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Abstract
Transient execution is one of the most critical features used
in CPUs to achieve high performance. Recent Spectre at-
tacks demonstrated how this feature can be manipulated
to force applications to reveal sensitive data. The industry
quickly responded with a series of software and hardware
mitigations among which microcode patches are the most
prevalent and trusted. In this paper, we argue that currently
deployed protections still leave room for constructing at-
tacks. We do so by presenting transient trojans, software
modules that conceal their malicious activity within tran-
sient execution mode. They appear completely benign, pass
static and dynamic analysis checks, but reveal sensitive data
when triggered. To construct these trojans, we perform a
detailed analysis of the attack surface currently present in
today’s systems with respect to the recommended mitiga-
tion techniques. We reverse engineer branch predictors in
several recent x86_64 processors which allows us to uncover
previously unknown exploitation techniques. Using these
techniques, we construct three types of transient trojans and
demonstrate their stealthiness and practicality.
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1 Introduction
Increased performance of modern processors largely relies
on various hardware units performing activities ahead of
time. For example, when the processor encounters a branch
instruction, a type of instruction that alters the normal se-
quential execution flow, the branch prediction unit (BPU)
predicts the address of the following instruction instead of
waiting for the correct address to be computed. In order to
avoid damaging the architectural state, execution based on
predicted data is performed in a special transient (or specula-
tive) mode, which permits roll-backs to previous states. If the
prediction is correct, the execution along the predicted path
continues. Otherwise, the CPU reverts any changes made by
executing incorrect instructions. Recent transient (or specu-
lative) execution attacks, including Meltdown [49] and Spec-
tre [47], demonstrated how such performance optimizations
can bemanipulated to force victim programs to leak sensitive
data by leaving detectable traces in microarchitectural data
structures such as CPU caches. These attacks are capable of
violating the most fundamental principles of memory safety,
including user-kernel isolation. From early 2018, these at-
tacks opened up a new class of microarchitectural threats and
quickly spawned many variations [15, 25, 45, 48, 50, 61, 69].
Numerous mitigation techniques have been proposed to

protect from transient execution attacks. These techniques
range from serializing instructions [4, 39, 46], avoiding dan-
gerous code sequences [5], flushing hardware data struc-
tures [2, 4], and limiting transient execution [41, 72] to dis-
abling microarchitectural covert channels [14, 19, 26, 44]. We
provide a more detailed description of current protection
schemes in Section 2.2. Hardware manufacturers, including
Intel and AMD, responded to the threat of transient execu-
tion attacks with a series of microcode updates. While being
effective in mitigating the main problem, such microcode-
based countermeasures noticeably reduce performance [55].
In this paper, we argue against the widely spread per-

ception that the triggers and effects of transient execution
attacks are fully understood, and recommended protections
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leave no room for any attack to occur. We do so by construct-
ing transient trojans. These malicious software modules con-
ceal their malign functionality in transient execution mode,
and unlike previously demonstrated attacks [17, 45, 47, 69],
do not require an external attacker controlled process to
activate the hidden functionality. First, we perform a reverse
engineering study of branch predictor mechanisms in re-
cent Intel and AMD processors and discover several new
branch collision triggering techniques. These techniques en-
able portable, self-contained trojans that can be included in
sensitive software (for instance, by a malicious open-source
project contributor). Then, we construct software modules
that encapsulate all attack components (poisoning and vic-
tim branches) inside a single process. Malicious functionality
concealed in transient execution mode can remain unnoticed
in software even after undergoing rigorous security checks
such as symbolic execution [13], taint analysis [20], model
checking [27], various methods to detect traditional software
backdoors [59, 60, 63, 66, 71], and even existing Spectre de-
tection tools [3, 5, 33, 70]. According to recently proposed
transient attack classification by Canella et al. [15], transient
trojans described in this paper present a practical example
of the same address space transient execution attacks. We
argue that transient execution ubiquitously present in nearly
all today’s CPUs is a natural fit for concealing malicious code
since it offers an execution mode that is completely invisible
to existing binary and source code analysis techniques.
Paper Contributions In summary, this paper makes the
following contributions:

1. We perform a reverse-engineering study1 of the BPU
to uncover the mechanisms responsible for indirect
branch prediction and ways to manipulate them. This
allows us to construct three types of trojans, each re-
lying on a different BPU anomaly.

2. We present a new branch instruction collision mech-
anism based on early BPU accesses. First, the mech-
anism allows attackers to construct trojans that can
avoid being detected by current techniques based on
code analysis. Second, it permits creations of small and
portable trojans.

3. We propose a technique to disperse transient gadgets,
improving their stealthiness and effectiveness.

4. We analyze the static prediction mechanism and con-
clude that it can result in skipped indirect branches,
which we use to bypass existing gadget detection tech-
niques and to construct trojans.

5. We present an analysis of current binaries that demon-
strates a high prevalence of potentially dangerous colli-
sions reaching hundreds of thousands in large binaries.
We argue that such naturally occurring collisions can

1Experiments were performed on Intel Haswell (i7-4800MQ), Skylake (i7-
6700K), Kaby Lake (i7-8550U), and AMD Ryzen (1950X) machines running
recent and fully patched Ubuntu OS with microcode patches installed.

be used to hide malicious trojans as well as construct-
ing trojans from existing code.

6. Finally, we analyze protection techniques and suggest
approaches to remove the threat from uncontrolled
transient execution.

Responsible Disclosure Research findings in this paper
have been reported to Intel and AMD.

2 Motivation and Background
2.1 Transient Execution Attacks
Transient execution attacks [8, 15] are based on attacker
being able to poison BPU data structures by either executing
branch instructions inside an attacker process (Spectre vari-
ant 2) or by training BPU structures via supplying specific
data (variant 1) [47]. These attacks cause a misprediction by
the BPU followed by transient execution of wrong path of
instructions. While instructions executing in transient mode
cannot modify the architectural state (or write into memory),
they can still leave detectable patterns inside microarchitec-
tural structures such as CPU caches. These patterns are not
rolled-back after misprediction is detected. A sophisticated
attack can be constructed where BPU is poisoned in such a
way that CPU first reads sensitive data, then reveals it by
leaving detectable traces in microarchiectural structures.
Not all branch mispredictions allow for transient execu-

tion attacks. A branch must be unresolved for a number of
cycles to allow transient instructions from the wrong ex-
ecution path to access sensitive data and leave traceable
instances by initializing cache accesses. The number of in-
structions executed in this way, before the branch is resolved,
is known as the width of speculative window [33]. Wide
speculative windows are created if the information required
for the branch resolution is stored in RAM. In this case, a
branch can stay unresolved for hundred of cycles [51]. There
are two distinct scenarios that create dangerous speculative
windows. (1) When the data that determines conditional
branch direction (taken or non-taken) is not located in CPU
caches, and the BPU mispredicts its direction. (2) When the
target of an indirect branch is not in CPU cache while BTB
contains an incorrect target due to a collision with another
branch. These two scenarios describe Spectre variants 1 and
2 accordingly [47]. The second type (variant 2) of transient
execution is potentially more dangerous since it allows the
attacker to choose what code will be speculatively executed
by poisoning the BTB. Moreover, in such an attack, the at-
tacker can force transient execution to operate in the return-
oriented-programming [62] fashion, allowing execution of
instructions not present in the original binary [47]. In this
paper, we study this type of transient execution attacks.

2.2 Spectre Countermeasures in Existing Systems
Recently, several countermeasures have been developed to
mitigate transient execution attacks. The majority of the



proposed techniques focus on mitigating Spectre V2, as it is
potentially the most dangerous variation. Although many
promising protections techniques have been recently intro-
duced by academia [31, 33, 41, 44, 70, 72], current systems are
mostly protected by a few techniques developed by hardware
manufacturers and software vendors. Below we summarize
a set of protections that are universally enabled on today’s
systems regardless of OS type. Please note that for simplicity,
we focus only on Intel-based machines.

