Discrete-Event Simulation:

A First Course

Section 6.2: Generating Discrete Random Variates

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Section 6.2: Generating Discrete Random Variates

@ The inverse distribution function (idf) of X is the function
F*: (0,1) — X for all u€ (0,1) as

F*(u) = mXin{X cu< F(x)}

F(-) is the cdf of X

@ That is, if F*(u) = x, x is the smallest possible value of X for
which F(x) is greater than u

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

1

Example 6.2.

@ Two common ways of plotting the same cdf with

X ={a,

1.0

F() u

0.0

Section 6.2:

a+1,-- b}

- — -
-
a

Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Discrete Random Variates
Theorem 6.2.1

Theorem (6.2.1)

Let X ={a,a+1,---,b} where b may be co and F(-) be the cdf
of X For any u € (0,1),

o ifu< F(a), Ff(u)=a

o else F*(u) = x where x € X is the unique possible value of X
for which F(x — 1) < u < F(x)

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Algorithm 6.2.1

@ For X ={a,a+1,---, b}, the following linear search
algorithm defines F*(u)

Algorithm 6.2.1

X = a;
while (F(x) <= u)
X++;

>

return x; /*x is F*(u)*/

@ Average case analysis:
@ Let Y be the number of while loop passes
o Y=X—-a
o E[Y]|=E[X—-a|=E[X]—a=pu—a

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Algorithm 6.2.2

@ |dea: start at a more likely point
o For X ={a,a+1,---, b}, a more efficient linear search
algorithm defines F*(u)

Algorithm 6.2.2

x = mode; /*initialize with the mode of X */
if (F(x) <= u)
while (F(x) <= u)
X++;
else if (F(a) <= u)
while (F(x-1) > u)
Xx——=;
else
X = a;
return x; /* x is F*(u)*/

o For large X, consider binary search

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Discrete Random Variates
Idf Examples

@ In some cases F*(u) can be determined explicitly

o If X is Bernoulli(p) and F(x) = u, then x = 0 iff
O<u<l1l-—p:

0 O<u<l-p

F*(u) =
() 1 1-p<uxl

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Example 6.2.3: Idf for Equilikely

If X is Equilikely(a, b),

x—a+1

Fl) = b—a+1

x=a,a+1,---,b

@ For 0 < u< F(a), F*(u) = a
@ For F(a) <u<1,

(x—=1)—a+1 x—a-+1
Fix—-—1)< F >~ < [——
oD su<Fl) = T ST o

— x<a+(b—a+lu<x+1
@ Therefore, for all u € (0,1)

F(luy=a+[(b—a+1)u]

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Example 6.2.4: |df for Geometric

If X is Geometric(p),
F)=1-p"" x=0,1,2,--

@ For 0 < u < F(0), F*(u)=0
@ For F(0) <u<1,

Fix—1)<u<F(x) < 1-p*<u<l-—pT!

In(1—
LGl

e Forall ue(0,1)

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Random Variate Generation By Inversion

@ X is a discrete random variable with idf F*(-)
@ Continuous random variable U is Uniform(0, 1)
@ Z is the discrete random variable defined by Z = F*(U)

Theorem (6.2.2)
Z and X are identically distributed

@ Theorem 6.2.2 allows any discrete random variable (with
known idf) to be generated with one call to Random()

Algorithm 6.2.3

If X is a discrete random variable with idf F*(-), a random variate x can
be generated as

u = Random();
return F*(u);

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Proof for Theorem 6.2.2

@ Prove that ¥ = Z
@ F*: (0,1) - X, so 3 uwe (0,1) such that F*(u) = x
e Z=F*(U)
It follows that x € Zso X C Z
o From definition of Z, if z € Z then 3 v € (0, 1) such that
F*(u)y=2z
@ F*: (0,1) = X
It follows that z€ X' so Z C X
@ Prove that Z and X have the same pdf
Let ¥ = Z={a,a+1,---,b}, from definition of Z and F*(-)
and theorem 6.2.1:
e if z=3,

