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ABSTRACT
Recent work has investigated the use of hardware perfor-
mance counters (HPCs) for the detection of malware run-
ning on a system. These works gather traces of HPCs for a
variety of applications (both malicious and non-malicious)
and then apply machine learning to train a detector to dis-
tinguish between benign applications and malware. In this
work, we provide a more comprehensive analysis of the ap-
plicability of using machine learning and HPCs for a specific
subset of malware: kernel rootkits.

We design five synthetic rootkits, each providing a single
piece of rootkit functionality, and execute each while collect-
ing HPC traces of its impact on a specific benchmark ap-
plication. We then apply machine learning feature selection
techniques in order to determine the most relevant HPCs for
the detection of these rootkits. We identify 16 HPCs that
are useful for the detection of hooking based roots, and also
find that rootkits employing direct kernel object manipula-
tion (DKOM) do not significantly impact HPCs. We then
use these synthetic rootkit traces to train a detection system
capable of detecting new rootkits it has not seen previously
with an accuracy of over 99%. Our results indicate that
HPCs have the potential to be an effective tool for rootkit
detection, even against new rootkits not previously seen by
the detector.
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1. INTRODUCTION
Recently, work has been done investigating the use of

hardware performance counters (HPCs) for the detection
of malware [6, 18, 27, 29]. The goal of these works is to
detect malware based on a profile of the way it impacts per-
formance counters that are included in the processor of the
machine. This is a form of behavioral detection. Existing
work has focused on running malware binaries while collect-
ing performance counter information and using that data
to train a malware detector using various machine learning
techniques. Initial results have been very promising, demon-
strating detection rates of over 90%.

One type of malware detection that has thus far not shown
promising results is the detection of kernel rootkits. Rootk-
its are a special type of malware that modifies parts of
the running operating system kernel in order to hide the
presence of an attacker on a machine. There are a variety
of attack methodologies a rootkit might use such as code-
injection, direct kernel object manipulation, function pointer
hooking, and more. One thing that makes rootkit analysis
unique when compared to traditional malware is that the
rootkit’s functionality does not execute in its own process
context, instead the functionality executes in the context of
other processes that access kernel information. In [6] a pre-
liminary set of tests were performed to detect rootkits, but
the results were not encouraging and were not investigated
deeply.

In this work, we aim to provide a more comprehensive
analysis of the applicability of hardware performance coun-
ters to the detection of kernel rootkits. We experimentally
demonstrate how various types of rootkit functionality and
attack mechanisms impact HPCs and determine the most
significant HPCs for use in detecting rootkits. Our results
indicate that the HPCs are most impacted by the mecha-
nism of attack (function pointer hooking, system call hook-
ing, etc.) and less impacted by the rootkit functionality (file
hiding, process hiding, etc.)

We then design, train, and test a machine learning based
rootkit detector capable of detecting rootkits attacks against
a Windows 7 computer. Our results indicate that a system
trained on a variety of rootkit attack mechanisms can detect
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new rootkits that use those same mechanisms, even if they
are not variants of each other.

The contributions of this work are as follows:

• We provide an evaluation of the impact on HPCs of five
different types of rootkits employing the three most
common attack techniques. We identify 16 HPCs (from
over 400) that are the most significant for rootkit de-
tection.

• We find that one class of rootkits, those employing di-
rect kernel object manipulation (DKOM), do not have
a significant impact on HPCs and thus cannot be de-
tected by this technique.

• We design, train, and test a machine learning based
rootkit detection system capable of detecting rootkits.
This demonstrates the efficacy of HPCs for the detec-
tion of hooking based rootkits.

• Our detector is able to detect previously unseen rootk-
its based on their attack mechanisms, implying that
HPCs can be used to detect zero-day rootkit attacks
as long as those attacks employ known attack mecha-
nisms.

• We discuss the practical limitations of using HPCs
for rootkit detection and provide recommendations for
hardware modifications that would address these lim-
itations.

2. BACKGROUND
In this section we will present a brief background on hard-

ware performance counters, rootkits and the use of hardware
performance counters for malware detection.

2.1 Hardware Performance Counters
Performance monitoring [26] is an essential feature of a mi-

croprocessor. Access to the performance monitoring hard-
ware is usually provided in the form of hardware perfor-
mance counters (HPCs), a collection of configurable, special-
purpose registers in recent microprocessors. Such counters
can be found in many microarchitectures. Today, all of
the major processor platforms have support for HPCs [2].
These counters are used to obtain low-level information on
events happening in the hardware during program execution.
HPCs are most often utilized in order to find bottlenecks in
critical parts of programs, for fine-grained application tun-
ing, compiler optimizations, or to study peculiarities of pro-
gram behavior on various CPUs. HPCs are capable of count-
ing events associated with many types of hardware-related
activities such as clock cycles, cache hits/misses, branch be-
havior, memory resource access patterns and pipeline stalls,
etc.

Each HPC register can be configured to count events of
a particular type. After the configuration, each time the
hardware event detector detects a specific event, the counter
will be incremented. Access to the counter registers is per-
formed using special purpose instructions. Usage of HPCs
is beneficial for program behavior analysis, since they offer
very high accuracy [31] and normally do not introduce slow-
down to program execution. HPCs are also used for other
purposes; for example, they can be used for power [25] and

temperature [12] analysis. Another beneficial use is moni-
toring program behavior for malware detection [6, 18, 27,
29] and integrity checking [14].

