Discrete-Event Simulation: A First Course

Section 4.1: Sample Statistics

Section 4.1: Sample Statistics

- Simulation involves a lot of data
- Must compress the data into meaningful statistics
- Collected data is a sample from a much larger population
- Two types of statistical analysis:
 - "Within-the-run"
 - 2 "Between-the-runs" (replication)
- Essence of statistics: analyze a sample and draw inferences

Sample Mean and Standard Deviation

- Consider a sample x_1, x_2, \dots, x_n (continuous or discrete)
- Sample Mean:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Sample Variance:

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Sample Standard Deviation: $s = \sqrt{s^2}$
- Coefficient of Variation: s/\bar{x}

Understanding the Statistics

- Mean: a measure of central tendency
- Variance, Deviation: measures of dispersion about the mean
- Why variance easier math (no square root)
- Why standard deviation same units as data, mean
- Note that the coefficient of variation (C.V.) is unit-less
- But a common shift in data changes the C.V.
 - E.g.: measure students' heights on the floor, in chairs

Biased and Unbiased Statistics

An alternative definition of sample variance:

$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad \text{rather than} \qquad \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Why the 1/(n-1) version?
 - unbiased when data is independent (more in Ch. 8)
 - relates to analysis of variance (degrees of freedom)
- Why the 1/n version?
 - if *n* is large, the difference is irrelevant
 - unbiased property often doesn't apply in simulation
 - the math is easier
- For now, we will use the 1/n version

Relating the Mean and Standard Deviation

• Consider the root-mean-square (rms) function

$$d(x) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - x)^2}$$

- d(x) measures dispersion about any value x
- The mean \bar{x} gives the smallest possible value for d(x) (Theorem 4.1.1)
- The standard deviation s is that smallest value

Example 4.1.1: Relating \bar{x} , s

• 50 samples from program buffon

- Here, $\bar{x} \cong 1.095$ and $s \cong 0.354$
- The smallest value of d(x) is $d(\bar{x}) = s$ as shown

Chebyshev's Inequality

- Relates to the number of points that lie within k standard deviations of the mean
- Points farthest from the mean make the most contribution to
 s
- Define the set $\S_k = \{x_i \mid \bar{x} ks < x_i < \bar{x} + ks\}$
- Let $p_k = |\S_k|/n$ be the proportion of x_i within $\pm ks$ of \bar{x}
- Chebyshev's Inequality:

$$p_k \ge 1 - \frac{1}{k^2} \qquad (k > 1)$$

Understanding Chebyshev's Inequality

- For any sample, at least 75% of the points lie within $\pm 2s$ of \bar{x}
- For k=2, Chebyshev's is very conservative Typically 95% lie within $\pm 2s$ of \bar{x}
- $\bar{x} \pm 2s$ defines the "effective width" of a sample

- Most, but not all, points will lie in this interval
- Outliers should be viewed with suspicion

Linear Data Transformations

- Often need to convert to different units after data has been collected
- Let x'_i be the "new data": $x'_i = ax_i + b$
- Sample mean:

$$\bar{x}' = \frac{1}{n} \sum_{i=1}^{n} x_i' = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = \frac{a}{n} \left(\sum_{i=1}^{n} x_i \right) + b = a\bar{x} + b$$

Sample variance:

$$(s')^2 = \frac{1}{n} \sum_{i=1}^n (x'_i - \bar{x}')^2 = \dots = a^2 s^2$$

• Sample standard deviation: s' = |a|s

Examples of Linear Data Transformations

- **Example 4.1.2**: Suppose $x_1, x_2, ..., x_n$ measured in seconds
 - To convert to minutes, let $x_i' = x_i/60$

$$\bar{x}' = \frac{45}{60} = 0.75 \text{ (minutes)}$$
 $s' = \frac{15}{60} = 0.25 \text{ (minutes)}$

