Discrete-Event Simulation:
A First Course
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Section 2.4: Monte Carlo Simulation Examples

@ Recall that axiomatic and experimental approaches are
complementary

@ Slight changes in assumptions can sink an axiomatic solution
@ In other cases, an axiomatic solution is intractable
@ Monte Carlo simulation can be used as an alternative in either

case

@ Four more examples of MC simulation are presented here
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Matrices and Determinants

Example 1: Matrices and Determinants

@ Matrix: set of real or complex numbers in a rectangular array

@ For matrix A, ajj is the element in row /, column j

all di2 ... din

ani ano e aon
A=

dml dm2 --- Amn

Here, A is m x n — m rows, n columns

@ Interesting quantities: eigenvalue, trace, rank, determinant
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Matrices and Determinants

Determinants

@ The determinant of a 2 X 2 matrix A is

411 a2

A= 7
21 a2

= d11822 — a21412

@ The determinant of a 3 X 3 matrix A is

a1 d12 413
Al = | an ax a3
d31 d32 as3

a2 a3
as2 as3

azi azs
asi ass

a1 a2
= an

asi as2

+ a3

‘—312
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Matrices and Determinants

Random Matrices

@ Random matrix: matrix whose elements are random variables

@ Consider a 3 x 3 matrix whose elements are random with
positive diagonal, negative off-diagonal elements

@ Question: What is the probability the determinant is positive?

+‘uil —ui2 —ui3
—up1 +uxp —u3 | >0
—Uu31 —U3 U3z

@ Axiomatic solution not easily calculated
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Matrices and Determinants

Specification Model

]
]
]
]
]

Let event A be that the determinant is positive
Generate N 3 x 3 matrices with random elements
Compute the determinant for each matrix

Let n; = number of matrices with determinant > 0
Probability of interest: Pr(A) = n,/N
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Matrices and Determinants

Computational Model: Program det

det

for (i = 0; 1 < N; i++) {
for (j = 1; j <= 3; j++) {
for (k = 1; k <= 3; k++) {
al[jl[k] = Random();
if (j !'= k)
aljlk] = -aljl[k];

}
}
templ = a[2][2] * a[3][3] - a[3][2] * a[2][3];
temp2 = a[2][1] * a[3]1[3] - a[3][1] * a[2][3];
temp3 = a[2][1] * a[3][2] - a[3][1] * a[2][2];
x = a[1] [1]*templ - a[1] [2]*temp2 + a[1] [3]*temp3;
if (x > 0)

count++;

}

printf(‘‘%11.9f’’, (double) count / N);
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Matrices and Determinants

Output From det

o Want N sufficiently large for a good point estimate
@ Avoid recycling random number sequences

@ Nine calls to Random() per 3 x 3 matrix = N jm / 9 =
239000000

o For initial seed 987654321 and N = 200 000 000,
Pr(A) = 0.05017347
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Matrices and Determinants

Point Estimate Considerations

How many significant digits should be reported?

Solution: run the simulation multiple times

(]

One option: Use different initial seeds for each run

Caveat: Will the same sequences of random numbers appear?

(]

Another option: Use different a for each run
Caveat: Use a that gives a good random sequence
@ For two runs with a = 16807 and 41214

Pr(A) = 0.0502
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Example 2: Craps

*]
*]
]
]

(]

Toss a pair of fair dice and sum the up faces

If 7 or 11, win immediately

If 2, 3, or 12, lose immediately

Otherwise, sum becomes “point”

Roll until point is matched (win) or 7 (loss)

What is Pr(.A), the probability of winning at craps?
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Craps

Craps: Axiomatic Solution

@ Requires conditional probability
@ Axiomatic solution: 244/495 = 0.493

@ Underlying mathematics must be changed if assumptions
change

E.g., unfair dice

@ Axiomatic solution provides a nice consistency check for
(easier) Monte Carlo simulation
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Craps:

)

