
ICSE16
Austin, TX

Doctoral Symposium
Wednesday, May 18th, 2016

Kevin Moran,
Mario Linares-Vásquez,
Carlos Bernal-Cárdenas,
and Denys Poshyvanyk

&

College of William & Mary - SEMERU - Department of Computer Science

FUSION: A Tool for Facilitating
and Augmenting Android Bug

Reporting

SE ERU

Images Courtesy of Google

Images Courtesy of Google

Images Courtesy of Google

Images Courtesy of Google

“If dissatisfied with the performance of a
mobile app, 48 percent of users would be

less likely to use the app again.”

“Dynatrace Mobile App Survey Report” - https://info.dynatrace.com/rs/compuware/images/
Mobile_App_Survey_Report.pdf  

Images Courtesy of Google

“If dissatisfied with the performance of a
mobile app, 48 percent of users would be

less likely to use the app again.”

“Dynatrace Mobile App Survey Report” - https://info.dynatrace.com/rs/compuware/images/
Mobile_App_Survey_Report.pdf  

Software maintenance, specifically the prompt
resolution of bug reports, is extremely
important to an application’s success.

EXISTING ISSUE TRACKERS & USER REVIEWS

EXISTING ISSUE TRACKERS & USER REVIEWS

• Allows for in-house debugging of field failures[1].

IN-FIELD FAILURE REPRODUCTION

James Clause and Alessandro Orso. 2007. A Technique for Enabling and Supporting Debugging of Field
Failures. In Proceedings of the 29th international conference on Software Engineering (ICSE '07)

Application Instrumenter Instrumented
Application

Debugging
Information

about Program
Failure

Field UsersApplication Developers

• Allows for in-house debugging of field failures[1].

IN-FIELD FAILURE REPRODUCTION

James Clause and Alessandro Orso. 2007. A Technique for Enabling and Supporting Debugging of Field
Failures. In Proceedings of the 29th international conference on Software Engineering (ICSE '07)

Application Instrumenter Instrumented
Application

Debugging
Information

about Program
Failure

Field UsersApplication Developers

IN-FIELD FAILURE REPRODUCTION

❖ Requires potentially expensive program instrumentation,
not suitable for a mobile environment.

❖ Requires oracles in order to capture and reproduce
failures in the field.

❖ May not be easily adaptable to the event-driven and
fragmented nature of mobile apps.

Reporters:
-Functional Knowledge of a

Software Bug.

Developers:
-Intimate Code Level Knowledge

of Application

Images Courtesy of Google

THE LEXICAL GAP IN BUG REPORTING

Reporters:
-Functional Knowledge of a

Software Bug.

Developers:
-Intimate Code Level Knowledge

of Application

Images Courtesy of Google

Inherent Lexical
Gap

THE LEXICAL GAP IN BUG REPORTING

WHAT MAKES A GOOD BUG REPORT ?

❖ Insufficient information in bug reports is one of the leading
causes of non-reproducible reports1

❖ Developers consider (i) steps to reproduce, (ii) stack traces,
and (iii) test cases/scenarios as the most helpful sources of
information in bug reports2

❖ Information needs are greatest earliest in a bug’s lifecycle3

1M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for me! characterizing non-reproducible bug reports. MSR 2014,
2N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann. What makes a good bug report? (SIGSOFT ’08/FSE-16),
3S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs in bug reports: Improving cooperation between developers and users. (CSCW)

 

Bug Reports

Static Code Analysis Dynamic Analysis

FUSION: THE KEY IDEA

Bug Reports

Static Code Analysis Dynamic Analysis

FUSION: THE KEY IDEA

Analysis Phase Report Generation Phase

2 - Dynamic Program
Analyzer (Engine)

.apk

 1 - Static App
Analyzer (Primer)

 3 -
FUSION
Database

or
app
src

Googlehttp://cs.wm.edu/semeruFUSION

Googlehttp://cs.wm.edu/semeru
FUSION

Testers

Application Developers

4 - Auto-
Completion

Engine

Physical Device or
Emulator

5 - Report Entry (FUSION UI)

6 - Generated Reports (FUSION UI)

FUSION: OVERVIEW

Analysis Phase Report Generation Phase

2 - Dynamic Program Analyzer (Engine)

.apk

1 - Static App Analyzer (Primer)

 3 -
FUSION
Database

apktool

dex2jar

jd-cmd
Decompiler

or
app
src

SrcML

Static Extraction of
Components and

Associated Attributes

Systematic DFS

Hierarchy
Viewer &

uiautomator

Step-by-Step
Execution

Engine

Screenshot
Capture

GUI-
Component
Information
Extraction

Googlehttp://cs.wm.edu/semeru
FUSION

Googlehttp://cs.wm.edu/semeru
FUSION

Testers

Application Developers

4 - Auto-
Completion

Engine

Physical Device or Emulator

5 - Report Entry (FUSION UI)

6 - Generated Reports (FUSION UI)

FUSION: ANALYSIS PHASE

FUSION: OVERVIEW

uiautomator

FUSION: OVERVIEW

uiautomator

FUSION: OVERVIEW

FUSION: OVERVIEW

FUSION: OVERVIEW

• Activity
• Checkable, Checked, Clickable, Long Clickable?
• Component Index
• Current Window
• Enabled?
• XML_ID
• Component Type
• Position (Absolute and Relative)
• Text
• Screenshot →

