Discrete-Event Simulation:

A First Course

Section 4.1: Sample Statistics
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Sample Statistics
Section 4.1: Sample Statistics

Simulation involves a lot of data
Must compress the data into meaningful statistics

Collected data is a sample from a much larger population

e 6 ¢ ¢

Two types of statistical analysis:
© “Within-the-run”
© 'Between-the-runs” (replication)

@ Essence of statistics: analyze a sample and draw inferences
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Sample Statistics
Sample Mean and Standard Deviation

Consider a sample x1, x2, ..., x, (continuous or discrete)

Sample Mean:

n
_ 1
x:fg X;
n«
i=1

(]

Sample Variance:

Sample Standard Deviation: s = \/s?

Coefficient of Variation: s/x
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Sample Statistics
Understanding the Statistics

Mean: a measure of central tendency

Variance, Deviation: measures of dispersion about the mean
Why variance — easier math (no square root)

Why standard deviation — same units as data, mean

Note that the coefficient of variation (C.V.) is unit-less

e © ¢ ¢ ¢ ¢

But a common shift in data changes the C.V.

E.g.: measure students’ heights on the floor, in chairs
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Sample Statistics
Biased and Unbiased Statistics

@ An alternative definition of sample variance:

n n

1 1
— Z(x,- — x)? rather than - Z(x,- — %)?

i=1 i=1

n

@ Why the 1/(n — 1) version?
@ unbiased when data is independent (more in Ch. 8)
o relates to analysis of variance (degrees of freedom)
@ Why the 1/n version?

o if nis large, the difference is irrelevant
o unbiased property often doesn’t apply in simulation
o the math is easier

@ For now, we will use the 1/n version
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Sample Statistics

Relating the Mean and Standard Deviation

o Consider the root-mean-square (rms) function

@ d(x) measures dispersion about any value x

@ The mean X gives the smallest possible value for d(x)
(Theorem 4.1.1)

@ The standard deviation s is that smallest value
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Sample Statistics

Example 4.1.1: Relating X, s

@ 50 samples from program buffon

1.0 4

0.0~

0.0 z 2.0

o Here, X = 1.095 and s = 0.354

@ The smallest value of d(x) is d(Xx) = s as shown
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Sample Statistics
Chebyshev's Inequality

@ Relates to the number of points that lie within k standard
deviations of the mean

@ Points farthest from the mean make the most contribution to
s

@ Define the set § = {x; | X — ks < x; < X + ks}
@ Let pyx = |§«|/n be the proportion of x; within ks of X
@ Chebyshev's Inequality:
1
Pk =>1— 2 (k>1)
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Sample Statistics

Understanding Chebyshev's Inequality

@ For any sample, at least 75% of the points lie within £2s of
@ For k =2, Chebyshev's is very conservative

Typically 95% lie within +2s of x

@ X & 2s defines the “effective width” of a sample

1 4s 1
—e——{—tH—H—F++HHHHHHHeH i+
T —2s T T+ 2s

@ Most, but not all, points will lie in this interval

@ Outliers should be viewed with suspicion
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Sample Statistics
Linear Data Transformations

@ Often need to convert to different units after data has been
collected

@ Let x/ be the "new data”: x/ = ax; + b

@ Sample mean:

fz Zax,—l—b Zx, +b=ax+b

i=1

@ Sample variance:

@ Sample standard deviation: s’ = |a|s
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Sample Statistics
Examples of Linear Data Transformations

o Example 4.1.2: Suppose x1, X2, . .., x, measured in seconds
@ To convert to minutes, let x/ = x;/60

45 15
X' = i 0.75 (minutes) s’ = i 0.25 (minutes)
o Example 4.1.3: Standardize data — subtract x, divide by s
o For sample xq, x2, ..., x,, standardized sample is
X’,:x,'—x i=1,2,...,n
s

o ThenX’=0ands’' =1
s Used to avoid problems with very large (or small) valued
samples
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Sample Statistics
Nonlinear Data Transformations

@ Usually involves a Boolean (two-state) outcome

@ The value of x; is not as important as the effect
@ Let A be a fixed set; then

, 1 x,e¢A
X: =
! 0 otherwise

o Let p be the proportion of x; that fall in A

the number of x; in A

n

p(1—p)
@ Similar to Bernoulli (see Ch. 6)