Algorithm 2.4.1

wins =

for

Craps

Specification Model

Model one die roll with Equilikely (1, 6)

0;
G =1;0i<=N; i++) {
roll = Equilikely(1, 6) + Equilikely(1, 6);
if (roll =7 or roll =11)
wins++;
else if (roll != 2 and roll !'= 3 and roll '= 12) {
point = roll;
do {
roll = Equilikely(1, 6) + Equilikely(1, 6);
if (roll == point) wins++;
} while (roll != point and roll != 7)

}

} return (wins/N);
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Craps

Craps: Computational Model

@ Program craps: uses switch statement to determine rolls

@ For N = 10000 and three different initial seeds (see text)
Pr(A) = 0.497, 0.485, and 0.502

@ These results are consistent with 0.493 axiomatic solution

@ This (relatively) high probability is attractive to gamblers,

yet ensures the house will win in the long run

Section 2.4: Monte Carlo Simulation Examples Discrete-Event Simulation  (©2006 Pearson Ed., Inc.  0-13-142917-5



Hatcheck Girl

Example 3: Hatcheck Girl

(]

Let A be that all checked hats are returned to wrong owners
WLOG, let the checked hats be numbered 1, 2, ... n

Girl selects (equally likely) one of the remaining hats to return

= n! permutations, each with probability 1/n!

E.g.: When n = 3 hats, possible return orders are
1,2,3 1,3,2 2,13 2,31 3,12 32,1

Only 2,3,1 and 3,1,2 correspond to all hats returned
incorrectly

(]

Pr(A) = 1/3
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Hatcheck Girl

Hatcheck: Specification Model

o Generate a random permutation of the first n integers

@ The permutation corresponds to the order of hats returned

Clever Shuffling Algorithm (see Section 6.5)

for (/ =0; i < n-1; i++) {
Jj = Equilikely(i, n - 1);

hold = alj];
aljl = alil; /* swap al/] and alj] */
ali]l] = hold;

Generates a random permutation of an array a

@ Check the permuted array to see if any element matches its
index
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Hatcheck Girl

Hatcheck: Computational Model

Program hat: Monte Carlo simulation of hatcheck problem

Uses shuffling algorithm to generate random permutation of
hats

For n = 10 hats, 10000 replications, and three different seeds
Pr(A) = 0.369, 0.369, and 0.368
What happens to the probability as n — 00?

(]

If using simulation, how big should n be?

Instead, consider axiomatic solution
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Hatcheck Girl

Hatcheck: Axiomatic Solution

@ The probability Pr(.A) of no hat returned correctly is

1 1 i1 L
1—(1—2!+3!—-~-+(—1) =

@ For n = 10, Pr(.A) = 0.36787946

@ Important consistency check for validating craps

@ As n — oo, the probability of no hat returned is
1/e = 0.36787944
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Stochastic Activity Network

Example 4: Stochastic Activity Network

@ Stochastic Activity Network: network in which arcs represent
activities to be completed according to prescribed precedences

@ Often used in project management — of projects that occur
once

@ Sequencing of activities is important
@ Certain activities cannot begin until others have completed

@ Precedence relationships establish sequencing between
activities
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Stochastic Activity Network

An Example Activity Network

@ Arcs represent activities

@ Nodes delay the beginning of activities per sequencing
constraints

o E.g., activity aze cannot begin until a;4 and as4 have
completed
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Stochastic Activity Network

Paths In An Activity Network

@ Path 7y ordered sequence of arcs from one node to another

@ Length of mi: sum of all activity durations

@ Integers along arcs represent time to complete activities

@ Question: how long will it take to complete the network?
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Stochastic Activity Network

Critical Paths

@ In the previous network, there are r = 6 paths

k Node sequence Tk Ly
1 1—-3—6 {813, 336} 13
2 1-2—-3—6 {31273237336} 19
3 1-2—-5—6 {812,325,356} 9