FUSION: OVERVIEW

 3 -
FUSION
Database

FUSION: OVERVIEW

FUSION: REPORT GENERATION PHASE
Analyze Phase Report Generation Phase

2 - Dynamic Program Analyzer (Engine)

.apk

1 - Static App Analyzer (Primer)

 3 -
FUSION
Database

apktool

dex2jar

jd-cmd
Decompiler

or
app
src

SrcML

Static Extraction of
Components and

Associated Attributes

Systematic DFS

Hierarchy
Viewer &

uiautomator

Step-by-Step
Execution

Engine

Screenshot
Capture

GUI-
Component
Information
Extraction

Googlehttp://cs.wm.edu/semeru
FUSION

Googlehttp://cs.wm.edu/semeru
FUSION

Testers

Application Developers

4 - Auto-
Completion
Engine

Physical Device or Emulator

5 - Report Entry (FUSION UI)

6 - Generated Reports (FUSION UI)

Is steps_history = 0?

Display
components
for the app’s

Main
Activity

Is steps_history >=2?No

Yes

Is
steps_history-

1 verified by
FUSION?

Is steps_history = 1
and is

steps_history-1
confirmed?

NoYes

Display
components from
previous activity

and possible
transition
activities.

Is
steps_history-2

verified by
FUSION?

Yes No

Display
components from

the activity in
steps_history-2
and two stages of

transition activities.

Display all
possible app
components.

Yes
No

Display components
from previous activity

and possible
transition activities.

Display components
from Main Activity

and two stages of
transition activities.

Yes No

FUSION: AUTO-COMPLETION ENGINE

Is steps_history = 0?

Display
components
for the app’s

Main
Activity

Is steps_history >=2?No

Yes

Is
steps_history-

1 verified by
FUSION?

Is steps_history = 1
and is

steps_history-1
confirmed?

NoYes

Display
components from
previous activity

and possible
transition
activities.

Is
steps_history-2

verified by
FUSION?

Yes No

Display
components from

the activity in
steps_history-2
and two stages of

transition activities.

Display all
possible app
components.

Yes
No

Display components
from previous activity

and possible
transition activities.

Display components
from Main Activity

and two stages of
transition activities.

Yes No

• FUSION tracks the users location in the app’s event-flow.

• Suggests only components from the current screen, and
possible transition screens, based on the last action.

• If steps cannot be autocompleted, FUSION expands the
number of components it displays.

FUSION: AUTO-COMPLETION ENGINE

• Empirical study involving two software maintenance tasks
and 28 users:

• Creating a bug report for a real app issue.

• Reproducing the bug on a device from a report.

• We used 15 real-world Android application bugs and
compare FUSION to the Google Code Issue Tracker
(GCIT) as well as the Original Bug Reports.

EMPIRICAL EVALUATION

26

App (Bug Index) Bug ID Min  
of Steps Bug Type DFS Activity

Coverage

1) A Time Tracker 24 3 GDE 1/5
2) Aarddict 106 4-5 GDE 3/6
3) ACV 11 5 C 3/11
4) Car report 43 10 DIC 5/6

5) Document
Viewer

48 4 NE 4/8
6) DroidWeight 38 7 GDE 3/8

7) Eshotroid 2 10 GDE/NE 6/6
8) GnuCash 256 10 DIC 3/4
9) GnuCash 247 10 DIC 3/4
10) Mileage 31 5 GDE/DIC 2/27

11) NetMBuddy 3 4 GDE/NE 5/13
12) Notepad 23 6 C 4/7

13) OI Notepad 187 10 GDE/DIC 3/9

14) Olam 2 3 C 1/1
15) QuickDic 85 5 GDE 3/6

Summary of the bug reports used for the empirical studies: GDE = GUI Display Error,
C = Crash, DIC = Data Input/Calculation Error, NE = Navigation Error

CONTEXT: BUG REPORTS USED IN THE
STUDY

• Goal: To assess whether FUSION’s features are useful when
reporting bugs for Android apps.

• Eight students from W&M, 4 CS graduate students, 4
undergraduate students.

• Users were exposed to the bugs through titled videos.

• All participants reproduced bugs on Google Nexus 7
Tablets with Android v4.4.3 KitKat installed.

TASK 1: BUG REPORT CREATION

• Goal: Evaluate the ability of FUSION to improve the
reproducibility of bug reports

• 20 participants, all CS graduate students

• 135 bug reports were evaluated (120 from Study 1, plus
the 15 original bug reports), each by two participants

• All participants reproduced bugs on Google Nexus 7
Tablets with Android v4.4.3 KitKat installed

TASK 2: BUG REPRODUCTION

• RQ1: Ease of Use?

• RQ2: Information Preferences?

• RQ3: Reproducibility of Reports?

• RQ4: Speed of Reproduction?

RESEARCH QUESTIONS

• RQ1: Ease of Use?

• RQ2: Information Preferences?

• RQ3: Reproducibility of Reports?

• RQ4: Speed of Reproduction?

RESEARCH QUESTIONS

•RQ1: FUSION is about as easy for developers to use as
traditional bug-tracking systems

• RQ2: Extra Information increased quality of reports

• RQ3: FUSION reports are more reproducible than traditional
bug reports

• RQ4: Developers take slightly longer to reproduce FUSION
Reports than traditional reports

Credits: Jacob Lisi, Ulises Giacoman, Sarah Melvin, Jiangnan Fu

Credits: Jacob Lisi, Ulises Giacoman, Sarah Melvin, Jiangnan Fu

Questions?

