Discrete-Event Simulation:

A First Course

Section 3.2: Multi-Stream Lehmer RNGs

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Multi-Stream Lehmer RNGs

Section 3.2: Multi-Stream Lehmer RNGs

Typical DES models have many stochastic components
Want a unique source of randomness for each component

One (poor) option: multiple RNGs

e © ¢ ¢

Better option: one RNG with multiple “streams” of random
numbers

one stream per stochastic component

We will partition output from our Lehmer RNG into multiple
streams

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Example 3.2.1: ssq2 Arrival and Service Processes

@ ssq2 has two stochastic components: arrival and service

@ Allocate a different generator state variable to each

GetService with Unique Seed

double GetService(void)

{

double s;

static long x = 12345;
PutSeed(x) ;

s = Uniform(1.0, 2.0);
GetSeed (&x) ;

return (s);

@ x represents the current state of the service process

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Example 3.2.2: ssq2 Arrival and Service Processes

@ Arrival should have its own static variable, initialized
differently

GetArrival with Unique Seed

double GetArrival (void)

{

static double arrival = START;
static long x = 54321;
PutSeed (x) ;

arrival += Exponential(2.0);
GetSeed (&x) ;

return (arrival);

@ X represents the current state of arrival process

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
The Modified Arrival and Service Processes

@ As modified, arrival and service times are drawn from different
streams of random numbers

@ Nothing magic about the choice of seed for each stream
@ The choices may, in fact, be poor ones!

@ Provided the streams don’t overlap, the processes are
uncoupled

@ Execution time cost is negligible (see Example 3.2.3)

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs

Stream Considerations

@ Potential problem: assignment of initial seeds to facilitate
streams

@ Each initial state should be chosen to produce disjoint streams

o If states are picked at whim, no guarantee of disjoint streams

@ Some initial states may only be a few calls to Random apart

12345

. 54321

(a,m) = (48271,231 — 1)

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Jump Multipliers

@ We will develop a multi-stream version of rng

Theorem (3.2.1)

Given g(x) = ax mod m and integer j(1 <j < m—1)
Jump function: g/(x) = (& mod m)x mod m
Jump multiplier: @ mod m

If g(-) generates xg, x1, X2, . .. then g/(-) generates X05 Xj5 Xj5 -

@ Theorem 3.2.1 is the key to creating streams

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Example 3.2.4: An Example Jump Function

o If m= 31 and a =3 and j = 6, the jump multiplier is
2 mod m = 3% mod 31 = 16

@ If xo = 1 then g(x) = 3x mod 31 generates
1,3,9,27,19,26,16,17,20,29,25,13,8,24,10, 30,28,22,4,. ..
@ The jump function g®(x) = 16x mod 31 generates
1,16,8,4,2,. ..
o l.e., the first sequence is xp, x1, X2, . . .; the second is

X0, X6, X125 - - -

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Using the Jump Function

First, compute the jump multiplier & mod m (one time cost)
Then, g/(-) permits jumping from xo to x; to xp; to ...

The user supplies one initial seed

If j is chosen well, g/(-) can “plant” additional initial seeds

Each planted seed corresponds to a different stream

e © 6 ¢ ¢ ¢

Each planted seed is separated by j calls to Random

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs

An Example 4-Stream Sequence

Lo

i (a,m) = (48271,2%1 —1) o5

T2j

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs

Example 3.2.5: An Appropriate Jump Multiplier

o Consider 256 = 28 different streams of random numbers

@ Partition the RNG output sequence into 256 disjoint
subsequences of equal length

@ Find the largest j < 23!/28 = 223 sych that the jump
multiplier is modulus-compatible

o g/(x) = (48271 mod m)x mod m can be implemented via Alg
221

@ Then g/(x) can be used to plant the other 255 initial seeds

@ Possibility of stream overlap is minimized (though not
eliminated!)

