
Computing with Time: Microarchitectural Weird Machines
Dmitry Evtyushkin
devtyushkin@wm.edu

William & Mary
United States

Thomas Benjamin
tbenjamin@perspectalabs.com

Perspecta Labs
United States

Jesse Elwell
jelwell@perspectalabs.com

Perspecta Labs
United States

Jeffrey A. Eitel
jeitel@perspectalabs.com

Perspecta Labs
United States

Angelo Sapello
asapello@perspectalabs.com

Perspecta Labs
United States

Abhrajit Ghosh
aghosh@perspectalabs.com

Perspecta Labs
United States

ABSTRACT
Side-channel attacks such as Spectre rely on properties of modern
CPUs that permit discovery of microarchitectural state via timing
of various operations. The Weird Machine concept is an increas-
ingly popular model for characterization of emergent execution that
arises from side-effects of conventional computing constructs. In
this work we introduce Microarchitectural Weird Machines (𝜇WM):
code constructions that allow performing computation through
the means of side effects and conflicts between microarchitectual
entities such as branch predictors and caches. The results of such
computations are observed as timing variations. We demonstrate
how 𝜇WMs can be used as a powerful obfuscation engine where
computation operates based on events unobservable to conven-
tional anti-obfuscation tools based on emulation, debugging, static
and dynamic analysis techniques. We demonstrate that 𝜇WMs can
be used to reliably perform arbitrary computation by implement-
ing a SHA-1 hash function. We then present a practical example
in which we use a 𝜇WM to obfuscate malware code such that its
passive operation is invisible to an observer with full power to view
the architectural state of the system until the code receives a trigger.
When the trigger is received the malware decrypts and executes its
payload. To show the effectiveness of obfuscation we demonstrate
its use in the concealment and subsequent execution of a payload
that exfiltrates a shadow password file, and a payload that creates
a reverse shell.

CCS CONCEPTS
• Security and privacy→Hardware attacks and countermea-
sures;Operating systems security; Side-channel analysis and
countermeasures; Malware and its mitigation; • Computer sys-
tems organization→ Other architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446729

KEYWORDS
Microarchitecture security; weird machines; obfuscation; specula-
tive execution; side channel;

ACM Reference Format:
Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo
Sapello, and Abhrajit Ghosh. 2021. Computing with Time: Microarchitec-
tural Weird Machines. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3445814.3446729

1 INTRODUCTION

The ability to model and classify program’s behavior is funda-
mental for a vast number of security related tasks. It requires a
form of emulator which implements in software a reference model
of the target machine.

If this model deviates from the actual machine’s behavior, key
properties of many security mechanisms are violated. This can be
exemplified by a proof-carrying code framework [2, 25, 44] that
allows an arbitrary untrusted executable to run securely on a target
platform. Security is established by the target system checking a
proof provided along with the executable. The proof ensures the
executable cannot perform any activity (or computation) outside of
formally specified policy. Any divination between the expected and
actual target system behavior effectively violates such a proof.

Many security mechanisms are based on either guaranteeing
that the program (1) cannot perform an action from the deny-list,
or (2) can only perform actions from the allow-list. Examples of
such mechanisms include model checking [11, 24, 30], formal verifi-
cation [7, 8, 29, 35], taint analysis [15, 21, 45], control flow integrity
enforcement [1, 68], malware detection [12, 14, 31, 32, 49, 53, 67]
and sandboxing [18, 26, 66].

Consider a sandboxing framework such as Google’s native client
[66], where untrusted native code can be safely executed within the
trusted context of a browser. Although untrusted code is located
side-by-side with sensitive data, the framework prevents sandboxed
code from accessing restricted data or performing unexpected con-
trol flow alterations. This is done via rewriting the native executable

This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR0011-20-C-0039. Any opinions, find-
ings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Defense Advanced Research
Projects Agency (DARPA).

758

https://doi.org/10.1145/3445814.3446729
https://doi.org/10.1145/3445814.3446729

ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo Sapello, and Abhrajit Ghosh

to mask potentially dangerous memory accesses and control flow
transfers. To guarantee the modified code is safe, the framework
must be based on a fully accurate model of the target CPU. Undoc-
umented CPU functionality can cause deviations between modeled
and actual behavior of the sandboxed code, resulting in attacks.
Such deviations can be a result of errors [16], misspecifications
or intentional backdoors. For instance, a jmp instruction with the
invalid 0x66 prefix can result in deviation between the actual CPU
behavior and the outputs of a disassembler [19]. The effect is due
to different approaches in handling of invalid prefixes in Intel and
AMD processors potentially providing a tool for hiding malicious
instructions.

Program obfuscation [3, 37, 50, 56] is a general problem of trans-
forming programs to prevent reverse engineering or other forms
of analysis. While it is commonly used to hide malware, it can also
be utilized to conceal benign sensitive code in proprietary applica-
tions [17] or to improve security [6]. A strong obfuscation engine
can be constructed if the obfuscated program utilizes the target
platform features that are outside of platform’s reference model
used by the analyzer.

Recently a number of papers introduced the concept of weird
machines (WM) [5, 9, 20] in attempt to formalize exploits. Accord-
ing to this concept, an exploitable vulnerability not only provides
an access to otherwise protected data but creates a new compu-
tational device (or primitive) with its own interface. Such device
and its interface can be formalized and programmed. Then the
exploit itself can be viewed as a program developed specifically
for this computational device. For instance, a buffer overflow cre-
ates an artifact which is programmed by attacker providing data
to the vulnerable program through normal program’s API calls.
The data then is placed on stack and triggers certain abnormal
behavior that is outside of victim’s program specification. Previous
research has demonstrated that many vulnerabilities, such as buffer
overflow [54] can be utilized as fully programmable machines that
implement Turing-complete languages.

WM primitives can be utilized as powerful obfuscation engines.
Previous research demonstrated presence of such primitives in com-
mon implementation of various software and hardware components.
Programming these WM does not require activating any vulner-
abilities. For instance, Turing-complete WM were built utilizing
little known artifacts inside the page-fault handling hardware [4],
ELF-loader [55] and exception handler [46] mechanisms. These
WM provide nearly ideal obfuscation capabilities. First, they use
computer system’s features that are not identified as dangerous
by antimalware software. Second, they are naturally difficult to
analyze. To the best of our knowledge, no universal WM detection
approach has been proposed.

In this paper we establish a new type of WM implemented using
microarchitectural (MA) components of a CPU, their complex inter-
component interactions and how it effects the latency of common
operations. We call such machines 𝜇WMs (short for microarchitec-
tural weirdmachines). At a high level, the computation is performed
by executing regular instructions such as memory loads and stores,
jumps and conditional branches and observing execution time. The
WM is constructed from three types of abstract components. Weird
registers (WR) are data storing entities implemented using states

of MA components. Weird gates (WG) are basic computation com-
ponents which transform data stored in WR according to their
logic. WGs utilize entanglement of various MA component states
and their side effects such as aliasing, evictions and speculative
execution. Weird circuits (WCs) are ensembles of WGs and im-
plement more complex logic. We demonstrate that the proposed
computation framework can be used to perform general purpose
computations.

Since reverse engineering and binary analysis tools do not emu-
late MA components, we believe that our framework can be used
as a universal approach for program obfuscation. Moreover, even if
detection tools include the MA layer of the system in their refer-
ence model, we argue that precise detection of WM computations
is challenging due to their natural flexibility and differences across
CPU architectures. In addition we discuss how we found several
surprising ways for 𝜇WMs to improve security. We believe that this
paper introduces a new research area by looking at components
responsible for MA attacks from a different angle and studying
them from the perspective of computation artifacts.

2 BACKGROUND AND MOTIVATION
All current processors can be specified at two distinct abstraction
layers. The first layer is architectural. It is defined by the ISA and
represents architectural state of the machine composed from CPU
registers, instruction pointer and addressable memory. This layer
is visible to programs and programs interact with it directly by
executing instructions and providing data. It is well documented
and can be formally specified [36, 41]. The architectural layer is
realized via microarchitectural features that are not directly acces-
sible to the programmer, including internal CPU components such
as latches, buffers, wires, and various performance optimization
mechanisms. These structures compose the MA layer. Modern day
CPUs incorporate a large number of various performance opti-
mization mechanisms such as caches, prefetchers, various buffers,
special-purpose computing modules. Many of these mechanisms
have internal data structures with a complex state space.

While the presence of these mechanisms is a well known fact,
little data is available on their internal structure and operation,
apart from the textbook-level description. Moreover, these mech-
anisms are completely transparent to programs executing on the
CPU, only affecting program’s execution time. Yet, programs are
capable of implicitly manipulating MA components by perform-
ing normal activity. This property is used in traditional MA side
channel attacks. Where, for instance, a memory access having an
address dependency on sensitive data triggers a change of state
inside the CPU cache (e.g. transferring its state from not-cached to
cached). Then the attacker can probe the state and infer the secret
data. This basic principal lies in the foundation or 𝜇WM.

2.1 Use Cases for 𝜇WM
𝜇WM described in this paper provide an alternative way of per-
forming general purpose computation on the target platform. They
find a number of use cases (both offensive and defensive) listed
bellow.
Hiding Malware. Malicious functionality in sensitive applications
can be easily obscured by implementing it using 𝜇WM. Malware

759

Computing with Time: Microarchitectural Weird Machines ASPLOS ’21, April 19–23, 2021, Virtual, USA

can avoid being detected by dynamic or static analysis tools if code
sequences used in malware are implemented using 𝜇WM.Moreover,
doing so provides strong anti-debug protection since MA state is
not visible by a regular debugger and is highly volatile. For the
same reason 𝜇WM can be used to implement a logic-bomb or trojan
application [27] which appears benign but activates its malicious
functionality when triggered.
Preventing reverse engineering. Obfuscation techniques can be
used to prevent reverse engineering applications for protection
purposes. For instance, proprietary software developers may want
to execute secret algorithm on a third party untrusted machine
without disclosing algorithm’s internals. 𝜇WM can be used for this
purpose since their reverse engineering requires understanding of
complex MA effects which is a difficult task as we demonstrate later
in this paper.
Preventing emulation. 𝜇WM exploit unique features of CPU’s
internal components and their interactions such as address con-
flicts and race conditions. Emulating such effects with an acceptable
precision is extremely difficult as it would require first to reverse
engineer the target hardware platform. Currently existing cycle ac-
curate simulation only provide an approximate performance model
and do not have the level of details required to emulate 𝜇WM. We
propose to use 𝜇WM as an emulation detection/prevention tool
where computation can only be performed on a real (not emulated)
hardware.
Violating formal proofs, sandboxes, taint analysis, prevent
forensics. Since currently existing analysis tools do not model MA
layer, 𝜇WM can be used to perform activity outside of the security
model. In addition, since 𝜇WM’s current state is not located in reg-
ular memory but instead is encoded in the state of MA components,
traditional forensics tools cannot be used to study 𝜇WMs.

