
Software Testing in the Age
of Data Privacy

Technical Briefing

Mark Grechanik and Denys Poshyvanyk
University of Illinois, Chicago and College of William and Mary

The Map of This Briefing

The Testing Process

Test Engineer

Programmer

Requirements
Document

Database-centric
application (DCA)

DatabaseDatabase

The Testing Process

Test Engineer

Programmer

Requirements
Document

Database-centric
application (DCA)

DatabaseDatabase

Outsourcing Software Testing

Databases Contain Sensitive Information

Test Engineer

Programmer

Requirements
Document

Database-centric
application (DCA)

DatabaseDatabase

It Is the Age of Data Privacy

Tribe Security Number: 218

Name: Flintstone

Address: Third cave from
the entrance

Identifying footprint:

Sensitive Information

Privacy vs Secrecy
• Sender, Bob, sends a message to Recipient,

Alice, via some transmission medium

• An attacker wants to read this message and may
block, intercept, modify, and fabricate it

Sender Bob Recipient Alice

message

Attacker

This is SECRECY!

Privacy vs Secrecy
• Sender, Bob, sends a message to Recipient,

Alice, via some transmission medium

• An attacker wants to read this message and may
block, intercept, modify, and fabricate it

Sender Bob Recipient Alice

message

Attacker

This is PRIVACY!

• Privacy is information leakage, it is not secrecy!

• Sharing information is important for accomplishing
different tasks (utility), but it is equally important to
control information disclosure.

Privacy Leakages Are Common

Rec Age ZipCode Nationality Disease

1 42 52000 American Ulcer

2 47 53000 Palauan Viral

3 51 32000 American Heart disease

4 55 32000 Japanese Gastritis

5 62 51000 Palauan Dyspepsia

6 67 35000 American Dyspepsia

Quasi-Identifiers
(QIs)

The individual is a 55-year old Japanese who lives in zip
code 32000. If we know that there is a single 55-year

old Japanese who lives in this zip code, we can infer that
this person suffers from gastritis (sensitive information).

The individual is a 55-year old Japanese who lives in zip
code 32000. If we know that there is a single 55-year

old Japanese who lives in this zip code, we can infer that
this person suffers from gastritis (sensitive information).

Medical Insurance DCA

Rec Age ZipCode Nationality Disease

1 42 52000 American Ulcer

2 47 53000 Palauan Viral

3 51 32000 American Heart disease

4 55 32000 Japanese Gastritis

5 62 51000 Palauan Dyspepsia

6 67 35000 American Dyspepsia

if(nationality==“Japanese” &&
age > 40 && age < 60) {

computeQuote(disease);
}

if(nationality==“Japanese” &&
age > 40 && age < 60) {

computeQuote(disease);
}

Protecting Sensitive Information
• Recent data protection

laws and regulations
around the world prohibit
organizations from
disclosing confidential
data.

• Stiff consequences are
imposed for organizations
should they accidentally
release sensitive
information.

Anonymizing Sensitive Information

Protecting Sensitive
Information With k-anonymity

if(nationality==“Japanese”
&& age > 40
&& age < 60)

{
computeQuote(disease);

}

Rec Age ZipCode Nationality Disease

1 42 52000 American Ulcer

2 47 53000 Palauan Viral

3 51 32000 American Heart disease

4 55 32000 Japanese Gastritis

5 62 51000 Palauan Dyspepsia

6 67 35000 American Dyspepsia

Rec Age ZipCode Nationality Disease

1 50 50000 Human Ulcer

2 50 30000 Human Viral

3 50 30000 Human Heart disease

4 20 30000 Human Gastritis

5 50 50000 Human Dyspepsia

6 20 30000 Human Dyspepsia

Data Suppression Seriously
Degrades Test Coverage

k-anonymity

% of test
coverage

Approximately 20%
of the coverage loss!

k=1
original data

>80%
original
coverage

Conflicting Goals

Balancing These Goals

Test Data Generation

Example Of Generating
Semantically Incorrect Data

• A test data generation
tool for insurance
application creates an
entry in the database
for a man who suffers
from gestational
diabetes.

