Discrete-Event Simulation:

A First Course

Section 7.3: Continuous RV Applications
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Continuous RV Applications

Section 7.3: Continuous RV Applications

@ Arrival Process Models

o Model interarrival times as RV sequence Ry, R>, Rs, ...
o Construct corresponding arrival times Az, Az, As, ... defined by

Ay=0 and Ai=A_1+R; =12, ...

@ By induction, Ai=Ri+ R+ -+ R; i=1,2,...
@ Since R; > 0, 0=A <A <A <A<

k— Ri —
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Continuous RV Applications
Example 7.3.1

@ Programs ssq2 and ssq3 generate job arrivals in this way,
where Ry, Ry, R3, ... are Exponential(1/))
In both programs, the arrival rate is equal to A = 0.5 jobs per
unit time

@ Programs sis3 and sis4 generate demand instances in this
way, with Exponential(1/)\) interdemand times
The demand rate corresponds to an average of

@ A = 30.0 actual demands per time interval in sis3
@ A\ = 120.0 potential demands per time interval in sis4
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Continuous RV Applications

Definition 7.3.1

o If Ry, Ry, Rs, ... is an jid sequence of positive interarrival
times with E[R;] = 1/ > 0, then the corresponding sequence
of arrival times A1, Az, As, ... is a stationary arrival process
with rate A

@ Stationary arrival processes also known as

@ Renewal processes
@ Homogeneous arrival processes

@ Arrival rate A\ has units “arrivals per unit time”
o If average interarrival time is 0.1 minutes,
@ then the arrival rate is 10.0 arrivals per minute
@ Stationary arrival processes are “convenient fiction”

o If the arrival rate A varies with time, the arrival process is
nonstationary (see Section 7.5)
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Continuous RV Applications
Stationary Poisson Arrival Process

@ As in ssq2, ssq3, sis3 and sis4, with lack of information it
is usually most appropriate to assume that the interarrival
times are Exponential(1/))

@ If R, Ro, Rs, ... is an iid sequence of Exponential(1/))
interarrival times, the corresponding sequence Aj, A, As, ...

of arrival times is a stationary Poisson arrival process with rate
A

Equivalently, for i = 1,2,3,... the arrival time A; is an
Erlang(i,1/)\) random variable
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Continuous RV Applications

Algorithm 7.3.1

Algorithm 7.3.1

Given A > 0 and t > 0, this algorithm generates a realization of a
stationary Posson arrival process with rate \ over (0, t)

a = 0.0; /* a convention */
n=20;
while(a, < t) {
an+1 = ap + Exponential(l / A);
n++;

}

return a;,a»,a3,...,an—1;
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Continuous RV Applications

Random Arrivals

@ We now demonstrate the interrelation between Uniform,
Exponential and Poisson random variables
@ In the following discussion,
@ t > 0 defines a fixed time interval (0, t)
@ n represents the number of arrivals in the interval (0, t)
@ r > 0 is the length of a small subinterval located at random
interior to (0, t)
@ Correspondingly,
@ A\ = n/t is the arrival rate
e p = r/t is the probability that a particular arrival will be in the
subinterval
e np = nr/t = Ar is the expected number of arrivals in the
subinterval
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Continuous RV Applications
Theorem 7.3.1

Theorem (7.3.1)

Let Ay, Az, As, ... be an iid sequence of Uniform(0, t) random
variables (“unsorted” arrivals). Let the discrete random variable X
be the number of A; that fall in a fixed subinterval of length r = pt
interior to (0,t). Then X is a Binomial(n, p) random variable

Proof.
@ Each A; is in the subinterval with probability p = r/t

| \

o Define X; = 1 if A is'in the subinterval
0 otherwise
@ Because Xi, Xa,- -+, X, is an iid sequence of Bernoulli(p) RVs,
and X = X1 + Xo + - + X,

X is a Binomial(n, p) random variable
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Continuous RV Applications
Random Arrivals Produce Poisson Counts

@ Recall that Poisson(Ar) = Binomial(n, Ar/n) for large n

@ Theorem 7.3.1 can be restated as Theorem 7.3.2:

Theorem (7.3.2)

o Let A1, Az, As, ... be an iid sequence of Uniform(0, t) random
variables

@ Let the discrete random variable X be the number of A; that
fall in a fixed subinterval of length r = pt interior to (0, t)

@ If nis large and r/t small, X is indistinguishable from a
Poisson(Ar) random variable with A = n/t
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Continuous RV Applications
Example 7.3.2