Thank you!

www.fusion-android.com

http://www.fusion-android.com

ADDITIONAL SLIDES

MANUAL TESTING

MANUAL TESTING

AUTOMATED TESTING

AUTOMATED TESTING

AUTOMATED TESTING

THE CURRENT STATE OF AUTOMATED
MOBILE APPLICATION TESTING

Tool Name Instr. GUI
Exploration

Types of
Events

Crash
Resilient

Replayable Test
Cases

NL Crash
Reports

Emulators,
Devices

Dynodroid Yes Guided/Random System, GUI, Text Yes No No No
EvoDroid No System/Evo GUI No No No N/A

AndroidRipper Yes Systematic GUI, Text No No No N/A
MobiGUItar Yes Model-Based GUI, Text No Yes No N/A

A3E DFS Yes Systematic GUI No No No Yes
A3E Targeted

[20]
Yes Model-Based GUI No No No Yes

Swifthand Yes Model-Based GUI, Text N/A No No Yes
PUMA Yes Programmable System, GUI, Text N/A No No Yes

ACTEve Yes Systematic GUI N/A No No Yes
VANARSena Yes Random System, GUI, Text Yes Yes No N/A

Thor Yes Test Cases Test Case Events N/A N/A No No
QUANTUM Yes Model-Based System, GUI N/A Yes No N/A
AppDoctor Yes Multiple System, GUI, Text Yes Yes No N/A

ORBIT No Model-Based GUI N/A No No N/A
SPAG-C No Record/Replay GUI N/A N/A No No

JPF-Android No Scripting GUI N/A Yes No N/A
MonkeyLab No Model-based GUI, Text No Yes No Yes
CrashDroid No Manual Rec/Replay GUI, Text Manual Yes Yes Yes
SIG-Droid No Symbolic GUI, Text N/A Yes No N/A

CrashScope No Systematic GUI, Text, System Yes Yes Yes Yes

THE CURRENT STATE OF AUTOMATED
MOBILE APPLICATION TESTING

Tool Name Instr. GUI
Exploration

Types of
Events

Crash
Resilient

Replayable Test
Cases

NL Crash
Reports

Emulators,
Devices

Dynodroid Yes Guided/Random System, GUI, Text Yes No No No
EvoDroid No System/Evo GUI No No No N/A

AndroidRipper Yes Systematic GUI, Text No No No N/A
MobiGUItar Yes Model-Based GUI, Text No Yes No N/A

A3E DFS Yes Systematic GUI No No No Yes
A3E Targeted

[20]
Yes Model-Based GUI No No No Yes

Swifthand Yes Model-Based GUI, Text N/A No No Yes
PUMA Yes Programmable System, GUI, Text N/A No No Yes

ACTEve Yes Systematic GUI N/A No No Yes
VANARSena Yes Random System, GUI, Text Yes Yes No N/A

Thor Yes Test Cases Test Case Events N/A N/A No No
QUANTUM Yes Model-Based System, GUI N/A Yes No N/A
AppDoctor Yes Multiple System, GUI, Text Yes Yes No N/A

ORBIT No Model-Based GUI N/A No No N/A
SPAG-C No Record/Replay GUI N/A N/A No No

JPF-Android No Scripting GUI N/A Yes No N/A
MonkeyLab No Model-based GUI, Text No Yes No Yes
CrashDroid No Manual Rec/Replay GUI, Text Manual Yes Yes Yes
SIG-Droid No Symbolic GUI, Text N/A Yes No N/A

CrashScope No Systematic GUI, Text, System Yes Yes Yes Yes

What are the limitations of current
automated approaches?

LIMITATIONS OF AUTOMATED MOBILE
TESTING AND DEBUGGING

• Lack of detailed, easy to understand testing results for faults/
crashes1

• No easy way to reproduce test scenarios1

• Not practical from a developers viewpoint

• Few approaches enable different strategies capable of
generating text and testing contextual features

1S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for Android: Are we there
yet? In 30th IEEE/ACM International Conference on Automated Software Engineering (ASE 2015), 2015

PAST STUDIES OF MOBILE
CRASHES AND BUGS

• Many crashes can be mapped to well-defined, externally
inducible faults1

• Contextual features, such as network connectivity and screen
rotation, account for many of these externally inducible faults12

• These dominant root causes can affect many different user
execution paths1

1L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Automatic and scalable fault detection for mobile applications. MobiSys ’14
2R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of oracles for testing user-interaction features of mobile apps, ICST ’14

CRASHSCOPE DESIGN

GUI Ripping Engine

.apk

or

app
src

Physical Device or Emulator

Augmented Natural Language Report Generator

Android
UIAutomator

Event Execution
Engine

(adb input &
telnet)

—Touch Event
—GUI Component

Information
—Screenshots

Crash after last
step?

YesNo

Execution
Finished?

