FUDelft

Parameterizing and Assembling
IR-based Solutions for SE Tasks using
Genetic Algorithms

Annibale Panichella, Bogdan Dit, Rocco Oliveto,
Max Di Penta, Denys Poshyvanyk and Andrea De Lucia

Information Retrieval

600

papers in 10 years

30

applications in S.E.

An Infarn

Test Case Prior|

Noname manuscript No.
(will be inserted by the editor)

Integrating
for Changi

9

fion Retrieval Methods

E we o w

Can Better Identifier Splitting Techniques Help Feature Location?

Huzefa Kagdi', M

Bogdan Dit', Latifa Guerrouj’, Denys Poshyvanyk', Giuliano Antoniol®

JJ—— | 2
Wichita State Uni 'Department of Computer Science ‘Dcpartécnem of Computer Science Engineering
2 Ini ; The College of William and Mary ole Polytechnique de Montréal
University of Mal Williamsburg, Virginia, USA Québec, Canada
The College of W {bdit, denys}@cs.wm.edu {1atifa.guerrouj, giuliano.antoniol} @polymtl.ca

Traceclipse: An Eclipse Plug-in for Traceability Link
Recovery and Management

Samuel Klock, Malcom Gethers, Bogdan Dit, Denys Poshyvanyk
Department of Computer Science
The College of William and Mary
Williamsburg, VA 23185
{skkloc,mgethers,bdit,denys}@cs.wm.edu

ABSTRACT

Traceability link recovery is an active research area in soft-
ware engineering with a number of open research questions
and challenges, due to the substantial costs and challenges
associated with software maintenance. We propose Trace-
clipse, an Eclipse plug-in that integrates some similar char-
acteristics of traceability link recovery techniques in one
easy-to-use suite. The tool enables software developers to
specify, view, and manipulate traceability links within Eclipse
and it provides an API through which recovery techniques
may be added, specified, and run within an integrated de-
velopment environment. The paper also presents initial case
studies aimed at evaluating the proposed plug-in.

Categories and Subject Descriptors

D.2.7 [Software Engineering): Distribution, Maintenance,
and Enha ent—D tation

General Terms

Documentation; Management.

Keywords

Traceability, information retrieval.

1. INTRODUCTION

The contribution of this paper is a tool for traceability link
recovery and management that supports existing techniques
described elsewhere in the literature. We introduce Trace-
clipse, a plug-in for Eclipse IDE that provides a user-friendly
interface to traceability link recovery techniques and enables
developers to manage traceability links (i.e., accept or reject
those discovered automatically, manually specify links, and
store links) in an intuitive and easy way.

2. TRACEABILITY LINKS RECOVERY US-
ING INFORMATION RETRIEVAL

Traceclipse is intended to provide support mainly for IR-
based traceability link recovery techniques, although sup-
port may be added without significant difficulty for other
retrospective techniques or prospective techniques. Here, we
briefly discuss traceability links recovery techniques based
on information retrieval.

The basic steps take the following form. First, a corpus for
the target artifacts (i.e., set of software artifacts being traced
onto) is constructed. After construction, preprocessing (i.e.,
the removal of non-literals, the splitting of identifiers, the
removal of stop words, etc.) is applied.

An information retrieval technique is then applied to index
the corpus and each element of the source artifacts (i.e., set
of artifacts being traced) is converted into a query that is
then compared to each document in the corpus. In a typical
usage scenario. a list of the most similar pairings of source

on that is used by
er traceability links
fte features in source
[16, 32] employed a
f source code, based
intrinsic pattern in
upport a range of
Due to the large
software system and
id by programming
1 concepts and their
ently ambiguous, as
|in the code [28].
lalyzing the textual
recognized by the
nity only recently.
& proposed and used
insion tasks, such as
bility link recovery.
y in their scope, but
1echanisms, corpus
[dentifier splitting is
feature location or
24,27, 29], since it
nation encoded in
The widely adopted
tting algorithm, with
Samurai [11] and
erature.
cct of three identifier
ii and manually built
if feature location in
drmation. The main
tudy is if we had a
such as a manually
accuracy of feature
ent scenarios and
n we investigate two
based on IR and the
of IR and dynamic
and features using
g strategies on two
Our findings reveal
R can benefit from
t their improvement
litting over state-of-
icant. However, the