Retpoline Sequences. Spectre v2 attacks require an indi-
rect jump or call instruction to create a wide transient exe-
cution window. A simple compile-time solution proposed by
Google [67] is to replace all indirect branches with special
instruction sequences known as retpolines. These sequences
emulate indirect branch functionality by pushing branch
targets on stack and then executing a ret instruction. When
predicting target for returns CPU relies on RSB instead of
BTB for which poisoning is significantly more difficult [38].
Although using retpolines is considered an effective coun-
termeasure, recent attacks on the RSB call into question the
security of retpoline sequences [48, 50]. In addition, as stated
by Intel, Skylake and newer processors are allowed to rely
on the BTB for predicting return targets when RSB under-
flowing occurs [38]. This can make even retpoline-compiled
binaries vulnerable.
We performed analysis to find out how common retpo-

lines are on a typical machine. Our analysis included all
executables, libraries, and kernel modules on our test ma-
chine running the most recent and fully updated version
of Ubuntu. We found no retpoline compiled common exe-
cutables/libraries. The kernel and a small portion of kernel
modules were found to be compiled with retpolines resulting
in only ≈0.06% of total binaries in the entire system being
protected. This is potentially due to developers viewing ret-
polines as an overkill protection that results in code bloating
and performance degradation [55, 64] since the system is
already protected with the microcode-based protections.

System-wide Microcode-Based Protections.
Intel responded to transient execution attackswithmicrocode
updates introducing three new features: indirect branch re-
stricted speculation (IBRS) which limits speculative execu-
tion in privileged modes, indirect branch prediction barrier
(IBPB), which prevents cross-process BTB poisoning, and sin-
gle thread indirect branch predictors (STIBP), which prevent
BTB poisoning across hyper-threads [39].

2.3 Current Attack Surface and Motivation
It is important to note that microcode-based protections do
not completely eliminate the threat from transient execution.
They are designed to protect from known attack scenarios
while minimizing performance overhead. For instance, while
IBRS by principal is capable to completely disallow specula-
tion of indirect branch targets and thus dangerous transient
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Figure 1. Transient execution attack surface

execution, due to very high performance overhead it is only
enabled for kernel, kernel modules, and SGX enclaves on
most systems [58]. Similarly, IBPB, together with STIBP, can
disallow BTB poisoning between processes and threads, but
currently is enforced selectively after performing context
switch into a sensitive process [39].
We argue that the currently used protection model still

leaves possibilities for attacks. Figure 1 demonstrates a typi-
cal attack surface of a fully patched system denoting attack
vectors still remaining active. Arrow tail indicates attacker
branch, and arrowhead indicates victim branch locations.
Two vectors are particularly useful for constructing transient
trojans, denoted by 1 and 2 in the figure. 1 is possible be-
cause neither IBPB or STIBP can protect against scenarios in
which the poisoning branch and the branch being poisoned
are located within the same address space. In Section 3.3.1,
we demonstrate how such collisions can be easily created by
leveraging newly discovered collision patterns. 2 is possible
because IBRS protects only the code running in privileged
modes from being influenced by unprivileged code 2. This
permits kernel to poison the BTB and trigger malicious tran-
sient execution inside user process. We explore trojans based
on this phenomenon in Section 3.2.

2.4 Threat Model and Assumptions
We assume that the attacker is a malicious developer who
is capable of delivering software that seems benign before
being activated by a trigger condition. The user (victim) may
run static or dynamic analysis and information flow control
tools. Moreover, for trojans based on newly discovered colli-
sion patterns (Sections 3.1 and 3), the user can run existing
Spectre gadget detection tools [3, 5, 33, 70]. The malicious
code can be distributed in the form of a precompiled binary,
source code, a shared library, or a commit to an open-source
project.We assume the attacker has general knowledge about
the configuration of the victim’s machine, such as CPU mi-
croarchitecture generation, versions of shared libraries, and
kernel.

2IBRS implementation may vary between CPU generations and OS policies
enabling or disabling this vector



3 Transient Execution Trojans
In this section, we present transient trojans, programs that
can compromise security while containing no malicious in-
struction sequences in any place reachable by normal exe-
cution flow. Even though these trojans appear benign, they
output sensitive data when malicious transient execution is
activated. The basic building block for a trojan is a condition
in which transient execution temporarily violates the archi-
tectural state of a program. One of such violations is when
two branch instruction collide in BTB. As a result, the body
of one branch is executed with data in registers from another
branch. This enables a basic memory safety violation, which
can lead to sensitive data leakage.

In this section, we describe reverse engineering of mecha-
nisms used to predict indirect branches. We introduce three
distinct types of trojans, each utilizing a different kind of
BPU anomaly. We show that a malicious developer or an
open-source contributor can compose a self-contained soft-
ware module in which malicious functionality is concealed
in transient execution. Unlike previous works [17, 45, 47, 69],
which require a separate malicious process controlled by the
attacker for BTB poisoning, our self-contained trojans could
combine all attack components, including BTB poisoning, in
one single process.

3.1 Branch Target Prediction Mechanisms
Modern BPUs are capable of predicting both direct and in-
direct branches with high accuracy. The mechanisms for
predicting targets of these two branch types differ substan-
tially. Figure 2 demonstrates a simplified target prediction
mechanism overview. Since the target of a direct branch (in-
cluding direct calls, jumps, and conditional branches) is fixed,
it is predicted by BPU simply caching previously calculated
target and storing it in a set-associative BTB [54]. As in any
set-associative cache, each lookup is done using index, tag,
and offset bits. Index bits determine BTB set for the lookup,
while tag and offset allow selection from multiple entries
in the same set. To predict the target of a direct branch, the
BPU performs a simple lookup based on the branch source
address. The address bits are typically hashed to reduce the
number of bits stored as tag in BTB.
However, this mechanism is not sufficient for effectively

predicting indirect branches because a single indirect branch
may jump to different destinations depending upon data the
program is processing. Thus a prediction mechanism must
account for the context in which the branch is executed.
Current BPUs do so by associating indirect branches with
patterns of previously executed branches. This is achieved
using the mechanism called the branch history buffer (BHB),
a shift register structure that serves the purpose of accu-
mulating the branch context. The context is composed by
hashing addresses bits of every committed branch instruc-
tions with current BHB value [35]. Then compressed BHB

value is used to perform target lookups. Such a predictor
allows storing multiple targets for a single indirect branch
and accurately predicting targets in cases when they depend
on previous code sequences.

To maximize the utilization of the BPU storage resources,
instead of storing targets for direct and indirect branches
in separate structures, both predictors share a single large
BTB as in hybrid predictors [16]. The two predictors differ
by the type of BTB addressing modes they use: instruction-
pointer based (IP-based) and branch history buffer based
(BHB-based).

In IP-based addressing, the index, tag, and offset for a BTB
lookup are calculated solely based on a subset of the branch
instruction virtual address bits. This mode is primarily used
for direct branches.