2.2 The Problem of Program Obfuscation
We consider a broader understanding of program obfuscation where
the goal of the attacker is to perform a malicious computation 𝑐𝑚
within program 𝑝 while not being detected by the analyzer. The
goal of the analyzer is to decide whether the program 𝑝 can perform
𝑐𝑚 under any conditions.

The program 𝑝 can be described as a finite state machine (FSM)
defined as 𝑀𝑝 = {𝑆𝑝 , Σ𝑝 , 𝛿𝑝 }, where 𝑆𝑝 is a finite set of all pro-
gram’s internal states. Each state is unique and fully determines the
current program configuration including the state of all its internal
components, such as variables, instruction pointer and others. Σ𝑝
is the program’s input alphabet and 𝛿𝑝 : Σ𝑝 × 𝑆𝑝 → 𝑆𝑝 is a tran-
sition function. Please note, that this model considers program’s
execution at the high level of abstraction and does not specify me-
chanics of the real platform such as contents of registers or memory
cells. Any computation performed by the program 𝑝 can be viewed
as a sequence of state transitions 𝑐 = (𝑠𝑝0 , 𝑠𝑝1 , ..., 𝑠𝑝𝑒𝑛𝑑), 𝑠𝑝𝑖 ∈ 𝑆𝑝
caused by starting from the initial state 𝑠𝑝0 and repeatedly apply-
ing function 𝛿𝑝 (𝑑𝑖), 𝑑𝑖 ∈ Σ𝑝 . In this way, the sequence of inputs
𝑑 = (𝑑0, 𝑑1, ..., 𝑑𝑛) determines program’s state transitions. The com-
putation result is determined by the end state 𝑠𝑝𝑒𝑛𝑑 from a range of
possible termination states. The computation then can be viewed
as a directed graph by associating each state with a graph node.

Considering this model, the problem of detecting malicious com-
putation 𝑐𝑚 can be thought of as pattern matching problem inside
the state transition graph. For instance, a malicious behavior can
be detected when program transitions into a single known ma-
licious state 𝑠𝑚 , a sequence of malicious states 𝑠𝑚0 ..𝑛 or a more
complex pattern that is known to be malicious. To answer the orig-
inal question of whether a given program 𝑝 is malicious or benign,
the analyzer supplies the program with various input sequences,
observes program state transitions and detects malicious patterns.
In practice this is done by either simulating program’s behavior or
using other forms of analysis.

Program obfuscation is the process of transforming the program
𝑝 or encoding its inputs 𝑑 in such a way to achieve functional
equivalency of 𝑐𝑚 through a different computation 𝑐 ′𝑚 when 𝑐𝑚
is known to be malicious. To illustrate this consider the following
example. Let there be a state in which a variable is assigned with
a certain value x = 10. Assume this is considered an indicator
of a malicious activity. The attacker then can achieve the same
result through a series of two separate actions x = 5; x += 5.
While such a naive evasion technique is easily detectable. A more
advanced attacker can utilize more sophisticated program transfor-
mation techniques [47] such as replacing registers and instructions
or utilizing execution abnormalities such as buffer overflows.

More generally, program obfuscation can be viewed as a graph
finding task. In particular, the attacker can use 𝑀𝑝 model to con-
struct a graph 𝐺𝑝 by applying function 𝛿𝑝 (𝑑) using all possible 𝑆𝑝
and Σ𝑝 . Such graph would contain information about all possible
state transitions in 𝑀𝑝 . Then the target computation 𝑐𝑚 is a sub-
graph of graph𝐺𝑝 . To obfuscate it, the attacker searches for another
subgraph 𝑐 ′𝑚 that has a similar topology but does not contain any
malicious patterns. In practice this is done with various methods
such as changing the program code or using alternative encoding
schemes for program input data.

Analyzing a program execution on a real machine, instead of a
simplified program model𝑀𝑝 , requires considering the whole ma-
chine together with all of its internal components. To do so, one can
use an architectural machine reference model 𝑀𝐴 = (𝑆𝐴, Σ𝐴, 𝛿𝐴).
Each state in the finite set 𝑆𝐴 determines the current configura-
tion of all machine’s internal components, such as data stored in
registers and memory, various pointers and others. Additionally,
input alphabet Σ𝐴 must include system-wide events such as inter-
rupts. It is clear that 𝑀𝐴 introduces a more detailed view of the
target machine operation. For states in 𝑆𝑝 , it is possible to find
matching states in 𝑆𝐴 . Thus the analyzer can use detection tech-
niques previously discussed in this paper for identifying malicious
executables. Please note, although a single state in 𝑆𝑝 maps to mul-
tiple states in 𝑆𝐴 , it should be trivial to perform the analysis by
ignoring irrelevant machine components. A rich state space of𝑀𝐴

introduces opportunities for program obfuscation. In particular, if
certain states or state sequences within 𝑆𝐴 are deemed malicious,
the attacker can modify the program or input data in such a way to
avoid these states. For instance, the attacker can change registers
used by the program, memory locations and instructions. With an
accurate model of𝑀𝐴 and advanced analysis, however, detection
of obfuscated program is still possible.

760

ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo Sapello, and Abhrajit Ghosh

2.3 Program Obfuscation and
Microarchitectural Layer

In addition to an architectural layer, real world computers also have
a microarchitectural layer. This layer is not considered by conven-
tional malicious software detection tools, yet it has properties that
make it desirable for obfuscation. First, it provides a rich state space
due to numerous structures implemented at MA layer. Second, MA
states are affected by programs executing on the machine, making
it programmable by executing regular code. Third, MA layer is
usually not well documented, making it very difficult or impossible
to create a perfect detection system. These properties make the MA
layer a desirable target for program obfuscation. AlthoughMA layer
is typically not well documented an advanced attacker can study it
using reverse engineering techniques and create a MA model𝑀𝜇 .
This model is then used to perform critical parts of computations
that would otherwise make malware detectable. Later in the paper
we demonstrate how simple elements of MA can be discovered,
modeled as FSM and manipulated to create basic computational
primitives. Note that it is not necessary for this model to be a com-
plete and full representation of the MA layer. Instead, the attacker
can reverse engineer only few components and manipulate them
to evade detection.

Speculative execution is a common feature in processors that
allows the pipeline to perform computations before the control
from is fully determined. In particular, the pipeline relies on pre-
dictions from components such as branch predictors to guess the
most likely instruction sequence and executes it immediately. If
the prediction later is deemed incorrect, the CPU performs a roll-
back and continues execution with the correct instruction sequence.
However, during such erroneous execution, instructions from the
mispredicted instruction sequence are allowed to make changes in
MA components. This feature provides a unique functionality for
constructing 𝜇WMs. It allows to create a divergence between the
state transitions in𝑀𝐴 and𝑀𝜇 . In particular, to implement a 𝜇WM,
the malicious executable may intentionally trigger a branch mis-
prediction causing some instructions to be erroneously executed
in speculative execution mode. Due to the later roll-back these in-
structions cannot trigger any state changes in 𝑀𝐴 while causing
state transitions in 𝑀𝜇 . As a result, an analyzer with fully visible
𝑀𝐴 cannot detect malicious computation if its critical components
are implemented via𝑀𝜇 state transitions during an erroneous spec-
ulative execution.

3 WEIRD REGISTERS AND GATES
In this section we introduce the concepts of weird registers (WR)
and weird gates (WG), basic building blocks for constructing 𝜇WM.
The former, as in regular machine is used to store data during ma-
chine’s computations and constructed from implicit manipulations
with microarchitectural components. The latter represent a minimal
functional unit of the machine processing data in its registers.

3.1 Weird Registers (WR)
Any computer can be formalized as an abstract finite state machine
𝑀 = (𝑆, Σ, 𝛿), where 𝑆 is a finite set of states, Σ is the input alphabet,
𝛿 : Σ × 𝑆 → 𝑆 is a transition function. Each state 𝑠𝑖 ∈ 𝑆 represents
a unique configuration of all of the machine’s internal components

such as memory, registers and storage media. Such model may
appear excessive and not practical. However, complex FSM can
be simplified if the number of observable components is limited.
This effectively creates a new individual FSM with fewer states,
input symbols and a simpler transition function. Yet, this FSM
contains computational logic embedded in the original machine.
For example, a CPU cache has a finite set of states and some logic
that controls state transitions which suffice to describe its behavior
at a high abstraction level. We refer to such FSMs as sub-FSM or
sFSM. We utilize these sFSM to construct simple computational
devices that will be used for obfuscation. In particular, they are
used to implement data storage entities in the form of WR and a
computational primitive in the form ofWG.We begin our discussion
with explaining construction of WR.

By definition sFSM does not have full information about the
machine 𝑀 but they are useful for analyzing behavior specific
to individual subsystems of the machine. Suppose there is a MA
resource that we want to utilize as a storage entity and construct a
WR 𝑟 . We use CPU data cache as an example. We first select some
variable var. Then a simple sFSM𝑀𝑟 = (𝑆𝑟 , Σ𝑟 , 𝛿𝑟) can be defined
for the chosen variable and MA resource. While 𝑀 contains the
full information about the status of the variable var (e.g. one state
for each possible value of var, states representing cache status of
var in L1, L2 and L3 caches, etc.), we define a simpler sFSM with a
smaller set of observable states 𝑆𝑟 . For instance, we consider only
two states for the variable represented by its L1 cache status. Such
abstraction is useful because it allows to ignore specifics of complex
cache organization and treat 𝑟 as a virtual entity. Let those states
be 𝑆𝑟 = {𝑠0, 𝑠1}. Then 𝑀𝑟 is in state 𝑠0 when var is absent from
L1 cache and is in state 𝑠1 when var is present in L1 cache. The
state transition logic for this sFSM is simple. When var is accessed
𝑀𝑣 transitions to state 𝑠1. When var is flushed from cache via
executing the clflush instruction the sFSM transitions to state 𝑠0.
These transitions appear regardless of the current state of sFSM.
This establishes the input alphabet Σ𝑟 for 𝑀𝑟 that is the set of
architectural or MA actions within the scope of the subsystem
𝑟 that can affect MA states. In particular, 𝜎𝑟0 =flush(var) and
𝜎𝑟1 =access_mem(var). Then 𝛿𝑟 accepts symbols of this alphabet
and triggers state transitions as previously described. This allows
us to implement weird register, a basic 2-bit microarchitectural
storage entity which uses CPU data cache for storage. We refer to
this register as DC-WR for data cache weird register.

