
STBPU: A Reasonably Secure
Branch Prediction Unit

Tao Zhang
William & Mary

tzhang06@wm.edu

Timothy Lesch
William & Mary
tjlesch@wm.edu

Kenneth Koltermann
William & Mary

khkoltermann@wm.edu

Dmitry Evtyushkin
William & Mary

devtyushkin@wm.edu

Abstract—Modern processors have suffered a deluge of threats
exploiting branch instruction collisions inside the branch predic-
tion unit (BPU), from eavesdropping on secret-related branch
operations to triggering malicious speculative executions. Pro-
tecting branch predictors tends to be challenging from both
security and performance perspectives. For example, partitioning
or flushing BPU can stop certain collision-based exploits but only
to a limited extent. Meanwhile, such mitigations negatively affect
branch prediction accuracy and further CPU performance. This
paper proposes Secret Token Branch Prediction Unit (STBPU),
a secure BPU design to defend against collision-based transient
execution attacks and BPU side channels while incurring minimal
performance overhead. STBPU resolves the challenges above by
customizing data representation inside BPU for each software
entity requiring isolation. In addition, to prevent an attacker from
using brute force techniques to trigger malicious branch instruc-
tion collisions, STBPU actively monitors the prediction-related
events and preemptively changes BPU data representation.

I. INTRODUCTION

Although hardware attacks such as microarchitectural side
channels [1, 3, 6, 22, 27, 41, 54, 55], covert channels [20,
25, 46, 52], and power analysis [2, 33, 45, 48, 53] attacks
have been known for a long time, only recently did re-
searchers demonstrate the true power of microarchitectural
attacks with newly discovered transient execution attacks, such
as Meltdown [39, 70] and Spectre [15, 31, 32, 34, 44, 66].
These attacks are based on speculative (transient) execution,
a performance optimization technique present in nearly all
of today’s processors. While this technique improves CPU
performance, with a carefully crafted exploit, it completely
undermines memory protection, giving unauthorized users the
ability to read arbitrary memory [32, 39], bypass crucial
protections [31] or even perform arbitrary computations [18].

Microarchitectural attacks are possible because performance
optimizations such as caches, prefetchers, and various predic-
tors were not traditionally designed with security in mind. For
example, data structures used to implement these mechanisms
are often shared, making various conflicts possible. Some of
these conflicts result in the leakage of sensitive data. One such
mechanism is the branch prediction unit (BPU). To maximize
BPU’s utilization, it is typically shared between hardware
threads; it is not flushed on mode and context switches
while addresses are truncated, making it prone to various
branch collisions [17, 62]. This enables attacks such as side
channels [2, 19, 21] that are capable of leaking encryption keys
or bypassing address space layout randomization (ASLR), and

the recently introduced speculative execution attacks [31, 32].
At the same time, shared BPUs are beneficial for performance.
They allow high utilization of hardware structures to reduce
the cost and enable efficient branch history accumulation [50].
Therefore, naı̈ve protections which disable sharing or flushing
BPU structures have high performance overhead. Recently
Intel introduced microcode updates implementing countermea-
sures against Spectre attacks [28]. While being effective at
mitigating attacks, they can impose the performance overhead
as high as 440% [56, 68].

Despite significant efforts directed towards designing var-
ious secure microarchitectural components e.g., caches [16,
30, 40, 61, 71, 73, 74] and memory buses [4, 38, 65], secure
BPU designs remain a handful of attempts [23, 36, 72, 81].
When designing a microarchitecture security mechanism, it
is important to correctly estimate the attacker’s capabilities.
Otherwise, it risks to be defeated by more advanced attack
algorithms as was recently demonstrated with randomized
caches [9, 13, 57, 59, 69].

In this paper, we propose Secret-Token Branch Predic-
tion Unit (STBPU), a secure BPU design aimed to protect
against collision-based BPU attacks and eliminate BPU side
channels. STBPU prevents attacks by disallowing software
entities from creating controlled branch instruction collisions
and thus affecting each other in an unsafe way. This is done
by customizing the branch instruction representation for each
software entity in the form of address mappings and by
encrypting data stored in BPU. In STBPU, each software
entity is provided with a unique, randomly-generated secret
token (ST) that customizes the data representations. STBPU
detects active attacks by monitoring related hardware events
and automatically re-randomizes the ST to prevent attackers
from reverse-engineering the ST value and creating collisions.

II. BACKGROUND

A. BPU Baseline Model

A typical ISA permits the following types of branch instruc-
tions: i) Direct jumps/calls where target addresses are encoded
as an offset from the current instruction pointer and stored as
an immediate value. ii) Conditional jumps that are only taken if
a certain flag in the flag register is set. The target of this branch
is encoded similarly to direct jumps. iii) Indirect jumps/calls
where targets are stored in a register or in memory, and can
change throughout program execution. iv) Return instructions

ip: ret (%rsp)
Return

ip: jmp ($addr)
Indir. jump/call

RSB

call ret

BTB

BHB

GHR

3

4

target pred

PHT

taken/nontaken

ip: jmp + n
Direct jump/call

ip: jcc + n
Cond. jump/call

2

1

a

b

5

φ
ψ remapping

encryption

STBPU
components:

φ

ψ

ψ

ψ

Fig. 1: BPU with STBPU components highlighted

are a special type of indirect jumps where the target is stored
on top of the call stack.

Below we describe a BPU baseline model that we will
utilize as a foundation to build STBPU. The baseline reflects
the branch predictor (including structure sizes) used in In-
tel Skylake microarchitecture. Derived from recent reverse-
engineering works [19, 21, 32, 34, 43, 78], it represents a
generalization of mechanisms used in modern Intel processors.
STBPU can be applied to other branch predictor configu-
rations and designs. This is possible because STBPU does
not interfere with underlying prediction mechanisms and only
changes the branch instruction representation inside BPU data
structures. We demonstrate this by adapting the STBPU to
protect several advanced predictors such as TAGE-SC-L [67]
and Perceptron [29].

The BPU consists of the following main structures: shift
registers such as the global history register (GHR) and branch
history buffer (BHB), branch target buffer (BTB), pattern
history table (PHT), and return stack buffer (RSB). Figure 1
depicts how these structures are utilized during a BPU lookup
with highlighted components that are modified by STBPU.
The figure also shows several important functions which are
referenced later.
Shift registers such as GHR and BHB are used in the BPU
as a low-cost way of retaining complex branch history. GHR
stores the global history of taken/not-taken branches and is
used in the prediction of conditional branches. BHB is used by
the indirect branch predictor. Its purpose is to accumulate the
branch context. When a direct branch (or a call) is executed, its
virtual address is folded using XOR and mixed with the current
state of BHB [32]. This context is used as part of BTB lookup,
enabling BPU to predict the target of an indirect branch when
it depends on the sequence of previously executed branches.
BTB serves the purpose of caching target addresses of branch
instructions. It is implemented as an 8-way, 4096-entry table.
Each entry stores a truncated address of the 32 least significant
address bits of the target. Function 5 is then utilized to convert
a 32-bit entry into a 48-bit virtual address during prediction by
combining 16 higher bits from the branch instruction pointer
with 32 lower bits from BTB. While the BTB is used to store
targets for all branch types, it has two addressing modes. In
mode one, the virtual address of a branch instruction is used to
compute an index and tag. In mode two, in addition to virtual
address, the BHB is used to perform a lookup. Mode two is
only used when predicting indirect branches, and serves as a

fall-back mechanism for predicting returns. This addressing
enables storing multiple targets for a single indirect branch
depending on the context [19, 32, 78].
PHT is a large (16k entry) table consisting of n-bit (e.g. 2-
bit) saturating counters; each counter implements a simple
finite-state machine with states ranging from strongly non-
taken to strongly-taken. This structure is used as a base
predictor to predict the direction of conditional branches.
Previous studies [7, 21, 26, 78] indicated the presence of a
mechanism similar to gshare [76] with two distinct modes of
addressing: i) a simple 1-level mode where the virtual memory
address of a branch is used to find a PHT entry, and ii) a
more complex 2-level mode where the branch virtual memory
address is hashed with global history register (GHR), enabling
the accurate prediction of complex patterns.
RSB is used to predict return instructions. The RSB is im-
plemented as a fixed size (16-entry) hardware stack [34, 43].
A call instruction pushes a return address on the RSB and a
return instruction pops it. Similarly to the BTB, RSB stores
only 32 bits of the target. Due to limited capacity, the RSB can
underflow. In this case, returns are treated as indirect branches,
and the indirect predictor is utilized for prediction.
Microcode BPU Protections. Intel has proposed a set of
microcode-based protections which aim to mitigate specu-
lative execution attacks on legacy CPUs by limiting BPU
structure sharing. These protections include Indirect Branch
Restricted Speculation (IBRS), Indirect Branch Prediction Bar-
rier (IBPB), and Single Threaded Indirect Branch Prediction
(STIBP) [28]. IBRS prevents higher privilege processes from
speculating with BPU data placed by lower privilege pro-
cesses. This is done by flushing BPU structures when entering
the kernel. IBPB provides protection by flushing the contents
of the BPU on context switches. While effectively stopping
BPU interference, flushing BPU structures results in a loss of
useful history, causing significant performance reduction [56,
68]. Additionally, recent research demonstrated exploitable
branch collisions within same address space [63, 78]. Thus
enforcing security only during context and mode switch is not
complete. STIBP logically segments the BPU such that the
threads on the same physical core become isolated.

