Discrete-Event Simulation:

A First Course

Section 7.1: Continuous Random Variables

Section 7.1: Continuous Random Variables

- A random variable X is *continuous* if and only if its set of possible values \mathcal{X} is a *continuum*
- A continuous random variable X is uniquely determined by
 - ullet Its set of possible values ${\mathcal X}$
 - Its probability density function (pdf): A real-valued function $f(\cdot)$ defined for each $x \in \mathcal{X}$

$$\int_a^b f(x)dx = \Pr(a \le X \le b)$$

By definition,

$$\int_{\mathcal{X}} f(x) dx = 1$$

Example 7.1.1

• X is Uniform(a, b) $\mathcal{X} = (a, b)$ and all values in this interval are equally likely

$$f(x) = \frac{1}{b-a} \qquad a < x < b$$

- In the continuous case,
 - Pr(X = x) = 0 for any $x \in \mathcal{X}$
 - If $[a, b] \subseteq \mathcal{X}$,

$$\int_{a}^{b} f(x)dx = \Pr(a \le X \le b) = \Pr(a < X \le b)$$
$$= \Pr(a \le X < b) = \Pr(a < X < b)$$

Cumulative Distribution Function

• The cumulative distribution function(cdf) of the continuous random variable X is the real-valued function $F(\cdot)$ for each $x \in \mathcal{X}$ as

$$F(x) = \Pr(X \le x) = \int_{t \le x} f(t) dt$$

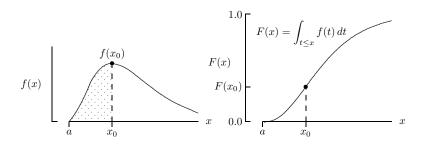
• **Example 7.1.2:** If X is Uniform(a, b), the cdf is

$$F(x) = \int_{t=a}^{x} \frac{1}{(b-a)} dt = \frac{x-a}{b-a} \qquad a < x < b$$

• In special case where U is Uniform(0,1), the cdf is

$$F(u) = Pr(U \le u) = u$$
 $0 \le u \le 1$

Relationship between pdfs and cdfs



• Shaded area in pdf graph equals $F(x_0)$

More on cdfs

- The cdf is strictly monotone increasing: if $x_1 < x_2$, then $F(x_1) < F(x_2)$
- The cdf is bounded between 0.0 and 1.0
- The cdf can be obtained from the pdf by integration
 The pdf can be obtained from the cdf by differentiation as

$$f(x) = \frac{d}{dx}F(x)$$
 $x \in \mathcal{X}$

ullet A continuous random variable model can be specified by ${\mathcal X}$ and either the pdf or the cdf

Example 7.1.3: Exponential(μ)

- $X = -\mu \ln(1 U)$ where U is Uniform(0, 1)
- The cdf of X is

$$F(x) = \Pr(X \le x) = \Pr(-\mu \ln(1 - U) \le x)$$

$$= \Pr(1 - U \ge \exp(-x/\mu))$$

$$= \Pr(U \le 1 - \exp(-x/\mu))$$

$$= 1 - \exp(-x/\mu)$$

The pdf of X is

$$f(x) = \frac{d}{dx}F(x) = \frac{d}{dx}\left(1 - \exp(-x/\mu)\right) = \frac{1}{\mu}\exp(-x/\mu) \qquad x > 0$$

Mean and Standard Deviation

• The mean μ of the continuous random variable X is

$$\mu = \int_X x f(x) dx$$

• The corresponding standard deviation σ is

$$\sigma = \sqrt{\int_X (x - \mu)^2 f(x) dx}$$
 or $\sigma = \sqrt{\left(\int_X x^2 f(x) dx\right) - \mu^2}$

• The variance is σ^2

Examples

• If X is Uniform(a, b)

$$\mu = \frac{a+b}{2}$$
 and $\sigma = \frac{b-a}{\sqrt{12}}$

• If X is Exponential(μ),

$$\int_{x} xf(x)dx = \int_{0}^{\infty} \frac{x}{\mu} \exp(-x/\mu)dx = \mu \int_{0}^{\infty} t \exp(-t)dt = \dots = \mu$$
$$\sigma^{2} = \left(\int_{0}^{\infty} \frac{x^{2}}{\mu} \exp(-x/\mu)dx\right) - \mu^{2} = \dots = \mu^{2}$$

Expected Value

- The mean of a continuous random variable is also known as the expected value
- The expected value of the continuous random variable X is

$$\mu = E[X] = \int_X x f(x) dx$$

• The variance is the expected value of $(X - \mu)^2$

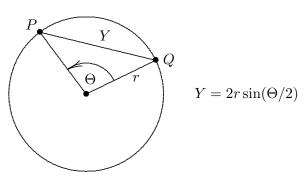
$$\sigma^2 = E[(X - \mu)^2] = \int_X (x - \mu)^2 f(x) dx$$

• In general, if Y = g(X), the expected value of Y is

$$E[Y] = E[g(X)] = \int_X g(x)f(x)dx$$

Example 7.1.6

- A circle of radius r and a fixed point Q on the circumference
- P is selected at random on the circumference
- Let the random variable Y be the distance of the line segment joining P and Q



Example 7.1.6 ctd.

