
An Exploratory Study on Assessing
Feature Location Techniques

Meghan Revelle and Denys Poshyvanyk

Software Engineering Maintenance and Evolution Research Unit
at the College of William and Mary

SEMERU

2

Goals of our work
•  Investigate approaches that use textual,

dynamic, and static analyses for feature location

•  Evaluate in terms of ability to find near-complete
feature implementations

•  Develop guidelines for assessment of feature
location techniques

•  Report results and observations from exploratory
study

3

Textual Feature Location
•  Use Information Retrieval

– Latent Semantic Indexing (LSI)
– Output: List of ranked methods

•  Two types
– nl-query
– method-query

•  Approaches
–  IRquery

–  IRseed

Method
Cosine

Similarity
Search.setReverseSearch 0.63
Search.find 0.53
SearchMatcher.nextMatch 0.48
Search.getReverseSearch 0.47
… …

IR: Information Retrieval

4

Textual + Dynamic Feature Location

•  Prune a list of ranked methods
•  Two types

– Full trace
– Marked trace

•  Approaches
–  IRquery + Dynmarked
–  IRquery + Dynfull
–  IRseed + Dynmarked
–  IRseed + Dynfull

IR: Information Retrieval Dyn: Dynamic Analysis

Cosine
Similarity Method

… …
0.47 Search.getReverseSearch
0.48 SearchMatcher.nextMatch
0.53 Search.find
0.63 Search.setReverseSearch

5

Textual, Dynamic, & Static Feature Location

•  Explore PDG from seed
– Consider executed methods
– Textual similarity threshold

•  Approaches
–  IRquery + Dynmarked + Static
–  IRquery + Dynfull + Static
–  IRseed + Dynmarked + Static
–  IRseed + Dynfull + Static

0.65
0.60

0.31

0.57
0.44

0.48
0.51 0.29

0.52

Seed Method

Executed Method

Unexecuted Method IR: Information Retrieval Dyn: Dynamic Analysis

6

Related Work

Software
Reconn

ASDGs

IRquery

IRseed

Cerberus

IR + Dyn+
Static

SITIR
PROMESIR

IR + Dyn

SNIAFL

DORA
FCA

Static

Textual Dynamic

7

Evaluation Options

•  Artifact-based
– Find methods from patch/bug fix

•  Benchmark-based
– Precision/recall based on existing data set

•  Top N
– Classify top 10 methods
– Relevant, Somewhat Relevant, Not Relevant
– Adapted guidelines

8

Sanity Check

Percent agreement among the volunteers and the authors for
the jEdit thick caret feature.

9

Subject Systems
jEdit 4.3pre16 Eclipse 2.1

Domain Text editor Development environment

Size 105KLOC; ~910 classes;
~5,530 methods

2.3MLOC; 7K classes,
89K methods

Features/
Bugs

Thick caret, Edit history
text, Reverse regex
search, Angle bracket
matching

Double click drag, Unified
Tree, Incremental Search,
Repeated error message

nl-queries Words from feature request Words from bug report

method-
queries

Text of random method
from patch

Text of random method
from bug fix

Scenarios Description of feature in
request Steps to reproduce bug

10

Results
jEdit Eclipse

Technique Relevant Somewhat Not Relevant Somewhat Not

IRquery 12.5% 15% 72.5% 22.5% 12.5% 65%
IRseed 12.5% 20% 67.5% 12.5% 22.5% 65%
IRquery + Dynmarked 30% 20% 50% 25% 5% 70%
IRquery + Dynfull 15% 22.5% 62.5% 25% 12.5% 67.5%
IRseed + Dynmarked 20% 15% 65% 27.5% 25% 47.5%
IRseed + Dynfull 15% 27.5% 57.5% 27.5% 35% 42.5%
IRquery + Dynmarked + Static 30% 17.5% 52.5% 30% 12.5% 57.5%
IRquery + Dynfull + Static 12.5% 25% 62.5% 30% 12.5% 57.5%
IRseed + Dynmarked + Static 17.5% 17.5% 65% 30% 15% 55%
IRseed + Dynfull + Static 12.5% 30% 57.5% 27.5% 22.5% 50%
Average 17.5% 21.25% 61.25% 24.75% 19.5% 55.75%

11

Summary of Observations

•  No feature location technique is
universally successful at finding near-
complete feature implementations

•  Method-queries perform as well as nl-
queries

•  Marked traces outperform full traces
•  Complete Results

– www.cs.wm.edu/~denys/data/icpc09/

12

References
•  Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y. G., "CERBERUS: Tracing

Requirements to Source Code Using Information Retrieval, Dynamic Analysis, and
Program Analysis", in Proc. of ICPC'08, Amsterdam, The Netherlands, 2008.

•  Eisenbarth, T., Koschke, R., and Simon, D., "Locating Features in Source Code",
TSE, vol. 29, no. 3, March 2003, pp. 210 - 224.

•  Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the Neighborhood with Dora to
Expedite Software Maintenance", in Proc. of ASE'07, November 2007, pp. 14-23.