B. BPU Attacks

BPU can be manipulated to enable attacks of different types.
For example, an attacker can attempt to passively observe
and recover branch instruction patterns. This happens during
side and covert channel attacks. On the other hand, an active
attacker can manipulate the BPU state by executing branch
instructions. Such a state triggers a malicious speculative
execution causing data leakage. Moreover, attacks range based
on what BPU property they utilize. First, there are attacks
that exploit the most fundamental principle of BPU to make
predictions based on the previous behavior of a branch. E.g.,
if a conditional branch was taken 100 times in a row, it is
likely to be taken the next time. An example of such an
attack is Spectre-v1 [32]. Second, there are attacks that ex-
ploit branch collisions (aliasing). Collisions appear when two

2

Reuse-based (RB) Eviction-based (EB)
Home effect (HE) Away effect(AE) Home effect (HE) Away effect (AE)

Attack steps

BTB:
1. V: jmp s→ d; BTB ← (s, d)
2. A: jmp s→ d′; (s, d) reused
3. A sees misprediction

PHT:
1. V: jt s→ d; PHT ← (s, t)
2. A: jnt s→ s+ 1; (s, t) reused
3. A sees misprediction

RSB:
1. V: call s→ d; RSB ← (s+ 1)
2. A: ret → s′; (s+ 1) reused
3. A sees misprediction

BTB:
1. A: jmp s→d
2. V: jmp s→d’
3. V speculatively executes d

PHT:
1. A: jnt s→ d; PHT ← (s, t)
2. V: jt s→ d; (s, nt) reused
3. V speculatively executes s+ 1

RSB:
1. A: call s→ d; RSB ← (s+ 1)
2. V: ret → s′; (s+ 1) reused
3. V speculatively executes s+ 1

BTB:
1. A: jmp s→d; BTB ← (s, d)
2. V: jmp s’→d’; BTB← (s′, d′)
|H(s) = H(s′), (s, d) is evicted

3. A sees s mispredicted
PHT:
PHT entries are not evicted

RSB:
1. A: call s→ d;
RSB ← (s+ 1) then fills RSB
2. V: call s′ → d′;
RSB ← (s′ + 1) evicting (s+ 1)
3. A sees misprediction

BTB:
1. V: jmp s→ d; BTB ← (s, d)
2. A: jmp s′ → d′; BTB← (s′, d′)
|H(s) = H(s′)

3. V: CPU uses static prediction

PHT:
PHT entries are not evicted

RSB:
1. V: call s→ d; RSB ← (s+ 1)
2. A: overflows RSB by
looping call s′ → d′

3. V: CPU uses static prediction

Adversarial
effects

Visible source and target of branch/call
addresses, taken/nontaken
patterns [3, 19, 21, 34, 37]

Timing channel due to A
controlling predictions in V [3],
speculative execution attacks
[15, 32, 34, 43, 66, 78]

V’s jmp taken/nontaken [3] and
call pattens, branch
instruction virtual address [32]

Timing channel due to A forcing
static default predictions [3],
speculatively execute gadget
at static prediction address [14]

A: attacker; V: victim; jmp s→ d: jump from s to d; call s→ d: call function d from callsite s; BTB/PHT/RSB← (s, d): store target d for branch s in BTB/PHT/RSB;
H(): BTB/PHT hash function; s+ 1: next instruction after s

TABLE I: Attack surface classification for BPU collision-based attacks by event and adversarial effect types

different branch instructions map into the same BPU entry and
affect one another’s behavior. In this work, we focus only on
collision-based attacks. We believe that mitigating them is an
important task on its own for a number of responses. i) There
exist a large number of well-documented collision attacks that
have truly devastating effects on security [5, 14, 15, 51, 78]. ii)
Protecting from non-collision attacks requires different prin-
ciples, such as delaying speculative execution [64] or limiting
its observability [77]. iii) Even in systems that implement safe
speculation, branch collisions can still happen, causing side
channel attacks. Because of that, we believe protecting from
collision and non-collision attacks are two orthogonal tasks.

There are two BPU features that are present in nearly all
CPUs that make collision-based attacks possible. First, the
BPU data structures are shared among all software executed
on a CPU core, enabling branch collisions between different
processes. Second, the BPU operates with compressed virtual
addresses. For instance, out of 48 bits of branch virtual
address, only 30 are utilized. Then, these bits are further
compressed [32]. This allows collisions to appear within the
same virtual address space, e.g., collisions between branches
in kernel and user process [19]. The deterministic nature of
the BPU makes it possible for an attacker to trigger collisions
in a controlled way. Our proposed solution aims at eliminating
such determinism.

We detail the entire collision-based attack surface in Table I.
First, we classify attacks by where adversarial effect takes
place, either within the attacker’s code (home effect) or in
the victim’s code (away effect). Secondly, we classify by the
kind of the effect. A collision in BPU structures results in
either data placed by another software entity being reused, or
such data evicted and replaced. We refer to these as reuse-
based and eviction-based attacks correspondingly. Please note
that there can be different adversarial effects enabled by same
type of collision. For instance, a collision in BTB between two
different branches can result in i) BTB-data reuse, ii) BTB-
eviction and iii) activating malicious speculative execution.
While i) and ii) results in side channel leakage of branch-
related information iii) is used as part of speculative execution
attack to reveal victim’s memory contents. As can be seen from

the table, there is a diverse range of dangerous collision-based
attacks. By eliminating collision-based BPU attacks STBPU
can stop many practical exploits and substantially improve
security of microprocessors.

III. THREAT MODEL

We assume a powerful attacker that has a complete un-
derstanding of all hardware components and structures in the
STBPU. The attacker has access to normal reverse engineer-
ing resources, such as time measurements and performance
counters, and has access to a wide variety of hardware covert
channels. The STBPU design calls for new special purpose
registers as detailed in Section IV; the adversary is assumed
to be unable to read/modify the contents of these registers.
Such a role is delegated to a privileged software entity (OS,
hypervisor) which attacker does not control.

We assume the attacker cannot gain access to ST for the
victim process neither when it is in the special purpose register,
nor when system software stores it. Former is impossible
because the register can only be accessed from the privileged
mode. Later happens only in the event of system software
compromise. The ST can be considered as part of processes’s
context that is saved and restored on context switches. The
event of attacker gaining access to context data would be
equal to a full compromise. In such case, there is no point
for attacker to use side channels.
We consider attacks presented in Table I including both side
channel attacks in which victim executes a sensitive data
dependent branch branch as well as speculative execution
attacks where victim is forced to speculatively execute leakage
gadget code. We assume the following two attack scenarios:
Sensitive Process as Victim. In this scenario, an attacker tries
to learn sensitive data from a victim process by manipulating
the BPU state and recording observations. The attacker has
control over user-level process co-located on the same CPU
core and is capable of performing activities that are normally
allowed to untrusted process such as accessing fine grain
hardware timers via rdtscp instructions. We assume the
victim and attacker can either execute on two logical cores
within the same physical core or share the same logical

3

core with time-slicing. This scenario also includes recently
introduced transient trojans [78] where collisions occurring
within the same memory segments are exploited.
Kernel/VMM as Victim. The attacker takes a form of a
software entity with lower privilege level, i.e. untrusted user
process. The attacker tries to learn sensitive data owned by a
higher privileged entity (OS kernel or VMM) by manipulating
with BPU state and recording observations. Here, victim
and attacker share a same contiguous virtual address space.
Attacker is restricted from executing privilege instructions.

IV. STBPU DESIGN

As discussed in Section II, BPU attacks are possible due
to deterministic mapping mechanisms, allowing attackers to
create branch collisions. STBPU aims to stop these attacks by
replacing these deterministic mechanisms with keyed remap-
ping mechanisms which prevent branch collision construction.
The design philosophy of STBPU is to create different data
representations for separate software entities inside the BPU
data structures. Each software entity requiring isolation is
assigned a unique ST, which is a random integer that controls
how branch virtual addresses are mapped into BPU structures.
This ST is also used to encrypt/decrypt stored data. Compared
to naı̈ve protections based on flushing or partitioning, our
approach has a number of benefits.

Consider a protection scheme where branch target poisoning
is prevented by flushing the BTB on context switches. Invali-
dating the entire branch target history will negatively affect
performance in cases where context switches are frequent.
Similarly, to protect from target collisions between kernel
and user branches, BTB must be flushed on mode switches
(e.g. all syscalls). Partitioning hardware resources reduces the
effective capacity of BPU structures resulting in a higher
miss rate and lower prediction accuracy. Instead, a customized
mapping approach allows separate software entities to co-exist
in the BPU with minimal performance overhead; performance
evaluated in Section VII. STBPU utilizes two key approaches
to enable safe resource sharing.
• We make collision creation difficult by ensuring all

remapping functions are dependent upon both branch
address and ST.

• STBPU detects when a potential attacker process has re-
covered sufficient information that enables deterministic
collision creation by monitoring hardware events.

A. ST re-randomization

The ST of the current process in the BPU is re-randomized
once certain (OS controlled) thresholds are reached. Note
that in STBPU design, the OS is trusted and is responsible
for setting parameters such as the re-randomization threshold.
This is a common assumption for systems protecting against
microarchitectural attacks since compromising OS gives the
attacker full control over the system, making such attacks non-
necessary. On the other hand, such a design choice makes
our mechanism more flexible and permits the OS to adjust
the strength of enforcement based on factors such as whether

a certain process is considered sensitive or the attacker’s
capabilities. For instance, if a more effective side channel
attack is discovered after STBPU is deployed, the underlying
hardware mechanism will still remain effective and will only
require the OS to readjust the thresholds. Moreover, for the
extreme cases of sensitive processes the OS may opt to set
the threshold as low as 1, forcing re-randomization after every
branch instruction, effectively disabling the BPU mechanism.

STBPU can be also adapted for systems with OS not
trusted (e.g. SGX), then another system component needs to be
responsible for managing tokens and thresholds. For instance,
in the case of SGX, the enclave entering routine can serve
this purpose. Alternatively, simple logic of ST management
in STBPU should also enable hardware only implementation.
Re-randomizing ST effectively resets the customization of the
BPU data representation for that process. Although it leads to
the loss of branch history (by making it unusable), our analysis
indicates that such events are infrequent. Re-randomizing the
ST of one process does not remove stored history of a process
with a different ST. This is the key difference compared to
flushing-based approaches. We derive the re-randomization
thresholds through the analysis in Section VI.

While potentially dangerous, branch history sharing be-
tween programs benefits performance. Consider a server
application that spawns a new process for each incoming
connection. Since each process executes the same code, the
accumulated BPU state is used by the newly spawned process.
This allows the new process to avoid the lengthy period
of BPU training. STBPU permits selective history sharing
by allowing the OS to provide multiple copies of the same
program to utilize the same ST value. However, when sharing
is not desired, each thread can be given a unique ST.

