w0 his notion of Liwerate Propramming [4]. He argued that a
program should be viewed as “a piece of literature, addressed
10 b beings” and that a readable progean is “more robast

in favor of & development group dedicsted to readability and
documentstion: “without established and consistent guidelines
for readubikity, individual reviewers may not be able to help
much” [5]. Knight and Myers argued that a source-level

 improves portabality, maintainability and
ty anad shoukd thus be o fist-class phase of software
inspection (6], Basili ef af, showed that inspections guided
by reading technigues are bester at revealing defects (7). An
entire development phase aimed a1 impeoving resdability was
proposed by Elshofl and Maseotty, who observed thal many
commercial programs were unnecessarily diffieult w read [8].
Mare tecently, a 2012 survey of over 100 developers und
managers a Microsoft by Buse and Zimmermann found that
OU% of respondess desire readubility as o soffware analytie
festure, placing it among the wp three in their survey [9].
Readability meies are well-established in the demain of
on-software natural language. Metrics such as the Automated

is inlegated into popular editors such a3 Mirosoft Word and
has becomse & government stundand, with the US Department
uf Defense requiring iniernal and external documents w bave
a Flesch readabality geade of 10 or below (DOD MIL-M-
3ET84BL It the domain of software, formal metrics for
readatility are well-established in puricular domains such s
hypertext [12].

By canteast, peneral descriptive models of overall software
readability are reluiively recent, first proposed by Buse et
al. [13] and refired by Fosnett et al, [14]. Such models are
0t coding standards (cf. [15]) but are based on combinatioas
of surface-level syatactic features such as operator counts or
line lengihs, aim 1o apree with Buman judgments, and Bave
been found o correlate with exiernal notions of software
quality [16]. Such software readability models do nat attempt
1o deseribe pregrammatic complexity (ef. [17]). which derives
from system requirements and algorthass, but instead focus
on readability as a comrollable secidental complexity (18]

Despite the advantages of & fermal notion of software
readatbility, previows readability metrics do not adequately gen
eralize. They are bused on small {iypically T-line) snippets of
code fram a single programming linguage, are ted o shallow
surface features that do not seeount foe visual presentation
or lingusstie meaning, and derive from the judgments of 3
reluively small number of studens [13], [14). We propose 3
readability model that addresses all of these concerns while
remaining lightweight and applicable

Inuuitively, the effectiveness of syniax highlighting sug-
gests that visual or geometric formaiting sigaificantly impacts
Similarly, the prevalence of variable naming
standards (e.5.. underscores, eamel case, Hungarsn nolation)
sugzests thit meaningful linguistic information is coptured by
identifiers. We thus propose the first incorporation of geomet-
i, paters-based and linguistic aspeets and features into i
automated readability metric. Foe example, code in which the
“= operators in 4 sequence of assignment stuements “line
up” ventically on the screen may be viewed as more readable,
as msy code in which identifiers contain English synoyms
ur code in which comments farm 3 colored rectangular black.
We propose 0 incerporate such festures inio our model of
readability.

Code readabillity prediction

TEE SPECIAL ISSUE ON THE [SSTA 2108 EEST FAPERS.

Learning a Metric for Code Readability

Raymond PL. Buse, Westley Weimer

Absiract—k this paper. we explore the concept of code rearsillty and invesdgate s relation o saftware quality. With data colected
benween a timple et of
Uising those Features. we constuct an automated readabiity measure and shaw at f can be BO% efieciive, and better than a human

fram 120 human anncestors, we derive azzcoiatons

on average. a prodiciieg reacabsity udgments. Furlhermore, we show thai ihis metris comelaies sirangly wih fiee meazures of
saftware qualty: cote changes, autmated defect repors, and defect log messages. We messure these cometons an over 22
milicn lines cf ccde, as wel a3 longibudinall, over many releases of sekected prajects. Finally, we discuss the implications of this sy

A Simpler Model of Software Readability

For example. our

important than Sl bk s 1 o2 jucsements o raasaiy,

Daryl Posnett Abram Hindle Prem Devanbu
University of California, Davis ~ Univessity of California. Davis Unlvarslty MCB\IFB"IB Davis
local code featurss and human ratons of resdabisy. Davis, CA Da\.,g CA
dpposr edu p es davﬁnhu@ucdaws edu
1 0f themsetres, are less e o]] o (=
RESTRACT N TRODUCTION ware mm,m, T P e

-2 yiligy is fundumental to maintenance, hut remains

Index.

machine learming.

code metrics, FindBugs ipod. Previvas models focased on symbol counts af small

ippete. By contrast, we approach code as read on screens

Softwure seadability is u property that nffucnces bom eus. Readability of code is of central conceen F-
e o