In BHB-based addressing, the lookup is performed based
not only on branch instruction address but also on the state
of BHB. For instance, compressed BHB value can be used as
the BTB tag, allowing to store multiple targets for a single
indirect branch. This mode is exclusively utilized by indi-
rect branches. However, when BPU is processing an indirect
branch, the two predictors are used concurrently with the
prediction selected based on accuracy monitoring for each
entry stored in BTB. We provide details further in this sec-
tion.
While finding an entry based on index calculating and

tag matching reminds a normal cache operation, BTB oper-
ates differently compared to regular caches. We performed a
reverse engineering study to understand the BTB configura-
tion and how branch address bits are used for lookups. We
use direct branches to study the IP-based addressing mode.
In the first step, we observe that, on Skylake processors, only
30 least significant bits from the branch source address are
used for lookups, and the bits [47:30] are ignored, confirming
results of previous studies [24]. Then we determine the asso-
ciativity of the BTB. Assuming bits from the most significant
chunk of the remaining [29:0] are used as tag, we create n
branch instructions with mismatching tags by flipping these
bits. We keep other address bits identical to make matching
index and offset. We make each of these branches having a
non-matching target. Then we execute this branch sequence
twice, observing BTB miss events for any of them during the
second time. We use hardware performance counters [1] to
detect BPU events. A BTB miss indicates the BTB does not
have enough ways in a given set to store all n targets result-
ing in eviction of one of the targets. We observed no misses
for n < 9 and a stable miss pattern when n ≥ 9, indicating
that BTB contains 8 ways.

Next, we find which address bits are used as index. To do
so, we execute a set of 8 branches that occupies an entire
BTB set. Then, one more branch is executed while flipping its
address bits in range [29:0]. If the flipped bit is used as tag, all
8+1 branches will have identical indexes and be assigned to
the same set. In such case, one of the 8 targets will be evicted.
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Figure 2. Branch target prediction mechanism combining
direct and indirect branch prediction logic. Functions f 1 − 3
are bit compression functions; f 4 is bit matching function.
Mechanisms used for trojan construction are highlighted red

However, if the flipped bit is used as index, the branch with
the flipped bit will go into a different set, and no evictions
will appear. Then we check if any of the 8 branches were
evicted from BTB. This way, we identify that bits [13:5] are
used as index providing 29 total sets resulting in 4 096 total
BTB entries. This suggests bits [29:14] used as tag. Previous
research [35, 47] determined that tag bits are folded together
using a simple XOR operation: tag= ai ⊕ ai−8 |i ∈ [29, 22],
where a is the branch instruction address. We observed that
the exact addressing scheme and bit folding function varies
on different microarchitectures. For instance, Haswell pro-
cessors appear to use tag= ai ⊕ ai−9 |i ∈ [30, 22] folding
function.
Finally, the remaining bits [4:0] are used as the offset.

The exact role of the offset in the context of BTB is un-
clear. However, the presence of offset is indicated by multiple
sources [10, 36, 43]. In general case, the offset can be viewed
as a second tag requiring a full match to produce a BTB hit.
However, as we discover in Section 3.3.1, the matching is
done using a more complex function, which can produce ad-
ditional collisions resulting in potentially malicious transient
execution.

3.1.1 Addressing Modes for Indirect Branch
Prediction

Predicting indirect branches based on the context in which
they are executed is a logical strategy. Consider a switch-case
expression in C. It is typically implemented by calculating
the resulting target and jumping to this target via an indi-
rect jump instruction. The code pattern executed prior to
the switch is likely to affect which target will be taken. For
this scenario, the BHB-based prediction mechanism is accu-
rate. However, many switch-case expressions also have the
default case, a single target for multiple different (unrecog-
nized) contexts. In this case, the BHB-based mechanism will
not be optimal. Instead, the simple IP-based approach will
correctly predict the same target regardless of the context.

Pattern 1 Pattern 2
Pattern A R1 R2 R3 A A R1 B R2 A R3 B R4

Observation M M H H H M M M H H H H H
Miss rate 0.99 0.99 0.0 0.0 0.05 0.99 0.99 0.99 0.02 0.14 0.0 0.04 0.0

Table 1. Misprediction rate observed in two different pat-
terns composed by varying the BHB context. H represents
hit, and M represents misprediction

We hypothesize that BPU uses both mechanisms concur-
rently.
To verify our reasoning, we designed an experiment in

which the same indirect branch is executed in multiple dif-
ferent contexts. The contexts are created by varying taken-
not-taken patterns of preceding 50 conditional branches.
Our experiment included the following contexts: A → a,
B → b and R1..k → r , where {A,B,R1..k } are branch con-
texts and {a,b, r } are target addresses for each corresponding
context. Contexts A and B have their own targets, while k
contexts share a common target r . Executing an indirect
branch in different contexts while observing its mispredic-
tion rate via hardware performance counters allows us to
detect when each addressing scheme is used. For instance, a
pattern ABABAB has mispredicted branches for the first two
times and correct predictions (hits) for the following ones.
This is because the branch predictor quickly learns the de-
pendency between context A and target a and between B
and b.

Table 1 presents experimental data collected from running
two demonstrative patterns 1 000 times and averaging the
results. The first pattern shows how after the branch is exe-
cuted for the first time, the predictor learns its target to be a.
Because of that, it mispredicts the target when we execute
it in context R1 → r . However, any consequent execution
in random context Rn → r is correctly predicted to go to r .
It also shows how the branch is correctly predicted when
we execute it in static context A → a second time. These
observations show that the branch predictor is capable of pre-
dicting the same branch instruction using two independent
modes.
The second pattern demonstrates how two addressing

modes work in parallel; i.e., the predictor simultaneously
checks whether a branch is available using either of the
schemes. If it finds amatching tag using any of the schemes, it
proceeds with the stored target. In Figure 2, we demonstrated
BPU design that can produce such behavior.

These observations allow us to identify two distinct types
of indirect branch collisions. Type 1 collisions are when both
the BHB state and the reduced branch source address are
matched, and the BPU uses BHB-based addressing. Type 2
collisions are when only the branch addresses are matched
while mismatching the state of BHB, and the BPU uses IP-
based addressing.



3.1.2 Selecting Branch Type for BTB Poisoning
Previous attacks based on BTB poisoning [17, 45, 47, 69]
used type 1 collisions. In these works, a victim branch was
poisoned from a different process by executing an indirect
branch on matching virtual addresses while mirroring the
BHB state via repeating behavior of preceding branches.
Such setup is less suitable for constructing real-world tran-
sient trojans since they must be self-contained; the branch
performing poisoning and the branch being poisoned must
be located within the same address space. From now on, we
refer to the former as writer branch or WB, and the latter
as reader branch or RB. To construct a trojan based on
type 1 collisions, an RB and a WB must be placed at the ad-
dresses producing collisions, and have identical BHB states
when executing. This is a challenging task due to mapping
function f 2 and BHB update function f 3 (from Figure 2)
unknown or partially reverse-engineered [35, 47]. Even if
these functions are fully reverse-engineered, BHB training
would require highly irregular code sequences that can be
easily detected.

Intuitively, using type 2 collisions is a better option. How-
ever, collisions of this type require that both an RB and WB
are executed in a new BHB branch context each time. This
can be done by running sequences of random taken/not-
taken conditional branches before executing WB and RB.
This is problematic because unique BHB states will eventu-
ally start to repeat, forcing the BPU to switch to the BHB-
based mode of addressing. In addition, such code would be
highly irregular.
A desired mechanism for constructing trojans must 1)

produce reliable collisions when RBs and WBs are located
in the same address space; and 2) be easy to mask as benign
code. We propose to use direct branches as WBs since 1)
they are always handled by the simple IP-based addressing
mode making BTB writes more deterministic; and 2) they are
common in regular applications with approximately every
4-7th instruction being a direct branch making them easy to
mask as normal code.