B. Hardware Mechanisms and Interfaces

Since current BPU designs are highly optimized in terms of
performance and hardware cost, we restrict ourselves to only
modifying BPU mapping mechanisms, adding registers, and
encrypting stored targets. Such changes will provide similar
performance to the unprotected design and make STBPU
agnostic to a particular BPU design. In STBPU, each hardware
thread is provided with an extra register to store the ST of the
current process. Only the OS is allowed to read/modify these
registers, and these registers are inaccessible in unprivileged
CPU mode. As such, the OS facilitates history retention across
context/mode switches by loading the appropriate STs. We
also add several model-specific registers (MSRs) that store
thresholds and counters for automatic ST re-randomization.
These MSRs monitor the events that indicate an active attacker
process. We monitor two events: i) branch mispredictions
which includes incorrectly predicted direction of conditional
branches and targets of any branch, and ii) BTB evictions.
In Section VI, we explain how these events are utilized to
deter BPU attacks. Initially, the counter values are set to their
respective threshold values. When an event is observed, the
corresponding counter is decremented. When a counter reaches
0, the current ST is re-randomized, and the CPU reset the

4

Baseline input STBPU input Output Function
1 32 s 32 ψ, 48 s 9 ind, 8 tag, 5 offs R1(80 7→ 22)
2 58 BHB 32 ψ, 58 BHB 8 tag R2(90 7→ 8)
3 32 s 32 ψ, 48 s 14 ind R3(80 7→ 14)
4 18 GHR, 32 s 32 ψ, 16 GHR, 48 s 14 ind R4(96 7→ 14)
t 48 s, L(GHR) 32 ψ, 48 s, L(GHR) 10/13 ind, 8/12 tag Rt(80↑ 7→ 25)
p 48 s 32 ψ, 48 s 10 ind Rt(80 7→ 10)

L(GHR) — represents geometric series of global history lengths
s — represents the source bits of branch instructions

TABLE II: I/O bits for baseline and STBPU functions
counter with the threshold value. The OS treats these registers
as a part of software context saving, and recovering their
values on context/mode switches. We assume re-randomization
is done by fetching a value from low-latency in-chip pseudo-
random number generator [42].

The ST register is a 64-bit register divided into two 32-bit
chunks, ψ and ϕ. The first chunk ψ acts as a key for a keyed
remapping functions making BPU mapping unique for each
process. We replace functions 1 , 2 , 3 and 4 in Figure 1
with STBPU remappings R1..4 accordingly. We add functions
Rt and Rp that are used for STBPU implementation with the
TAGE and Perceptron predictors. Both baseline and STBPU
remapping functions reduce input data (address, BTB, GHR
bits) into fixed size index, tag, and offsets used by the BPU
to perform lookups. Section V-A describes how R1..4,t,p were
selected. Additionally, these functions utilize the entire 48-
bit virtual address unlike legacy functions that use truncated
address bits as inputs. This is crucial to prevent the same
address space attacks [78]. Table II details all input/output
bit changes between the baseline and STBPU models.

We use a simple scheme based on XOR to encrypt data
stored in BPU structures to stop attackers from redirecting
execution to a desired speculative gadget even if collisions
occur. In the case of a collision, speculative execution will
be redirected to an encrypted (random) address. This will
effectively stall malicious speculative execution. In STBPU,
every entry stored in BTB and RSB is XORed with ϕ of
the current process. Note that the baseline BPU stores only
32 bits of target addresses, so the 32-bit ϕ is sufficient for
encrypting all stored bits. We use a simple XOR encryption
for two reasons: i) XOR operations are extremely fast with
trivial hardware implementation, and ii) automated ST re-
randomization makes the simple XOR encryption sufficiently
strong (discussed in Section VI). To decrypt data in BTB and
RSB, we modify the function 5 , which XORs target bits with
ϕ before extending them to 48-bit address.

V. IMPLEMENTATION

In Section IV, we defined remapping functions R1..4,t,p

which replace the methods of calculating indexes, tags, and
offsets for lookup purposes in the baseline BPU model.
Remapping functions R1..4,t,p can be thought of as non-
cryptographic hash functions. Given the size constraints of
the BPU structures, collisions between different inputs to
functions R1..4,t,p will occur; this fact prevents functions
R1..4,t,p from providing cryptographic security, regardless of
implementation. This inherent weakness is remedied with
periodic re-randomization of STs; the security of such re-
randomizations are discussed in Section VI. The mapping

functions used in the baseline model are not fully reverse
engineered, but we can safely assume some fast compression
functions are used with delays of no more than 1 clock cycle.
Using performance and security as our guides, we placed
several important constraints upon functions R1..4,t,p:
C1 The compute delay for R1..4,t,p must not exceed C

clock cycles, where C may vary from CPU to CPU.
For our purposes, we choose C to be 1 clock cycle. We
enforce this by limiting the number for transistors of each
remapping function on the critical path.

C2 The function must provide uniformity: outputs of R1..4,t,p

should be uniformly distributed across their respective
output spaces.

C3 The function must demonstrate avalanche effect [24]: The
outputs of R1..4,t,p must appear to be pseudo-random,
and the relationship between inputs and outputs should
be non-linear.

We analyzed existing hardware supported hashing mecha-
nisms, but found none that satisfied our specific requirements.
Specifically, existing multi-round hash functions exceed the
single CPU cycle constraint. Later we describe a mechanism
we developed to automatically generate remapping functions
taking into account aforementioned constraints. In addition to
remapping, STBPU requires encryption of branch addresses
stored inside BPU. We found out that existing lightweight
cryptographic functions are not suitable for our purposes for
two main reasons: First, using strong ciphers does not directly
translate into better security which are primarily designed
to withstand known plaintext/ciphertext attacks. However,
STBPU threat model is much different as attackers never
observe encrypted addresses (ciphertext) nor partially matched
plaintext/ciphertext. They only observe collisions (not know-
ing with their own or victim’s branch) and need to reverse-
engineer the rest of the address bits. Besides, knowing their
own STs does not provide immediate access to collision
creation or simplifies collision-based attacks. In Section VI, we
show that the number of mispredictions and evictions attackers
must incur to successfully infer a ST far exceeds the thresholds
that will trigger ST re-randomization. Thus, encrypting with
a more advanced cipher would not increase the level of
security. Secondly, more sophisticated encryption schemes
introduce significant delays in CPU frontend. For instance, we
explored PRINCE-64 [12] and Feistel-Network [47] to encrypt
stored branch targets. While comparably fast, PRINCE-64 and
Feistel-Network will still consume multiple clock cycles and
consume more energy due to higher number of gates compared
to a simple subsingle-cycle XOR operation.

A. Automation of Finding Remapping Functions

Automated Remap Generation Algorithm. Designing the
remapping mechanisms is a multi-variable optimization prob-
lem. To solve it, we developed an algorithm that takes in a list
of hardware constraints, and randomly generates remapping
function candidates. The algorithm composes the function
from a predetermined pool of primitives. Each remapping
function is iteratively generated and tested one layer at a time,

5

where a layer is a block of these primitives. After a layer
is added, the current function is tested against the supplied
constraints. There are three possible scenarios that occur
during each round of testing. i) The current design satisfies
all constraints, and subsequently stored for later optimization.
ii) The current design violates one or more constraints, and is
discarded. iii) The current design does not outright violate the
constraints, but is incomplete. In case 3, our algorithm changes
the weights used for primitive selection during the creation of
the next layer to improve the current design.
Constraint Selection of C1. Our algorithm requires an input
of several variable constraints for the generated remapping
functions to satisfy C1. These constraints are: the maximum
count of transistors along the critical path, the maximum
number of transistors in parallel (breadth), the maximum
number of total transistors for the design, the number of input
and output pins, the maximum number of functional layers
(blocks) the design can have, and the maximum number of
wires an arbitrary wire can cross over.

Modern processors are designed to perform 15-20 gate
operations in a single cycle [58], which translates to roughly
30-45 transistors along the critical path. The delay incurred
by each transistor in the critical path is relatively independent
of the CPU clock cycle; therefore, the faster the CPU’s
clock cycle, the smaller the number of transistors that can
be completed within 1 clock cycle. Therefore, we assume 45
is the absolute maximum number of transistors we allow in
the critical path with preference set for shorter critical paths.
Primitive Selection. Much research has been conducted into
cryptographic hash primitives [10, 11, 35, 79, 80] that provide
building blocks for hash functions with strong properties.
We leverage these primitives from SPONGENT [11] and
PRESENT [10] hashes. Out of those S-boxes (establishing
non-linearity by substations) are perhaps most critical. To
increase the simplicity of remapping function generation, we
separate primitives into two categories: non-invertible com-
pression primitives and mixing primitives.

Non-invertible primitives tend to employ XOR logic gates to
obfuscate the relationship between input and output. For many
such primitives, multiple inputs generate the same, smaller
output which makes reverse-engineering difficult. Combining
multiple non-invertible layers increases complexity of attacks
aiming to pair a known output to an unknown input. These
primitives compress input size |m| to an output size |n|
where |m| > |n|. Table II shows the disparity between
the input and output sizes for R1..4,t,p functions, and indi-
cates the need for optimized compression primitives. Mixing
primitives are primarily used to introduce non-linearity to
a hash design which makes deterministically changing the
output by varying the input difficult. These primitives are
primarily composed of |m| 7→ |m| sized S-boxes and P-boxes
(performing permutations). Since the hardware complexity of
S-boxes increases superlinearly with the size of |m|, we limit
our S-boxes to a maximum of 4 input/outputs. These S-
boxes can be implemented efficiently with combinatorial logic
or transistor/diode matrices. P-boxes are constrained by the

Fig. 2: R1 remapping function construction

maximum wire crossover set for the algorithm.
Validation of Uniformity (C2) and Avalanche Effect (C3)

Remapping functions that satisfy the hardware constraints
are then tested against constraints C2 and C3. We first employ
the balls and bins analysis and compute the coefficient of vari-
ation (CV) of bins to approximate the uniformity (C2) of the
output space [60]. C3 is satisfied when a remapping adheres
to a strict avalanche criterion. To quantify the avalanche effect
of F , for each input λ, we generate a set of unique inputs,
S, where each input in S differs from λ by a single bit flip.
We then compute the hamming distance between F (λ) and
F (Si), for all inputs in S. Using these hamming distances, we
determine the CV of the hamming distances for a particular
λ. We test each F with 1 million random inputs and compute
the average hamming distance for all inputs. The ideal case
occurs when: i) the average hamming distance over 1 million
random inputs is roughly 50%. ii) For all inputs, the CV of
the average hamming distance for each input is 0. iii) For all
bit positions of an output of F , the difference between the
minimum and maximum hamming distances for a bit flip in
any bit position is 0.