No Yes

Decision Engine

Determine next
<Action, GUI>

Event to Execute

Enable/Disable
Activity/App

Features

Crash Execution Script Generator

Web Based
Application Bug Report

(JSP, MySQL, and
Bootstrap)

Crash Execution Script Replayer

Googlehttp://cs.wm.edu/semeru
CrashScope Report

Database
Parser

CrashScope
Script

Generator

Replay
Script
Parser

Contextual
Event

Interperter /
adb Replayer

Physical Device
or Emulator

Contextual Event
Execution
(telnet

commands)

Event Execution
Engine

(adb sendevent
& adb input)

Save
Execution

Information

4

5

6 7

2

Continue
Execution

CrashScope
Database

3

 Step
Processor

Database
Parser

App
Executions
Containing
Crashes

Replay Script Tuples
<adb shell input tap 780 1126>
<adb shell input text ‘abc!@#’>

<Disable_Network>
<Disable_GPS>

App
Executions
Containing
Crashes

Contextual Feature Extractor1

.apk
decompiler

(if necessary)

Android
Application

Manifest File
Parser API Extractor

Rotatable
Activities

App and
Activity Level
Contextual
Features

App and
Activity Level
Contextual
Features

CRASHSCOPE DESIGN

1

GUI Ripping Engine

.apk

or

app
src

Physical Device or Emulator

Augmented Natural Language Report Generator

Android
UIAutomator

Event Execution
Engine

(adb input &
telnet)

—Touch Event
—GUI Component

Information
—Screenshots

Crash after last
step?

YesNo

Execution
Finished?

No Yes

Decision Engine

Determine next
<Action, GUI>

Event to Execute

Enable/Disable
Activity/App

Features

Crash Execution Script Generator

Web Based
Application Bug Report

(JSP, MySQL, and
Bootstrap)

Crash Execution Script Replayer

Googlehttp://cs.wm.edu/semeru
CrashScope Report

Database
Parser

CrashScope
Script

Generator

Replay
Script
Parser

Contextual
Event

Interperter /
adb Replayer

Physical Device
or Emulator

Contextual Event
Execution
(telnet

commands)

Event Execution
Engine

(adb sendevent
& adb input)

Save
Execution

Information

4

5

6 7

2

Continue
Execution

CrashScope
Database

3

 Step
Processor

Database
Parser

App
Executions
Containing
Crashes

Replay Script Tuples
<adb shell input tap 780 1126>
<adb shell input text ‘abc!@#’>

<Disable_Network>
<Disable_GPS>

App
Executions
Containing
Crashes

Contextual Feature Extractor1

.apk
decompiler

(if necessary)

Android
Application

Manifest File
Parser API Extractor

Rotatable
Activities

App and
Activity Level
Contextual
Features

App and
Activity Level
Contextual
Features

CRASHSCOPE DESIGN

1 II

GUI Ripping Engine

.apk

or

app
src

Physical Device or Emulator

Augmented Natural Language Report Generator

Android
UIAutomator

Event Execution
Engine

(adb input &
telnet)

—Touch Event
—GUI Component

Information
—Screenshots

Crash after last
step?

YesNo

Execution
Finished?

No Yes

Decision Engine

Determine next
<Action, GUI>

Event to Execute

Enable/Disable
Activity/App

Features

Crash Execution Script Generator

Web Based
Application Bug Report

(JSP, MySQL, and
Bootstrap)

Crash Execution Script Replayer

Googlehttp://cs.wm.edu/semeru
CrashScope Report

Database
Parser

CrashScope
Script

Generator

Replay
Script
Parser

Contextual
Event

Interperter /
adb Replayer

Physical Device
or Emulator

Contextual Event
Execution
(telnet

commands)

Event Execution
Engine

(adb sendevent
& adb input)

Save
Execution

Information

4

5

6 7

2

Continue
Execution

CrashScope
Database

3

 Step
Processor

Database
Parser

App
Executions
Containing
Crashes

Replay Script Tuples
<adb shell input tap 780 1126>
<adb shell input text ‘abc!@#’>

<Disable_Network>
<Disable_GPS>

App
Executions
Containing
Crashes

Contextual Feature Extractor1

.apk
decompiler

(if necessary)

Android
Application

Manifest File
Parser API Extractor

Rotatable
Activities

App and
Activity Level
Contextual
Features

App and
Activity Level
Contextual
Features

CRASHSCOPE: EXPLORATION

CRASHSCOPE: EXPLORATION

CRASHSCOPE STRATEGIES

• GUI-Traversal: Top-Down & Bottom Up

• Text Entry: Expected, Unexpected, No Text

• Contextual Features: Enabled or Disabled

CRASHSCOPE DEMO

CRASHSCOPE DEMO

CRASHSCOPE: REPORTS

CRASHSCOPE: REPORTS

CRASHSCOPE: REPORTS

EVALUATION

• Two Empirical Studies

• Study 1: Crash Detection Capabilities

• Study 2: Crash Report Reproducibility and
Readability

STUDY 1: CRASH RESULTS

App A3E GUI- Ripper Dynodroid PUMA Monkey (All) CrashScope
A2DP Vol 1 0 0 0 0 0

aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1

BatteryDog 0 0 1 0 1 0
Soundboard 0 1 0 0 0 0

AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0

Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1

PassMaker 1 0 0 0 1 1
BlinkBattery

D&C
0 0 0 0 1 0

D&C 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0

Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0

Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1

Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0)

Unique Crashes Discovered With Instrumented Crashes in Parentheses

STUDY 1: CRASH RESULTS

App A3E GUI- Ripper Dynodroid PUMA Monkey (All) CrashScope
A2DP Vol 1 0 0 0 0 0

aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1

BatteryDog 0 0 1 0 1 0
Soundboard 0 1 0 0 0 0

AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0

Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1

PassMaker 1 0 0 0 1 1
BlinkBattery

D&C
0 0 0 0 1 0

D&C 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0

Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0

Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1

Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0)

Unique Crashes Discovered With Instrumented Crashes in Parentheses

STUDY 1: CRASH RESULTS

App A3E GUI- Ripper Dynodroid PUMA Monkey (All) CrashScope
A2DP Vol 1 0 0 0 0 0

aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1

BatteryDog 0 0 1 0 1 0
Soundboard 0 1 0 0 0 0

AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0

Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1

PassMaker 1 0 0 0 1 1
BlinkBattery

D&C
0 0 0 0 1 0

D&C 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0

Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0

Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1

Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0)

Unique Crashes Discovered With Instrumented Crashes in Parentheses

-CrashScope is about as effective as
other techniques with regard to
uncovering crashes.

