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Covert channels through shared processor resources provide secret communication between two malicious
processes: the trojan and the spy. In this article, we classify, analyze, and compare covert channels through
dynamic branch prediction units in modern processors. Through experiments on a real hardware platform,
we compare contention-based channel and the channel that is based on exploiting the branch predictor’s
residual state. We analyze these channels in SMT and single-threaded environments under both clean and
noisy conditions. Our results show that the residual state-based channel provides a cleaner signal and is
effective even in noisy execution environments with another application sharing the same physical core with
the trojan and the spy. We also estimate the capacity of the branch predictor covert channels and describe a
software-only mitigation technique that is based on randomizing the state of the predictor tables on context
switches. We show that this protection eliminates all covert channels through the branch prediction unit
with minimal impact on performance.
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1. INTRODUCTION

Modern computer systems are typically shared by multiple applications that belong to
different security domains. To provide security, systems often have to restrict resources
that can be accessible by a program [Yee et al. 2009]. For example, the Android mobile
operating system (OS) requires users to explicitly grant permissions for each appli-
cation. Some classes of applications can be granted access to the network, whereas
others can be restricted from it. However, the applications that are restricted from the
network access can still be allowed to access sensitive user data.

To illustrate the preceding scenario, consider two applications running concurrently
on the same system: a password manager and a weather widget. The password manager
should not be allowed to communicate to any application inside or outside of the system
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to avoid password leakage. Although the password manager code can be buggy, or can
even contain embedded backdoors, the user passwords will remain secret provided
that the OS correctly enforces communication permissions. At the same time, it is
essential for the weather widget to have network access enabled to properly support its
functionality. One possible threat in this setup is that an adversary controlling both the
password manager and the weather widget can use the networking capabilities of the
weather widget to send some sensitive information from the password manager to
the outside entity, assuming that the password manager and the weather widget can
somehow secretly communicate.

This threat model motivates the following question. How can a malicious or a com-
promised application transfer data to another malicious application in the absence of a
direct communication between them? One way to achieve this is to use shared proces-
sor resources to create a covert communication channel. We call the two processes that
communicate this way a trojan process (the password manager in the example earlier)
and a spy process (the weather widget). To transmit sensitive information, the trojan
alters the state of a shared hardware resource to intentionally modulate events on that
resource in a way recognizable by the spy. On the receiving side, the spy performs mea-
surements to determine how the trojan is accessing the resource, allowing it to receive
and decode the modulated events. We present our threat model and assumptions in
Section 3.

In this article, we classify, analyze, and comprehensively compare covert channels
through processor branch predictor unit. This covert channel is possible because the
branch predictor is shared by multiple applications running on the same CPU. Further-
more, the contents of the branch predictor tables are not flushed on context switches.
Therefore, when the trojan process modifies the state of the predictor, it impacts the
branch prediction rate and the execution time of the spy process (if the spy executes
immediately after the trojan, or simultaneously with the trojan). By measuring its own
execution time or the branch misprediction rate, the spy can deduce whether the trojan
is transmitting a “one” or a “zero” through its manipulations with the predictor logic.

Two different mechanisms for creating a covert channel through branch predictor
have been described in the recent literature. The work of Hunger et al. [2015] outlined a
contention-based covert channel (CC), which (as the name implies) exploits contention
between multiple applications over predictor resources. Specifically, this channel is
constructed in the following way. To transmit a one, the trojan process creates con-
tention for the branch predictor by executing a large number of branch instructions
such that half of them are taken and the other half are not taken. To transmit a zero,
the trojan executes no-op instructions, thus creating no contention. The spy process
always executes the same code, consisting of branches that are taken with 50% prob-
ability. As a result, when the trojan wants to communicate a one, the contention for
the branch predictor table causes the execution time of the spy to be higher. When
the trojan wants to communicate a zero, there is no contention and the execution time
of the spy is lower. This contention-based channel was only described at a high-level
in Hunger et al. [2015].

In our preliminary work presented in Evtyushkin et al. [2015], we proposed an
alternative covert channel mechanism that is based on exploiting the residual state
in the branch predictor and not just the contention for its resources. Specifically, to
transmit a one, the trojan executes a large number of taken branches, and to transmit
a zero, it executes a large number of nontaken branches. The spy always executes a
series of taken branches (as in contention-based channel), but a smaller number than
the trojan. As a result, when a one is transmitted, the trojan aligns the state of the
branch predictor counters with the characteristics of the spy process, causing the spy
to have very few mispredictions. On the other hand, when a zero is transmitted, the
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predictor counters are putin a state that causes the largest number of mispredictions by
the spy. By limiting the number of branches in the spy process so that their predictions
are based on the residual state from the trojan (and not the state created by the spy’s
own execution), a cleaner separation between the transmitted signals of one and zero
can be created through this channel. Intuitively, this channel is also more resilient to
the external noise, as it does not fundamentally rely on the presence of contention.

Branch predictor covert channels have a fairly large capacity to be a real threat. For
example, the recent study of Hunger et al. [2015] estimated that the bandwidth of the
branch predictor channel is comparable to other high-speed covert channels, such as
those created through caches or the AES hardware. In terms of the absolute numbers,
with some optimizations we can achieve the channel capacity of about 100kbps. Clearly,
this threat should be considered seriously in the design of future secure systems. To
this end, we also propose a software-only mitigation technique that randomizes the
state of the branch predictor tables on context switches.

Specific contributions of this article are the following:

—We describe a complete implementation of both CC (introduced in Hunger et al.
[2015]) and covert channel based on exploiting residual predictor state (first in-
troduced in Evtyushkin et al. [2015]. We compare both types of channels on the
same system in an environment without noise in both the single-threaded and SMT
settings.