The state of the DC-WR is read by timing the number of CPU
cycles it takes to access the chosen memory location. Please note
that reading DC-WR register state is an invasive operation. It causes
𝑀𝑟 to transition to state 𝑠1. Therefore we introduce an additional
signal, 𝜎𝑟2 = 𝑟𝑒𝑎𝑑 (𝑟) for the corresponding sFSM. Processing the
read instruction (passing 𝜎𝑟2) causes the same state transition as 𝜎𝑟1
previously defined but has the side-effect of storing the access time
in a CPU register. The underlying mechanism of this timed memory
load is as in [40]. We define 𝑟 to have a logic value of 0 when it
is in state 𝑠𝑟0 (not cached) and to have logic value 1 when it is in
state 𝑠𝑟1 (cached). It takes fewer CPU cycles to load var when it is
in cache. Therefore we determine the logic value of 𝑟 by executing
the read(r) instruction which has the side-effect of placing that
timing in an architecturally visible CPU register. If the load time is

761

Computing with Time: Microarchitectural Weird Machines ASPLOS ’21, April 19–23, 2021, Virtual, USA

greater than a certain threshold logic 0 is registered, otherwise it is
logic 1.

L1 cache state is one of many computer subsystems that has
microarchitectural resources that can be explicitly or implicitly
manipulated into states that can be made architecturally visible by
means similar to the DC-WR. We show some examples of WR that
can be constructed using these other subsystems in this Table 1.
In addition to utilizing MA sub-systems that have internal storage
functionality, such as cache, WR can be implemented through mod-
ulating contention on MA resources. Examples of such WR include
registers based on mul instructions and ROB listed in the table.
Contention-based registers are more volatile and hold data only for
certain number of cycles until the contention naturally disappears.
Although such volatility deteriorate reliability, it contributes to the
stealthiness of 𝜇WM.

The concept of WR can also be applied to formally analyze mi-
croarchitectural covert and side channels [59]. In the former case
two entities construct a communication channel by writing and
reading to and from a common WR. In the latter case a sensitive
operation of a program belonging to a victim causes a state transi-
tions inside sFSM triggering a write to a WR. Then WR is read by
an adversary. We believe that any microarchitectural covert or side
channel can be abstracted as a WR and therefore can potentially
support 𝜇WM execution.

In addition to basic data storage capabilities, WR have unique
properties.

(1) Volatility: many sates of microarchitectural entities are tem-
poral in their nature and exist only for a short period of time.
For example one can create a two bit WR from two states
of a limited pipeline resource, such as multiplication unit
which can be in two contention states, high and low. This
register will hold its value for several cycles and then default
to the value associated with low contention.

(2) State decoherence: reading WR’s value destroys its value
since the reader needs to interact with the MA resource,
for example by loading memory and measuring time. Note,
that other normal system activity can also interfere with
the corresponding MA element and destroy data in the WR.
This property makes it challenging for a potential analyzer
to observe 𝜇WM’s state and apply forensics techniques.

(3) Entanglement: many MA resources are connected to each
other often in non-obvious way. For example to assign a
value to a data-cache based WR, some code needs to be
executed, e.g. a mov instruction. That, in its turn, triggers
activity in the instruction cache. Therefore interacting with
one WR may affect another WR. While this can be viewed as
a noise negatively affecting WR performance, this interfer-
ence causes unique emergent properties to appear. We use
this property later in the paper to construct WC.

(4) Variability: There are many different ways how a sFSM can
be constructed from 𝑀 for the same MA element. For ex-
ample, one option is to view data cache as having only two
states (when variable var is uncached or cached). At the
same time, the same MA resource can be utilized to expand
the number of states in 𝑆𝑟 by using additional information
such as L2 status, whether or not a certain cache set is filled

Table 1: Examples of WR using various MA resources

Primitive Write bit (0 or 1) Read bit
d-cache [63] 0: clflush(var), 1: ld var measure cycles to access variable
i-cache [63] 0: flush(code), 1: call code measure cycles to execute code
ROB con-
tention [64]

0: execute nop instructions, 1: execute in-
structions with dependencies

execute any instructions and detect stalls

mul func.
units [63]

0: execute nop instructions, 1: execute
mul instructions

measure cycles to execute mul

Branch
direction
predictor [23]

0: train conditional branch to predict non-
taken, 1: train conditional branch to pre-
dict taken

execute branch non-taken and measure
cycles

BTB [22] 0: execute jmp from A to B, 1: execute jmp
from A to C

measure cycles to execute jmp from A to
B

Intel
VMX [52]

0: execute nop instructions, 1: execute
VMX instructions

measure cycles to execute a single VMX
instruction

or LRU sate [65]. In addition, mappings between 𝑆𝑟 states
and corresponding WR values is flexible and fully controlled
by the attacker. As a result, monitoring 𝜇WM activity is chal-
lenging even for analyzer capable of observing MA activity.

3.2 Weird Gates (WG)
The Weird Gate abstraction builds on that of the WR. WG are basic
elements of computation that exploit connection between different
MA entities and their corresponding WR. A WG is a code construc-
tion that implicitly invokes an activity in MA components in which
the state of one or more WR (input WR) conditionally changes the
state of one or more WR (output WR) enabling performing compu-
tational logic. The WG we discuss in this paper can be viewed as
implementation of logic gates such as AND, OR, and NAND. The WG
abstraction includes more complex constructs that do not necessar-
ily have 2 level logic output, and indeed we have experimentally
verified operation of some such gates, but we choose leave descrip-
tion of such gates to the future work. While we do not describe its
construction, among the WGs for which we provide experimental
results in Section 6 are NAND gates. This suffices to demonstrate
universality of WG as it is known that any arbitrary logic gate may
be constructed using NAND gates.

3.2.1 Weird AND Gate. One of the simplest WGwe demonstrate in
this paper is a gate that implements a logical AND operation which
ANDs two input weird registers. In particular, we use registers imple-
mented based on branch predictor and instruction cache as input.
The gate’s pseudocode and operation flow-chart are presented in
Figure 1. Please note that for demonstration purposes we combine
gate code together with input WR assignment operation into a
single function. However, in a real 𝜇WM these will be performed
separately. The operation of the gate is based on the following set
of observations. If a program contains a conditional branch instruc-
tion (if statement) depending from the previous branch history,
the branch predictor can either correctly or incorrectly predict its
direction. When the direction is incorrectly predicted, erroneous
speculative execution is activated. The attacker can intentionally
mistrain the branch in order to enable speculatively executing the
body of the if statement. However, instructions located inside the
if statement’s body will be executed only if they are currently
located in instruction cache (IC). This is because speculative ex-
ecution caused by a branch misprediction has a limited duration
known as a speculative window [39] resulting in a race condition.
If instructions are not in IC, the speculative window is to narrow

762

ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo Sapello, and Abhrajit Ghosh

and the execution is terminated before any changes are done to MA
components. Note that during the speculative window, instructions
from a predicted code branch are not permitted to alter the archi-
tectural state of the machine, e.g. the contents of RAM. However,
they can change the MA state by, for instance, issuing cache ac-
cesses. This principal is used in Spectre attacks [13, 34], where the
cache covert channel leaks sensitive data from within the erroneous
speculative execution.

The first input weird register for the gate is a WR implemented
using the branch predictor state associated with the gate’s if state-
ment (line 11). We refer to it as BP-WR. In a carefully constructed
code the BP can be trained into one of 2 states. In state 0 the BP will
be trained to not speculatively execute a block of code. In state 1 it
will execute the code. In the pseudocode from Figure 1 setting the
BP-WR to state 1 is shown as train_bp_nt(). The NT stands for
“Not Taken”: training the branch predictor to the “Not Taken” state
causes the speculative block to be executed. train_bp_t() sets the
BP-WR to 0 since the BP “Taken” state causes the speculative code
to not be executed. Our Weird AND gate uses this BP-WR as one of
its two inputs.

The second input WR to our AND is an instruction cache WR
(IC-WR). The code for the speculative block containing the DC-WR
access is either in the instruction cache or that code is not. Due
to the limited duration of the speculative window if the code is
not in the IC then it will not be executed. We consider the IC-WR
to be in state 1 if the code is in cache, and in state 0 if it is not in
cache (clflush(if_body) in the pseudocode). When we combine
these two input WRs we see that the DC-WR memory access will
only occur if both BP-WR is 1 and IC-WR is 1, the BP must attempt
to speculatively execute the memory load, and the memory load
instruction must be in instruction cache.

The output of our AND gate is in a DC-WR. In our construction
the speculative block of code contains a DC-WR memory access
operation (some chosen piece of memory is brought into the cache).
If the BP-WR is in state 1 then the memory access operation will
occur in speculative mode, and the state of the DC-WR will be set
to 1 (in cache). We always set the DC-WR to 0 (flush the relevant
memory location) prior to gate execution. Therefore this combina-
tion of WRs perform an assignment operation. If BP-WR value is 1,
DC-WR will be assigned to 1.

Note that the operation of this gate is architecturally invisi-
ble. While the inputs and outputs are visible, the actual AND logic
makes no call to any kind of CPU AND instruction. The part of
the WG that modifies the DC-WR state only occurs in speculative
mode which has no architecturally visible effects. Note that for
the sake of simplicity in Figure 1 the pseudocode contains two
functions train_bp_t() and train_bp_nt() which perform di-
rection branch predictor training. In the actual implementation this
is achieved by repeatedly executing the branch instruction with
the desired direction.

In the experiments discussed in Section 6 we demonstrate that
this gate works with a high degree of accuracy.