B. Optimization and Remapping Selection

The final selection of remapping functions R1..4,t,p is pri-
marily based upon the results from the previous tests. The
result is a multiobjective optimization problem where the
ideal state for different desired metrics may be maximized or
minimized. To make all metrics comparable, we normalized
each metric so that the optimal value is 0. We then considered
this to be a simple weighted optimization problem where we
seek functions that yield the lowest sum of all metrics recorded
when testing for uniformity and the avalanche effect. Let F
be a particular function in the group of potential functions G
for remapping function Ri, for i ∈ R1..4,t,p:

min

k∑
i

wig(F), F ∈ G (1)

All weights were set to 1 to avoid prioritizing one metric over
another. Further prioritizing then can be done by hardware
developers for a specific CPU design. For space reasons, we do
not show the designs for all of R1..4,t,p since they share many
similar characteristics. Instead, we show the chosen design for
R1 in Figure 2 where stages 1, 3, and 5 are substitution layers
using 4 7→ 4 and 3 7→ 3 S-boxes. For space reasons, not
all types of S-boxes are shown. Under the design of R1, we
show the logical mappings for S-boxes used by PRESENT and
SPONGENT. P-boxes are n 7→ n in size with the pin mappings

6

generated randomly by our remap function generator. C-S
boxes are compression structures that map |m| bits to an output
size of |n| bits where |m| > |n|. This design of R1 has a
critical path length of 36 transistors, so it is capable of being
computed within a single clock cycle.

VI. SECURITY ANALYSIS

We assume any attackers can have complete knowledge of
all STBPU remapping functions, full control of execution flow,
and are capable of executing branches to/from any address
within their processes. The goal is to enable malicious branch
instruction collisions that allow mounting one of the collision-
based attacks. STBPU makes collisions non-deterministic,
forcing the attackers to rely on either brute force approaches or
reverse-engineering the ST value. Further, attackers can utilize
recently proposed fast attack algorithms such as GEM [59] and
PPP [57] that target randomized caches [9, 13].

Parameter: Description A: Branch in attacker(A)’s address space
Wstruct: Number of ways V : Branch in victim(V)’s address space
Istruct: Number of sets (indexes) ψa/v : A/V R() 32-bit token
Tstruct: Entry tag bit entropy ϕa/v : A/V target encryption token
Ostruct: Entry offset bit entropy τQ: Target of arbitrary branch Q
Ωstruct: Entry target bit entropy Q EQ: Entry stored for arbitrary branch Q

TABLE III: Parameters used in STBPU analysis

A. Analysis of Branch Predictor Attacks under STBPU

An attacker possessing knowledge of their ST (ψ/ϕ) voids
the security provided by the STBPU because they can de-
terministically generate outputs with any of the remapping
functions used by the STBPU. Before we discuss how STBPU
affects attacks on BPU, we show the parameters for security
analysis in Table III and list several important axioms below:
A1 Attackers do not know the numerical outputs of R1..4,t,p.
A2 Due to A1, all the current state of the STBPU must come

from detection of mispredictions and evictions.
A3 Attacker does not have inherent knowledge or control of

ST of any process.
1) Target Injection Attacks: Recall that we encrypt the

targets stored in the BTB and RSB through the following
means: EA = ϕa ⊕ τA. With Spectre V2, the attacker
supplies a malicious τA using branch A that collides with
the victim’s branch V causing V to speculate with τA. With
the SpectreRSB, the attacker places a malicious return address
τA on the stack that the victim speculates with. In both cases,
the target the victim will use from the STBTB or STRSB
is now τV = ϕa ⊕ τA ⊕ ϕv . If there is a Spectre gadget
located in the victim’s address space at address G, the attack
is successful if τV = G. Due to A3, the attacker does
not have knowledge or control of ϕa or ϕv; consequently,
the only variable the attacker can change is the address of
τA to make τV = G. The probability that τA results in
τV = G is 1

ΩSTBTB
or 1

ΩSTRSB
. As such, the attacker must

execute ΩSTBTB

2 or ΩSTRSB

2 different τA values to have a 50%
chance of successfully executing their target injection attack.
Each incorrect τA will result in the misprediction counter
decrementing towards zero.

2) Reuse-based Attacks: Address mappings are randomized
so that there is only a probability that an arbitrary A and V will
collide in the STBPU. Even though A and V are mapped with
R1..4,t,p, the probability that attacker branch A collides with
victim branch V in the STBTB/STPHT is not bound by birth-
day attack complexity because V is a static, specific address.
The probability of collision is P (A⇒ V) = (1

I)(1
TO). Note,

we break up the probability that A and V are in the same set
vs. the probability that A and V have matching tag and offsets
because tag/offset comparisons are only done if A and V are
in the same set. This adds uncertainty for reuse-based side
channels where the attacker wishes to determine the direction
of V since a lack of misprediction by A or V could mean that
A and V do not collide, or that V was not taken. To increase
the probability that an arbitrary A collides with a static V ,
the attacker can execute a set of branches SB = {b1, ..., bn}
where n is large so that one branch in SB might collide with
V . The probability that one of the branches in S collides with
V is P (SB ⇒ V) =

∑n
i=1 P (SBi

⇒ V). However, noise
is added using this method because it is possible that branches
in SB will collide with each other. The probability that two
branches in SB collide can be approximated with birthday
attack complexity because the branches in SB are arbitrary.

In order to ensure that no branches in SB collide with any
other branch in SB , the attacker execute the following steps:
i) Choose a new branch bnew with a new address in attacker’s
address space. ii) For every branch bi in SB , execute bi and
bnew. iii) If no MISP. between bi and bnew, SB = SB∪{bnew}.
In order to achieve a 50% probability of collision between A
and a branch in SB , the size of SB must be ITO

2 . The number
of MISPs M and evictions E generated whilst generating SB
of size n = ITO

2 can be approximated as follows:

M ≈
n∑
i=0

j=i∑
j=0

1√
π
2 I
· 1√

π
2TO

=
n(n+ 1))

2
√

π
2 I ·

√
π
2TO

E ≈ ITO

2
− IW

(2)

Note the reuse-based side channel attacks on PHT do not
generate evictions. The size of the STBTB is IW which is
significantly smaller than ITO

2 , so entries in the BTB will
constantly be evicted as the attacker grows SB .

Attacks such as BranchScope [21] and BlueThunder [26] are
viable against processors using hybrid directional predictors
largely due to the inclusion of a base directional predictor in
these hybrid BPUs. Due to the complexity of TAGE tables
and Perceptron weights, it is significantly easier to mali-
ciously modify the base directional predictor than the complex
TAGE/Perceptron structures. Since the remapping mechanisms
used in our TAGE/Perceptron structures are different than the
remapping functions used for the base directional predictor,
little information is gained by an attacker observing mispredic-
tions from both the base and complex directional components.
Due to A1, an attacker will not know which TAGE bank or
Perceptron weight set produced a prediction. The thresholds
for re-randomization stemming from mispredictions from the
directional predictor are based on the least complex attack

7

on the directional predictor. More complex attacks will be
affected by re-randomization to a greater extent.

3) Same Address Space Attacks: Recently discovered same
address space attacks [78] are classified as target injection
attacks, but in this case both A and V are located inside the
attacker’s address space. As such, encrypting the target of A
with ϕa provides no security because V will decrypt τA with
ϕa. However, due to Ri, there is only a probability that A and
V will collide; this probability is the same as for reuse-based
attacks. Therefore, the number of mispredictions and evictions
generated while performing a same address space attack are
also approximated by Equation (2).

4) Eviction-based Attacks: The attacker cannot determin-
istically create BTB eviction sets without knowing ψa since
address mappings change when ψa is re-randomized. With
Wstbtb ways, detecting an eviction in an arbitrary set requires
Wstbtb+1 colliding branches (same index, different tag and/or
offset). The attacker wants to fill STBTB sets so that if V
is executed, it disturbs one of the attacker’s primed sets. To
increase the chances that V will enter a primed set, the attacker
must prime as many sets as possible. Assuming the ideal case
when the attackers does not have conflicts between their own
branches, they need to cover P ∗I sets to achieve P probability
of a successful attack. For example, the probability that A
enters the same set as a static V is 1

I , so to have a 50%
chance of priming the set V enters, the attacker must prime
I
2 sets. Naı̈vely, the probability of randomly guessing Wstbtb

branches to form a single set of branches Se that enters the
same STBTB set is:

P (Se) =
1

IWstbtb−1
(3)

Since this probability is not favorable, the attacker could
apply a fast algorithm GEM [59] to construct every eviction
set. The attackers uses GEM because bottom-up strategies like
PPP becomes less efficient without a partitioned randomized
structure [57] or specific cache conditions [9, 13, 69]. We
assume the ideal scenario for the attacker is when most of
the branches tested follow a perfect uniformity. In this case,
given a particular branch, the probability to have W branches
belonging to the same set is directly related to the total number
of test entries. For instance, there is a 50% probability that
in a group of IW

2 branches that at least W branches share
the same index. Thus, in order to achieve P attack rate, the
attacker needs to test at least PIW branches as the initial set
since the total attack lines in L in GEM. (E.g., L > 44 for an
efficient GEM in [59]). With the original setting in GEM, the
attacker sets the group size G = W +1 and starts to eliminate
groups of branches. Although the total branch accesses will be
approximately 2.3·W ·L, the total eviction number will be less
as the majority of the probe during each iteration will be hit.
Since the probability that each group will produce an eviction
is approximately equal to 1− 1/e. The evictions generated by
testing will be negligible as (W + 1) · 1− 1

e ·n since the total
rounds n for GEM converge on the list of conflicting lines
are relatively small. However, when first placing L branches,
the attacker has to trigger the same amount of evictions.

Summarizing the procedure to construct required eviction sets
above, we can now approximate evictions numbers generated
whilst building sets for P attack rate as follows:

E ≈ PI × (PIW + (W + 1)× (1− 1

e
)× 3) (4)

5) Re-randomization Thresholds for Baseline Model:
STBPU has the same parameters as the baseline Intel Skylake
BPU. The BTB has 8 ways and 512 sets. The stored entries
have a compressed 8-bit tag and a 5 bit offset. The PHT
has 1 way and 214 sets. Using Equation 2, the number of
mispredictions and evictions an attacker will trigger before a
successful reuse-based side channel attack on BTB is 6.9×108

and ≈ 221, respectively. Correspondingly, for a PHT reuse-
based side channel, the number of triggered mispredictions
is ≈ 8.38 × 105. For a BTB eviction-based side channel,
the average number of triggered evictions is I

2 or 5.3 × 105

per Equation 4. For Spectre V2 and SpectreRSB, the number
of triggered mispredictions is ≈ 231. To prevent attacks, we
use the lowest misprediction and eviction thresholds as the
upper bounds for re-randomization of ST when evaluating the
performance of STBPU.