@ Suppose n = 2000 Uniform(0, t) random variables are
generated and tallied into a continuous-data histogram with
1000 bins of size r = t/1000

o If bin counts are tallied into a discrete-data histogram

e Since A\r = (n/t)(t/1000) = 2,
o from Thm 7.3.2, the relative frequencies will agree with the
pdf of a Poisson(2) random variable
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Continuous RV Applications
More on Random Arrivals

@ If many arrivals occur at random with a rate of A, the number
of arrivals X that will occur in an interval of length r is
Poisson(Ar)

@ The probability of x arrivals in an interval with length r is

exp(—Ar)(Ar)*

Pr(X =x) = o

x=0,1,2,

@ The probability of no arrivalsis: ~ Pr(X = 0) = exp(—Ar)
@ The probability of at least one arrival is

Pr(X >0) = 1—Pr(X = 0) = 1 — exp(—Ar)

@ For a fixed A, the probability of at least one arrival increases
with increasing interval length r
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Continuous RV Applications
Random Arrivals Produce Exponential Interarrivals

o If R represents the time between consecutive arrivals, the
possible values of R are r > 0

@ Consider arrival time A; selected at random and an interval of
length r beginning at A;

f— r —

T T T T time

Aif 1 AZ AH»l Ai+2

® R = Aj;1 — A will be less than r iff there is at least one
arrival in this interval

® Thecdf of R is

Pr(R < r) = Pr(at least one arrival) = 1—exp(—Ar) r>0

R is an Exponential(1/\) random variable
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Continuous RV Applications

Theorem 7.3.3

Theorem (7.3.3)

If arrivals occur at random with rate \, the corresponding
interarrival times form an iid sequence of Exponential(1/)\) RVs.

@ Proof on previous slide

@ Theorem 7.3.3 justifies the use of Exponential interarrival
times in programs ssq2, ssq2, sis2, sis4

o If we know only that arrivals occur at random with a constant
rate )\, the function GetArrival in ssq2 and ssq3 is
appropriate

o If we know only that demand instances occur at random with a
constant rate ), the function GetDemand in sis3 and sis4 is
appropriate
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Continuous RV Applications
Generating Poisson Random Variates

@ Observation:
o If arrivals occur at random with rate A\ = 1,
o the number of arrivals X in an interval of length p will be a
Poisson(y) random variate (Thm. 7.3.2)

|

I .

| T T T T T time
0 ay a2 as (o7} as

Example 7.3.3: Generating a Poisson(;1) Random Variate

ag = 0.0;

x = 0;

while (a < p) {
a += Exponential(1.0);
X++;

}

return x-1;
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Continuous RV Applications
Summary of Poisson Arrival Processes

@ Given a fixed time interval (0, t), there are two ways of
generating a realization of a stationary Poisson arrival process

with rate A
o Generate the number of arrivals: n = Poisson(At)

Generate a Uniform(0, t) random variate sample of size n and
sorttoform 0 < a; < ap < a3 <---< a,
@ Use Algorithm 7.3.1
o Statistically, the two approaches are equivalent
@ The first approach is computationally more expensive,
especially for large n
@ The second approach is always preferred
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Continuous RV Applications

Summary of Arrival Processes

@ The mode of the exponential distribution is 0
& A stationary Poisson arrival process exhibits “clustering”
@ The top axis shows a stationary Poisson arrival process with
A=1

@ The bottom axis shows a stationary arrival process with
Erlang(4,1/4) interarrival times
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@ The stationary Poisson arrival process generalizes to

@ a stationary arrival process when exponential interarrival times
are replaced by any continuous RV with positive support
& a nonstationary Poisson arrival process when X varies over time
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Continuous RV Applications

Service Process Models

@ No well-defined “default”, only application-dependent
guidelines:

@ Uniform(a, b) service times are usually inappropriate since they
rarely “cut off” at a maximum value b

& Service times are positive, so they cannot be Normal(y, o)
unless truncated to positive values

@ Positive probability models “with tails”, such as the
Lognormal(a, b) distribution, are candidates

o If service times are the sum of n iid Exponential(b) sub-task
times, then the Erlang(n, b) model is appropriate
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Continuous RV Applications

Program ssq4

@ Program ssqg4 is based on program ssq3, but with a more
realistic Erlang(5,0.3) service time model

