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for (int i=1;i<=100;i++) {
int a=((528>>1%15-1)&1)*4;
int b=((-2128340926>>(1%15)*2)&3)*4;
System.out.println("FizzBuzz".substring(a,b)+(a==b?i:""));

What does it do?



Not really clear...



What about this one?

for (int i=1;i<=100;i++) {
String fizzBuzz = “";

if (i % 3 == 0)
fizzBuzz += “Fizz";

if (1 %5 == 0)
fizzBuzz += “Buzz”;

if (fizzBuzz.isEmpty())
fizzBuzz += 1;

System.out.println(fizzBuzz);



Why IS it easier
to understand?




Code readability
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1 INTRODUCTION
Wl def rendability as a human judgment of how

easy a text is 10 understand. The readability of &
progeam i related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 0% of the total lifeeycle cost of
a software product [4]. Aggarwal claims thal source
code readability and documentation readability are both
critical to the maintainability of & project [1). Other
researchers have noted that the act of reading code is
the mast P of all maintenanc
activities [B], [33], [35]. Readability is so significant, in
fact, that Elshoff
many commercia

nd Marcolty, after recognizing that
programs were much more difficult
to read than necessary, proposed adding a development
phase in which the program is made more readable [10]
Knight and Myers suggested that one phase of soft-
ware inspection should be a check of the source code
for readability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group t the
development team, observing that, *without established
and consistent guidelines for readability, individual re-
[16]

We hypothesize that programmers have some intu-
itive notion of this concept, and that program features
such as indentation (e, & in Python [40], choiee of
ientifier names [44], and comments are likely to
part. Dikstea, for example, claimed that the readability
uf a program depends largely upon the simplicity of

wiewers may not be able to help much

of Campter Scie
b

he conjectured that got
v understanding), and

its sequencing control (eg
unnecessarily complicates. prog

mployed that notion to help molivate his top-down
approach to system design [9]

We present a descriptive model of saftware readability
based on simple features that can be extracted autom,
cally from programs. This model of software readability
correlates strongly with human annotators and also with
external (widely avallable) notions of software quality,

such as defect detectors and software changes

To understand why an empirical and ebjeetive model
of saftware readability i useful, consider the use of read-
ability metrics in natural languages. The Flesch-Kincaid
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just & few examples of eeadability metries for ordinary
text, These metrics are all based on simple faetors such as

average syllables per word and average sentence length.
Despite this simplicity, they b ch been show to be
quite useful in practice. Flesch-Kincaid, which has been
in use for over 50 years, has not anly been integrated
inte populae test editors including Miesssoft Word, but
has also beeome a United States governmental standaed.
Agencies, including the Department of Defense, requine
vy documents and . intemnal 4
meet have a Flesch readability grade of 10 or below
(DO MIL-M-38784B). Defense contractors also are often
required to use it when they
These matrics can help
fidence that their docume goals for readability
very cheaply, and have become ubiquitous for that re
son. We believe that similar metrics, targeted specifically

write technieal manuals.

at source code and backed with empirical evidence
for effectivencss, can serve an analogous purpose in
the software domain. Readability metrics fo the niche
areas such as computer generated math [26], treemap
Layout [3], and hypertext [17] have been found useful

We describe the first general readability metric for source
code.
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ware readubil  hman study of 5060 participants.
Renduhility is ﬁuldummul to maintenance, hut remains poorly
understoad. Previoas modcls focased on symbol counts af small
code snippets. By contrast, we appreach code as read on screens
by hamans amd propese o analyze visual, spatial and linguistic
Features. including structural patterns. sizes of code blocks, and
verbal identifier content. We constrisct a readubility metric based
om these netions and show that it agrees with haman judgments
us well as they agree with cach other amd better thun previous
ek, We endily meicereal lentmees of evadal
external motlon of defet density, We address muliple program-
ming Languages and different kength sampes, and evaluste using
m oeder of magaitude more purcipunts than previoas mork. 2l
suggesting sur model is more likely to generalize.