6) Denial-of-Service Attack on STBPU: While the primary
goal of a typical attacker is to reveal some sensitive data
via a side channel or speculative execution attack, they can
also attempt to perform a denial-of-service (DoS) attack. In
this attack, the goal is to cause an abnormal slowdown of a
victim process by triggering excessive branch mispredictions.
We consider two DoS attack scenarios: i) Eviction-based:
attacker attempts to evict from BPU data associated with a
branch that is critical for the victim’s performance. ii) Reuse-
based: attacker fills BTB with bogus data hoping to make the
victim speculatively execute code at a wrong address causing a
delay due to the recovery from incorrect speculative execution.
On high level, STBPU makes both of these attacks more
challenging because they rely on branch instruction collisions
which are difficult to create in STBPU. Now we will discuss
each attack in more detail.

STBPU cannot eliminate the possibility of the first attack
because, in STBPU, internal data structures such as BTB re-
main to be shared. However, the attack becomes more difficult
to carry out with STBPU. Since the victim and attacker are
guaranteed to use different STs, the attacker must default to a
brute force. Due to unknown branch-to-BTB mappings, finding
eviction sets becomes a difficult task. Since BTB is a set-
associative structure, to guarantee eviction of a certain entry,
the attacker needs to find n branches mapped into the same
set, where n is the number of ways in BTB. Since the attacker
is blind, the attacker must rely on constantly executing a large
number of branches hoping to evict the victim’s entries.

The second attack is very difficult in the case of STBPU.
In order to cause a hit in BTB, the attacker’s and victim’s
branches need to have the same index, tag, and offset after
they are remapped by STBPU mechanisms with different STs.
Based on our analysis above, such an event is unlikely to
happen. Moreover, because the stored address is encrypted
with the ST of a different process, the predicted address

8

would most likely point to an invalid address. Thus, erroneous
speculative execution would not happen.

VII. EVALUATION OF STBPU DESIGN

Evaluating BPU design under realistic conditions is a chal-
lenging task. Sharing BPU resources creates various possi-
bilities for branch conflicts that affect prediction accuracy.
Moreover, some BPU protection mechanisms (e.g., Intel’s
IBRS) are triggered by system events such as mode and
context switches. BPU resources need to be flushed upon
context/mode switches to avoid BPU training or state leakage
between user and kernel processes. workloads that involve fre-
quent system calls and interrupts may experience performance
degradation and negatively affect other programs executing
on the same core. In this situation, standard benchmark suits
that are typically compute-bound and do not trigger frequent
library calls, mode and context switches may not accurately
evaluate BPU performance effects. Thus, a good evaluation
environment needs to capture system-wide events and include
real applications. A trace-based simulation is a logical choice
for this. Meanwhile, the complex performance side effects
caused by branch mispredictions and evictions require detailed
performance data (e.g., IPC) using a cycle accurate simulator.
To address both the abovementioned aspects, we evaluate
STBPU using two simulation frameworks.

First, we utilize the Intel processor trace (PT) technology
to collect large amounts of branch instruction traces cap-
tured from different workloads within the same CPU physical
core, including user applications that cause frequent mode
switches and context switches and the SPEC benchmarks.
These traces then will be passed through an in-house BPU
simulator with the BPU baseline found in the Intel Skylake
processor. The simulator also runs different secure models
such as STBPU and reports prediction accuracy. Secondly, to
evaluate fine-grained microarchitectural performance effects,
we implemented the STBPU mechanisms inside gem5 [8] and
conducted simulations in syscall-emulation (SE) mode using
DerivO3CPU model with configurations that mimic similar
modern processors. The detailed configuration is listed in Ta-
ble IV. All gem5 simulations were performed simulating 110
million instructions with a warm-up of 10 million instructions.

ISA Single thread: X86-64, 3.4GHz; SMT: Alpha, 3.4GHz
BPU BTB entries: 4096, 8-way, RAS size: 16
Core 8-issue, OoO, IQ/LQ/SQ entries: 64/32/32, ROB: 192, ITLB/DTLB: 64/64

Cache L1-I/L1-D: 32KB/32KB both 8-way, L2: 256KB 4-way, LLC: 4MB 16-way

TABLE IV: Parameters used in gem5 simulation
A. Re-randomization Threshold

In Section VI, we demonstrate the misprediction and evic-
tion thresholds for ST re-randomization when various STBPU
attacks have a P attack success rate. For BranchScope attack,
to have a 50% chance of success, the number of triggered
mispredictions is estimated at ≈ 8.38 × 105. For a BTB
eviction-based side channel attack, the number of triggered
evictions is ≈ 5.3×105. These are the lower-bound numbers of
mispredictions and evictions triggered by any attack discussed
in this paper. We aim to re-randomize ST well before the

attacker has a reasonable probability of a successful attack. To
do so, we utilize results from the previously discussed security
analysis and derive the re-randomization thresholds as follows.
We first denote the attack complexity C as the least number
of evictions or mispredictions that the attack needs to trigger
to succeed with a 50% chance. Please note that we use 50%
probability rather than 100% since on average the attacker
will succeed with half the number of attempts needed for the
fully exhaustive key search. Let the variable r be the attack
difficulty factor and Γ be the re-randomization threshold. As
such, Γ = r · C. An attack has a 50% success rate when
r = 1. For instance, if r = 0.1, then the re-randomization
thresholds for mispredictions and evictions are set to 8.3×104

and 5.3×104, while 4.15×104 and 2.65×104 when r = 0.05.
For further experiments, we set r to 0.05 and derive the re-
randomization thresholds from this value as it offers strong
security guarantees with a low impact on performance.

B. STBPU Performance Evaluation

1) Prediction Accuracy with real branch trace: We evaluate
the STBPU impact on BPU accuracy and compare it to
existing naı̈ve protections modeled after microcode protections
based on flushing or partitioning BPU resources. To do so,
we utilize our trace-based BPU simulator based on Intel
PT technology. It avoids simulating the complex state of
microarchitectural components. Instead, it is designed to allow
rapid testing of BPU models using branch traces from a live
system running a variety of real-world scenarios.

Each simulation instance is collected from an Intel Core i7-
8550U machine that captures traces from a live physical core
and includes any OS/library code executed, including naturally
occurring context, mode switches, and interrupts. This allows
realistically simulating complex cross-process BPU effects and
assessing how BPU flushing or ST re-randomization affects
performance. To evaluate single-process compute-bound sce-
narios, we collected 23 traces from different workloads in
SPEC CPU 2017. In addition, we captured traces from user
and server applications, including Apache2 workloads under
different prefork settings, Google Chrome traces when running
single or multiple browser workloads, MySQL server, and
OBS Studio.

As previously discussed, our baseline BPU model is based
on recent reverse-engineering efforts [19, 21, 32, 34, 43, 78].
To evaluate STBPU, we applied the ST mechanisms from
Section IV-B to the BPU baseline model. We also created two
models that mimic the baseline model with Intel’s microcode-
based protections, namely µcode protection 1 and 2, modeling
IPBP+IBRS protection with and without STIBP. Please note
that microcode-based protections cannot prevent branch colli-
sions from occurring within the same context. To prevent such
collisions, more structural BPU changes are required. In par-
ticular, instead of storing compressed and truncated addresses
in BTB, the full 48-bit address must be stored. As a result,
the number of entries the BTB is capable of storing must be
reduced (assuming unchanged hardware budget). We refer to
such a model as conservative, which fully prevents any known

9

500.perlbench
502.gcc

503.bwaves
505.mcf

507.cactuBSSN

508.namd

510.parest

511.povray
519.lbm

520.omnetpp
521.wrf

523.xalancbmk
525.x264

526.blender

527.cam4

531.deepsjeng

538.imagick
541.leela

544.nab

548.exchange2

549.fotonik3d
554.roms

557.xz

apache2_prefork_c128

apache2_prefork_c256

apache2_prefork_c32

apache2_prefork_c512

apache2_prefork_c64

chrome-1je_1mo_1sp

chrome-1jetstr
eam

chrome-1motionmark

chrome-1speedometer

mysql_128con_50s

mysql_256con_50s

mysql_32con_50s

mysql_64con_50s

obsstu
dio_30s0.2

0.4

0.6

0.8

1.0
OA

E
Pr

ed
ict

io
n

Ac
cu

ra
cy

 n
or

m
al

ize
d

by
 b

as
el

in
e

0.82
0.77
0.88
0.99

average code protection2 average code protection average conservative average STBPU code protection2 code protection conservative STBPU

Fig. 3: Overall branch prediction accuracy: STBPU against other secure BPU models

collision-based BPU attack by flushing or partitioning. Note
that STBPU achieves the same security level via customizing
BPU data representations and has better performance.

The result from simulating the above five models is demon-
strated in Figure 3 where we aggregate all the effective pre-
dictions into a single metric: overall accuracy effective (OAE).
OAE counts a branch correctly predicted if all necessary
(target and direction) predictions are correct; otherwise, it’s
counted as mispredicted. Figure 3 shows the overall accuracy
of the various BPU models against the SPEC2017 benchmarks
and user applications. STBPU demonstrates an average 1.3%
overall effective prediction accuracy penalty. For comparison,
the microcode and the conservative BPU models suffer at least
around 12% overall accuracy loss with multiple cases of nearly
30% reduction. With this, we conclude that based on the BPU
accuracy data STBPU outperforms the microcode protections
that utilize flushing and partitioning.

2) Cycle Accurate Evaluation using gem5: Our next eval-
uation focuses on the comprehensive impact of STBPU on
Out-of-Order (OoO) CPU in terms of cycle accurate per-
formance, evaluating effects of STBPU on advanced branch
predictors, and SMT performance. We tested three advanced
BPU models: TAGE SC L 8KB, TAGE SC L 64KB [67],
and PerceptronBP [29]. To demonstrate the consistency of
accuracy between gem5 and our previous evaluation, we also
ported and tested our baseline model from Section VII-B1. We
refer to it as SKLCond. We compared the direction prediction
accuracy between SKLCond in gem5 with our previous base-
line model using the same workloads. We observed on average
less than 5% direction prediction difference which validates
our simulator consistency.