3.1.3 Finding Branch Collisions
We hypothesize that the mechanism used to predict direct
branches is exactly the same as the IP-based addressing mode
for indirect branches. If this hypothesis is true, constructing
a trojan becomes straightforward. If we match the address
bits used for the tag, index, and offset in a direct WB and an
indirect RB, the WB will poison the RB. This will result in
speculatively executing code pointed by WB’s target when
the CPU processes the RB.
To verify this hypothesis, we design an experiment de-

picted in Figure 3, which allows to reliably identify addresses
that result in branch collisions. In this experiment, a di-
rect jump instruction located at address addrWB jumping to
addrT1 acts as a WB. An indirect jump is located at addrRB

addrWB  jmp T1

addrT1  nop

        ... ...

        mov T2, %rbx

addrRB  jmp *%rbx   

addrT2  ret

addrT3  mov dat, %rax

regular execution

PMC(MISPREDICTION) =      1         0    
latency(dat) =   ~45   ~230  

  collision?
  yes      no

transient execution

addrT3[47:32]= addrWB[47:32]

addrT3[31:0] = addrT1[31:0]

Figure 3. Collision detection experiment setup

jumping to addrT2 acts as an RB. Then we place a transient
gadget at address addrT3. This gadget accesses a variable
dat, loading it into CPU’s data cache. If the two branches
collide, then mispredicted RB results in transient execution
going to addrT3, activating the gadget which loads the vari-
able dat into the cache. We detect RB mispredictions us-
ing hardware performance counters while measuring the
latency to access dat tells us if the gadget was activated. By
moving these branches and gadget instructions in virtual
address space and observing collisions, we can effectively
scan address space to find addresses that create collisions
and analyze corresponding target calculation mechanisms.
Using this setup, we make several important observations.
Observation 1: Direct branches can serve as WBs, and

indirect branches can serve as RBs creating ideal grounds
for trojan construction. Moreover, indirect RBs do not need
to be executed in a new context every time, as explained in
Section 3.1.1.

Observation 2: Reduced data stored in BTB (tag and target
bits) allows to create collisions within a single process and
redirect execution to malicious address. For instance, BTB
stores only 32-bit target [47], and to compose the 48-bit pre-
diction target, the CPU simply concatenates branch source
address bits [47:32] with the 32-bit target from BTB. This
enables attackers to use relative addressing.

Observation 3: We tested different types of branch instruc-
tions and concluded that any direct branch can serve as a
WB, including calls and conditional jumps.

Observation 4: Our initial tests demonstrated a 50% rate
of successful poisoning. However, this rate can be improved
if direct a WB is executed multiple times, indicating the
possibility of a tournament mechanism [32] selecting the
most accurate predictor.

3.1.4 Predictor selector mechanism
To investigate the nature of observation 4, we conduct the
following experiment. We place an indirect branch (i) and
a direct branch (d) at colliding addresses and make them
having mismatching targets. Since d always uses the simple



Br. Pattern Hit/Miss Pattern
d I
d i I 
d I i
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MHMH ...
HHHH ...
MHMH ...
MMMM ...
HHHH ...

BHB BHB BHB IP
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i
iii

M - misprediction H - hit
I - monitoring branch

d - direct branch
i - indirect branch

Figure 4. Misprediction patterns demonstrating the com-
petition between the two addressing modes and an FSM
matching this behavior

IP-based addressing mode, the BTB will contain an incor-
rect target when predicting i using this mode. By preceding
i with a fixed sequence of conditional branches, we guar-
antee identical BHB states. As a result, BHB-based mode
will always produce a correct prediction. If a tournament
mechanism is present, we expect the predictor selector mech-
anism being affected by executing both of the branches. In
particular, when we execute d, it will be correctly predicted
using the IP-based mode. This will increase the confidence
of this mode. In contrast, when i is executed, a misprediction
from the IP-based mode and a hit from the BHB-based mode
will decrease the former and increase the latter predictor’s
confidence.

Observing i’s correct/incorrect prediction patterns allows
to detect which predictor is currently in use. A mispredicted
observation indicates the IP-based mode usage, while cor-
rectly predicted branch tells BHB-based mode is in use. By
executing sequences composed from these two branches and
observing i’s prediction accuracies, we can detect when each
predictor wins the tournament. We execute patterns created
by invoking i and d in a random order while collecting the
misprediction patterns. Figure 4 demonstrates our observa-
tions from several characteristic repeated patterns. Please
note that demonstrated prediction patterns are from a sin-
gle execution of i (denoted by capital I) in multiple rounds.
By manually inspecting these patterns, we noticed that the
observed behavior resembles a finite state machine (FSM)
implemented using a 2-bit counter as the system appears
switching between 4 stable states. It is possible to manipulate
such a mechanism. For instance, executing i multiple times
in a row increases the accuracy of the BHB-based predictor
and makes it more likely to be used for future branches.

In the effort to find the configuration of the FSM responsi-
ble for such behavior, we performed the following analysis.
First, utilizing the brute-force approach, we generated all pos-
sible FSM configurations based on a 2-bit counter. The states
of the FSM determine which predictor addressingmode (IP or
BHB based) is used. This resulted in 863 040 possible config-
urations. After removing configurations containing infinite
loops and other abnormalities, we reduced this number to
49 104. Next, we simulated these FSMs and ran previously
collected patterns through them while observing which pre-
dictor is utilized each time. During this stage, we only keep

the FSM configurations that match the real system behavior,
resulted in only 6 possible unique FSM configurations. We
present one such potential FSM in Figure 4. Please note, while
this FSM configuration is capable of modeling the real sys-
tem behavior with high accuracy, the actual mechanism used
in the CPU may be different. Knowing the inner workings
of the predictor selector, an attacker can perform manipula-
tions forcing the CPU to use the IP-based prediction mode
to enable simple collisions by triggering repeated execution
of the colliding direct branch instruction.

3.2 Distant Collision Trojans
Now we introduce the first and most basic type of a tran-
sient trojan and demonstrate its inner workings. This type
of trojan is based on exploiting the BTB addressing scheme
where only partial address information is stored. This allows
two distinct branches (WB and RB) to collide in a way that
when RB is mispredicted, the transient execution goes to the
target of WB violating the architectural state. For example,
as we described earlier, the tag stored in BTB is folded using
a simple XOR operation. Suppose there is a direct branch at
address 0x400077 and an indirect branch at 0x4077 in the
same process. These branches will collide in BTB when the
IP-based addressing mode is used. The attacker can prepare
a binary containing branches at colliding addresses. When
the binary is deployed on the victim machine, the collision
is activated by calling normal API functions in a specific
order. In short, this type of transient trojans operates in the
following way. First, using a program API, the WB will be
activated to write the poisoning entry into the BTB. After
that, the attacker trigger conditions for the RB to initialize
transient execution, e.g., issuing an API call to access a large
array forcing the RB’s target to be removed from CPU cache.
Then, the RB is executed, and BPU uses the poisoned BTB
entry to begin transient execution of a gadget that accesses
secret data and reveals secret values using microarchitec-
tural covert channels [9, 18, 23, 29, 30, 37, 42, 52]. We assume
the attacker being able to use return-oriented analysis tech-
niques [12, 34, 53] to find or create code sequences (gadgets)
that, when executed in transient mode, result in a desired
malicious activity. Generally, gadgets can leak data by ei-
ther 1) leaving traces in shared resources such as CPU data
caches [47] or 2) by affecting the timing of certain operations
in a controlled way. As demonstrated by Schwarz et al., such
delays can be detected over a network [61]. In addition, this
type of trojans can be constructed by placing RB and WB
in different memory segments within a single application
context. For instance, WB can be placed (or existing branch
can be utilized) in a library or kernel code segments, while
RB being located in trojan’s .text segment.

Please note, although we construct this type of the trojan
utilizing a known branch collision mechanism, we believe
that our approach is substantially different. In existing works,
a lower privilege entity, such as an untrusted process poisons



a branch in a higher privilege entity such as an OS kernel or
an SGX enclave [17, 45, 47, 69]. Such attacks are currently
mitigated via IBRS, which protects higher privileged enti-
ties (kernel and enclaves) from lower privileged entities. We
utilize poisoning vectors that are typically not hindered. In
current systems, collisions still occur in many ways as we
summarized in Figure 1. The two types of poisoning we will
use for constructing trojans are 1) when higher privileged en-
tity poisons a lower privileged entity and 2) when poisoning
happens within the same privilege level.