L. INTRODUCTION

Modem software developers spend more tin
nisting software than wiiting new code 1], [2]
fundarmental notion related to the
s critical 1o software maintenance:
code s o necessary first step toward maintaining it
Much research. bath recent and established. has argued that
readability plays a large role in software muintenance. A well
knewwn example s Kauth, who viewed readability as essential
1o his notion of Literste Programeming [4]. He argued that 3
prograrn should be viewed as “a pece of lerature, addressed
e b beings™ and Uit a readable e robust.
mare poriable, [and] more easily maintained”. Haneef argued
in favor of & developiment group dedicated to readability and

maintaining

comprehension of s,

ram

decumentation: “without established and ¢

wistent goidelines
for readabikity, individual reviewers may not be able o help
much” (5] Knight and Myers argued that 3 source-level
check for readability improves portabality, maintainability and
reusability and shoukd thus be a fisst-class phase of software
inspection [6]. Basili er of. showed that
by reading technigues are be
entine developiment phase aimed ot i

of over 100 developers and
aanagers at Microsoft by Buse and Zimasermann fouad tat
0% of responders desire readability as a software analytic
feature, placing it among the top three in their survey [9].
Readability metrics are well-established in the domain of
on-software natural language. Metrics such as the Aute

Readabil
are comi

Index (1) and Flesch-Kincaid Grade Level [11]
iy wsed in con I seftware and poli

nerci
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All are based on . few simple measurements, such = the
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s integrated inlo popular editors such a3 Microsoft Word and
has become o gove
of Defense requiring
a Flesch readability
36754B) In the domain of sofiware, formal
eadabilt are well-sihiished in panicular do
hypertext [12).

By conteast, general descriptive models of overall software
readability are relatively recent, first proposed by Buse er
al. [13] and refived by Posnew er al. (14]. Such models are
standasds (cf. [15]) but are based on combinations
af surface-level syntactic features. such a3 aperatos counts of
line lengths, sim 1o agree with human judgments, and have
been found 1o correlite with external notions of software

s of words and sentences.

metrics for
ains such a5

not coding

quality [16]. Such software readability models do not antempt
to describe programmatic complexity (ef. [17]). which derives

from 5

s and algosthems, but instead focus

o readability as & contrallable aceidental complexity [15]
Despite the sdvantages of a fermal notion of soflware

readability. previous readability metrics do not adequately gen

are tied o shallow
wal presentation
ents of 3

of students [13], [14]. We propose 3
readability model that addiesses all of these concerns while

a
1 du nl aceount for 4

remaining lightweight and applicable

Inuitively, the effectivensss of synax highlighting sug
gests that visual or geometiic farmatting significantly impacts
code readability. Simikarly, the prevalence of variable naming
standards (e.2.. underscores, camel case, Hungarian aolstion)
suggests tial meaningful linguistic information is caplured by
identifiers. We thus propose the first incorporation of
ric. pattern-based and linguistic aspects and features imto an
automated readabality metric. For example. code in which the
operutors in 4 sequence of assignment starements “line
up” wertically on the screen may be viewed as more readable
as iy code in which identifiers contain English syneayms
or code in which comments foem 3 colored rectangular bluck
W propose 1o incerprale su
readability

feawres into our model of
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1 INTRODUCTION

& define rendability a5 a human judgment of how
easy a text is 10 understand. The readability of a
program is related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 0% of the total lifeeycle cost of
a software product [4]. Aggarwal claims thal source
code readability and documentation readability are both
critical to the maintainability of & project [1). Other
sesearchers have noted that the act of reading code is
the mast of all
activities [n] 133, [35| TReadability is so significant, in
fact, that Elshoff and Marcolty, after recognizing that
many commercial programs were much more difficult
to read than necessaey, propased adding a development
phase in which the program is made more readable [10].
Knight and Myers suggested that one phase of soft-
re inspection should be a check of the source code
for seadability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group to the
development team, observing that, “without established
and consistent guidelines for readability, individual re-
viewers may nok be able to help much” [16]

We hypothesize that programmers have some intu-
itive notion of this concept, and that program features
such as indentation (e.g. as in Python [40]), ehoice of
identifier names [34], and comments are likely to play a
part. Dijkstea, for example, claimed that the readability
of a program depends largely upon the simplicity of
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approach to system design [9]

We present a descriptive model of softwane reac
based on simple features that can be extracted au
cally from programs. This model of software reac o
correlates strongly with human annotators and als
external {widely avallable) notions of software ¢
such as defect detectors and software changes.

To understand why an empirical and ebjective
of saftware readability i useful, consider the use of
ability metrics in natural languages. The Flasch K
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just a few examples of readability metrics for ordinary
text. These metrics are all based on simple factors such as
average syllables pes word and average sentence length.
Diespite this simplicity, they have each been shown to be
quite useful in practice. Flesch-Kincald, which has been
in use for over 50 years, has not only been integrated
into popular text editors including Microsoft Word, but
has also become a United States governmental standaed.
Agencies, including the Department of Defense, requine
many documents and forms, internal and external, to
meel have a Flesch readability grade of 10 o below
(DOD MIL-M-38784B). Defense contractors alse are often
required to use it when they write technical manuals.