Despite the large number of possible events that HPC reg-
isters can be configured to count, there is a limitation com-
mon to all platforms: the limited number of configurable
registers. For example, the Intel Ivy-bridge and Intel Broad-
well CPUs used in this work can be configured to capture
468 and 519 events respectively, but the number of counter
registers is limited to only four per processor core, mean-
ing that only four HPCs can be captured simultaneously.
This limitation can be mitigated by multiplexing perfor-
mance counters [16], but at the cost of accuracy. Finally,
there are many libraries and software toolkits available for
accessing HPCs, such as [3, 5] and [13].

2.2 Kernel Rootkits
Kernel rootkits (referred to as simply rootkits in this pa-

per) are a type of malware that modifies the running OS
kernel with the intention of hiding the malware’s presence
on a system. Frequently a rootkit author wants to hide a
running process, conceal an installed driver, mask the exis-
tence of a file on the file system, hide incoming and outgoing
network connections, etc. The methodology used by rootkits
to accomplish these goals varies as well. They can use sys-
tem call table hooking [9], function pointer hijacking [30],
direct kernel object manipulation (DKOM) [9], and more.
Even the ways in which they execute their malicious logic
can vary from kernel-level code injection to return-oriented
programming [10] to not executing code in the kernel at
all [21, 22].

2.3 Hardware Performance Counters for In-
trusion Detection

Recently, work has been done applying HPCs to intrusion
detection. In this section we discuss the piece of seminal
work in the area, but a more complete handling of related
work can be found in Section 6.

Work by Demme et al. [6] shows the feasibility of using
HPCs to detect malware. They used micro-architectural
features from ARM and Intel processors to successfully de-
tect malware on Android. Their approach involves capturing
multi-dimensional, time-series traces of running applications
by interrupting periodically and capturing all performance
counters for the current thread of control. After training
on existing malware, they were able to detect variants with
high accuracy: Over 90% with a false positive rate (FPR)
less than 10%. In addition to their Android based results,
they provided a brief set of experiments attempting to de-
tect rootkits on Linux, but the results were not nearly as
promising: Around 70% accuracy at a 10% FPR. In com-
menting about their rootkit results, they say the following:
“... we believe our rootkit detection shows promise but will
require more advanced classification schemes and better la-
beling of the data to identify the precise dynamic sections
of execution that are affected.”

Motivated by their experiments and hypothesis, in our
work we provide a more comprehensive set of experiments
spanning a variety of rootkit types and demonstrate that
HPCs can be significantly more effective for rootkit detection
that their initial results indicate.



Table 1: Synthetic Rootkits Used for Testing
Name Functionality Attack Mechanism

SR1 Hides targeted outgo-
ing TCP connections
and prevents them
from being visible
to applications like
netstat

IRP Hooking

SR2 Hides specific files by
preventing them from
appearing in any file
listings or file man-
agers

IRP Hooking

SR3 Hides processes, pre-
venting them from be-
ing listed in process
listings

SSDT Hooking

SR4 Hides specific files by
preventing them from
appearing in any file
listings or file man-
agers

SSDT Hooking

SR5 Hides processes, pre-
venting them from be-
ing listed in process
listings

DKOM

3. LINKING PERFORMANCE COUNTERS
TO ROOTKIT FUNCTIONALITY

Given that a modern processor has access to over 400
performance counters, a prudent first step toward detecting
rootkits using HPCs is to determine which of those 400 are
most significantly impacted by rootkits. In this section we
describe a set of experiments designed to determine which
HPCs are most impacted by rootkits.

An overall diagram of our approach can be found in Fig. 1.
We start with a set of custom designed, synthetic rootkits.
These are rootkits that we created that each implement a
single piece of rootkit functionality using one attack mecha-
nism. From there, a rootkit is chosen and installed on a Win-
dows 7 virtual machine. Inside that virtual machine a pro-
filing benchmark is executed. This benchmark is a program
designed to make use of various pieces of OS functionality
that a rootkit will typically impact. (For example, showing
a listing of all running processes.) While the benchmark is
running we use Intel’s VTune [11] to capture traces of all the
possible HPCs during the execution of the benchmark. We
then process our traces using the Gain Ratio feature selec-
tion technique from the WEKA machine learning toolkit[8]
to determine which features are the most significant for each
synthetic rootkit.

3.1 Synthetic Rootkits
Synthetic rootkits are small rootkits which are designed

to make use of a single attack mechanism to accomplish
a specific rootkit goal. Most real-world rootkits make use
of multiple attack mechanisms and exhibit more than one
type of functionality. By making use of specialized, syn-
thetic rootkits, we are able to more precisely link impacted
performance counters with the specific attack mechanism or
functionality that causes the impact.

Our synthetic rootkits focus on three major attack mech-
anisms that are found in rootkits on the Windows 7 plat-
form: I/O Request Packet (IRP) Hooking, System Service
Dispatch Table (SSDT) Hooking and Direct Kernel Object
Manipulation (DKOM). Table 1 gives a brief summary of the
five synthetic rootkits used in this work and each of them is
described in more detail below.