3.2.2 Weird OR Gate. In this paper we also demonstrate a weird
OR gate constructed using the same WRs. Figure 2 demonstrates
the pseudocode of a simplified version of this gate. As the AND gate
this gate uses the BP-WR and IC-WR registers as input. The gate’s

1 br_dir,out_c = 0;
2 and(in_a, in_b) {
3 if (!in_a)
4 clflush(if_body);
5 if (!in_b)
6 train_bp_t();
7 else train_bp_nt();
8 // set output to 0
9 clflush(out_c);
10 clflush(br_dir);
11 if (br_dir)
12 // 64-byte align
13 if_body:
14 out_c = 42;
15}

(a)

br_dir cache miss

get BP

spec exec if's body

spec exec bypassi-cache hit?

out_c = 42

wait

br_dir arrives
pred correct?

continueroll-back
and repeat

abort

NT
T

YN

Y N

(b)

Figure 1: Pseudocode of an AND WG (a) and its workflow (b)

functionality is implemented by placing two if statements into
the code. The first statement (line 16) causes the store operation
to be speculatively executed when the value of first input register
WR-IC is set to 1 (when code at if_body is cached). Note that we
always train BP to predict this branch as not-taken. The branch mis-
training here is unconditional and serves only to create a window
of speculative execution. As a result, in the first if statement the
value of the second input register BP-WR is not used. However, its
value is used in the second if statement (line 20) while the value of
first input register is ignored (we do not flush its code). As a result
the gate acts as a logical OR operation. The output WR is not set to
1 only when both of the input WR are 0. Otherwise after the gate
activation, the output register is set to 1.

As with the previously explained weird AND gate, the operation
of this WG is architecturally invisible. The inputs and outputs are
visible, but the OR operation itself uses no CPU OR instruction and
the essential parts of the gate operate only in speculative mode.

3.2.3 Other Weird Gates. In addition to aforementioned gates we
also composed and studied other logical gates using similar MA
mechanisms. The resulting set of gates provides universality prop-
erty. This enables us to compute results of an arbitrary binary ex-
pression by using only two classes of actions, moving data from/to
weird registers and activating weird gates. Later in this paper we
demonstrate universality of this approach by implementing a SHA-1
algorithm within a 𝜇WM. In the experiments discussed in Section 6
we demonstrate that these gates work with a high degree of accu-
racy.

4 WEIRD CIRCUITS
WGs described in Section 3.2 enable a basic framework for con-
structing WMs. A computation is first presented as a binary circuit
(or expression) and then divided into a sequence of individual reg-
ister and gate operations. Such model of operation requires outputs
of each gate to be read from the output register into the architec-
tural state of the program before it can be sent to the next gate’s
input. For the WR implemented using data cache, reading the in-
termediate state is done by measuring the latency to access the
corresponding memory location via the rdtscp instruction. Then
the state is written into a WR that is used as input for the next
gate. There are several disadvantages to this approach. WR reading
and writing operations require a considerable number of additional

763

Computing with Time: Microarchitectural Weird Machines ASPLOS ’21, April 19–23, 2021, Virtual, USA

1 br_dir1 = 0;
2 bir_dr2 = 0;
3 out_c = 0;
4 or(in_a, in_b) {
5 train_bp_nt();
6 if (!in_a)
7 clflush(if_body);
8 if (!in_b)
9 train_bp2_t();
10 else
11 train_bp2_nt();
12 // set output to 0
13 clflush(out_c);
14 clflush(br_dir1);
15 clflush(br_dir2);
16 if (br_dir1)
17 // 64-byte align
18 if_body:
19 out_c = 42;
20 if (br_dir2)
21 out_c = 42;
22}

(a)

br_dir1 cache miss

get BP

i-cache hit?

out_c = 42

wait

br_dir1/2, arrives
pred correct?

continue

roll-back
and repeat

abort

NT

N

Y
N

br_dir2 cache miss

get BP
NT T

out_c = 42

(b)

Figure 2: Pseudocode of an ORWG (a) and its workflow (b)

instructions executed, causing a slowdown. Moreover, 𝜇WM com-
posed in such a way have limited obfuscation properties. Since the
intermediate state of 𝜇WM is stored in the architectural memory,
an advanced analyzer may be able to detect malicious patterns in
state transitions of the architecturally-visible program or inside the
program’s memory.

Both of these limitations can be addressed by performing con-
tiguous computation within MA state instead of using architectural
state to enable the dataflow between weird gates. The goal is to
enable contiguous ensembles of WGs implement more complex
binary functions than individual gates without saving the inter-
mediate state in architecturally-visible memory. We refer to such
ensembles as weird circuits (WC). In WC, data is copied into the
MA layer only once and then a series of WG are activated in such
a way that the output of one gate serves as input for another gate.
The intermediate data is stored only inside WR for the whole time
of WC activation.

To describe how WC are formed and operate consider a minimal
WC consisting of two and gates connected in series and implement-
ing a binary expression c = a & b & a. Assume WR a, b and c are
implemented as in Section 3.2.1. Since a and b are purely input and
c is a purely output WR, the binary expression can be rewritten
in the following way: c = a & b; b = c; c = a & b . In other
words, the binary expression is translated into a sequence of basic
operations, individual gate activations and WR-to-WR transfers. To
make this computation possible without copying the intermediate
state into the architecturally-visible memory our WC needs to have
two properties:

(1) Individual WG operations need to be contiguous. This means
that activating a gate one time does not affect its consequent
behavior. This is needed to construct chains of gates.

(2) Transferring values between different registers must be pos-
sible to exchange values between input and output registers.

Previously described WGs lack both of these properties. First,
the gates use branch predictor mistraining to activate erroneous
speculative execution required to create the necessary race condi-
tion. The mistraining becomes challenging for multiple consequent

gate activations. Modern BPUs are known for being capable of
detecting complex branch patterns. When the WG code attempts to
repeatedly mistrain a certain branch, the BPU quickly learns this
pattern and begins predicting the branch direction correctly. This
causes the gate to produce erroneous output.

The second property cannot be fulfilled due to the use of WR
of different types and the lack of hardware interfaces to transfer
the state between separate MA entities. For example, consider a
case when we need to assign the value of c which is a DC-WR
to another weird register b, which is a BP-WR. In this case, we
need to conditionally train the BPU depending only on the state of
another MA entity, the data cache. Unfortunately there is no simple
way to achieve this since it would require performing training
of the BPU from within speculative execution. At the same time,
transferring the state within a single MA entity appears possible.
Suppose we have two DC-WR e and f implemented by variables
d0 and d1 correspondingly. By storing the address of d1 in d0 we
can implement a basic WR assign functionality (e = f). It is done
by simply dereferencing the pointer (*d0) while in speculative
execution. Under the race condition, variable d1 will be accessed
only if d0 is cached enabling the conditional assign operation.

To overcome these challenges we need to implement a new WG
mechanism that does not rely on BPU mistraining and uses WR
of the same type for all input and output gates. While alternative
implementations are possible, for this paper we will focus on the
series WC we have implemented based on Intel Transactional Syn-
chronization Extensions (TSX) technology. Introduced in Haswell
microarchitecure, TSX provides CPU-level transactional memory
operations. TSX introduces a set of instructions XBEGIN, XEND, and
XABORT. When a running program issues the XBEGIN instruction
the CPU enters a transactional mode in which operations are exe-
cuted until either the XEND instruction is encountered or an error
condition occurs. When the CPU encounters an XEND instruction
with no error then all effects from execution (such as memory reads
and writes) are committed and become visible on the architectural
level. If an error or fault occurs during the transaction then the
executed code is rolled back such that there are no architecturally
visible effects from that code and the CPU continues execution
at an address specified as an argument to the XBEGIN instruction
which is typically a fault handler.

However, as indicated by prior work [51], the execution is not
stalled immediately. The pipeline continues to execute instructions
even after the fault. This introduces a new source of erroneous spec-
ulative execution which we utilize for WG construction. Please note
that MA side-effects from this speculative execution are not rolled-
back upon leaving the TSX code. There are many conditions that
will cause a TSX transaction to abort such as page faults and divide-
by-zero operations. The most common use of the transactions is to
avoid using locks. During a transaction the CPU maintains a log
of all memory accessed, and if the memory is accessed by another
process the CPU aborts the transaction. In some programs this
permits optimistic execution of critical sections of computation
without need of locks. In our implementations when we want to
cause transaction aborts we simply divide a number by 0. This is a
stand-in for more subtle (obfuscatable) abort mechanisms that we
plan to develop in the future.

764

ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo Sapello, and Abhrajit Ghosh

The TSX mechanism is well suited for construction of WC in-
tended for stealthy operation such as use in our weird obfuscation
system. We create a window of speculative execution simply by
including a divide-by-zero error in each TSX block. In our experi-
ments we observed that the transaction blocks exhibit a longer and
more stable window of speculative execution comparing to when
we use BPU mistraining. At the same time multiple TSX based WG
can be strung in a row such that they compose a more complex
WC that performs calculations in a serial fashion with no architec-
turally visible intermediate results. They also make it impossible
for standard debugging techniques to be used for observing the
operation of TSX based WC. A requirement of the transaction in-
terface is that no part of the transaction become architecturally
visible unless the entire transaction completes with no other thread
accessing memory used in the transaction. If an external debugger
were to be able to observe what was happening in a transaction
block that would by definition be a side-effect and would cause an
abort. The debugger would see the XBEGIN instruction, then the
next instruction would be the beginning of the abort handler. There
are certain ways that Intel Processor Trace (PT) technology can
be used to help debug the insides of transaction blocks, but they
require modification of the program which is outside our security
assumptions.

Our TSX-based weird gates are based on the observation that
the duration of speculative execution occurring inside a TSX code
block upon a fault is limited. This crates a race condition. Assume
a code sequence consisting of three instructions i1; i2; i3; i4
that are executed inside a TSX transaction block and instruction i1
triggering a fault. In this case, whether or not instructions i2-i4
have a chance to execute and alter the MA state depends from
their performance. For instance, if instructions do not have any
memory dependencies, their execution time is low and they are
likely to be executed. Otherwise if they require data from RAM,
their execution time is unlikely to fit inside the speculative window
provided by the faulty instruction i1. This phenomenon creates
a basic primitive needed to construct a gate. Additionally, we can
introduce dependencies between instructions by grouping them
using arithmetical operations. Assume:

i2: mov d0, %r1;
i3: add d1, %r1;
i4: mov (%r1), %r2;

In this code sequence, the last instruction will be able to issue
a store request and modify the MA state only if variables d0 and
d1 are both cached. This effectively creates a AND weird gate with
input and outs registers being DC-WR.