Test Data Generation

Current Practice:
Clean Room Testing

• Physically Restricted

• Security Clearance

• No internet

• No USB

• No CD

• No Phone

• No camera

• Personal search

Walking the Tightrope

Poor State Of Data
Protection

Preserving the Utility of Testing
• In our work, we showed that

using popular anonymization
algorithms destroys the utility
of testing

• Also, we proposed solutions
to address this problem

NSF Grant CCF-1017633, Preserving Test Coverage
While Achieving Data Anonymity for Database-Centric
Applications.

Mark Grechanik, Christoph Csallner, Chen Fu, and Qing
Xie. Is Data Privacy Always Good For Software Testing?
20th IEEE International Symposium on Software Reliability
Engineering (ISSRE'10), San Jose, CA, Nov 1-4, 2010.

Kunal Taneja, Mark Grechanik, Rayid Ghani, and Tao Xie.
Software Testing In Age of Data Privacy: A Balancing Act,
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), September 2011,
Szeged, Hungary.

Grechanik, M., McMillan, C., Dasgupta, T., Poshyvanyk,
D., Gethers, M. "Redacting Sensitive Information in

Software Artifacts", under review

Our Contributions

Goals of Our Solution

Enable Organizations to Balance Enable Organizations to Balance
Testing Utility and PrivacyTesting Utility and Privacy
by preserving test coverage while releasing
DCAs to external test centers with a controlled
disclosure of sensitive information.

Support Software EvolutionSupport Software Evolution
by re-anonymizing the original data multiple
times without enabling statistical data inference.

Keep original values Keep original values
in sanitized databases thus enabling testers to
achieve higher test coverage.

Ensure that Privacy MetricEnsure that Privacy Metric
measures the difficulty of attackers.

Different Quasi-Identifiers (Qis)
Affect Test Coverage Differently

Different QIs Affect Test
Coverage Differently

Different QIs Affect Test
Coverage Differently

Different QIs Affect Test
Coverage Differently

Different QIs Affect Test
Coverage Differently

Goals of Our Solution

Enable Organizations to Balance Enable Organizations to Balance
Testing Utility and PrivacyTesting Utility and Privacy
by preserving test coverage while releasing
DCAs to external test centers with a controlled
disclosure of sensitive information.

Support Software EvolutionSupport Software Evolution
by re-anonymizing the original data multiple
times without enabling statistical data inference.

Keep original values Keep original values
in sanitized databases thus enabling testers to
achieve higher test coverage.

Ensure that Privacy MetricEnsure that Privacy Metric
measures the difficulty of attackers.

Testing Utility/Privacy Graph

Privacy (P)

Coverage (C)

0
No privacy, no coverage

1Original
coverage

1full
privacy

Original
data

Ideal
Situation

Sad
RealityNightmare

A Main Goal
Enable stakeholders
to balance privacy
and utility of testing

Acceptable test
coverage

Desired Privacy

PRIvacy Equalizer for
Software Testing (PRIEST)

Weighting Database Attributes

if(nationality==“Japanese”)
{

………
if(age > 40 && age < 60) {

………
obj.computeQuote(disease);

}
} else if(zipcode == 53257) {
………

}

Rec Age ZipCode Nationality Disease

1 42 52000 American Ulcer

2 47 53000 Palauan Viral

3 51 32000 American Heart disease

4 55 32000 Japanese Gastritis

5 62 51000 Palauan Dyspepsia

6 67 35000 American Dyspepsia

50 lines of code

30 lines of code

20 lines of code

Weighting Database Attributes

if(nationality==“Japanese”)
{

………
if(age > 40 && age < 60) {

………
obj.computeQuote(disease);

}
} else if(zipcode == 53257) {
………

}

Rec Age ZipCode Nationality Disease

1 42 52000 American Ulcer

2 47 53000 Palauan Viral

3 51 32000 American Heart disease

4 55 32000 Japanese Gastritis

5 62 51000 Palauan Dyspepsia

6 67 35000 American Dyspepsia

50 lines of code

30 lines of code

20 lines of code

PRIEST Tool

PRIEST Privacy Metrics Are
Based on Guessing Anonymity

“Are these
the original values of QIs that

are used to generate a
sanitized record?