We treated the aforementioned four BPUs as baseline mod-
els and implemented four STBPU models. In single process
evaluations, we simulated each pair of STBPU models and
their non-ST counterparts across 18 SPEC2017 workloads.
Figure 4 illustrates the reduction of direction / target predic-
tions rate and the normalized IPC between STBPU designs
and their non-secure counterparts. We observe all 4 STBPU
designs can achieve less than 2% reduction on average target
prediction rate and less than 1.3% reduction on average of di-
rection prediction rate. The less than 4% average IPC reduction
demonstrates the high effectiveness of STBPU designs.

We used the same eight BPU models in our gem5 SMT
simulations. Instead of running a single workload at a time,
we grouped the individual workloads in pairs and simulated
these pairs in SMT mode. In order to accurately evaluate

fot
on

ik3
d

x2
64

ex
cha

ng
e2

de
ep

sje
ng

rom
s

mcf na
b

cam
4

na
md

xa
lan

cbm
k

pa
res

t

bw
av

es wrf

im
ag

ick lee
la

ble
nd

er xz lbm

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Re
du

ct
io

n
of

 D
ire

ct
io

n
Pr

ed
ict

io
n

Ra
te

co
m

pa
rin

g
to

 u
np

ro
te

ct
ed

 d
es

ig
ns

0.001

0.010.009
0.011

-0.06
-0.06

0.0
7

0.0
4

avg-reduction-ST_PerceptronBP
avg-reduction-ST_SKLCond

avg-reduction-ST_TAGE_SC_L_64KB
avg-reduction-ST_TAGE_SC_L_8KB

reduction-ST_PerceptronBP
reduction-ST_SKLCond

reduction-ST_TAGE_SC_L_64KB
reduction-ST_TAGE_SC_L_8KB

fot
onik3

d
x264

exc
hange2

deep
sje

ng
rom

s
mcf nab cam

4
nam

d

xal
ancbmk

pare
st

bwave
s

wrf
imagick

lee
la

blen
der

xz lbm

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Re
du

ct
io

n
of

 T
ar

ge
t P

re
di

ct
io

n
Ra

te
 c

om
pa

rin
g

to
 u

np
ro

te
ct

ed
 d

es
ig

ns

0.012

-0.001

0.018
0.017

0.0
8

0.0
5

-0.06
-0.05

-0.08

0.0
7

-0.08

0.0
7

0.0
5

0.0
9

-0.03
-0.02

0.0
7

0.0
8

-0.04

0.0
5

avg-reduction-ST_PerceptronBP
avg-reduction-ST_SKLCond

avg-reduction-ST_TAGE_SC_L_64KB
avg-reduction-ST_TAGE_SC_L_8KB

reduction-ST_PerceptronBP
reduction-ST_SKLCond

reduction-ST_TAGE_SC_L_64KB
reduction-ST_TAGE_SC_L_8KB

fot
on

ik3
d

x2
64

ex
cha

ng
e2

de
ep

sje
ng

rom
s

mcf na
b

cam
4

na
md

xa
lan

cbm
k

pa
res

t

bw
av

es wrf

im
ag

ick lee
la

ble
nd

er xz lbm
0.85

0.90

0.95

1.00

1.05

1.10

No
rm

al
ize

d
IP

C
ov

er
 u

np
ro

te
ct

ed
 d

es
ig

ns

1.066

0.9840.9770.969

1.1
4

1.2
5

1.1
9

1.3
5

avg-norm-ST_PerceptronBP
avg-norm-ST_SKLCond

avg-norm-ST_TAGE_SC_L_64KB
avg-norm-ST_TAGE_SC_L_8KB

norm-ST_PerceptronBP
norm-ST_SKLCond

norm-ST_TAGE_SC_L_64KB
norm-ST_TAGE_SC_L_8KB

Fig. 4: STBPU single workload evaluation in gem5

the STBPU impacts on overall throughput, we calculated the
Harmonic means (Hmeans) [49] of IPCs since each workload
is equally valued. Figure 5 displays the overall IPC and the
impact on accuracy. We observed the ST SKLcond models
suffer the most in SMT mode. This is because running tasks
in SMT mode introduces more frequent ST re-randomizations.
However, the reduction of throughput is less than 5%. We
believe this is because the ST SKLcond model does not have
a separate threshold register as TAGE models do for TAGE-
table mispredictions. This causes more frequent direction mis-
predictions as shown in the first chart of Figure 5. This effect
further affects the overall performance. On the other hand, the
advanced BPU models overall retain their efficiencies with
minimized accuracy reduction and throughput slowdown.

3) Aggressive ST Re-randomization and Performance: It
is common to see a constant arms race between protection
mechanisms and more advanced attacks [57, 59]. STBPU can
withstand faster attack algorithms by reducing the ST re-
randomization threshold to lower values. This would result in
a more aggressive protection scheme but can negatively affect
the performance. To measure such an effect on performance,

10

bw
av

es_
fot

on
ik3

d

bw
av

es_
cac

tuB
SS

N

bw
av

es_
lee

la

bw
av

es_
cam

4

ex
cha

ng
e2

_na
b

bw
av

es_
wrf

lee
la_

na
md

ex
cha

ng
e2

_m
cf

bw
av

es_
de

ep
sje

ng

ex
cha

ng
e2

_fo
ton

ik3
d

de
ep

sje
ng

_lb
m

bw
av

es_
na

md

bw
av

es_
lbm

lee
la_

mcf

lbm
_xz

fot
on

ik3
d_m

cf

lbm
_na

md

lbm
_m

cf

ex
cha

ng
e2

_le
ela

fot
on

ik3
d_l

bm

cam
4_m

cf

na
b_x

z

ex
cha

ng
e2

_na
md

bw
av

eso
ms

mcf_
xz

ex
cha

ng
e2

_lb
m

bw
av

es_
po

vra
y

fot
on

ik3
d_l

ee
la

fot
on

ik3
d_n

am
d

de
ep

sje
ng

_xz

bw
av

es_
ex

cha
ng

e2

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Re
du

ct
io

n
of

 D
ire

ct
io

n
Pr

ed
ict

io
n

Ra
te

co
m

pa
rin

g
to

 u
np

ro
te

ct
ed

 d
es

ig
ns

0.013

0.038

0.016
0.019

-0.03

0.0
6

-0.01

0.0
7

0.0
6

-0.01

0.0
5

0.0
6

0.0
6

0.0
6

0.0
5

0.0
7

0.0
6

0.0
5

0.0
6

0.0
5

avg-reduction-ST_PerceptronBP
avg-reduction-ST_SKLCond

avg-reduction-ST_TAGE_SC_L_64KB
avg-reduction-ST_TAGE_SC_L_8KB

reduction-ST_PerceptronBP
reduction-ST_SKLCond

reduction-ST_TAGE_SC_L_64KB
reduction-ST_TAGE_SC_L_8KB

bw
av

es_
fot

on
ik3

d

bw
av

es_
cac

tuB
SS

N

bw
av

es_
lee

la

bw
av

es_
cam

4

ex
cha

ng
e2

_na
b

bw
av

es_
wrf

lee
la_

na
md

ex
cha

ng
e2

_m
cf

bw
av

es_
de

ep
sje

ng

ex
cha

ng
e2

_fo
ton

ik3
d

de
ep

sje
ng

_lb
m

bw
av

es_
na

md

bw
av

es_
lbm

lee
la_

mcf

lbm
_xz

fot
on

ik3
d_m

cf

lbm
_na

md

lbm
_m

cf

ex
cha

ng
e2

_le
ela

fot
on

ik3
d_l

bm

cam
4_m

cf

na
b_x

z

ex
cha

ng
e2

_na
md

bw
av

eso
ms

mcf_
xz

ex
cha

ng
e2

_lb
m

bw
av

es_
po

vra
y

fot
on

ik3
d_l

ee
la

fot
on

ik3
d_n

am
d

de
ep

sje
ng

_xz

bw
av

es_
ex

cha
ng

e2

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Re
du

ct
io

n
of

 T
ar

ge
t P

re
di

ct
io

n
Ra

te
 c

om
pa

rin
g

to
 u

np
ro

te
ct

ed
 d

es
ig

ns

0.037

0.004

0.021
0.017

0.0
9

-0.06

0.0
5

0.1
3

0.0
7

-0.02

0.0
9

0.1
1

-0.02

0.1
1

0.0
6

0.0
5

0.0
9

0.0
9

0.0
7

0.0
6

0.0
6

0.0
5

0.0
6

0.0
6

-0.04
-0.02

0.0
6

avg-reduction-ST_PerceptronBP
avg-reduction-ST_SKLCond

avg-reduction-ST_TAGE_SC_L_64KB
avg-reduction-ST_TAGE_SC_L_8KB

reduction-ST_PerceptronBP
reduction-ST_SKLCond

reduction-ST_TAGE_SC_L_64KB
reduction-ST_TAGE_SC_L_8KB

bw
av

es_
fot

on
ik3

d

bw
av

es_
cac

tuB
SS

N

bw
av

es_
lee

la

bw
av

es_
cam

4

ex
cha

ng
e2

_na
b

bw
av

es_
wrf

lee
la_

na
md

ex
cha

ng
e2

_m
cf

bw
av

es_
de

ep
sje

ng

ex
cha

ng
e2

_fo
ton

ik3
d

de
ep

sje
ng

_lb
m

bw
av

es_
na

md

bw
av

es_
lbm

lee
la_

mcf

lbm
_xz

fot
on

ik3
d_m

cf

lbm
_na

md

lbm
_m

cf

ex
cha

ng
e2

_le
ela

fot
on

ik3
d_l

bm

cam
4_m

cf

na
b_x

z

ex
cha

ng
e2

_na
md

bw
av

eso
ms

mcf_
xz

ex
cha

ng
e2

_lb
m

bw
av

es_
po

vra
y

fot
on

ik3
d_l

ee
la

fot
on

ik3
d_n

am
d

de
ep

sje
ng

_xz

bw
av

es_
ex

cha
ng

e2
0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

No
rm

al
ize

d
IP

C
(H

.m
ea

ns
)

 o
ve

r u
np

ro
te

ct
ed

 d
es

ig
ns 1.009

0.951

0.9810.98

1.0
6

1.1
2

1.0
5

1.0
8

1.0
9

1.0
9

avg-norm-ST_PerceptronBP
avg-norm-ST_SKLCond

avg-norm-ST_TAGE_SC_L_64KB
avg-norm-ST_TAGE_SC_L_8KB

norm-ST_PerceptronBP
norm-ST_SKLCond

norm-ST_TAGE_SC_L_64KB
norm-ST_TAGE_SC_L_8KB

Fig. 5: SMT Evaluation of STBPU using workload pairs

Fig. 6: Effects on performance when using more aggressive re-
randomization thresholds with the TAGE SC L 64KB BPU,
result are averaged from 42 combinations of SPEC CPU 2017
workload pairs. The X-axis represents the r parameter.

we experimented with lowering the r parameter. This is
equivalent to assuming a new attack that is faster 10 times,
100 times, and even more.

