
Multi-Stream Lehmer RNGs

Discrete-Event Simulation:

A First Course

Section 3.2: Multi-Stream Lehmer RNGs

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Section 3.2: Multi-Stream Lehmer RNGs

Typical DES models have many stochastic components

Want a unique source of randomness for each component

One (poor) option: multiple RNGs

Better option: one RNG with multiple “streams” of random
numbers

one stream per stochastic component

We will partition output from our Lehmer RNG into multiple
streams

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Example 3.2.1: ssq2 Arrival and Service Processes

ssq2 has two stochastic components: arrival and service

Allocate a different generator state variable to each

GetService with Unique Seed

double GetService(void)

{
double s;

static long x = 12345;

PutSeed(x);

s = Uniform(1.0, 2.0);

GetSeed(&x);

return (s);

}

x represents the current state of the service process

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Example 3.2.2: ssq2 Arrival and Service Processes

Arrival should have its own static variable, initialized
differently

GetArrival with Unique Seed

double GetArrival(void)

{
static double arrival = START;

static long x = 54321;

PutSeed(x);

arrival += Exponential(2.0);

GetSeed(&x);

return (arrival);

}

x represents the current state of arrival process

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

The Modified Arrival and Service Processes

As modified, arrival and service times are drawn from different
streams of random numbers

Nothing magic about the choice of seed for each stream

The choices may, in fact, be poor ones!

Provided the streams don’t overlap, the processes are
uncoupled

Execution time cost is negligible (see Example 3.2.3)

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Stream Considerations

Potential problem: assignment of initial seeds to facilitate
streams

Each initial state should be chosen to produce disjoint streams

If states are picked at whim, no guarantee of disjoint streams

Some initial states may only be a few calls to Random apart

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

....
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
. . . .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

•

(a, m) = (48271, 231 − 1)

12345

54321

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Jump Multipliers

We will develop a multi-stream version of rng

Theorem (3.2.1)

Given g(x) = ax mod m and integer j(1 < j < m − 1)

Jump function : g j(x) = (aj mod m)x mod m

Jump multiplier : aj mod m

If g(·) generates x0, x1, x2, . . . then g j(·) generates x0, xj , x2j , . . .

Theorem 3.2.1 is the key to creating streams

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Example 3.2.4: An Example Jump Function

If m = 31 and a = 3 and j = 6, the jump multiplier is

aj mod m = 36 mod 31 = 16

If x0 = 1 then g(x) = 3x mod 31 generates

1,3,9,27,19,26,16,17,20,29,25,13,8,24,10, 30,28,22,4,. . .

The jump function g6(x) = 16x mod 31 generates

1,16,8,4,2,. . .

I.e., the first sequence is x0, x1, x2, . . .; the second is
x0, x6, x12, . . .

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Using the Jump Function

First, compute the jump multiplier aj mod m (one time cost)

Then, g j(·) permits jumping from x0 to xj to x2j to . . .

The user supplies one initial seed

If j is chosen well, g j(·) can “plant” additional initial seeds

Each planted seed corresponds to a different stream

Each planted seed is separated by j calls to Random

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

An Example 4-Stream Sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
....

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
. . . . .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

•

•

• (a, m) = (48271, 231 − 1)

x0

xj

x2j

x3j

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Example 3.2.5: An Appropriate Jump Multiplier

Consider 256 = 28 different streams of random numbers

Partition the RNG output sequence into 256 disjoint
subsequences of equal length

Find the largest j < 231/28 = 223 such that the jump
multiplier is modulus-compatible

g j(x) = (48271j mod m)x mod m can be implemented via Alg
2.2.1

Then g j(x) can be used to plant the other 255 initial seeds

Possibility of stream overlap is minimized (though not
eliminated!)

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Maximal Modulus-Compatible Jump Multipliers

Maximal jump multiplier : aj mod m where j is the largest
integer less than ⌊m/s⌋ such that aj mod m is modulus
compatible

Example 3.2.6: multipliers for (a, m) = (48271, 231 − 1) RNG

# of streams s ⌊m/s⌋ jump size j jump multiplier
aj mod m

1024 2097151 2082675 97070
512 4194303 4170283 44857
256 8388607 8367782 22925
128 16777215 16775552 40509

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Library rngs

rngs is an upward-compatible multi-stream replacement for
rng

By default, provides 256 streams, indexed 0 to 255 (0 is the
default)

Only one stream is active at any time

Six available functions:

Random(void)

PutSeed(long x): superseded by PlantSeeds

GetSeed(long *x)

TestRandom(void)

SelectStream(int s): used to define the active stream
PlantSeeds(long x): “plants” one seed per stream

Henceforth, rngs is the library of choice

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Example 3.2.7: ssq2 Revisited

Use rngs functions for GetArrival, GetService

GetArrival Method

double GetArrival(void) {
static double arrival = START;

SelectStream(0);

arrival += Exponential(2.0);

return (arrival);

}

GetService Method

double GetService(void) {
SelectStream(2);

return (Uniform(1.0, 2.0));

}

Include "rngs.h" and use PlantSeeds(12345)

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Uncoupling Stochastic Processes

Per modifications, arrival and service processes are uncoupled

Consider changing the service process to

Uniform(0.0, 1.5) + Uniform(0.0, 1.5)

Without uncoupling, arrival process sequence would change!

With uncoupling, the service process “sees” exactly the same
arrival sequence

Important variance reduction technique

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Single-Server Service Node with Multiple Job Types

Extend the single-server service node model from Chapter 1

Consider multiple job types, each with its own arrival and
service process

Example 3.2.8: Suppose there are two job types
1 Exponential(4.0) interarrivals, Uniform(1.0, 3.0) service
2 Exponential(6.0) interarrivals, Uniform(0.0, 4.0) service

Use rngs to allocate a different stream to each stochastic
process

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Example 3.2.8: Arrival Process

Arrival Process
double GetArrival(int *j)

/* Index j corresponds to job type */

{
const double mean[2] = {4.0, 6.0};
static double arrival[2] = {START, START};
static int init = 1;

double temp;

if (init) {
SelectStream(0);

arrival[0] += Exponential(mean[0]);

SelectStream(1);

arrival[1] += Exponential(mean[1]);

init = 0;

}
if (arrival[0] <= arrival[1])

*j = 0;

else

*j = 1;

temp = arrival[*j];

SelectStream(*j);

arrival[*j] += Exponential(mean[*j]);

return (temp);

}

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Example 3.2.8: Service Process

Service Process

double GetService(int j)

{
const double min[2] = {1.0, 0.0};
const double max[2] = {3.0, 4.0};
SelectStream(j + 2);

return (Uniform(min[j], max[j]));

}

Index j matches service time to appropriate job type

All four simulated stochastic processes are uncoupled

Any process could be changed without altering the random
sequence of others!

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5



Multi-Stream Lehmer RNGs

Consistency Checks

With appropriate changes to ssq2, steady-state statistics are

r̄ w̄ d̄ s̄ l̄ q̄ x̄

2.40 7.92 5.92 2.00 3.30 2.47 0.83

Obvious consistency checks: w̄ = d̄ + s̄ and l̄ = q̄ + x̄

Other consistency checks:

• Both job types have avg service time of 2.0 =⇒ s̄ = 2.00
• Net arrival rate should be 1/4 + 1/6 = 5/12 =⇒ r̄ = 12/5 =

2.40
• x̄ should be ratio of arrival to service rates

5/12

1/2
= 5/6 ∼= 0.83

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation c©2006 Pearson Ed., Inc. 0-13-142917-5