- **Example 4.1.3**: Standardize data subtract \bar{x} , divide by s
 - For sample x_1, x_2, \dots, x_n , standardized sample is

$$x_i' = \frac{x_i - \bar{x}}{s} \qquad i = 1, 2, \dots, n$$

- Then $\bar{x}'=0$ and s'=1
- Used to avoid problems with very large (or small) valued samples

Nonlinear Data Transformations

- Usually involves a Boolean (two-state) outcome
- The value of x_i is not as important as the effect
- \bullet Let \mathcal{A} be a fixed set; then

$$x_i' = \begin{cases} 1 & x_i \in \mathcal{A} \\ 0 & \text{otherwise} \end{cases}$$

• Let p be the proportion of x_i that fall in A

$$p = \frac{\text{the number of } x_i \text{ in } \mathcal{A}}{n}$$

- Then $\bar{x}'=p$ and $s'=\sqrt{p(1-p)}$
- Similar to Bernoulli (see Ch. 6)

Examples of Nonlinear Data Transformations

- Example 4.1.4: Single Server Service Node
 - Let $x_i = d_i$ be the delay for job i from SSQ
 - Let $\mathcal{A} = \mathbb{R}^+$; then $x_i' = 1$ iff. $d_i > 0$
 - From Exercise 1.2.3, proportion of jobs delayed is p = 0.723
 - Then $\bar{x}' = 0.723$ and $s = \sqrt{(0.723)(0.277)} = 0.448$
- Example 4.1.2: Monte Carlo Simulation
 - Estimate a probability by generating a sequence of 0's and 1's
 - The probability estimate p is the ratio of 1's to trials
 - Then $\bar{x} = p$ and $s = \sqrt{p(1-p)}$

Computational Considerations

Consider the sample standard deviation equation

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- Requires two passes through the data
 - ① Compute the mean \bar{x}
 - 2 Compute the squared differences about \bar{x}
- Must store or re-create the entire sample bad when n is large

The Conventional One-Pass Algorithm

• A mathematically equivalent, one-pass equation for s^2 :

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2\bar{x}x_{i} + \bar{x}^{2})$$

$$= \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \left(\frac{2}{n} \bar{x} \sum_{i=1}^{n} x_{i}\right) + \left(\frac{1}{n} \sum_{i=1}^{n} \bar{x}^{2}\right)$$

$$= \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - 2\bar{x}^{2} + \bar{x}^{2}$$

$$= \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \bar{x}^{2}$$

Round-off error is problematic

Welford's One-Pass Algorithm

Running sample mean:

$$\bar{x}_i = \frac{1}{i}(x_1 + x_2 + \cdots + x_i)$$

Running sample sum of squared deviations:

$$v_i = (x_1 - \bar{x}_i)^2 + (x_2 - \bar{x}_i)^2 + \cdots + (x_i - \bar{x}_i)^2$$

• \bar{x}_i and v_i can be computed recursively ($\bar{x}_0 = 0, v_0 = 0$) (Theorem 4.1.2):

$$\bar{x}_i = \bar{x}_{i-1} + \frac{1}{i}(x_i - \bar{x}_{i-1})$$
 $v_i = v_{i-1} + \left(\frac{i-1}{i}\right)(x_i - \bar{x}_{i-1})^2$

• Then \bar{x}_n is the sample mean, v_n/n is the variance

0-13-142917-5

Algorithm 4.1.1: Welford's One-Pass

- No a priori knowledge of the sample size n required
- Less prone to accumulated round-off error

Algorithm 1.1.1

```
n = 0;
\bar{x} = 0.0:
v = 0.0:
while (more data ) {
     x = GetData();
     n++:
     d d = x - \bar{x}:
     v = v + d * d * (n - 1) / n:
     \bar{x} = \bar{x} + d / n;
s = \operatorname{sqrt}(v / n);
return n, \bar{x}, s;
```