To demonstrate an extreme case, we select an advanced
BPU model most sensitive to branch history loss and thus
re-randomizations. We test it in the SMT setting which is
more prone to trigger branch mispredictions and evictions.
Figure 6 demonstrates how reducing the r parameter affects
the performance of the TAGE SC L BPU protected with
STBPU. It shows that the thresholds can be safely reduced and
maintain accuracy above 95%. However, setting the threshold
too low results in ST re-randomizations happening after every
few hundreds of mispredictions or evictions. This practically

ceases any BPU training.

VIII. RELATED WORK

To protect against Spectre attacks, Intel processors are
enhanced with Spectre-specific microcode updates, including
IBRS, IBPB, and STIBP protections [28]. The implementation
of these mechanisms is not well documented and varies from
one microarchitecture to another as their performance cost.
Since these protections are added on top of unsafe BPU
designs, they usually come with a very costly performance
overhead. As a result, in practice, they are not used to their
full extent and are only enabled by the OS in critical cases
such as selectively protecting only a handful of processes.

Several previous academic works proposed BPU modifica-
tions to protect against side channel and speculative execution
attacks. BRB [72] stores and reloads the entire history of the
directional predictor for each process, effectively mitigating
PHT collision-based attacks such as BranchScope. BSUP [36]
first encrypts the PC and then encrypts the entries of BPU,
making it unsuitable for SMT processors.

Zhao et al. [81] encode branch contents (directions and
destination histories) and indexes using thread-private random
numbers to achieve isolation between threads or privilege
levels. Their approaches re-generate random numbers upon
context and mode switches, which cannot defend against the
transient execution attacks from same-address-space [75, 78].
Besides, our work implements ST re-randomization based on
BPU events allowing efficient branch history retention.

The BPU in the Samsung Exynos processor is also protected
with XOR-based encryption as branch history data enhance-
ment [23]. Since this mechanism aims to prevent speculative
execution attacks such as Spectre variant 2, Exynos only en-
crypts stored branch targets of indirect branch instructions and
returns. However, other forms of branch collisions may still
result in side channel leakage [81]. Additionally, in Exynos,
an output of the hash function serves as a key for encrypting
branch target data. It is derived from a number of process and
machine-specific inputs. In our work, the OS is given more
flexibility for managing the ST, which allows selective branch
history sharing, adjustment of re-randomization frequency, and
enforcing BPU isolation for various types of software entities
such as sandboxes and libraries.

IX. CONCLUSION

We presented the STBPU, a secure branch prediction design
that defends against collision-based BPU side channel and
speculative execution attacks. We performed a systematization
of BPU-related attacks and provided a detailed security anal-
ysis against recent attacks. While providing security, STBPU
demonstrates high performance for branch predictors modeled
after real-world chips and utilizing advanced models.

X. ACKNOWLEDGMENTS

The work in this paper is partially supported by Intel
Corporation and National Science Foundation grant #1850365.
The statements made herein are solely the responsibility of the
authors and do not necessarily reflect those of the sponsors.

11

REFERENCES

[1] O. Acıiçmez, B. B. Brumley, and P. Grabher, “New
results on instruction cache attacks,” in International
Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2010, pp. 110–124.

[2] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, “On the power
of simple branch prediction analysis,” in Proceedings of
the 2nd ACM symposium on Information, computer and
communications security. ACM, 2007, pp. 312–320.

[3] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting
secret keys via branch prediction,” in Cryptographers
Track at the RSA Conference. Springer, 2007, pp. 225–
242.

[4] S. Aga and S. Narayanasamy, “InvisiMem: Smart mem-
ory defenses for memory bus side channel,” in ACM
SIGARCH Computer Architecture News, vol. 45, no. 2.
ACM, 2017, pp. 94–106.

[5] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuf-
frida, “Branch History Injection: On the Effectiveness of
Hardware Mitigations Against Cross-Privilege Spectre-
v2 Attacks,” in USENIX Security, 2022.

[6] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.
[7] S. Bhattacharya, C. Maurice, S. Bhasin, and

D. Mukhopadhyay, “Branch Prediction Attack on
Blinded Scalar Multiplication,” IEEE Transactions on
Computers, vol. 69, no. 5, pp. 633–648, 2019.

[8] N. Binkert, B. Beckmann, G. Black, S. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib Bin Altaf,
N. Vaish, M. Hill, and D. Wood, “The gem5 simulator,”
SIGARCH Computer Architecture News, vol. 39, pp. 1–7,
08 2011.

[9] R. Bodduna, V. Ganesan, P. Slpsk, K. Veezhinathan, and
C. Rebeiro, “Brutus: Refuting the security claims of the
cache timing randomization countermeasure proposed in
ceaser,” IEEE Computer Architecture Letters, vol. 19,
no. 1, pp. 9–12, 2020.

[10] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. B. Robshaw, Y. Seurin, and
C. Vikkelsoe, “PRESENT: An Ultra-Lightweight Block
Cipher,” in Cryptographic Hardware and Embedded Sys-
tems - CHES 2007, P. Paillier and I. Verbauwhede, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp.
450–466.

[11] A. Bogdanov, M. Knežević, G. Leander, D. Toz,
K. Varıcı, and I. Verbauwhede, “spongent: A Lightweight
Hash Function,” in Cryptographic Hardware and Embed-
ded Systems – CHES 2011, B. Preneel and T. Takagi,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 312–325.

[12] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun,
M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov,
C. Paar, C. Rechberger et al., “PRINCE–a low-latency
block cipher for pervasive computing applications,” in
International Conference on the Theory and Application

of Cryptology and Information Security. Springer, 2012,
pp. 208–225.

[13] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and
M. Yan, “Casa: End-to-end quantitative security analysis
of randomly mapped caches,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). IEEE, 2020, pp. 1110–1123.

[14] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp,
B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin,
and D. Gruss, “A Systematic Evaluation of Transient
Execution Attacks and Defenses,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019, pp.
249–266. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/canella

[15] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and
T. H. Lai, “SgxPectre: Stealing Intel Secrets from SGX
Enclaves Via Speculative Execution,” pp. 142–157, June
2019.

[16] B. Coppens, I. Verbauwhede, K. De Bosschere, and
B. De Sutter, “Practical mitigations for timing-based
side-channel attacks on modern x86 processors,” in Secu-
rity and Privacy, 2009 30th IEEE Symposium on. IEEE,
2009, pp. 45–60.

[17] M. Evers, P.-Y. Chang, and Y. N. Patt, “Using hybrid
branch predictors to improve branch prediction accuracy
in the presence of context switches,” in ACM SIGARCH
Computer Architecture News, vol. 24, no. 2. ACM,
1996, pp. 3–11.

[18] D. Evtyushkin, T. Benjamin, J. Elwell, J. A. Eitel,
A. Sapello, and A. Ghosh, “Computing with time: Mi-
croarchitectural weird machines,” in Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2021, pp. 758–772.

[19] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh,
“Jump over ASLR: Attacking branch predictors to by-
pass ASLR,” in Microarchitecture (MICRO), 2016 49th
Annual IEEE/ACM International Symposium on. IEEE,
2016, pp. 1–13.

[20] ——, “Understanding and mitigating covert channels
through branch predictors,” ACM Transactions on Archi-
tecture and Code Optimization (TACO), vol. 13, no. 1,
p. 10, 2016.

[21] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Pono-
marev et al., “BranchScope: A New Side-Channel Attack
on Directional Branch Predictor,” in Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems. ACM, 2018, pp. 693–707.

[22] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey
of microarchitectural timing attacks and countermeasures
on contemporary hardware,” Journal of Cryptographic
Engineering, vol. 8, no. 1, pp. 1–27, 2018.

[23] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A.
Jiménez, T. Nakra, P. Kitchin, R. Hensley, E. Brekel-

12

https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

baum, V. Sinha et al., “Evolution of the samsung exynos
CPU microarchitecture,” in 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architecture
(ISCA). IEEE, 2020, pp. 40–51.

[24] N. Hua, E. Norige, S. Kumar, and B. Lynch, “Non-crypto
Hardware Hash Functions for High Performance Net-
working ASICs,” in 2011 ACM/IEEE Seventh Symposium
on Architectures for Networking and Communications
Systems, Oct 2011, pp. 156–166.

[25] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vish-
wanath, and M. Tiwari, “Understanding contention-based
channels and using them for defense,” in High Perfor-
mance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on. IEEE, 2015, pp. 639–650.

[26] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao,
J. Zhai, and M. Li, “Bluethunder: A 2-level Directional
Predictor Based Side-Channel Attack against SGX,”
IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2020, no. 1, pp. 321–347,
Nov. 2019. [Online]. Available: https://tches.iacr.org/
index.php/TCHES/article/view/8401

[27] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth,
and B. Sunar, “Cache attacks enable bulk key recovery on
the cloud,” in International Conference on Cryptographic
Hardware and Embedded Systems. Springer, 2016, pp.
368–388.

[28] Intel, “Intel analysis of speculative execution side chan-
nels,” January 2018.

[29] D. A. Jiménez and C. Lin, “Dynamic Branch Prediction
with Perceptrons,” in Proceedings of the 7th International
Symposium on High-Performance Computer Architec-
ture, ser. HPCA 01. USA: IEEE Computer Society,
2001, p. 197.

[30] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTH-
MEM: System-Level Protection Against Cache-Based
Side Channel Attacks in the Cloud.” in USENIX Security
symposium, 2012, pp. 189–204.

[31] V. Kiriansky and C. Waldspurger, “Speculative Buffer
Overflows: Attacks and Defenses,” arXiv preprint
arXiv:1807.03757, 2018.

[32] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre attacks: Exploiting speculative
execution,” arXiv preprint arXiv:1801.01203, 2018.