SR1: Network port filtering using IRP Hooking SR1
makes use of a technique called I/O Request Packet (IRP)
hooking, which is a type of function pointer hijacking. Each
device in Windows is represented as a device object in the
OS managed by the I/O Manager. Whenever communica-
tion is supposed to take place between the device and an
application, an I/O request packet is created and it passes
through an abstraction layer. The abstraction layer con-
sists of several drivers that each perform different functions
(for example, the disk driver deals with disk read/write re-
quests). For each driver, there are several major functions
that are called whenever an IRP passes through the driver.
These functions are listed in a table of function pointers.

When a rootkit performs IRP hooking, it replaces one or
more of these function pointers with a pointer to a custom-
built, malicious version of the function that has been loaded
by the rootkit into OS memory (in a loadable, kernel-level
driver, for example). The malicious versions of these func-
tions can then modify the contents of the IRP or further
divert control-flow as required.

Using this technique, we have hooked a function pointer
in the network driver in order to filter out all the outgo-
ing network connections on port 80. To accomplish this,
we needed to hook within the driver loaded from TCPIP.SYS

and filter the list of active network connections before it is
passed from the kernel to the application layer (where it is
ultimately displayed to the user). The driver object, \\DE-
VICE\\TCP, further points to a table containing the major
IRPs. The IRP we focus is IRP_MJ_DEVICE_CONTROL, which
originally calls an IRP handler (the default IRP handler).
The IRP handler returns the requested network data.

In IRP_MJ_DEVICE_CONTROL, we look at the IOCTL_TCP_QUERY
control code which returns the list of network ports currently
in use to netstat.exe.

To filter the results, IRP_MJ_DEVICE_CONTROL is shifted to
point to our custom-designed IRP handler. The custom IRP
handler further calls the default handler that returns the
required data and fills the output buffer. Once the required
data returns, we can process the data in the output buffer
according to our needs. To hide outgoing connections on
port 80 all that needs to be done is to change the status
value of each object in the buffer related to port 80 to 0.
After the parsing is done, we send it to the requester. Fig. 2
illustrates IRP hooking.

SR2: File Hiding using IRP Hooking Our next syn-
thetic rootkit, SR2, uses the same attack mechanism as SR1,
but in this case it is used to hide a file rather than a network
connection.

A file system filter driver can filter I/O operations for one
or more file systems or file system volumes. Depending on
the nature of the driver, filter can mean log, observe, modify,
or even prevent. Typical applications for file system filter
drivers include anti-virus utilities, encryption programs, and
hierarchical storage management systems [17].

In this technique, we obtain a handler on the IRP function
IRP_MJ_CREATE. This function helps us with retrieving the
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Figure 1: Data Collection Process

(a) Before IRP Hooking

(b) After IRP Hooking
Figure 2: Visualizing IRP Hooking

name of the files as soon as they are opened. Every time
IRP_MJ_CREATE returns it sends back all the details of the
file opened to our custom-function. Once we have the file
name we can check the extension of the file and not let it
proceed. In our case, we hide files with the xml extension
under the Windows directory.

SR3: Process Hiding using SSDT Hooking While
IRP hooking involves modifying function pointers in various
drivers, another location in Windows that can be hooked
is the System Service Dispatch Table (SSDT), which is the
Windows equivalent of the Linux system call table. This
table consists of pointers to service functions exposed to
ntoskrnl.exe. This table is accessed whenever a system
service is requested.

Hooking a function pointer in the SSDT allows an attacker
to effectively replace any of the OS system calls. Fig. 3
illustrates this.

We applied this technique in SR3 for the purpose of hiding
processes. We hook the service function NtQuerySystemIn-

formation() with a malicious version that calls the original
version in order to retrieve the list of running processes and
then filters it prior to returning the results back to the user
space application that made the request. NtQuerySystem-

Information() returns the list of processes as a linked list.
To filter the given process (by name), the process is discon-
nected from the linked list. Finally, the new, filtered linked
list is returned.

Our aim using this technique is that the processes se-
lected by the rootkit to be hidden should be invisible to
applications such as the Task Manager or Process Explorer.
In addition, they should not be available for Windows API
functions and other process APIs.

SR4: File Hiding using SSDT Hooking Our SR4
rootkit applies SSDT hooking for the purpose of hiding files.

(a) Before SSDT Hooking

(b) After SSDT Hooking
Figure 3: Visualizing SSDT Hooking

We hook the service function called NtQueryDirectoryFile().
Whenever the above mentioned function is called our ma-
licious version is executed instead of the original function.
The way files are hidden is very similar to the way processes
are hidden in SR3. When the NtQueryDirectoryFile() rou-
tine is called it returns a structure array that represents a
file. The two fields required are the FileName and NextFile-

Offset. To hide a file by its name, the NextFileOffset of
the current file is set to the NextFileOffset address of the
file structure to be removed. Similar to SR3, the filtered
structure array is then returned to user space.

Specifically, SR4 hides files with names starting with com.

SR5: Direct Kernel Object Manipulation Direct Ker-
nel Object Manipulation (DKOM) is a rootkit technique
that involves hiding things without the need to hook func-
tion pointers or execute injected code. This is very different
from the IRP and SSDT hooking attacks described thus far.
In order to accomplish this, the rootkit directly modifies OS
data structures in memory in order to remove references to
items that the user intends to hide.