Figure 4 contains pseudocode for a sample TSX WC that we
use for testing and which simultaneously calculates 𝑄0 ← 𝐴 ∧
𝐵 and 𝑄1 ← 𝐴 ∨ 𝐵 in a single WC based on the principle that
cache status of operands to addition will determine whether the
addition will be performed. This WC is a component of the weird
obfuscation system implementation described in Section 5.1. In this
pseudocode d0..d4 are variables that implement DC-WR. Absence
from cache representing logic 0 and presence in cache is logic 1.
Line 3 initializes all the DC-WR to logic 0 by flushing the memory to
which they point. In lines 4 and 5 the architecturally visible inputs
A and B are read into d0 and d1. Line 8 is the first line of the actual

1 #define ADDR(dx) to be const addr. pointed to by dx
2 int tmp, Q0, Q1, t1, t2, t3 = 0; // setup
3 // arch. visible
4 flush(*d0, *d1, *d2, *d3);
5 if (A) { tmp = *d0; } // d0 := A
6 if (B) { tmp = *d1; } // d1 := B
7 TSX_AND_OR { // Execute Weird Circuit
8 XBEGIN;
9 tmp = tmp / 0; // abort transaction
10 tmp = *(*d0 + ADDR(d3)); // d3 := d0
11 tmp = *(*d1 + ADDR(d3)); // d3 := d1
12 tmp = *(*d0 + *d1 + ADDR(d2)); // d2 := d0 & d1
13 XEND;
14 }
15 XBEGIN; // read output
16 // non-debuggable
17 t1 = rdtscp();
18 tmp = *d2;
19 t2 = rdtscp();
20 tmp = *d3;
21 t3 = rdtscp();
22 Q0 = (t2 - t1) < TIMING_THRESHOLD
23 Q1 = (t3 - t2) < TIMING_THRESHOLD
24 XEND;

Figure 3: Pseudocode for TSX weird circuit that computes
(𝑄0 ← 𝐴 ∧ 𝐵, 𝑄1 ← 𝐴 ∨ 𝐵)

WC. It is an illegal operation that aborts the transaction rendering
the operation of the gate architecturally invisible. After the abort
speculative execution continues to the transaction end. The Weird
Gate in this the weird circuit consists of the assignment weird gate
in which DC-WR d3 will be set to logic 1 if DC-WR d0 is logic 1.
It operates as follows: On line 9 if DC-WR is logic 1 then *d0 will
be in cache and the addition will be evaluated. *d0 holds value 0,
and ADDR(d3) is the constant value of the address pointed to by d3
which is determined at compile time. Therefore the result of the
addition is (0 + ADDR(d3)) and when the result of the addition
is dereferenced *d3 will be loaded into memory setting the logic
value of DC-WR d3 to 1. If *d0 is not in cache then the addition
will not be performed, *d3 will not be loaded into memory, and
the DC-WR value of d3 will remain logic 0; The second WG on
line 10 is similar to an assignment WG. It differs only in that the
destination WR for the assignment (d2) is not initialized to logic 0
prior to the assignment. Therefore if d1 is logic 1 d2 will be set to
logic 1, but if d1 is 0 the value of d2 will remain unchanged. The
combination of those twoWG result in a TSX-based weird OR circuit.
The thirdWG in theWC is a TSX based weird AND gate. The addition
expression on line 11 will only be evaluated if both d0 and d1 are
set to logic 1 which forms an AND using the same principles used to
build the OR. After theWC has executed we read theWR values into
visible memory. We want to avoid having the rdtscp instructions
visible to an observer because they are frequently associated with
Spectre style attacks. We therefore perform the timed memory load
inside a TSX transaction. An adversary attempting to observe the
process of reading theWRwill cause that transaction to abort which
destroys the value of the WRs and leaves the architecturally visible
outputs Q0 and Q1 set to 0. Intentionally causing such aborts to
disrupt malware weird circuits hidden in a legitimate program is
an interesting line of future work. It will, however, interfere with
proper execution of the legitimate program if done in a naïve way.

765

Computing with Time: Microarchitectural Weird Machines ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 2: Overview of variousWG performance and accuracy

Weird Gate Iterations
Execution
Time (s) Executions / Second Accuracy

AND 1M 15 66,666 100%
OR 1M 57 17,543 98%
NAND 1M 13 76,923 100%
AND_AND_OR 1M 81 12,345 99.4%
TSX_AND 1M 0.591 1,692,047 98.5%
TSX_OR 1M 0.591 1,831,501 97.9%
TSX_ASSIGN 1M 0.42 2,380,952 98.5%
TSX_XOR 1M 166 60,020 99.2%

4.1 TSX-Based Weird XOR
The security of the weird obfuscation scheme discussed in Sec-
tion 5.1 derives from the properties of a one time pad (OTP). As
with all OTP schemes each bit of the cyphertext must be XORd
with each bit of the pad to recover each bit of the plaintext. As
discussed in the previous subsection multiple TSX based WC can
be strung in a row such that they perform more complex calcula-
tions in a serial fashion with no architecturally visible intermediate
results. The TSX_XOR, our TSX based implementation of XOR that
is used by our weird obfuscation scheme, demonstrates a multi-
step calculation with no visible intermediates. It performs XOR
using the TSX_AND_OR gate from the previous subsection together
with a TSX-based NOTWG and an additional TSX-based AND gate.
Evaluation of TSX-XOR accuracy is discussed in Section 6.4.

4.2 Gate Performance Estimate
Naturally occurring system noise caused by timing variations and
various MA conflicts expectedly causes a reduction in WG stability.
Reliability can be improved by introducing redundancy by repeat-
edly activating the same gate and using a voting mechanism to
choose the gate’s output. Such redundancy affects overall perfor-
mance of 𝜇WM. To estimate performance of WGs we carried out
an experiment in which we executed various non-TSX and TSX
based gates in large series and measured the overall performance
and accuracy. Results are demonstrated in Table 2. Please note that
in this work we have not made significant attempts to optimize
the gates for performance and shown results represent data from
rather naïve implementation. We believe the performance can be
significantly improved by carefully optimizing WG code, deeply
studying the MA effects and designing better error detection or
correction mechanisms. We leave this research direction for the
future work.

5 APPLICATIONS OF WEIRD CIRCUITS
In previous sections we explored design and implementation of sim-
ple weird circuits that demonstrate the ability to create functionally
complete microarchitectually invisible boolean weird circuits. In
this section we will first demonstrate weird obfuscation, a malware
obfuscation system that uses more complex WC. We will then ex-
amine in greater depth the multi-gate TSX-based weird XOR circuit
used by the weird obfuscation system. Finally we will demonstrate
an implementation of SHA-1 that uses weird circuits.

5.1 Weird Obfuscation System
In this section we describe the operation of our weird obfuscation

(WO) system and how we use this system to obfuscate malware

Figure 4: wm_apt layout a) at start, b) after valid trigger

1 //XOR using ping_payload JMP/AES key, then AES decrypt
2 decrypt(&encrypted_struct, &decrypted_struct, ping_payload);
3 replace_f(MAP_ADDR, &decrypted_struct); //mmap onto MAP_ADDR
4 tsx_begin(); //Begin TSX block
5 caller(); //Calls into MAP_ADDR
6 ...
7 MAP_ADDR: //DECRYPTED_PAYLOAD
8 goto target_function //Jump over divide-by-zero
9 char* aes_key = {....}; //Used by decrypt()
10 tmp = tmp/O; //Not encrypted; will cause abort
11 /* Storage for target_addr & target_port */
12 target_function:
13 tsx_end(); //End TSX block
14 /* Compute address of socket, connect, dup2, execl */
15 /* Start reverse shell at target_addr:target_port */

Figure 5: Pseudocode for wm_apt implementation

code such that its passive operation is invisible to an observer with
full power to view the architectural state of a system until the code
receives a ping with a special trigger value in the body. When the
trigger is received the malware decrypts and executes its payload.
We will demonstrate the use of our WO system to conceal and then
execute a payload that exfiltrates a shadow password file, and a
payload that creates a reverse shell.

In our scenario we are in the roll of an attacker who has managed
to get an advance persistent threat (APT), such as a trojan horse,
installed onto a computer running inside an adversary’s network.
Our adversary, the defender, has the ability to view all architectural
state of the infected computer. Our adversary has the power to
run our infected program in a debugger or other dynamic analysis
tools. We hope this work will inspire future work for development
of static analysis tools that will detect and characterize 𝜇WM in
programs such as our APT, but as discussed in Sections 1 and 7
those tools do not yet exist. We therefore do not give our adversary
abilities granted by those tools.

When constructing our APT we first take the payload, choose
a random 128 bit AES key, encrypt the payload with that key and
store the encrypted payload in the structure shown in Figure 4 a)
starting at bit 324. We then place a specially crafted jmp instruction
at bit 164 followed by the AES key. We then create a random one-
time-pad of length 160 bits. We then XOR each bit of the pad against
the bits of the memory structure starting at bit 164. This has the
effect of “encrypting” the jmp instruction and the AES key against
the one-time-pad. The 160 bit one-time-pad will later be used as
the trigger value that will cause our malware to enter its active
phase. We complete the preparation by filling the first 160 bits of
the structure with random data followed by an illegal divide by
zero instruction, then copying the entire structure into the body of
a TSX block.

Our APT is malware hiding in a program that receives pings.
During operation every time it receives a ping each ping body
payload is used as an XOR key to transform the memory labeled

766

ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo Sapello, and Abhrajit Ghosh

Table 3: Triggers required for successful wm_apt transform

Min Q1 Med Q3 Max Std Dev
Triggers 1 2 6 11 69 12.19

Figure 6: Histogram of wm_apt triggers yielding successful
transform

xor-encrypted JMP/AES key in Figure 4 and overwrite the bits
labeled random. Bits 32-160 are then used as an AES key to decrypt
the payload at the end of the memory region. Finally, the entire
region is mmap’d and executed inside a TSX block as shown in
Figure 5.1. If the secret key in the ping body was correct there a
jmp instruction leading to goto target_function appears at bits
0-32 that will begin execution of the decrypted payload. Because
our XOR and AES keys were correct in this case, the payload will
execute properly and open a reverse shell to the attacker.