Intuition

Summary of Privacy Metrics

PRIEST Privacy Metric
Record Age Gender Race

Rec 1 3040 FM WB

Rec 2 4040 MM BH

Rec 3 4530 MF HW

Rec 4 3040 FM WH

Rec 1 Rec 2 Rec 3 Rec 4

Rec 1 0/3=0 3/3=1 1/3=0.33 0/3=0

Rec 2 0 0.66 0.66 0

Rec 3 1 0 0 1

Rec 4 0 0.66 0.66 0

Anonymized
Original

Extreme cases: diagonal and densely populated matrices

Results

the probability p of swapping original values

% of test
coverage

Results

the probability p of
swapping original values

% of test
coverage

k-anonymity

equivalent to k-anonimity > 5

What’s Next?

Privacy and Utilities

of different software

engineering tasks

Privacy St

Utility Ave

Software Engineering Hwy

EXIT NOW

Data Privacy Affects Different
Utilities of Software Engineering

Globally Distributed Software
Engineering Tasks

Data Owner
Corporation

Service Provider
Corporation

Sensitive information is the property of the
data owner and access to it is restricted

Globally Distributed Software
Engineering Tasks

Data Owner
Corporation

Service Provider
Corporation

Service providers need sensitive information to
render their services, however the owner

cannot release all this information

Attackers and Victims in the
Globally Distributed Context

Data Owner
Corporation

Service Provider
Corporation

Sensitive Information in
Software Engineering

1 2 3

Sensitive Information Is Handled at Every
Step of Software Development Lifecycle

Requirements
Gathering

Design Development

4

Testing

5

Maintenance
and Evolution

Comprehending Programs Is a
Significant Component of Project Cost

Source Code Is Difficult To
Understand, Maintain, Evolve

Program comprehension is one of rapidly growing
areas of software engineering.

54

A Way To Reduce Software Cost

• Use descriptive names and
comments to improve program
comprehension!

• Better program comprehension
reduces development time and
faults and improves quality of
maintenance and evolution tasks.

• Thus, descriptive names and
comments leads to reducing
software costs.

These names and comments often
include sensitive information

Programmers Need To Know Sensitive
Information To Build Software

Software engineers need all the information
that they can get to effectively create and maintain

software applications.

Programmers Encode Sensitive
Information in Software Artifacts

UNAWARE DEADLINE

GET JOB DONE DON’T CARE

Leaking Source Code With
Sensitive Information In It

• One in three companies
investigates a breach of
confidentiality at least
once a year

• Hundreds of incidents of
leaking proprietary source
code with sensitive
information in it using the
Internet

Source Code Leaks Are Serious

Source Code Leaks Are Serious

Source Code Leaks Are Serious

Source Code Leaks Are Serious

Source Code Leaks Are Serious

Who Leaked MS Source Code?

What Information Was Exposed?

Trade Secret Is an Example
of Sensitive Information

• For example, trade secret
is a kind of sensitive
information, which is not
generally known or
reasonably ascertainable.

• A business can obtain an
economic advantage over
competitors or customers
using trade secrets.

Attackers and Victims in the
Globally Distributed Context

Data Owner
Corporation

Service Provider
Corporation

How Do Programmers Encode
Sensitive Information?

SetorderItemSeqIdCompleted = FastSet.newInstance();
// for items that will be complete after invoicing
SetworkEffortIdCompleted = FastSet.newInstance();
// for work efforts that will be complete after invoicing
// (this service supports outsourced tasks only for now)

An example of sensitive information could be the fact that
a company outsources the manufacturing of some products
or components to external vendors, something that the company
does not wish to disclose.

How Do Programmers Encode
Sensitive Information?

<target name="create-admin-user-login"
description="Prompts for a user name, then creates a user login with admin

privileges and a temporary password equal to 'ofbiz'; after a succesful
login the user will be prompted for a new password.">

<input addproperty="userLoginId" message="Enter user admin (log in with the
temporary password 'ofbiz'):"/>

<antcall target="load-admin-user-login"/>
</target>

1. The attacker searches the web for common administrator login names;
2. The first top five results from Google reveal that the name “admin”

is common for different applications;
3. The attacker searches then the source code for the word “admin”;
4. Search results contain a build configuration file called build.xml;
5. This file contains the temporary password “ofbiz”

Redacting Sensitive Information in
Business and Requirements Docs

Removing sensitive words from business and
requirements documents leads to ambiguous

and misunderstood requirements, which often
lead to project failures.