@ Thenx' =pand s
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Sample Statistics
Examples of Nonlinear Data Transformations

o Example 4.1.4: Single Server Service Node

@ Let x; = d; be the delay for job i/ from SSQ

o Let A =R"; then x/ =1iff. d; >0

o From Exercise 1.2.3, proportion of jobs delayed is p = 0.723
@ Then X’ =0.723 and s = 1/(0.723)(0.277) = 0.448

o Example 4.1.2: Monte Carlo Simulation

o Estimate a probability by generating a sequence of 0's and 1's
@ The probability estimate p is the ratio of 1's to trials
@ Then x =pand s =+/p(1—p)
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Sample Statistics
Computational Considerations

@ Consider the sample standard deviation equation

@ Requires two passes through the data
© Compute the mean x
© Compute the squared differences about x
@ Must store or re-create the entire sample — bad when n is
large
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Sample Statistics
The Conventional One-Pass Algorithm

@ A mathematically equivalent, one-pass equation for s:

1 — _
s = ;Z(x,- — %)?
i=1
1 n
1 o 2« 1
= (nZX12>—<nX Xf>+<nZX2>
i=1 i=1 i=1
= *ZX,- —2x°+Xx
n <
i=1
1 n
n<
i=1

@ Round-off error is problematic
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Sample Statistics
Welford's One-Pass Algorithm

@ Running sample mean:

_ 1
i =-(xatox+ -+ x)
@ Running sample sum of squared deviations:
vi=(0a—%)+0e—%)2+ 4 (x— %)

@ X; and v; can be computed recursively (Xo = 0, vy = 0)
(Theorem 4.1.2):

1 _
Xi = Xj-1+ T(Xi —Xi—1)
i—1 _
Vi = Vi_1+ < ; > (X,‘ — X,',l)2

@ Then X, is the sample mean, v,/n is the variance
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Sample Statistics

Algorithm 4.1.1: Welford's One-Pass

@ No a priori knowledge of the sample size n required
o Less prone to accumulated round-off error

Algorithm 1.1.1

=0;
= 0.0;

= 0.0;

while (more data ) {
x = GetData();
nt+;

)

< X3

I Q
I

Xl <
I

X <
+ + X
Q Q |
~N % Xl

d*x (n-1) / n;
n;

s = sqrt(v / n);
return n, X, S;

@ Program uvs implements Welford's algorithm
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Sample Statistics

Example 4.1.6: Using Welford's Algorithm

o Let x1,x2,...,X, be Uniform(a,b) random variates

@ In the limit as n — oo

a+b b—a

T - “
2 V12

@ Using Uniform(0,1) random variates, X and s should converge
to

X —

1 1-—
0r1 =05 1-0 = 0.2887
2 V12

@ Convergence of x and s to theoretical values is not necessarily
monotone
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Sample Statistics

Example 4.1.6: Using Welford's Algorithm
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Sample Statistics
Serial Correlation

Independence: each x; value does not depend on any other
point

Time-sequenced DES output is typically not independent

E.g.: wait times of consecutive jobs have positive serial
correlation

Independence is appropriate only for Monte Carlo simulation

[

Example 4.1.7: Consider output from ssq2

o Exponential(2) interarrivals, Uniform(1,2) service

o Wait times wy, ws, ..., wigo have high positive serial
correlation

@ The correlation produces a bias in the standard deviation
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Sample Statistics
Example 4.1.7: Serial Correlation
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Sample Statistics
Time-Averaged Sample Statistics

@ Let x(t) be the sample path of a stochastic process for
o<t<r

@ Sample-path mean:

@ Sample-path standard deviation: s = \/s2
@ One-pass equation for variance:
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Sample Statistics

Computational Considerations

o For DES, a sample path is piecewise constant

@ Changes in the sample path occur at event times ty, t1, ...

to ta t3 t4 133 te tz ls tog  tw In

@ For computing statistics, integrals reduce to summations
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Sample Statistics

Computational Sample-Path Formulas

Theorem (4.1.3)

Consider a piecewise constant sample path

X1 th<t<t

X2 h<t<t
x(t) =

Xn th—1 <t S tn

@ Sample-path mean:

Section 4.1: Sample Statistics Discrete-Event Simulation  (©2006 Pearson Ed., Inc. ~ 0-13-142917-5



Welford's Sample Path Algorithm

@ Based on the definitions

1
X = ?(X151 + X002 + + -+ + x;0;7)
1

vi = (x1— )?;)251 + (0 — )?;)252 +ot (x5 — X;)25;

@ X; is the sample-path mean of x(t) for to < t < t;
® v;/t; is the sample-path variance

@ x; and v; can be computed recursively (xo = 0, vy = 0)
(Theorem 4.1.4):

Xi = X1+ —(xi —Xi—1)
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