During the silent phase, before the attack is triggered, the af-
fected machine may receive many pings. When a received ping does
not contain the trigger value, first 160 bits of the TSX block will
contain a bad AES key resulted in garbage values in the decrypted
payload, and no jmp instruction. Instead of properly jumping over
the contents of the AES key and divide-by-zero instruction, this
incorrectly-decrypted region is executed as-is. This will generally
cause a near-immediate fault, but is guaranteed to fault by the time
it reaches the tmp = tmp/0 instruction at bits 160-164. This fault
is then rolled-back since it is inside a TSX block, and the program
continues to wait for the next ping trigger.

All critical parts of this APT operate in TSX blocks which are
not directly observable by a debugger. In addition, the one-time-
pad “decryption” of the AES key is performed by a TSX-based XOR
WG that has no architecturally visible intermediate values. The
analyzer will not see any part of the payload until the trigger has
been successful and the payload is already running.

Execution of the logic gates underlying the TSX-based XOR, as
discussed in Section 4.1, is not 100% accurate and is not guaranteed
to always return a correct result. Practically this means that each
trigger must be evaluated by the APT multiple times. We chose
this evaluation multiple to be 10. In our implementation the APT
is able to process pings in real-time with inter-arrival times up to
500ms. We see in Figure 6 and Table 3 the distribution of pings in

100 experiments required to successfully decrypt and execute the
reverse shell malware payload. A median of 6 pings demonstrates
successful XOR transform of the 160 bits shown in Figure 4 in <60
XOR attempts. Detailed performance of this operation is examined
in Section 6.

5.2 SHA-1 Implementation
We chose a hashing algorithm to be an illustrative high level algo-
rithm with which to demonstrate partially architecturally visible
𝜇WM for a number of reasons. A cryptographic hashing function
provides a challenging case for 𝜇WMwhich have components with
less than 100% accuracy. If a single bit of a pre-image is changed,
a good cryptographic hash function should provide a completely
different hash. In the same way single bit errors that occur during
hash computation are magnified which makes SHA-1 a challeng-
ing test case for what can be done with 𝜇WM. While SHA-1 is no
longer considered a secure hash function, it is still an algorithm at
a level of complexity suitable for initial demonstration of of 𝜇WM
fitness for complex computational tasks. Another reason we chose
a hashing algorithm is that our WC version can be used to replace
the hash function in the malware obfuscation system due to Sharif
et al. [56]. This provides an additional malware obfuscation system
based on 𝜇WM.

Referring to our SHA-1 implementation “partially architecturally
visible” implies that while many interim values are stored in archi-
tecturally visible memory all of the actual SHA-1 computation is per-
formed by 𝜇WM. For example, when the algorithm requires adding
two numbers, no CPU add instructions are executed. The implemen-
tation performs the addition using a full adder constructed from
two discrete weird XOR gates and a composed weird AND_AND_OR
gate. During execution the output of the weird XOR gates is tem-
porarily stored in memory as is the output of the weird AND_AND_OR.
With the parameters that we chose for experiments as described in
Section 6.5.2, 41.9% of the intermediate results were architecturally
visible.

As discussed in previous sections many of our weird gates have
a high degree of accuracy, but in very long runs errors do occur.
Our implementation of SHA-1 requires more than 100 000 execu-
tions of several different kinds of WG and we determined that the
accuracy of the WG was insufficient. Our SHA-1 implementation
improves on the accuracy of single gate executions by performing
multiple redundant executions. In the first step it performs each
WG execution s times, storing the timing values in each element
of an array T of length s. The algorithm then converts the median
value in T into a logic value which is then stored in array L of
length n. The algorithm then uses a best-k-of-n voting scheme such
that whichever logic value appears more than k times in array L is
chosen as the final output. Parameters s, k, and n are specified in a
configuration file.

The described system supports a chosen tradeoff between exe-
cution time, visibility (number of intermediate values exposed in
RAM), and accuracy. We ran a series of 10 experiments in which
each experiment consisted of an execution of the SHA-1 implemen-
tation. For these experiments we chose parameters s=10, k=3, and
n=5 which are conservative values favoring accuracy over speed.
Each of those experiments produced a correct hash. Table 4 shows

767

Computing with Time: Microarchitectural Weird Machines ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 4: Correct / incorrect gate executions in 2-Block SHA-1
hash experiment

Correct After Median Correct After Vote
AND 19,200/19,200 = 1.000000 6,400/6,400 = 1.000000
OR 15,360/15,360 = 1.000000 3,072/3,072 = 1.000000
NAND 1263,360/1263,360 = 1.000000 252,672/252,672 = 1.000000
AND_AND_OR 1,794,238/1,794,240 = 0.999999 256,320/256,320 = 1.000000

the correct / incorrect gate executions from a representative exper-
iment in which “Correct After Median” indicates that the median
timing value from T was in the correct range for the expected out-
put of the WG, and “Correct After Vote” indicates that the result
of the k-of-n vote was the correct logic value. Each execution took
around 26 minutes. The experiment shown in Table 4 took 26:30.
Please note that we have made no attempt to find parameter values
that produce near 100% successful SHA-1 hashes at faster speeds.

6 EXPERIMENTAL METHODOLOGY AND
EVALUATION

6.1 Setup for Weird Gate and Weird Circuit
Experiments

We used 2 different computers for the experiments discussed in this
paper. We performed all experiments that involved TSX-based WC
on a laptop fitted with an Intel Dual-Core i7-6600U CPU running
Ubuntu 18.04.4 LTS with a 5.4.0-42 kernel. We configured grub such
that physical CPU 1 was isolated and the dynamic frequency scaling
was disabled to permit us to manually set the CPU frequency to 2.30
GHz for all experiments. We configured our experiments to always
use the 3rd logical CPU core for 𝜇WM execution. We performed
our non-TSX based WC experiments on a machine equipped with
i5-8259U 2.3GHz CPU. The setup was otherwise the same as for
the TSX-based WG experiments.

While this configuration improves the overall 𝜇WM stability, it
is not critical and practical 𝜇WM computation can be achieved on
a system with the default configuration. CPU frequency scaling
and other processes being executed on the hypercore within the
same CPU core introduce the most invasive effects. However, it is
fairly easy to reduce such effects by executing an infinite loop and
tying it to the matching hypercore. This 1) brings CPU frequency
to the maximum supported value, 2) does not allow other processes
to be scheduled on that core. In addition, WR demonstrated in the
paper are implemented using only local core resources. As a result,
activity on other cores does not have a drastic effect.

6.2 Evaluation Framework
One of the challenges of working with WGs is their stability when
composed into WCs. Successful execution of each WG depends on
microarchitectural state that is not generally obvious to a devel-
oper. To combat this, we developed a framework we call skelly
that abstracts away the need to understand the state of the mi-
croarchecture to build WCs. This framework acts as a static library
that provides basic logic functions such as int and(int a, int
b);. Our SHA-1 implementation (see Section 5.2) was built using
the skelly framework.

Aside from reliability improvement features such as the k-of-n
vote described in the SHA-1 implementation, the main feature of

Figure 7: bp/icache AND Gate - Measured Timing KDE

Figure 8: bp/icache OR Gate - Measured Timing KDE

Table 5: BPU and instruction cache weird gate accuracy eval-
uation

Gate Operations Correct Mean Accuracy
AND 320000 319994 0.99998125
OR 320000 319988 0.9999625

skelly is its mechanisms to maintain WG functionality even as
WGs are added. For example, we found that branch predictor and
instruction cache WGs have a strong dependence on code align-
ment such that the clflush operates on the correct cache line. We
identify and map in skelly a dedicated portion of memory at cache-
aligned addresses for each WG that depends on this alignment and
initialize it at run time. This has allowed us to implement AND, OR,
XOR, NOT, AND-AND-OR, and a variety of convenience functions such
as a full adder, 32-bit left shift/rotate, as well as 32-bit versions of
all logical primitives.

768

ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo Sapello, and Abhrajit Ghosh

Table 6: TSX-AND-OR measurement delay (CPU cycles)

Input Min Q1 Med Q3 Max Std Dev Mean
AND (0,0) 32 220 224 228 19704 895.140481 427.464108
AND (0,1) 33 220 224 228 19898 930.385259 425.825045
AND (1,0) 32 220 224 228 20812 960.856007 431.780749
AND (1,1) 31 35 36 38 10633 257.526695 61.938191
OR (0,0) 31 192 217 222 18576 927.312266 415.490419
OR (0,1) 31 34 36 36 8916 143.093040 48.554473
OR (1,0) 31 34 36 36 9096 155.911515 46.165324
OR (1,1) 31 34 36 36 5475 105.783600 43.736969

Table 7: TSX-XORmeasurement delay (CPU cycles)

Input Min Q1 Med Q3 Max Std Dev Mean
0,0 31 220 222 228 20323 963.352778 432.871339
0,1 31 34 36 37 15656 360.437970 75.401468
1,0 31 34 36 37 16525 344.305996 71.674809
1,1 31 212 222 226 19200 883.147570 382.066129

6.3 Evaluation of Branch Predictor and
Instruction Cache Based Weird Gates

We evaluated our branch predictor/ instruction cache based gates,
such as AND and OR, using the skelly framework with system
conditions outlined in Section 6.1. skelly was compiled with a flag
allowing architecturally visible verification of WG outputs to for
reporting purposes. In evaluating AND & OR we performed 320 000
operations per gate type using sets of 2 randomized input provided
by rand(). We show the accuracy statistics in Table 5, and timing
KDEs for each in Figure 7 and Figure 8 that show the logic level
boundary.

6.4 Evaluation of TSX-Based Weird Circuits
We evaluated our TSX-based gates using an optimized version of
the skelly framework with additional code alignment to improve
TSX gate stability. Each gate was exercised with 64 000 operations.
We show in Table 8 the mean accuracy and number of unrecovered
TSX aborts across 4 TSX-series gate types and present delay mea-
surements from TSX-AND-OR and TSX-OR gates in Tables 6 and 7.

6.5 Setup for Weird Circuit Application
Experiments

6.5.1 Weird Obfuscation. The wm_apt framework as described in
Section 5.1 was built with the modified skelly framework de-
scribed in Section 6.4. We performed the following experiment
100 times to generate the distribution shown in Figure 6. In the
first terminal wm_apt is executed. In a second, continuous pings
are sent with ping localhost -p $XOR_SECRET -i 0.5. In a
third, a netcat session is running awaiting the reverse shell from
the wm_apt with the following commands: pkill ping && exit.
Upon successfully decoding the malicious payload, the reverse shell
terminates ping and the ping count is recorded.

