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Section 2.1: Lehmer Random Number Generators:

Introduction

ssq1 and sis1 require input data from an outside source

The usefulness of these programs is limited by amount of
available data

What if more data needed?
What if the model changed?
What if the input data set is small or unavailable?

A random number generator address all problems

It produces real values between 0.0 and 1.0
The output can be converted to random variate via
mathematical transformations
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Random Number Generators

Historically there are three types of generators

table look-up generators
hardware generators
algorithmic (software) generators

Algorithmic generators are widely accepted because they meet
all of the following criteria:

randomness - output passes all reasonable statistical tests of
randomness
controllability - able to reproduce output, if desired
portability - able to produce the same output on a wide variety
of computer systems
efficiency - fast, minimal computer resource requirements
documentation - theoretically analyzed and extensively tested
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Algorithmic Generators

An ideal random number generator produces output such that
each value in the interval 0.0 < u < 1.0 is equally likely to
occur

A good random number generator produces output that is
(almost) statistically indistinguishable from and ideal
generator

We will construct a good random number generator satisfying
all our criteria
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Conceptual Model

Conceptual Model:

Choose a large positive integer m. This defines the set
Xm = {1, 2, . . . ,m − 1}
Fill a (conceptual) urn with the elements of Xm

Each time a random number u is needed, draw an integer x
“at random” from the urn and let u = x/m

Each draw simulates a sample of an independent identically
distributed sequence of Uniform(0, 1)

The possible values are 1/m, 2/m, . . . (m − 1)/m.

It is important that m be large so that the possible values are
densely distributed between 0.0 and 1.0
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Conceptual Model

0.0 and 1.0 are impossible

This is important for some random variates

We would like to draw from the urn with replacement

For practical reasons, we will draw without replacement

If m is large and the number of draws is small relative to m,
then the distinction is largely irrelevant
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Lehmer’s Algorithm

Lehmer’s algorithm for random number generation is defined
in terms of two fixed parameters:

modulus m, a fixed large prime integer
multiplier a, a fixed integer in Xm

The integer sequence x0, x1, . . . is defined by the iterative
equation

xi+1 = g(xi )
with

g(x) = ax mod m

x0 ∈ Xm is called the initial seed
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Lehmer Generators

Because of the mod operator, 0 ≤ g(x) < m

However, 0 must not occur since g(0) = 0

Since m is prime, g(x) 6= 0 if x ∈ Xm.
If x0 ∈ Xm, then xi ∈ Xm for all i ≥ 0.

If the multiplier and prime modulus are chosen properly, a
Lehmer generator is statistically indistinguishable from
drawing from Xm with replacement.

Note, there is nothing random about a Lehmer generator

For this reason, it is called a pseudo-random generator
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Intuitive Explanation

0 m 2m 3m 4m 5mx a ax
• • •

←− −→| |
g(x)

←−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−→|
⌊ax/m⌋m

←−−−−−−−−−−−−−−−−−−−−−−− ax −−−−−−−−−−−−−−−−−−−−−−−→| |

When ax is divided by m, the remainder is “likely” to be any
value between 0 and m − 1

Similar to buying numerous identical items at a grocery store
with only dollar bills.

a is the price of an item, x is the number of items, and
m = 100.
The change is likely to be any value between 0 and 99 cents
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Parameter Considerations

The choice of m is dictated, in part, by system considerations

On a system with 32-bit 2’s complement integer arithmetic,
231 − 1 is a natural choice
With 16-bit or 64-bit integer representation, the choice is not
obvious
In general, we want to choose m to be the largest
representable prime integer

Given m, the choice of a must be made with great care
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Example 2.1.1

If m = 13 and a = 6 with x0 = 1 then the sequence is
1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, . . .

The ellipses indicate the sequence is periodic

If m = 13 and a = 7 with x0 = 1 then the sequence is
1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 . . .

Because of the 12, 6, 3 and 8, 4, 2, 1 patterns, this sequence
appears “less random”

If m = 13 and a = 5 then
1, 5, 12, 8, 1, . . . or 2, 10, 11, 3, 2, . . . or 4, 7, 9, 6, 4, . . .

This less-than-full-period behavior is obviously undesirable
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Central Issues

For a chosen (a, m) pair, does the function g(·) generate a
full-period sequence?

If a full period sequence is generated, how random does the
sequence appear to be?

Can ax mod m be evaluated efficiently and correctly?

Integer overflow can occur when computing ax
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Full Period Considerations

From Appendix B, b mod a = b − ⌊b/a⌋a

There exists a non-negative integer ci = ⌊axi/m⌋ such that
xi+1 = g(xi ) = axi mod m = axi −mci

Therefore (by induction)

x1 = ax0 −mc0

x2 = ax1 −mc1 = a2x0 −m(ac0 + c1)

x3 = ax2 −mc2 = a3x0 −m(a2c0 + ac1 + c2)
...

xi = axi−1 −mci−1 = aix0 −m(ai−1c0 + ai−2c1 + . . . + ci−1)
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Full Period Considerations

Since xi ∈ Xm, we have xi = xi mod m. Therefore, letting
c = ai−1c0 + ai−2c1 + . . . + ci−1, we have

xi = aix0 −mc = (aix0 −mc) mod m = aix0 mod m

Theorem (2.1.1)

