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ABSTRACT
In this paper we revisit the security properties of extended access
control schemes that are used to protect application secrets from
untrusted system software. We demonstrate the vulnerability of
several recent proposals to a class of attacks we callmapping attacks.
We argue that protection from such attacks requires verification of
the address space integrity and propose the concept of self-verified
address spaces (SVAS), where the applications themselves are made
aware of the requested changes in the pagemappings and are placed
in charge of verifying them. SVAS equips an application with a
customized verification model with several attractive functional
and performance properties. We implemented the attacks and a
complete prototype of SVAS in Linux and the QEMU emulator.
Our results demonstrate that SVAS can prevent mapping attacks
on extended access control systems with minimal performance
overhead, hardware modifications and software complexity.
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1 INTRODUCTION
Computer systems rely on critical services provided by trusted
system software layers. However, as the code bases and complex-
ity of modern operating systems (OS) and hypervisors continues
to grow, putting trust in these layers is no longer prudent [1, 2].
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Attacks that exploit vulnerabilities in OS and hypervisor code to
obtain privilege escalation and gain unauthorized access have been
demonstrated [3–6]. It is therefore critical for secure operation
to design systems in a way that protects application secrets even
with untrusted system software. This problem recently received
significant attention [7–18], with solutions grouped into two main
categories:
• Isolated execution systems such as Intel’s SGX [13, 14, 17]: in
these systems, security critical components are placed into iso-
lated compartments that are embedded in the application’s ad-
dress space. While these schemes provide strong security guar-
antees, they have a number of challenges associated with drasti-
cally different programming model, performance, flexibility, and
hardware complexity.
• Extended Memory Access Control (EMAC) systems: a class of
solutions that prevent privileged software layers (the OS and/or
the Hypervisor) from accessing sensitive memory pages belong-
ing to user processes by extending conventional memory access
permissions [7–12, 15, 18].
While similar in goals, these two categories represent different

design philosophies. EMAC solutions offer several attractive prop-
erties including low-overhead protection provided to user processes
through natural extension of the permission structure present in
virtual memory. Unlike isolation schemes, EMAC avoids the need of
drastic changes to program’s organization to separate security crit-
ical components into isolated entities. It also avoids the overhead
of switching between the untrusted code and isolated components.
In addition, restricted model of isolated environments and the in-
ability to access libraries in isolated mode makes it challenging for
programmers to create functional programs.

The EMAC solutions differ in where the access control is rooted:
a trusted hypervisor [7, 8, 10, 15, 18], or the hardware [9, 11, 12].
Hardware-rooted designs, such as H-SVM [9], HyperWall [11] and
NIMP [12] have an important advantage in that they do not add
any extra software layers to the TCB.

In this paper, we revisit the security properties of hardware-
rooted EMAC solutions. We show that these designs can be vul-
nerable to attacks that rely on manipulations of page mapping
structures to gain access to critical data. We demonstrate these
mapping attacks (MAs) and their application to defeat several exist-
ing hardware-rooted EMAC schemes. We describe the mechanics
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Figure 1: Double Mapping Attack: Memory Layout

and a complete implementation of MAs in Section 3. This is the first
contribution of this paper. We also show that defending hardware-
rooted EMAC systems against MAs requires the integrity of the
address space mapping to be maintained to produce Verified Ad-
dress Spaces (VAS). VAS can be supported in different ways based
on when the verifications are triggered and where they are im-
plemented; in this paper we introduce the concept of self-verified
address spaces (SVAS) that allow efficient and flexible support of
VAS without adding software to the TCB. The key idea of SVAS is to
make the lower-privilege software layer (e.g. the victim application)
itself aware that a page mapping change has been requested. The
application is responsible for verifying the change and allowing or
disallowing the new mappings. Involving applications in the verifi-
cation process allows the system to make security-critical decisions
in an application-specific way, and without being limited by the
semantic gap.

2 THREAT MODEL & ASSUMPTIONS
We assume that the attacker completely controls the Highest Privi-
leged Software Layer (HPSL) and the victim process is managed by
the HPSL (and thus, the attacker). We also assume that the system
protects physical memory from undesired direct accesses by the
HPSL and limits the HPSL in the following ways.
• The HPSL cannot directly read or write the physical memory that
holds the victim’s critical data and the mechanism that enforces
this restriction cannot be disabled by the HPSL.
• The HPSL cannot directly create new virtual memory aliases to
expose the physical memory pages holding the victim’s private
sensitive data to other entities. We call this double-mapping of
private pages.
• The HPSL cannot bypass the double-mapping restriction by un-
mapping a physical page from the victim’s virtual address space
and subsequently mapping it into a different virtual address
space. We assume that when a physical page that is used for
private data is unmapped from the victim’s virtual address space,
the page content is destroyed by some trusted entity.
• The HPSL cannot use DMA attacks [19, 20] to bypass existing
memory protections.