—We extend this study to account for the noisy environments, where a noise process
executes alongside the trojan and the spy processes, and shares the branch predictor
with them. Again, we compare the two covert channels side by side and consider
several execution schedules that differ in how the spy, the trojan, and the noise
process share the execution resources. Our results show that although both channels
are effective in clean execution environments (although a residual state channel
provides higher signal amplitude), the residual state channel is also realizable in
noisy environments, with other unrelated applications running in the background.

—We analyze the capacity of the residual state—based covert channel (RSC) when fast
process scheduling between the trojan and the spy is used. Furthermore, we quantify
the resulting transmission bitrates and error rates under different channel settings.

—We propose a software-only mitigation mechanism that randomizes the branch pre-
dictor state on context switches. We implemented this mechanism inside the Linux
kernel and analyzed the sensitivity of performance and security to the number
and type of branches that need to be executed on context switches to cause the
randomization.

2. DYNAMIC BRANCH PREDICTORS

The branch prediction unit plays a critical role in achieving high performance of today’s
CPUs, because every branch misprediction results in significant loss of instruction
execution opportunities and incurs overhead to undo the side effects of erroneous
speculations. This is especially true for deeply pipelined processors with a high degree
of superscalarity.

Covert channels described in this article work with any dynamic branch predictor,
because the mechanisms for creating covert communication do not require knowledge
of the specific predictor details. Although reverse engineering specific predictor config-
uration can lead to a higher-capacity channel (as the spy and the trojan can precisely
target and use specific parts of the prediction table), such advanced explorations are
left for future work. For simplicity, we use the gshare predictor [McFarling 1993] il-
lustrated in Figure 1 to explain how the branch predictor channels are created. Note
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Fig. 1. Schematic of a gshare predictor.
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that all of our experiments were performed on a real machine equipped with a Haswell
processor with specific implementation details of the branch predictor unknown to us.

In a gshare predictor, as shown in Figure 1, the Global History Register (GHR) is a
shift register that accumulates the history of several recently executed branches. The
Pattern History Table (PHT) is a relatively large table of two-bit saturating counters,
with the countervalues indicating a prediction range from strongly not taken to strongly
taken. The indexing function XORs the program counter of the branch that is being
predicted with the bits from the GHR. Thus, the resulting indexed PHT entry is chosen
based on both global and local branch information.

3. THREAT MODEL AND ASSUMPTIONS

We assume that two compromised (or malicious) applications are running in the system:
a trojan and a spy. We assume that the trojan is a more privileged program that has
access to sensitive data that it attempts to transmit to the spy program. No other
communication channels (through the network, shared memory, file system, etc.) exist
between the trojan and the spy, and therefore the covert channel represents the only
means for these programs to communicate with each other.

We assume that the trojan and the spy are co-located on the same core, either on
different SMT contexts or time sharing the use of the core. This assumption is needed
because the branch prediction unit is shared on the same physical core but not across
different cores of a multicore processor.

The system software is assumed to be uncompromised so that it properly enforces the
access control and preserves legitimate information flows. The two processes only re-
quire normal user-level privileges. The channel does not require access to performance
counters and therefore would work even if these are disabled, as is commonly done on
cloud systems [Zhang et al. 2011]. However, if the access to performance counters is
available, then a significantly better signal quality can be achieved. In our evaluations,
we consider covert channels through both performance counters and execution time.

4. COVERT CHANNEL CLASSIFICATION

In this section, we describe two mechanisms for constructing covert channels through
branch predictors, and we demonstrate the code that needs to be executed by the trojan
and the spy processes to realize these channels.

4.1. Contention-Based Covert Channels

The first way to create a covert channel through branch prediction unit is to use
contention for its resources between the trojan and the spy. To be consistent with prior
works [Hunger et al. 2015], we call this type of channel contention based and refer to it
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/* Trojan: */ branches: nops:
while(1){ push  %rbp nop
if (time(0)7%2){ movl  $0x1,-0x8(%rbp) nop
branches() ; cmpl  $0x0,-0x8 (%rbp) nop
} jne .L2 # taken # nop
else{ nop nop
nops () ; cmpl  $0x0,-0x8(%rbp) nop
} je .L1 nop
} nop nop
nop nop
/* Spy: */ .L2: nop
for (int i=0; i < cmpl  $0x0,-0x8(%rbp) nop
MAX_PROBES; i++){ je .L1 # not-taken # nop
usleep(SLEEP_T); nop nop
start_t=rdtsc(); nop nop
branches(); | ... nop
end_t=rdtsc(); .L1: nop
} pop %rbp nop

retq
Code for Trojan and Spy Code for branches () Code for nops ()

Fig. 2. Code used to construct CC.

as CCin this article. The idea and a high-level overview of CC was presented in Hunger
et al. [2015].

CC is constructed in the following way. To transmit the value of one, the trojan
process executes a large number of branch instructions such that half of them are
taken and the other half are not taken. This activity by the trojan creates a random
contention for the use of the branch predictor. To transmit a zero, the trojan executes
no-op instructions (busy waits), thus creating no contention for the branch predictor.
Simultaneously, the spy process always executes the same code, consisting of branches
that are taken with 50% probability, again creating contention for the predictor. As
a result, when the trojan wants to communicate a one, the contention for the branch
predictor increases the number of branch mispredictions and the execution time of
the spy. When the trojan wants to communicate a zero, there is no contention for
the predictor, and thus the number of mispredictions experienced by the spy and its
execution time decrease.

For demonstration, we assume that the trojan sends alternating ones and zeroes.
The code for the spy and the trojan processes to implement CC is shown in Figure 2.

4.2. Residual State—-Based Covert Channel

Apart from creating branch predictor contention, a covert channel can also be built
using the observation that the prediction accuracy of a spy process can be directly
impacted (at least for a short period of time) by the residual state of the predictor
counters left by the trojan that executed immediately before the spy. We refer to this
channel as RSC. If the time duration when the spy measures its branch behavior and/or
performance is carefully controlled to magnify the impact of the residual state, a covert
channel with an even stronger signal than CC can be created.