SR5 uses DKOM to hide processes. Under Windows, ev-
ery active process is associated with a struct EPROCESS in
kernel memory. This struct consists of a ListEntry (a linked
list) variable with the name ActiveProcessLink. This Lis-
tEntry further consists of two entries, FLINK and BLINK. The
FLINK member of this struct points to the next entry (pro-
cess) in the doubly-linked list while the BLINK member points
to the previous entry (process). In order to hide a specific
process with a given PID, all we have to do is disconnect
it from the doubly-linked list. To do this, we set the FLINK

of the process preceding the process we want to hide to the
FLINK of the process we are hiding. The same is done with
the BLINK of the next process, which is set to the BLINK of
the process being hidden. This involves the direct modi-
fication of kernel memory, and the rootkit can completely
unload itself after those modifications occur.



Table 2: Trace Background Workload Conditions
Name Description
Quiet The profiling benchmark is executed and there

are no background processes running (except
those required by Windows).

Noisy 1 The profiling benchmark is executed and there
are two background processes running: Down-
loading a large file over HTTP and listing of
the Windows directory in a loop.

3.2 Profiling Benchmark
One unique aspect of rootkits when compared to other

types of malware is that after they are installed, they do
not execute in the context of their own process. Rootkits
that use hooking, for example, have their code executed in
the context of whatever process requested the relevant file
or process information from the OS kernel. This means that
in order to properly collect the HPC data for a rootkit, we
cannot profile the rootkit itself. Instead, we must profile
another application that causes the rootkit functionality to
be triggered.

In this work we construct a profiling benchmark that col-
lects data from the OS that a rootkit might like to hide. The
benchmark calls a variety of system programs to gather po-
tentially hidden information. The system programs called
by the benchmark are: netstat, ping, tasklist, open,
taskkill, and dir.

The benchmark is a continuous loop, but we limit its run-
time in our tests to be about 45 seconds.

3.3 Testing Platform
Our test platform (where rootkit infection is performed)

is a Windows 7 virtual machine running on VMWare Work-
station version 10. We chose VMWare because it allows for
easy rollback of the OS after infection (which allows us to
easily repeat experiments) and because it has support for
virtualizing HPCs. All of the security measures on the sys-
tem were manually disabled.

In order to capture the HPC traces of the profiling bench-
mark, Intel VTune 2015 [11] was used. VTune allows ap-
plications to be run while capturing a configurable set of
HPCs.

In order to allow us to collect many traces quickly, we
ran our system on multiple computers with different CPUs:
Both Intel Ivy Bridge and Intel Broadwell. Both types of
CPUs have full support for HPCs.

3.4 Gathering HPC Traces
For each of our synthetic rootkits, we infected the system

with the synthetic rootkit and then used VTune to capture
the HPC traces of the execution of our profiling benchmark.

A trace is made up of the final HPC values captured after
the entire, 45 second run of the profiling benchmark. This
means the traces are not a time series, and no sampling is
performed. The raw value of each HPC at the end of the 45
second run is used. Even though every run of the benchmark
is fixed at 45 seconds, minor variations in the number of
clock cycles per run were observed due to the other activity
on the system at the time. In order to correct for this,
traces were scaled (through simple division) to ensure that
all traces are normalized to a fixed number of clock cycles.

As mentioned previously, there are over 400 HPCs avail-

able to be captured. In order to reduce this number, we did
some initial rootkit profiling using our benchmark and cap-
tured all the HPCs supported by VTune and the hardware.
A number of the HPCs were zero for all of these initial tests,
and so we removed them from our list, after which 244 HPCs
remained.

Due to limitations in the hardware, only four different
HPCs can be reliably captured simultaneously. This means
that in order to capture data for all 244 HPCs, the bench-
mark needs to be repeated 61 times, with each run capturing
4 different HPCs. We then combine all of the HPC data to
produce one trace with all 244 HPCs.

In order to ensure a variety of background workloads dur-
ing trace capture, we made use of the two different back-
ground workload conditions listed in Table 2. Whenever a
trace was captured, one of these two conditions was true. For
each testing condition and rootkit combination, 50 traces
were collected for a total of 500 infected traces. Given that
the profiling benchmark requires 45 seconds per execution,
and 61 executions are required to capture all 244 HPCs, it
takes about 45 minutes to capture one trace. To capture
all 500 traces requires a little over two weeks on a single
machine.

In addition, the same procedure is then repeated to gather
traces from a clean system which is not infected by any of
the rootkits. For the clean system we collect 300 additional
traces under each of the two testing conditions. This gives
us a total of 1100 traces.

3.5 Most Significant HPCs
With the 500 traces collected from the five synthetic rootk-

its and 600 clean traces, the next step is to determine which
of the HPCs are most significant for detecting each type of
rootkit.

For each synthetic rootkit, we determine the most sig-
nificant HPCs using WEKA [8]. To select the attributes,
we use the Gain Ratio Attribute Evaluation Algorithm with
full-training set as the selection mode. Once we have the
results of the algorithm for each synthetic rootkit, we select
only the most significant HPCs (HPCs with confidence level
of 1).

Table 3 summarizes the results of our experiments. In to-
tal, we identify 16 unique HPCs that are the most significant
with respect to the synthetic rootkits. There are a number
of observations that can be made from these results.