These melrics can help organizations gain some con-
fidence that their documents meet goals for readability
vary chuaply, and have become ubiquitous for that rei-
son. We belfeve that similar metrics, targeted specifically
at source code and backed with empirical evidence
for effectivencss, can serve an analogous purpose in
the software domain. Readability metrics for the niche
areas such as computer generated math [26], treemap
Layoul [3], and hypertext [17] have been found useful
We describe the first general readability metric for source
code.
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L. INTRODUCTION

1 suftwane developers spend more time muintining
anu evolving existing software than writing new code (1), [2].
[3]. Suftware readabiity. o fundamental nction related to the
comprehension of wat, i critieal W sofiware mintenance:
resding code i 3 necessary firsl step woward maintaining it
Much research. both recent and established. has argued that
readabilty plays a large role in soflwase maintenance. A well—
known example s Kauth, who viewed resdability as essent
w0 his notion of Liwerate Propramming [4]. He argued that a
program should be viewed as “a piece of literature, addressed
10 b beings” and that a readable progean is “more robast

in favor of & development group dedicsted to readability and
documentstion: “without established and consistent guidelines
for readubikity, individual reviewers may not be able to help
much” [5]. Knight and Myers argued that a source-level

 improves portabality, maintainability and
ty anad shoukd thus be o fist-class phase of software
inspection (6], Basili ef af, showed that inspections guided
by reading technigues are bester at revealing defects (7). An
entire development phase aimed a1 impeoving resdability was
proposed by Elshofl and Maseotty, who observed thal many
commercial programs were unnecessarily diffieult w read [8].
Mare tecently, a 2012 survey of over 100 developers und
managers a Microsoft by Buse and Zimmermann found that
OU% of respondess desire readubility as o soffware analytie
festure, placing it among the wp three in their survey [9].
Readability meies are well-established in the demain of
on-software natural language. Metrics such as the Automated

is inlegated into popular editors such a3 Mirosoft Word and
has becomse & government stundand, with the US Department
uf Defense requiring iniernal and external documents w bave
a Flesch readabality geade of 10 or below (DOD MIL-M-
3ET84BL It the domain of software, formal metrics for
readatility are well-established in puricular domains such s
hypertext [12].

By canteast, peneral descriptive models of overall software
readability are reluiively recent, first proposed by Buse et
al. [13] and refired by Fosnett et al, [14]. Such models are
0t coding standards (cf. [15]) but are based on combinatioas
of surface-level syatactic features such as operator counts or
line lengihs, aim 1o apree with Buman judgments, and Bave
been found o correlate with exiernal notions of software
quality [16]. Such software readability models do nat attempt
1o deseribe pregrammatic complexity (ef. [17]). which derives
from system requirements and algorthass, but instead focus
on readability as a comrollable secidental complexity (18]

Despite the advantages of & fermal notion of software
readatbility, previows readability metrics do not adequately gen
eralize. They are bused on small {iypically T-line) snippets of
code fram a single programming linguage, are ted o shallow
surface features that do not seeount foe visual presentation
or lingusstie meaning, and derive from the judgments of 3
reluively small number of studens [13], [14). We propose 3
readability model that addresses all of these concerns while
remaining lightweight and applicable

Inuuitively, the effectiveness of syniax highlighting sug-
gests that visual or geometric formaiting sigaificantly impacts
Similarly, the prevalence of variable naming
standards (e.5.. underscores, eamel case, Hungarsn nolation)
sugzests thit meaningful linguistic information is coptured by
identifiers. We thus propose the first incorporation of geomet-
i, paters-based and linguistic aspeets and features into i
automated readability metric. Foe example, code in which the
“= operators in 4 sequence of assignment stuements “line
up” ventically on the screen may be viewed as more readable,
as msy code in which identifiers contain English synoyms
ur code in which comments farm 3 colored rectangular black.
We propose 0 incerporate such festures inio our model of
readability.
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1 INTRODUCTION

& define readability a5 4 human judgment of how
easy a text is to understand. The readablity of a
program is related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 70% of the total lifecycle cost of
a software product [4]. Aggarwal claims that source
code readability and documentation readability are both
eritical to the maintainability of & project [1]. Other
sesearchers have noted that the act of reading code is
the mast of all
activities [s] 133], [35| Readabillty Is 5o significand, In
fact, that Elshoff and Marcotty, after recognizing that
many commercial programs were much more diffieult
to read than necessary, proposed adding a development
phase in which the program is made more readable [10].
Knight and Myers suggested that one phase of soft-
ection should be a check of the source code
for readability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group t the
development team, observing that, “without established
and consistent guidelines for readability, individual re-
wiewers may not be able to help much” [16]

