Discrete-Event Simulation: A First Course

Section 6.2: Generating Discrete Random Variates

Section 6.2: Generating Discrete Random Variates

• The inverse distribution function (idf) of X is the function $F^*: (0,1) \to \mathcal{X}$ for all $u \in (0,1)$ as

$$F^*(u) = \min_{x} \{x : u < F(x)\}$$

- $F(\cdot)$ is the cdf of X
- That is, if $F^*(u) = x$, x is the smallest possible value of X for which F(x) is greater than u

 \bullet Two common ways of plotting the same cdf with

$$\mathcal{X} = \{a, a+1, \cdots, b\}$$

Theorem 6.2.1

Theorem (6.2.1)

Let $\mathcal{X} = \{a, a+1, \dots, b\}$ where b may be ∞ and $F(\cdot)$ be the cdf of X For any $u \in (0,1)$,

- if u < F(a), $F^*(u) = a$
- else $F^*(u) = x$ where $x \in \mathcal{X}$ is the unique possible value of X for which $F(x-1) \le u < F(x)$

Algorithm 6.2.1

• For $\mathcal{X} = \{a, a+1, \cdots, b\}$, the following linear search algorithm defines $F^*(u)$

Algorithm 6.2.1

```
x = a:
while (F(x) \le u)
    x++:
return x; /*x is F^*(u)*/
```

- Average case analysis:
 - Let Y be the number of while loop passes
 - Y = X a
 - $E[Y] = E[X a] = E[X] a = \mu a$

Algorithm 6.2.2

- Idea: start at a more likely point
- For $\mathcal{X} = \{a, a+1, \cdots, b\}$, a more efficient linear search algorithm defines $F^*(u)$

Algorithm 6.2.2

```
x = mode; /*initialize with the mode of X */
if (F(x) \le u)
    while (F(x) \le u)
        x++:
else if (F(a) \le u)
    while (F(x-1) > u)
        x---:
else
    x = a:
return x; /* x is F^*(u)*/
```

• For large \mathcal{X} , consider binary search

Idf Examples

- In some cases $F^*(u)$ can be determined explicitly
- If X is Bernoulli(p) and F(x) = u, then x = 0 iff 0 < u < 1 p:

$$F^*(u) = \begin{cases} 0 & 0 < u < 1 - p \\ 1 & 1 - p \le u < 1 \end{cases}$$

Example 6.2.3: Idf for Equilikely

If X is Equilikely(a, b),

$$F(x) = \frac{x-a+1}{b-a+1}$$
 $x = a, a+1, \dots, b$

- For 0 < u < F(a), $F^*(u) = a$
- For $F(a) \le u < 1$,

$$F(x-1) \le u < F(x) \iff \frac{(x-1)-a+1}{b-a+1} \le u < \frac{x-a+1}{b-a+1}$$
$$\iff x \le a + (b-a+1)u < x+1$$

• Therefore, for all $u \in (0,1)$

$$F^*(u) = a + \lfloor (b - a + 1)u \rfloor$$

Example 6.2.4: Idf for Geometric

If X is Geometric(p),

$$F(x) = 1 - p^{x+1}$$
 $x = 0, 1, 2, \cdots$

- For 0 < u < F(0), $F^*(u) = 0$
- For $F(0) \le u < 1$,

$$F(x-1) \le u < F(x) \iff 1 - p^{x} \le u < 1 - p^{x+1}$$

$$\vdots$$

$$\iff x \le \frac{\ln(1-u)}{\ln(p)} < x + 1$$

• For all $u \in (0,1)$

$$F^*(u) = \left\lfloor \frac{\ln(1-u)}{\ln(p)} \right\rfloor$$

Random Variate Generation By Inversion

- X is a discrete random variable with idf $F^*(\cdot)$
- Continuous random variable U is Uniform(0,1)
- Z is the discrete random variable defined by $Z = F^*(U)$

Theorem (6.2.2)

Z and X are identically distributed

 Theorem 6.2.2 allows any discrete random variable (with known idf) to be generated with one call to Random()

Algorithm 6.2.3

If X is a discrete random variable with idf $F^*(\cdot)$, a random variate x can be generated as

```
u = Random();
return F*(u);
```

