
ICST16
Chicago, IL

Tuesday, April 12th, 2016

Kevin Moran,
Mario Linares-Vásquez,
Carlos Bernal-Cárdenas,
Christopher Vendome,
& Denys Poshyvanyk

&

College of William & Mary - SEMERU - Department of Computer Science

Automatically Discovering, Reporting
and Reproducing Android

Application Crashes

2

2

MANUAL TESTING

MANUAL TESTING

AUTOMATED TESTING

AUTOMATED TESTING

AUTOMATED TESTING

CATEGORIES OF AUTOMATED TESTING
APPROACHES FOR MOBILE APPS

• Model-based input generation

• Random-based input generation

• Record and replay

• Others (Manual Testing Frameworks)

THE CURRENT STATE OF AUTOMATED
MOBILE APPLICATION TESTING

Tool Name Instr. GUI
Exploration

Types of
Events

Crash
Resilient

Replayable Test
Cases

NL Crash
Reports

Emulators,
Devices

Dynodroid Yes Guided/Random System, GUI, Text Yes No No No
EvoDroid No System/Evo GUI No No No N/A

AndroidRipper Yes Systematic GUI, Text No No No N/A
MobiGUItar Yes Model-Based GUI, Text No Yes No N/A

A3E DFS Yes Systematic GUI No No No Yes
A3E Targeted

[20]
Yes Model-Based GUI No No No Yes

Swifthand Yes Model-Based GUI, Text N/A No No Yes
PUMA Yes Programmable System, GUI, Text N/A No No Yes

ACTEve Yes Systematic GUI N/A No No Yes
VANARSena Yes Random System, GUI, Text Yes Yes No N/A

Thor Yes Test Cases Test Case Events N/A N/A No No
QUANTUM Yes Model-Based System, GUI N/A Yes No N/A
AppDoctor Yes Multiple System, GUI, Text Yes Yes No N/A

ORBIT No Model-Based GUI N/A No No N/A
SPAG-C No Record/Replay GUI N/A N/A No No

JPF-Android No Scripting GUI N/A Yes No N/A
MonkeyLab No Model-based GUI, Text No Yes No Yes
CrashDroid No Manual Rec/Replay GUI, Text Manual Yes Yes Yes
SIG-Droid No Symbolic GUI, Text N/A Yes No N/A

CrashScope No Systematic GUI, Text, System Yes Yes Yes Yes

THE CURRENT STATE OF AUTOMATED
MOBILE APPLICATION TESTING

Tool Name Instr. GUI
Exploration

Types of
Events

Crash
Resilient

Replayable Test
Cases

NL Crash
Reports

Emulators,
Devices

Dynodroid Yes Guided/Random System, GUI, Text Yes No No No
EvoDroid No System/Evo GUI No No No N/A

AndroidRipper Yes Systematic GUI, Text No No No N/A
MobiGUItar Yes Model-Based GUI, Text No Yes No N/A

A3E DFS Yes Systematic GUI No No No Yes
A3E Targeted

[20]
Yes Model-Based GUI No No No Yes

Swifthand Yes Model-Based GUI, Text N/A No No Yes
PUMA Yes Programmable System, GUI, Text N/A No No Yes

ACTEve Yes Systematic GUI N/A No No Yes
VANARSena Yes Random System, GUI, Text Yes Yes No N/A

Thor Yes Test Cases Test Case Events N/A N/A No No
QUANTUM Yes Model-Based System, GUI N/A Yes No N/A
AppDoctor Yes Multiple System, GUI, Text Yes Yes No N/A

ORBIT No Model-Based GUI N/A No No N/A
SPAG-C No Record/Replay GUI N/A N/A No No

JPF-Android No Scripting GUI N/A Yes No N/A
MonkeyLab No Model-based GUI, Text No Yes No Yes
CrashDroid No Manual Rec/Replay GUI, Text Manual Yes Yes Yes
SIG-Droid No Symbolic GUI, Text N/A Yes No N/A

CrashScope No Systematic GUI, Text, System Yes Yes Yes Yes

What are the limitations of current
automated approaches?

LIMITATIONS OF AUTOMATED MOBILE
TESTING AND DEBUGGING

• Lack of detailed, easy to understand testing results for faults/
crashes1

• No easy way to reproduce test scenarios1

• Not practical from a developers viewpoint

• Few approaches enable different strategies capable of
generating text and testing contextual features

1S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for Android: Are we there
yet? In 30th IEEE/ACM International Conference on Automated Software Engineering (ASE 2015), 2015

PAST STUDIES OF MOBILE
CRASHES AND BUGS

• Many crashes can be mapped to well-defined, externally
inducible faults1

• Contextual features, such as network connectivity and screen
rotation, account for many of these externally inducible faults12

• These dominant root causes can affect many different user
execution paths1

1L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Automatic and scalable fault detection for mobile applications. MobiSys ’14
2R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of oracles for testing user-interaction features of mobile apps, ICST ’14

OUR SOLUTION: CRASHSCOPE

• Completely automated approach

• Generates detailed, expressive bug reports and repayable scripts

• A practical tool, requiring no instrumentation framework, or
modification to the OS or applications

• Capable of running on both physical devices and emulators

• Differing execution strategies able to test contextual features

CRASHSCOPE DESIGN

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

CRASHSCOPE DESIGN

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

1

CRASHSCOPE DESIGN

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

1
II

CRASHSCOPE: ANALYSIS

GUI Ripping Engine

.apk

or

app
src

Physical Device or Emulator

Augmented Natural Language Report Generator

Android
UIAutomator

Event Execution
Engine

(adb input &
telnet)

—Touch Event
—GUI Component

Information
—Screenshots

Crash after
last step?