3.2.1 Trojan example utilizing a system call
Assume a malicious developer whose goal is to construct a
program that handles secret data and, when triggered, leaks
this data. A typical manual inspection or static/dynamic anal-
ysis would look for any reference to the sensitive data to
make sure they do not reveal it via a covert channel [22]. To
show how a practical trojan can be constructed containing
no such references, we provide a simple demonstration in
which poisoning is triggered by executing a benign existing
system call. Performing system calls is a normal activity for
any application and unlikely to cause concerns. During a
system call, control is temporarily transferred to the operat-
ing system. As a result, branches residing in kernel memory
trigger writes into the BTB. When the system call is com-
pleted, the execution transfers back to the trojan without
removing BTB entries placed during the kernel execution. If
any of these BTB entries have matching index, hashed tag,
and offset bits with an indirect branch in trojan’s code,
the BPU will treat it as a hit. The predicted address will
be composed by concatenating the kernel branch’s 32 least
significant target bits with the remaining 16 bits from the
trojan branch’s source address. If such an address contains
executable memory, transient execution will take place until
CPU detects misprediction and rolls back to the previous
state. This will result in violated architectural state. We uti-
lize this phenomenon to construct a trojan that solely relies
on normal code executed during a system call to redirect
transient execution to a place containing a malicious gadget
within trojan’s code segment.

During the trojan preparation stage, the developer per-
forms an analysis of the environment in which the future
trojan will run and finds a direct branch suitable for poison-
ing. Typically, this branch needs to be in the final stage of
a short system call routine. For our proof-of-concept proto-
type, we choose a branch inside the open() system call. Then
the developer introduces a code construction that results in
an indirect branch at the colliding address while sensitive
data is possible to reference (for instance, the pointer to that
data is in one of the registers). This indirect branch transfers
regular execution to a benign code containing no leakage
instructions. As a result, static analysis will not raise any
flags. Modern-day compilers offer a wide range of code con-
structions that are compiled into code with indirect branches

              benign function A:

                syscall               //sys_open

0x...8028daf9:  jmpq  *%rbx   //part of switch()

    true_dest:  <benign_code>

user Kernel

              do_sys_open:

0xf.f8129daf9:  ja  0xf.f8129db15

              transient gadget:

0x...8129db15:  <read_secret>

②①

③
④

Ⓧ execution (& transient exec.)

Figure 5. Transient trojan based on open() system call

such as virtual functions, function pointers, and computed
gotos. In addition, a trojan developer can use function align-
ment and memory mapped code region techniques to easily
achieve desired instruction placement.
The next stage of the trojan preparation is finding a suit-

able transient execution gadget. The gadget must first access
the sensitive data and second leak its value via covert chan-
nels.
A high level schematic description of the trojan activity

is depicted in Figure 5. For each iteration of the attack, the
attacker interacts with the trojan via API calls. Each call
activates the malicious function inside the trojan, which in
turn performs a system call causing BTB poisoning. After
the function returns from the system call, it executes an in-
direct jump, resulting in transient execution of the gadget.
After this, the attacker probes the system to obtain microar-
chitectural traces and recovers leaked data. To evaluate the
accuracy of this type of trojan, we collect data from 1 000
rounds of trojan execution. In each round, the gadget is trig-
gered 1 000 times. Then, we count the number of times the
gadget is successfully activated. The average success rate for
this experiment is 12.79%. Such a rate is within an acceptable
range for most microarchitectural attacks. To compare this
result to a clean environment, we composed a prototype in
which a WB and an RB are both located inside user process
memory segments. The average accuracy rate for this con-
figuration is 94.52%. Such a significant improvement is likely
due to the normal side effects of system call execution inside
the kernel and a mode switch. For instance, system call activ-
ity is more likely to evict gadget code from the instruction
cache stopping the transient execution attack. Please note
that similar trojans can also be constructed by using library
functions instead of kernel code. Since library code is placed
inside the process address space, IBRS will not prevent the
poisoning.

Please note that ASLR and KASLR can make these attacks
challenging. However, programs may be compiled without
ASLR support and distributed in binary form. Even if KASLR
is enabled, its entropy is very small, making attacks still
possible by placing RBs at all potential collision addresses.
To eliminate the dependency on hardcoded code addresses,
we develop two types of portable trojans that work regardless
of code placement.



3.3 Portable Trojans
3.3.1 Early Front-end Branch Collisions
Timely branch predictions are very important for the per-
formance of CPU front-end. BPU is responsible for identi-
fying branch instructions early and adjusting fetching to
guarantee delivery of instructions from the correct execu-
tion path to minimize the number of costly roll-backs. Any
slowdown in generating a prediction results in a front-end
delay, which propagates into other stages of the pipeline.
However, to perform a lookup, BPU needs to know the ad-
dress of instruction’s last byte. This is because, typically,
BPUs address branches using their least significant byte. On
a CISC processor with variable instruction length, such in-
formation is not immediately available. A special front-end
component, called predecoder, is responsible for detecting
instruction boundaries inside a prefetched instruction cache
line. We hypothesize that modern-day aggressive front-end
designs may avoid waiting for predecode to complete and
activate transient execution based only on partial informa-
tion about potential branch instruction address. This can
result in an early front-end branch collisions where closely lo-
cated branches collide due to uncertainty in the boundaries
of branch instructions. If this is true, then collisions may
appear between branches with mismatching least significant
address bits. Several Intel patents [10, 36, 43] refer to these
bits as offset while not explaining their exact purpose.
To test the aforementioned hypothesis, we adapted the

experiment depicted in Figure 3 with the following changes.
First, we position bothWB and RBwithin the same 64 byte in-
struction cache line. This guarantees matching tag and index
bits. Next, we make the direct WB jump to a gadget that now
leaks a value stored in register %rax. Before executing it, we
always load a non-secret value in that register. The indirect
RB, as previously, jumps to a benign code. However, prior to
that, it loads a secret value into the register %rax. If the RB
is poisoned by WB, the transient execution shall transfer to
WB’s body but with secret data loaded in the register. Finally,
we execute the WB and RB in a loop and observe effects. If
poisoning happens, we detect the secret value leaked via the
cache covert channel. An adapted version of this experiment
is demonstrated in Figure 8.

We use this setup to scan all possible positions of WB and
RB and detect when poisoning happens. As a result, we were
able to find stable collision patterns on all tested Intel pro-
cessors. These patterns indicate a partial offset bits matching
mechanism. In particular, on Skylake and Kaby Lake proces-
sors: WB and RB collide either if all offset bits are matched or
if bit 5 in WB address is 1 and 0 in RB address. Thus when
generating a prediction for the indirect RB, the BPU mistak-
ingly uses the target of another branch instruction located
in one of the subsequent memory locations. On Haswell, a
similar pattern exists, however, with bit 4 triggering these
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Figure 6. Branch collision patterns within the same cache
line on Haswell and Skylake CPUs

collisions instead of 5. These patterns are demonstrated in
Figure 6.
This intriguing pattern variation between CPU genera-

tions sheds some light on the likely root that causes this
collision mechanism. To investigate it, we carefully com-
pared microarchitectural front-end optimizations involved
in early instruction processing in Haswell and Skylake pro-
cessors [6]. Our reasoning is that the mechanism responsible
for the behavior must be located in the pipeline before the
instruction predecoder and size of instruction blocks it pro-
cesses is double in Skylake compared to Haswell.