Information Retrieval

Use Case UC 11.4

Use Case Insert Laboratory Data

Description The user inserts the data of a specific
laboratory

Events 1. The user opens the Laboratory GUI
2. The user inserts the Laboratory data

GUILaboratoryData.java

/* *This class implements the GUI for
managing laboratories data */

public class GUILaboratoryData {
private jFrame window;
private jButton i1nsert;

public GUILaboratoryData () {
window = new JFrame () ;
insert = new JButton|();

}

Information Retrieval

Use Case UC 11.4

Insert Laboratory Data

Description user inserts data specific
laboratory
Events user opens Laboratory
GUI

user inserts Laboratory
data

GUILaboratoryData.java

class implements GUI
managing laboratories data

GUILaboratoryData
- JFrame window
- JButton insert

GUILaboratoryData
window JFrame
insert JButton

Information Retrieval

Use Case UC 11.4

Insert Laboratory Data

Description user inserts data specific
laboratory
Events user opens Laboratory
GUI

user inserts Laboratory
data

GUILaboratoryData.java

class implements GUI
managing laboratories data

GUI Laboratory Data
Frame window;
7 Button insert;

GUI Laboratory Data
window JFrame
insert JButton

Information Retrieval

Use Case UC 11.4

Insert Laboratory Data

Description user inserts data specific
laboratory
Events user opens Laboratory
GUI
user inserts Laboratory
data

GUILaboratoryData.java

. Textual

=42% |

Similarity |memr———e—

class implements
managing laboratories data

GUI Laboratory Data
window

insert

GUI

GUI Laboratory Data

Frame window;

7 Button insert;

JFrame
JButton!

IR Process

Software Artifacts
|

o B
1

Term Stop-Word Morphological Term IR Methods Distal?ce
Extraction List / Function Analysis Weighting Function

Software Maintenance task:
- Traceability Recovery
Source code labelling
Bug duplication
Feature Location

IR Process

Software Artifacts
|

g
l

Term Stop-Word Morphological Term Distance

: AR IR Methods :
Extraction List / Function Analysis Weighting Function

1 No stop word

1 Stop-word function

© Java stop-word list

: English stop-word list
ltalian stop-word list

: No Stemmer ¢ Boolean
| Porter ¢ Term Freq
1 English Snowball . TF-IDF

¢ ltalian Snowball | Log(TF+1)
¢ Entropy

+ Special Chars.
: Digits
{ White space

! LSI (k)

| LDA (a, B, n, k)
! VSM

| PLSI

Cosine Similarity
+ Hellinger Distance
¢ Jaccard Dist.
: Euclidean

<

Software Maintenance task:
- Traceability Recovery

- Source code labelling

- Bug duplication

- Feature Location

IR Process

Software Artifacts

|

g
v

Term
Extraction

Special Chars.
: Digits
{ White space

1 No stop word

1 Stop-word function
© Java stop-word list
: English stop-word list

Stop-Word
List / Function

Morphological Term Distance

Boolean ¢ LSI (k)

; Term Freq 1 LDA (a, B, n, k)
¢ TF-IDF ! VSM

¢ Log(TF+1) ! PLSI
¢ Entropy |

¢ No Stemmer
1 Porter
English Snowball

Cosine Similarity
1 Hellinger Distance
¢ Jaccard Dist.
! Euclidean

<

Software Maintenance task:
- Traceability Recovery

- Source code labelling

- Bug duplication

- Feature Location

¢ Italian Snowball

ltalian stop-word list

confiquration
o wse? "

What is the “best” IR process?