YesNo

Execution
Finished?

No Yes

Decision Engine

Determine next
<Action, GUI>

Event to Execute

Enable/Disable
Activity/App

Features

Crash Execution Script Generator

Web Based
Application Bug Report

(JSP, MySQL, and
Bootstrap)

Crash Execution Script Replayer

Googlehttp://cs.wm.edu/semeru
CrashScope Report

Database
Parser

CrashScope
Script

Generator

Replay
Script
Parser

Contextual
Event

Interperter /
adb Replayer

Physical Device
or Emulator

Contextual Event
Execution
(telnet

commands)

Event Execution
Engine

(adb sendevent
& adb input)

Save
Execution

Information

4

5

6 7

2

Continue
Execution

CrashScope
Database

3

 Step
Processor

Database
Parser

App
Executions
Containing
Crashes

Replay Script Tuples
<adb shell input tap 780 1126>
<adb shell input text ‘abc!@#’>

<Disable_Network>
<Disable_GPS>

App
Executions
Containing
Crashes

Contextual Feature Extractor1

.apk
decompiler

(if necessary)

Android
Application

Manifest File
Parser API Extractor

Rotatable
Activities

App and
Activity Level
Contextual
Features

App and
Activity Level
Contextual
Features

CRASHSCOPE: EXPLORATION

CRASHSCOPE: EXPLORATION

CRASHSCOPE: EXPLORATION

CRASHSCOPE: EXPLORATION

uiautomator

CRASHSCOPE: EXPLORATION

uiautomator

CRASHSCOPE: EXPLORATION

CRASHSCOPE: EXPLORATION

• Activity
• Checkable, Checked, Clickable, Long Clickable?
• Component Index
• Current Window
• Enabled?
• XML_ID
• Component Type
• Position (Absolute and Relative)
• Text
• Screenshot →

CRASHSCOPE: EXPLORATION

CRASHSCOPE: EXPLORATION

CRASHSCOPE: EXPLORATION

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

CRASHSCOPE STRATEGIES

• GUI-Traversal: Top-Down & Bottom Up

• Text Entry: Expected, Unexpected, No Text

• Contextual Features: Enabled or Disabled

CRASHSCOPE: REPORT AND SCRIPT
GENERATION

Augmented Natural Language Report Generator

Crash Execution Script Generator

Web Based
Application Bug Report

(JSP, MySQL, and
Bootstrap)

Crash Execution Script Replayer

Googlehttp://cs.wm.edu/semeru
CrashScope Report

Database
Parser

CrashScope
Script

Generator

Replay
Script
Parser

Contextual
Event

Interperter /
adb

Replayer
Physical Device

or Emulator
Contextual

Event Execution
(telnet

commands)

Event Execution
Engine

(adb sendevent &
adb input)

4

5

6 7

CrashScope
Database

3

 Step
Processor

Database
Parser

App
Executions
Containing
Crashes

Replay Script Tuples
<adb shell input tap 780 1126>
<adb shell input text ‘abc!@#’>

<Disable_Network>
<Disable_GPS>

App
Executions
Containing
Crashes

CRASHSCOPE DEMO

CRASHSCOPE DEMO

CRASHSCOPE: REPORTS

CRASHSCOPE: REPORTS

CRASHSCOPE: REPORTS

CRASHSCOPE: REPORTS

CRASHSCOPE: REPORTS

CRASHSCOPE: REPORTS

EVALUATION

• Two Empirical Studies

• Study 1: Crash Detection Capabilities

• Study 2: Crash Report Reproducibility and
Readability

STUDY 1: CRASH DETECTION & COVERAGE

• RQ1: Crash Detection Effectiveness? 

• RQ2: Orthogonality of Crashes? 

• RQ3: Effectiveness of Individual Strategies? 

• RQ4: Does Crash Detection Correlate with
Code Coverage?