How To Redact Sensitive
Information In Software?

SetorderItemSeqIdCompleted = FastSet.newInstance();
// for items that will be complete after invoicing
SetworkEffortIdCompleted = FastSet.newInstance();
// for work efforts that will be complete after invoicing
// (this service supports outsourced tasks only for now)

An example of sensitive information could be the fact that
a company outsources the manufacturing of some products
or components to external vendors, something that the company
does not wish to disclose.

How To Redact Sensitive
Information In Software?

SetorderItemSeqIdCompleted = FastSet.newInstance();
// for items that will be complete after invoicing
SetworkEffortIdCompleted = FastSet.newInstance();
// for work efforts that will be complete after invoicing
// (this service supports outsourced tasks only for now)

An example of sensitive information could be the fact that
a company outsources the manufacturing of some products
or components to external vendors, something that the company
does not wish to disclose.

Replace Names and Words
With Random Strings Or Blanks

dyi2qelFdf_7Qe2mPwzi3w0k_f = FastSet.newInstance();
// for items that will be complete after 1KsnrFRKRG
cBGrKy0WcREE740fR5Br4itsxd = FastSet.newInstance();
// for SBwpxDld_ea that will be complete after d9Fn0joS5
// (this service supports only for now)

An example of sensitive information could be the fact that
a company outsources the manufacturing of some products
or components to external vendors, something that the company
does not wish to disclose.

As difficult as it is to redact plain text
documents, there are no solutions for redacting

sensitive information in software artifacts.

Redact Sensitive Information In
Software Artifacts

Preserve Program
Comprehension

Guarantee syntactic and
semantic correctness of
the redacted artifacts

Remove sensitive
information from
software artifacts

How to do that?

Preserve Program
Comprehension

Guarantee syntactic and
semantic correctness of
the redacted artifacts

Remove sensitive
information from
software artifacts RESIST!!!

REdact Sensitive Information In
Software arTifacts

PC-Graph

Privacy (P)

Comprehension (C)

0
No privacy, no comprehension

1Original
comprehension

1full
privacy

Original
Software
artifacts

Ideal
Situation

Sad
RealityNightmare

Goals of RESIST
Enable stakeholders
to balance privacy
and utility of program
comprehension Acceptable

program
comprehension

Desired Privacy

A Key Idea

SetorderItemSeqIdCompleted = FastSet.newInstance();
// for items that will be complete after invoicing
SetworkEffortIdCompleted = FastSet.newInstance();
// for work efforts that will be complete after invoicing
// (this service supports outsourced tasks only for now)

An example of sensitive information could be the fact that
a company outsources the manufacturing of some products
or components to external vendors, something that the company
does not wish to disclose.

business worklabor contribution

transaction

A Key Idea

SetorderItemSeqIdCompleted = FastSet.newInstance();
// for items that will be complete after transaction
SetlaborcontributionIdCompleted = FastSet.newInstance();
// for laborcontribution that will be
// complete after transaction
// (this service supports business work only for now)

The key idea is to protect sensitive information by replacing
words that identify outsourcing to external vendors with
replacement words that hide the sensitive information to some
degree making it identification more difficult.

The Gist of RESIST

Finding Replacement Words
Using Association Rule Mining

Sensitive
Word HIV

Replacement
Word disease

Sd: 535,000,000

Sd/\H : 85,700,000

Replacement
Word AIDS

SA: 129,300,000

SA/\H: 124,000,000

C(disease=>HIV)=0.16 C(AIDS=>HIV)=0.96

Architecture of RESIST

Marked
BizDocs
Marked
BizDocs

Context Term
Locator

Context Term
Locator

The Web

Associative
Rule Mining
Algorithm

Associative
Rule Mining
Algorithm

Associative
Rules With
Confidence

And
Support

Rankings

Associative
Rules With
Confidence

And
Support

Rankings

Replacement
Term Finder
Replacement
Term Finder

List of Terms for
Replacement

List of Terms for
Replacement

Privacy/
Comprehension

Framework

Privacy/
Comprehension

Framework

Replacement
Strategies

Replacement
Strategies

Sanitized
Source
Code

Sanitized
Source
Code

Term/Code
References
Term/Code
References

Original
Source
Code

Original
Source
Code

Source Code
Refactoring

Engine

Source Code
Refactoring

Engine

Replacement strategies include combinations of PC values that
enables stakeholders to balance program comprehension and privacy