In RSC, the contention for the branch predictor unit does not change. To transmit
a one, the trojan executes a large number of taken branches, and to transmit a zero,
it executes a large number of nontaken branches. The spy always executes a series
of taken branches (as in contention-based channel), although it is a smaller number
than the trojan. In this case, the predictions for the spy’s branches are impacted by the
residual state left by the trojan and not by the spy’s own prediction history buildup. As
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a result, when a one is transmitted, the trojan aligns the state of the branch predictor
counters with the characteristics of the spy process, causing the spy to have very few
mispredictions. On the other hand, when a zero is transmitted, the predictor counters
are put in a state that causes the largest number of initial mispredictions by the spy.

An important aspect of RSC is that the spy’s code is not executed constantly. Instead,
it is only executed once for each probing period, recording the timestamp counter, or
reading the branch misprediction performance counter. When the spy completes the
execution of its block of branches, it executes the sleep() function for a predetermined
amount of time to allow the trojan to refill the predictor table. After sufficient time is
given to the trojan to refill the predictor state, the spy executes its block of branches
again. The spy samples the execution time or the performance counter readings five
times a second in the presented experiments, with the trojan changing the transmission
from a one to a zero every second. The duration of the block of branches executed by the
spy on every sample is carefully chosen to ensure that the branch predictions performed
within that block are affected by the state created by the trojan and not by the spy’s
own history. In the presented experiments, we set this number to 500,000 branches,
because we observed the best channel characteristics with this setting.

Transmitting data through the branch predictor state in this manner in a single-
threaded environment is possible because the PHT contents are not flushed on a context
switch. Several branch predictor designs [Evers et al. 1996] have been introduced that
considered context switches that erase the branch history data from the old context
in the PHT. However, these designs have not been adopted in commercial products,
because no performance benefits were observed [Co and Skadron 2001].

Both CC and RSC can also be created on a simultaneously multithreaded (SMT)
processor core. The SMT cores share the same branch predictor hardware and its data
structures among the threads. Although it is possible to design a branch predictor with
split data structures for the simultaneous threads, such splitting does not bring signif-
icant performance improvements [Ramsay et al. 2003] and thus is not typically used.
We demonstrate and compare CC and RSC in both single-threaded and multithreaded
environments.

We also observed that adding a uniformly distributed number of no-op instructions
between consecutive branches improves the amplitude of the covert channel measured
by the spy, as it increases the number of affected PHT entries. If the branch predictor
hashing function can be reverse engineered, the PHT priming can be done even more
effectively. The code for the trojan and the spy process to implement RSC is shown in
Figure 3.

5. ANALYZING CC AND RSC IN A CLEAN ENVIRONMENT

We demonstrate and evaluate covert channels presented in this article on a real hard-
ware platform. All of our experiments were performed on a machine with an Intel
Core 17-4800MQ CPU (Haswell microarchitecture) clocked at 2.7GHz. The machine
has 16GB of DDR3 memory clocked at 1,600MHz. We consider scenarios with and
without SMT—to evaluate the latter, we disabled the SMT support. The machine runs
a Ubuntu 14.04.2 LTS OS, with a generic GNU/Linux kernel version 3.16.0-31.

This section presents the results in a clean environment, where we ensure that only
the trojan and the spy execute on the core. Moreover, we tightly control the scheduling
of these two processes to create ideal conditions for a covert channel. In the next
section, we relax these conditions and compare both types of covert channels in a noisy
environment.

As a measurement mechanism, the spy can use the branch-related performance coun-
ters or its own execution time. Depending on the measurement used, the channel can
be classified as either a storage channel or a timing channel [Gligor 1993; Wray 1991].

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 10, Publication date: March 2016.



Understanding and Mitigating Covert Channels Through Branch Predictors 10:7
/* Trojan: */ taken: nottaken:
while(1){ push  %rbp push  %rbp
if (time(0)%2){ movl  $0x1,-0x8(%rbp) movl  $0x1,-0x8(%rbp)
taken() ; cmpl  $0x0,-0x8 (%rbp) cmpl  $0x0,-0x8 (%rbp)
} jne .L2 je .L1
else{ nop nop
nottaken(); nop cmpl  $0x0,-0x8(%rbp)
} nop je .L1
¥ LL2: nop
cmpl  $0x0,-0x8 (%rbp) nop
/* Spy: */ jne .L3 nop
for (int i=0; i < nop cmpl  $0x0,-0x8 (%rbp)
MAX_PROBES; i++){ nop je .L1
usleep(SLEEP_T); nop nop
start_t=rdtsc(); .L3: nop
taken(Q); cmpl  $0x0,-0x8(%rbp) | ...
end_t=rdtsc(); jne .L4 .L1:
} nop pop %rbp
...................... retq
Code for Trojan and Spy Code for taken() Code for nottaken()

Fig. 3. Code used to construct RSC.

L N o
t sleep() ‘

f? -Trojan - Transferred State

Vi
Vs

N

[%2]
2
D
D
=
S

& - sry

Fig. 4. Scheduling of the trojan and the spy in SMT mode.

Although using performance counters provides higher measurement accuracy, it may
require administrative privileges from the spy. Whether such privileges are required
or not depends on the particular hardware, OS, and even hardware configuration. For
example, according to the Intel’s Architecture Software Developers Manual [Intel 2010],
a particular configuration set allows or disallows user-level accesses to performance
counters. However, we conservatively assume that performance counters are not al-
ways available and also consider timestamp counters as a measurement mechanism
for the spy.