Note that these protections are available in hardware-rooted EMAC
models such as HyperWall [11] or NIMP [12].

We assume that the victim process or VM must share some non-
sensitive pages with the HPSL and other entities to support high-
performance inter-process communication and I/0. While the ma-
nipulations with the page tables are limited as detailed above, the
attacker is allowed to dynamically insert pages into the victim’s
virtual address space or double-map non-private pages to support
dynamic memory allocation and VM ballooning [21].

We assume that the CPU and physical memory are part of the
Trusted Computing Base (TCB). As such, we do not protect against
hardware-based attacks, such as probing physical memory or the
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Figure 2: CFDA Mechanics

memory bus. However, these physical attacks cannot occur re-
motely and well-known techniques to protect against them ex-
ist [7, 22–25]. We also do not protect against denial-of-service or
side-channel attacks [26, 27] — a compromised operating system
can always mount a denial-of-service attack. Finally, we do not
protect applications from code reuse attacks [28, 29]. These attacks
are rooted in a vulnerability within the application itself and they
represent orthogonal attack vectors. Existing defenses for them can
be used in conjunction with SVAS [30–33].

Finally, we assume that applications which require the highest
level of security, including protection against all of the attacks
described in this paper, must be either statically linked or linked
at load-time to support shared libraries. The security benefits of
SVAS do not extend to applications that use runtime linking (e.g.
via dlopen). It is unreasonable to assume that a security-conscious
user who does not even trust system software layers would tolerate
security risks associated with runtime linking.

3 MAPPING ATTACKS ON EMAC SYSTEMS
To simplify the presentation, we assume a non-virtualized system,
where the attacker controls the OS and the victim process (VP) runs
as a user-level process, but similar attacks apply in a virtualized
system. The attacker can create one or more attack processes (APs)
to assist in performing the attack.

EMACs (described in Section 4) do not allow the attacker to
directly access physical memory of a VP using kernel-level page
mappings. Consequently, the attack needs to carry out these ac-
cesses at the VP’s privilege level (user level in our prototype). The
attacker can accomplish this by either adding code to the kernel or
replacing existing code to establish virtual-to-physical page map-
pings for the user-level attack process (AP). Our prototype uses a
system call from the AP for this purpose. We now describe three
general attack vectors for the mapping attacks.

3.1 Double-Mapping Attack
With the kernel code in place, the attacker can perform a double-
mapping attack. Recent works [11, 12] showed how simple double-
mapping attacks can be defeated, we provide a brief description
here only because the attack principles are used to create more
advanced attacks described later. To perform a double-mapping
attack, the attacker creates an alias in the address space of the AP
so that the physical page holding the VP’s sensitive information
can be accessed using the AP’s virtual addresses allowing the AP
unconstrained access to the page. The virtual and physical memory
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Figure 3: Injection-Based MA

layouts of the AP and the VP after the completion of the mapping
operation are shown in Figure 1.

3.2 Control Flow Diversion Attack
Another category of MAs is Control-Flow Diversion Attacks (CFDAs).
The goal of CFDAs is to alter the control flow of the VP. In addition
to the malicious kernel code, the attacker exploits the presence of
indirect control flow instructions in the VP, such as an indirect
branch or a call.

CFDAs are carried out by strategically mapping a page contain-
ing data that is used by the VP to compute the target of the indirect
call. This allows the attacker to change the data that the VP uses
as the target. The data that the attacker changes via the mapping
can be the target itself, or data used to derive the target, such as
an index into a table of function pointers). Figure 2 depicts the first
case.

Figure 2a shows the VP’s virtual address space and the content
of physical memory before the malicious mapping takes place. The
attacker’s goal is to get VP to call func3 rather than func1. To
accomplish this, the attacker creates a new physical page where the
address of func1 is replacedwith the address of func3. The attacker
then remaps the virtual page containing the function addresses to
map to this new physical page. Figure 2b shows the VP’s virtual
address space after the remap operation (depicted as the blue arrow)
has occurred.

3.3 Injection-Based MA
The double-mapping attack described above is mitigated by sys-
tems that offer low-privileged software layers the ability to specify
sensitive pages and deny attempts to double-map them. However,
some shared (double-mapped) pages in the VP must be allowed
to support efficient communication with the OS, as described in
Section 2. Injection-based MAs leverage this fact to bypass these
protections.