On the Equivalence of Information Retrieval Methods
for Automated Traceability Link Recovery

Rocco Oliveto®, Malcom Gethers!, Denys Poshyvanyk!, Andrea De Lucia*
*Department of Mathematics and Informatics, University of Salerno, via Ponte don Mellilo, Fisciano (SA), Italy
’Compuler Science Department, The College of William and Mary, Williamsburg, VA 23185, USA

@ "

1o
roli it

Abstract—Different IR hods have been
recovering traceability links b code and d
So far, there is no clear winner among the exploited IR
techniques. In this paper we present an empirical study
aiming at statisticall lyzing the equival of several IR-
based traceability recovery methods. The analysis is based
on Principal Component Analysis and on the analysis of the
overlap of the set of candidate links provided by each method.
The studied techniques are three widely used IR methods —
i.e., the Jensen-Shannon (JS) method, Vector Space Model
(VSM), and Latent Semantic Indexing (LSI) - and Latent
Dirichlet Allocation (LDA), an IR method previously used
to support other software engineering tasks but never used
for traceability recovery. The results show that while the
three methods previously used for traceability recovery are
equivalent, LDA is able to capture a dimension unique to the
set of i which we i h "y gh the
accuracy of LDA is lower than previously used methods, in
several cases the combination of LDA with other IR methods
improves the traceability recovery accuracy of stand-alone
methods.

Keywords-Traceability Recovery; Vector Space Model; La-
tent Semantic Indexing; Jensen-Shannon method; Latent
Dirichlet Allocation; Empirical Studies.

prop

d for

I. INTRODUCTION

Maintaining dependencies (traceability links) b dif-
ferent types of software artifacts is widely recognized as an
important support activity both during initial system devel-
opment and also during the ongoing change management
process. In particular, traceability links between the free
text d iated with the develop and
maintenance cycle of a software system and its source code
is helpful in a number of tasks — such as requirement cover-
age, program comprehension and impact analysis. Software
artifact traceability is also considered as a “best practice”
by numerous major software engineering standards (such as
CMMI or ISO 15504).

Unfortunately, blishing and maintaining traceability
links between software artifacts is a time ing, error
prone, and person-power i ive task. Consequently, de-

spite the advantages that can be gained, effective traceability
is rarely established unless there is a regulatory reason for
doing so. Extensive effort in the software engineering com-
munity (both h and ial) has been brough

s@cs.wm.edu, denys@cs.wm.edu, adelucia@unisa.it

forth to imp: the explicit ion of d ion
and source code. Promising results have been achieved using
Information Retrieval (IR) techniques [1], [2] for traceability
recovery (3], [4], (5], [6], (7], [8], [9], [10], [11]. IR-
based methods propose a list of candidate traceability links
on the basis of the similarity between the text contained
in the software artifacts. Such methods are based on the
conjecture that two artifacts having high textual similarity
share several concepts thus they are good candidates to
be traced on each other. Several IR methods have been
proposed for traceability recovery — e.g., vector space and
probabilistic models [1] or Latent Semantic Indexing (LSI)
[2]. In general, the retrieval y of IR-based bility
recovery hods is d through two recall,
measuring the percentage of correct links that were found,
and precision, measuring the percentage of found links that
were correct. The results achieved are sometimes contrasting
and demonstrate no clear winner among IR techniques.
Indeed, it seems that all the exploited techniques so far are
able to capture the same information when used to calculate
the textual similarity between software artifacts.

In this paper we present an empirical study aiming at
statistically analyzing the equivalence of different IR-based
traceability recovery methods. The comparison is based on
Principal Component Analysis (PCA) and on the analysis
of the overlap of the set of candidate links provided by
each of the IR methods. The studied IR techniques are the
Jensen-Shannon (JS) method [3], the Vector Space Model
(VSM) [1], LSI [2], and Latent Dirichlet Allocation (LDA)
[12]. The first three methods were selected because they are
widely used and seem to be the techniques that give the best
results [3], [4], [10]. LDA was never used for traceability
recovery. However, we also analyze the support given by
such a technique during traceability recovery because in a
previous study [13] the authors demonstrate that LDA is able
to capture some aspects missed by other IR methods, such
as LSI, when it is used to calculate the conceptual cohesi
of a class.

The empirical analysis has been conducted on a relatively
small software repository, i.e., EasyClinic, and on a larger
repository, i.e., eTour. The studied IR methods have been
used to recover traceability links between the use cases and

It is not possible to build a set of
| guidelines for assembling IR-based
solutions for a given data set

What is the “best” IR process?