By carefully examining related front-end components [6],
we concluded that the decoded streaming buffer (DSB) [7, 57]
is a potential root cause. In Intel processors, DSB (also re-
ferred as µop cache) helps to avoid decode/predecode delay
by storing ready to execute microcode operations (µops).
The most performance benefit comes from situations where
instruction decoding is delayed, for instance, due to an in-
struction cache miss or decoders being busy. It also reduces
power consumption by suppressing overall decoder activ-
ity [65]. Branch prediction while executing µops stored in
DSB is equally important for performance as it can trigger
µops dispatched directly from the DSB to instruction decode
queue, which naturally bypasses all the pre-decoding and
decoding stages [56]. However, branch prediction in this
stage is challenging due to the specifics of addressing in DSB
where the virtual address of only the first instruction inside
a tracking window block (32 bytes on Skylake) is stored [40].
Since a single macro instruction can be decoded into a dif-
ferent number of µops; entries in DSB are not aligned with
regular instructions in virtual memory. Therefore, the DSB
does not have sufficient information on the boundaries of a
branch µop. To perform a precise BTB lookup, the DSB logic
would have to compute macro-op address from the virtual
address of the first µop in the DSB block and the offset. That
would significantly increase the mechanism’s complexity.
Alternatively, DSB can request predictions without specify-
ing the instruction location within its window. We argue
that our experimental data suggests the existence of such
mechanisms. Our attack example demonstrates how this pre-
mature BPU lookup can result in incorrect predictions and
malicious transient execution. It is worth mentioning that
the size of the DSB tracking window enlarged from 32 Bytes
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Figure 7. Demonstration of the two collisions types

in Haswell to 64 Bytes in Skylake and Kaby Lake. This may
explain the bit-4 and bit-5 observations on these CPUs.

Please note, that this collision mechanism initially appears
less stable and is sensitive to surrounding code and branch
activity of the program. The average attack success rate in
a series of experiments was 4.86%. This is due to this type
of collision relying on tight race conditions and contentions
inside the front-end components. We tackle this problem by
developing an automated collision optimization technique
based on an evolutionary algorithm approach in Section 4.

Please note that the collision mechanism described above
also works when combined with other collisions types. For
example, if two branches have tag and index bits matched
while mismatching higher (ignored) bits ([47:30]), and fol-
lowing the bit-5 collision pattern, the collision will also occur.
Figure 7 demonstrates this principle. Presented are results
from a Kaby Lake experiment in which we placed an RB at
address 0x300110 and then scanned for potential addresses
where collisions can occur (0x100300100 – 0x100300140)
whilst monitoring access time to the variable that is only
accessed from transient execution. Low access latency indi-
cates a collision happening. One such collision is between
addresses 0x300110 and 0x100300110. This is due to the
full index, tag, and offset match. As seen from the graph,
there are additional bit-5 collisions occurring when the WB
crosses the 32-byte boundary, and offset collisions start tak-
ing place. For simplicity, we will refer to all such collisions as
bit-5 collisions regardless of microarchitecture and whether
or not they are combined with other collision patterns.

3.3.2 Constructing a Portable Trojan
Trojans based on the early front-end branch collisions can
achieve great covertness and portability. This is mainly due
to two reasons. First, they do not rely on placing branch
instructions far away from each other, contributing to their
small size. Second, they do not rely on fixed addresses (aside
from offsets within the cache line). This permits them to
function when ASLR is enabled. In this type of trojans, all
attack components (WB, RB, and the transient gadget) are
encapsulated in a small chunk of code that fits into one or few

cache lines. As a result, a malicious developer can prepare a
portable block of normal C/C++ code that when compiled
will act as a trojan. Such trojan will function as expected
even if compiler reorders the functions inside binary or the
executable is run with ASLR. This opens new vectors for
spreading transient trojans. Instead of standalone applica-
tions, they can be distributed as shared libraries, patches, or
via multi-party software development projects. The require-
ment for code to be aligned within a 64-byte block is possible
to fulfill using various code optimization techniques such as
function attributes [28] available in most compilers.
We demonstrate the functionality of the bit-5 collision

by creating a simple trojan consisting of two functions, f1
and f2. The high-level overview is presented in Figure 8. We
assume f1 is a function that has access to sensitive data. For
instance, this can happen when f1 is a secret key manipula-
tion function, and the key is loaded in one of the architectural
registers in function’s prologue (for example %rax). In ad-
dition, f1 contains an indirect branch instruction. This can
happen because of a switch() statement or a call to a virtual
method. The code in f1 does not contain any instructions
capable of leaking secret data via covert channels. It assumed
that this function will be inspected for that matter. Another
function f2 is a not-sensitive function that is located directly
below f1 in virtual memory, permitting the bit-5 poisoning.
Since f2 does not contain any memory accesses to sensitive
data, the presence of a transient gadget in its body does not
violate security properties and will not be flagged as dan-
gerous code during analysis. However, due to the branch
collision, f2’s function body will be executed (in transient
mode) in the context of f1. By context here we understand
the data accessible by each function. This enables a unique
transient execution attack. Due to colliding branches, the ar-
chitectural state is violated in such a way that results in the
body of one function to execute with the context (data) of an-
other function. For demonstration, we utilize a gadget similar
to the gadgets used in prior work [17, 45, 47, 69]. The gadget
reads the secret byte and then reveals its value by initiating
a memory access using the address dependent on that value.

To evaluate the effectiveness of this type of trojans, we per-
formed an experiment with the code illustrated in Figure 8.
We first execute function f2, which moves the non-secret
value 256 into the register %rax. Then it executes the WB,
which transfers execution to the gadget that outputs the
value stored in the register via leaving a trace in cache. Next,
we execute function f1, which places the secret value 42
into the same register. Only f1 has access to that value. The
function then activates the RB, resulting in transient execu-
tion jumping to the body of f2, which contains the gadget
leaking the value stored in register %rax. Please note, when
the gadget instruction is executed in transient mode, the
register contains the secret value. After both functions are
executed, we probe the cache covert channel by checking
all possible byte values transmitted by the gadget (from 0 to



other space
WB region [0x60:0x7f]RB region [0x40:0x5f]

Ⓧ execution (& transient exec.)

       f1():  mov secret, %rax

              mov benign_code, %rbx

0x...401257:  jmp *%rbx

benign_code:  nop; ret            

       f2():  mov non_secret, %rax

0x...401277:  jmp gadget            

     gadget:  mov (%rax), %rcx

              load arr[%rcx * 256]

⑤

②

④
①

③

Figure 8. Portable transient trojan example

255). If no cache hits are observed, we record no byte transfer.
If a transferred value is detected other than 42, we detect
an error. Otherwise, we register a correctly transmitted bit.
In a real-world trojan, capturing leaked bits is typically per-
formed in another process, or it may affect the timing of
an externally observable event. However, for simplicity, we
place all components into a single process. In addition, to
insure RB’s misprediction, we flush the correct target from
cache on every iteration. We configured our PoC to leak 10
kilobytes of data and ran it 10 times. The average number of
iterations required to transfer 1 byte was 43.69, and the av-
erage error rate was 0.0450%. The large number of iterations
indicate that bit-5 poisoning does not happen frequently. In
Section 4, we present an automated approach to optimizing
such trojans allowing to improve their throughput signifi-
cantly.