Pr(Z =a) =Pr(U < F(a)) = F(a) = f(a)
s ifze Z,z+# 3,

Pr(Z =z) =Pr(F(z—1) < U < F(2)) = F(z)—F(z—-1) = f(2)

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Inversion Examples

@ Example 6.2.5 Consider X with pdf

0.1 x=2
f(x)=4¢0.3 x=3
0.6 x=6

The cdf for X is plotted using two formats

1.0 1.0
U — — — — — — — o U
F() F()
0.4 0.4
0.1F 0.1
0.0 — 0.0~
23456 23456
T T

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Algorithm for Example 6.2.5

Example 6.2.5

if (u < 0.1)
return 2;
else if (u < 0.4)
return 3;

else
return 6;

returns 2 with probability 0.1, 3 with probability 0.3 and 6
with probability 0.6 which corresponds to the pdf of X

@ This example can be made more efficient: check the ranges
for u associated with x = 6 first (the mode), then x = 3, then
x =2

@ Problems may arise when |X| is large or infinite

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
More Inversion Examples

Example 6.2.6: Generating a Bernoulli(p) Random Variate

u = Random() ;
if (u < 1-p)
return 0;
else
return 1;

Example 6.2.7: Generating an Equilikely(a, b) Random Variate

u = Random();
return a + (long) (u * (b - a + 1));

Example 6.2.8: Generating a Geometric(p) Random Variate

u = Random()
return a + (long) (log(1.0 - u) / log(p));

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Example 6.2.9

e X is a Binomial(n, p) random variate

X

F(X):Z<Z>px(l—p)nx x=0,1,2,---,n

t=0

@ Incomplete beta function

1-I(x+1,n—x,p) x=0,1,--- ,n—1

1 X=n

F(x) =

Except for special cases, an incomplete beta function cannot
be inverted to form a “closed form” expression for the idf

@ Inversion is not easily applied to generation of Binomial(n, p)
random variates

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Algorithm Design Criteria

@ The design of a correct, exact and efficient algorithm to
generate corresponding random variates is often complex
@ Portability - implementable in high-level languages
@ Exactness - histogram of variates should converge to pdf
o Robustness - performance should be insensitive to small
changes in parameters and should work properly for all
reasonable parameter values
o Efficiency - it should be time efficient (set-up time and
marginal execution time) and memory efficient
o Clarity - it is easy to understand and implement
o Synchronization - exactly one call to Random is required
& Monotonicity - it is synchronized and the transformation from
u to x is monotone increasing (or decreasing)

@ Inversion satisfies some criteria, but not necessarily all

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Example 6.2.10

@ To generate Binomial(10,0.4), the pdf is (to 0.ddd precision)

X 0 1 2 3 4 5 6 7 8
f(x): 0.006 0.040 0.121 0.215 0.251 0.201 0.111 0.042 0.011

@ Random variates can be generated by filling a 1000-element
integer-valued array a[-] with 6 0's, 40 1's, 121 2's, etc.

Binomial(10,0.4) Random Variate

j = Equilikely(0,999);
return alj];

@ This algorithm is portable, robust, clear, synchronized and
monotone, with small marginal execution time

@ The algorithm is not exact: f(10) = 1/9765625

@ Set-up time and memory efficiency could be problematic:
for 0.ddddd precision, need 100 000-element array

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Example 6.2.11: Exact Algorithm for Binomial(10,0.4)

@ An exact algorithm is based on

o filling an 11-element floating-point array with cdf values
@ then using Alg. 6.2.2 with x = 4 to initialize the search

@ In general, to generate Binomial(n, p) by inversion
@ compute a floating-point array of n+ 1 cdf values
s use Alg. 6.2.2 with x = | np] to initialize the search
@ The library rvms can be used to compute the cdf array by
calling cdfBinomial (n,p,x) for x =0,1,--- ,n