5.1. Covert Channels in SMT Mode

Our first set of experiments includes demonstration of the two branch predictor covert
channels in an SMT setting, where the spy and the trojan execute concurrently. For
the experiments under the SMT conditions reported here, we assign both processes to
isolated virtual cores (a single SMT-enabled physical core is represented in the OS as
two virtual cores). In this case, the trojan and the spy execute on the same physical core
but on different virtual cores. Such a setting allows the processor to fetch instructions
simultaneously from two threads. Figure 4 depicts the scheduling of the spy and the
trojan in such a scenario.

Figure 5 compares the results of CC and RSC in an SMT setting in a clean execution
environment without noise or interference. The x-axis represents the number of seconds
from the moment the spy process starts probing the PHT. The y-axis shows the number
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Fig. 5. Comparing branch misprediction—-based CC and RSC in an SMT scenario with clean conditions.

e—e CC m—m RSC
32000 . T . 420000

300001 M
28000}
26000} r F

4400000

41380000

4360000

& 24000} 4340000
o o
> 22000} 1320000 &
20000} 1300000
18000} N 1280000
16000»} 1260000
14000 . n . 240000
0 5 10 15 20
Time (s)

Fig. 6. Comparing execution time—based CC and RSC in an SMT scenario with clean conditions.

of branch mispredictions measured in each sample by the spy in CC and RSC. For
this experiment, the trojan continuously executes a large block of branches (we used
500,000 branches in each block) or no-ops, depending on the requirements of each
channel, as described previously. Each block of branches executed by the spy process
contains 10,000 branches for RSC and 1,000 branches for CC—we found that these
values provide the most stable signal for each channel. In each case, the spy samples
the prediction accuracy (or its execution time) five times a second. The trojan transmits
a zero during even seconds and a one during odd seconds.

As shown by the graph, both CC and RSC are quite effective covert channels under
this scenario, with clear separation between the levels of one and zero. However, as
expected, the amplitude of the signal is higher with RSC, because RSC is explicitly
reusing the leftover state from the trojan instead of relying on contention. Specifically,
in CC, the low signal level corresponds to a 6% misprediction rate, and the high signal
level corresponds to about a 50% misprediction rate on average. For RSC, the signal
levels are 0.4% and 86%, respectively, providing a significantly higher amplitude of the
channel signal.

Covert channels shown in Figure 5 can only be created if the spy has access to perfor-
mance counters, which may not always be possible on all systems. When such access is
not possible, the spy has to rely on measuring its own execution time. Figure 6 depicts
the waveforms obtained by both CC and RSC if only the execution time can be measured
by the spy. All settings of the spy and the trojan are identical to what was described
earlier. Note that this figure includes two y-axes. The left y-axis corresponds to CC,
and the right y-axis corresponds to RSC. Although the shapes of the two waveforms
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Fig. 8. Comparing branch misprediction-based CC and RSC in a single-thread scenario with clean
conditions.

are quite similar (and both channels are effective), there is a larger absolute difference
between the levels of one and zero for the RSC channel, potentially making the RSC
channel more resilient to external noise.

5.2. Covert Channels in Single-Threaded Mode

Next, we consider the creation of CC and RSC in single-threaded execution mode,
where instead of executing simultaneously, the trojan and the spy are taking turns
being scheduled on the same CPU core. In this section, we only consider the case when
the trojan and the spy are scheduled consecutively and are the only two processes using
the core. We defer the treatment of more noisy environments until the next section.

For these experiments, we achieve consecutive scheduling of the trojan and the spy
by dedicating a physical CPU core only to these two programs, using the default OS
functionality. The ideal scheduling depicted in Figure 7 is achieved in this case. The
trojan executes continuously, and the spy only executes periodically and immediately
after the measurement relinquishes the rest of its time slice. Specifically, the spy
interrupts the trojan’s execution, samples the PHT, and switches the execution back to
the trojan. The contention in single-threaded CC is different from the SMT-based CC.
When the trojan executes a block of branch instructions, it fills the predictor tables with
the direction information valid for these branches. As a result, when the spy executes its
own branch instructions, it experiences a higher number of mispredictions. When the
trojan does not execute branches, no contention is created and the spy reuses its own
information accumulated in the predictor. We note that no changes are required in the
source code of the trojan or the spy to explicitly adjust them to SMT or single-threaded
modes.

Figure 8 shows the results comparing CC and RSC waveforms obtained by measur-
ing the branch misprediction rate of the spy in a single-threaded execution environ-
ment. Figure 9 compares CC and RSC measured in terms of the execution time in a
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Fig. 9. Comparing execution time-based CC and RSC in a single-threaded scenario with clean conditions.

single-threaded environment. As can be seen from these results, both channels are
quite effective in a clean environment without noise processes.

6. ANALYZING CC AND RSC IN A NOISY ENVIRONMENT

The previous section demonstrated that both CC and RSC are effective secret com-
munication channels in clean environments. In this section, we consider the impact
of noise and interference from other programs on the robustness of these covert chan-
nels. As before, we consider both SMT and single-threaded execution environments.
As the source of noise, we consider the GCC compiler compiling a Linux kernel. In
this scenario, GCC is an integer benchmark that exhibits complex branch behavior
and can significantly distort the state of the prediction table, thus complicating the
communication between the trojan and the spy. GCC compiler is a highly CPU-bound
noise process—the average CPU utilization during kernel compilation was 91.56%.

6.1. RSC Under Noise

In this section, we analyze RSC properties in a noisy environment. We consider both
SMT and single-threaded settings. First, we consider SMT cores and examine the
following three execution schedules, which can be realized by appropriately setting the
affinity masks of the trojan, the spy, and the noise processes. We assume two virtual
cores (V1 and V2) and one physical core. We refer to the trojan process as T, the spy
process as S, and the noise process as N.