6.5.2 Evaluation of the SHA-1 Implementation. The 𝜇WM comput-
ing SHA-1 was built using the interfaces provided by the skelly
framework. For evaluation a test fixed plaintext string was provided
to the executable 10 times for hashing using system conditions out-
lined in Section 6.1. In our test run each of the ten hashes executed
successfully, with discrete and logical operation counts and accura-
cies outlined in Table 4. As a convenience we have allowed skelly

Table 8: TSX Gate Accuracy

Gate Correct Ops TSX Aborts Total Ops Mean Accuracy
AND 62880 7 64000 0.98250
OR 61922 9 64000 0.96753

AND-OR 61152 12 64000 0.97775
XOR 59259 8 64000 0.92592

framework to abort when an incorrect logical operation is detected,
and to compare the hash output to a reference SHA-1 implementa-
tion. During standard operation, however, skelly does not provide
this verification.

7 RELATEDWORK
The work presented in this paper touches on three areas of research:
Weird Machines, microarchitectural side-effect based computing
and software obfuscation. We discuss related work in all of these.

Dullien [20] was first to provide a formal model for the notion
of a Weird Machine. Previously several works demonstrated pos-
sibility of WM construction using architectural-level artifacts in
existing machines. For instance, Shapiro et al [55] described an ELF
(Executable and Linking Format) Weird Machine that is present
within the Linux runtime loader (RTLD). The authors showed how
computations defined using a formal language can be used to drive
its operation. Bangert et al. [4] described a Weird Machine present
within the IA32 architecture’s interrupt handing and memory trans-
lation tables and how it can be used to perform arbitrary compu-
tations. These works show the use of unexpected (but specified)
computation capabilities within the architectural layer of the target
CPU. Both WMs are observable and therefore can be mitigated by
an analyzer constructed following CPU specifications.

Szefer et al. [58] provides a detailed survey of microarchitectural
side and covert channel attacks and outlines the space for MA arti-
facts that can be used to construct 𝜇WM. Kocher et al. [34] showed
how branch prediction state can be manipulated to force victim
programs to leak arbitrary data via a cache based covert channel.
Lipp et al. [38] leveraged delayed exception handling within the
CPU pipeline to leak kernel space data into user space. More re-
cently line fill buffers [60] and write transient forwarding of store
buffer values [42] were exploited to leak data without address space
restrictions. The existing corpora of work on attacks using micro-
architectural side-effects typically focuses on data leaks using vari-
ous microarchitectural structures rather than attempt to formalize
the computation. Wampler et al. [61] demonstrates the feasibility of
concealing computations using speculative execution. The computa-
tions are performed by executing instruction sequences that cannot
be executed during normal operation of the program but can occur
in transient execution mode due to the CPU’s mis-speculations.
Traditional reference monitors cannot detect this attack since they
ignore never-executed code paths. However recently developed
speculative execution code trace detection tools [28, 62] can be
used to detect such types of execution. In contrast, in our work
the malicious code is not represented by regular ISA instructions
located inside the target program that a potential analyzer can
detect.

Previously the usage of hardware performance monitoring for
malware detection was proposed [57]. Since 𝜇WM execution results

769

Computing with Time: Microarchitectural Weird Machines ASPLOS ’21, April 19–23, 2021, Virtual, USA

in irregular behavior similar to that observed during side channel
attacks, existing tools may be applied to detect 𝜇WM presence.
Such tools typically use hardware-based performance monitoring
to detect abnormal patterns in software. However, they usually are
only used for monitoring applications handling sensitive data and
not designed for full-system monitoring [43, 69] which is needed
for 𝜇WM detection in a running system. While [43] can detect
malicious speculative execution patterns, the analyzer needs to
be trained for specific types of malicious code sequences. In this
paper we discussed how 𝜇WM phenomenon is not tied to a specific
microarchitectural entity. An advanced attacker may be able to
bypass the detection by discovering and using alternative mecha-
nisms inside CPU microarchitecture. This makes construction of
an universal 𝜇WM detector challenging or even impossible. Several
recent works [33, 48] proposed to mitigate speculative execution
attacks by limiting speculation or by hiding effects from speculative
execution. Such protections require significantly changing the CPU
pipeline.

Recently microarchitectural protections against speculative ex-
ecuted attacks were introduced that relay on CPU microcode to
suppress dangerous speculative execution. While some of our gates
that rely on branch prediction mistraining may be affected, this
happens only under the most conservative configuration. Such
configuration is likely to cause drastic performance degradation.
Moreover, gates implemented using the TSX technology appear
unaffected.

The approach we use to obfuscate the logic bomb used to trig-
ger the APT described in this paper is based loosely on the ap-
proach followed in [56]. Here the logic bomb is hidden by use
of a cryptographically secure hash function to hide the value of
the input trigger. Such an approach is susceptible to brute force
attacks since the code used to decode the input trigger can be exe-
cuted in arbitrary environments consisting of CPUs with diverse
microarchitectural characteristics. Our use of microarchitectural
side-effects to decode the input trigger makes such attacks harder
to accomplish since the decoding will work only in specific mi-
croarchitectural environments. Baldoni et al. [3] discusses the use
of symbolic execution techniques to identify backdoor inputs. Sym-
bolic execution operates at the level of programmatic abstraction
which is even higher than the architectural layer which in turn is
above the microarchitectural layer. For true brute force analysis
multiple instances of virtualized environments need to be created
to explore multiple paths in a program; this leads to more impacts
on shared microarchitectural resources. Bulazel et al. [10] discusses
dynamic monitoring of malware execution using various types
of instrumentation, generally either in-system or out-of-system.
Most monitoring techniques result in timing overhead except pos-
sibly bare-metal analysis. Bare-metal analysis is used to counter
virtualization-resistant malware but provides less insight into mal-
ware behavior and results in challenges in scalability. Fratantonio
et al. [27] discusses the use of static analysis to detect suspicious
predicates that guard sensitive functions; this approach cannot
apply to WCs. Schrittwieser et al. [50] deals with binary code anal-
ysis. It classifies analysis goals, obfuscation techniques, analysis
techniques and then assesses the security of code obfuscation tech-
niques. They discuss dynamic analysis which trades off coverage
against cost, microarchitectural behavior exhibited only under very

specific circumstances may never be observable owing to scaling
requirements for coverage.

8 CONCLUSIONS
We have introduced the concept of 𝜇WMs: a methodology for har-
nessing the computing capability provided via the unspecified as-
pects of CPU microarchitectures. We have described a framework
for programmatically storing and operating on microarchitectural
state as WRs and WGs respectively. We have shown techniques for
composing primitive operations into more complex WCs. Our ap-
proach for manipulation of microarchitectural state has been shown
to be applicable to diverse microarchitectural structures. The use
of our approach for the creation of an obfuscated, microarchitec-
ture sensitive logic bomb as well as for the implementation of a
reasonably complex cryptographic algorithm SHA-1 shows its flexi-
bility for diverse applications. Obfuscation of code functionality, in
particular, has been shown to be an important area of application
for 𝜇WMs. We believe that our work merely uncovers the tip of
the iceberg: we believe that 𝜇WMs will have strong applications in
both offensive and defensive adversarial scenarios in the future.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 4.

[2] Andrew W Appel. 2001. Foundational proof-carrying code. In Proceedings 16th
Annual IEEE Symposium on Logic in Computer Science. IEEE, 247–256.

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 1–39.

[4] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W Smith. 2013. The
Page-Fault Weird Machine: Lessons in Instruction-less Computation. In Presented
as part of the 7th USENIX Workshop on Offensive Technologies. https://www.cs.
dartmouth.edu/~sergey/wm/woot13-bangert.pdf.

[5] Thomas Benjamin, Jeff Eitel, Jesse Elwell, Dmitry Evtyushkin, and Ghosh Abhrajit.
2020. Weird Circuits in CPUMicroarchitectures. Presentation, The Sixth Workshop
on Language-Theoretic Security (LangSec) (2020). http://spw20.langsec.org/slides/
WeirdCircuits_LangSec2020.pdf, Accessed: 2020-12-18.

[6] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. 2003. Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error Exploits.. In
USENIX Security Symposium, Vol. 12. 291–301.

[7] Jan Olaf Blech and Sidi Ould Biha. 2011. Verification of PLC properties based on
formal semantics in Coq. In International Conference on Software Engineering and
Formal Methods. Springer, 58–73.

[8] Sylvie Boldo and Jean-Christophe Filliâtre. 2007. Formal verification of floating-
point programs. In 18th IEEE Symposium on Computer Arithmetic (ARITH’07).
IEEE, 187–194.

[9] Sergey Bratus. What are Weird Machines? https://www.cs.dartmouth.edu/
~sergey/wm/. Accessed: 2020-12-18.

[10] Alexei Bulazel and Bülent Yener. 2017. A survey on automated dynamic malware
analysis evasion and counter-evasion: Pc, mobile, and web. In Proceedings of the
1st Reversing and Offensive-oriented Trends Symposium. 1–21.

[11] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-
Jinn Hwang. 1992. Symbolic model checking: 1020 states and beyond. Information
and computation 98, 2 (1992), 142–170.

[12] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid:
behavior-based malware detection system for android. In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile devices. ACM,
15–26.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
systematic evaluation of transient execution attacks and defenses. In 28th USENIX
Security Symposium (USENIX) Security 19). 249–266.

[14] Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E
Bryant. 2005. Semantics-aware malware detection. In 2005 IEEE Symposium on
Security and Privacy (S&P’05). IEEE, 32–46.

[15] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis. 196–206.

770

https://www.cs.dartmouth.edu/~sergey/wm/woot13-bangert.pdf
https://www.cs.dartmouth.edu/~sergey/wm/woot13-bangert.pdf
http://spw20.langsec.org/slides/WeirdCircuits_LangSec2020.pdf
http://spw20.langsec.org/slides/WeirdCircuits_LangSec2020.pdf
https://www.cs.dartmouth.edu/~sergey/wm/
https://www.cs.dartmouth.edu/~sergey/wm/

ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo Sapello, and Abhrajit Ghosh

[16] Robert Collins. Intel’s System Management Mode. ([n. d.]). http://www.rcollins.
org/ddj/Jan97/Jan97.html, Accessed: 2021-01-26.