1 INTRODUCTION

& define readability a5 4 human judgment of how
easy a text is to understand. The readablity of a
program is related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 70% of the total lifecycle cost of
a software product [4]. Aggarwal claims that source
code readability and documentation readability are both
eritical to the maintainability of & project [1]. Other
sesearchers have noted that the act of reading code is
the mast of all
activities [s] 133], [35| Readabillty Is 5o significand, In
fact, that Elshoff and Marcotty, after recognizing that
many commercial programs were much more diffieult
to read than necessary, proposed adding a development
phase in which the program is made more readable [10].
Knight and Myers suggested that one phase of soft-
ection should be a check of the source code
for readability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group t the
development team, observing that, “without established
and consistent guidelines for readability, individual re-
wiewers may not be able to help much” [16]

We hypothesize that programmers have some intu-
itive notion of this concept, and that program features
such as indentation (e, a in Python [40]), ehoiee of
identifier names [34], and comments are likely to play a
part. Dijkstea, for example, claimed that the readability
uf a program depends largely upon the simplicity of

® Huse and Weter are wilh the
Liniversig of Virgin(a, Charfot
Emal fse, e o e
A S e e
Matira Sinc: Frunditon Gamis NS 0 3 (5475
i Foee Ol of Sekmlic. R gart EASSS0.031.0532, d
Minuagt Resurel it

went of Campaler Science ot The
ity

a given picce of coede can be read and

its sequencing control (e, he conjectured tha
pro

employed that netien to help motivate his ko
approach to system design [9]

We present a descriptive model of software reac
based on simple features that can be extracted au
cally feom programs. This model of software reac
correlates strongly with human annotatoes and als
external {widely avallable) notions of software ¢
such as defect detectors and software changes.

To understand why an empirical and objective
of saftuure readability is useful, consider the use ol
ability metrics in natural linguages. The FleschK
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just a few examples of readability metries for ordinary
text, These metrics areall based on simple factors such a5
average syllables per word and average sentence length.
Despite this simplicity, they have each been shown to be
quite useful in practice. Flesch-Kincaid, which has been
in use for over 50 years, has not only been integrated
inte populae text editors including Microsoit Word, but s ciation: “without estsblished sad consistsat goideline
has also beeome a United States governmental standaed iahikity, indivicus] raviewers may sot be able to belp
Agencies, inchuding the Department of Defense, [5]. Knight and Myers argued that 3 source-level
many documents and foems, intemnal and exte oc readabllity improves portsbily, matntzinabiliey an
meet have a Flesch readability grade of 10 o ity and should thus be a fisst-class phase of software
(DO MIL-M-38784B). Defense contractors also a 63) e] T b e)
required to use it when they write technical mar [acuilopion e eiier i vealing dadecia) [T]0LA:
These metrics can help organizations gain son svelopment phase aimed at impeoving readsbility was
fidence that their documents meet goals for reac 1 by Elsholt and Marconry, who abserved that many
very cheaply, and have become ubiquitous for tt sl programs were unneeessarily difieult w read [8].
son. We believe that similar metrics, targeted spec cemly, a 2012 survey of over 10 developers and
at source code and backed with empirical ev 5 at Microseft by Buse and Zimmermann found that
for effectiveness, can serve an analogous purp respondess. desire readability as a software analytic
the software domain. Readability metrics for the tealure, placing it among the top three in their survey (9],

areas such as computer generated math [26], tr, Readshility metries are well-established in the demain of
Layout [3], and hypertext [17] have been found o

We describe the first general readability metric for :
code.

sha
i our moel is more likely to generalize.

L. INTRODUCTION

1 suflware developers sperd more time maintining
ana evolving existing software than writing new code [1). [2).
[3]. Suftware readabiity. o fundamental nction related to the
comprehension of wat, i critieal W sofiware mintenance:
reading code is a necessary first step foward maintaining it
Much research. both recent and established. has argued that
ceadability plays a large role in softwase maintenance. A wel
known example s Kauth, who viewed resdability as essentizl
w0 his notion of Liwerate Propramming [4]. He argued that a
program should be viewed as “a piece of literature, addressed
o b besngs™ and that a readsble progean i “more robast
omtatile, [ard] moare eusily nintined”. Huneef argued
£ of & development group dedicated 1o readability and