3.3.3 Dispersing Gadgets to Avoid Detection
Transient execution attacks rely on gadgets to leak sensitive
data. Recently, several works proposed detecting these gad-
gets [3, 5, 17, 33, 70]. They are largely based on performing
static binary analysis. To bypass such detection, we devel-
oped a technique based on the newly discovered collision
pattern. Static analysis tools rely on detecting code sequences
that result in the following actions: 1) memory location is
read, and 2) another memory access is performed with an
address dependent on the value of the first operation. These
solutions use abstract interpretation of binary code to find
data dependencies and match activities with known mali-
cious patterns. They are effective in detecting gadgets even
if the attacker tries to obfuscate them by using different vari-
ables and registers. However, abstract code interpretation
does not account for side effects of transient control flow
transition due to a bit-5 collision. We can utilize this anom-
aly to violate the architectural state and disperse a transient
gadget into two parts, each of which is not identified as a
malicious instruction sequence. Figure 9 shows a gadget con-
sisting of 4 operations. Following the described approach,
we add an indirect jump instruction and refactor the code in
such a way that the first two operations are executed before
the poisoned jump and the last two after. From the archi-
tectural state point of view, the second part of the gadget
will never be executed. However, due to the poisoning, the

jmp *%rbx

 . . .

mov secret, %rax

mul $256

add arr, %rax

mov (%rax), %rcx

DETECTED

disperse

mov secret, %rax

mul $256

jmp *%rbx

 . . .

add arr, %rax

mov (%rax), %rcx

Figure 9. Dispersing a transient gadget to avoid gadget de-
tection tools. Solid arrows indicate transient execution flow

transient execution will result in full gadget execution. After
this transformation, the code will produce exactly the same
transient execution effect. Since we are the first to report the
bit-5 collision; we believe that this technique is capable of
defeating solutions based on gadget detection.
To evaluate the effectiveness of this technique, we com-

pared the number of iterations required to leak 10KB using
the bit-5 based trojan with and without dispersing the gad-
get. To do that, we moved two of the gadget’s instructions
before the RB. The average number of iterations required
to transfer 1 byte from 10 runs was 20.41, and the average
error rate was 0.0147%. These results indicate that dispersed
gadgets are roughly two times more efficient. This is due to
reducing the number of gadget instructions that execute in
transient mode by moving them before the indirect jump.
Therefore such a technique can be used not only to avoid
detection but also to improve the gadget performance.

3.4 Skipping Branch Trojans
3.4.1 Skipping indirect branches
In addition to collisions between different branches, CPUs
we tested based on AMD Ryzen and Intel Haswell architec-
tures have another indirect branch-related anomaly that can
be used to construct trojans. In particular, when a prediction
is not available in BTB, the CPU simply skips the indirect
unconditional branch instruction and proceeds to the fol-
lowing instructions. In addition to constructing trojans, this
mechanism can also be utilized to confuse static or dynamic
analysis tools. Consider a program in which a certain func-
tion is invoked using an indirect call instruction. Assume
its target is set during the program initialization and never
changes. A detection tool will be able to find this correlation
and mark the program safe. However, due to indirect call
skipping, a temporal architecture state violation will take
place. Intel documentation confirms that indirect branches
may be predicted non-taken [6].

3.4.2 Skipping based transient execution attack
The indirect branch skipping mechanism can be utilized to
construct trojans with unique properties as they do not rely
on known elements of previous Spectre-related attacks. In
particular, they do not require conditional branches as in
Spectre v1 or branch collisions as in Spectre v2 to violate
architectural state.



typedef int (*fptr)(void);

int get_sec(){return 42;}

int get_nonsec(){return 0;}

int vuln(){

     int sec, nonsec, tmp;

     fptr f1,f2;

     f1 = get_sec;

     f2 = get_nonsec;

     sec = f1();

     nonsec = f2(); //skipping

     tmp = arr[nonsec * 256];}

callq  *-0x30(%rbp) 
mov    %eax,-0x20(%rbp)
callq  *-0x78(%rbp) //skipping
mov    %eax,-0x24(%rbp)
mov    -0x24(%rbp),%eax
shl    $0x8,%eax
movslq %eax,%rcx
mov    0x612050(,%rcx,4),%eax
mov    %eax,-0x7c(%rbp)

①

②

Figure 10. Transient trojan based on branch skipping

To demonstrate the practicality of this approach, we de-
signed a simple trojan application based on this mechanism
and complied it using llvm. Figure 10 demonstrates its code
with the disassembly of the key elements. Two functions
are called via function pointers, and such calls are compiled
to indirect call instructions. Function pointer f1 is used to
call the function that returns a secret value, which is then
loaded into variable sec. The function pointed by f2 loads a
non-secret value into nonsec. After these two function calls,
a gadget code sequence reveals the value of nonsec. Since
its value is not secret, it is not considered a violation. Accord-
ing to System V ABI, functions are required to return the
values using %eax (or %rax) register. After the return, caller
function stores %eax’s value as a local variable on stack.
In the example code, the violation of architectural state

happens when function call f1 is not skipped while f2 is
skipped. This results in code 1 loading the secret value into
register %eax, followed by saving it in sec and then immedi-
ately transmitting execution to code 2 , which stores %eax’s
value in nonsec. As a result, both variables temporarily hold
exactly the same secret value. Then the gadget successfully
reveals the value of the secret data via the cache. Please note
that to enable the condition when one function is skipped
while another is not, pointers f1 and f2 must be located in
different cache lines. This can be done by adding or removing
local variables in the parent function. For this experiment,
we flush f2 from cache. In a real-world attack, this can be
done by finding an eviction set [68].
To evaluate this trojan’s accuracy, we executed it on an

AMD Ryzen machine leaking 1KB and ran it 10 times. The
average number of vulnerable function activations required
to leak 1 byte of data was 888.07 with average error rate of
1.74%. Such a relatively low success rate can be explained by
the attack relying on an infrequent event when one function
is correctly predicted while another is mispredicted. The
success rate can be further improved by manipulating with
BPU prediction mechanism.

4 Improving Trojan Activation Rate
Effectiveness of transient trojans can be measured by their
successful activation rate, which is the percentage of cases
when data is leaked compared to total activation attempts.
In our initial trojan implementation, the rate appears rather

small, for instance, 12.79% and 4.86% for kernel and DSB
based trojans, respectively. We noticed that trojans are sen-
sitive to their surrounding code, which can either increase
or decrease the success rate. This effect is especially notice-
able for portable trojans since they are based on tight race
conditions within the CPU front-end. Surrounding code, the
code that is executed right before or immediately after the
trojan’s critical parts can cause various effects (both posi-
tive and negative). For instance, it can flush out buffers such
as DSB, load store buffer, instruction cache and introduce
contention in decoders, functional units, and ports.

Manually tuning trojans for thesemicroarchitecture events
is a difficult and meticulous task. First of all, many of the
front-end components are not completely reverse engineered.
Secondly, fine-tuning one property may affect other proper-
ties in a non-trivial way resulting in success rate degrada-
tion. Instead of reverse engineering and manual fine-tuning,
we propose a method based on genetic programming that
enables automatic trojan optimization based on injecting
lightweight code artifacts. These artifacts serve no purpose
other than creating various microarchitecture conditions and
do not affect program’s architectural state. Our method is
shown to be effective, improving our initial portable trojan
implementation from 4.86% to 98.35% resulting in the leakage
rate of 13.5 kilobytes per second.
In the first stage of our genetic algorithm approach, we

transfer a trojan into a mutation template. This template
includes all elements of the original program with additional
anchors, places in source code where random activities will
be added in the future. The anchors are placed in locations
that are likely to interfere with key elements of the trojan,
for instance, adjacent to WB and RB. We discovered that
trojan accuracy could be affected by adding blocks of nop in-
structions, which affect the code alignment and empty loops
that load CPU resources handling branches. For our initial
experiment, we used the portable trojan from Section 3.3.2.
We placed a total of 15 anchors: 9 nop anchors and 6 loop an-
chors. The nop anchors inject 0–150 nop instructions while
each loop anchor injects a loop with 0–8000 iterations. This
results in 1043 possible combinations making the brute-force
approach not feasible.

