Discrete-Event Simulation:

A First Course

Section 7.2: Generating Continuous Random Variates

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Continuous Random Variates

Section 7.2: Generating Continuous Random Variates

@ The inverse distribution function (idf) of X is the function
F~1:(0,1) — X forall uc (0,1) as

F_l(u) =X

where x € X' is the unique possible value for F(x) = u

@ There is a one-to-one correspondence between possible values
x € X and cdf values u = F(x) € (0,1)

@ Assumes the cdf is strictly monotone increasing
o Trueif f(x) >0 forall x e X

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Continuous Random Variable idfs

@ Unlike the a discrete random variable, the idf for a continuous
random variable is a true inverse
1.0

0.0-

I
I
I
I
?
T

@ Can sometimes determine the idf in “closed form” by solving
F(x) = u for x

Section 7.2: Generating Continuous Random Variates

Discrete-Event Simulation (©2006 Pearson Ed., Inc.

0-13-142917-5

Generating Continuous Random Variates
Examples

e If X is Uniform(a,b), F(x) = (x —a)/(b—a) fora<x < b
x=FYu)=a+(b—a)u O<uxl1

o If X is Exponential(p), F(x) =1 — exp(—x/p) for x >0
x=F Yu)=—pin(l - u) O<uxl1

o If X is a continuous variable with possible value 0 < x < b
and pdf f(x) = 2x/b?, the cdf is F(x) = (x/b)?

x=FYu)=bVvu O<ux<l1

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Random Variate Generation By Inversion

@ X is a continuous random variable with idf F~1(-)
@ Continuous random variable U is Uniform(0, 1)
@ Z is the continuous random variable defined by Z = F~1(U)

Theorem (7.2.1)

Z and X are identically distributed

Algorithm 7.2.1

If X is a continuous random variable with idf F~1(-), a continuous
random variate x can be generated as

u = Random() ;
return F~1(u);

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Inversion Examples

Example 7.2.4: Generating a Uniform(a, b) Random Variate

u = Random() ;
return a + (b - a) * u;

Example 7.2.5: Generating an Exponential(;1) Random Variate

u = Random() ;
return —p * log(l - u);

Note: return —p * log(l - u) is prefered to return —p *
log(u), though both generate an Exponential random variate

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Examples 7.2.4 and 7.2.5

@ Algorithms in Example 7.2.4 and 7.2.5 are ideal

@ Both are portable, exact, robust, efficient, clear, synchronized
and monotone

@ It is not always possible to solve for a continuous random
variable idf explicitly by algebraic techniques

@ Two other options may be available

@ Use a function that accurately approximates F~1(-)
@ Determine the idf by solving u = F(x) numerically

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Approximate Inversion

e If Z is a Normal(0, 1), the cdf is the special function ®(-)
@ The idf ®~1(-) cannot be evaluated in closed form

@ The idf can be approximated as the ratio of two fourth degree
polynomials (Odeh and Evans, 1974)

@ The approximation is efficient and essentially has negligible
error

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Approximation of ®(+)

@ For any u € (0,1), a Normal(0, 1) idf approximation is
®~1(u) =~ &;1(u) where

o1 (1) = —t+p(t)/q(t) 0.0<u<0.5
? t—p(t)/q(t) 05<u<1.0
and
. —2In(u) 0.0<u<05
Vv =2In(1—u) 05<u<1.0
and

p(t) =ao + art + - + ast*
q(t) = bo + byt + -+ + byt*

@ The ten coefficients can be chosen to produce an absolute
error less than 1072 for all 0.0 < u < 1.0

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Example 7.2.6

@ Inversion can be used to generate Normal(0, 1) variates:

Example: 7.2.6: Generating a Normal(0,1) Random Variate

u = Random() ;
return ®;1(u);

@ This algorithm is portable, essentially exact, robust,
reasonably efficient, synchronized and monotone

o Clarity?

