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CATEGORIES OF AUTOMATED TESTING 
APPROACHES FOR MOBILE APPS

• Model-based input generation

• Random-based input generation

• Record and replay

• Others (Manual Testing Frameworks)



THE CURRENT STATE OF AUTOMATED 
MOBILE APPLICATION TESTING

Tool Name Instr. GUI 
Exploration 

Types of 
Events 

Crash 
Resilient 

Replayable Test 
Cases 

NL Crash 
Reports

Emulators, 
Devices

Dynodroid Yes Guided/Random System, GUI, Text Yes No No No 
EvoDroid No System/Evo GUI No No No N/A 

AndroidRipper Yes Systematic GUI, Text No No No N/A 
MobiGUItar Yes Model-Based GUI, Text No Yes No N/A 

A3E DFS Yes Systematic GUI No No No Yes 
A3E Targeted 

[20] 
Yes Model-Based GUI No No No Yes 

Swifthand Yes Model-Based GUI, Text N/A No No Yes 
PUMA Yes Programmable System, GUI, Text N/A No No Yes 

ACTEve Yes Systematic GUI N/A No No Yes 
VANARSena Yes Random System, GUI, Text Yes Yes No N/A 

Thor Yes Test Cases Test Case Events N/A N/A No No 
QUANTUM Yes Model-Based System, GUI N/A Yes No N/A 
AppDoctor Yes Multiple System, GUI, Text Yes Yes No N/A 

ORBIT No Model-Based GUI N/A No No N/A 
SPAG-C No Record/Replay GUI N/A N/A No No 

JPF-Android No Scripting GUI N/A Yes No N/A 
MonkeyLab No Model-based GUI, Text No Yes No Yes 
CrashDroid No Manual Rec/Replay GUI, Text Manual Yes Yes Yes 
SIG-Droid No Symbolic GUI, Text N/A Yes No N/A 

CrashScope No Systematic GUI, Text, System Yes Yes Yes Yes 
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What are the limitations of current 
automated approaches?



LIMITATIONS OF AUTOMATED MOBILE 
TESTING AND DEBUGGING

• Lack of detailed, easy to understand testing results for faults/
crashes1

• No easy way to reproduce test scenarios1

• Not practical from a developers viewpoint

• Few approaches enable different strategies capable of 
generating text and testing contextual features

1S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for Android: Are we there 
yet? In 30th IEEE/ACM International Conference on Automated Software Engineering (ASE 2015), 2015 



PAST STUDIES OF MOBILE
CRASHES AND BUGS

• Many crashes can be mapped to well-defined, externally 
inducible faults1

• Contextual features, such as network connectivity and screen 
rotation, account for many of these externally inducible faults12

• These dominant root causes can affect many different user 
execution paths1

1L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Automatic and scalable fault detection for mobile applications. MobiSys ’14
2R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of oracles for testing user-interaction features of mobile apps, ICST ’14 



OUR SOLUTION: CRASHSCOPE

• Completely automated approach

• Generates detailed, expressive bug reports and repayable scripts

• A practical tool, requiring no instrumentation framework, or 
modification to the OS or applications

• Capable of running on both physical devices and emulators

• Differing execution strategies able to test contextual features
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CRASHSCOPE: ANALYSIS

GUI Ripping Engine
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• Activity
• Checkable, Checked, Clickable, Long Clickable?
• Component Index
• Current Window
• Enabled?
• XML_ID
• Component Type
• Position (Absolute and Relative)
• Text 
• Screenshot →

CRASHSCOPE: EXPLORATION
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CRASHSCOPE STRATEGIES

• GUI-Traversal: Top-Down & Bottom Up

• Text Entry: Expected, Unexpected, No Text

• Contextual Features: Enabled or Disabled



CRASHSCOPE: REPORT AND SCRIPT 
GENERATION
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EVALUATION

• Two Empirical Studies

• Study 1: Crash Detection Capabilities

• Study 2: Crash Report Reproducibility and 
Readability



STUDY 1: CRASH DETECTION & COVERAGE

• RQ1: Crash Detection Effectiveness? 

