Are Unreachable Methods
Harmful? Results from a
Controlled Experiment

Simone Romano, Christopher Vendome, Giuseppe Scanniello, and Denys Poshyvanyk

software evolution

changes cause a decay of software design

L S

software
decay
Increases

the
and the

to
understand
and maintain
code

what is one of the therapy for
software decay?

R

il -

a lightweight therapy

“The process of changing
a software system in such
a way that it does not alter
the external behaviour of
the code yet improves its

internal structure”
--M. Fowler

Reractoring

IMPROVING THE DESIGN
OF ExisTINGg CoDE

MARTIN FOWLER
With Cantribations by Kent Beck, John Brant,
William Opdyke, snd Don Roberts

I soocr |
H 1acosson
§ RUNBAUGH

what are the

?

symptoms

bad smells In code

“Symptoms of POOr
design or
implementation
choices”

--M. Fowler

Shotgun Surgery

azy Class

Primitive Obsession
Middle Man
Dead Code

Feature Envy

Long Parameter List

many kinds of bad smells in code

Long Method

Parallel Inheritance Hierarchie
Large Class

sage Chains
Duplicate Code

Switch Statements
Inappropriate Intim:

programming language field

“Dead code refers to

computations whose

results are hever used”

--S. K. Debra

y et al.

Compiler Techniques for Code Compaction

SAUMYA K. DEBRAY and WILLIAM EVANS
The University of Arizona

ROBERT MUTH

Compag Computer Corp.

and

BJORN DE SUTTER

University of Ghent

In recent years there hus been an increasing trend toward the incorporation of computers into a
variety of devices where the amount of memory svailable is limited. This makes it desirsble to
try to reduce the size of applications where possible. This article explores the use of compller
techniques to accomplish code compaction to yield smaller executables. The main contribution
of this article is to show that careful, agsressive, interprocedural optimization, together with
procedural alstraction of repeated code fragments, can yield significantly better reductions in code

size than previous approaches, which have generally focused on abstraction of repeated instruction
sequences. We also show how “equivalent” code [ragments ean be detected and factored out using
conventional compiler techniques, and without baving to resort to purely linear treatments of code
sequences as in suffix-tree-based approaches, thereby setting up a framework for code co
that can be more flexible in its treatment of what code f
Our idess have been imple

paction
ments are comsidered equivalent

ited in the form of & binary-rewriting tool that reduces the size of
executables by sbout 307 on the aver

Categories and Subject Deseriptors: D.3.4 ing L Processors — code gen
tion; E.4 [Coding and Information Theory): Data Compaction

representation

cration; compilers; optimi

and Campremion - pragran

General Terms: Experimenta

on, Performance

Additional Key Words and Phrases: Code compaction, code compression, code size reduction

1. INTRODUCTION

In recent years there has been an increasing trend towards the incorporation of
computers into a wide variety of devices, such as palm-tops, telephones, embedded

The work of Saumya Debray and Robert Muth was supported in part by the National Science
Foundation under grants CCR-9711166, CDA-050091, and ASC 38 The work of Bjorn De
Sutter was supported in part by the Fund for Scientific Research—Flanders under grant 3G01998
Authors' addresses: S. Debray and W. Evans, Department of Computer Science, Unive
sity of Arizona, Tucson, AZ 85721; email: {debray, willjlics.arizonaedu; R. Muth, Al-
pha Developmy y, MA 01749 email
Robert Muthficompaq.com; B. De Sutter, Department of Electronics and Information Systems,
University of Ghent, B-0000 Gent, Belgium; email: brdsuttefielis rug.ac.be.

Permission to make digital ard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice Is gven that copying s by permission of the ACM, Inc. To copy otherwise,
to past an servers, o to redistribute to lists requires prior specific permission and /o fee.
© 2000 ACM 0164-0025/00/030-0378 $5.00

3

ot Group, Compaq Computer Corporation, Shrewsh

ACM Transactions on Programming Languages and Syste

programming language field

“Code that is
unreachable can

never be €Xecuted”
--S. K. Debray et al.

“dead” different from
“unreachable”

Compiler Techniques for Code Compaction

SAUMYA K. DEBRAY and WILLIAM EVANS
The University of Arizona

ROBERT MUTH

Compaq Computer Corp.

and

BJORN DE SUTTER

University of Ghent

In recent years there has been an increasing trend toward the incorpoeation of computers into a
varlety of devices where the amount of memory svailable is limited. This makes it desirable to
try o reduce the size of applications where possible. This article explores the use of compiler
techniques to accomplish code compaction to yield smaller
of this article is to show that careful, agsressive, interprocedural optimization, Logether with

tables. The main contribution

procedural alstraction of repeated code fragments, can yield significantly better reductions in code

size than previous approaches, which have generally focused on abstraction of repeated instruction

sequences. We also show how “equivalent” code fragments can be detected and factored out using
conenticnal compiler techniques, and without having 0 resort to purely linear treatments of code
sequences as in suffix-tree-based approaches, thereby setting up a framework for code compaction
that can be more flexible in its treatment of what code fragments are considered equivalent
& mplemented in the form of & binary-rewriting tool that reduces the size of
executables by about 30% on the average

