Discrete-Event Simulation: A First Course

Section 2.4: Monte Carlo Simulation Examples

Outline

- Overview
- Matrices and Determinants
- Craps
- Hatcheck Girl
- Stochastic Activity Network

Section 2.4: Monte Carlo Simulation Examples

- Recall that axiomatic and experimental approaches are complementary
- Slight changes in assumptions can sink an axiomatic solution
- In other cases, an axiomatic solution is intractable
- Monte Carlo simulation can be used as an alternative in either case
- Four more examples of MC simulation are presented here

Example 1: Matrices and Determinants

- Matrix: set of real or complex numbers in a rectangular array
- For matrix A, a_{ij} is the element in row i, column j

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Here, A is $m \times n - m$ rows, n columns

Interesting quantities: eigenvalue, trace, rank, determinant

Determinants

• The determinant of a 2×2 matrix A is

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

The determinant of a 3 × 3 matrix A is

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Random Matrices

- Random matrix: matrix whose elements are random variables
- Consider a 3×3 matrix whose elements are random with positive diagonal, negative off-diagonal elements
- Question: What is the probability the determinant is positive?

$$\begin{vmatrix} +u_{11} & -u_{12} & -u_{13} \\ -u_{21} & +u_{22} & -u_{23} \\ -u_{31} & -u_{32} & +u_{33} \end{vmatrix} > 0$$

Axiomatic solution not easily calculated

Specification Model

- ullet Let event ${\mathcal A}$ be that the determinant is positive
- Generate N 3 \times 3 matrices with random elements
- Compute the determinant for each matrix
- Let $n_a =$ number of matrices with determinant > 0
- Probability of interest: $Pr(A) \cong n_a/N$

Computational Model: Program det

```
det
for (i = 0; i < N; i++) {
    for (j = 1; j <= 3; j++) {
        for (k = 1; k \le 3; k++) {
            a[j][k] = Random();
            if (j != k)
                a[j][k] = -a[j][k];
    temp1 = a[2][2] * a[3][3] - a[3][2] * a[2][3];
    temp2 = a[2][1] * a[3][3] - a[3][1] * a[2][3];
    temp3 = a[2][1] * a[3][2] - a[3][1] * a[2][2];
    x = a[1][1]*temp1 - a[1][2]*temp2 + a[1][3]*temp3;
    if (x > 0)
        count++;
printf(''%11.9f'', (double) count / N);
```

Output From det

- Want N sufficiently large for a good point estimate
- Avoid recycling random number sequences
- Nine calls to Random() per 3×3 matrix $\Longrightarrow N$; $m / 9 \cong 239\,000\,000$
- For initial seed 987654321 and N = 2000000000,

$$Pr(\mathcal{A}) \cong 0.05017347$$

Point Estimate Considerations

- How many significant digits should be reported?
- Solution: run the simulation multiple times
- One option: Use different initial seeds for each run
 Caveat: Will the same sequences of random numbers appear?
- Another option: Use different a for each run
 Caveat: Use a that gives a good random sequence
- ullet For two runs with a=16807 and 41214

$$\Pr(\mathcal{A}) \cong 0.0502$$

Example 2: Craps

- Toss a pair of fair dice and sum the up faces
- If 7 or 11, win immediately
- If 2, 3, or 12, lose immediately
- Otherwise, sum becomes "point"
 Roll until point is matched (win) or 7 (loss)
- What is Pr(A), the probability of winning at craps?

Craps: Axiomatic Solution

- Requires conditional probability
- Axiomatic solution: $244/495 \cong 0.493$
- Underlying mathematics must be changed if assumptions change

 Axiomatic solution provides a nice consistency check for (easier) Monte Carlo simulation

Craps: Specification Model

Model one die roll with Equilikely(1, 6)

```
Algorithm 2.4.1
wins = 0:
for (i = 1; i \le N; i++) {
    roll = Equilikely(1, 6) + Equilikely(1, 6);
    if (roll = 7 \text{ or } roll = 11)
         wins++:
    else if (roll != 2 \text{ and } roll != 3 \text{ and } roll != 12) {
         point = roll;
         do {
              roll = Equilikely(1, 6) + Equilikely(1, 6);
              if (roll == point) wins++;
         } while (roll != point and roll != 7)
  return (wins/N);
```

Craps: Computational Model

- Program craps: uses switch statement to determine rolls
- ullet For $N=10\,000$ and three different initial seeds (see text)

$$Pr(A) = 0.497$$
, 0.485, and 0.502

- These results are consistent with 0.493 axiomatic solution
- This (relatively) high probability is attractive to gamblers, yet ensures the house will win in the long run

Example 3: Hatcheck Girl

- ullet Let ${\mathcal A}$ be that all checked hats are returned to wrong owners
- WLOG, let the checked hats be numbered 1, 2, ..., n
- Girl selects (equally likely) one of the remaining hats to return $\implies n!$ permutations, each with probability 1/n!
- E.g.: When n=3 hats, possible return orders are 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3.2.1
- Only 2,3,1 and 3,1,2 correspond to all hats returned incorrectly

$$Pr(A) = 1/3$$

Hatcheck: Specification Model

- Generate a random permutation of the first *n* integers
- The permutation corresponds to the order of hats returned

Clever Shuffling Algorithm (see Section 6.5)

```
for (i = 0; i < n - 1; i++) {
    i = \text{Equilikely}(i, n - 1);
    hold = a[i];
    a[i] = a[i]; /* swap a[i] and a[i] */
    a[i] = hold;
```