The memory layout of the VP prior to the injection-based attack
is shown in step 1 of Figure 3. This includes the VP’s secret data
(e.g. an encryption key), a function F, and a pointer to that function
FA. The attack flow is the following: 2 The AP is augmented (by
the attacker) with code that copies a data page from one position
in the virtual memory space to another. In addition to this code,
the AP also contains a page to be used as a trampoline page. 3
The attacker uses the double-mapping technique described in Sec-
tion 3.1 to double-map the trampoline page and the page containing
the copy code into the VP’s address space. This creates the data
trampoline page which is used to move data from the VP to the AP
as part of the attack. 4 In this step, the attacker uses a CFDA
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detailed in Section 3.2 to modify a function pointer in the VP to
point to the copy code. 5 When the VP uses the function pointer,
the control flow of the VP is diverted to the newly-added code page
causing the VP to copy its sensitive data to the trampoline page
that was created in step 3 . At this time, the attacker can read the
secret data from the trampoline page that is mapped into the AP’s
address space. This attack requires only the malicious kernel-level
code and the user-level code to perform the copy.

4 IMPACT ON EXISTING DEFENSES
In this section, we evaluate the impact of MAs on the security of
existing EMAC defenses in the context of our threat model. Specif-
ically, we consider the hardware-rooted EMAC designs: Hyper-
Wall [11], NIMP [12], and H-SVM [9].

HyperWall [11] is designed to protect VMs from the hypervisor.
The key idea is to rely on a new memory-resident table known as
the Confidentiality and Integrity Protection (CIP) table. The CIP
table has a single entry for each physical page in the system and is
consulted by amodifiedmemorymanagement unit (MMU) to decide
which physical pages can be accessed by the hypervisor. HyperWall
allows VMs to specify which of their memory pages should be
protected from hypervisor access during VM initialization, and
the hardware applies these protections to the physical pages by
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making changes to the corresponding CIP table entries, as pages
are mapped and unmapped from VMs.

The NIMP architecture [12] is similar to HyperWall in that the
protections it offers are applied to physical memory pages. NIMP
modifies memory permissions such that each software layer is pre-
sented with its own distinct set of permissions that are not necessar-
ily hierarchical and inclusive. For example, NIMP allows memory
pages to be configured in such a way that pages are accessible by
an application, but not the OS.

H-SVM [9] also uses hardware to protect guest VMs from an
untrusted hypervisor. The H-SVM architecture prohibits the hy-
pervisor from directly modifying the nested page tables that map
machine (i.e. host) physical memory to guest physical memory.
Instead, the hypervisor must request updates to the nested page
tables from the H-SVM hardware, which allows it to consult its
page ownership tables to deny updates that would violate the mem-
ory isolation of guest VMs. Similar to the HyperWall architecture
discussed above, some pages must be shared to allow efficient com-
munication between the hypervisor and the guest VMs, presenting
an attack opportunity.

HyperWall, NIMP and H-SVM provide mechanisms to detect and
mitigate double-mapping attacks. HyperWall and H-SVM achieve
this by not allowing a page which is already assigned to a VM to
be assigned to another VM simultaneously, while NIMP explicitly
supports a "shared" permission bit for each physical page, indicat-
ing whether the page can be mapped into multiple address spaces
simultaneously.

Attacking EMAC Systems: While HyperWall, H-SVM and
NIMP provide confidentiality of memory pages by zeroing them out
when they are removed from an address space, none provide a com-
plete integrity guarantee. As a result, an injection-based mapping
attack against these systems can be launched as follows. First, the
malicious hypervisor can remove a page from a VM’s address space,
causing it to be zeroed out by hardware. Second, the hypervisor can
place new content of its choice on the now empty page. In the case
of an injection-based mapping attack, the content consists of code
which intentionally leaks data into the pages which are accessible
by the hypervisor. Finally, the hypervisor can return the page to
the same place in the victim’s virtual address space. When the page
is returned to the victim’s address space, the protections will be
reapplied, but the victim will still execute the code placed there by
the hypervisor since the victim is unaware of this change. We note
that during these operations the malicious hypervisor/OS would
not make use of the support for swapping in these systems as the
attack would be detected by the cryptographic protections applied
to swapped pages.

Compared to isolated execution schemes, the EMAC solutions are
less complex and require minimal (if any) changes to the program-
ming model - a major advantage for practical adoption. Unfortu-
nately, the current hardware-rooted EMAC schemes are vulnerable
to MAs, as we demonstrated. To efficiently mitigate this threat, we
propose the concept of Self-Verified Address Spaces (SVAS), where
trusted applications themselves verify changes to their address
spaces. Augmented with SVAS, hardware-rooted EMACs offer an
attractive alternative to isolation for protecting against untrusted
system software. We describe the details of SVAS in the next sec-
tion.