" tets GITCUE 1o obtain, requiring buman stud-
= i, und abio are inherently variable; lnrge-scale surveys, in-
ing a variesy of tools, We argue that this approach wolving, neultiple Bisman raters, and careful statstical anal-
T e e The practically ugable, Vsis Of inter-rater agreement are required to ohia
B St i e e et measres. Buse ef al’s work was @ major eontibution in
this area: they conducted a Girly lrge-scale study, asking
buman subjects to pn
readability of cocde snippets.
i 8 and aggregated to yield mmm.npiuinmum]
ics— complerity mea. sult of this extensive aned timeconsuming study was a set of
P s, S, accompuniet by mean sobjecive seadabil.
ity scares; Olsh_«

Calegnr!m and Subject De-snrlpms

1.4 s
Du [Software Engincering|: M
sures, performance menswres

it e Halstead metrics can be ussd to improve upan the

on-software natural lnguage. Metrics such as the Automated

A General Software Readability Model

Jonathan Dom
Depruriment of Computer Science
University of Virginia
Charlotiesuille, Virginia
JadSju viginia edu

Inddex [10] and Flesch-Kincaid Grade Level
are commonly used in commercial software and policies.
All are based on o few smple measurements, such s the
lengths of words and sentences. For example, Flesch-Kincaul
is integrated into papular editors such as Microsoft Word and
has become 4 govemment standand, with the US Department
of Defense requiring internal and external documents to have
4 Flesch readability geade of 10 or below (DOD MIL-M-
3RT84BE In the domain of software, formal metries for
readability are well-established in particular domains such as
hypertex (12,

By contrast, general descriptive models of overall software
readability are relatively recent, first proposed by Buse er
al. [13] and refined by Posnent er al. (14]. Such models. are
0t coding standards (cf. [15]) but are based on combinations
of surface-level syntactic featunes such as operalor counts o
line lengths, aim to agree with buman judgments, and have
been found 1o comelite with exieenal notions of softwane
quality (16]. Such software readability models do not artempt
1o deseribe programmatic complesity (ef. [17]). which derives
from system requirements and algorithnss, but instead focus
on readability as a controllable accidental complexity [15]
ite the sdvantages of a fermal notion of soflware
readability, previous readability metrics do not adequately gen-
eralize. They are based on small {iypically 7-line) snippets of
code from 3 single programming language. are tied 1o shallow
surface features that do nol account for visual presestation
or linguistic meaning, and derive from the judgments of 3
relutively small number of stdents [13], [14). We propose 3
readability model that addresses all of these concerns while
remaining lghtweight and applicable

Invuitively, the effectiveness of syniax highlighting sug-

that visual or geometric formatting significantly impacts
Similarly, the prevalence of variahle naming
standards {e.g.. underscores, camel case, Hungarian nolation)
suggests that meaningful linguistic information is captured by
identifiees. We thus propose the first incorporation of geomet-
fic, pattern-based and linguistic aspects and features into an
antemated readability metric. For example, code in which the
“=" perators in 3 sequence of assignment statements “line
up” ventically on the screen may be viewed as more readable,
as may code in which identifiers contain English synoayms
or code in which comments form 3 colored rectangular block.
We propose 10 incorporate such feares inio our model of
readability.

Code readabillity prediction

TEE SPECIAL ISSUE ON THE [SSTA 2108 EEST FAPERS.

Learning a Metric for Code Readability

Raymond PL. Buse, Westley Weimer

Absiract—k this paper. we explore the concept of code rearsillty and invesdgate s relation o saftware quality. With data colected

fram 120 human anncestors, wa derive azzcoiatons bemeen 3

simple set of local cod features and human notons of readabiy.

Uising those Features. we constuct an automated readabiity measure and shaw at f can be BO% efieciive, and better than a human
on average. a prodiciieg reacabsity udgments. Furlhermore, we show thai ihis metris comelaies sirangly wih fiee meazures of
saftware qualty: cote changes, autmated defect repors, and defect log messages. We messure these cometons an over 22
milicn lines cf ccde, as wel a3 longibudinall, over many releases of sekected prajects. Finally, we discuss the implications of this sy

For exampie. our 10 themsehres, are less

important than Sl bk s 1 o2 jucsements o raasaiy,

Index machine learming. code meirics, FindBugs

1 INTRODUCTION

& define readability a5 4 human judgment of how
easy a text is to understand. The readablity of a
program is related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 70% of the total lifecycle cost of
a software product [4]. Aggarwal claims that source
code readability and documentation readability are both
eritical to the maintainability of & project [1]. Other
sesearchers have noted that the act of reer.llng code is
the mast of al
activ [s] 133], [35| TReadability 1s 50 !Igruﬁram in
fact, that Elshoff and Marcotty, after recognizing that
many commercial programs were much more diffieult
to read than necessary, proposed adding a development
phase in which the program is made more readable [10].
Knight and Myers suggested that one phase of soft-
w ection should be a check of the source code
for readability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group t the
development team, observing that, *without established
and consistent guidelines for readability, individual re-
wiewers may not be able to help much” [Lé].