Generates a random permutation of an array a

 Check the permuted array to see if any element matches its index

Hatcheck: Computational Model

- Program hat: Monte Carlo simulation of hatcheck problem
- Uses shuffling algorithm to generate random permutation of hats
- For n=10 hats, $10\,000$ replications, and three different seeds $\Pr(\mathcal{A})=0.369,\ 0.369,\ \text{and}\ 0.368$
- What happens to the probability as $n \to \infty$?
- If using simulation, how big should n be?
 Instead, consider axiomatic solution

Hatcheck: Axiomatic Solution

• The probability Pr(A) of no hat returned correctly is

$$1 - \left(1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n+1} \frac{1}{n!}\right)$$

- For n = 10, $Pr(A) \cong 0.36787946$
- Important consistency check for validating craps
- As $n \to \infty$, the probability of no hat returned is

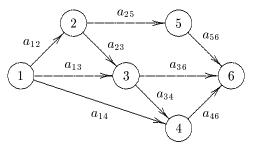
$$1/e \cong 0.36787944$$

Example 4: Stochastic Activity Network

- Stochastic Activity Network: network in which arcs represent activities to be completed according to prescribed precedences
- Often used in project management of projects that occur once
- Sequencing of activities is important
- Certain activities cannot begin until others have completed
- Precedence relationships establish sequencing between activities

An Example Activity Network

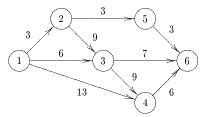
- Arcs represent activities
- Nodes delay the beginning of activities per sequencing constraints



 E.g., activity a₄₆ cannot begin until a₁₄ and a₃₄ have completed

Paths In An Activity Network

- Path π_k : ordered sequence of arcs from one node to another
- Length of π_k : sum of all activity durations



- Integers along arcs represent time to complete activities
- Question: how long will it take to complete the network?

Critical Paths

• In the previous network, there are r = 6 paths

k	Node sequence	π_{k}	L_k
1	$1 \to 3 \to 6$	$\{a_{13}, a_{36}\}$	13
2	$1 \rightarrow 2 \rightarrow 3 \rightarrow 6$	$\{a_{12}, a_{23}, a_{36}\}$	19
3	$1 \rightarrow 2 \rightarrow 5 \rightarrow 6$	$\{a_{12}, a_{25}, a_{56}\}$	9
4	$1 \to 4 \to 6$	$\{a_{14}, a_{46}\}$	19
5	$1 \to 3 \to 4 \to 6$	$\{a_{13}, a_{34}, a_{46}\}$	21
6	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6$	$\{a_{12}, a_{23}, a_{34}, a_{46}\}$	27

- Critical path π_c : path with longest length here, $\pi_c \equiv \pi_6$
- Any path with length < length of π_c can be delayed

Stochastic Activity Networks

- Activity durations are positive random variables
- n nodes, m arcs (activities) in the network
- Single source node (labeled 1), single terminal node (labeled n)
- Y_{ij} : positive random activity duration for arc a_{ij}
- T_i : completion time of all activities entering node j
- A path is critical with a certain probability

$$p(\pi_k) = \Pr(\pi_k \equiv \pi_c), \quad k = 1, 2, \dots, r$$

SAN: Conceptual Model

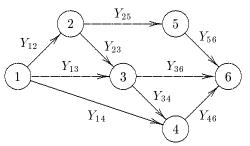
• Represent the network as an $n \times m$ node-arc incidence matrix N

$$N[i,j] = \begin{cases} 1 & \text{arcjleavesnodei} \\ -1 & \text{arcjentersnodei} \\ 0 & \text{otherwise} \end{cases}$$

- Use Monte Carlo simulation to estimate:
 - mean time to complete the network
 - probability that each path is critical

SAN: Conceptual Model

• Each activity duration is a uniform random variate



E.g., Y_{12} has a Uniform(0,3) distribution

0-13-142917-5

SAN: Specification Model

ullet Completion time T_j relates to incoming arcs

$$T_j = \max_{i \in \mathcal{B}(j)} \{ T_i + Y_{ij} \}$$
 $j = 2, 3, ..., n$

where $\mathcal{B}(j)$ is the set of nodes immediately before node j

• E.g., in the previous six-node example

$$T_6 = \max\{T_3 + Y_{36}, T_4 + Y_{46}, T_5 + Y_{56}\}$$

ullet We can write a recursive function to compute the T_j

SAN: Conceptual Model

• The previous 6-node, 9-arc network is represented as follows:

- In each row:
 - 1's represent arcs exiting that node
 - -1's represent arcs entering that node
- Exactly one 1 and one -1 in each column

Algorithm 2.4.2

 Returns a random time to complete all activities prior to node j for a single SAN with node-arc incidence matrix N

Algorithm 2.4.2

```
k = 1;
l = 0:
t_{\text{max}} = 0.0;
while (I < |\mathcal{B}(j)|) {
     if (N[j][k] == -1) {
          i = 1;
          while (N[j][k] != 1)
               i++;
          t = T_i + Y_i;
          if (t >= t_{max}) t_{max} = t;
          /++;
return (t_{max});
```

SAN: Computational Model

- Program san: MC simulation of a stochastic activity network
- Uses recursive function to compute completion times T_j (see text)
- ullet Activity durations Y_{ij} are generated at random a priori
- Estimates T_n , the time to complete the entire network
- Computes critical path probabilities $p(\pi_k)$ for k = 1, 2, ..., r
- Axiomatic approach does not provide an analytic solution

SAN: Computational Model

• For 10 000 realizations of the network and three initial seeds $T_6=14.64,\ 14.59,\ {\rm and}\ 14.57$

Point estimates for critical path probabilities are

• Path π_6 is most likely to be critical — 57.26% of the time