On the Equivalence of Information Retrieval Methods
for Automated Traceability Link Recovery

\ (SA), Italy == - i
USA |

e - ltis not possible to build a set of
oo | guidelines for assembling IR-based

2] for traceability

[10], [11]. IR- . :
Large-scale Information Retrieval in Software Engineering :a:;‘:bicl::t;;;ﬁ SO I U t I O n S for a g |Ve n d ata Set
- An Experience Report from Industrial Application ire based on the) _

textual similarity
) candidates to

Michael Unterkalmsteiner, Tony Gorschek, thods have been
Robert Feldt and Niklas Lavesson vector space and
¢ Indexing (LSI)
based traceability

measures: recall,
that were found,

{ found links that =
the date of receipt and acceptance should be inserted later times contrasting

L e - Different datasets and different SE tasks

Abstract Background: Software Engineering activities are information intensive. used to calculate

: : : . : ffacts. | . .

Research proposes Information Retrieval (IR) techniques to support engineers in e I
their daily tasks, such as establishing and maintaining traceability links, fault iden- .smdy aiming at r(e u I r‘ ’ I (; r(e I l a ral I I (e (} rS
. . . o . . . ifferent IR-based
tification, and software maintenance. Objective: We describe an engineering task, ison is based on

test case selection, and illustrate our problem analysis and solution discovery pro-
cess. The objective of the study is to gain an understanding of to what extent
IR techniques (one potential solution) can be applied to test case selection and

| on the analysis
nks provided by
ichniques are the

provide decision support in a large-scale, industrial setting. Method: We analyze, for Space Model
in the context of the studied company, how test case selection is performed and de- \llocation (LDA)
sign a series of experiments evaluating the performance of different IR techniques. because they are
Each experiment provides lessons learned from implementation, execution, and that give the best
results, feeding to its successor. Results: The three experiments led to the follow- i for traceability
ing observations: 1) there is a lack of research on scalable parameter optimization jupport given by
of IR techniques for software engineering problems; 2) scaling IR techniques to ery because in a
industry data is challenging, in particular for latent semantic analysis; 3) the IR |that LDA is able
context poses constraints on the empirical evaluation of IR techniques, requiring R methods, such
more research on developing valid statistical approaches. Conclusions: We believe iceptual cohesion
that our experiences in conducting a series of IR experiments with industry grade

data are valuable for peer researchers so that they can avoid the pitfalls that we td on a relatively
have encountered. Furthermore, we identified challenges that need to be addressed | and on a larger
in order to bridge the gap between laboratory IR experiments and real applications thods have been
of IR in the industry. he use cases and

Keywords Test Case Selection - Information Retrieval - Data Mining - Experiment

M. Unterkalmsteiner, T. Gorschek, R. Feldt
Department of Software Engineering, Blekinge Institute of Technology E-mail:
{mun,tgo,rfd}@bth.se

N. Lavesson
Department of Computer Science and Engineering, Blekinge Institute of Technology E-mail:
nla@bth.se

What is the “best” IR process?

On the Equivalence of Information Retrieval Methods
for Automated Traceability Link Recovery

\ (SA), Italy
USA

Noname manuscript No.
(will be inserted by the editor)

)f documentation

Large-scale Information Retrieval in Software Engineering

in achieved using
2] for traceability

[10], [11]. IR-
traceability links
le text contained

- An Experience Report from Industrial Application ire based on the

Mic
Rot

the ¢

Abs
Res
thei
tific
test
cess
IR 1
proy
in tl
sign
Eac
resu
ing |
of I
indu
cont
mor
that
datz
hawve
inol
of Il

Key

M. 1
Depi
{mu]
N.L
Depi
nla@

textual similarity

Noname manuscript No.
(will be inserted by the editor)

Labeling Source Code with Information Retrieval Methods:
An Empirical Study*

Andrea De Lucia', Massimiliano Di Penta®,
Rocco Oliveto®, Annibale Panichella', Sebasti
Panichella®

Received: date / Accepted: date

Abstract

Context: To support program comprehension, software artifacts can be labeled—for exam-
ple within software visualization tools—with a set of representative words, hereby referred
as labels. Such labels can be obtained using various approaches, including Information Re-
trieval (IR) methods or other simple heuristics. They provide a bird-eye’s view of the source
code, allowing developers to look over software components fast and make more informed
decisions on which parts of the source code they need to analyze in detail. However, few
empirical studies have been conducted to verify whether the extracted labels make sense to
software developers.