Program uvs implements Welford's algorithm

Example 4.1.6: Using Welford's Algorithm

- Let x_1, x_2, \ldots, x_n be Uniform(a,b) random variates
- In the limit as $n \to \infty$

$$\bar{x} \to \frac{a+b}{2}$$
 $s \to \frac{b-a}{\sqrt{12}}$

• Using Uniform(0,1) random variates, \bar{x} and s should converge to

$$\frac{0+1}{2} = 0.5 \qquad \qquad \frac{1-0}{\sqrt{12}} \cong 0.2887$$

• Convergence of \bar{x} and s to theoretical values is not necessarily monotone

Example 4.1.6: Using Welford's Algorithm

Serial Correlation

- Independence: each x_i value does not depend on any other point
- Time-sequenced DES output is typically not independent
- E.g.: wait times of consecutive jobs have positive serial correlation
- Independence is appropriate only for Monte Carlo simulation
- Example 4.1.7: Consider output from ssq2
 - Exponential(2) interarrivals, Uniform(1,2) service
 - Wait times $w_1, w_2, \ldots, w_{100}$ have high positive serial correlation
 - The correlation produces a bias in the standard deviation

Example 4.1.7: Serial Correlation

Time-Averaged Sample Statistics

- Let x(t) be the sample path of a stochastic process for $0 < t < \tau$
- Sample-path mean:

$$\bar{x} = \frac{1}{\tau} \int_0^\tau x(t) \, dt$$

• Sample-path variance:

$$s^2 = \frac{1}{\tau} \int_0^\tau \left(x(t) - \bar{x} \right)^2 dt$$

- Sample-path standard deviation: $s = \sqrt{s^2}$
- One-pass equation for variance:

$$s^2 = \left(\frac{1}{\tau} \int_0^\tau x^2(t) dt\right) - \bar{x}^2$$

Computational Considerations

- For DES, a sample path is piecewise constant
- Changes in the sample path occur at event times t_0, t_1, \ldots

• For computing statistics, integrals reduce to summations

Computational Sample-Path Formulas

Theorem (4.1.3)

Consider a piecewise constant sample path

$$x_1 t_0 < t \le t_1$$

$$x_2 t_1 < t \le t_2$$

$$x(t) = \vdots \vdots$$

$$x_n t_{n-1} < t \le t_n$$

Sample-path mean:

$$\bar{x} = \frac{1}{\tau} \int_{0}^{\tau} x(t) dt = \frac{1}{t_n} \int_{i-1}^{n} x_i \delta_i$$

Sample-path variance:

$$s^2 = \frac{1}{\tau} \int_0^{\tau} x(t) - \bar{x}^2 dt = \frac{1}{t_n} \int_{i=1}^n x_i - \bar{x}^2 \delta_i = \frac{1}{t_n} \int_{i=1}^n x_i^2 \delta_i - \bar{x}^2$$

Welford's Sample Path Algorithm

Based on the definitions

$$\bar{x}_{i} = \frac{1}{t_{i}} (x_{1}\delta_{1} + x_{2}\delta_{2} + \dots + x_{i}\delta_{i})$$

$$v_{i} = (x_{1} - \bar{x}_{i})^{2}\delta_{1} + (x_{2} - \bar{x}_{i})^{2}\delta_{2} + \dots + (x_{i} - \bar{x}_{i})^{2}\delta_{i}$$

- \bar{x}_i is the sample-path mean of x(t) for $t_0 \leq t \leq t_i$
- v_i/t_i is the sample-path variance
- \bar{x}_i and v_i can be computed recursively ($\bar{x}_0 = 0, v_0 = 0$) (Theorem 4.1.4):

$$\bar{x}_i = \bar{x}_{i-1} + \frac{\delta_i}{t_i} (x_i - \bar{x}_{i-1})$$

$$v_i = v_{i-1} + \frac{\delta_i t_{i-1}}{t_i} (x_i - \bar{x}_{i-1})^2$$