Proof for Theorem 6.2.2

- Prove that $\mathcal{X} = \mathcal{Z}$
 - F^* : $(0,1) \to \mathcal{X}$, so $\exists u \in (0,1)$ such that $F^*(u) = x$
 - $Z = F^*(U)$ It follows that $x \in \mathcal{Z}$ so $\mathcal{X} \subseteq \mathcal{Z}$
 - From definition of Z, if $z \in \mathcal{Z}$ then $\exists u \in (0,1)$ such that $F^*(u) = z$
 - F^* : $(0,1) \to \mathcal{X}$ It follows that $z \in \mathcal{X}$ so $\mathcal{Z} \subseteq \mathcal{X}$
- Prove that Z and X have the same pdf

Let
$$\mathcal{X} = \mathcal{Z} = \{a, a+1, \dots, b\}$$
, from definition of Z and $F^*(\cdot)$ and theorem 6.2.1:

• if z = a.

$$Pr(Z = a) = Pr(U < F(a)) = F(a) = f(a)$$

• if $z \in \mathcal{Z}, z \neq a$,

$$\Pr(Z = z) = \Pr(F(z-1) \le U < F(z)) = F(z) - F(z-1) = f(z)$$

Inversion Examples

• **Example 6.2.5** Consider *X* with pdf

$$f(x) = \begin{cases} 0.1 & x=2 \\ 0.3 & x=3 \\ 0.6 & x=6 \end{cases}$$

The cdf for X is plotted using two formats

Algorithm for Example 6.2.5

Example 6.2.5

```
if (u < 0.1)
    return 2;
else if (u < 0.4)
    return 3;
else
    return 6;</pre>
```

returns 2 with probability 0.1, 3 with probability 0.3 and 6 with probability 0.6 which corresponds to the pdf of X

- This example can be made more efficient: check the ranges for u associated with x=6 first (the mode), then x=3, then x=2
- ullet Problems may arise when $|\mathcal{X}|$ is large or infinite

More Inversion Examples

Example 6.2.6: Generating a Bernoulli(p) Random Variate

```
u = Random();
if (u < 1-p)
    return 0;
else
    return 1;</pre>
```

Example 6.2.7: Generating an Equilikely(a, b) Random Variate

```
u = Random();
return a + (long) (u * (b - a + 1));
```

Example 6.2.8: Generating a Geometric(p) Random Variate

```
u = Random()
return a + (long) (log(1.0 - u) / log(p));
```

X is a Binomial(n, p) random variate

$$F(x) = \sum_{t=0}^{x} {n \choose x} p^{x} (1-p)^{n-x} \qquad x = 0, 1, 2, \dots, n$$

Incomplete beta function

$$F(x) = \begin{cases} 1 - I(x+1, n-x, p) & x = 0, 1, \dots, n-1 \\ 1 & x = n \end{cases}$$

Except for special cases, an incomplete beta function cannot be inverted to form a "closed form" expression for the idf

• Inversion is not easily applied to generation of Binomial(n, p)random variates

Algorithm Design Criteria

- The design of a correct, exact and efficient algorithm to generate corresponding random variates is often complex
 - Portability implementable in high-level languages
 - Exactness histogram of variates should converge to pdf
 - Robustness performance should be insensitive to small changes in parameters and should work properly for all reasonable parameter values
 - Efficiency it should be time efficient (set-up time and marginal execution time) and memory efficient
 - Clarity it is easy to understand and implement
 - Synchronization exactly one call to Random is required
 - Monotonicity it is synchronized and the transformation from u to x is monotone increasing (or decreasing)
- Inversion satisfies some criteria, but not necessarily all

• To generate Binomial(10, 0.4), the pdf is (to 0.ddd precision)

```
8
f(x): 0.006 0.040 0.121 0.215 0.251 0.201 0.111 0.042
```

 Random variates can be generated by filling a 1000-element integer-valued array $a[\cdot]$ with 6 0's, 40 1's, 121 2's, etc.