• RQ2: Orthogonality of Crashes? 

• RQ3: Effectiveness of Individual Strategies? 

• RQ4: Does Crash Detection Correlate with 
Code Coverage?



STUDY 1: EXPERIMENTAL SETUP

• 61 subject applications from the Androtest1 toolset
• Each testing tool was run 5 separate times for 1 

hour, whereas CrashScope ran through all strategies
• Monkey was limited by the number of events

Tool Name Android Version Tool Type 

Monkey Any Random

A3E Depth-First Any Systematic

GUI-Ripper Any Model-Based

Dynodroid v2.3 Random-Based

PUMA v4.1+ Random-Based

TOOLS USED IN 
THE 

COMPARATIVE 
FAULT FINDING 

STUDY 

1S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for Android: Are we there 
yet? In 30th IEEE/ACM International Conference on Automated Software Engineering (ASE 2015), 2015 



STUDY 1: CRASH RESULTS

App A3E GUI- Ripper Dynodroid PUMA Monkey (All) CrashScope
A2DP Vol 1 0 0 0 0 0

aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1

BatteryDog 0 0 1 0 1 0
Soundboard 0 1 0 0 0 0

AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0

Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1

PassMaker 1 0 0 0 1 1
BlinkBattery 

D&C 
0 0 0 0 1 0

D&C 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0

Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0

Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1

Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0) 

Unique Crashes Discovered With Instrumented Crashes in Parentheses
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STUDY 1: STATEMENT COVERAGE RESULTS
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STUDY 1: SUMMARY OF FINDINGS

• RQ1: CrashScope is nearly as effective at discovering 
crashes as the other tools, without reporting crashes 
caused by instrumentation

• RQ2&3: CrashScope’s differing strategies led to the 
discovery of unique crashes

• RQ4: Higher statement coverage does not necessarily 
correspond with crash detection capabilities



STUDY 2: REPRODUCIBILITY & READABILITY

• RQ5: Reproducibility of CrashScope Reports? 
 

• RQ6:Readability of CrashScope Reports? 



STUDY 2: EXPERIMENTAL SETUP

• 8 Real-World Crash 
Reports from Open 
Source Apps

• 16 Graduate Students 
from the College of 
William & Mary 

Application Name # of Reproduction Steps

BMI 4

Schedule 7

adsdroid 2

Anagram-solver 7

Eyecam 14

GNU Cash 29

Olam 2

CardGame Scores 23

• Each student attempted to reproduce 8 bugs: 4 from 
the original reports, 4 from CrashScope Reports

• Participants used a Nexus 7 tablet for reproduction



STUDY 2: REPRODUCIBILITY RESULTS

Type of Crash 
Report

# of Total/Non- 
Reproducible 

Reports

Original Bug 
Reports 59/64

CrashScope Bug 
Reports 60/64

0.91

0.918

0.925

0.933

0.94

Original CrashScope
% of Bug Reports Reproduced by Type



STUDY 2: READABILITY RESULTS

Question CrashScope 
Mean 

CrashScope 
StdDev Original Mean Original StdDev

UX1: I think I would like to have this 
type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report 
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report 
was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report 
very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very 
useful for reproducing the crash.  4.13 0.62 3.44 0.89
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STUDY 2: SUMMARY OF FINDINGS

• RQ5: Reports generated by CrashScope are 
about as reproducible as human written reports 
extracted from open-source issue trackers  
 

• RQ6:Reports generated by CrashScope are more 
readable and useful from a developers’ 
perspective compared to human-written reports. 



CRASHSCOPE: A PRACTICAL TOOL
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THE CRASHSCOPE TEAM

Carlos

Chris

Mario

Dr. Denys Poshyvanyk



Any Questions?

Thank you!

http://www.cs.wm.edu/semeru/data/ICST16-CrashScope/