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Maximal Modulus-Compatible Jump Multipliers

o Maximal jump multiplier: a mod m where j is the largest
integer less than | m/s] such that @ mod m is modulus
compatible

o Example 3.2.6: multipliers for (a, m) = (48271,23! — 1) RNG

of streamss | m/s] jump size j jump multiplier
2 mod m
1024 2097151 2082675 97070
512 4194303 4170283 44857
256 8388607 8367782 22925

128 16777215 16775552 40509

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Library rngs

@ rngs is an upward-compatible multi-stream replacement for
rog

By default, provides 256 streams, indexed 0 to 255 (0 is the
default)

Only one stream is active at any time

(]

Six available functions:

Random(void)

PutSeed(long x): superseded by PlantSeeds
GetSeed(long *x)

TestRandom(void)

SelectStream(int s): used to define the active stream
PlantSeeds(long x): “plants” one seed per stream

¢ ¢ @ ¢ ¢ @€

Henceforth, rngs is the library of choice

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs

Example 3.2.7: ssq2 Revisited

@ Use rngs functions for GetArrival, GetService

GetArrival Method

double GetArrival(void) {
static double arrival = START;
SelectStream(0) ;
arrival += Exponential(2.0);
return (arrival);

GetService Method

double GetService(void) {
SelectStream(2) ;
return (Uniform(1.0, 2.0));

@ Include "rngs.h" and use PlantSeeds(12345)

Section 3.2: Multi-Stream Lehmer RNGs

Discrete-Event Simulation

(©2006 Pearson Ed., Inc.

0-13-142917-5

Multi-Stream Lehmer RNGs

Uncoupling Stochastic Processes

Per modifications, arrival and service processes are uncoupled

Consider changing the service process to
Uniform(0.0, 1.5) + Uniform(0.0, 1.5)
Without uncoupling, arrival process sequence would change!

(]

@ With uncoupling, the service process “sees” exactly the same
arrival sequence

Important variance reduction technique

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Single-Server Service Node with Multiple Job Types

@ Extend the single-server service node model from Chapter 1

o Consider multiple job types, each with its own arrival and
service process
o Example 3.2.8: Suppose there are two job types
© Exponential(4.0) interarrivals, Uniform(1.0,3.0) service
© Exponential(6.0) interarrivals, Uniform(0.0, 4.0) service
Use rngs to allocate a different stream to each stochastic
process

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs

Example 3.2.8: Arrival Process

Arrival Process

double GetArrival(int *j)
/* Index j corresponds to job type */
{
const double mean[2] = {4.0, 6.0};
static double arrival[2] = {START, START};
static int init = 1;
double temp;
if (init) {
SelectStream(0);
arrival[0] += Exponential(mean[0]);
SelectStream(1);
arrival[1] += Exponential(mean[1]);
init = 0;
if (arrivall[0] <= arrival[1])
*j =05
else
*j=1;
temp = arrival[*j];
SelectStream(*j);
arrival[*j] += Exponential (mean[*j]);
return (temp);
b

Multi-Stream Lehmer RNGs Discrete-Event Simulation 2006 Pearson Ed

Multi-Stream Lehmer RNGs
Example 3.2.8: Service Process

Service Process

double GetService(int j)
{
const double min[2] = {1.0, 0.0};
const double max[2] = {3.0, 4.0};
SelectStream(j + 2);
return (Uniform(min[jl, max[j]));
}

@ Index j matches service time to appropriate job type
@ All four simulated stochastic processes are uncoupled

@ Any process could be changed without altering the random
sequence of others!

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Multi-Stream Lehmer RNGs
Consistency Checks

@ With appropriate changes to ssq2, steady-state statistics are

7 w d 5 1 g X
240 7.92 592 2.00 3.30 2.47 0.83

@ Obvious consistency checks: w = d +35 and [= g+ X

@ Other consistency checks:

e Both job types have avg service time of 2.0 = 5 = 2.00
e Net arrival rate should be 1/4 +1/6 =5/12 =7 = 12/5 =

2.40
e x should be ratio of arrival to service rates
5/12
——— =5/620.83
1/2 /

0-13-142917-5

Section 3.2: Multi-Stream Lehmer RNGs Discrete-Event Simulation (©2006 Pearson Ed., Inc.