—Schedule SN-T: S and N execute on V1, and T executes on V2. In this case, the
trojan has the entire thread context (virtual core) to itself, whereas the noise and the
spy alternate execution on the other context.

—Schedule ST-N: T and S execute on V1, and N executes on V2. Here, the noise
process executes all the time, whereas the trojan and the spy alternate.

—Schedule TN-S: T and N execute on V1, whereas S executes on V2.

These schedules are demonstrated in Figure 10. Furthermore, we also consider RSC
in the noisy environment in a single-threaded scenario, Schedule STN: S, T and N
execute consecutively on the same core.

Figure 11 presents the results of RSC under the three SMT schedules and the single-
threaded schedule. The channels are shown both in terms of the number of branch
mispredictions and in terms of the execution time. For each scheduling type, we also
run the experiment without executing the trojan. In this case, the spy’s measurements
is only impacted by the background noise in the system. A good channel would have the
noise and the signal levels easily distinguishable. This property not only makes it pos-
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Fig. 10. Scheduling of noise, trojan, and spy processes.

sible to tolerate the system noise but also can contribute to building an asynchronous
channel with no prior synchronization between the trojan and the spy. This becomes
possible because the spy can explicitly detect when information is being transmitted
over the channel.

Figure 11(a) and (b) show the RSC waveforms for branch mispredictions and cycles,
respectively, as measured by the spy, for the SN-T schedule shown earlier. Figure 11(c)
and (d) plot similar results for the ST-N schedule. Finally, Figure 11(e) and (f) show the
RSC channel for the TN-S schedule. As seen from the results, the channels are visible
and effective for each execution schedule, both for the number of mispredictions and
for the execution cycles. In addition, the channel is clearly distinguishable from the
noise pattern and therefore can be created even in the presence of external noise.

Figure 11(g) and (h) show the RSC waveforms obtained by measuring branch mis-
predictions and execution cycles in a single-threaded schedule (STN). As with SMT,
for comparison purposes we also show the channel between the background noise pro-
cess (GCC compiler) and the spy when only two of them are executing. As seen from
the results, RSC in a single-threaded scenario is also easily distinguishable from the
background noise.

6.2. CC Under Noise

Next, we performed similar experiments with CC. Figure 12 shows these results. Specif-
ically, Figure 12(a) through (f) show results for CC for the three SMT schedules listed
earlier. As in the RSC case, the CC channel is compared against a hypothetical chan-
nel between the noise process and the spy. In contrast to what was observed for RSC,

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 10, Publication date: March 2016.



10:12 D. Evtyushkin et al.

[+—= Signal == Noise [+ Signal == Noise]
w0 380
70 360K]
g
2% sa0¢
g’ 0 3 320K]
S 40 3
< O 300K|
2 30
° 280K]|
@ 20
10 260K
5 10 15 20 240K 5 10 15 0
Time (s) Time (s)
(a) Misprediction-based RSC with SN-T (b) Time-based RSC with SN-T
o Signal =& Noise [+ Signal == Noise]
80 450K
~ 70
2 4001
3 60
S50 350K
@ 9
= a0 ES
5 © 300k]
2 30|
@ 20 250K
10
200K|
5 10 15 20 5 10 15 20
Time (s) Time (s)
(¢) Misprediction-based RSC with ST-N (d) Time-based RSC with ST-N
o Signal == Noise [— Signal == Noise|
450K]
80,
g 400K
2 60
E § 350K
E 40 &
g 300K]|
c
@ 20
250K]|
0
[ 5 10 15 20 0 5 10 15 20
Time (s) Time (s)
(e) Misprediction-based RSC with TN-S (f) Time-based RSC with TN-S
[e—e Signal _=—a Noise] [+—e Signal = Noise]
80
3s0¢
= 70
g
"o 60|
5 300K
N Y
@ o
£ a0 FS
5 © 250K
2 30|
H
@ 20
10 200K |
0
5 10 15 20 5 10 15 20
Time (s) Time (s)
(g) Misprediction-based RSC with STN (h) Time-based RSC with STN

Fig. 11. RSC waveforms in a noisy environment and comparison with background noise.

the channel created by CC is practically indistinguishable from noise. Therefore, CC
cannot be effectively constructed in the presence of noise and interference, regardless
of a particular schedule between the spy, the trojan, and the noise process. The main
reason is that CC fundamentally relies on the lack of contention to transfer one of
the possible values (either a one or a zero). However, the presence of noise process
practically eliminates the noncontention execution periods.

Figure 12(g) and (h) show CC waveforms for the single-threaded schedule. Again,
as with the SMT scenario, the CC waveform is practically indistinguishable from the
background noise (created by the GCC compiler).
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In conclusion, whereas both CC and RSC are effective communication channels in a
clean environment where only the trojan and the spy execute, only RSC can provide a

reliable channel in the presence of noise.

7. COVERT CHANNEL CAPACITY ESTIMATION

Covert channel practicality is often determined by its capacity. When a covert channel is
used to transfer only a small amount of data (e.g., cryptographic keys), its capacity may
be secondary to reliability and noise resilience. However, only high-capacity channels
are useful for transmitting large amounts of data. For example, it would take 500 days
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to transmit an image file of 4MB using a thermal covert channel with a very low
capacity [Guri et al. 2015].

The capacity of a covert channel is impacted by implementation-specific details and
optimizations. The transmission bitrate depends on the nature of the shared resource
used and on a particular data transmission protocol. Some channels can be noisy
requiring noise reduction techniques and error correction codes, such as Hamming
codes [Hamming 1950].

In this section, we explain our experimental setting and estimate the transmission
bitrate and error rate for the channel described in this article.

