Discrete-Event Simulation:

A First Course
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Lehmer Random Number Generators: Introduction

Section 2.1: Lehmer Random Number Generators:

Introduction

@ ssql and sisl require input data from an outside source
@ The usefulness of these programs is limited by amount of
available data

o What if more data needed?
o What if the model changed?
o What if the input data set is small or unavailable?

@ A random number generator address all problems

o It produces real values between 0.0 and 1.0
@ The output can be converted to random variate via
mathematical transformations
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Lehmer Random Number Generators: Introduction

Random Number Generators

@ Historically there are three types of generators
o table look-up generators
o hardware generators
o algorithmic (software) generators
@ Algorithmic generators are widely accepted because they meet
all of the following criteria:
@ randomness - output passes all reasonable statistical tests of
randomness
& controllability - able to reproduce output, if desired
@ portability - able to produce the same output on a wide variety
of computer systems
o efficiency - fast, minimal computer resource requirements
o documentation - theoretically analyzed and extensively tested
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Algorithmic Generators

@ An ideal random number generator produces output such that
each value in the interval 0.0 < u < 1.0 is equally likely to
occur

@ A good random number generator produces output that is
(almost) statistically indistinguishable from and ideal
generator

@ We will construct a good random number generator satisfying
all our criteria
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Conceptual Model

@ Conceptual Model:
@ Choose a large positive integer m. This defines the set
Xp=1{1,2,...,m—1}
@ Fill a (conceptual) urn with the elements of X,
@ Each time a random number v is needed, draw an integer x
“at random” from the urn and let u = x/m
@ Each draw simulates a sample of an independent identically
distributed sequence of Uniform(0, 1)

@ The possible values are 1/m,2/m,...(m —1)/m.

@ It is important that m be large so that the possible values are
densely distributed between 0.0 and 1.0
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Conceptual Model

@ 0.0 and 1.0 are impossible

o This is important for some random variates
@ We would like to draw from the urn with replacement
@ For practical reasons, we will draw without replacement

@ If mis large and the number of draws is small relative to m,
then the distinction is largely irrelevant

Section 2.1: Lehmer Random Number Generators: Introduction Discrete-Event Simulation  (©2006 Pearson Ed., Inc.  0-13-142917-5



Lehmer Random Number Generators: Introduction

Lehmer’'s Algorithm

@ Lehmer’s algorithm for random number generation is defined
in terms of two fixed parameters:
8 modulus m, a fixed large prime integer
e multiplier a, a fixed integer in X,
@ The integer sequence xg, x1, . .. is defined by the iterative
equation
Xit1 = g(xi)
with
g(x) = ax mod m

@ xg € Xy, is called the initial seed
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Lehmer Generators

@ Because of the mod operator, 0 < g(x) < m
@ However, 0 must not occur since g(0) =0

o Since m is prime, g(x) # 0 if x € Xp,.

o If xp € Xy, then x; € X, for all i > 0.

o [f the multiplier and prime modulus are chosen properly, a
Lehmer generator is statistically indistinguishable from
drawing from X, with replacement.

@ Note, there is nothing random about a Lehmer generator

@ For this reason, it is called a pseudo-random generator
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Intuitive Explanation

laz/m]m g(x)
— =
ax |
—*—* T T T T T *—
0 2 a m 2m 3m 4m 5m ax

@ When ax is divided by m, the remainder is “likely” to be any
value between 0 and m —1
@ Similar to buying numerous identical items at a grocery store
with only dollar bills.
@ ais the price of an item, x is the number of items, and

m = 100.
@ The change is likely to be any value between 0 and 99 cents
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Parameter Considerations

@ The choice of m is dictated, in part, by system considerations
@ On a system with 32-bit 2's complement integer arithmetic,
231 — 1 is a natural choice
o With 16-bit or 64-bit integer representation, the choice is not
obvious
@ In general, we want to choose m to be the largest
representable prime integer

@ Given m, the choice of a must be made with great care
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Lehmer Random Number Generators: Introduction
Example 2.1.1

@ If m =13 and a = 6 with xp = 1 then the sequence is
1,6,10,8,9,2,12,7,3,5,4,11,1, ...

o The ellipses indicate the sequence is periodic

o If m=13 and a = 7 with xp = 1 then the sequence is
1,7,10,5,9,11,12,6,3,8,4,2,1...

o Because of the 12, 6, 3 and 8, 4, 2, 1 patterns, this sequence
appears “less random”

o If m=13 and a =5 then
1,5,12,8,1,... or 2,10,11,3,2,... or 4,7,9,6,4,...

o This less-than-full-period behavior is obviously undesirable
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Central Issues

@ For a chosen (a, m) pair, does the function g(-) generate a
full-period sequence?
o If a full period sequence is generated, how random does the
sequence appear to be?
@ Can ax mod m be evaluated efficiently and correctly?
o Integer overflow can occur when computing ax
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Full Period Considerations

@ From Appendix B, bmod a= b — |b/a]a
@ There exists a non-negative integer ¢; = |ax;/m| such that
xi+1 = g(x;) = ax; mod m = ax; — mg;
Therefore (by induction)

X1 = axp — mQ

Xo = ax3— mc = a*xp — m(acy + c1)