We hypothesize that programmers have some intu-
itive notion of this concept, and that program features
such as indentation (e, a in Python [40]), ehoiee of
identifier names [34], and comments are likely to play a
part. Dikstea, for example, claimed that the readability
uf a program depends largely upon the simplicity of

® Huse and Weer are with the D
Liniversig of Virgin(a, Charfot
Ematl: {bse, nvtwes) s cirgun.

e
o, Ntiorl Science Foundtlon Erants CNS G714 3 (1537
BRI FASS5D 0710632, and

went of Campaler Science ot The
ity

its sequencing control (e, he conjectured tha
pro

employed that nolion to help motivate his ko
approach to system design [4]

We present a descriptive model of software reac
ased on simple features that can be extracted au
cally feom programs. This model of software reac
correlates strongly with human annotatoes and als
external (widely available) notions of software ¢
such as defect detectors and software changes.

To understand why an empirical and objective
of saftuure readability is useful, consider the use ol
ability metrics in natural lainguages. The Flesch K.
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just a few examples of readability metries for ordinary
text, These metrics areall based on simple factors such a5
average syllables per word and average sentence length.
Despite this simplicity, they have each been shown to be
quite useful in practice. Flesch-Kincaid, which has been
in use for over 50 years, has not anly been integrated
inte populae test editors including Miesssoft Word, but
has also beeome a United States governmental standaed
Agencies, including the Department of Defense,
many documents and forms, internal and exte
meel have a Flesch readability geade of 100 or
(DO MIL-M-38784B). Defense contractors also a
required to use it when they write technical mar

These metrics can help organizations gain son
fidence that their documents meet goals for reac
very cheaply, and have become ubiquitous for th
son. We believe that similar metrics, targeted spec
at source code and backed with empirical e
for effectivencss, can serve an analogous purp
the software domain. Readability metrics for the
areas such as computer generated math [25], tr
Layout [3], and hypertext [17] have been found |
We describe the first general readability metric for ¢
code.

A Simpler Model of Software Readability

Daryl Posnett Abram Hindle 'm Devanbu
University of California, Davis ~ Univessity of California. Davis Unlvarslty MCB\IFB"IB Davis
s, . DEHIE CA
dpposr edu p es davﬁnhu@ucdaws edu
ABSTRACT 1. INTRODUCTION

Softwure seadability is u property that nffucnces bom eus. Readability of code is of central conceen F-
a given picce e e —

"ttt ALE to obtain, roquiring buman stud-

e ics, undl wko are inberently variable; lnrge-seale surveys. in-

ing a varlety of tools. We argue that this approach pr volving umltiple human raters, aned carefal statitical anal.

e i e e e R e e e e

spproach to readability messarement Tewsures. Buse et al’s work was o major eomtribution in

this area: 1hey conducted o Girly lurge-scale sudy, asking

humnan subjects to provide subjective rating scares of the

Cam-gnr!m Lol e L) readability of cocle snippets. These scores were walidated

14 Systems Appli ; s sgsiesated 10 yield meopiowseoes i, T e

e e e PR] e e e e

e e cad s 5 accompunind by mean subjecrive seaibil
ity sccres;_ Oie)_«

tuat thie Halstend metrics can be usesd to nprove upan the

A General Software Readability Model

Jonathan Dom
Department of Compuier Science
University of Virginia
Charlonesville, Virginia
JadSju virginia edu

formal model of soft-
5000 p

‘madels focased on symbol counts af small
ippets. By contrast, we approach code as read s screens
wns and propese to analyze visual, spatial and lngaistic
B I e

We construct a ¥
- notions and show that lmﬁmh-mj.@-m

more pi sha
1 ur ol is raors kel 30 peneralie.