STUDY 1: EXPERIMENTAL SETUP

• 61 subject applications from the Androtest1 toolset
• Each testing tool was run 5 separate times for 1

hour, whereas CrashScope ran through all strategies
• Monkey was limited by the number of events

Tool Name Android Version Tool Type

Monkey Any Random

A3E Depth-First Any Systematic

GUI-Ripper Any Model-Based

Dynodroid v2.3 Random-Based

PUMA v4.1+ Random-Based

TOOLS USED IN
THE

COMPARATIVE
FAULT FINDING

STUDY

1S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for Android: Are we there
yet? In 30th IEEE/ACM International Conference on Automated Software Engineering (ASE 2015), 2015

STUDY 1: CRASH RESULTS

App A3E GUI- Ripper Dynodroid PUMA Monkey (All) CrashScope
A2DP Vol 1 0 0 0 0 0

aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1

BatteryDog 0 0 1 0 1 0
Soundboard 0 1 0 0 0 0

AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0

Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1

PassMaker 1 0 0 0 1 1
BlinkBattery

D&C
0 0 0 0 1 0

D&C 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0

Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0

Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1

Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0)

Unique Crashes Discovered With Instrumented Crashes in Parentheses

STUDY 1: CRASH RESULTS

App A3E GUI- Ripper Dynodroid PUMA Monkey (All) CrashScope
A2DP Vol 1 0 0 0 0 0

aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1

BatteryDog 0 0 1 0 1 0
Soundboard 0 1 0 0 0 0

AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0

Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1

PassMaker 1 0 0 0 1 1
BlinkBattery

D&C
0 0 0 0 1 0

D&C 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0

Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0

Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1

Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0)

Unique Crashes Discovered With Instrumented Crashes in Parentheses

STUDY 1: STATEMENT COVERAGE RESULTS

●

●

CrashScope
Puma

GUI−Ripper
Dynodroid

A3E
Monkey−100
Monkey−200
Monkey−300
Monkey−400
Monkey−500
Monkey−600
Monkey−700

0 20 40 60 80

Average Statement Coverage Results for the Comparative Study
Reported in Average %

STUDY 1: STATEMENT COVERAGE RESULTS

●

●

CrashScope
Puma

GUI−Ripper
Dynodroid

A3E
Monkey−100
Monkey−200
Monkey−300
Monkey−400
Monkey−500
Monkey−600
Monkey−700

0 20 40 60 80

Average Statement Coverage Results for the Comparative Study
Reported in Average %

STUDY 1: SUMMARY OF FINDINGS

• RQ1: CrashScope is nearly as effective at discovering
crashes as the other tools, without reporting crashes
caused by instrumentation

• RQ2&3: CrashScope’s differing strategies led to the
discovery of unique crashes

• RQ4: Higher statement coverage does not necessarily
correspond with crash detection capabilities

STUDY 2: REPRODUCIBILITY & READABILITY

• RQ5: Reproducibility of CrashScope Reports? 
 

• RQ6:Readability of CrashScope Reports? 

STUDY 2: EXPERIMENTAL SETUP

• 8 Real-World Crash
Reports from Open
Source Apps

• 16 Graduate Students
from the College of
William & Mary 

Application Name # of Reproduction Steps

BMI 4

Schedule 7

adsdroid 2

Anagram-solver 7

Eyecam 14

GNU Cash 29

Olam 2

CardGame Scores 23

• Each student attempted to reproduce 8 bugs: 4 from
the original reports, 4 from CrashScope Reports

• Participants used a Nexus 7 tablet for reproduction

STUDY 2: REPRODUCIBILITY RESULTS

Type of Crash
Report

of Total/Non-
Reproducible

Reports

Original Bug
Reports 59/64

CrashScope Bug
Reports 60/64

0.91

0.918

0.925

0.933

0.94

Original CrashScope
% of Bug Reports Reproduced by Type

STUDY 2: READABILITY RESULTS

Question CrashScope
Mean

CrashScope
StdDev Original Mean Original StdDev

UX1: I think I would like to have this
type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report
was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report
very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very
useful for reproducing the crash. 4.13 0.62 3.44 0.89

STUDY 2: READABILITY RESULTS

Question CrashScope
Mean

CrashScope
StdDev Original Mean Original StdDev

UX1: I think I would like to have this
type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report
was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report
very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very
useful for reproducing the crash. 4.13 0.62 3.44 0.89

STUDY 2: READABILITY RESULTS

Question CrashScope
Mean

CrashScope
StdDev Original Mean Original StdDev

UX1: I think I would like to have this
type of bug report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report
was easy to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report
very cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very
useful for reproducing the crash. 4.13 0.62 3.44 0.89

STUDY 2: SUMMARY OF FINDINGS

• RQ5: Reports generated by CrashScope are
about as reproducible as human written reports
extracted from open-source issue trackers  
 

• RQ6:Reports generated by CrashScope are more
readable and useful from a developers’
perspective compared to human-written reports. 

CRASHSCOPE: A PRACTICAL TOOL

CRASHSCOPE: A PRACTICAL TOOL

CONCLUSION

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

Physical Device or Emulator

CONCLUSION

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

Physical Device or Emulator

CONCLUSION

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

Physical Device or Emulator

CONCLUSION

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

Physical Device or Emulator

CONCLUSION

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

Physical Device or Emulator

THE CRASHSCOPE TEAM

Carlos

Chris

Mario

Dr. Denys Poshyvanyk

Any Questions?

Thank you!

http://www.cs.wm.edu/semeru/data/ICST16-CrashScope/