¢ idess have been

Processors —code gen

Categories and Subject Deseriptors: D.3.4 i
& and Information Theory|: Data Compaction

cration; compilers; optimization; E.4 [Co

and Compromion — program representation
General Torms: Experimentation, Performance

Additional Key Words and Phrases: Code e«

apaction, code compression, code size reduction

1. INTRODUCTION
In recent years there has been an increasing trend towards the incorporation of
computers into n wide variety of devices, such as palm-tops. telephones, embedded

The work of Saumya Debray and Robert Muth was supported in part by the National Science
Foundation under grants CCR-9711166, CDA-0500001, and ASC-9720738 The work of Bjorn De
ported in part by the Fund for Scientific Research-—Flanders under grant 3G 001995,
Authors’ addresses: S. Debray and W. Evans, Department of Computer Science, Univer-
sity of Arizona, Tucson, AZ 85721, email: {debray, willjlics.arizonaedu; R. Muth, Al-
pha Development Group, Compaq Computer Corporation, Shrewsbury, MA 01749; email
Robert MuthGicompaq.com; B, De S Department of E
University of Ghent, B-0000 Gent, Belgium; email: brdsutte
to make digital mard copy of all or part of this material without fee for personal

Sutter was su

ectronics and Information Systems,

rugac.be.

m use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server
notice is given that copying is by permission of the ACM, Inc. To copy otherwise
to post an servers, or to redistribute to lists requires prior specific permission and,
© 2000 ACM 0164-0925/00/0X00-0375 $

stice, the title of the publication, and its date appear, and
to republish,

x fee

ACM Tuan = on Programming Languages and Systems, Vol. 22, No. 2, March 2000, Pages

software engineering

“Dead code is code
that isn’'t executed”

--R. C. Martin

dead Instead of
unreachable

Clean Code

A Handbook of Agile Software Craftsmanship

to avoid confusion we will use the term

an example

public class M{

public class C{
public void ml () {..}

public class Cl extends C{

private void m3(){..}

m Reachable Methods
m Unreachable Methods

percentage of unreachable methods
ranges from 5% to 10%

6000

5000

4000

A Graph-Based Approach to
in Jovg SOWMM:nmcmbb Methods

3000 SRR CEES sma

t eostegunbe

2000

1000

ARTOFILLUSION LATEXDRAW ATUNES 1.10.1 MEDIAPESATA
2.4.1 2.0.8 1.0

" Number of Methods ® Number of Unreachable Methods

so what?

IN PROGRESS

WORK ‘

A long-term investigation

are unreachable
methods really

harmful?

rr
1T
'
rrl
&8 85

L.
kY
¥y
ral
’aaaal
= a8 G & B

48
/FF
-
by
=)
“+ 1T [

unreachable
methods?

i

and

are
unreachable
methods
introduced
and/or
removed

Impact of unreachable methods on
comprehensibility and modifiability

their presence evaluating their effect
comprehensibility of unknown code and modifiability of
familiar code researchers and
practitioners novice developers and Java code

costructs:
correctness of

understanding and
of modification, and
effort

- L] L]
pre-questionnaire
- comprehension

- modification

Understanding effort - Time

—
L
]
o
=
i
c
kel
]
&
5]
o
c
E
=
<]
@
@
o
=
3]
@
=
S
o

Correctness of understanding -

e

R
bl
ot
Th

Hypothesis ~ Metric - Cohen/Cliff’s d Perc. difference

0575 negligible (0.094) 2.417%

FrFEFrFPFTFTT V' VO Y

Correctness of modification
Modification effort - Time

Hypothesis ~ Metric p-value Cohen/Cliff’s d Perc. difference Stat. Power/S-value
Fy (+) < 0.0001 large (1.317) 14.395% 0.925
0.008 medium (0.428) 24.065% 0.835

R E R EF FFFEFPFr \ S O -

ZIIN
o A
N
4 RPN
RN
< - 2 2 A N
Y Y
: R W\
< el b)
P’ N
7 p) 3 Q
& :
1 7
p ‘;,‘
>

software engineering

percentage of unreachable methods are unreachable
) ranges from 5% to 109
“Dead code is code 9 % %o methods really
that isn't executed” ?
~R. C. Martin ,Slean Code -
4000 —; o S
dead InStead of] 212 240, 12 8
Unreachable m’(TOZlkL'uSICh L/\TEZ)(DRr\v'i ATUNES 1.10.1 I,‘ED\/\‘PUES/\T/\

Number of Methods Number of Unreachable Methods.

Impact of unreachable methods on
comprehensibility and modifiability.

giuseppe.scanniello@unibas.it