5 SELF-VERIFIED ADDRESS SPACES
The general flow of handling mapping requests in SVAS is illus-
trated in Figure 4. The figure also highlights the responsibilities of
the applications, system software layers, and hardware in handling

Table 1: Summary of SVAS Instructions

Management Instructions
Instruction Description
CRT_PT Creates a new page table
DEST_PT Destroys an existing page table
ADD_MAP Adds a new mapping to a page table
RM_MAP Removes a mapping from a page table
Decision Instructions
Instruction Description
ACCEPT_MAP Accepts a new mapping
REJECT_MAP Rejects a new mapping
ACCEPT_IMM Accepts a new immutable mapping

these requests. Each application in SVAS is augmented with a Veri-
fication Function (VF) which is used to verify changes requested
to the application’s page mappings. The VFs are securely stored
and are dispatched by SVAS when page mapping changes are de-
tected. SVAS maintains some additional in-memory structures and
adds several new instructions to implement its protections. The
following subsections describe the SVAS design in more detail.

5.1 SVAS Data Structures
In the SVAS system, each entry in a paging structure is augmented
with a bit called the REMAPPED bit. This bit is added to every level of
paging structure that can directly map a virtual page. The REMAPPED
bit is set for a given Page Table Entry (PTE) by the hardware when-
ever that PTE is modified. The setting of the REMAPPED bit denotes
that the virtual page mapped by this PTE has been remapped. The
REMAPPED bit is consulted during address translation to ensure that
the first access to a remapped page can be detected by the hardware.
When such an access is detected, it triggers a verification event on
behalf of the VP.

In addition to the REMAPPED bit, SVAS also uses two more bits for
each PTE, the LOCKED bit and the IMMUTABLE bit. The usage of these
two bits is discussed in Sections 5.5 and 5.6 respectively. Several
unused bits already exist in an x86-64 paging structure, making it
possible to support SVAS without increasing the page table size.

To accurately track remapping events, the system needs to be
informed of all writes to the page tables. To this end, SVAS augments
the CPU with a new in-memory data structure called the Page Table
Tracker (PTT). The PTT is a bit-vector with one entry for each
physical page, it is used to track which physical memory pages are
used as page table frames. The PTT is indexed using the physical
frame number (PFN) and is stored in a protected area of physical
memory which is inaccessible by any software. Each entry in the
PTT contains a single-bit flag, called the IS_PT bit, which denotes
whether the physical page is currently in use as a page table frame.
In addition, each entry contains a sufficient number of bits to denote
what level of paging structure the physical page is being used for.
We call these PT_LEVEL bits.

The PTT entries are consulted to support a number of security
properties. First, the IS_PT bit is checked on each write to physical
memory to deny writes to page table frames that do not use the
special interface described below. These entries are also checked
during hardware page walks to ensure that a physical page without
the IS_PT bit set is not used during address translations. Further-
more, the PT_LEVEL bits are used to ensure that page tables that
are incorrectly set up to either skip or duplicate a level of paging
structure are not used.

5.2 Address Space Creation and Destruction
We now describe the new interface that is used in SVAS to create
and destroy page tables and their individual entries. This interface
is exposed using four new ISA instructions. These new instructions
are summarized in Table 1.
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The CRT_PT instruction is used to create a new page table. This
instruction takes a single operand which corresponds to the phys-
ical address of the page table root for the newly-created address
space (i.e. the value placed in the CR3 register for x86-64). When
the CRT_PT instruction is executed, the hardware locates the PTT
entry indexed by the instruction’s operand, checks to ensure that
the page is not already used as a page table frame, and sets the
IS_PT and PT_LVL bits of this PTT entry. Once the PTT entry is
set, this physical page can no longer be targeted by regular STORE
instructions. At this point, the hardware zeroes out the physical
page to avoid using any stale mappings. New mappings can only
be added to the page using the SVAS interface. Finally, any exist-
ing TLB entries that could be used to target the physical page are
invalidated.

The DEST_PT instruction is used to destroy a set of page tables.
Similar to the CRT_PT instruction, the DEST_PT instruction takes the
physical address of the page table root and clears the corresponding
PTT entry. Before writing the PTT entry, the DEST_PT instruction
must also walk any valid portions of the page table and remove
any remaining entries in a manner very similar to the RM_MAP
instruction described below.

5.3 Adding and Removing PTEs
To add and remove individual entries from the page tables created
by the CRT_PT instruction, SVAS offers two instructions: ADD_MAP
and RM_MAP.