-CrashScope is able to uncover
orthogonal crashes

STUDY 2: READABILITY RESULTS

Question CrashScope
Mean

CrashScope
StdDev Original Mean Original StdDev

UX1: I think I would like to have this
type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report
was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report
very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very
useful for reproducing the crash. 4.13 0.62 3.44 0.89

STUDY 2: READABILITY RESULTS

Question CrashScope
Mean

CrashScope
StdDev Original Mean Original StdDev

UX1: I think I would like to have this
type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report
was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report
very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very
useful for reproducing the crash. 4.13 0.62 3.44 0.89

STUDY 2: READABILITY RESULTS

Question CrashScope
Mean

CrashScope
StdDev Original Mean Original StdDev

UX1: I think I would like to have this
type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report
was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report
very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very
useful for reproducing the crash. 4.13 0.62 3.44 0.89

STUDY 2: READABILITY RESULTS

Question CrashScope
Mean

CrashScope
StdDev Original Mean Original StdDev

UX1: I think I would like to have this
type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report
was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report
very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very
useful for reproducing the crash. 4.13 0.62 3.44 0.89

- Reports generated by CrashScope are
more readable and reproducible

CRASHSCOPE: A PRACTICAL TOOL

CRASHSCOPE: A PRACTICAL TOOL

LOOKING FORWARD:
POTENTIAL RESEARCH MAP

&

The Starting Point

&

The Starting Point On-Device
Bug Reporting

FUSION: ON-DEVICE BUG REPORTING

Advisees:
Richard Bonnet,
Brendan Otten,

Daniel Park

FUSION: ON-DEVICE BUG REPORTING

Advisees:
Richard Bonnet,
Brendan Otten,

Daniel Park

&

The Starting Point On-Device
Bug Reporting

&

The Starting Point Improving Related
Maintenance Tasks

On-Device
Bug Reporting

&

The Starting Point Improving Related
Maintenance Tasks

Large-Scale Dynamic
Analysis

On-Device
Bug Reporting

&

The Starting Point Improving Related
Maintenance Tasks

Large-Scale Dynamic
Analysis

On-Device
Bug Reporting

FUSION for
Web-Apps

&

The Starting Point Improving Related
Maintenance Tasks

Large-Scale Dynamic
Analysis

User Reviews Bug Reports

Inferring Bug Reports
from User Reviews

On-Device
Bug Reporting

FUSION for
Web-Apps

RESULTS: REPRODUCTION TIME

54

Bug Report Type Avg Time to
Reproduce

FUSION (E) 3:15

FUSION(I) 2:35

Google Code (E) 1:46

Google Code (I) 1:46

Original 1:59

FUSION Average 2:55

Google Code
Average 1:46

Average Time to Reproduce Bug
by Bug Report Type

RESULTS: REPRODUCTION TIME

54

Bug Report Type Avg Time to
Reproduce

FUSION (E) 3:15

FUSION(I) 2:35

Google Code (E) 1:46

Google Code (I) 1:46

Original 1:59

FUSION Average 2:55

Google Code
Average 1:46

Average Time to Reproduce Bug
by Bug Report Type

RESULTS: REPRODUCTION TIME

54

Bug Report Type Avg Time to
Reproduce

FUSION (E) 3:15

FUSION(I) 2:35

Google Code (E) 1:46

Google Code (I) 1:46

Original 1:59

FUSION Average 2:55

Google Code
Average 1:46

Average Time to Reproduce Bug
by Bug Report Type

RESULTS: REPRODUCTION TIME

54

Bug Report Type Avg Time to
Reproduce

FUSION (E) 3:15

FUSION(I) 2:35

Google Code (E) 1:46

Google Code (I) 1:46

Original 1:59

FUSION Average 2:55

Google Code
Average 1:46

Average Time to Reproduce Bug
by Bug Report Type

RESULTS: REPRODUCTION

Bug Report Type # of Bugs that were
not reproduced

FUSION (E) 5

FUSION(I) 8

Google Code (E) 8

Google Code (I) 15

Original 11

FUSION Total 13

Google Code
Total

23

% of Bugs reproduced by Bug Report Type

RESULTS: REPRODUCTION

Bug Report Type # of Bugs that were
not reproduced

FUSION (E) 5

FUSION(I) 8

Google Code (E) 8

Google Code (I) 15

Original 11

FUSION Total 13

Google Code
Total

23

% of Bugs reproduced by Bug Report Type

RESULTS: REPRODUCTION

Bug Report Type # of Bugs that were
not reproduced

FUSION (E) 5

FUSION(I) 8

Google Code (E) 8

Google Code (I) 15

Original 11

FUSION Total 13

Google Code
Total

23

% of Bugs reproduced by Bug Report Type

RESULTS: REPRODUCTION

Bug Report Type # of Bugs that were
not reproduced

FUSION (E) 5

FUSION(I) 8

Google Code (E) 8

Google Code (I) 15

Original 11

FUSION Total 13

Google Code
Total

23

% of Bugs reproduced by Bug Report Type

• Extracts run-time information of components
exercised.