@ Only drawback is some inefficiency (setup time and memory)

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Example 6.2.12

@ The cdf array from Example 6.2.11 can be eliminated

o cdf values computed as needed by Alg. 6.2.2
& Reduces set-up time and memory
@ Increases marginal execution time

@ Function idfBinomial (n,p,u) in library rvms does this

@ Binomial(n, p) random variates can be generated by inversion

Generating a Binomial Random Variate

u = Random() ;

return idfBinomial(n, p, uw); /* in library rvms*/

@ Inversion can be used for the six models:

@ Inversion is ideal for Equilikely(a, b), Bernoulli(p) and
Geometric(p)

o For Binomial(n, p), Pascal(n, p) and Poisson(y), time and
memory efficiency can be a problem if inversion is used

Section 6.2: Generating Discrete Random Variates

Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Alternative Random Variate Generation Algorithms

o Example 6.2.13 Binomial Random Variates

A Binomial(n, p) random variate can be generated by summing an
iid Bernoulli(p) sequence

Generating a Binomial Random Variate

x = 0;

for (i = 0; i < n; i++)
x += Bernoulli(p);

return Xx;

@ The algorithm is: portable, exact, robust, clear
@ The algorithm is not: synchronized or monotone

@ Marginal execution: O(n) complexity

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Poisson Random Variates

® A Poisson(y) random variable is the n — oo limiting case of a
Binomial(n, ;1/n) random variable

@ For large n, Poisson(u) ~ Binomial(n, uu/n)

@ The previous O(n) algorithm for Binomial(n, p) should not be
used when n is large

@ The Poisson(y) cdf F(-) is equal to an incomplete gamma
function

F(x)=1—-P(x+1,u) x=0,1,2,---

@ An incomplete gamma function cannot be inverted to form an
idf

@ Inversion to generate a Poisson() requires searching the cdf
as in Examples 6.2.11 and 6.2.12

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Example 6.2.14

Generating a Poisson Random Variate

a = 0.0;

x = 0;

while (a < p) {
a += Exponential(1.0);
X++;

’

}

return x - 1;

@ The algorithm does not rely on inversion or the “large n"
version of Binomial(n, p)

@ The algorithm is: portable, exact, robust; not synchronized or
monotone; marginal execution time can be inefficient for large
1

@ It is obscure. Clarity will be provided in Section 7.3

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates
Pascal Random Variates

@ A Pascal(n, p) cdf is equal to an incomplete beta function:
F(x)=1-I(x+1,n,p) x=0,1,2,---

e X is Pascal(n, p) iff X = X1 + Xo + -+ - + X, where
X1, Xa, -+, Xy is an iid Geometric(p) sequence

o Example 6.2.15 Summing Geometric(p) random variates to
generate a Pascal(n, p) random variate

Generating a Pascal Random Variate

x = 0;

for(i = 0; i < n; i++)
x += Geometric(p);

return Xx;

@ The algorithm is: portable, exact, robust, clear; not
synchronized or monotone; marginal execution complexity is

O(n)

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Library rvgs

@ Includes 6 discrete random variate generators (as below) and
7 continuous random variate generators

long Bernoulli(double p)

long Binomial(long n, double p)
long Equilikely(long a, long b)
long Geometric(double p)

long Pascal(long n, double p)
long Poisson(double u)

©® € ¢ ¢ ¢ @

@ Functions Bernoulli, Equilikely, Geometric use
inversion; essentially ideal

@ Functions Binomial, Pascal, Poisson do not use inversion

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Discrete Random Variates

Library rvms

@ Provides accurate pdf, cdf, idf functions for many random
variates

Idfs can be used to generate random variates by inversion

(]

Functions idfBinomial, idfPascal, idfPoisson may have
high marginal execution times

(]

@ Not recommended when many observations are needed due to
time inefficiency

Array of cdf values with inversion may be preferred

Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