Aim: This paper investigates (i) to what extent various IR techniques and other simple
heuristics overlap with (and differ from) labeling performed by humans, (ii) what kinds of
source code terms do humans use when labeling software artifacts, and (iii) what factors—in
particular what characteristics of the artifacts to be labeled—-influence the performance of
automatic labeling techniques.

Method: We conducted two experiments in which we asked a group of subjects (38 in total)
to label 20 classes from two Java software systems, JHotDraw and eXVantage. Then, we
analyzed to what extent the words identified with an automated technique (including Vector
Space Models, Latent Semantic Indexing, latent Dirichlet allocation, as well as customized
heuristics extracting words from specific source code elements) overlap with those identified
by humans.

Results: Results indicate that, in most cases, simpler automatic labeling techniques—based
on the use of words extracted from class and method names as well as from class comments—
better reflect human-based labeling. Indeed, clustering-based approaches (LSI and LDA) are

* This paper is an extension of the work “Using IR Methods for Labeling Source Code Artifacts:
Is It Worthwhile?” appeared in the Proceedings of the 20th IEEE International Conference on Program
Comprehension, Passau, Bavaria, Germany, pp. 193-202, 2012. IEEE Press.

Andrea De Lucia - Annibale Panichella

~ltis not possible to build a set of
| guidelines for assembling IR-based
solutions for a given data set

- Different datasets and different SE tasks

m require different IR parameters

- If not well calibrated, IR techniques
| perform worst than simple heuristics.

A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella.
“Labeling Source Code with Information Retrieval
Methods: An Empirical Study”. EMSE 2014

What is the “best” IR process?

On the Equivalence of Information Retrieval Methods
for Automated Traceability Link Recovery

\ (SA), Italy
USA

Noname manuscript No.
(will be inserted by the editor)

)f documentation

Large-scale Information Retrieval in Software Engineering

in achieved using
2] for traceability

[10], [11]. IR-
traceability links
le text contained

- An Experience Report from Industrial Application ire based on the

Mic
Rot

the ¢

Abs
Res
thei
tific
test
cess
IR 1
proy
in tl
sign
Eac
resu
ing |
of I
indu
cont
mor
that
datz
hawve
inol
of Il

Key

M. 1
Depi
{mu]
N.L
Depi
nla@

textual similarity

Noname manuscript No.
(will be inserted by the editor)

Labeling Source Code with Information Retrieval Methods:
An Empirical Study*

Andrea De Lucia', Massimiliano Di Penta®,
Rocco Oliveto®, Annibale Panichella', Sebasti
Panichella®

Received: date / Accepted: date

Abstract

Context: To support program comprehension, software artifacts can be labeled—for exam-
ple within software visualization tools—with a set of representative words, hereby referred
as labels. Such labels can be obtained using various approaches, including Information Re-
trieval (IR) methods or other simple heuristics. They provide a bird-eye’s view of the source
code, allowing developers to look over software components fast and make more informed
decisions on which parts of the source code they need to analyze in detail. However, few
empirical studies have been conducted to verify whether the extracted labels make sense to
software developers.

Aim: This paper investigates (i) to what extent various IR techniques and other simple
heuristics overlap with (and differ from) labeling performed by humans, (ii) what kinds of
source code terms do humans use when labeling software artifacts, and (iii) what factors—in
particular what characteristics of the artifacts to be labeled—-influence the performance of
automatic labeling techniques.

Method: We conducted two experiments in which we asked a group of subjects (38 in total)
to label 20 classes from two Java software systems, JHotDraw and eXVantage. Then, we
analyzed to what extent the words identified with an automated technique (including Vector
Space Models, Latent Semantic Indexing, latent Dirichlet allocation, as well as customized
heuristics extracting words from specific source code elements) overlap with those identified
by humans.

Results: Results indicate that, in most cases, simpler automatic labeling techniques—based
on the use of words extracted from class and method names as well as from class comments—
better reflect human-based labeling. Indeed, clustering-based approaches (LSI and LDA) are

* This paper is an extension of the work “Using IR Methods for Labeling Source Code Artifacts:
Is It Worthwhile?” appeared in the Proceedings of the 20th IEEE International Conference on Program
Comprehension, Passau, Bavaria, Germany, pp. 193-202, 2012. IEEE Press.