If the sequence x0, x1, x2, . . . is produced by a Lehmer generator
with multiplier a and modulus m then

xi = aix0 mod m

It is an eminently bad idea to compute xi by first computing ai

Theorem 2.1.1 has significant theoretical value
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Full Period Considerations

(b1b2 . . . bn) mod a = (b1 mod a)(b2 mod a) · · · (bn mod a) mod a
Therefore

xi = aix0 mod m = (ai mod m)x0 mod m

Fermat’s little theorem states that if p is a prime which does
not divide a, then ap−1 mod p = 1.
Thus, xm−1 = (am−1 mod m)x0 mod m = x0

Theorem (2.1.2)

If x0 ∈ Xm and the sequence x0, x1, x2 . . . is produced by a Lehmer
generator with multiplier a and (prime) modulus m then there is a
positive integer p with p ≤ m − 1 such that x0, x1, x2 . . . xp−1 are
all different and

xi+p = xi i = 0, 1, 2, . . .

That is, the sequence is periodic with fundamental period p. In
addition (m − 1) mod p = 0.
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Full Period Multipliers

If we pick any initial seed x0 ∈ Xm and generate the sequence
x0, x1, x2, . . . then x0 will occur again

Further x0 will reappear at index p that is either m − 1 or a
divisor of m − 1

The pattern will repeat forever

We are interested in choosing full-period multipliers where
p = m − 1
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Example 2.1.2

Full-period multipliers generate a virtual circular list with
m − 1 distinct elements.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
....

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
. . . .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

•

•

•

•

•

•

•

•

•

•

•

(a, m) = (6, 13)

1

6

10

8

9

2

12

7

3

5

4

11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
...

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

•

•

•

•

•

•

•

•

•

•

•

(a, m) = (7, 13)

1

7

10

5

9

11

12

6

3

8

4

2

Section 2.1: Lehmer Random Number Generators: Introduction Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Lehmer Random Number Generators: Introduction

Finding Full Period Multipliers

Algorithm 2.1.1

p = 1;

x = a;
while (x != 1) {

p++;
x = (a ∗ x)% m; /* beware of a ∗ x overflow */

}
if(p == m − 1)

/* a is a full-period multiplier */

else

/* a is not a full-period multiplier */

This algorithm is a slow-but-sure way to test for a full-period
multiplier
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Frequency of Full-Period Multipliers

Given a prime modulus m, how many corresponding
full-period multipliers are there?

Theorem (2.1.3)

If m is prime and p1, p2, . . . , pr are the (unique) prime factors of
m − 1 then the number of full-period multipliers in Xm is

(p1 − 1)(p2 − 1) · · · (pr − 1)

p1p2 · · · pr

(m − 1)

Example 2.1.3 If m = 13 then m − 1 = 12 = 22 · 3.
Therefore, there are (2−1)(3−1)

2·3 (13− 1) = 4 full-period
multipliers (2, 6, 7, and 11)

Section 2.1: Lehmer Random Number Generators: Introduction Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Lehmer Random Number Generators: Introduction

Example 2.1.4

If m = 231 − 1 = 2147483647 then since the prime
decomposition of m − 1 is

m − 1 = 231 − 2 = 2 · 32 · 7 · 11 · 31 · 151 · 331

the number of full period multipliers is

(

1 · 2 · 6 · 10 · 30 · 150 · 330

2 · 3 · 7 · 11 · 31 · 151 · 331

)

(2·32·7·11·31·151·331) = 534600000

Therefore, approximately 25% of the multipliers are full-period

Section 2.1: Lehmer Random Number Generators: Introduction Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Lehmer Random Number Generators: Introduction

Finding All Full-Period Multipliers

Once one full-period multiplier has been found, then all others
can be found in O(m) time

Algorithm 2.1.2

i = 1;

x = a;
while (x != 1) {

if(gcd(i, m − 1) == 1)

/* ai mod m is a full-period multiplier*/

i++
x = (a * x) % m; /* beware a ∗ x overflow */

}
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Finding All Full-Period Multipliers

Theorem (2.1.4)

If a is any full-period multiplier relative to the prime modulus m
then each of the integers

ai mod m ∈ Xm i = 1, 2, 3, . . . ,m − 1

is also a full-period multiplier relative to m if and only if i and
m − 1 are relatively prime
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Example 2.1.5

If m = 13 then we know from Example 2.1.3 there are 4 full
period multipliers. From Example 2.1.1 a = 6 is one. Then,
since 1, 5, 7, and 11 and relatively prime to 13

61 mod 13 = 6 65 mod 13 = 2
67 mod 13 = 7 611 mod 13 = 11

Equivalently, if we knew a = 2 is a full-period multiplier
21 mod 13 = 2 25 mod 13 = 6

27 mod 13 = 11 211 mod 13 = 7
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Example 2.1.6

If m = 231 − 1 then from Example 2.1.4 there are 534600000
integers relatively prime to m − 1. The first first few are
i = 1, 5, 13, 17, 19. a = 7 is a full-period multiplier relative to
m and therefore

71 mod 2147483647 = 7

75 mod 2147483647 = 16807

713 mod 2147483647 = 252246292

717 mod 2147483647 = 52958638

719 mod 2147483647 = 447489615

are full-period multipliers relative to m
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