We hypothesize that programmers have some intu-
itive notion of this concept, and that program features
such as indentation (e, a in Python [40]), ehoiee of
identifier names [34], and comments are likely to play a
part. Dijkstea, for example, claimed that the readability
uf a program depends largely upon the simplicity of
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of saftuure readability is useful, consider the use ol
ability metrics in natural linguages. The FleschK
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just a few examples of readability metries for ordinary
text, These metrics areall based on simple factors such a5
average syllables per word and average sentence length.
Despite this simplicity, they have each been shown to be
quite useful in practice. Flesch-Kincaid, which has been
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Inddex [10] and Flesch-Kincaid Grade Level
are commonly used in commercial software and policies.
All are based on o few smple measurements, such s the
lengths of words and sentences. For example, Flesch-Kincaul
is integrated into papular editors such as Microsoft Word and
has become 4 govemment standand, with the US Department
of Defense requiring internal and external documents to have
4 Flesch readability geade of 10 or below (DOD MIL-M-
3RT84BE In the domain of software, formal metries for
readability are well-established in particular domains such as
hypertex (12,

By contrast, general descriptive models of overall software
readability are relatively recent, first proposed by Buse er
al. [13] and refined by Posnent er al. (14]. Such models. are
0t coding standards (cf. [15]) but are based on combinations
of surface-level syntactic featunes such as operalor counts o
line lengths, aim to agree with buman judgments, and have
been found 1o comelite with exieenal notions of softwane
quality (16]. Such software readability models do not artempt
1o deseribe programmatic complesity (ef. [17]). which derives
from system requirements and algorithnss, but instead focus
on readability as a controllable accidental complexity [15]
ite the sdvantages of a fermal notion of soflware
readability, previous readability metrics do not adequately gen-
eralize. They are based on small {iypically 7-line) snippets of
code from 3 single programming language. are tied 1o shallow
surface features that do nol account for visual presestation
or linguistic meaning, and derive from the judgments of 3
relutively small number of stdents [13], [14). We propose 3
readability model that addresses all of these concerns while
remaining lghtweight and applicable

Invuitively, the effectiveness of syniax highlighting sug-

that visual or geometric formatting significantly impacts
Similarly, the prevalence of variahle naming
standards {e.g.. underscores, camel case, Hungarian nolation)
suggests that meaningful linguistic information is captured by
identifiees. We thus propose the first incorporation of geomet-
fic, pattern-based and linguistic aspects and features into an
antemated readability metric. For example, code in which the
“=" perators in 3 sequence of assignment statements “line
up” ventically on the screen may be viewed as more readable,
as may code in which identifiers contain English synoayms
or code in which comments form 3 colored rectangular block.
We propose 10 incorporate such feares inio our model of
readability.

Code readabillity prediction
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Learning a Metric for Code Readability
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simple set of local cod features and human notons of readabiy.
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1 INTRODUCTION

& define readability a5 4 human judgment of how
easy a text is to understand. The readablity of a
program is related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 70% of the total lifecycle cost of
a software product [4]. Aggarwal claims that source
code readability and documentation readability are both
eritical to the maintainability of & project [1]. Other
sesearchers have noted that the act of reer.llng code is
the mast of al
activ [s] 133], [35| TReadability 1s 50 !Igruﬁram in
fact, that Elshoff and Marcotty, after recognizing that
many commercial programs were much more diffieult
to read than necessary, proposed adding a development
phase in which the program is made more readable [10].
Knight and Myers suggested that one phase of soft-
w ection should be a check of the source code
for readability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group t the
development team, observing that, *without established
and consistent guidelines for readability, individual re-
wiewers may not be able to help much” [Lé].

We hypothesize that programmers have some intu-
itive notion of this concept, and that program features
such as indentation (e, a in Python [40]), ehoiee of
identifier names [34], and comments are likely to play a
part. Dikstea, for example, claimed that the readability
uf a program depends largely upon the simplicity of
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its sequencing control (e, he conjectured tha
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employed that nolion to help motivate his ko
approach to system design [4]

We present a descriptive model of software reac
ased on simple features that can be extracted au
cally feom programs. This model of software reac
correlates strongly with human annotatoes and als
external (widely available) notions of software ¢
such as defect detectors and software changes.