• Extracts the XML GUI Hierarchy using
UIAutomator subroutines.

• Able to detect when execution leaves the subject
app, and re-launch the app.

DYNAMIC PROGRAM ANALYZER (ENGINE)

58

CONTEXT: BUG REPORTS USED IN THE STUDY

58

CONTEXT: BUG REPORTS USED IN THE STUDY

59

USER EXPERIENCE (UX) QUESTIONS

Question Identifier Question

UX1 I think that I would like to have this type of bug
report/system frequently.

UX2 I found this type of bug report/system unnecessarily
complex.

UX3 I thought this type of bug report/system was easy to
read/use.

UX4 I found this type of bug report/system very
cumbersome to read/use.

UX5 I thought the bug report/system was really useful for
reporting/reproducing the bug

60

USER PREFERENCE (UP) QUESTIONS

Question Identifier Question

UP1 What information from this <system> did you find
useful for reporting/reproducing the bug?

UP2 What other information (if any) would you like to see
in this <system>?

UP3 What elements do you like the most from this
<system>?

UP4 What elements do you like the least from this
<system>?

61

BUG REPORTING TIME RESULTS: FUSION

Bug Index App Participant #1
(Experienced)

Participant #2
(Experienced)

Participant #3
(Inexperienced)

Participant #4
(Inexperienced)

1 A Time Tracker 7:48 11:30 24:30 2:01
2 Aarddict 4:12 4:10 3:30 4:51
3 ACV 2:27 5:30 8:18 05:14
4 Car Report 12:21 4:50* 15:45 8:00*
5 Document

Viewer
4:03* 5:10 16:32* 6:38*

6 Droid Weight 3:10* 2:10* 7:43* 6:09
7 Eshotroid 7:30 6:30 10:29 6:21
8 GnuCash 9:45 7:10* 18:45 08:23
9 GnuCash 9:23 7:30 20:03 9:27
10 Mileage 2:22* 5:10 7:07 3:04*
11 NetMBuddy 2:02 3:15 4:00 1:27
12 Notepad 3:53 3:20 4:45 3:14
13 OI Notepad 5:15 9:20 13:30 6:17
14 Olam 1:23 2:20 2:30 1:40
15 QuickDic 2:58 2:10 2:40 2:01

Average 5:14 5:20 10:40 4:59

61

BUG REPORTING TIME RESULTS: FUSION

Bug Index App Participant #1
(Experienced)

Participant #2
(Experienced)

Participant #3
(Inexperienced)

Participant #4
(Inexperienced)

1 A Time Tracker 7:48 11:30 24:30 2:01
2 Aarddict 4:12 4:10 3:30 4:51
3 ACV 2:27 5:30 8:18 05:14
4 Car Report 12:21 4:50* 15:45 8:00*
5 Document

Viewer
4:03* 5:10 16:32* 6:38*

6 Droid Weight 3:10* 2:10* 7:43* 6:09
7 Eshotroid 7:30 6:30 10:29 6:21
8 GnuCash 9:45 7:10* 18:45 08:23
9 GnuCash 9:23 7:30 20:03 9:27
10 Mileage 2:22* 5:10 7:07 3:04*
11 NetMBuddy 2:02 3:15 4:00 1:27
12 Notepad 3:53 3:20 4:45 3:14
13 OI Notepad 5:15 9:20 13:30 6:17
14 Olam 1:23 2:20 2:30 1:40
15 QuickDic 2:58 2:10 2:40 2:01

Average 5:14 5:20 10:40 4:59

61

BUG REPORTING TIME RESULTS: FUSION

Bug Index App Participant #1
(Experienced)

Participant #2
(Experienced)

Participant #3
(Inexperienced)

Participant #4
(Inexperienced)

1 A Time Tracker 7:48 11:30 24:30 2:01
2 Aarddict 4:12 4:10 3:30 4:51
3 ACV 2:27 5:30 8:18 05:14
4 Car Report 12:21 4:50* 15:45 8:00*
5 Document

Viewer
4:03* 5:10 16:32* 6:38*

6 Droid Weight 3:10* 2:10* 7:43* 6:09
7 Eshotroid 7:30 6:30 10:29 6:21
8 GnuCash 9:45 7:10* 18:45 08:23
9 GnuCash 9:23 7:30 20:03 9:27
10 Mileage 2:22* 5:10 7:07 3:04*
11 NetMBuddy 2:02 3:15 4:00 1:27
12 Notepad 3:53 3:20 4:45 3:14
13 OI Notepad 5:15 9:20 13:30 6:17
14 Olam 1:23 2:20 2:30 1:40
15 QuickDic 2:58 2:10 2:40 2:01

Average 5:14 5:20 10:40 4:59

62

BUG REPORTING TIME RESULTS: GCIT

Bug Index App Participant #1
(Experienced)

Participant #2
(Experienced)

Participant #3
(Inexperienced)

Participant #4
(Inexperienced)