L. INTRODUCTION

1 suflware developers sperd more time maintining
ana evolving existing software than writing new code [1). [2).
[3]. Suftware readabiity. o fundamental nction related to the
comprehension of wat, i critieal W sofiware mintenance:
reading code is a necessary first step foward maintaining it
Much research. both recent and established. has argued that
ceadability plays a large role in softwase maintenance. A wel
known example s Kauth, who viewed resdability as essentizl
w0 his notion of Liwerate Propramming [4]. He argued that a
program should be viewed as “a piece of literature, addressed
o b besngs™ and that a readsble progean i “more robast
omtatile, [ard] moare eusily nintined”. Huneef argued
£ of & development group dedicated 1o readability and
satation: “without established and consistent guidelines
Lability, individual reviewers muy not be able to help
[5). Knight and Myers argued that 3 source-lovel
or readability improves portabality, maintainability and
ity and should thus be o fist-class phase of software
o (6], Basili ef al, showed that inspections guided
ing techniques are better at revealing defects (7). A
svelopment phase aimed at impeoving resdsbility was
1 by Elshoff and Mareotty, who observed thal many
il progeams were unnecessarily diffieul o read [8].
cently, 1 2012 survey of over 100 develupers nd
s at Microsoft by Buse and Zimmermann found that
sesponders desire readability as @ sofware analytie
teature, placing it among the wp three in their survey (9],
Readability meties are well-established in the demain of
on-software natural language. Metrics such as the Automated

Inddex [10] and Flesch-Kincaid Grade Level
are commonly used in commercial software and policies.
All are based on o few smple measurements, such s the
lengths of words and sentences. For example, Flesch-Kincaul
is integrated into papular editors such as Microsoft Word and
has become 4 govemment standand, with the US Department
of Defense requiring internal and external documents to have
4 Flesch readability geade of 10 or below (DOD MIL-M-
3RT84BE In the domain of software, formal metries for
readability are well-established in particular domains such as
hypertex [12].

By contrast, general descriptive models of overall software
readability are relatively recent, first proposed by Buse er
al. [13] and refined by Posnent er al. (14]. Such models. are
0t coding standards (cf. [15]) but are based on combinations
of surface-level syntactic featunes such as operalor counts o
line lengths, aim to agree with buman judgments, and have
been found 1o comelite with exieenal notions of softwane
quality (16]. Such software readability models do not artempt
1o deseribe programmatic complesity (ef. [17]). which derives
from system requirements and algorithnss, but instead focus
on readability as a controllable accidental complexity [15]
ite the sdvantages of a fermal notion of soflware
readability, previous readability metrics do not adequately gen-
eralize. They are based on small {iypically 7-line) snippets of
code from 3 single programming language. are tied 1o shallow
surface features that do nol account for visual presestation
or linguistic meaning, and derive from the judgments of 3
relutively small number of stdents [13], [14). We propose 3
readability model that addresses all of these concerns while
remaining lghtweight and applicable

Invuitively, the effectiveness of syniax highlighting sug-

that visual or geometric formatting significantly impacts
Similarly, the prevalence of variahle naming
standards {e.g.. underscores, camel case, Hungarian nolation)
suggests that meaningful linguistic information is captured by
identifiees. We thus propose the first incorporation of geomet-
fic, pattern-based and linguistic aspects and features into an
antemated readability metric. For example, code in which the
“=" perators in 3 sequence of assignment statements “line
up” ventically on the screen may be viewed as more readable,
as may code in which identifiers contain English synoayms
or code in which comments form 3 colored rectangular block.
We propose 10 incorporate such feares inio our model of
readability.

Code readabillity prediction

Something Is missing...

Comments readability

Comments ana
identifiers consistency

fler terms

ldent

u ‘- . ¥ *
- ’. U PPN T
N —— o
- g, .
R

JRCTI B

B g

-

4

Narrow meaning
identifier

‘:& a e4 1 4:k113

| 1%¥% ikﬁt*‘ ELRA
\ 31“\”

Numiber Mmeanings

Textual coherence

Case stuady

200

Java snippets

annotators

New dataset

Do textual features complement
the others proposend
in the literature?

Overlap metrics

Textual Features vs Buse's

® TF N BWF
N BYVE
m BWF\TF

Textual Features vs Posnett's

m TFNPF
B TF\PF
® PF\TF

Textual Features vs Dorn's

W E @bk
ik Dk
B DF\TF

Textual Features vs Dorn's

Readability of 12%-21% of snippets can
be explained only using textual features

= TF\DF
= DF\TF

What is the accuracy of a
readability model based
on structural and
textual features?

Dataset by Buse and Weimer

ALL-F 79%

0,
:
o (o]
o,
:
0,

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Dataset by Dorn

ALL-F 84%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

ALL-F

New dataset

0.5

0.6 0.65 0.7 0.75

80%

0.8

New dataset

A model which includes all features
higher accuracy on 2 datasets

achieves an

INn summary...

Code is text!

Code readability prediction » Case study

200

Java snippets

f o/ -1% ippets can i
Readability of 12%-21% of snippe A model which includes all features
9 be explained only using textual features achieves an higher accuracy on 2 datasets

annotators

New dataset

Code readability for 1§
defect prediction

Thanks.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46