At a high level, the ADD_MAP instruction inserts a new PTE spec-
ified by the entry operand into the page table rooted at pt_root.
The virtual address of this entry is specified by the entry_vaddr
operand. The first step taken by the ADD_MAP instruction is to trans-
late the virtual address into a physical address using the TLB or a
page walk. Note that this operation must take the pt_root operand
to allow it to manipulate page tables other than the one currently
pointed to by CR3. This is especially important for initial page table
setup. Next, the instruction must ensure that the operation targets a
page table frame to prevent the OS from using the ADD_MAP instruc-
tion to write arbitrary memory. This is accomplished by loading the
PTT entry which corresponds to the page that is the target of the
requested write operation and checking its IS_PT bit. In addition,
the hardware must also ensure that the memory location specified
by entry_vaddr contains all zeroes to prevent the OS from possibly
overwriting any data already stored there. If either of these checks
fail, an exception is generated.

The next step depends on the type of page being mapped, which
is detected using the previously loaded PTT entry and the large
page flag that is part of entry. If the page being mapped is itself
another level of the paging structure (i.e. an internal node in the
page table tree) the PTT entry of the page being mapped must first
be checked to ensure that this page does not belong to another page
table. Under SVAS, the sharing of page table frames that map user-
level pages is explicitly disallowed by this check. Next, the IS_PT
and PT_LEVEL bits are set to the proper values in the corresponding
PTT entry. Additionally, the physical page is zeroed out for the
reasons described above.

If the page being mapped is a leaf page (i.e. not part of the page
tables) then the REMAPPED bit is set in entry before it is written into
the page tables. We note that the leaf pages do not need to be zeroed
as they may contain useful data. If a specific process wishes only
to receive zero-filled pages, then it can ensure that this property
is upheld during verification. Once these actions have been taken,
the actual page table write is performed.

The RM_MAP instruction is used to destroy a mapping. Similar to
ADD_MAP, its operands specify the virtual address of the entry to be

removed and the root of the page table, which are used to translate
from a virtual to physical address. The steps and checks performed
by this instruction are similar to the ones describes above for the
ADD_MAP instruction, so we omit the details due to space constraints.

5.4 Verification Functions
SVAS empowers applications to decide whether a new page map-
ping is acceptable using application-specific VFs. Table 2 shows
a summary of different VFs utilized by our prototype which are
explained below.

Accept All Pages (AAP): The simplest VF that has almost no
performance impact contains only an ACCEPT_MAP instruction. Of-
fering no additional security, such a VF can be used by applications
that are oblivious to MAs and whose correct execution is not crit-
ical to other security-sensitive applications. This simple VF can
be inserted into existing application binaries to achieve backward
compatibility on a SVAS-enabled system or to allow the use of fea-
tures such as runtime dynamically-linked libraries and just-in-time
compilers.

Only Zero-Filled Pages (OZFP): Another variant of a VF is to
only accept zero-filled pages, to allow the mapping of new pages
to be used for stack and heap regions. The advantage of this func-
tion is that it offers a high level of security. However, it prohibits
the application from receiving pages that contain useful content
from the OS. Examples include pages of an mmap’ed file or a shared
memory region that another process has already placed data into.
This scheme only

Only Data Pages (ODP): To allow the use of mmap’ed files, this
VF accepts any new data pages regardless of their contents. This VF
checks only the page permissions so that pages that are not marked
as executable are accepted, while executable pages are rejected.
While ODP is more secure than AAP, control flow diversion attacks
may still be possible. Namely, the application may accept a page
whose data influences an indirect control flow instruction. However,
applications are still able to defend themselves from injection-based
attacks since any new code pages will be rejected.

5.5 Dispatching Verification Functions
When a page is accessed and its REMAPPED bit is set, the mapping has
to be verified for correctness to flag a possible MA. For security and
performance reasons, the VF is dispatched without OS involvement.
To support such direct dispatching, the VF uses simple function
call/return semantics. Specifically, the VF is placed at an architecture
specific, well-defined virtual address which allows the hardware to
dispatch the function in a manner very similar to the way that it
handles a call instruction. Some additional actions must be taken by
the hardware to provide the VF with the information that it needs
to carry out the verification. In particular, the hardware takes the
following steps:
• The hardware sets the LOCKED bit in the PTE that triggered the
verification to avoid race conditions. When the LOCKED bit is set,
the hardware will deny any changes to the PTE through checks
performed as part of the ADD_MAP and RM_MAP instructions. With-
out the LOCKED bit, the OS could allow the application to verify
a mapping, interrupt it just before it accepts that mapping, and
replace the mapping with a new one causing the application to
accept a mapping other than the one it verified.
• The hardware loads the PTE and virtual address which triggered
the verification into the new SVAS registers provided specifically
for this purpose.
• The hardware establishes a temporary TLB entry using the PTE
in question to allow the application to inspect the content of the
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Table 2: Summary of Verification Functions

Verification
Function Security Flexibility Overhead

(Cycles)
AAP None High 0
ODP Low Medium 30
OZFP High Low 5296

page during verification. Regardless of the permissions specified
in the PTE, the TLB entry is established such that only application
reads will be allowed.
• The hardware saves the current stack pointer onto the VF’s
implementation defined stack base address and adjusts the stack
pointer register to point to this stack. The VF stack is explained
in more detail below.
• The hardware saves the address of the instruction which trig-
gered the verification on the stack and jumps to the first instruc-
tion of the VF which resides at a well-known virtual address.
After the above steps are completed, the application’s VF is

executed, allowing the application to inspect a number of properties
of the page. These include the page permissions, the PFN of the
backing page, and even the contents of the page.