Privacy/Comprehension
Framework (PCF)

PCF combines privacy
and program

comprehension
metrics

Flexible and
language‐neutral

P/C
Framework

Conceptual
consistency of
redacted software
artifacts

Simplicity – no
significant manual

or intellectual
effort on

stakeholders

A Balancing Act

Comprehension

Comprehension in cognitive psychology and computational
linguistics is often defined using textual coherence. There are
many aspects of a discourse that contribute to coherence,
including co-reference, causal relationships, and connectives.

Program Comprehension

Illustration of Bad Modularity

P1 P3

P4

P2

P5
P6

Module P

Q1 Q3

Q4

Q2

Q5

Module Q

R1

R3

R2

Module R

Illustration of Good Modularity

P1 P3

P4

P2

P5
P6

Module P

Q1 Q3

Q4

Q2

Q5

Module Q

R1

R3

R2

Module R

Illustration of Good Modularity

P1 P3

P4

P2

P5
P6

Module P

Q1 Q3

Q4

Q2

Q5

Module Q

R1

R3

R2

Module R

Capturing conceptual
relations between the

names of different
identifiers is the essence of
the comprehension metric

InsuranceRate, medical

InsuranceR
ate, d

octordisease, m
edical

address, name, person

ad
dr

es
s,

 lo
ca

ti
on license, person

disease, medical, person

ad
d

re
ss

, d
oc

to
r InsuranceR

ate

Program Comprehension Metric

• Conceptual cohesion and coupling (C3) are
based on the analysis of textual information
in source code, expressed in comments
and identifiers [Poshyvanyk’06]
– C3 is the measure of the textual coherence of

classes within the context of the entire system.

• We use Latent Semantic Indexing to
analyze the textual information from source
code and compute C3.

PC-Graph For PersonalPages

C

P

PC-Graph For OneBook

C

P

PC-Graph For ImageJ

C

P

Explaining Results

LoadHIVPatientList

SaveHIVPatientList

The relationship between these methods is obvious
when reading the names of these methods

Explaining Results

LoadSickPatientList

SaveAilingPatientList

The sensitive word HIV is replaced with
the words Sick and Ailing

The relationship between these methods is not obvious
any more when reading the names of these methods

Looking Ahead
• Optimizing sensitive

word replacement

• Ensuring privacy for
evolving software

• Empirical evaluation

• Technology transfer

Existing Solutions to Protect Sensitive
Information for SE tasks

• “kb-Anonymity: A Model for Anonymized
Behavior-Preserving Test and Debugging Data” by Budi et
al., PLDI’11

• “Better Bug Reporting With Better Privacy” by Castro et
al., ASPLOS’08

• “Privacy and Utility for Defect Prediction: Experiments with
MORPH” by Peters and Menzies, ICSE’12

• “Scrash: A system for generating secure crash
information” by Broadwell et al., USENIX Security 2003.

• “Camouflage: Automated Anonymization of Field Data” by
Clause and Orso, ICSE 2011.

It Is Just the Tip of The Iceberg

Problems at the intersection of software development, distributed service
provision, and data privacy to allow application owners to release their
software artifacts to different service providers with guarantees that
sensitive information is removed from the source code and these artifacts
while preserving the utility of different software engineering tasks.

Looking Ahead

• Privacy ∩ program
comprehension;

• Privacy ∩ distributed computing,
including service-oriented apps;

• Privacy ∩ mining software
repositories;

• Privacy ∩ performance
engineering;

• Privacy ∩ fault tolerance;

• Languages that enables
programmers to write code with
controlled privacy.

Conclusions

Email: drmark@uic.edu and denys@cs.wm.edu

The Privacy Metric

Word

antiretroviral ….. antibacterial medical

Hospital 0.3 ….. 0.2 0.35

Invoicing 0.02 ….. 0.07 0.5

….. ….. ….. …..