- If Θ is $Uniform(0,2\pi)$, the pdf of Θ is $f(\theta)=1/2\pi$
- The expected length of Y is

$$E[Y] = \int_0^{2\pi} 2r \sin(\theta/2) f(\theta) d\theta = \int_0^{2\pi} \frac{2r \sin(\theta/2)}{2\pi} d\theta = \dots = \frac{4r}{\pi}$$

• Y is not Uniform(0,2r); otherwise, E[Y] would be r.

Example 7.1.7

• If continuous random variable Y = aX + b for constants a and b.

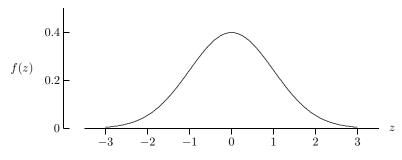
$$E[Y] = E[aX + b] = aE[X] + b$$

Continuous Random Variable Models

Standard Normal Random Variable

Z is Normal(0,1) if and only if the set of all possible values is $\mathcal{Z}=(-\infty,\infty)$ and the pdf is

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp(-z^2/2) \qquad -\infty < z < \infty$$



Standard Normal Random Variable

• If Z is Normal(0,1), Z is "standardized"

The mean is

$$\mu = \int_{-\infty}^{\infty} z f(z) dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z \exp(-z^2/2) dz = \dots = 0$$

The variance is

$$\sigma^2 = \int_{-\infty}^{\infty} (z-\mu)^2 f(z) dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^2 \exp(-z^2/2) dz = \dots = 1$$

The cdf is

$$F(z) = \int_{-\infty}^{z} f(t)dt = \Phi(z) \qquad -\infty < z < \infty$$

Standard Normal cdf

Φ(·) is defined as

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp(-t^2/2) dt \qquad -\infty < z < \infty$$

• No closed-form expression for $\Phi(z)$

$$\Phi(z) = \left\{ egin{array}{ll} \dfrac{1 + P(1/2, z^2/2)}{2} & z \geq 0 \\ 1 - \Phi(z) & z < 0 \end{array}
ight.$$

P(a,x) is an incomplete gamma function (see Appendix D)

• Function $\Phi(z)$ is available in rvms as cdfNormal(0.0, 1.0, z)

Scaling and Shifting

- Suppose X is a random variable with mean μ and standard deviation σ
- Define random variable X' = aX + b for constants a, b
- The mean μ' and standard deviation σ' of X' are

$$\mu' = E[X'] = E[aX + b] = aE[X] + b = a\mu + b$$
$$(\sigma')^2 = E[(X' - \mu')^2] = E[(aX - a\mu)^2] = a^2 E[(X - \mu)^2] = a^2 \sigma^2$$

Therefore,

$$\mu' = a\mu + b$$
 and $\sigma' = |a|\sigma$

Example 7.1.8

- Suppose Z is a random variable with mean 0 and standard deviation 1
- Construct a new random variable X with specified mean μ and standard deviation σ
- Define $X = \sigma Z + \mu$
- $E[X] = \sigma E[Z] + \mu = \mu$
- $E[(X \mu)^2] = E[\sigma^2 Z^2] = \sigma^2 E[Z^2] = \sigma^2$

Normal Random Variable

• The continuous random variable X is $\mathit{Normal}(\mu, \sigma)$ if and only if

$$X = \sigma Z + \mu$$

where $\sigma > 0$ and Z is Normal(0,1)

- ullet The mean of X is μ and the standard deviation is σ
- Normal(μ, σ) is constructed from Normal(0, 1)
 - ullet by "shifting" the mean from 0 to μ via the addition of μ
 - by "scaling" the standard deviation from 1 to σ via multiplication by σ

cdf of Normal Random Variable

• The cdf of a Normal(μ, σ)

$$F(x) = \Pr(X \le x) = \Pr(\sigma Z + \mu \le x) = \Pr(Z \le (x - \mu)/\sigma)$$

so that

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) \qquad -\infty < x < \infty$$

where $\Phi(\cdot)$ is the cdf of *Normal*(0,1)