Binomial(10, 0.4) Random Variate

```
j = Equilikely(0,999);
return a[j];
```

- This algorithm is portable, robust, clear, synchronized and monotone, with small marginal execution time
- The algorithm is not exact: f(10) = 1/9765625
- Set-up time and memory efficiency could be problematic: for 0.ddddd precision, need 100 000-element array

Example 6.2.11: Exact Algorithm for *Binomial*(10, 0.4)

- An exact algorithm is based on
 - filling an 11-element floating-point array with cdf values
 - then using Alg. 6.2.2 with x = 4 to initialize the search
- In general, to generate Binomial(n, p) by inversion
 - compute a floating-point array of n+1 cdf values
 - use Alg. 6.2.2 with $x = \lfloor np \rfloor$ to initialize the search
- The library rvms can be used to compute the cdf array by calling cdfBinomial(n,p,x) for $x = 0, 1, \dots, n$
- Only drawback is some inefficiency (setup time and memory)

- The cdf array from Example 6.2.11 can be eliminated
 - cdf values computed as needed by Alg. 6.2.2
 - Reduces set-up time and memory
 - Increases marginal execution time
- Function idfBinomial(n,p,u) in library rvms does this
- Binomial(n, p) random variates can be generated by inversion

Generating a Binomial Random Variate

```
u = Random();
return idfBinomial(n, p, u); /* in library rvms*/
```

- Inversion can be used for the six models:
 - Inversion is ideal for Equilikely(a, b), Bernoulli(p) and Geometric(p)
 - For Binomial(n, p), Pascal(n, p) and Poisson (μ) , time and memory efficiency can be a problem if inversion is used

Alternative Random Variate Generation Algorithms

• Example 6.2.13 Binomial Random Variates

A Binomial(n, p) random variate can be generated by summing an iid Bernoulli(p) sequence

Generating a Binomial Random Variate

```
x = 0;
for (i = 0; i < n; i++)
    x += Bernoulli(p);
return x;
```

- The algorithm is: portable, exact, robust, clear
- The algorithm is **not**: synchronized or monotone
- Marginal execution: $\mathcal{O}(n)$ complexity

Poisson Random Variates

- A $Poisson(\mu)$ random variable is the $n \to \infty$ limiting case of a $Binomial(n, \mu/n)$ random variable
- For large n, $Poisson(\mu) \approx Binomial(n, \mu/n)$
- The previous O(n) algorithm for Binomial(n, p) should not be used when n is large
- The $Poisson(\mu)$ cdf $F(\cdot)$ is equal to an incomplete gamma function

$$F(x) = 1 - P(x + 1, \mu)$$
 $x = 0, 1, 2, \cdots$

- An incomplete gamma function cannot be inverted to form an idf
- Inversion to generate a $Poisson(\mu)$ requires searching the cdf as in Examples 6.2.11 and 6.2.12

Generating a Poisson Random Variate

```
a = 0.0;
x = 0;
while (a < \mu) {
    a += Exponential(1.0);
    x++;
return x - 1;
```

- The algorithm does not rely on inversion or the "large n" version of Binomial(n, p)
- The algorithm is: portable, exact, robust; not synchronized or monotone; marginal execution time can be inefficient for large μ
- It is obscure. Clarity will be provided in Section 7.3

Pascal Random Variates

• A Pascal(n, p) cdf is equal to an incomplete beta function:

$$F(x) = 1 - I(x + 1, n, p)$$
 $x = 0, 1, 2, \cdots$

- X is Pascal(n, p) iff $X = X_1 + X_2 + \cdots + X_n$ where X_1, X_2, \cdots, X_n is an iid Geometric(p) sequence
- **Example 6.2.15** Summing Geometric(p) random variates to generate a Pascal(n, p) random variate

Generating a Pascal Random Variate

```
x = 0;
for(i = 0; i < n; i++)
    x += Geometric(p);
return x;</pre>
```

• The algorithm is: portable, exact, robust, clear; **not** synchronized or monotone; marginal execution complexity is $\mathcal{O}(n)$

Library rvgs

- Includes 6 discrete random variate generators (as below) and
 7 continuous random variate generators
 - long Bernoulli(double p)
 - long Binomial(long n, double p)
 - long Equilikely(long a, long b)
 - long Geometric(double p)
 - long Pascal(long *n*, double *p*)
 - long Poisson(double μ)
- Functions Bernoulli, Equilibely, Geometric use inversion; essentially ideal
- Functions Binomial, Pascal, Poisson do not use inversion

Library rvms

- Provides accurate pdf, cdf, idf functions for many random variates
- Idfs can be used to generate random variates by inversion
- Functions idfBinomial, idfPascal, idfPoisson may have high marginal execution times
- Not recommended when many observations are needed due to time inefficiency
- Array of cdf values with inversion may be preferred