X3 = axp—mcy = axy— m(a’cy+ acy + )

Xj = axj_1—mci_1=a'xy— m(a’_lco + a’_2c1 + ...+ C,'_1)
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Full Period Considerations

@ Since x; € X, we have x; = x; mod m. Therefore, letting
c=a"teg+a2%c+...+c_1, we have
xj = a'xg — mc = (a'xp — mc) mod m = a'xp mod m

Theorem (2.1.1)

If the sequence xg, X1, X2, - . . is produced by a Lehmer generator
with multiplier a and modulus m then

X; = a'xg mod m

@ It is an eminently bad idea to compute x; by first computing a’

@ Theorem 2.1.1 has significant theoretical value
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Lehmer Random Number Generators: Introduction
Full Period Considerations

(biby ... b,) mod a = (b mod a)(bp, mod a) - -- (b, mod a) mod a
Therefore
x; = a'xg mod m = (a’ mod m)xp mod m

@ Fermat’s little theorem states that if p is a prime which does
not divide a, then a?~! mod p = 1.
Thus, xm_1 = (a™~! mod m)xg mod m = xq

Theorem (2.1.2)

If xg € X, and the sequence xy, x1, X2 . .. is produced by a Lehmer
generator with multiplier a and (prime) modulus m then there is a
positive integer p with p < m — 1 such that xo, X1, X2 ... Xp_1 are
all different and

Xi+p = Xi i:0,1,2,...

That is, the sequence is periodic with fundamental period p. In
addition (m — 1) mod p = 0.
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Period Multipliers

o If we pick any initial seed xp € X}, and generate the sequence
X0, X1, X2, . . . then xg will occur again

@ Further xp will reappear at index p that is either m— 1 or a
divisor of m — 1

@ The pattern will repeat forever

@ We are interested in choosing full-period multipliers where
p=m-—1
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Lehmer Random Number Generators: Introduction

Example 2.1.2

@ Full-period multipliers generate a virtual circular list with
m — 1 distinct elements.

1 1
11 © 06 2‘ ’ .7
4, «10 44 .10
5 (a,m) = (6,13) +8 8 (a,m) = (7,13) *5
3° 9 3* 9
T . ¢ i1
12 12
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Finding Full Period Multipliers

Algorithm 2.1.1

p=1;
X = a;
while (x !'= 1) {
pt+;
x = (axx)h m; /* beware of axx overflow */

}
if(p == m—1)

/* a is a full-period multiplier */
else

/* a is not a full-period multiplier */

@ This algorithm is a slow-but-sure way to test for a full-period
multiplier
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Frequency of Full-Period Multipliers

@ Given a prime modulus m, how many corresponding
full-period multipliers are there?

Theorem (2.1.3)

If m is prime and p1, p2, ..., p, are the (unique) prime factors of
m — 1 then the number of full-period multipliers in X, is

(pl — 1)(P2 _1) o (Pr — 1) (m _ 1)
p1p2 Pr

o Example 2.1.3If m=13then m—1=12=122.3.
Therefore, there are %(13 — 1) = 4 full-period
multipliers (2, 6, 7, and 11)
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Lehmer Random Number Generators: Introduction
Example 2.1.4

o If m =231 — 1 = 2147483647 then since the prime
decomposition of m— 1 is

m—1=2%_2-2.32.7.11.31-151-331

the number of full period multipliers is

1-2.6-10-30-150-330
2.3.7-11-31-151-331

> (2-32.7-11-31-151-331) = 534600000

@ Therefore, approximately 25% of the multipliers are full-period
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Lehmer Random Number Generators: Introduction

Finding All Full-Period Multipliers

@ Once one full-period multiplier has been found, then all others
can be found in O(m) time

Algorithm 2.1.2

i =1;
X = a;
while (x !'= 1) {
if(ged(i, m—1) == 1)
/* a’ mod m is a full-period multiplierx/
1++
x =(a*x) % m; /* beware ax* x overflow *x/
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Finding All Full-Period Multipliers

Theorem (2.1.4)

If a is any full-period multiplier relative to the prime modulus m
then each of the integers
amodmeX, i=123,...,m-—1

is also a full-period multiplier relative to m if and only if i and
m — 1 are relatively prime
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Lehmer Random Number Generators: Introduction
Example 2.1.5

o If m = 13 then we know from Example 2.1.3 there are 4 full
period multipliers. From Example 2.1.1 a = 6 is one. Then,
since 1, 5, 7, and 11 and relatively prime to 13

6! mod 13 =6 6° mod 13 =2
6’ mod13 =7 611 mod 13 =11
@ Equivalently, if we knew a = 2 is a full-period multiplier
2l mod 13 =2 2°mod 13 =6
2" mod 13 =11 211 mod 13 =7
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Lehmer Random Number Generators: Introduction
Example 2.1.6

o If m =231 — 1 then from Example 2.1.4 there are 534600000
integers relatively prime to m — 1. The first first few are
i=1,513,17,19. a =7 is a full-period multiplier relative to
m and therefore

7% mod 2147483647 = 7

7° mod 2147483647 = 16807
713 mod 2147483647 = 252246292
7Y mod 2147483647 = 52958638

7% mod 2147483647 = 447489615

are full-period multipliers relative to m
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