•  Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature Location via
Information Retrieval based Filtering of a Single Scenario Execution Trace", in Proc.
of ASE'07, November 5-9 2007.

•  Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An Information Retrieval
Approach to Concept Location in Source Code", in Proc. of WCRE'04, Delft, The
Netherlands, Nov. 9-12 2004, pp. 214-223.

•  Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and Rajlich, V.,
"Feature Location using Probabilistic Ranking of Methods based on Execution
Scenarios and Information Retrieval", TSE, vol. 33, no. 6, June 2007, pp. 420-432.

•  Rajlich, V., "Modeling Software Evolution by Evolving Interoperation Graphs", Annals
of Software Engineering, vol. 0, 2000, pp. 235-248.

•  Robillard, M. P., Shepherd, D., Hill, E., Vijay-Shanker, K., and Pollock, L., "An
Empirical Study of the Concept Assignment Problem", McGill University June 2007.

•  Wilde, N. and Scully, M., "Software Reconnaissance: Mapping Program Features to
Code", Software Maintenance: Research and Practice, vol. 7, 1995, pp. 49-62.

•  Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL: Towards a Static Non-
interactive Approach to Feature Location", TOSEM, vol. 15, no. 2, 2006, pp. 195-226.

13

Threats to Validity
•  Subjectivity of evaluation

–  Formalized how to determine relevance
–  Compared results with four volunteers for one feature

•  Query construction & seed selection
–  Query terms from change requests/bug reports
–  Seeds randomly selected from patches

•  Dynamic analysis
–  One scenario per feature

•  Small scope of investigation
–  Two systems, four features each

14

Guidelines
•  Method names that are similar to the words in the feature's

description are good indicators of possibly relevant code, but the
method's source code should be inspected to ensure the method is
actually relevant to the feature.

•  Determine if the method is relevant to the feature by asking "Would
it be useful to know that this method is associated with the feature if
I had to modify the feature in the future?"

•  If most of the code in the method seems relevant to the feature,
classify the method as Relevant. If some code within the method
seems relevant but other code in the method is irrelevant to the
feature, classify the method as Somewhat Relevant. If no code
within the method seems relevant to the feature, classify it as Not
Relevant.

•  If unable to classify the method by reviewing its code, explore the
method's structural dependencies, i.e. what other methods call it
and are called by it. If the method's dependencies seem relevant,
then the method probably is also.

15

Related Work

SNIAFL [Zhao’06]
DORA [Hill’07] FCA [Eisenbarth’03]

SITIR [Liu’07]
PROMESIR [Poshyvanyk’07]

CERBERUS
[Eaddy’08]

Textual Approaches
[Marcus’04]

Static Approaches
[Rajlich’00]

Dynamic Approaches
[Wilde’92]

16

Locating features in jEdit
•  Version 4.3pre16

–  105KLOC; ~910 classes; ~5,530 methods
•  Patches submitted for new feature requests

–  Global option for thick caret
–  Ability to edit history text
–  Reverse regex search
–  Add angle bracket matching

•  Queries
–  nl-queries – words from feature request
–  method-queries – method from patch

•  Scenarios
–  Developed from description in feature request

17

Locating features in Eclipse
•  Version 2.1

–  2.3MLOC; 7K classes, 89K methods
•  Features associated with bugs

–  Double-click-drag to select multiple words broken
–  UnifiedTree should ensure file/folder exists
–  Add support for Emacs-style incremental search
–  Repeated error message when deleting and file in use

•  Queries
–  nl-queries – words from bug report
–  method-queries – method from bug fix

•  Scenarios
–  Steps to reproduce bug in bug report

18

jEdit Results
Technique Relevant Somewhat

Relevant
Not

Relevant
IRquery 12.5% 15% 72.5%
IRseed 12.5% 20% 67.5%
IRquery + Dynmarked 30% 20% 50%
IRquery + Dynfull 15% 22.5% 62.5%
IRseed + Dynmarked 20% 15% 65%
IRseed + Dynfull 15% 27.5% 57.5%
IRquery + Dynmarked + Static 30% 17.5% 52.5%
IRquery + Dynfull + Static 12.5% 25% 62.5%
IRseed + Dynmarked + Static 17.5% 17.5% 65%
IRseed + Dynfull + Static 12.5% 30% 57.5%

19

Eclipse Results
Technique Relevant Somewhat

Relevant
Not

Relevant
IRquery 22.5% 12.5% 65%
IRseed 12.5% 22.5% 65%
IRquery + Dynmarked 25% 5% 70%
IRquery + Dynfull 25% 12.5% 67.5%
IRseed + Dynmarked 27.5% 25% 47.5%
IRseed + Dynfull 27.5% 35% 42.5%
IRquery + Dynmarked + Static 30% 12.5% 57.5%
IRquery + Dynfull + Static 30% 12.5% 57.5%
IRseed + Dynmarked + Static 30% 15% 55%
IRseed + Dynfull + Static 27.5% 22.5% 50%

20

Acknowledgements
•  David Coppit

•  Maksym Petrenko

•  Andrian Marcus

•  Václav Rajlich

•  Students of CS780 at W&M