7.1. Capacity Estimation of RSC

Computing the maximum possible covert channel capacity would require a large num-
ber of optimizations and knowledge about the exact implementation of the branch
predictor unit. Instead, we construct a simple and fast covert channel prototype that
provides a reasonable estimate for the channel capacity. In the slow channel, the trojan
changes the signal level once every second, and therefore the channel capacity is only
one bit per second. In the fast channel, the execution order switches between the trojan
and the spy as fast as possible.

In particular, both programs rely on the sched_yield() function, which relinquishes
the rest of the CPU time slice allocated to a process. Another important difference is
that instead of transmitting alternating ones and zeroes, now the trojan transmits a
sequence of randomly generated bits.

Every time the trojan is scheduled, it executes one of the two code blocks with branch
instructions, priming the branch predictor. To determine which code block to run, the
trojan looks up the array consisting of randomly generated bits. The bits in this array
determine the type of signal the trojan sends during the current communication cycle.
After that, the trojan calls the sched_yield() function to force a context switch and
subsequent scheduling of the spy process. The spy probes the branch predictor by exe-
cuting a block of taken branches. The spy also measures the branch misprediction rate,
or the time that it takes to execute this block of code. Based on these measurements,
the spy can determine whether the trojan transmitted a one or a zero. Following that,
the spy calls the sched_yield() function to force the context switch to the trojan again.
Since both processes always have code to run, they create constant demand for the
CPU resources. As a result, the OS does not schedule other processes on that core,
allowing the branch predictor state to transfer from the trojan to the spy. After the
transmission completes, we compare the number of correctly transmitted bits and the
number of errors to calculate the error rate.

The size of branch blocks executed by the spy and the trojan can be adjusted to
control the channel efficiency. The number of branches should be large enough to affect
most of the branch predictor table entries but small enough to prevent excessive usage
of entries already affected by the block. In addition, if the trojan executes a very large
code block, it gives the OS a sufficient time to generate the timing interrupt and
perform a context switch, thus distorting the schedule. To maintain channel-friendly
scheduling, we enforce that each process executes the same number of branches. The
optimal number of branches is a processor-specific parameter, which depends on the
configuration of the prediction unit.

To estimate the channel’s capacity and the error rate, we transmitted 1,000 randomly
generated bits and measured the error rate in the signal received by the spy. In addition
to that, we measured the time spent receiving the signal, and from there we estimated
the channel capacity. We ran the experiment for different sizes of branch code blocks
used by the trojan and the spy. In particular, we started from code blocks of 2,000
instructions and finished with blocks of 7,000 branches. We computed the channel
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Fig. 13. Capacity (bitrate) and error rate for channels created with different branch code block sizes.

capacity and the error rate for each configuration. We ran the experiment 100 times
for each block size and present the results averaged across these 100 experiments.

The runs results of these experiments are presented in Figure 13(a). Using blocks
of size less than 2,900 branches does not result in the creation of a usable channel.
A more detailed representation of the most interesting region (between block sizes of
2,900 and 3,400) is shown in Figure 13(b). The channel becomes more stable when
the block size approaches 4,000 branches. An example of a sweet spot in terms of the
trade-off between the bitrate and error rate is the block size of 3,148 branches. In this
case, we achieve the average bitrate of 121kbps and an average error rate of 3.9%. In
general, we observed oscillations of the error rate as the block size increases. This is a
function of specific branch predictor access patterns by these codes (which we did not
reverse engineer) and varying amount of system noise.

Presented results show that a fast covert channel can be constructed using branch
predictor tables. The resulting channel has desirable properties, as it is fast enough to
transfer large amounts of data and has acceptable error rates. Our experiments also
demonstrate that a deep knowledge about the branch predictor organization is not
required to construct a fast and reliable covert channel. Instead of reverse engineering
the branch predictor, a reasonable approach is to experiment with different sizes of the
branch code blocks, as presented in this section.
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7.2. Improving the RSC Capacity

The capacity of RSC can be further improved. If an adversary is equipped with the
knowledge about the branch predictor organization, this can significantly improve the
bitrate and reduce the error rate. In this case, instead of manipulating large blocks of
branch code to increase the probability of putting the prediction table in the desired
state, the trojan can directly target specific table entries. However, such a protocol
will be limited to a particular CPU, whereas the statistical channel is not. Although
it is outside the scope of this article to analyze such optimizations, we outline several
possibilities for the trojan and the spy to improve the channel:

(1) The branch predictor indexing function and the size of prediction structures can be
reverse engineered. The adversary can manipulate the branch addresses and the
GHR state to force the mappings of branches to desired PHT entries.

(2) The adversary can control the OS scheduler to obtain a CPU quantum of desired
length and schedule processes in desired order on any core.

(3) The adversary can access measurement tools, such as the timestamp counter or
performance counters, with minimal latency.

(4) The adversary can achieve perfect synchronization between the trojan and the spy
at the granularity of a single instruction.

The detailed exploration of these optimizations is left for future work.

8. MITIGATING BRANCH PREDICTOR COVERT CHANNELS

In this section, we describe and evaluate a protection technique that mitigates covert
channels through the branch predictor, including CC and RSC.

8.1. Channel Mitigation: Flushing the Predictor on Context Switches

To close the channel, we propose a software-only solution, which flushes the branch
predictor (or randomizes its state) on context switches. This approach mitigates both
types of covert channels considered in this article but by different means. RSC is
eliminated because flushing of the branch predictor makes it impossible to place the
predictor into one of the desired states. CC is mitigated because the context switch
creates constant pressure on the predictor, thus making it impossible to alternate high
and low contention stages.

To implement this protection, we modified the context switch routine in the OS
kernel. In particular, before the scheduler assigns the next ready process to the CPU, a
large block of branch-intensive code is executed to randomize the branch predictor state.
As a result, the newly scheduled process starts execution with a clean predictor state.
This mechanism effectively eliminates the secret data transmission between the trojan
and the spy. Note that this mitigation technique does not consider the spy and the trojan
running on two hardware thread contexts of an SMT processor. For security reasons,
the OS should not schedule processes from different security domains simultaneously
on the same physical core. Alternatively, the SMT support can be disabled.

