Discrete-Event Simulation: A First Course

Section 7.3: Continuous RV Applications

Section 7.3: Continuous RV Applications

Arrival Process Models

- Model interarrival times as RV sequence R_1, R_2, R_3, \dots
- Construct corresponding arrival times A_1, A_2, A_3, \ldots defined by

$$A_0 = 0$$
 and $A_i = A_{i-1} + R_i$ $i = 1, 2, ...$

- By induction, $A_i = R_1 + R_2 + \cdots + R_i$ i = 1, 2, ...
- Since $R_i > 0$, $0 = A_0 < A_1 < A_2 < A_3 < \cdots$

Example 7.3.1

- Programs ssq2 and ssq3 generate job arrivals in this way, where R_1,R_2,R_3,\ldots are Exponential($1/\lambda$) In both programs, the arrival rate is equal to $\lambda=0.5$ jobs per unit time
- Programs sis3 and sis4 generate demand instances in this way, with $Exponential(1/\lambda)$ interdemand times

 The demand rate corresponds to an average of
 - $\lambda = 30.0$ actual demands per time interval in sis3
 - $\lambda = 120.0$ potential demands per time interval in sis4

Definition 7.3.1

- If R_1, R_2, R_3, \ldots is an *iid* sequence of positive interarrival times with $E[R_i] = 1/\lambda > 0$, then the corresponding sequence of arrival times A_1, A_2, A_3, \ldots is a *stationary arrival process* with rate λ
- Stationary arrival processes also known as
 - Renewal processes
 - Homogeneous arrival processes
- Arrival rate λ has units "arrivals per unit time"
 - If average interarrival time is 0.1 minutes,
 - then the arrival rate is 10.0 arrivals per minute
- Stationary arrival processes are "convenient fiction"
- If the arrival rate λ varies with time, the arrival process is nonstationary (see Section 7.5)

Stationary Poisson Arrival Process

- As in ssq2, ssq3, sis3 and sis4, with lack of information it is usually most appropriate to assume that the interarrival times are $Exponential(1/\lambda)$
- If R_1, R_2, R_3, \ldots is an *iid* sequence of *Exponential*($1/\lambda$) interarrival times, the corresponding sequence A_1, A_2, A_3, \ldots of arrival times is a stationary *Poisson* arrival process with rate λ

Equivalently, for i = 1, 2, 3, ... the arrival time A_i is an $Erlang(i, 1/\lambda)$ random variable

Algorithm 7.3.1

Algorithm 7.3.1

Given $\lambda>0$ and t>0, this algorithm generates a realization of a stationary Posson arrival process with rate λ over (0,t)

```
a_0 = 0.0; /* a convention */
n = 0;
while(a_n < t) {
a_{n+1} = a_n + \text{Exponential}(1 / \lambda);
n++;
}
return a_1, a_2, a_3, \dots, a_{n-1};
```

Random Arrivals

- We now demonstrate the interrelation between *Uniform*, Exponential and Poisson random variables
- In the following discussion,
 - t > 0 defines a fixed time interval (0, t)
 - n represents the number of arrivals in the interval (0,t)
 - r > 0 is the length of a small subinterval located at random interior to (0, t)
- Correspondingly,
 - $\lambda = n/t$ is the arrival rate
 - p = r/t is the probability that a particular arrival will be in the subinterval
 - $np = nr/t = \lambda r$ is the expected number of arrivals in the subinterval

Theorem 7.3.1

Theorem (7.3.1)

Let A_1, A_2, A_3, \ldots be an iid sequence of Uniform(0, t) random variables ("unsorted" arrivals). Let the discrete random variable X be the number of A_i that fall in a fixed subinterval of length r = pt interior to (0, t). Then X is a Binomial(n, p) random variable

Proof.

- Each A_i is in the subinterval with probability p = r/t
- Define $X_i = \begin{cases} 1 & \text{if } A_i \text{ is in the subinterval} \\ 0 & \text{otherwise} \end{cases}$
- Because X_1, X_2, \dots, X_n is an *iid* sequence of *Bernoulli(p)* RVs, and $X = X_1 + X_2 + \dots + X_n$,
 - X is a Binomial(n, p) random variable

Random Arrivals Produce Poisson Counts

- Recall that $Poisson(\lambda r) \approx Binomial(n, \lambda r/n)$ for large n
- Theorem 7.3.1 can be restated as **Theorem 7.3.2**:

Theorem (7.3.2)