[17] Asish Kumar Dalai, Shakya Sundar Das, and Sanjay Kumar Jena. 2017. A code
obfuscation technique to prevent reverse engineering. In 2017 International Con-
ference on Wireless Communications, Signal Processing and Networking (WiSPNET).
IEEE, 828–832.

[18] Gregory William Dalcher and John D Teddy. 2013. Systems and methods for
behavioral sandboxing. US Patent 8,479,286.

[19] Christopher Domas. 2017. Breaking the x86 ISA. Black Hat (2017).
[20] Thomas F Dullien. 2017. Weird machines, exploitability, and provable unex-

ploitability. IEEE Transactions on Emerging Topics in Computing (2017).
[21] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[22] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1–13.

[23] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. Branchscope: A new side-channel attack on directional branch
predictor. ACM SIGPLAN Notices 53, 2 (2018), 693–707.

[24] Seyed K Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar. 2016.
BUZZ: Testing Context-Dependent Policies in Stateful Networks. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 16). 275–289.

[25] Xinyu Feng, Zhaozhong Ni, Zhong Shao, and Yu Guo. 2007. An open framework
for foundational proof-carrying code. In Proceedings of the 2007 ACM SIGPLAN
international workshop on Types in languages design and implementation. ACM,
67–78.

[26] Bryan Ford and Russ Cox. 2008. Vx32: Lightweight User-level Sandboxing on
the x86.. In USENIX Annual Technical Conference. Boston, MA, 293–306.

[27] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic
bombs in android applications. In 2016 IEEE symposium on security and privacy
(SP). IEEE, 377–396.

[28] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and Andrés Sánchez.
2020. SPECTECTOR: Principled detection of speculative information flows. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1–19.

[29] Xiaolong Guo, Raj Gautam Dutta, Yier Jin, Farimah Farahmandi, and Prabhat
Mishra. 2015. Pre-silicon security verification and validation: A formal perspec-
tive. In Proceedings of the 52nd Annual Design Automation Conference. ACM,
145.

[30] Klaus Havelund, Doron Peled, and Dogan Ulus. 2017. First order temporal logic
monitoring with BDDs. In Proceedings of the 17th Conference on Formal Methods
in Computer-Aided Design. FMCAD Inc, 116–123.

[31] Xuxian Jiang, XinyuanWang, and Dongyan Xu. 2007. Stealthy malware detection
through vmm-based out-of-the-box semantic view reconstruction. In Proceedings
of the 14th ACM conference on Computer and communications security. ACM,
128–138.

[32] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn Song.
2009. Emulating emulation-resistant malware. In Proceedings of the 1st ACM
workshop on Virtual machine security. 11–22.

[33] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. Safespec: Ban-
ishing the spectre of a meltdown with leakage-free speculation. In 2019 56th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[34] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, StefanMangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018.
Spectre attacks: Exploiting speculative execution. arXiv preprint arXiv:1801.01203
(2018). https://spectreattack.com/spectre.pdf.

[35] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM
52, 7 (2009), 107–115.

[36] Xavier Leroy et al. 2012. The CompCert verified compiler. Documentation and
user’s manual. INRIA Paris-Rocquencourt 53 (2012).

[37] Cullen Linn and Saumya Debray. 2003. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM conference on
Computer and communications security. 290–299.

[38] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018). https://arxiv.org/pdf/
1801.01207.

[39] Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin
Kirda, William Robertson, and Anil Kurmus. 2019. Speculator: a tool to analyze
speculative execution attacks and mitigations. In Proceedings of the 35th Annual
Computer Security Applications Conference. 747–761.

[40] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest. 2019.
Spectre is here to stay: An analysis of side-channels and speculative execution.
arXiv preprint arXiv:1902.05178 (2019).

[41] Neophytos G Michael and Andrew W Appel. 2000. Machine instruction syntax
and semantics in higher order logic. In International Conference on Automated
Deduction. Springer, 7–24.

[42] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck,
Daniel Genkin, Daniel Gruss, Frank Piessens, Berk Sunar, and Yuval Yarom. 2019.
Fallout: Reading kernel writes from user space. arXiv preprint arXiv:1905.12701
(2019).

[43] Samira Mirbagher-Ajorpaz, Gilles Pokam, Esmaeil Mohammadian-Koruyeh, Elba
Garza, Nael Abu-Ghazaleh, and Daniel A Jiménez. 2020. PerSpectron: Detecting
Invariant Footprints of Microarchitectural Attacks with Perceptron. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
1124–1137.

[44] George C Necula. 1997. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. ACM,
106–119.

[45] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and SignatureGeneration of Exploits on Commodity
Software.. In NDSS, Vol. 5. Citeseer, 3–4.

[46] James Oakley and Sergey Bratus. 2011. Exploiting the Hard-Working DWARF:
Trojan and Exploit Techniques with No Native Executable Code.. In WOOT.
91–102.

[47] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2012. Smash-
ing the gadgets: Hindering return-oriented programming using in-place code
randomization. In 2012 IEEE Symposium on Security and Privacy. IEEE, 601–615.

[48] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2019. Efficient invisible speculative execution through selective
delay and value prediction. In 2019 ACM/IEEE 46th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 723–735.

[49] A-D Schmidt, Rainer Bye, H-G Schmidt, Jan Clausen, Osman Kiraz, Kamer A
Yuksel, Seyit Ahmet Camtepe, and Sahin Albayrak. 2009. Static analysis of exe-
cutables for collaborativemalware detection on android. In 2009 IEEE International
Conference on Communications. IEEE, 1–5.

[50] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. 2016. Protecting software through obfuscation: Can
it keep pace with progress in code analysis? ACM Computing Surveys (CSUR) 49,
1 (2016), 1–37.

[51] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 753–768.

[52] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. Netspectre: Read arbitrary memory over network. In European Symposium
on Research in Computer Security. Springer, 279–299.

[53] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. 2012.
“Andromaly”: a behavioral malware detection framework for android devices.
Journal of Intelligent Information Systems 38, 1 (2012), 161–190.

[54] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM conference
on Computer and communications security. 552–561.

[55] Rebecca Shapiro, Sergey Bratus, and Sean W Smith. 2013. “Weird Machines” in
ELF: A Spotlight on the Underappreciated Metadata. In Presented as part of the
7th USENIX Workshop on Offensive Technologies. https://www.cs.dartmouth.edu/
~sergey/wm/woot13-shapiro.pdf.

[56] Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, andWenke Lee. 2008. Impeding
Malware Analysis Using Conditional Code Obfuscation.. In NDSS.

[57] Baljit Singh, Dmitry Evtyushkin, Jesse Elwell, Ryan Riley, and Iliano Cervesato.
2017. On the detection of kernel-level rootkits using hardware performance
counters. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. 483–493.

[58] Jakub Szefer. 2018. Survey of Microarchitectural Side and Covert Channels, At-
tacks, and Defenses. Journal of Hardware and Systems Security (2018), 1–16. https:
//pdfs.semanticscholar.org/4b99/854f2aac10f41902b738c4b783d7c187a61a.pdf.

[59] Jakub Szefer. 2019. Survey of microarchitectural side and covert channels, attacks,
and defenses. Journal of Hardware and Systems Security 3, 3 (2019), 219–234.

[60] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue in-flight data load. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 88–105.

[61] Jack Wampler, Ian Martiny, and Eric Wustrow. 2019. ExSpectre: Hiding Malware
in Speculative Execution.. In NDSS.

[62] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2018. oo7: Low-overhead defense against spectre attacks
via binary analysis. arXiv preprint arXiv:1807.05843 (2018).

[63] Zhenghong Wang and Ruby B Lee. 2006. Covert and side channels due to proces-
sor architecture. In 2006 22nd Annual Computer Security Applications Conference
(ACSAC’06). IEEE, 473–482.

771

http://www.rcollins.org/ddj/Jan97/Jan97.html
http://www.rcollins.org/ddj/Jan97/Jan97.html
https://spectreattack.com/spectre.pdf
https://arxiv.org/pdf/1801.01207
https://arxiv.org/pdf/1801.01207
https://www.cs.dartmouth.edu/~sergey/wm/woot13-shapiro.pdf
https://www.cs.dartmouth.edu/~sergey/wm/woot13-shapiro.pdf
https://pdfs.semanticscholar.org/4b99/854f2aac10f41902b738c4b783d7c187a61a.pdf
https://pdfs.semanticscholar.org/4b99/854f2aac10f41902b738c4b783d7c187a61a.pdf

Computing with Time: Microarchitectural Weird Machines ASPLOS ’21, April 19–23, 2021, Virtual, USA

[64] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. 2019. SPEECHMINER: A
Framework for Investigating and Measuring Speculative Execution Vulnerabili-
ties. arXiv preprint arXiv:1912.00329 (2019).

[65] Wenjie Xiong and Jakub Szefer. 2020. Leaking information through cache LRU
states. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 139–152.

[66] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native client:
A sandbox for portable, untrusted x86 native code. In 2009 30th IEEE Symposium
on Security and Privacy. IEEE, 79–93.

[67] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: capturing system-wide information flow for malware detec-
tion and analysis. In Proceedings of the 14th ACM conference on Computer and
communications security. ACM, 116–127.

[68] Mingwei Zhang and R Sekar. 2013. Control Flow Integrity for {COTS} Binaries.
In Presented as part of the 22nd {USENIX} Security Symposium ({USENIX} Security
13). 337–352.

[69] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. 2016. Cloudradar: A real-time
side-channel attack detection system in clouds. In International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 118–140.

772

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Use Cases for WM
	2.2 The Problem of Program Obfuscation
	2.3 Program Obfuscation and Microarchitectural Layer

	3 Weird Registers and Gates
	3.1 Weird Registers (WR)
	3.2 Weird Gates (WG)

	4 Weird Circuits
	4.1 TSX-Based Weird XOR
	4.2 Gate Performance Estimate

	5 Applications of Weird Circuits
	5.1 Weird Obfuscation System
	5.2 SHA-1 Implementation

	6 Experimental Methodology and Evaluation
	6.1 Setup for Weird Gate and Weird Circuit Experiments
	6.2 Evaluation Framework
	6.3 Evaluation of Branch Predictor and Instruction Cache Based Weird Gates
	6.4 Evaluation of TSX-Based Weird Circuits
	6.5 Setup for Weird Circuit Application Experiments

	7 Related Work
	8 Conclusions
	References