Synthetic rootkits that use the same mechanism have sig-
nificant overlap in terms of the most significant HPCs. SR1
and SR2 (IRP hooking) share 2/3 HPCs, while SR3 and
SR4 (SSDT hooking) share 9/12 HPCs. This is in contrast
to the sharing seen between rootkits with the same func-
tionality but different mechanisms. SR2 and and SR4 both
perform file hiding, but do not share any of the most signif-
icant HPCs.

Also of interest, but not surprising, is that SR5, the DKOM
based rootkit, did not have any HPCs appear as significant.
A DKOM based attack directly manipulates the kernel data
structures beforehand, meaning that no rootkit code exe-
cutes during the run of the profiling benchmark. This is a
strong indication that HPCs are not a suitable method for
detecting DKOM based attacks, and highlights a limitation
of using this approach for rootkit detection.

In order to visualize the traces, we applied Principal Com-
ponent Analysis (PCA) to our synthetic rootkit traces in or-



Table 3: Most Significant HPCs For Synthetic Rootkits
Name Mechanism Most Significant HPCs

SR1: Network Port Filter IRP Hooking
BR_INST_RETIRED.NEAR_TAKEN
BR_INST_RETIRED.NOT_TAKEN
BR_MISP_EXEC.ALL_BRANCHES

SR2: File Hiding IRP Hooking
BR_INST_RETIRED.NEAR_TAKEN
BR_INST_RETIRED.NOT_TAKEN

SR3: Process Hiding SSDT
Hooking

ICACHE.IFETCH_STALL
BR_INST_RETIRED.NOT_TAKEN
BR_INST_EXEC.TAKEN_INDIRECT_JUMP_NON_CALL_RET
BR_INST_RETIRED.NEAR_CALL_R3
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE_PS
L2_RQSTS.ALL_RFO
L2_LINES_OUT.DEMAND_DIRTY
L2_TRANS.L2_WB
L2_RQSTS.DEMAND_DATA_RD_HIT
L2_RQSTS.DEMAND_DATA_RD_MISS
L1D_PEND_MISS.PENDING_CYCLES
L2_RQSTS.ALL_PF

SR4: File Hiding SSDT
Hooking

ICACHE.IFETCH_STALL
BR_INST_EXEC.TAKEN_INDIRECT_JUMP_NON_CALL_RET
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE_PS
L2_RQSTS.ALL_RFO
L2_LINES_OUT.DEMAND_DIRTY
L2_TRANS.L2_WB
L2_RQSTS.DEMAND_DATA_RD_HIT
L2_RQSTS.DEMAND_DATA_RD_MISS
L1D_PEND_MISS.PENDING_CYCLES

SR5: Direct Kernel Object Manipulation DKOM None found

Figure 4: Visualization of the synthetic rootkit traces in a
PCA reduced feature space

der to reduce the feature space from 16 down even further
to three dimensions, albeit at a loss of accuracy. This allows
us to graph an estimate of the traces. Fig. 4 shows these
results for SR1-SR4 as well as clean traces. As can be seen,
there is a very clear delineation between the clean traces and
those from the synthetic rootkits. This leads us to believe
that the detection of hooking rootkits using HPCs will be
very accurate.

4. ROOTKIT DETECTION USING HPCS
Now that we have identified the top HPCs for detecting

various types of rootkit functionality in our synthetic tests,
can we use that information to detect real rootkits?

In order to answer this question, we trained a machine
learning based detector using a set of clean traces as well as
the dirty traces taken from the synthetic rootkits, but only

for the 16 most significant HPCs determined in Section 3.5.
We then used this trained detector to classify dirty traces
taken from real rootkits as well as additional clean traces
captured under the four different background workload con-
ditions of Table 2.

4.1 Rootkit Samples
As examples of real rootkits, we identified 20 variants of

five different well-known Windows 7 rootkits: Zeus, ZeroAc-
cess, Hickit, Ramnit and Turla. All 100 samples were down-
loaded from VirusTotal [28]. We chose these rootkits be-
cause they were accessible, successfully executed on Win-
dows 7, performed some sort of rootkit activity, and enough
variants were available to collect a variety of traces. The
types of rootkit attacks performed vary between the various
rootkits. ZeroAccess, for example, employs IRP hooking in
order to support file hiding. On the other hand, Zeus and
some of its variants displayed signs of SSDT Hooking. The
execution and proper functioning of all rootkit samples was
manually verified.

4.2 Additional Trace Collection
Given the new rootkits, traces were collected of each rootkit

sample using the 16 most significant HPCs discovered in Sec-
tion 3.5. In order to further vary the testing conditions, an
additional two background conditions (Table 4) were added.
For each of the 100 rootkit variants, we collected 10 traces
under each of the four background workload conditions for a
total of 4000 dirty traces. Given that we collected far fewer
HPCs, this data collection only required 8 days of CPU time
in order to get all 4000 traces.

We also collected an additional 24,000 clean traces using
the same 16 HPCs under the four background workload con-
ditions.
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Table 4: Additional Trace Background Workload Conditions
Name Description
Noisy 2 The profiling benchmark is executed and

Google Chrome is running, opening a variety
of websites in multiple tabs.

Noisy 3 The profiling benchmark is executed and the
Windows System Assessment Tool is executed
to benchmark the memory and disk perfor-
mance of the machine.

