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what is one of the therapy for
software decay?
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a lightweight therapy

“The process of changing
a software system in such
a way that it does not alter
the external behaviour of
the code yet improves its

internal structure”
--M. Fowler
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bad smells In code

“Symptoms of POOr
design or
implementation
choices”

--M. Fowler



Shotgun Surgery

azy Class

Primitive Obsession
Middle Man
Dead Code

Feature Envy

Long Parameter List

many kinds of bad smells in code

Long Method

Parallel Inheritance Hierarchie
Large Class

sage Chains
Duplicate Code

Switch Statements
Inappropriate Intim:



programming language field

“Dead code refers to

computations whose

results are hever used”

--S. K. Debra

y et al.
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programming language field

“Code that is
unreachable can

never be €Xecuted”
--S. K. Debray et al.

“dead” different from
“unreachable”
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software engineering

“Dead code is code
that isn’'t executed”

--R. C. Martin

dead Instead of
unreachable

Clean Code

A Handbook of Agile Software Craftsmanship




to avoid confusion we will use the term




an example

public class M{

public class C{
public void ml () {..}

public class Cl extends C{

private void m3(){..}

m Reachable Methods
m Unreachable Methods



percentage of unreachable methods
ranges from 5% to 10%
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so what?




IN PROGRESS

WORK ‘

A long-term investigation



are unreachable
methods really

harmful?
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and

are
unreachable
methods
introduced
and/or
removed




Impact of unreachable methods on
comprehensibility and modifiability



their presence evaluating their effect
comprehensibility of unknown code and modifiability of
familiar code researchers and
practitioners novice developers and Java code







costructs:
correctness of

understanding and
of modification, and
effort
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pre-questionnaire
- comprehension

- modification




Understanding effort - Time
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Hypothesis ~ Metric - Cohen/Cliff’s d Perc. difference

0575  negligible (0.094) 2.417%
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Correctness of modification
Modification effort - Time

Hypothesis ~ Metric p-value Cohen/Cliff’s d Perc. difference  Stat. Power/S-value
Fy (+) < 0.0001 large (1.317) 14.395% 0.925
0.008 medium (0.428) 24.065% 0.835
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software engineering

percentage of unreachable methods are unreachable
) ranges from 5% to 109
“Dead code is code 9 % %o methods really
that isn't executed” ?
~R. C. Martin ,Slean Code -
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Impact of unreachable methods on
comprehensibility and modifiability.
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