1 A Time Tracker 4:16 7:30 1:51 1:56

2 Aarddict 3:33 8:25 2:13 2:22
3 ACV 2:37 11:10 0:51 1:42
4 Car Report 2:52 12:23 0:40 2:39
5 Document

Viewer
3:15 9:31 0:45 1:46

6 Droid Weight 2:33 7:13 1:03 1:45
7 Eshotroid 2:08 5:27 1:47 1:03
8 GnuCash 2:40 6:48 1:15 2:30
9 GnuCash 6:20 5:12 1:40 2:22
10 Mileage 3:53 5:25 1:00 1:16
11 NetMBuddy 3:52 3:13 1:20 1:48
12 Notepad 2:02 4:32 1:01 1:23
13 OI Notepad 3:16 6:25 0:58 1:12
14 Olam 4:26 3:13 1:16 1:49
15 QuickDic 1:37 03:17 0:55 0:59

Average 3:17 6:39 1:14 1:46

62

BUG REPORTING TIME RESULTS: GCIT

Bug Index App Participant #1
(Experienced)

Participant #2
(Experienced)

Participant #3
(Inexperienced)

Participant #4
(Inexperienced)

1 A Time Tracker 4:16 7:30 1:51 1:56

2 Aarddict 3:33 8:25 2:13 2:22
3 ACV 2:37 11:10 0:51 1:42
4 Car Report 2:52 12:23 0:40 2:39
5 Document

Viewer
3:15 9:31 0:45 1:46

6 Droid Weight 2:33 7:13 1:03 1:45
7 Eshotroid 2:08 5:27 1:47 1:03
8 GnuCash 2:40 6:48 1:15 2:30
9 GnuCash 6:20 5:12 1:40 2:22
10 Mileage 3:53 5:25 1:00 1:16
11 NetMBuddy 3:52 3:13 1:20 1:48
12 Notepad 2:02 4:32 1:01 1:23
13 OI Notepad 3:16 6:25 0:58 1:12
14 Olam 4:26 3:13 1:16 1:49
15 QuickDic 1:37 03:17 0:55 0:59

Average 3:17 6:39 1:14 1:46

62

BUG REPORTING TIME RESULTS: GCIT

Bug Index App Participant #1
(Experienced)

Participant #2
(Experienced)

Participant #3
(Inexperienced)

Participant #4
(Inexperienced)

1 A Time Tracker 4:16 7:30 1:51 1:56

2 Aarddict 3:33 8:25 2:13 2:22
3 ACV 2:37 11:10 0:51 1:42
4 Car Report 2:52 12:23 0:40 2:39
5 Document

Viewer
3:15 9:31 0:45 1:46

6 Droid Weight 2:33 7:13 1:03 1:45
7 Eshotroid 2:08 5:27 1:47 1:03
8 GnuCash 2:40 6:48 1:15 2:30
9 GnuCash 6:20 5:12 1:40 2:22
10 Mileage 3:53 5:25 1:00 1:16
11 NetMBuddy 3:52 3:13 1:20 1:48
12 Notepad 2:02 4:32 1:01 1:23
13 OI Notepad 3:16 6:25 0:58 1:12
14 Olam 4:26 3:13 1:16 1:49
15 QuickDic 1:37 03:17 0:55 0:59

Average 3:17 6:39 1:14 1:46

EASE OF USE: WHAT DID WE LEARN?

• RQ1: Is FUSION easier to use for reporting/reproducing bugs than
traditional bug tracking systems?

❖ FUSION is about as easy for developers to use as a traditional
bug tracking system

❖ FUSION is more difficult for inexperienced users to use than
traditional bug tracking systems

63

• FUSION is about as easy for developers to use as a
traditional bug tracking system

• FUSION is more difficult for inexperienced users to use
than traditional bug tracking systems

BUG REPORTING UX: WHAT DID WE LEARN?

64

• RQ2: What types of information fields do developers/testers
consider important when reporting and reproducing bugs in
Android?

• While reporters generally felt that the opportunity to enter
extra information in a bug report using FUSION increased the
quality of their reports, inexperienced users would have
preferred a simpler web UI.

64

REPRODUCTION TIME: WHAT DID WE LEARN?

6565

❖ RQ4: Do bug reports generated with FUSION allow for faster bug
reproduction compared to reports submitted using traditional bug
tracking systems?

❖ Bug reports generated with FUSION do not allow for faster
reproduction of bugs compared bug reports generated using
traditional bug tracking systems such as the GCIT.

65

REPRODUCTION UX: WHAT DID WE LEARN?

666666

❖ RQ2: Is FUSION easier to use for reporting/reproducing bugs than
traditional bug tracking systems?

❖ Participants preferred FUSION over the original bug reports
and GCIT over FUSION

❖ Some participants thought the FUSION steps were overly
detailed.

66

BUG REPORTING UX: WHAT DID WE LEARN?

6767

❖ What elements do you like most from the system?

❖ Experienced User: “The GUI component form and the action/
event. They provide an easy way to report the steps.”

❖ Inexperienced User: “The parts where you could simply type
out the issue”

BUG REPORTING UX: WHAT DID WE LEARN?

68

• RQ3: Do developers/testers using FUSION reproduce more bugs
compared to traditional bug tracking systems?

• Developers using FUSION are able to reproduce more bugs
compared to traditional bug tracking systems such as the GCIT.