The corresponding service rate is 2/3

@ As in program ssq3, ssq4 uses Exponential(2) random
variate interarrivals

The corresponding arrival rate is 1/2
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Continuous RV Applications
Example 7.3.4

@ For both ssq3 and ssq4, the arrival rate is A = 0.5 and the
service rate is v = 2/3 ~ 0.667

@ The distribution of service times for two programs is very
different

Lo - ----- |

0.00 - T T T T T T T
00 05 10 15 20 25 30 35 4.0

@ The solid line is the Erlang(5,0.3) service time pdf in ssq4
@ The dashed line represents the Uniform(1,2) pdf in ssq3
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Continuous RV Applications

Erlang Service Times

@ Some service processes can be naturally decomposed into a
series of independent “sub-processes”

Servers

arrivals —>— departures
' queue '

service node

@ The total service time is the sum of each sub-process service
time

@ If sub-process times are independent, a random variate service
time can be generated by generating sub-process times and
summing

@ In particular, if there are n sub-processes, and each service
sub-processes is Exponential(b), then the total service time
will be Erlang(n, b) and the service rate will be 1/nb
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Continuous RV Applications
Truncation

@ Let X be a continuous random variable with possible values X
and cdf F(x) = Pr(X < x)

@ Suppose we wish to restrict the possible values of X to

(a,b) C X

Truncation in the continuous-variable context is similar to, but

simpler than, truncation in the discrete-variable context

X is less or equal to a with probability Pr(X < a) = F(a)

X is greater or equal to b with probability

(]

(]

Pr(X > b)=1—Pr(X < b)=1-— F(b)

X is between a and b with probability

(]

Pr(a< X < b) =Pr(X < b)—Pr(X <a)=F(b) — F(a)
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Continuous RV Applications
Two Cases for Truncation

@ If a and b are specified, the cdf of X can be used to determine
the left-tail, right-tail truncation probabilities

a=Pr(X <a)=F(a) and B =Pr(X <b)=1-F(b)

o If o and 3 are specified, the idf of X can be used to
determine left and right truncation points

a=FYa) and b=F11-p)

Both transformations are exact
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Continuous RV Applications
Example 7.3.5

@ Use a Normal(1.5,2.0) random variable to model service times
@ Truncate distribution so that

@ Service times are non-negative (a=0)
o Service times are less than 4 (b=4)

= cdfNormal(1.5, 2.0, a); /*a is 0.0 *x/

«
B = 1.0 - cdfNormal(1.5, 2.0, b); /*b is 4.0 */

@ The result: @ = 0.2266 and 6 = 0.1056

@ Note: the truncated Normal(1.5,2.0) random variable has a
mean of 1.85, not 1.5, and a standard deviation of 1.07, not
2.0
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Continuous RV Applications

Constrained Inversion

@ Once « and 3 are determined, the corresponding truncated
random variate can be generated by using constrained
inversion

Constrained Inversion

u = Uniform(a, 1.0 - 3);
return F~1(u);

Section 7.3: Continuous RV Applications Discrete-Event Simulation  (©2006 Pearson Ed., Inc.  0-13-142917-5



Continuous RV Applications
Example 7.3.6

@ The idf capability in rvms can be used to generate the
truncated Normal(1.5,2.0) random variate in Example 7.3.5

Example 7.3.6

a = 0.2266274;

B = 0.1056498;

u = Uniform(a, 1.0 - 3);

return idfNormal(1.5, 2.0, u);

Figure shows u = 0.7090 and x = 2.601
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Continuous RV Applications
Triangular Random Variable

o Triangular(a, b, c) model should be considered in situations
where the finite range of possible values along with the mode
is known

@ The distribution is appropriate

@ As an alternative to truncating a “traditional” model such as
Erlang(n, b) or Lognormal(a, b)
@ If no other data is available

@ Assume that the pdf of the random variable has shape
2/(b—a)
f(x)
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Continuous RV Applications
Properties of the Triangular Distribution

o X is Triangular(a, b, c) iff a < ¢ < b, X = (a, b), and the pdf
of X is 2x—s)
X—a
f(x) = {(b(ab)(c)a) a<xsc
(b=2)(b—2) c<x<b

o u=3(a+b+c) and
oc=2\/(a—b2+(a—c)2+(b—c)?

@ The cdf is
% 3<X§C
F(x) = (b—x)2
@ The idf is
F1(0) a++/(b—a)(c—a)u 0<u< =
u)=
b—\/(b—a)(b—c)(l—u) g_z<u<1
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