4 1—-4—6 {3147346} 19
5 1-3—-4—-6 {8137 d34, 346} 21

6 1—-2—-3—4—-6 {aip, a3,a3,as6} 27
o Critical path m.: path with longest length — here, 1. = 75
@ Any path with length < length of 7. can be delayed
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Stochastic Activity Network

Stochastic Activity Networks

@ Activity durations are positive random variables

@ n nodes, m arcs (activities) in the network

@ Single source node (labeled 1), single terminal node (labeled
n)

@ Yj: positive random activity duration for arc aj;

@ T;: completion time of all activities entering node j

@ A path is critical with a certain probability

p(ﬂ-k):Pr(ﬂ-kEﬂ—C)y k:172,...,r
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Stochastic Activity Network

SAN: Conceptual Model

@ Represent the network as an n x m node-arc incidence matrix

N
1 arcjleavesnodei
N[i,j]= ¢ —1 arcjentersnodei
0 otherwise

@ Use Monte Carlo simulation to estimate:

@ mean time to complete the network
@ probability that each path is critical
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Stochastic Activity Network

SAN: Conceptual Model

@ Each activity duration is a uniform random variate

E.g., Y12 has a Uniform(0,3) distribution
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Stochastic Activity Network

SAN: Specification Model

@ Completion time T; relates to incoming arcs

T = T: +Y; [ =2,3,...,
J ig‘;&?){ i+ U} J n

where B(j) is the set of nodes immediately before node
@ E.g., in the previous six-node example

Te = max{ T3 + Y36, Ta + Yae, Ts + Y56}

@ We can write a recursive function to compute the T;

Section 2.4: Monte Carlo Simulation Examples Discrete-Event Simulation  (©2006 Pearson Ed., Inc.  0-13-142917-5



Stochastic Activity Network

SAN: Conceptual Model

@ The previous 6-node, 9-arc network is represented as follows:

1 1 1 0 0 0 0 0 ©
10 0 1 1 0 0 0 O

y_| 0 -1 0 -1 0 1 1 0 0
0 0 -1 0 0 -1 0 1 0

o 0 0 0 -1 0 0 o0 1

0 0 0 0 0 0 -1 -1 -1

@ In each row:

1's represent arcs exiting that node
-1's represent arcs entering that node

@ Exactly one 1 and one -1 in each column
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Stochastic Activity Network

Algorithm 2.4.2

@ Returns a random time to complete all activities prior to node j for a
single SAN with node-arc incidence matrix N

Algorithm 2.4.2

| = 0;
tmax = 0.0;
while (/ < |B(j)P {
if (N[j][k] == -1) {

I =1;
while (N[j][k] '= 1)
1++;
t=T +Y;
if (t >= tmax) tmax = t;
[++;
}
k++;

}

return (tmax);
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Stochastic Activity Network

SAN: Computational Model

(]

Program san: MC simulation of a stochastic activity network

(]

Uses recursive function to compute completion times T; (see
text)

Activity durations Yj; are generated at random a priori
Estimates T,, the time to complete the entire network

Computes critical path probabilities p(mx) for k =1,2,...,r

e © ¢ ¢

Axiomatic approach does not provide an analytic solution
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Stochastic Activity Network

SAN: Computational Model

@ For 10000 realizations of the network and three initial seeds
Te = 14.64, 14.59, and 14.57

@ Point estimates for critical path probabilities are

Tk pi(mk) Pa(mk)  B3(mk)  Pa(mi)
{a13, a3} 0.0168 0.0181 0.0193 0.0181
{a12, a3, as6 } 0.0962 0.0970 0.0904 0.0945
{a12, azs, as6 } 0.0013 0.0020 0.0013 0.0015
{a14, as6) 0.1952 0.1974 0.1007 0.1944
{a13, 334, as6 } 0.1161 0.1223 0.1182 0.1189
{312, az3, dz4, 345} 0.5744 0.5632 0.5801 0.5726

SO WN P X

@ Path 7g is most likely to be critical — 57.26% of the time
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