4.3 Machine Learning Methodology
We made use of the scikit-learn [20] Python library to

implement our system.
We evaluated the effectiveness of four different classifiers

for detecting rootkits. When using machine learning for clas-
sification, classifiers are used to distinguish data points in
order to determine which of the N classes every point be-
longs to. In our case, we have used two classes - clean and
dirty (infected). Hence, we can use our classifiers to predict
the probability of each data point in our test data which
represents the likelihood of it being a rootkit. What follows
is a brief description of each of the classifiers used.

SVM Support vector machines, SVM, are based on super-
vised machine learning models. The classifier is trained by
passing it a set of data points with each data point marked
into one of the two categories. The training algorithm then
finds an appropriate plane/hyperplane that separates the
two classes best. To classify, the new point is mapped to ei-
ther class based on its location with respect to the plane/hy-
perplane. We used two different SVM kernels: Linear and
RBF. Linear attempts to find a simple, linear plane/hyper-
plane separating the classes, while RBF builds a more a
complex plane/hyperplane.

OC-SVM One class SVM is an unsupervised learning model,
meaning it is trained only one class of data (in this case,
dirty). Unlike SVM, OC-SVM classifies data points as ei-
ther belonging to the class or not. Instead of finding the
best plane/hyperplane to separate data, the data points are
enclosed in a distinguishing shape that contains all the data
points that belong to one class. Data points outside that
shape are marked as not part of the class.

Naive Bayes Naive Bayes is a supervised algorithm based

on a probabilistic classification approach. In this classifier,
Bayes’ theorem is used to construct a probability model
while assuming that all features are independent. A sim-
ple decision rule is then applied to the probability model,
creating the classifier.

Decision Trees A decision tree is used in a supervised clas-
sification environment. A decision tree is made up of several
features. To train the classifying tree, the training data is
divided into subsets based on a given feature. Each sub-
set is then recursively divided and checked if it adds any
value to the classification process. If either the maximum
depth is reached or the division no longer makes the predic-
tion better, the node terminates. In order to classify a new
data point, the point traverses the whole tree based on the
branch conditions. It stops once it reaches a terminating
node which specifies its predicted class.

4.4 Training and Testing
We trained our classifiers using the 500 dirty traces from

the synthetic rootkits captured in Section 3 (reduced to only
the 16 HPCs) as well as 20,000 of the 24,000 clean traces
captured in Section 4.2. The architecture of our training
approach can be seen in Fig. 5.

For machine learning techniques that require tuned pa-
rameters (such as the γ value for SVM with an RBF ker-
nel), we applied a cross-validation grid-search over a range
of possible values. The parameter that is selected is the one
that gives the maximum accuracy on the test part of the
cross-validated data. The parameter values are obtained by
cross-validating the training data using a 60%/40% split.
None of the testing data is used as part of tuning.

Because our training data contains significantly more clean
traces than dirty ones, we have adjusted the weights given
to each class to balance the frequencies. In this method,
class samples get weights that are inversely proportional to
the class size. For example, in our training data the clean
class is 40 times larger than the dirty class. This can lead
to skewed results if this is not corrected for. By adjusting
weights of both classes during training, we can account for
this discrepancy and produce more accurate results.

It is important to emphasize that our dirty training data
consists of only traces from the synthetic rootkits of Sec-
tion 3. Traces from the real rootkits were not included.



Figure 6: ROC Curve Graph

This is because we want to determine if HPCs can be used
to detect previously unseen rootkits based on their function-
ality.

When testing our model, we used the remaining 4,000
clean traces (from the original 24,000 captured) as well as
the 4,000 traces captured from the real rootkits.

4.5 Results
Table 5 shows the true positive, false positive, true neg-

ative, and false negative rates that each classifier achieves
when classifying the 8000 traces found in the testing set.
Fig. 6 shows the ROC curves for the classifiers as well. For
classifiers that involve randomness in their execution, the
data reflects the average of 50 runs.

From the results, we can see that both versions of SVM
(Linear and RBF) produce extremely accurate results with
a true positive rate of 99.91% and a 0% false positive rate.
This indicates that the distinction between clean and dirty
in the data is very clear, and hence SVM is able to easily
distinguish between the two.

In order to visualize this distinction, we combined the
synthetic rootkit traces, real rootkit traces, and a set of
clean traces and once again performed a PCA reduction of
the feature space into three dimensions. The results can be
found in Fig. 7. As can be seen, there is a clear delineation
between the various rootkit traces and the clean traces. This
leads to very accurate detection using SVM.

The extremely high detection rate is particularly surpris-
ing given that the detector was trained on the synthetic
rootkits and used to detect the real rootkits. The system is
able to detect rootkits it has never seen before, even as vari-
ants. This means that HPCs are suitable for the detection
of zero-day rootkit attacks as long as those rootkits employ
previously known attack mechanisms.

5. DISCUSSION
The results in this paper raise a number of points that

deserve further discussion.

5.1 Explanation of Significant HPCs
In some ways the results of this work leave the reader

wanting because while it describes the observation and ap-
plication of a phenomenon (namely that HPCs can be used

Figure 7: Visualization of the real and synthetic rootkit
traces in a PCA reduced feature space

to accurately detect rootkits) it does not address the ques-
tion of Why?