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Generating Continuous Random Variates

Alternative Method 1

o If Uy, Us, ..., Uiz is an iid sequence of Uniform(0,1),

Z=U+U+...+Up—6

is approximately Normal(0, 1)
@ The mean is 0.0 and the standard deviation is 1.0
@ Possible values are —6.0 < z < 6.0
o Justification is provided by the central limit theorem (Section
8.1)
o This algorithm is: portable, robust, relatively efficient and clear
& This algorithm is not: exact, synchronized or monotone

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Alternative Method 2

o If Uy and U are independent Uniform(0,1) RVs then

Z1 = \/—2In(Uz) cos(2m Us)

and
Zz =\ —2 |n(U1) Sin(27TU2)
will be independent Normal(0,1) RVs (Box and Muller, 1958)

@ This algorithm is: portable, exact, robust and relatively
efficient;

@ This algorithm is not: clear or monotone

@ The algorithm is synchronized only in pair-wise fashion

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Normal and Lognormal Random Variates

@ Random variates corresponding to Normal(p, o) and
Lognormal(a, b) can be generated by using a Normal(0, 1)
random variate generator

Example 7.2.7: Generating a Normal(;1,0) Random Variate

z = Normal(0.0, 1.0);
return p+ o * z;
/* see Definition 7.1.7 x/

Example 7.2.8: Generating a Lognormal(a, b) Random Variate

z = Normal(0.0, 1.0);
return exp(a + b * z);
/* see Definition 7.1.8 x/

@ Both algorithms are essentially ideal

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Numerical Inversion

@ Numerical inversion provides another way to generate
continuous random variates; that is, u = F(x) can be solved
for x iteratively

@ Newton’s method provides a good compromise between rate
of convergence and robustness

@ Given u € (0,1), let t be close to the value of x for which
u= F(x)
o If F(-) is expanded in a Taylor's series about the point t

F() = F() + FI(0)(x — 1)+ 5 P (0)(x— 17 4+

@ Recall F'(t) = f(t)

@ For small |x — t|, ignore (x — t)? and higher order terms

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Newton's Method

@ Set u= F(x) ~ F(t) + f(t)(x — t) and solve for x to obtain
u— F(t)
f(t)

@ Use initial guess ty and iterate to solve for x: t; — x as | — o0

X >~t+4

— F(t)
f(ti)

u
ti+1:ti+ i:O71727"'

10p
F()

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Two Issues Relative to Newton's M

@ The choice of an initial value tg
o The best choice for the initial value is the mode
o For most continuous RVs described in text, to = p is an
essentially equivalent choice
@ The test for convergence
o Given a convergence parameter € > 0
o lterate until [t — t] <€

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Algorithm 7.2.2

Algorithm 7.2.2

Given u € (0,1), the pdf f(-), the cdf F(-) and a convergence parameter
€ > 0, this algorithm will solve for x = F~1(u)

x = p; /*p is E[X]=/
do {
B S 9
x =1t + (u-F()) / £(t);
} while (lx-t| > €);
return x; /* x is F1(u)*/

@ If uis small and X is non-negative, a negative value of x may
occur early in the iterative process.

o Negative t will cause F(t) and f(t) to be undefined for
positive RVs

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Modified Algorithm 7.2.2

@ The following modification can be used to avoid the problem

Modified Algorithm 7.2.2

x = w; /*p is E[X]*/
do {
t = x;
x =1t + (u-F()) / £();
if (x <= 0.0)
x = 0.5 % t;
} while (Ix-tl| > €);
return x; /* x is F1(u)*x/

@ Algorithms 7.2.1 and 7.2.2 together provide a general purpose
inversion approach to continuous random variate generation

o E.g., the Erlang(n, b) idf function in rvms is based on
Alg.7.2.2 and can be used with Algorithm 7.2.1

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Alternative Random Variate Generation Algorithms

o Erlang Random Variates

An Erlang(n, b) random variate can be generated by summing
n Exponential(b) random variates

Generating an Erlang(n, b) Random Variate

x = 0.0;

for (i = 0; i < n; i++)
x += Exponential(b);

return Xx;

@ The algorithm is: portable, exact, robust, and clear

@ The algorithm is not efficient (it is O(n)), synchronized or
monotone

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Modified Algorithms for Erlang Random Variates

@ To increase computational efficiency, use

Generating an Erlang(n, b) Random Variate

t =1.0;

for (i = 0; i < n; i++)
t *= (1.0 - Random());

return -b * log(t);

@ This algorithm requires only one log() evaluation, rather
than n

@ Can further improve efficiency by using t *= Random() ;

@ The algorithm remains O(n), so is not efficient if n is large

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Chisquare Random Variates

@ If nis an even positive integer, an Erlang(n/2,2) random
variate is equivalent to a Chisquare(n) random variable