HIV 0.13 ….. 0.4 0.3

Replace
Word

Entropy is a measure of privacy.
Entropy is equated with the average amount of information of some random process.
In our case, it is substituting sensitive words with replacement words whose
confidence is used as the probability of guessing the sensitive words by analyzing
their respective replacement words.

The Privacy Metric
Replace-
ment

The Privacy Metric

Word

antiretroviral ….. antibacterial medical

Hospital 0.3 ….. 0.2 0.35

Invoicing 0.02 ….. 0.07 0.5

….. ….. ….. …..

HIV 0.13 ….. 0.4 0.3

Original source code has the minimum entropy that shows
how non-sensitive words can identify sensitive words.
Maximum entropy is computed when all sensitive words
are replaced with random strings.
Entropy for source code with certain replacement words is
computed using confidence values for these words.

Replace
Word

The Minimum Entropy

Word

AIDS ….. HIV medical

Patient 0.3 ….. 0.2 0.35

AIDS 1 ….. 0.6 0.1

….. ….. ….. …..

HIV 0.13 ….. 0.4 0.3

Original source code has the minimum entropy that shows
how non-sensitive words can identify sensitive words.

Replace
Word

Patients = list.LoadHIVPatientList();
// for HIV patient record that will be invoiced
AIDSInvoice = Patients.CreateBilling();
boolean result = Patients.SaveHIVPatientList();
// save bills and modified records

The Maximum Entropy

Word

AIDS ….. HIV medical

Patient 0.3 ….. 0.2 0.35

AIDS 1 ….. 0.6 0.1

….. ….. ….. …..

HIV 0.13 ….. 0.4 0.3

Maximum entropy is computed when all sensitive words
are replaced with random strings.

Replace
Word

Patients = list.Load7R1LpmLPatientList();
// for Tg1VzcB patient record that will be invoiced
boT173fInvoice = Patients.CreateBilling();
boolean result = Patients.SaveOgw5bfHPatientList();
// save bills and modified records

The Replacement Words Entropy

Word

AIDS ….. HIV medical

Patient 0.3 ….. 0.2 0.35

AIDS 1 ….. 0.6 0.1

….. ….. ….. …..

HIV 0.13 ….. 0.4 0.3

Entropy for source code with certain replacement words is
computed using confidence values for these words.

Replace
Word

Patients = list.LoadSickPatientList();
// for ailing patient record that will be invoiced
MedicalInvoice = Patients.CreateBilling();
boolean result = Patients.SaveAilingPatientList();
// save bills and modified records

The Privacy Metric
Replace-
ment

Solution by Budi et al., PLDI’11
• kb-Anonymity: A model that provides

guidance on the anonymization questions
– How to anonymize

• Follow guidance provided by the k-anonymity
privacy model

– Each tuple has at least k-1 indistinguishable peers

• Generate concrete values always

• Remove indistinguishable tuples

– How useful is the anonymized data
• Preserve utility for testing and debugging

• Each anonymized tuple exhibits certain kinds of
behavior exhibited by original tuples

10
9

We acknowledge the authors of this paper for providing their original slides for this technical briefing

kb-Anonymity - Another View

• Anonymization function (i.e., value replacement
function) F: R R

11
0

Raw Dataset

t1=<f1,…,fi,…fn>
t2=<f1,…,fi,…fn>

……
tk=<f1,…,fi,…fn>

Raw Dataset

t1=<f1,…,fi,…fn>
t2=<f1,…,fi,…fn>

……
tk=<f1,…,fi,…fn>

Released Dataset

t1
r=<f1,…,fi

r,…fn>

Released Dataset

t1
r=<f1,…,fi

r,…fn>

F

• Each original tuple is mapped by F to at most one released tuple
• At least k original tuples are mapped to the same released tuple

We acknowledge the authors of this paper for providing their original slides for this technical briefing

kb-Anonymity Implementation
• Dynamic symbolic (a.k.a. concolic) execution with

controlled constraint generation and solving

11
1

We acknowledge the authors of this paper for providing their original slides for this technical briefing