- Let $A_1, A_2, A_3,...$ be an iid sequence of Uniform(0, t) random variables
- Let the discrete random variable X be the number of A_i that fall in a fixed subinterval of length r = pt interior to (0, t)
- If n is large and r/t small, X is indistinguishable from a $Poisson(\lambda r)$ random variable with $\lambda = n/t$

Example 7.3.2

- Suppose n=2000 Uniform(0,t) random variables are generated and tallied into a continuous-data histogram with 1000 bins of size r=t/1000
- If bin counts are tallied into a discrete-data histogram
 - Since $\lambda r = (n/t)(t/1000) = 2$,
 - from Thm 7.3.2, the relative frequencies will agree with the pdf of a *Poisson*(2) random variable

More on Random Arrivals

- If many arrivals occur at random with a rate of λ , the number of arrivals X that will occur in an interval of length r is $Poisson(\lambda r)$
- The probability of x arrivals in an interval with length r is

$$Pr(X = x) = \frac{\exp(-\lambda r)(\lambda r)^x}{x!} \qquad x = 0, 1, 2, \dots$$

- The probability of no arrivals is: $Pr(X = 0) = exp(-\lambda r)$
- The probability of at least one arrival is

$$\Pr(X > 0) = 1 - \Pr(X = 0) = 1 - \exp(-\lambda r)$$

ullet For a fixed λ , the probability of at least one arrival increases with increasing interval length r

Random Arrivals Produce Exponential Interarrivals

- If R represents the time between consecutive arrivals, the possible values of R are r>0
- Consider arrival time A_i selected at random and an interval of length r beginning at A_i

- $R = A_{i+1} A_i$ will be less than r iff there is at least one arrival in this interval
- The cdf of R is

$$Pr(R \le r) = Pr(at least one arrival) = 1 - exp(-\lambda r)$$
 $r > 0$

• R is an Exponential($1/\lambda$) random variable

Theorem 7.3.3

Theorem (7.3.3)

If arrivals occur at random with rate λ , the corresponding interarrival times form an iid sequence of Exponential(1/ λ) RVs.

- Proof on previous slide
- Theorem 7.3.3 justifies the use of *Exponential* interarrival times in programs ssq2, ssq2, sis2, sis4
 - If we know only that arrivals occur at random with a constant rate λ, the function GetArrival in ssq2 and ssq3 is appropriate
 - If we know only that demand instances occur at random with a constant rate λ , the function GetDemand in sis3 and sis4 is appropriate

Generating *Poisson* Random Variates

- Observation:
 - If arrivals occur at random with rate $\lambda = 1$,
 - the number of arrivals X in an interval of length μ will be a $Poisson(\mu)$ random variate (Thm. 7.3.2)

Example 7.3.3: Generating a $Poisson(\mu)$ Random Variate

```
a_0 = 0.0;
x = 0;
while (a < \mu) {
    a += Exponential(1.0);
    x++;
return x-1;
```

Summary of Poisson Arrival Processes

- Given a fixed time interval (0,t), there are two ways of generating a realization of a stationary Poisson arrival process with rate λ
 - Generate the number of arrivals: $n = Poisson(\lambda t)$ Generate a Uniform(0, t) random variate sample of size n and sort to form $0 < a_1 < a_2 < a_3 < \cdots < a_n$
 - Use Algorithm 7.3.1
- Statistically, the two approaches are equivalent
- The first approach is computationally more expensive, especially for large n
- The second approach is always preferred

Summary of Arrival Processes

- The *mode* of the exponential distribution is 0
 - A stationary Poisson arrival process exhibits "clustering"
- ullet The top axis shows a stationary Poisson arrival process with $\lambda=1$
- The bottom axis shows a stationary arrival process with Erlang(4, 1/4) interarrival times

- The stationary Poisson arrival process generalizes to
 - a stationary arrival process when exponential interarrival times are replaced by any continuous RV with positive support
 - \bullet a nonstationary Poisson arrival process when λ varies over time

Service Process Models

- No well-defined "default", only application-dependent guidelines:
 - Uniform(a, b) service times are usually inappropriate since they rarely "cut off" at a maximum value b
 - Service times are positive, so they cannot be $\textit{Normal}(\mu, \sigma)$ unless truncated to positive values
 - Positive probability models "with tails", such as the Lognormal(a, b) distribution, are candidates
 - If service times are the sum of *n* iid Exponential(b) sub-task times, then the Erlang(n, b) model is appropriate

Program ssq4

- Program ssq4 is based on program ssq3, but with a more realistic *Erlang*(5, 0.3) service time model
 The corresponding service rate is 2/3
- As in program ssq3, ssq4 uses Exponential(2) random variate interarrivals
 The corresponding arrival rate is 1/2