Andrea De Lucia - Annibale Panichella

for the project and
for the SE bask

| It is not possible to build a set of
| guidelines for assembling IR-based
solutions for a given data set

- Different datasets and different SE tasks

m require different IR parameters

- If not well calibrated, IR techniques
| perform worst than simple heuristics.

A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella.
“Labeling Source Code with Information Retrieval
Methods: An Empirical Study”. EMSE 2014

Strategy to find the best configuration...

Strategy to find the best configuration...

It must be unsupervised..

Strategy to find the best configuration...

It must be unsupervised..

and general...

Our Idea

Clustering Analysis

Information Retrieval

i . Factor map
& B tn-1 0 - |- 1 ot | 0w e - & @ vt - B :
r iter 1 j
ster 2 [
pter3 H
_terd | . .
-— ' .
o . .
' . ..
Sc . o‘5 L) < ‘. *
LTI ie - ° hd
. ...o .QO“ e * e gqe .~ .
w ° '"‘t“' ‘k‘“" . o:. o oo .
o“ ’j.' ~‘. s o e, .
’\‘-; e, H o oo ° ‘n o .
) o o 0" oo o®.! Y . ®]
& . e $i st s, g ’f: LA .
- .e . : o . .
N : o:'..:' o' ..“;,;"o "*"ﬂ.. :"' o .« °
I BT IACLE" § £F- AN
Eocp " TN v e B TN e
* oup o} "“"..‘V:'.. .
4 . . . Soev g 00 o - S' e o
o ‘mg, ol.h.’é‘;‘.qo..
2 e 4 °,.. ‘- h'u o8 ." 'Y 4
[e ° o'. "'0.0 .
Google . g v e
Canada o ...0‘~. M EY) .
' e ee
Google Search | [I'm Feeling Lucky '
Search: © the web O pages from Canada 5
Google.ca offered in- francais O N i
s - Business Solutions - About Google - G ' T T ; T T T
-1.0 -0.5 0.0 0.5 1.0 1.5
Dim 1 (25.95%)
| e——— -
| — S
— = - —= — e . e

- Conjecture: there is a relationship between quality of clusters
| and IR process performances

——

=

Predicting the performances?

1 Special Chars.
: Digits
: White space

Term

Extraction

1 No stop word
+ Stop-word function Term 2
Stop-Word 1 Java stop-word list

List / Function ¢ English stop-word list
ltalian stop-word list

¢ No Stemmer
\[[eTgelylo][oTs|[ox:1l } Porter
Ana|ysis 1 English Snowball
¢ Italian Snowball
¢ Boolean
Term 1 Term Frequency
: - ! TF-IDF
Weighting | Log(TF+1)
1 Entropy
Distance i LSI (k)
Functi {LDA (0, B, n, K)
unction 1 VSM

Cosine Similarity
: Hellinger Distance
¢ Jaccard Dist.
¢ Euclidean

IR Methods

Predicting the performances?

+ Special Chars.
: Digits
: White space

Term

Extraction

1 No stop word

+ Stop-word function Term 2
Stop-Word ' Java stop-word list
REVAIGTS LG | English stop-word list
ltalian stop-word list " ~ ‘DOC 1
) rooy 3
I \\ // J
i No Stemmer N O RRREEEEE i '," /
|lile]ge]gle][o]e] (-]l 1 Porter ! @ LS)/
Analysis 1 English Snowballl { 1 A
¢ Italian Snowball i i ® E - ;// /
‘ 1 I| , /
1 :l /l' I,
3 1 ol Y3 : /
Boolean |“ H ° Y Doc 2
Term + Term Frequency !
: : ¢ TF-IDF \
Weighting | Log(TF+1)
+ Entropy
Distance i LSl (k=10)
F ti 1 LDA (a, B, n, k)
unction | VSM

Cosine Similarity
: Hellinger Distance
¢ Jaccard Dist.
¢ Euclidean

IR Methods

Predicting the performances?