When analyzing the 16 HPCs identified in Table 3, it is
tempting to try and explain exactly why each HPC is signif-
icant to each rootkit. For example, one could theorize that
SR1 and SR2 impact the BR_INST_RETIRED.NEAR_TAKEN HPC
because IRP hooking causes additional branches to occur,
and hence there are additional branches retired. (That ex-
planation, while sounding good, is completely fabricated.)
Indeed, the authors wrote multiple attempts at making just
these sorts of explanations. However, after multiple revisions
and detailed analysis of the data we removed such explana-
tions and have instead come to a different conclusion: We do
not have enough data to properly ascertain why a particular
HPC is impacted by the rootkit.

To do so would require a much finer granularity of HPC
collection than was employed here. One way to obtain data
at that granularity would be to instrument the OS kernel to
capture HPC information at various points (or perhaps at
every instruction) along the control-flow, and use the data
to create an annotated version of the code that details how
HPCs are impacted during execution. This is effectively su-
perimposing the time series HPC information onto a control-
flow graph. (The need to directly correlated HPC changes
with the code that caused them is the reason that a simple
time series HPC capture could not be used.) These an-
notated control-flow traces could then be obtained for in-
fected and non-infected runs, and the results compared to
determine exactly which code causes the HPC data to de-
viate. This would allow one to much more conclusively de-
scribe why the various HPCs are impacted by the rootkits,
and would also give additional insight into the possibility of
rootkits designed to evade such detection techniques.

5.2 Design Considerations for a Practical De-
tector

Obviously the approach used to gather HPCs in this work
would not be suitable for constructing a true rootkit detec-
tor. First, the trusted computing based (TCB) is too large
and actually includes the very operating system kernel that
malware is infecting. Intel’s VTune, while convenient for
gathering traces, runs at a privilege level that would allow
a rootkit attacker to disable it or modify its results at run-
time. In addition, our results indicate that rootkit detection



Table 5: Accuracy Results of Various Machine Learning Algorithms
ML algorithm TP Rate FP Rate TN Rate FN Rate
Decision Tree 67.43% 0.001% 99.99% 32.57%
Naive Bayes 51.22% 0.52% 99.48% 48.78%
OC-SVM 100% 49.81% 50.19% 0%
SVM(RBF Kernel) 99.88% 0% 100% 0.12%
SVM(Linear Kernel) 99.91% 0% 100% 0.09%

is most effective with at least 16 different HPCs, while mod-
ern Intel processors only allow four HPCs to be collected
simultaneously.

We will now discuss the considerations that should be
made for an actual rootkit detection system based on HPCs.
Existing work [6, 27, 18] has already proposed a variety of
design choices and recommendations, and ours will build on
these. In general, an HPC based rootkit detector should not
be constructed independently, instead it should be part of
the integrated design of a more general purpose HPC based
malware detector.

Simultaneous HPC Capture Both [6] and [27] propose that
hardware should be modified to allow for more than four
HPCs to be monitored simultaneously, but neither work pro-
vides guidelines for how many this should be. Our results
indicate that 16 might be the lower bound, although in prac-
tice we do not believe that many more than this should be
required. Existing work has obtained very good results with
only the four, and with better machine learning approaches
we believe that our count of 16 could be reduced as well.

Location and Updating of Detection Engine In [18] the de-
tection engine is designed and implemented in hardware,
and while both [6] and [27] place it in software, [6] proposes
updates to it occur with hardware validation assistance. In
general, we feel that the less reliant on hardware the detec-
tion engine is, the more robust it will be as attacks evolve
and the machine learning techniques required evolve with
them. Recent advances in compartmental execution provide
an elegant solution to this problem. Solutions such as In-
tel’s SGX [1] and Iso-X [7] provide methods for running code
in a hardware protected enclave whose data cannot be ma-
nipulated by other software layers, including more privileged
ones. This would allow a software-only detection engine that
can be updated without special purpose hardware assistance
beyond what is offered by the compartment system.

Secure Acquisition of HPC Data All three existing recom-
mendations propose tamper-proof, interrupt-less capture of
HPC data. We expand this recommendation by noting that
the secure delivery of HPC data should be incorporated into
the design of the compartment system, eliminating the need
for dedicating an isolated core [6] or isolated bus going to
that core.

Profiling Benchmark The profiling benchmark used in this
work could, for the most part, be used as part of a practical
detector. The benchmark would be executed periodically
and the captured HPC values run through the rootkit de-
tector. While a rootkit could detect that the benchmark
is running and disable its functionality prior to execution,
this would have a side-effect of ensuring that the benchmark
is able to collect the actual, unmodified state (such as pro-
cesses and network connections) of the system. Overall, If
the rootkit detects that the benchmark is running and con-
tinues to hide its presence, then it can be detected using

the HPC values. If the rootkit instead disables its hiding
techniques in order to evade HPC detection, then the data
collected by the benchmark will reveal the very things the
rootkit is trying to hide, hence allowing traditional detection
techniques to be used.

5.3 Evasion Techniques
The experiments performed in this work were done under

the assumption that the rootkit is not aware that it will be
profiled in this way. However, can rootkits adapt to evade
this technique using a mimicry attack [27]? The answer to
this depends on exactly how the rootkits impact the HPCs.
If the HPC impacts are due to things the rootkit cannot
change, such as the branches related to hooking, then the
answer is likely no. However, if the HPC impacts are simply
a reflection of the fact that different code with different HPC
characteristics is running when infected than when not in-
fected, then the answer might be yes. A rootkit author could
modify their code to maintain a similar average of HPC ef-
fects to that of the normal OS code. However, this sort of
attack would necessarily increase the number of instructions
executed (potentially significantly), which makes it prone to
detection by a simpler approach, such as the one employed
by NumChecker [29]. A deeper discussion of mimicry at-
tacks is available in [27].

