Discrete-Event Simulation:
A First Course

Steve Park and Larry Leemis
College of William and Mary

Technical Attractions of
Simulation®

e Ability to compress time, expand time
e Ability to control sources of variation
e Avoids errors in measurement

* Ability to stop and review

e Ability to restore system state

e Facilitates replication

* Modeler can control level of detail

*Discrete-Event Simulation: Modeling, Programming, and Analysis by G. Fishman, 2001, pp. 26-27

Ways To Study A System”

System
Experiment Experiment
with actual with a model of
system actual system
Physical Mathematical
model model

Amnalytical

Solution Simulation

*Simulation, Modeling & Analysis (3/e) by Law and Kelton, 2000, p. 4, Figure 1.1

Introduction

What is discrete-event simulation?
— Modeling, simulating, and analyzing systems
— Computational and mathematical techniques

Model: construct a conceptual framework that
describes a system

Simulate: perform experiments using computer
implementation of the model

Analyze: draw conclusions from output that assist
in decision making process

We will first focus on the model

Characterizing a Model

e Deterministic or Stochastic
— Does the model contain stochastic components?
— Randomness 1s easy to add to a DES

e Static or Dynamic
— Is time a significant variable?

e Continuous or Discrete

— Does the system state evolve continuously or only at
discrete points in time?

— Continuous: classical mechanics
— Discrete: queuing, inventory, machine shop models

Definitions

e Discrete-Event Simulation Model
— Stochastic: some state variables are random
— Dynamic: time evolution 1s important

— Discrete-Event: significant changes occur at
discrete time instances

e Monte Carlo Simulation Model

— Stochastic
— Static: time evolution 1s not important

Model Taxonomy

deterministic\

system model

\

stochastic

N

static

dynamic

static | dynamic

conti hﬁousj

discrete

“_ Monte Carlo simua’ationﬁ_,x---*‘"\

continuous discrete

discrete-event simulation

DES Model Development

Algorithm 1.1 — How to develop a model:
1) Determine the goals and objectives
2) Build a conceptual model
3) Convert into a specification model
4) Convert into a computational model
5) Verity
6) Validate

Typically an iterative process

Three Model Levels

e Conceptual
— Very high level
— How comprehensive should the model be?

— What are the state variables, which are dynamic, and
which are important?

* Specification
— On paper
— May involve equations, pseudocode, etc.
— How will the model receive input?
 Computational

— A computer program
— General-purpose PL or simulation language?

Verification vs. Validation

* Verification
— Computational model should be consistent with
specification model

— Did we build the model right?

e Validation

— Computational model should be consistent with the
system being analyzed

— Did we build the right model?

— Can an expert distinguish simulation output from
system output?

* Interactive graphics can prove valuable

A Machine Shop Model

* 150 identical machines:
— Operate continuously, 8 hr/day, 250 days/yr
— Operate independently
— Repaired 1n the order of failure
— Income: $20/hr of operation

e Service technician(s):
— 2-year contract at $52,000/yr
— Each works 230 8-hr days/yr

» How many service technicians should be hired?

System Diagram

Lo

o o o 9o o o o o o o O 0
o o O O o o o o o o O O O O O

o o o o o o O O O 9 4

a
o o O o o o o o o o O O

O

o o o 9O o o o O o o O 9O O 9 0

o o O 9o o o o o O O O O O O
o o o o o o O O O O
o o oo o o o o o o o O 9O O 9 0

L T o R T

o o o o o o O O O O 0O
o o oo o o o o o o o O 9O O 9 0

L)

queue

IClans

techn

service

Algorithm 1.1.1 Applied

1) Goals and Objectives:
— Find number of technicians for max profit
— Extremes: one techie, one techie per machine

2) Conceptual Model:
— State of each machine (failed, operational)
— State of each techie (busy, i1dle)
— Provides a high-level description of the system at any
fime
3) Specitication Model:
— What 1s known about time between failures?
— What is the distribution of the repair times?
— How will time evolution be simulated?

Algorithm 1.1 Applied

4) Computational Model:

Simulation clock data structure
Queue of failed machines
Queue of available techies

5) Verily:

Software engineering activity
Usually done via extensive testing

6) Validate:

Is the computational model a good approximation of
the actual machine shop?

If operational, compare against the real thing
Otherwise, use consistency checks

Observations

 Make each model as simple as possible
— Never simpler
— Do not ignore relevant characteristics
— Do not include extraneous characteristics

 Model development 1s not sequential
— Steps are often iterated
— In a team setting, some steps will be 1n parallel
— Do not merge verification and validation

* Develop models at three levels
— Do not jump immediately to computational level

— Think a little, program a lot (and poorly);
Think a lot, program a little (and well)

Simulation Studies

Algorithm 1.1.2 — Using the resulting model.:

7) Design simulation experiments
— What parameters should be varied?
— Perhaps many combinatoric possibilities
8) Make production runs
— Record initial conditions, input parameters
— Record statistical output
9) Analyze the output

— Use common statistical analysis tools (Ch. 4)

10) Make decisions

11) Document the results

Algorithm 1.1.2 Applied

7) Design Experiments
— Vary the number of technicians
— What are the initial conditions?
— How many replications are required?

8) Make Production Runs

— Manage output wisely
— Must be able to reproduce results exactly

9) Analyze Output
— Observations are often correlated (not independent)
— Take care not to derive erroneous conclusions

Algorithm 1.1.2 Applied

10) Make Decisions

Graphical display gives optimal number of
technicians and sensitivity

Implement the policy subject to external conditions

11) Document Results

System diagram

Assumptions about failure and repair rates
Description of specification model
Software

Tables and figures of output

Description of output analysis

DES can provide valuable insight about the system

Programming Languages

e General-purpose programming languages
— Flexible and familiar
— Well suited for learning DES principles and techniques
— E.g.: C, C++, Java
* Special-purpose simulation languages
— Good for building models quickly
— Provide built-1n features (e.g., queue structures)
— Graphics and animation provided

— E.g.: Arena, Promodel

Terminology

e Model vs. Simulation (noun)

— Model can be used WRT conceptual, specification,
or computational levels

— Simulation 1s rarely used to describe the conceptual
or specification model

— Simulation 1s frequently used to refer to the
computational model (program)

e Model vs. Simulate (verb)

— To model can refer to development at any of the
levels

— To simulate refers to computational activity
* Meaning should be obvious from the context

Looking Ahead

* Begin by studying trace-driven single server
queue

e Follow that with a trace-driven machine
shop model