To understand why an empirical and objective
of saftuure readability is useful, consider the use ol
ability metrics in natural lainguages. The Flesch K.
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just a few examples of readability metries for ordinary
text, These metrics areall based on simple factors such a5
average syllables per word and average sentence length.
Despite this simplicity, they have each been shown to be
quite useful in practice. Flesch-Kincaid, which has been
in use for over 50 years, has not anly been integrated
inte populae test editors including Miesssoft Word, but
has also beeome a United States governmental standaed
Agencies, including the Department of Defense,
many documents and forms, internal and exte
meel have a Flesch readability geade of 100 or
(DO MIL-M-38784B). Defense contractors also a
required to use it when they write technical mar

These metrics can help organizations gain son
fidence that their documents meet goals for reac
very cheaply, and have become ubiquitous for th
son. We believe that similar metrics, targeted spec
at source code and backed with empirical e
for effectivencss, can serve an analogous purp
the software domain. Readability metrics for the
areas such as computer generated math [25], tr
Layout [3], and hypertext [17] have been found |
We describe the first general readability metric for ¢
code.
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L. INTRODUCTION

1 suflware developers sperd more time maintining
ana evolving existing software than writing new code [1). [2).
[3]. Suftware readabiity. o fundamental nction related to the
comprehension of wat, i critieal W sofiware mintenance:
reading code is a necessary first step foward maintaining it
Much research. both recent and established. has argued that
ceadability plays a large role in softwase maintenance. A wel
known example s Kauth, who viewed resdability as essentizl
w0 his notion of Liwerate Propramming [4]. He argued that a
program should be viewed as “a piece of literature, addressed
o b besngs™ and that a readsble progean i “more robast
omtatile, [ard] moare eusily nintined”. Huneef argued
£ of & development group dedicated 1o readability and
satation: “without established and consistent guidelines
Lability, individual reviewers muy not be able to help
[5). Knight and Myers argued that 3 source-lovel
or readability improves portabality, maintainability and
ity and should thus be o fist-class phase of software
o (6], Basili ef al, showed that inspections guided
ing techniques are better at revealing defects (7). A
svelopment phase aimed at impeoving resdsbility was
1 by Elshoff and Mareotty, who observed thal many
il progeams were unnecessarily diffieul o read [8].
cently, 1 2012 survey of over 100 develupers nd
s at Microsoft by Buse and Zimmermann found that
sesponders desire readability as @ sofware analytie
teature, placing it among the wp three in their survey (9],
Readability meties are well-established in the demain of
on-software natural language. Metrics such as the Automated

Inddex [10] and Flesch-Kincaid Grade Level
are commonly used in commercial software and policies.
All are based on o few smple measurements, such s the
lengths of words and sentences. For example, Flesch-Kincaul
is integrated into papular editors such as Microsoft Word and
has become 4 govemment standand, with the US Department
of Defense requiring internal and external documents to have
4 Flesch readability geade of 10 or below (DOD MIL-M-
3RT84BE In the domain of software, formal metries for
readability are well-established in particular domains such as
hypertex [12].

By contrast, general descriptive models of overall software
readability are relatively recent, first proposed by Buse er
al. [13] and refined by Posnent er al. (14]. Such models. are
0t coding standards (cf. [15]) but are based on combinations
of surface-level syntactic featunes such as operalor counts o
line lengths, aim to agree with buman judgments, and have
been found 1o comelite with exieenal notions of softwane
quality (16]. Such software readability models do not artempt
1o deseribe programmatic complesity (ef. [17]). which derives
from system requirements and algorithnss, but instead focus
on readability as a controllable accidental complexity [15]
ite the sdvantages of a fermal notion of soflware
readability, previous readability metrics do not adequately gen-
eralize. They are based on small {iypically 7-line) snippets of
code from 3 single programming language. are tied 1o shallow
surface features that do nol account for visual presestation
or linguistic meaning, and derive from the judgments of 3
relutively small number of stdents [13], [14). We propose 3
readability model that addresses all of these concerns while
remaining lghtweight and applicable

Invuitively, the effectiveness of syniax highlighting sug-

that visual or geometric formatting significantly impacts
Similarly, the prevalence of variahle naming
standards {e.g.. underscores, camel case, Hungarian nolation)
suggests that meaningful linguistic information is captured by
identifiees. We thus propose the first incorporation of geomet-
fic, pattern-based and linguistic aspects and features into an
antemated readability metric. For example, code in which the
“=" perators in 3 sequence of assignment statements “line
up” ventically on the screen may be viewed as more readable,
as may code in which identifiers contain English synoayms
or code in which comments form 3 colored rectangular block.
We propose 10 incorporate such feares inio our model of
readability.
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Do textual features complement
the others proposend
in the literature?



Overlap metrics




Textual Features vs Buse's
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Textual Features vs Dorn's
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What is the accuracy of a
readability model based
on structural and
textual features?
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INn summary...

Code is text!

Code readability prediction » Case study
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