Instead, we perform the optimization by starting from 100
initial candidate solutions. We do so by randomly selecting
values for each anchor. Then we use a simple genetic algo-
rithm to find an optimal configuration. We set our initial
fitness threshold (trojan success rate) at 20%. In each round,
we apply an objective fitness function to each candidate, re-
moving all candidates that have an attack rate lower than
the fitness threshold. Then we sort the remaining by fitness
score. A generator function performing crossover and muta-
tion is applied to a subset of the remaining candidates with
the highest fitness scores to create a new variation popula-
tion of 100 candidates. During this phase, we apply a simple
heuristic to avoid crossover between very similar candidates
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Figure 11.Genetic and randomization optimizer comparison

ensuring that we continue to have population diversity in
each round. This also reduces the risk that our algorithm
converges to a suboptimal solution.We also guarantee 20% of
each population to be entirely random to increase population
diversity.

We compare the genetic programming approach to a sim-
ple random-based optimization. Here instead of performing
mutation, we keep generating random candidates and se-
lect the best performing candidate in each round. Both ap-
proaches tested 2 000 trojans in 20 groups, 15 times, and their
best 5 runs are demonstrated in Figure 11. The result shows
the maximum trojan attack rate only incrementing when a
more optimized trojan is found. The genetic algorithm con-
verges to a trojan configurations that produce 90%+ attack
rates, finding trojans with high attack rates quicker and 30%
higher than the randomization-based approach. That high-
lights the benefits of using genetic algorithms for optimizing
attacks based on microarchitectural effects.

5 Detecting Collisions in Existing Binaries
Branch instruction collisions can occur naturally in regular
executables. A typical binary on average contains one direct
branch instruction per 4–7 instructions making collisions
between indirect and direct branches a common event. An
advanced attacker may construct a trojan utilizing these col-
lisions. In this section, we evaluate such naturally occurring
collisions in existing binaries and reason about their use
in attacks. For our analysis, we use Skylake architecture as
a reference. We group all collisions in two types: portable
and non-portable. The portable collisions are based on bit-5
mechanism, and their functionality is not tied to hard-coded
addresses. Thus they function even in the presence of ASLR,
unlike the non-portable collisions, which are based on the dis-
tant collision mechanism from Section 3.2. Each executable
is analyzed in its normal running context to detect collisions
between branches in executable and its libraries.
We developed a light-weight binary analysis tool to find

locations where WBs and RBs produce portable and non-
portable collisions. First, each binary is disassembled, then

Figure 12. Analysis of branch collisions in existing binaries

we perform a search for all direct and indirect branch instruc-
tions. All potential WB and RB instructions are then passed
to a BTB mapping function, which is based on Skylake BTB
reverse engineering to find their index, tag, and offset bits.
Our tool then identifies WB-RB pairs that collide according
to two types of collisions.

Figure 12 demonstrates the results gathered from process-
ing 16,015 binaries native to Ubuntu 18.04, including user
applications, libraries, and kernel modules. The X-axis shows
total indirect branches in executable, while the Y-axis all
possible collisions, including collisions between library and
code segments. Please note that since distant same address
space collisions are sensitive to ASLR, there will be different
sets of collisions appearing each time the program is rerun.
Although at first this may appear as a negative effect, an
advanced attacker can use this phenomenon to further hide
a malicious trojan by making it activated only under certain
ASLR bits. This makes the analysis of all potential collisions
and their effects infeasible. To give a high-level overview
of the number of such collisions, we perform the analysis
with ASLR deactivated. At the same time, the DSB collisions
are not sensitive to ASLR. As seen from the result, existing
binaries contain large numbers of naturally occurring col-
lisions of both types. The collisions tend to linearly grow
with the total count of indirect branches present in a given
binary. For example, Google Chrome executable contains a
total of 170k indirect branches resulting in 136k portable and
over 300 million non-portable collisions. Such a high number
makes hiding malicious branches a relatively easy task as the
analysis of all potential transient execution effects becomes
very difficult.

As we discussed in Section 3.4.1, indirect branch instruc-
tions can violate architectural state even when no collisions
are present. Thus, every single indirect call and jump instruc-
tion (X-axis in Figure 12) has the potential of doing so. As a
result, we believe any indirect branch should be treated as a
potential security threat unless CPU design can ensure that
transient execution can never leak sensitive data.



6 Countermeasures
Since indirect branch instructions are required for our at-
tacks to function, retpoline sequences can be used as effec-
tive mitigation. However, retpolines must be added during
compilation and cannot be applied to precompiled binaries.
Because retpolines lead to code bloating and performance
overhead [11], current binaries seldom use this technique.
Distant same address space branch collisions can be pre-

vented if future BTB designs store full addresses (e.g., tag
and target) instead of their reduced or compressed versions.
However, such a design would significantly increase the BTB
size and, therefore, costs of hardware.
Mitigating bit-5 collisions in hardware appears a more

challenging task since it would require a front-end redesign.
For instance, a naïve solution is to delay BPU predictions
until instruction boundaries are determined. However, that
would lead to introducing delays when processing branch
intensive µop sequences from DSB. Alternatively, a software-
based solution can be developed to sufficiently space direct
and indirect branches with binary editing at runtime or by
manipulating compiler code generation primitives to pre-
vent placing direct and indirect branches in the same 64-byte
block. However, that would lead to significant code bloating.
In addition, our collision detection tool can be used to find
potentially dangerous branches and inject in-place mitiga-
tions such as lfence instructions. Future microarchitecture
designs are urged to adopt better mechanisms that do not
permit branch instruction anomalies, for instance, by adding
a type field in the BTB to prevent direct and indirect branch
collisions and avoiding indirect branch skipping. A recent
work by Yu et al. [73] proposed a light-weight hardware
solution based on preventing unsafe data accesses being
forwarded to transient execution.

7 Related Work
To the best of our knowledge, this paper is a first work ana-
lyzing the security effects of branch collisions within same
address spaces. In addition, we introduced a new type of
malicious software that utilizes transient execution in the
form of self-contained transient trojans represent.
Wampler et al. successfully created a malware program

with a transient execution payload [69]. However, malicious
software modules presented in their work require a separate
activation process. Moreover, a correctly configured IBPB
would force BTB flushing on context switched, making poi-
soning across different processes impossible. All types of
our trojans work with current microcode-based protections
enabled.

Kiriansky and Waldspurger developed Spectre 1.1, where
transient buffer overflows can be used to jump transient
execution into arbitrary code. This Spectre buffer overflow
attack can be used to redirect execution to instructions after
a serialized instruction (Spectre V1 mitigation) [45]. Canella

et al. performed an analysis of 12 Spectre variants, includ-
ing the possibility of multiple same address space Spectre
attacks [15]. However, this work did reason on how these
vectors can be utilized to construct practical exploits.

Recent works have been published regarding the detec-
tion and mitigation of Spectre attacks. SPECTECTOR by
Guarnieri et al. detects transient information flows [33], and
the principles behind this work can be applicable to the de-
tection of transient trojans. However, without a completely
accurate collision model, this and similar tools may overlook
dangerous transient execution flows presented in this pa-
per. Our work makes a contribution by expanding upon the
existing collision model. Finally, Depoix et al. developed a
method of detecting Spectre attacks by identifying Spectre
attacks using machine learning [21].

8 Conclusions
In this paper, we presented a new type of practical attack
based on transient execution. We demonstrated transient
trojans — malicious software modules that utilize BPU anom-
alies happening inside software entities. In addition, we
reverse-engineered the BPU addressing scheme, which al-
lowed us to detect new exploration mechanisms. Utilizing
them, we were able to create trojans that have several proper-
ties desirable for attackers such as being portable, working in
the presence of anymicrocode-based protectionmechanisms,
and the ability to stay undetected by current detection tools.
We believe our work improves the current understanding
of attacks based on transient execution by bridging the gap
between exploitable hardware primitives and constructing
realistic attacks.
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