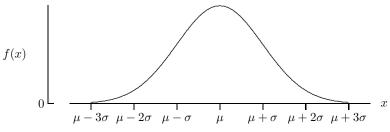
pdf of Normal Random Variable

Because

$$\frac{d}{dz}\Phi(z) = \frac{1}{\sqrt{2\pi}}\exp(-z^2/2)$$
 $-\infty < z < \infty$

the pdf of $Normal(\mu, \sigma)$ is

$$f(x) = \frac{dF(x)}{dx} = \frac{d}{dx}\Phi\left(\frac{x-\mu}{\sigma}\right) = \dots = \frac{1}{\sigma\sqrt{2\pi}}\exp(-(x-\mu)^2/2\sigma^2)$$



Some Properties of Normal Random Variables

- Sums of iid random variables approach the normal distribution
- Normal(μ, σ) is sometimes called a Gaussian random variable
- The 68-95-99.73 rule
 - Area under pdf between $\mu-\sigma$ and $\mu+\sigma$ is about 0.68
 - Area under pdf between $\mu-2\sigma$ and $\mu+2\sigma$ is about 0.95
 - Area under pdf between $\mu-3\sigma$ and $\mu+3\sigma$ is about 0.9973
- The pdf has inflection points at $\mu \pm \sigma$
- Common notation for *Normal*(μ, σ) is $N(\mu, \sigma^2)$
- Support is $\mathcal{X} = \{x | -\infty \le x \le \infty\}$
 - Usually not appropriate for simulation unless modified to produce only positive values

Lognormal Random Variable

 The continuous random variable X is Lognormal(a, b) if and only if

$$X = \exp(a + bZ)$$

where Z is Normal(0,1) and b>0

- Lognormal(a, b) is also based on transforming Normal(0, 1)
 - The transformation is non-linear

cdf of Lognormal Random Variable

The cdf of a Lognormal(a, b)

$$F(x) = \Pr(X \le x) = \Pr(\exp(a+bZ) \le x) = \Pr(a+bZ \le \ln(x))$$

so that

$$F(x) = \Pr(Z \le (\ln(x) - a)/b) = \Phi\left(\frac{\ln(x) - a}{b}\right)$$
 $x > 0$

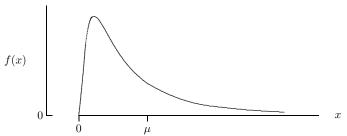
where $\Phi(\cdot)$ is the cdf of *Normal*(0,1)

pdf of Lognormal Random Variable

• The pdf of Lognormal(a, b) is

$$f(x) = \frac{dF(x)}{dx} = \dots = \frac{1}{bx\sqrt{2\pi}} \exp(-(\ln(x)-a)^2/2b^2)$$
 $x > 0$

$$(a,b)=(-0.5,1.0)$$



- $\mu = \exp(a + b^2/2)$ Above, $\mu = 1.0$
- $\sigma = \exp(a + b^2/2) \sqrt{\exp(b^2) 1}$ Above, $\sigma \simeq 1.31$

Erlang Random Variable

- Uniform(a, b) is the continuous analog of Equilikely(a, b)
- Exponential(μ) is the continuous analog of Geometric(p)
- Pascal(n, p) is the sum of n iid Geometric(p)
- What is the continuous analog of Pascal(n, p)?
 The continuous random variable X is Erlang(n, b) if and only if

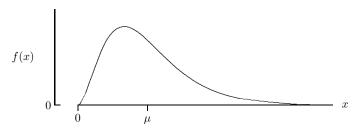
$$X = X_1 + X_2 + \cdots + X_n$$

where X_1, X_2, \dots, X_n are iid Exponential(b) random variables

pdf of Erlang Random Variable

• The pdf of Erlang(n, b) is

$$f(x) = \frac{1}{b(n-1)!} (x/b)^{n-1} \exp(-x/b) \qquad x > 0$$
$$(n,b) = (3,1.0)$$



• For (n, b) = (3, 1.0), $\mu = 3.0$ and $\sigma \simeq 1.732$

cdf of Erlang Random Variable

The corresponding cdf is

$$F(x) = \int_0^x f(t)dt = P(n, x/b) \qquad x > 0$$

Incomplete gamma function (see Appendix D)

- \bullet $\mu = nb$
- $\sigma = \sqrt{n}b$

Chisquare And Student Random Variables

- Chisquare(n) and Student(n) are commonly used for statistical inference
- Defined in section 7.2