One important aspect of the VF’s execution is that it requires it’s
own stack space to execute due to the fact that the VF needs to be
executed when adding new (regular) stack pages to the application.
If the VF does not use it’s own stack and attempts to use the regular
stack in response to such a request it is not hard to imagine that
the VF itself would be recursively (and infinitely) triggered.

In the SVAS system, two new instructions — ACCEPT_MAP and
REJECT_MAP — are used by applications to accept or reject a map-
ping respectively. Some common steps are taken by the hardware
when either of these instructions are executed. First, the temporary
TLB entry established during the verification dispatch is invalidated.
This protects the application from using this TLB entry after it has
rejected a mapping. The hardware also clears the LOCKED bit of the
corresponding PTE.

When the ACCEPT_MAP instruction is executed, the hardware
clears the REMAPPED bit in the PTE so that future accesses that use
this mapping do not trigger verifications. Finally, the hardware
returns from the VF by restoring the stack and instruction pointers
to the value that was previously saved on the VF stack. In the case
of the REJECT_MAP instruction, the hardware does not clear the
REMAPPED bit, but instead raises an exception providing the virtual
address which triggered the verification.

5.6 Secure Loading and VF Protection
Previous solutions addressed the problem of trusted loading in
different ways. In HyperWall, hardware measures a VM’s memory
contents during initialization and provides clients with a signature
of this measurement in addition to the relevant HyperWall state.
The NIMP system relies on a trusted software module to perform a
similar measurement of an application’s initial state. NIMP releases
an encryption key to the application if the application has been
properly loaded. In both cases, the untrusted HPSL is allowed to
place the VM/application into memory and the measurement agent
verifies the integrity once the loading process has been completed.

SVAS requires a similar protocol. Specifically, the HPSL loads the
application (including its VF) into memory and then passes control
to the Trusted Bootstrap Agent (TBA). The TBA then accepts the
application’s code pages including the VF (and its stack pages). The
TBA can be implemented either entirely in hardware in a similar
fashion to HyperWall [11] or as an unprivileged but trusted soft-
ware module like NIMP’s KPIM [12]. One addition to the HyperWall
model would be necessary to suit the needs of the TBA. Namely,

rather than providing a signature as proof of correct loading the
hardware needs to compare the measurement against a stored mea-
surement and accept the application’s pages if a match is found.
This model requires extra hardware to measure the application’s
code and secure storage to maintain correct application and VF
hashes, but eliminates the need for a trusted software module. The
NIMP model requires the TBA to be loaded and protected during
boot. Furthermore, to use the NIMP model the TBA must run in a
CPU mode that does not trigger verifications to avoid jumping to
unaccepted VFs. A variation of the ACCEPT_MAP instruction which
explicitly specifies the mapping being accepted is required to sup-
port the TBA’s operation in this model. This is necessary because
ACCEPT_MAP is designed to respond to verification requests, but in
this case no such requests are made. The final SVAS instruction —
ACCEPT_IMM — is offered for this purpose, this instruction is only
used by the TBA. For ease of implementation our prototype follows
the model of NIMP’s KPIM with the above mofifications.

It is also important to protect VFs from runtime attacks. For
example, the HPSL may launch a MA against an application’s VF
to replace it with a VF that accepts all mappings. To protect VFs
from such attacks, the new IMMUTABLE bit is added to each PTE.
The IMMUTABLE bit is set by the TBA’s use of the ACCEPT_IMM in-
struction.

The IMMUTABLE bit denotes that the PTE in which it is set is
immutable. It is important to note that the system software can
remove an immutable mapping to allow it to tear down applica-
tions. However, once an immutable mapping has been removed,
a new mapping cannot be established in its place. This property
is enforced by the implementations of the ADD_MAP and RM_MAP
instructions. When RM_MAP targets a PTE with the IMMUTABLE bit
set, the value of this bit is retained. A subsequent attempt to issue
an ADD_MAP instruction targeting this PTE will find the PTE in a
non-zero state, thus generating an exception. The final issue that
must be considered when setting the IMMUTABLE bit is that it must
be set in every level of the paging hierarchy.