68

Analysis Phase Report Generation Phase

2 - Dynamic Program Analyzer (Engine)

.apk

1 - Static App Analyzer (Primer)

 3 -
FUSION
Database

apktool

dex2jar

jd-cmd
Decompiler

or
app
src

SrcML

Static Extraction of
Components and

Associated Attributes

Systematic DFS

Hierarchy
Viewer &

uiautomator

Step-by-Step
Execution

Engine

Screenshot
Capture

GUI-
Component
Information
Extraction

Googlehttp://cs.wm.edu/semeru
FUSION

Googlehttp://cs.wm.edu/semeru
FUSION

Testers

Application Developers

4 - Auto-
Completion

Engine

Physical Device or Emulator

5 - Report Entry (FUSION UI)

6 - Generated Reports (FUSION UI)

FUSION: ANALYSIS PHASE

FUSION: REPORT GENERATION PHASE
Analyze Phase Report Generation Phase

2 - Dynamic Program Analyzer (Engine)

.apk

1 - Static App Analyzer (Primer)

 3 -
FUSION
Database

apktool

dex2jar

jd-cmd
Decompiler

or
app
src

SrcML

Static Extraction of
Components and

Associated Attributes

Systematic DFS

Hierarchy
Viewer &

uiautomator

Step-by-Step
Execution

Engine

Screenshot
Capture

GUI-
Component
Information
Extraction

Googlehttp://cs.wm.edu/semeru
FUSION

Googlehttp://cs.wm.edu/semeru
FUSION

Testers

Application Developers

4 - Auto-
Completion
Engine

Physical Device or Emulator

5 - Report Entry (FUSION UI)

6 - Generated Reports (FUSION UI)

STUDY 2: REPRODUCIBILITY RESULTS

Type of Crash
Report

of Total/Non-
Reproducible

Reports

Original Bug
Reports 59/64

CrashScope Bug
Reports 60/64

0.91

0.918

0.925

0.933

0.94

Original CrashScope
% of Bug Reports Reproduced by Type

STUDY 2: REPRODUCIBILITY RESULTS

Type of Crash
Report

of Total/Non-
Reproducible

Reports

Original Bug
Reports 59/64

CrashScope Bug
Reports 60/64

0.91

0.918

0.925

0.933

0.94

Original CrashScope
% of Bug Reports Reproduced by Type

-CrashScope reports are about as
reproducible as other reports

STUDY 1: SUMMARY OF FINDINGS

• RQ1: CrashScope is nearly as effective at discovering
crashes as the other tools, without reporting crashes
caused by instrumentation

• RQ2&3: CrashScope’s differing strategies led to the
discovery of unique crashes

• RQ4: Higher statement coverage does not necessarily
correspond with crash detection capabilities

STUDY 1: EXPERIMENTAL SETUP

• 61 subject applications from the Androtest1 toolset
• Each testing tool was run 5 separate times for 1

hour, whereas CrashScope ran through all strategies
• Monkey was limited by the number of events

Tool Name Android Version Tool Type

Monkey Any Random

A3E Depth-First Any Systematic

GUI-Ripper Any Model-Based

Dynodroid v2.3 Random-Based

PUMA v4.1+ Random-Based

TOOLS USED IN
THE

COMPARATIVE
FAULT FINDING

STUDY

1S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for Android: Are we there
yet? In 30th IEEE/ACM International Conference on Automated Software Engineering (ASE 2015), 2015

STUDY 1: STATEMENT COVERAGE RESULTS

●

●

CrashScope
Puma

GUI−Ripper
Dynodroid

A3E
Monkey−100
Monkey−200
Monkey−300
Monkey−400
Monkey−500
Monkey−600
Monkey−700

0 20 40 60 80

Average Statement Coverage Results for the Comparative Study
Reported in Average %

STUDY 1: STATEMENT COVERAGE RESULTS

●

●

CrashScope
Puma

GUI−Ripper
Dynodroid

A3E
Monkey−100
Monkey−200
Monkey−300
Monkey−400
Monkey−500
Monkey−600
Monkey−700

0 20 40 60 80

Average Statement Coverage Results for the Comparative Study
Reported in Average %

STUDY 2: EXPERIMENTAL SETUP

• 8 Real-World Crash
Reports from Open
Source Apps

• 16 Graduate Students
from the College of
William & Mary 

Application Name # of Reproduction Steps

BMI 4

Schedule 7

adsdroid 2

Anagram-solver 7

Eyecam 14

GNU Cash 29

Olam 2

CardGame Scores 23

• Each student attempted to reproduce 8 bugs: 4 from
the original reports, 4 from CrashScope Reports

• Participants used a Nexus 7 tablet for reproduction

STUDY 2: SUMMARY OF FINDINGS

• RQ5: Reports generated by CrashScope are
about as reproducible as human written reports
extracted from open-source issue trackers  
 

• RQ6: Reports generated by CrashScope are more
readable and useful from a developers’
perspective compared to human-written reports. 

• RQ1: Ease of Use?

• RQ2: Information Preferences?

• RQ3: Reproducibility of Reports?

• RQ4: Speed of Reproduction?

RESEARCH QUESTIONS

• RQ1: Ease of Use?

• RQ2: Information Preferences?

• RQ3: Reproducibility of Reports?

• RQ4: Speed of Reproduction?

RESEARCH QUESTIONS

•RQ1: FUSION is about as easy for developers to use as
traditional bug-tracking systems

• RQ2: Extra Information increased quality of reports

• RQ3: FUSION reports are more reproducible than traditional
bug reports

• RQ4: Developers take slightly longer to reproduce FUSION
Reports than traditional reports