8.2. Optimal Number of Branches in Randomization Code

The branch predictor can be flushed on a context switch in several ways. For example,
a large number of taken or not-taken branches can be executed to put the entire
table of prediction counters in one of the strong states. Alternatively, a large number of
branches with a random taken/not-taken pattern can be executed, resetting the branch
predictor to a neutral state with 50% taken probability. Such randomized approach is
more likely to have lower performance impact due to the bimodal nature of branch
outcomes.
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Fig. 14. Branch predictor flushing using different numbers of random branch instructions.

To determine the optimal number of branch instructions required to randomize the
branch predictor in a secure manner, we conducted the following experiment. First,
we executed the code, consisting of 1 million branch instructions, several times, thus
placing the branch predictor into one of the strong states. We call this phase the
priming of the predictor. Then, the flushing code block was executed once. We varied
the number of instructions in the flushing block. Finally, we executed 1,000 branch
instructions with the same outcome as branches in the priming phase and measured
the number of mispredictions in this block. We call this phase probing. The number of
branch mispredictions encountered in executing the probing code indicates how well
the flushing phase resets the predictor.

First, we considered the flushing code composed of randomized blocks of branch
instructions. The results are presented in Figure 14. Figure 14(a) shows how effectively
the predictor state is reset after being primed with all taken branches, and Figure 14(b)
depicts similar results for priming with not-taken branches. As expected, the small
blocks of flushing code are not sufficient to reset the predictor, and the misprediction
rate is very low. As the flush code block increases in size, the misprediction rate of
the probing phase also increases. The growth stops at about 50%, indicating that the
branch predictor tables are reset.

To ensure higher probability of a complete branch predictor reset, the OS needs to use
larger flush code blocks compared to the minimal block size that provides 50% mispre-
diction rate of the probing code. To protect against more sophisticated and intelligent
adversaries (which could potentially explore even minuscule deviations in branch mis-
prediction rates to detect transmission patterns), we conservatively selected 300,000
branch instructions in the flush block for further experiments and analysis. Therefore,
all performance overheads are presented under this very conservative assumption.
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Next, we examined the effectiveness of using a large number of taken branches as
flushing code block. In particular, priming and probing code contains only not-taken
branches, and the flushing code contains only taken branches. The results are presented
in Figure 15. As expected, larger flush blocks make stronger impact on the branch
predictor. However, we note that it is difficult to place all predictor entries into the
strongly-taken state, thus causing the misprediction of all probing branches. Further-
more, there are elements of randomness that are present in this flushing mechanism,
so the same number of executed instructions can affect the prediction rate differently.
This is manifested by the dispersion of the results as the misprediction rates get closer
to 100%.

Finally, Figure 16 shows the results of flushing the predictor using not-taken
branches. Surprisingly, not-taken branches have a much smaller impact on the branch
predictor state. In particular, when the flushing code runs for the first time, it affects
the number of mispredictions in priming code significantly. However, the predictor
makes adjustments, and the misprediction rate soon decreases. The misprediction rate
remains relatively low (below 15%) even for very large blocks of all not-taken branches.

The results presented earlier show that executing an even mix of taken and not-
taken branches with a random pattern is the most stable way to reset the predictor. In
addition, assuming bimodal behavior of branches under a normal execution pattern,
placing the entire branch predictor into one of the strong states results in a higher
number of mispredictions. In the rest of the experiments, we assume a random mix of
taken and not-taken branches in the flushing code.

Since the protection goal is to place the branch predictor into a neutral state, it
is important to avoid flushing the predictor with code that has fixed branch pattern.
Otherwise, the predictor will accumulate statistics for those branches and the flushing
code will create constant branch pressure instead of randomization of the predictor’s
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Fig. 17. Channel waveform without protection (a); channel waveform when protection is applied after the
trojan is switched out (b); channel waveform when protection is applied after the spy is switched in (c).

state. However, randomizing the pattern of flushing branch instructions on every con-
text switch will result in a significant performance loss. To optimize this process, we
generated several randomized blocks of flush code and randomly pick one block to
use on every flush instance. This approach provides randomness while minimizing
performance impact.

8.3. Results and Performance Overhead

The protection mechanism described earlier has been implemented inside the Linux
kernel. Since the covert channel involves the trojan and the spy, there are two options of
how the protection can be enforced. The first option targets the trojan (the transmitter
of the data). In this case, the protection can be invoked each time the trojan context
is switched out. The second option targets the spy (the receiver of the data). Here, the
protection can be invoked every time the spy’s context is switched in. We implemented
both schemes, and the results are presented in Figure 17.

The signal line shows the misprediction rate measured by the spy when the trojan
is active, and the noise line represents normal ambient noise measured by the spy
with no trojan present. Both protection schemes make covert communication through
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Fig. 18. Performance impact from flushing the branch predictor on context switches.

branch predictor impossible, as the transmission signal waveform can no longer be
visible by the spy. The first protection scheme (targeting the trojan) has lower per-
formance overhead. Typically, the number of applications that manage secret data in
a system (possible trojans) is much less than the number of applications that have
communication permissions (possible spies).

Flushing the branch histories on context switches can have little performance impact,
or it may even be beneficial in some cases [Evers et al. 1996; Co and Skadron 2001].
However, the flushing operation itself is expensive when it is performed in software.
To completely remove the residual state from the predictor, large blocks of branch code
need to be executed. For the experiments described earlier, we used 300,000 branch
instructions. We note that since the branch prediction implementation details are
unknown, the protection mechanism does not guarantee flushing of all branch predictor
entries. However, it makes it extremely hard, if not impossible, for the attacker to
probabilistically manipulate the predictor to pass information using RSC or CC. On
our experimental system, the overhead of flushing the predictor in software corresponds
to the additional latency of 1.2 milliseconds added to the context switch. In addition,
the flushing code pollutes the state of caches and branch predictors.