5.7 Supporting Page Swapping
In the SVAS system, without special consideration, a page that
was swapped out and later returned to memory would trigger a
second validation. Since the application is unaware of the swapping
activity, it may reject the required mapping changes. To alleviate
this issue, SVAS must react to swapping events. When SVAS is
combined with systems such as NIMP, HyperWall, and H-SVM
(which already use hashing and encryption to address swapping
problem), minimal additional work is required. In SVAS, once the
hash has been verified and the page is decrypted, the CPU must
additionally clear the corresponding REMAPPED bit in order not to
trigger a validation upon the page’s next access.

6 EVALUATING SVAS
To demonstrate that SVAS prevents all MAs described in Section 3,
we implemented the SVAS logic and the new instructions within
QEMU emulator [34] Specifically, we modified the full-system x86-
64 code by adding the new SVAS instructions and appropriate
checks of the PTT entries during hardware page walks. Lastly, we
added code that calls the VF when a page with the REMAPPED bit set
is accessed. We also modified the Linux kernel to make use of the
new instructions during the relevant memory management tasks.
We also implemented different VFs for the current prototype to
mitigate various attack types.
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Table 3: SVAS Instruction Memory Behavior

Instruction Loads Stores
CRT_PT 1 513
DEST_PT Variable Variable

ADD_MAP (I) 7 514
ADD_MAP (L) 6 1

RM_MAP 518 2

6.1 SVAS Performance
The performance overhead of SVAS comes from four sources: 1)
Extra memory accesses due to the new mapping instructions; 2)
Checking PTT entries on every memory access; 3) Memory accesses
required after a TLB miss during hardware pagewalks; 4) Executing
a VF when a remapped page is detected by the hardware.

Since the PTT is stored in memory, the SVAS mapping instruc-
tions require accessing memory to check and modify the PTT en-
tries during mapping operations. In contrast, on a commodity sys-
tem page table manipulations are performed by regular STORE
instructions, thus requiring only a single memory write. Table 3
shows the number of word-sized (i.e. 8 bytes) memory accesses
required by each of the SVAS mapping instructions. Two cases are
shown for the ADD_MAP instruction depending on whether the map-
ping being added is an internal node (I) or a leaf node (L) in the page
table tree. As seen from the results, the most expensive operation for
these instructions is the checking/zeroing of memory pages which
are being added or removed from the page table tree (required by
CRT_PT, the internal variation of ADD_MAP, RM_MAP and DEST_PT).
However, since this operation occurs relatively infrequently, its
overhead is tolerable. The CRT_PT and DEST_PT instructions are
used only once per application to create and destroy the appli-
cation’s page table. The specific number of ADD_MAP operations
targeting internal page table nodes and RM_MAP depends on an ap-
plication’s memory requirements. However, when adding large
portions of contiguous virtual address space are mapped, the ratio
of added leaf nodes to added internal nodes is 512:1 (since each pag-
ing structure holds 512 entries). Note that the overheads required
by the internal ADD_MAP and RM_MAP can be reduced by making use
of large pages.

We instrumented our QEMU-based implementation of SVAS to
track the frequency of each SVAS instruction’s use during runtime.
For the purposes of isolating specific activities, we implemented spe-
cial instructions to log and reset these counters programmatically.
Table 4 summarizes our results.

The first activity that we measured was booting the Linux kernel
including all of the activities up to, but not including, the launch of
the first user-level process (init). These results show that initial-
izing something as complex as the OS kernel can be done using a
relatively small number of mapping changes. Next, we evaluated
the user-space boot process, including starting init, various sys-
tem daemons, logging the user in, and starting a shell for the user.
This experiment confirms the expected result that the ADD_MAP
and RM_MAP are by far the most commonly used SVAS instructions.
Furthermore, among the two categories of the ADD_MAP instruction,
the version that does not require page zeroing is far more common
than the one that does.

The next row in the table shows the number of instructions
required to start a minimal application (i.e. only a return from
main()). Interestingly, for the experiments detailed up to this point,
the ratio of leaf nodes to internal nodes added to page tables is very
far from the ideal case of 512:1. Booting the Linux kernel yields
a ratio of about 11:1, the full boot to user space yields about 9:1
ratio, and running an empty application yields about 6:1 ratio. The
reason is that the address spaces of the measured entities are fairly
sparse and the virtual memory is discontiguous.