Example 7.3.4

- For both ssq3 and ssq4, the arrival rate is $\lambda=0.5$ and the service rate is $\nu=2/3\simeq0.667$
- The distribution of service times for two programs is very different

- The solid line is the *Erlang*(5, 0.3) service time pdf in ssq4
- The dashed line represents the *Uniform*(1,2) pdf in ssq3

Erlang Service Times

 Some service processes can be naturally decomposed into a series of independent "sub-processes"

- The total service time is the sum of each sub-process service time
- If sub-process times are independent, a random variate service time can be generated by generating sub-process times and summing
- In particular, if there are n sub-processes, and each service sub-processes is Exponential(b), then the total service time will be Erlang(n, b) and the service rate will be 1/nb

Truncation

- Let X be a continuous random variable with possible values \mathcal{X} and cdf $F(x) = \Pr(X \leq x)$
- Suppose we wish to restrict the possible values of X to $(a,b)\subset \mathcal{X}$
- Truncation in the continuous-variable context is similar to, but simpler than, truncation in the discrete-variable context
- X is less or equal to a with probability $Pr(X \le a) = F(a)$
- X is greater or equal to b with probability

$$\Pr(X \ge b) = 1 - \Pr(X < b) = 1 - F(b)$$

X is between a and b with probability

$$\Pr(a < X < b) = \Pr(X < b) - \Pr(X \le a) = F(b) - F(a)$$

Two Cases for Truncation

• If a and b are specified, the cdf of X can be used to determine the left-tail, right-tail truncation probabilities

$$\alpha = \Pr(X \le a) = F(a)$$
 and $\beta = \Pr(X \le b) = 1 - F(b)$

• If α and β are specified, the idf of X can be used to determine left and right truncation points

$$a = F^{-1}(\alpha)$$
 and $b = F^{-1}(1 - \beta)$

Both transformations are exact

Example 7.3.5

- Use a Normal(1.5, 2.0) random variable to model service times
- Truncate distribution so that
 - Service times are non-negative (a = 0)
 - Service times are less than 4 (b=4)

Example 7.3.5

```
\alpha = cdfNormal(1.5, 2.0, a); /*a is 0.0 */ \beta = 1.0 - cdfNormal(1.5, 2.0, b); /*b is 4.0 */
```

- The result: $\alpha = 0.2266$ and $\beta = 0.1056$
- Note: the *truncated Normal*(1.5, 2.0) random variable has a mean of 1.85, not 1.5, and a standard deviation of 1.07, not 2.0

Constrained Inversion

• Once α and β are determined, the corresponding truncated random variate can be generated by using constrained inversion

Constrained Inversion

```
u = Uniform(\alpha, 1.0 - \beta);
return F^{-1}(u);
```

Example 7.3.6

• The idf capability in rvms can be used to generate the truncated *Normal*(1.5, 2.0) random variate in Example 7.3.5

Example 7.3.6 $\alpha = 0.2266274$; $\beta = 0.1056498$;

```
u = Uniform(\alpha, 1.0 - \beta);
```

```
return idfNormal(1.5, 2.0, u);
```


Figure shows u = 0.7090 and x = 2.601

Triangular Random Variable

- Triangular(a, b, c) model should be considered in situations where the finite range of possible values along with the mode is known
- The distribution is appropriate
 - As an alternative to truncating a "traditional" model such as Erlang(n, b) or Lognormal(a, b)
 - If no other data is available
- Assume that the pdf of the random variable has shape

Properties of the Triangular Distribution

• X is Triangular(a, b, c) iff a < c < b, $\mathcal{X} = (a, b)$, and the pdf of X is

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & a < x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & c < x < b \end{cases}$$

- $\mu = \frac{1}{3}(a+b+c)$ and $\sigma = \frac{1}{6}\sqrt{(a-b)^2 + (a-c)^2 + (b-c)^2}$
- The cdf is

$$F(x) = \begin{cases} \frac{(x-a)^2}{(b-a)(c-a)} & a < x \le c\\ 1 - \frac{(b-x)^2}{(b-a)(b-c)} & c < x < b \end{cases}$$

The idf is

$$F^{-1}(u) = \begin{cases} a + \sqrt{(b-a)(c-a)u} & 0 < u \le \frac{c-a}{b-a} \\ b - \sqrt{(b-a)(b-c)(1-u)} & \frac{c-a}{b-a} < u < 1 \end{cases}$$