@ X is a Chisquare(n) random variable iff
X=2Z2+22+ -+ 272 where Z1,25,...,Z, are iid
Normal(0, 1) random variables

Generating a Chisquare(n) Random Variate

x = 0.0;
for (i = 0; i < n; i++){
z = Normal(0.0,
1.0);
x += (z x z); }
return x;

@ The algorithm is: portable, exact, robust, clear
@ The algorithm is not: efficient(it is O(n)), synchronized or

monotone

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Student Random Variates

e X is Student(n) ifft X = Z/\/V /n where
o Zis Normal(0,1)
o Vis Chisquare(n)
o Z and V are independent

Generating a Student(n) Random Variate

Normal(0.0, 1.0);
v = Chisquare(n);
return z / sqrt(v / n);

z

@ The algorithm is: portable, exact, robust, clear
@ The algorithm is not synchronized or monotone
o Efficiency depends on algs. used for Normal and Chisquare

(©2006 Pearson Ed., Inc. 0-13-142917-5

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation

Generating Continuous Random Variates

Testing for Correctness using Histograms

@ A natural way to do this at the computational level is:
@ use the algorithm to generate a sample of n random variates
and construct a k-bin continuous-data histogram with bin

width 6
o f is the histogram density and f(x) is the pdf

f— f(x) as n — 0o and 0—0

@ In practice, using a large but finite value of n and a small but
non-zero value of §, perfect agreement between f(x) and f(x)
will not be achieved

@ In the discrete case, it is due to natural sampling variability
@ In the continuous case, the quantization error associated with
binning the sample is an additional factor

Discrete-Event Simulation (©2006 Pearson Ed., Inc. 0-13-142917-5

Section 7.2: Generating Continuous Random Variates

Generating Continuous Random Variates
Quantization Error

o Let B=[m—6/2,m+ §/2] be a small histogram bin
@ Use the Taylor expansion of f(x) at x = m
1

f(x) = f(m)—|—f’(m)(x—m)—|—%f"(m)(x—m)2—|—3!

£ (m)(x—m)3+- - -

@ The probability of falling within the bin is

Pr(x € B) —/Bf(x)dx =---=f(m)d+ %f”(m)(ﬁ +--

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Quantization Error (2)

@ For all x € B, the histogram density is
s 1 1 1" 2
f(x) = 5 Pr(X € B) ~ f(m) + ﬂf (m)d

@ Unless f(m) = 0, there is a positive or negative bias between

° ?(x) the experimental density of the histogram bin and
o f(m), the theoretical pdf evaluated at the bin midpoint

@ This bias may be significant if the curvature of the pdf is large
at the bin midpoint

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Example 7.2.9

@ X is a continuous random variable with pdf

2
flx) = — 0
O =Grp X7
@ The cdf X is
X 1
F(x):/ f(t)dt=1— ——5 x>0
0 (x+1)
@ The idf is
_1 1
F 7 u)y=——-1 O<uxl1
1—u

@ Note the pdf curvature is very large close to x = 0; therefore,
the histogram will not match the pdf well for the bins close to
x=0

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Example 7.2.9 ctd.

@ Random variates for X can be generated using inversion

@ Correctness of the inversion can be tested by constructing a
histogram

@ Using histogram bin widths of § = 0.5, as n — oo, f(x) and
f(m) are (with d.dddd precision):

m . 025 075 125 175 225 275
f(x) : 1.1111 0.3889 0.1800 0.0978 0.0590 0.0383
f(m) : 1.0240 0.3732 0.1756 0.0962 0.0583 0.0379

@ For the first bin (m = 0.25), the curvature bias is

1 " 2
2af(m)o* =0.08192

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates

Testing for Correctness using the Empirical cdf

@ Compare the empirical cdf (section 4.3) with the population
cdf F(x)

@ Eliminates binning quantization error

@ For large samples (as n — o0), /:_(X) — F(x)

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

Generating Continuous Random Variates
Library rvgs

o Contains 7 continuous random variate generators

o

¢ © € ¢ ¢ ¢

double
double
double
double
double
double
double

Chisquare(long n)

Erlang(long n, double b)
Exponential (double u)
Lognormal (double a, double b)
Normal (double p, double o)
Student (long n)
Uniform(double a, double b)

Section 7.2: Generating Continuous Random Variates Discrete-Event Simulation (©2006 Pearson Ed., Inc. ~ 0-13-142917-5