While our experiments reveal that HPCs are effective for
detecting rootkits that make use of hooking, the revelation
that the DKOM based kit did not produce any significant
HPCs is a sign that HPCs are not a panacea for rootkit
detection. We hypothesize that there may be other types
of rootkits, such as those making use of return-oriented pro-
gramming [10], which may also not be detected by this tech-
nique. However, it is heartening to observe both that the
vast majority of rootkits do employ hooking, and that it is
still not clear if non-hooking based attacks can be as pow-
erful [22] as their hooking counterparts. It seems unlikely
we will see them equal the functionality required by modern
attacks.

5.4 HPC Collection Methodology
In this work we collected HPCs inside a virtual machine

using Intel’s VTune, a tool primarily designed to assist de-
velopers in optimizing their programs. Other works devel-
oped a custom HPC collection mechanism [27] and/or ran
directly on bare hardware [6]. While the detection results
in those and this work indicate that the HPC collection was
effective, the question remains regarding how much noise is
introduced by the various techniques. It would be interest-
ing to benchmark various HPC collection techniques in order
to gauge their accuracy. It will also be important going for-
ward to verify that HPC collection from within a VM has
similar levels of accuracy when compared to captures done
on bare metal.



6. RELATED WORK
While the original rootkit results from Demme et al. [6]

(previously discussed in Section 2.3) were not very promis-
ing, our work shows significantly higher accuracy when de-
tecting rootkits. We believe this difference in results can be
best explained by looking at the rootkits tested in each work.
Their experimentation included only two different real-world
rootkits (one user-level and one kernel-level), while ours in-
cludes 100 variants of 5 real-world kernel rootkits. In addi-
tion, our 5 synthetic rootkits cover a variety of kernel rootkit
attack mechanisms, while the kernel rootkit they tested with
only employs one mechanism. In short, our testing included
a more comprehensive sample of kernel rootkit techniques.
This is not meant to be critical of their approach, instead
this work simply provides a much more thorough focus on
rootkits while their work focused on a broad range of mal-
ware. The fact that our testing was performed on Windows
while theirs was performed on Linux may also have some im-
pact, and future work should investigate those differences.

Very similar in principal to our work is Numchecker [29],
a system that detects Linux rootkits by looking for HPC
deviations during the execution of kernel functions. Their
approach is to count the number of retired instructions, re-
tired returns, and retired branches that occur during sys-
tem calls and compare those numbers to known good values
for that OS. The main difference between their work and
ours can be summarized as a manual vs machine learning
based approach. In Numchecker, the HPCs used for analy-
sis were manually chosen by the authors, while in our work
we apply machine learning techniques to determine the most
significant HPCs. In addition, Numchecker detects rootkits
by evaluating whether the HPCs values collected during the
execution of a given kernel function deviate from experimen-
tally chosen values. Our work, in contrast, applies machine
learning to determine whether or not a rootkit is present. In
general, our work is a more systematic study of the impact
of rootkits on HPCs, and provides a more general approach
for using HPCs for rootkit detection.

A number of other works have also focused on using HPCs
for the detection of malware. Tang et al. [27] use unsuper-
vised machine learning to build profiles of normal applica-
tion’s HPC patterns, and then detect deviations. Their fo-
cus was on detecting user-level malware during exploitation
(as opposed to after infection). They demonstrated their
technique by detecting attacks against real vulnerabilities in
Internet Explorer 9, Adobe Reader, and Adobe Flash. They
achieved over 99% accuracy on detecting the exploitation
of these applications. Ozsoy et al. [18] propose the Mal-
ware Aware Processor (MAP), a hardware approach which
uses the same type of micro-architecture events measured
by HPCs in order to detect user-level malware in hardware.

The use of other microarchitectural features to detect ma-
licious activity has been studied as well. kBouncer [19] uses
the last branch recording (LBR) of Intel microprocessors to
detect the execution of ROP [24] code. A variety of works [4,
23, 32] have investigated the use of opcodes for the detection
of malware.

HPCs have also been applied in other ways to security.
Maurice et al. [15] use HPCs to reverse engineer the last level
cache in modern Intel processors, simplifying side-channel
attacks and covert channels. Malone et al. [14] design a
method for using HPCs to provide integrity checking of run-
ning applications.

7. CONCLUSION
In this work we provide an analysis of the applicability

of hardware performance counters to the detection of ker-
nel rootkits. We effectively extend and expand on the pre-
liminary results found in Demme et al. [6], demonstrating
that HPCs can be used to detect rootkits with very high
accuracy (>99%). We use machine learning to identify the
16 most significant HPCs for detecting Windows 7 rootkits
that make use of IRP and SSDT hooking to perform their
attacks. We also demonstrate that an SVM based classi-
fier can be trained to detect new, real-world rootkits despite
only being trained on a set of synthetic rootkits with limited,
but specific, functionality. This work provides many of the
theoretical and practical underpinnings that will be required
in order to build a fully functional, HPC-based rootkit de-
tector.
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