Discrete-Event Simulation:

A First Course
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Discrete-Event Simulation

Section 3.1 Discrete-Event Simulation

@ ssql and sisl are trace-driven discrete-event simulations
@ Both rely on input data from an external source

@ These realizations of naturally occurring stochastic processes
are limited

@ We cannot perform “what if” studies without modifying the
data

@ We will convert the single server service node and the simple
inventory system to utilize randomly generated input
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Discrete-Event Simulation

Single Server Service Node

@ We need stochastic assumptions for service times and arrival
times
@ Assume service times are between 1.0 and 2.0 minutes

@ The distribution within this range is unknown
o Without further knowledge, we assume no time is more likely
than any other

@ We will use a Uniform(1.0, 2.0) random variate
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Discrete-Event Simulation

Exponential Random Variates

@ In general, it is unreasonable to assume that all possible
values are equally likely.

@ Frequently, small values are more likely than large values

@ We need a non-linear transformation that maps 0.0 — 1.0 to
0.0 — o0.

z=—pIn(l—u)

1.0
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Discrete-Event Simulation

Exponential Random Variates

@ The transformation is monotone increasing, one-to-one, and onto
0<(l-u)<1
—c0o<In(l—u)<0
0<—plIn(l—-u)<oo

0<x <

O<uxl1

<~
—
<~
=

Generating an Exponential Random Variate

double Exponential(double u) /* use pu > 0.0 */

{
}

return (-p * log(1.0 - Random()));

@ The parameter p specifies the sample mean

@ In the single-server service node simulation, we use Exponential(y)
interarrival times
a; = aj_1 + Exponential(u); i=1,23,...,n
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Discrete-Event Simulation
Program ssq?2

@ Program ssq2 is an extension of ssql

o Interarrival times are drawn from Exponential(2.0)
o Service times are drawn from Uniform(1.0, 2.0)

@ The program generates all first-order statistics ¥, w, d, s, /, g
and x

)

@ |t can be used to study the steady-state behavior

& Will the statistics converge independent of the initial seed?

¢ How many jobs does it take to achieve steady-state behavior?
@ |t can be used to study the transient behavior

o Fix the number of jobs processed and replicate the program
with the initial state fixed
@ Each replication uses a different initial rng seed
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Discrete-Event Simulation
Example 3.1.3

@ The theoretical averages for a single-server service node using
Exponential(2.0) arrivals and Uniform(1.0, 2.0) service times
are

7 w d 5 1 el X
2.00 3.83 233 150 192 1.17 0.75
@ Although the server is busy 75% of the time, on average there
are approximately two jobs in the service node

@ A job can expect to spend more time in the queue than in
service

@ To achieve these averages, many jobs must pass through node
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Discrete-Event Simulation

Example 3.1.3

@ The accumulated average wait was printed every 20 jobs
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@ The convergence of w is slow, erratic, and dependent on the
initial seed
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Discrete-Event Simulation

Geometric Random Variates

@ The Geometric(p) random variate is the discrete analog to a
continuous Exponential(i) random variate
Let x = Exponential(j1) = —pIn(1 — u)
Let y = |x] and let p = Pr(y # 0).

y=|x]#0 <= x>1
— —puh(l-u)>1
— In(l—u)<-1/u
<— 1—u<exp(—1/u)

Since 1 — u is also Uniform(0.0,1.0),

p=Pr(y #0) = exp(—1/p)
Finally, since u = —1/In(p),

y = [In(1=u)/In(p)]
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Discrete-Event Simulation

Geometric Random Variates

@ ANSI C function

Generating a Geometric Random Variate

long Geometric(double p) /* use 0.0 < p < 1.0 */

{
}

return ((long) (log(1.0 - Random()) / log(p)));

@ The mean of a Geometric(p) random variate is p/(1 — p)
o If p is close to zero then the mean will be close to zero

o If p is close to one, then the mean will be large

Section 3.1 Discrete-Event Simulation Discrete-Event Simulation  (©2006 Pearson Ed., Inc.  0-13-142917-5



Discrete-Event Simulation
Example 3.1.4

@ Assume that jobs arrive at random with a steady-state arrival
rate of 0.5 jobs per minute
@ Assume that Job service times are composite with two
components
o The number of service tasks is 1 + Geometric(0.9)
@ The time (in minutes) per task is Uniform(0.1,0.2)

Get Service Method

double GetService(void)

{
long k;
double sum = 0.0;
long tasks = 1 + Geometric(0.9);

for (k = 0; k < tasks; k++)
sum += Uniform(0.1, 0.2);
return (sum);
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Discrete-Event Simulation
Example 3.1.4

@ The theoretical steady-state statistics for this model are

7 w d 5 1 el X
2.00 5.77 427 150 2.89 2.14 0.75
@ The arrival rate, service rate, and utilization are identical to
Example 3.1.3
@ The other four statistics are significantly larger

@ Performance measures are sensitive to the choice of service
time distribution
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Discrete-Event Simulation

Simple Inventory System

@ Program sis2 has randomly generated demands using an
Equilikely(a, b) random variate

@ Using random data, we can study transient and steady-state
behaviors

e If (a, b) = (10,50) and (s,S) = (20, 80), then the
approximate steady-state statistics are

d ) ] It 1~
30.00 30.00 0.39 42.86 0.26
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Discrete-Event Simulation

Example 3.1.6

@ The average inventory level / = /T — |~ approaches steady
state after several hundred time intervals
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o Convergence is slow, erratic, and dependent on the initial seed
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Example 3.1.

Discrete-Event Simulation

7

o If we fix S, we can find the optimal cost by varying s

@ Recall that the dependent cost ignores the fixed cost of each
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Discrete-Event Simulation

Example 3.1.7

@ Using a fixed initial seed guarantees the exact same demand
sequence

@ Any changes to the system are caused solely by the change of s
@ A steady state study of this system is unreasonable

o All parameters would have to remain fixed for many years
o When n = 100 we simulate approximately 2 years
@ When n = 10000 we simulate approximately 192 years
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Discrete-Event Simulation

Statistical Considerations

@ With Variance Reduction, we eliminate all sources of variance
except one
o Transient behavior will always have some inherent uncertainty
o We kept the same initial seed and changed only s
@ Robust Estimation occurs when a data point that is not
sensitive to small changes in assumptions
o Values of s close to 23 have essentially the same cost
& Would the cost be more sensitive to changes in S or other
assumed values?
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