: Special Chars.
: Digits
: White space

Term

Extraction

1 No stop word

+ Stop-word function Term 2
Stop-Word ' Java stop-word list
REVAIGTS LG | English stop-word list
ltalian stop-word list : Poe 1)
! ‘ . ,/ll
‘ 3 l. \‘ ’
No Stemmer } ' N ,/' /
: ! ;
Morphological B Raelicl A e/
. 1 / ' Y - /
Analysis | English Snowball i TN s 77 .
i Italian Snowball ! @\ \@ N/
" “\ ‘l “ \\ /,, \\\ I'
I s l| A
! Boolean : e ! LA D 2
Term Frequency S ". 4 AR SR AL
Term i | ‘e / - ;A0
Weighting i / ! !

1 Log(TF+1)
+ Entropy

: | LSI (k =5))
Fllaned {LDA(a, B, n, k) Term 1
Function 1 VSM

Cosine Similarity
: Hellinger Distance
+ Jaccard Dist.
1 Euclidean

IR Methods

Predicting the performances?

: Special Chars.
: Digits
: White space

Term

Extraction

1 No stop word
1 Stop-word function
Stop-Word + Java stop-word list

List / Function ¢ English stop-word list
ltalian stop-word list

{ No Stemmer
Morphological el

Ana|ysis 1 English Snowball
¢ Italian Snowball

* Boolean
Term | ﬁrlﬂDlF:requenCy
Weighting | Log(TF+1)
1 Entropy
Distance (LSl (k=3)
z LDA (a, B, n, k)
Function 1 VSM

Cosine Similarity
: Hellinger Distance
¢ Jaccard Dist.
¢ Euclidean Dist.

IR Methods

Silhouette Coefficient

Term 2

a = Cluster Cohesion

Silhouette Coefficient

Term 2
Good Cluster:
Separation >> Cohesion

Silhouette = b-a e [-1; 1]
max{a, b}

a = Cluster Cohesion

b = Cluster ‘Separaﬁam

Search-Based Solution (GA-IR)

1) Problem Reformulation: Finding the IR process which maximises the quality
of clusters

2) Solution Encoding:

X = Charqcter Ider.m.ﬂer Stop word I\/Iorph.. R Method S|m|la.r|ty
Pruning Splitting Removal Analysis Function
No pruning Camel No Stop Porter LSI (k=10) Cosine

Case word Stemmer

b -a

3) Fitness Function: Silhouette Coefficient
max{a, b}
4) Solver: Genetic Algorithms
- Uniform mutation with probability of 1/n
- Population size = 50
- Single -point crossover with probability 0.80
- N. generations = 100

Empirical Evaluation

Task1: Traceabillity Recovery

Task?: Duplicate Bug Report
|dentification

Project LOC Source Target
EasyClinic 20k Use Case C]J:S\/Saes
eTour 40K Use Case Java

Classes
i-Trus 10k Use Case JSP

Project Version # Reports # Dupl.

Eclipse 3.0 224 44

Performance metrics:
* Precision
* Recall
* Average Precision

Performance metrics:
e Recall Rate
e Listsize

Empirical Evaluation

Task1: Traceabillity Recovery

Project LOC Source Target

EasyClinic 20k Use Case Cf:SVSaeS

eTour 40K Use Case Java
Classes

i-Trus 10k Use Case JSP

Performance metrics:
* Precision
* Recall
* Average Precision

Task 1: Traceability Recovery

System = eTour
Size = 40K LOC

IR Config. = 89,640

Task 1: Traceability Recovery

0.5

System = eTour | I

0.4

Size = 40K LOC

IR Config. = 89,640

0.3
I

0.2
|

Average Precision

0.1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

I

Frequency

e

E——

E High Results Variability J

S ————— e e e -

Task 1: Traceability Recovery

- RQ1: How do the settings of IR-based techniques
 instantiated by GA-IR compare to an ideal configuration?

Task 1: Traceability Recovery

0.5
E

System = eTour | o
GA-IR

04

Size = 40K LOC

IR Config. = 89,640

0.3
|

Average Precision:
- |Ideal Config. = 47.01%
- GA-IR = 46.94%

0.2
1

Average Precision

0.1

Mean over 30 — I -
independent runs Frequency

T — R ——

'RQ1: How do the settings of IR-based techniques instantiated
by GA-IR compare to an ideal configuration?

Task 1: Traceability Recovery

| " RQ2: How do the IR techniques and configurations
instantiated by GA-IR compare to those previously used in
literature for the same tasks?

