Discrete-Event Simulation: A First Course

Section 3.3: Discrete-Event Simulation Examples

Outline

- Single-server service node with immediate feedback
- A simple inventory system with delivery lag
- A single-server machine shop

SSQ with Immediate Feedback

 If the service a job receives is incomplete or unsatisfactory, the job feeds back

 Completion of service and departure now have different meanings

Model Considerations

- When feedback occurs the job joins the queue consistent with the queue discipline
- The decision to depart or feed back is random with *feedback* probability β

- \bullet λ is the arrival rate
- \bullet ν is the service rate

Model Considerations

- Feedback is independent of past history
- In theory, a job may feed back arbitrarily many times
- Typically β is close to 0.0

```
GetFeedback Method
int GetFeedback(double beta)  /* 0.0 <= beta < 1.0 */
{
    SelectStream(2);
    if (Random() < beta)
        return (1);  /* feedback occurs */
    else
        return (0);  /* no feedback */
}</pre>
```

Statistical Considerations

- Index $i = 1, 2, 3, \ldots$ counts jobs that enter the service node
 - fed-back jobs are not recounted
- Using this indexing, all job-averaged statistics remain valid
 - We must update delay times, wait times, and service times for each feed back
- Jobs from outside the system are merged with jobs from the feedback process
- The steady-state request-for-service rate is larger than λ by the positive additive factor $\beta \bar{\mathbf{x}} \nu$
- Note that \bar{s} increases with feedback but $1/\nu$ is the average service time per request

Algorithm and Data Structure Considerations

• Example 3.3.1

job index	1	2	3	4	5		6		7	8		9	
arrival/													
feedback	1	3	4	7	10	13	14	15	19	24	26	30	
service	9	3	2	4	7	5	6	3	4	6	3	7	
completion	10	13	15	19	26	31	37	40	44	50	53	60	

• At the computational level, some algorithm and data structure is necessary

- Program ssq2 was modified to incorporate immediate feedback
 - Interarrivals = Exponential(2.0) Service times = Uniform(1.0, 2.0)

• It appears saturation is achieved as $\beta \rightarrow 0.25$

Flow Balance and Saturation

- ullet Jobs flow into the service node at the average rate of λ
- To remain flow balanced jobs must flow out of the service node at the same average rate
- The average rate at which jobs flow out of the service node is $\bar{x}(1-\beta)\nu$
- Flow balance is achieved when $\lambda = \bar{x}(1-\beta)\nu$
- Saturation occurs when $\bar{x}=1$ or as $\beta \to 1-\lambda/\nu=0.25$

Simple Inventory System with Delivery Lag

- Delivery lag or lead time occurs when orders are not delivered immediately
- Lag is assumed to be random and independent of order size
- Without lag, inventory jumps occur only at inventory review times

SIS with Lag

With delivery lag, inventory jumps occur at arbitrary times

- The last order is assumed to have no lag
- We assume that orders are delivered before the next inventory review
- With this assumption, there is no change to the specification model

Statistical Considerations

- If $l_{i-1} \geq s$ the equations for \overline{l}_i^+ and \overline{l}_i^- remain correct
- When delivery lag occurs the time-averaged holding and shortage intervals must be modified
 - The delivery lag for interval i is $0 < \delta_i < 1$

Consistency Checks

- It is fundamentally important to verify extended models with the parent model
 - Set system parameters to special values
- Set $\beta = 0$ for the SSQ with feedback
 - Verify that all statistics agree with parent
- Using the library rngs facilitates this kind of comparison
- It is a good practice to check for intuitive "small-perturbation" consistency
 - ullet Use a small, but non-zero eta and check that appropriate statistics are slightly larger

0-13-142917-5

- For the SIS with delivery lag, $\delta_i=0.0$ iff no order during $i^{\rm th}$ interval, $0<\delta_i<1.0$ otherwise
- The SIS is *lag-free* iff $\delta_i = 0.0$ for all i
- If (S, s) are fixed then, even with small delivery lags:
 - \bar{o}, \bar{d} , and \bar{u} are the same regardless of delivery lag
 - ullet Compared to the lag-free system, $ar{\it l}^+$ will decrease
 - \bullet Compared to the lag-free system, $\bar{\it l}^-$ will increase or remain unchanged

Delivery lags are independent *Uniform*(0.0, 1.0) random variates

- Delivery lag causes \overline{I}^+ to decrease and \overline{I}^- to increase or remain the same
- $C_{\text{hold}} = \$25$ and $C_{\text{short}} = \$700$ cause shift up and to the left

Single-Server Machine Shop

 The machine shop model is closed because there are a finite number of machines in the system

- Assume repair times are *Uniform*(1.0, 2.0) random variates
- There are M machines that fail after an Exponential(100.0) random variate

Program ssms

- Program ssms simulates a single-server machine shop
- The library rngs is used to uncouple the random processes
- The failure process is defined by the array failures
 - A $\mathcal{O}(M)$ search is used to find the next failure
 - Alternate data structures can be used to increase computational efficiency

• The time-averaged number of working machines is $M-\bar{I}$

- For small values of M the time-averaged number of operational machines is essentially M
- For large values of *M* this value is essentially constant at approximately 67