Several techniques can be used to reduce the performance impact. First, instead of
flushing the predictor on every context switch, the OS can do so only when there is
a threat of undesired information transfer through the predictor. Another optimiza-
tion is for the OS to group processes by security domains. Predictor flushes are only
needed when a context switch happens between processes residing in different security
domains. By changing the scheduler algorithm, the OS can minimize the number of con-
text switches that require flushing to decrease performance overhead. Such technique
is known as lattice scheduling [Hu 1992].

To evaluate the performance impact of our mitigation technique, we used the CPU
performance benchmark from the Sysbench [Kopytov 2004] benchmark suite. We exe-
cuted the benchmark with protection disabled (no branch predictor flushes) and enabled
(branch predictor is flushed before the benchmark’s context is switched in). To eval-
uate the performance impact under various concurrency scenarios, we executed the
benchmark alongside several background processes. The background processes were
created by executing the same benchmark with disabled protection, and the execution
was performed on the same core. This created a higher level of contention for CPU
resources, thus increasing the number of context switches.

Figure 18 presents normalized results showing the performance impact of enabled
protection. When no other processes are running on the same core, the performance
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impact is very small. As more noise processes add contention for the CPU, the OS is
forced to perform context switches more often. The performance impact increases, but
it does not exceed 20% in our test case. Such overhead is significantly smaller compared
to some of the earlier presented solutions for other types of timing channels, such as the
shared memory controller channel [Wang et al. 2014b]. We consider software protection
as a temporary countermeasure until developers implement branch predictor flushing
mechanism in hardware.

9. RELATED WORK

Covert channels through shared microprocessor resources have been explored in sev-
eral recent efforts. Wang and Lee [2006] presented covert channels using exceptions
on speculative load instructions and shared functional units on SMT processors. Wu
and Wang [2012] described a covert channel that is based on the Intel Quick Path In-
terconnect (QPI) lock mechanism. Ristenpart et al. [2009] presented a cross-VM covert
channel that exploits the shared cache. Covert channels based on the use of mem-
ory bus were presented in Saltaformaggio et al. [2013]. Wang et al. [2014a] presented
a covert channel through shared memory controllers and proposed some techniques
to close it. Their solution to eliminate interference across security domains is based
on per-domain queuing structure and static allocation of time slots in the scheduling
algorithm.

Several other efforts addressed the problem of mitigating timing covert channels.
Chen and Venkataramani [2014] presented CC-Hunter—a framework for detecting
the presence of covert channels by dynamically tracking conflict patterns over the use
of shared processor hardware. As CC-Hunter is based on detecting contention, it is not
directly applicable to detecting the covert channels through branch predictors proposed
here, as these channels are not created based on contention. Another fundamental
approach that builds the system from the ground up to detect the presence of side
channels [Domnitser et al. 2012], covert channels, and other unintended information
flows is gate-level information flow tracking (GLIFT) [Tiwari et al. 2009; Oberg et al.
2014]. Although shown to be effective, GLIFT requires significant rearchitecting and
redesign of the entire system. A recently proposed technique to mitigate side channels
using obfuscated execution [Rane et al. 2015] can in principle be used to also close covert
channels, but its performance overhead is significant. Askarov et al. [2010] introduced
a timing channel mitigation methodology that can achieve predefined bounds on the
channel leakage.

Hunger et al. [2015] outlined a contention-based covert channel through a branch
predictor. In this article, we quantitatively compared the channel of Hunger et al.
[2015] (which we refer to as CC) with the channel based on the residual state of the
branch predictor left by the trojan. We performed the comparison in both noiseless
and noisy environments and demonstrated that CC is only practical in the noiseless
environment, and even then it provides a signal with a lower amplitude than RSC.

Although the focus of this article is on covert channels, previous work studied side-
channel attacks through branch prediction units [Aciicmez et al. 2007a, 2007b], par-
ticularly exploiting the branch target buffer. Therefore, in the future, it is important
to consider mitigation techniques that will close the possibilities for both side chan-
nels and covert channels through shared branch prediction units and other shared
resources. Identifying and mitigating side and covert channels becomes a high priority
research direction in the environments that assume potentially compromised system
software layers [McKeen et al. 2013; Evtyushkin et al. 2014; Elwell et al. 2014, 2015;
Hofmann et al. 2013]. In this case, the OS can assist in the creation of the timing
channels, circumventing strong isolation [Xu et al. 2015].
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10. CONCLUDING REMARKS

We performed a systematic analysis and comparison of two types of covert channels
through branch prediction structures - the contention-based channel (CC) and the
residual state—based channel (RSC). We showed that in the clean execution environ-
ment where only the trojan and the spy processes execute, both channel are effective,
with RSC providing significantly higher signal amplitude. This is true for both single-
threaded and multithreaded cores. We also evaluated and compared both types of
channels in an environment with the interference from one other unrelated process.
Our results demonstrate that whereas RSC is still an effective channel in this sit-
uation, any level of interference becomes detrimental to the quality of CC. This is
because CC is based on the presence or absence of contention for the shared branch
predictor resources, but the external noise makes it impossible for the spy to observe
contention-free periods. We also demonstrated that a high-capacity RSC can be cre-
ated with minimal error rate: for example, a channel with about 120kbps bitrate can
be constructed with only about a 4% error rate in covert communication. Finally, we
proposed a software-based mitigation technique that randomizes the predictor state
on every context switch and showed that the protection can be achieved with modest-
performance impact.
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