Task 1: Traceability Recovery

F
System = eTour - ® I
: - GA-IRK
Size = 40K LOC Q 3-
O
;)
IR Config. = 89,640 oo o |1
o VSm
S
Average Precision: D o
- Ideal Config. = 47.01% Z
- GA-IR = 46.94%
- Ref. LSI = 30.93% S I
- Ref. VSM =29.94% - >

Frequency

T — m—

| ~ RQ2: How do the IR techniques and configurations instantiated by GA-IR
| compare to those previously used in literature for the same tasks?

90

68

45

23

Task 1: Traceability Recovery

iTrust
— eTour
EasyClinic

Systems

B Ideal B GA-IR Ref. LSI B Ref. VSM

UOLSID91d 98RIDAY

Task 1: Traceability Recovery

|

GA IR outperforms baselme(p-value< 0. 05) |

GA-IR IS statlstlcally equwalentto the
iﬁ ideal configuration (p-value = 1.0) |

Average Precision

Clustering Hypothesis

A elour

100

50

10

-0.2 0 0.2 0.4 0.6 0.8
Silhouette Coefficient

Average Precision

Clustering Hypothesis

A elour
100
50
o
-02 0 02 04 06 08 1

Silhouette Coefficient

Information Retrieval

An Inforn

Test Case Prior

600 -

papers in 10 years -

30

applications in S.E.

2 TRACEABILITY LINKS RECOVERY US-
ING INFORMATION RETRIEVAL

Rkt
[y

Traceclipse: An Eclipse Plug-in for Traceability Link
Recovery and Management

‘Samuel Kiock, Macom Get D, Denys Pos
icom Gothrs, Bogdan D, Derys Poshyvanyc
oo W ey

Search-Based Solution (IR-GA)

1) Problem Reformulation: Finding the IR process which maximises the quality
of clusters

2) Solution Encoding:

_ Character Identifier Stop word Morph. Similarity
X= Pruning Splitting Removal Analysis IR Method Function
No pruning Camel No Stop Porter LSI (k=10) Cosine

Case word Stemmer

b-a

3) Fitness Function: Silhouette Coefficient ~————
max{a, b}

4) Solver: Genetic Algorithms

Clustering Hypothesis

N eTour

100;

Average Precision
(o)
S

10

-02 0 02 04 06 08 1
Silhouette Coefficient

IR Process

Software Artifacts

.

Term Stop-Word
Extract List / Function

}Specwa\ Chars. No stop word No Stemmer

Morphological
Analysis

Digits Stop-word function Porter

Java stop-word list English Snowball
English stop-word list % jajian Snowball
Italian stop-word list

White space

Term Dlstance
IR MEthOds

Egalcag LSl (k) Cosine Similarity b ——
\';DA a.B.n k) Hellinger Distance Google
rd Dist.
i £ ’éi“;iie"an ,
Entropy

Information Retrieval

Software Maintenance task:
- Traceability Recovery
- Source code labelling

t

Our Idea

Clustering Analysis

omz @13

Factormap

oim 1 @595%)

- Bug duplication
- Feature Location

Conjecture there is a relationship between quality of clusters
and IR process performances

Empirical Evaluation

Taski: Traceability Recovery

Project LoC Source Target

EasyClinic 20k Use Case cf:s\;aes

eTour 40K UseCase Ja7@
Classes

i-Trus 10k Use Case JSP

Performance metrics:
* Precision
* Recall
* Average Precision

e —

Task2: Duplicate Bug Report System = eTour

|dentification Size — 40K LOC

Project Version # Reports # Dupl.

IR Config. = 89,640

Eclipse 3.0 224 44
Average Precision:
- Ideal Config. = 47.01%
- GA-IR = 46.94%
Performance metrics: - Ref. LSI =30.93%
* Recall Rate - Ref. VSM =29.94%

e Listsize

Average Precision

0.5

04

0.1

°
GA-IR
LsI
®
VSm

Task 1: Traceability Recovery

snsras———p
Frequency

RQ2: How do the IR techniques and configurations instantiated by GA-IR
L compare to those previously used in literature for the same tasks?

Thanks!

R —

e ——

Question?