Table 4: Frequency of SVAS Instruction Use

Activity CRT_PT DEST_PT ADD_MAP
(I)

ADD_MAP
(L) RM_MAP

Boot Linux Kernel 1 0 526 6012 346
Full User space Boot 3791 3772 71459 627323 667569
Empty Application 1 1 60 352 391
Allocate Single Page 0 0 0 1 0
Free Single Page 0 0 0 0 1
Allocate 2MB 0 0 1 512 0
Free 2MB 0 0 0 0 513

The final set of experiments that we performed was to dynam-
ically allocate pages during runtime. In the first experiment, we
allocated a single 4KB page and in the second experiment we al-
located a 2MB region. These results confirm our hypothesis that
a single 4KB page can often be allocated by only adding a single
new (leaf) mapping to the page tables. Furthermore, when a larger
contiguous region is allocated (2MB in this case), the ratio of leaf
to internal nodes indeed becomes 512:1.

Finally, we estimated the performance impact of SVAS on the
SPEC2006 benchmarks. Since QEMU is a functional emulator, we
used our prototype only to capture the frequency of SVAS instruc-
tions and verification events. We then executed the benchmarks
on a real system with an Intel Core i7-4700MQ CPU running at
2.4GHz to obtain a baseline number of cycles for each benchmark.
In addition to the SPEC benchmarks, we also ran several micro-
benchmarks to evaluate the overhead of various activities, such as
the execution of VFs (shown in Table 2), zeroing pages, and the
calculations required by each of the instructions.

We used the results of the micro-benchmarks to calculate a con-
servative static cost for each of the SVAS instructions and VFs. The
CRT_PT and ADD_MAP (internal) instructions require 4990 and 5070
respectively, while ADD_MAP (leaf) and RM_MAP require 22 and 5405
cycles respectively. In our prototype RM_MAP is used to clean up as
many page table entries as possible leaving only entries with the
IMMUTABLE bit set to be cleaned up by DEST_PT. In this case 26,295
cycles are required by DEST_PT to walk and clean up a page table
assuming that the VF occupies a 2MB memory region made up
of 4KB pages. In our experiments, none of the VFs required even
this much space. For our analysis, we assumed the most expensive
VF (i.e. OZFP) at a cost of 5,400 cycles to account for the VF as
well as its dispatch. Finally, we combined the instruction counts
reported by our prototype with the cost of each instruction to com-
pute the number of additional cycles added to each benchmark.
Figure 5 shows the cycle overheads expressed as a percentage of
the baseline.

As can be seen from the results, most of the benchmarks incur
less than 1% overhead under SVAS with the average being about
0.75%. There are a number of factors that contribute to this low
overhead. First, some applications use a small and fairly static
number of virtual pages (e.g. gamess, gromacs, povray). Second,
the costs for some applications which use more memory are hidden
by the large amount of computation that they perform using that
memory (e.g. calculix). The highest overhead incurred by the SVAS
system is that of milc — at around 10%. This benchmark allocates
and frees memory frequently and the allocations are large enough
to cause a high number of internal ADD_MAP instructions to be
executed in addition to the required RM_MAP instructions. We note
that this overhead could be reduced significantly by making use of
large pages.

6.2 SVAS Complexity
The hardware additions and modifications required to realize SVAS
are minimal. A section of physical memory must be reserved to
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Figure 5: Performance Overhead of SVAS

hold the PTT. Two new user-readable registers are required to
communicate the modified PTE and virtual address information to
applications during verification. Seven new instructions must be
added to the ISA, requiring some minimal additional logic to decode
these instructions. Finally, the hardware page walker must be mod-
ified to consult PTT entries and REMAPPED bits during hardware
page walks.

SVAS requires modest modifications to the OS kernel. For our
prototype, we modified the source code of version 3.2.63 of the
Linux kernel. Our changes to the kernel were implemented in three
main steps. First, we added the malicious kernel code described in
Section 3. Second, we used inline assembly to call the new SVAS
instructions within the Linux kernel after these instructions were
implemented in QEMU. Third, we modified the kernel to correctly
use the new instructions. In total, these changes were implemented
by inserting 235 lines of code to the Linux kernel and removing 13
lines.

7 CONCLUDING REMARKS
We demonstrated that previousy proposed hardware-based EMAC
designs are vulnerable to advanced attacks that are based on ma-
nipulations of page mapping structures which are controlled by the
OS. We developed and implemented three examples of such map-
ping attacks. To mitigate these attacks, we proposed the concept of
self-verified address spaces (SVAS). The key idea is to provide ap-
plications with the capability to verify the requested changes to the
mapping structures in a secure manner. We demonstrated that the
protections offered by SVAS can be achieved with negligible perfor-
mance impact, simple additional hardware, and minimal changes to
application and system code. Augmenting hardware-rooted EMAC
schemes with SVAS makes them an attractive alternative to isolated
execution systems for protecting application secrets from untrusted
system software.
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