[33] P. Kocher, J. Jaffe, and B. Jun, “Differential power anal-
ysis,” in Annual International Cryptology Conference.
Springer, 1999, pp. 388–397.

[34] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre returns! speculation attacks using
the return stack buffer,” in 12th USENIX Workshop on
Offensive Technologies (WOOT 18), 2018.

[35] G. Leander and A. Poschmann, “On the Classification of
4 Bit S-Boxes,” in Proceedings of the 1st International
Workshop on Arithmetic of Finite Fields, ser. WAIFI ’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 159–176.
[Online]. Available: https://doi.org/10.1007/978-3-540-

73074-3 13
[36] J. Lee, Y. Ishii, and D. Sunwoo, “Securing Branch

Predictors with Two-Level Encryption,” vol. 17, no. 3,
Aug. 2020. [Online]. Available: https://doi.org/10.1145/
3404189

[37] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring fine-grained control flow inside
SGX enclaves with branch shadowing,” in 26th USENIX
Security Symposium, USENIX Security, 2017, pp. 16–18.

[38] T. S. Lehman, A. D. Hilton, and B. C. Lee, “PoisonIvy:
Safe speculation for secure memory,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Press, 2016, p. 38.

[39] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom,
and M. Hamburg, “Meltdown,” arXiv preprint
arXiv:1801.01207, 2018.

[40] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser,
and R. B. Lee, “Catalyst: Defeating last-level cache
side channel attacks in cloud computing,” in High Per-
formance Computer Architecture (HPCA), 2016 IEEE
International Symposium on. IEEE, 2016, pp. 406–418.

[41] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
level cache side-channel attacks are practical,” in Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE,
2015, pp. 605–622.

[42] J. M, “Intel digital random number generator
(drng) software implementation guide,” Oct 2019.
[Online]. Available: https://software.intel.com/en-
us/articles/intel-digital-random-number-generator-drng-
software-implementation-guide

[43] G. Maisuradze and C. Rossow, “ret2spec: Speculative
Execution Using Return Stack Buffers,” CoRR, vol.
abs/1807.10364, 2018. [Online]. Available: http://arxiv.
org/abs/1807.10364

[44] ——, “Speculose: Analyzing the Security Implications
of Speculative Execution in CPUs,” arXiv preprint
arXiv:1801.04084, 2018.

[45] S. Mangard, “A simple power-analysis (SPA) attack
on implementations of the AES key expansion,” in
International Conference on Information Security and
Cryptology. Springer, 2002, pp. 343–358.

[46] C. Maurice, C. Neumann, O. Heen, and A. Francillon,
“C5: cross-cores cache covert channel,” in International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2015, pp. 46–64.

[47] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone,
Handbook of applied cryptography. CRC press, 2018.

[48] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Exam-
ining smart-card security under the threat of power anal-
ysis attacks,” IEEE transactions on computers, vol. 51,
no. 5, pp. 541–552, 2002.

[49] P. Michaud, “Demystifying multicore throughput met-
rics,” IEEE Computer Architecture Letters, vol. 12, no. 2,
pp. 63–66, 2012.

[50] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict

13

https://tches.iacr.org/index.php/TCHES/article/view/8401
https://tches.iacr.org/index.php/TCHES/article/view/8401
https://doi.org/10.1007/978-3-540-73074-3_13
https://doi.org/10.1007/978-3-540-73074-3_13
https://doi.org/10.1145/3404189
https://doi.org/10.1145/3404189
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
http://arxiv.org/abs/1807.10364
http://arxiv.org/abs/1807.10364

and capacity aliasing in conditional branch predictors,”
in ACM SIGARCH Computer Architecture News, vol. 25,
no. 2. ACM, 1997, pp. 292–303.

[51] A. Milburn, K. Sun, and H. Kawakami, “You Cannot
Always Win the Race: Analyzing the LFENCE/JMP
Mitigation for Branch Target Injection,” arXiv preprint
arXiv:2203.04277, 2022.

[52] H. Naghibijouybari and N. Abu-Ghazaleh, “Covert Chan-
nels on GPGPUs,” Computer Architecture Letters, 2016.

[53] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel,
“Power-Analysis Attack on an ASIC AES implemen-
tation,” in Information Technology: Coding and Com-
puting, 2004. Proceedings. ITCC 2004. International
Conference on, vol. 2. IEEE, 2004, pp. 546–552.

[54] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: the case of AES,” in Cryptogra-
phers Track at the RSA Conference. Springer, 2006, pp.
1–20.

[55] C. Percival, “Cache missing for fun and profit,” 2005.
[56] A. Prout, W. Arcand, D. Bestor, B. Bergeron, C. Byun,

V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein
et al., “Measuring the Impact of Spectre and Meltdown,”
arXiv preprint arXiv:1807.08703, 2018.

[57] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede,
“Systematic Analysis of Randomization-based Protected
Cache Architectures,” in 42th IEEE Symposium on Se-
curity and Privacy.

[58] M. K. Qureshi, “CEASER: Mitigating Conflict-Based
Cache Attacks via Encrypted-Address and Remapping,”
in 2018 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), Oct 2018, pp. 775–
787.

[59] M. K. Qureshi, “New attacks and defense for encrypted-
address cache,” in 2019 ACM/IEEE 46th Annual Inter-
national Symposium on Computer Architecture (ISCA).
IEEE, 2019, pp. 360–371.

[60] M. Raab and A. Steger, “”Balls into Bins” -
A Simple and Tight Analysis,” in Proceedings of
the Second International Workshop on Randomization
and Approximation Techniques in Computer Science,
ser. RANDOM ’98. Berlin, Heidelberg: Springer-
Verlag, 1998, pp. 159–170. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=646975.711521

[61] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource
management for isolation enhanced cloud services,” in
Proceedings of the 2009 ACM workshop on Cloud com-
puting security. ACM, 2009, pp. 77–84.

[62] M. Ramsay, C. Feucht, and M. H. Lipasti, “Exploring
efficient SMT branch predictor design,” in Workshop on
Complexity-Effective Design, in conjunction with ISCA,
vol. 26, 2003.

[63] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen,
and A. Venkat, “I See Dead µops: Leaking Secrets via
Intel/AMD Micro-Op Caches.”

[64] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and
M. Själander, “Efficient invisible speculative execution

through selective delay and value prediction,” in 2019
ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2019, pp. 723–
735.

[65] B. Saltaformaggio, D. Xu, and X. Zhang, “Busmonitor:
A hypervisor-based solution for memory bus covert chan-
nels,” Proceedings of EuroSec, 2013.

[66] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and
D. Gruss, “Netspectre: Read arbitrary memory over net-
work,” pp. 279–299, 2019.

[67] A. Seznec, “TAGE-SC-L Branch Predictors Again,”
2016.

[68] N. A. Simakov, M. D. Innus, M. D. Jones, J. P. White,
S. M. Gallo, R. L. DeLeon, and T. R. Furlani, “Effect
of Meltdown and Spectre Patches on the Performance
of HPC Applications,” arXiv preprint arXiv:1801.04329,
2018.

[69] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu,
“Randomized last-level caches are still vulnerable to
cache side-channel attacks! But we can fix it,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 955–969.

[70] C. Trippel, D. Lustig, and M. Martonosi, “Meltdown-
Prime and SpectrePrime: Automatically-Synthesized At-
tacks Exploiting Invalidation-Based Coherence Proto-
cols,” arXiv preprint arXiv:1802.03802, 2018.

[71] V. Varadarajan, T. Ristenpart, and M. M. Swift,
“Scheduler-based Defenses against Cross-VM Side-
channels.” in USENIX Security Symposium, 2014, pp.
687–702.

[72] I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst,
B. M. Al-Hashimi, and G. V. Merrett, “BRB: Mitigating
Branch Predictor Side-Channels.” in 2019 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2019, pp. 466–477.

[73] Z. Wang and R. B. Lee, “New Cache Designs for
Thwarting Software Cache-based Side Channel Attacks,”
in Proceedings of the 34th Annual International
Symposium on Computer Architecture, ser. ISCA ’07.
New York, NY, USA: ACM, 2007, pp. 494–505.
[Online]. Available: http://doi.acm.org/10.1145/1250662.
1250723

[74] ——, “A novel cache architecture with enhanced perfor-
mance and security,” in Proceedings of the 41st annual
IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Computer Society, 2008, pp. 83–93.

[75] W. Xiong and J. Szefer, “Survey of transient execution
attacks and their mitigations,” ACM Computing Surveys
(CSUR), vol. 54, no. 3, pp. 1–36, 2021.

[76] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training
branch prediction,” in Proceedings of the 24th annual
international symposium on Microarchitecture. ACM,
1991, pp. 51–61.

[77] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas,
and C. W. Fletcher, “Speculative Taint Tracking (STT):
A Comprehensive Protection for Speculatively Accessed

14

http://dl.acm.org/citation.cfm?id=646975.711521
http://dl.acm.org/citation.cfm?id=646975.711521
http://doi.acm.org/10.1145/1250662.1250723
http://doi.acm.org/10.1145/1250662.1250723

Data,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association for
Computing Machinery, 2019, p. 954968. [Online].
Available: https://doi.org/10.1145/3352460.3358274

[78] T. Zhang, K. Koltermann, and D. Evtyushkin,
“Exploring Branch Predictors for Constructing Transient
Execution Trojans,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS 20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 667682. [Online].
Available: https://doi.org/10.1145/3373376.3378526

[79] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and
I. Verbauwhede, “RECTANGLE: a bit-slice lightweight
block cipher suitable for multiple platforms,” Science
China Information Sciences, vol. 58, no. 12, pp. 1–15,
Dec 2015. [Online]. Available: https://doi.org/10.1007/
s11432-015-5459-7

[80] W. Zhang, Z. Bao, V. Rijmen, and M. Liu, “A New
Classification of 4-bit Optimal S-boxes and Its Appli-
cation to PRESENT, RECTANGLE and SPONGENT,”
in Fast Software Encryption, G. Leander, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 494–
515.

[81] L. Zhao, P. Li, R. Hou, M. C. Huang, J. Li,
L. Zhang, X. Qian, and D. Meng, “A lightweight iso-
lation mechanism for secure branch predictors,” in 2021
58th ACM/IEEE Design Automation Conference (DAC).
IEEE, 2021, pp. 1267–1272.

15

https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/3373376.3378526
https://doi.org/10.1007/s11432-015-5459-7
https://doi.org/10.1007/s11432-015-5459-7

