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Abstract—We focus on load balancing policies for homogeneous clustered Web servers that tune their parameters on-the-fly to adapt
to changes in the arrival rates and service times of incoming requests. The proposed scheduling policy, ADAPTLOAD, monitors the
incoming workload and self-adjusts its balancing parameters according to changes in the operational environment such as rapid
fluctuations in the arrival rates or document popularity. Using actual traces from the 1998 World Cup Web site, we conduct a detailed
characterization of the workload demands and demonstrate how online workload monitoring can play a significant part in meeting the
performance challenges of robust policy design. We show that the proposed load balancing policy based on statistical information
derived from recent workload history provides similar performance benefits as locality-aware allocation schemes, without requiring
locality data. Extensive experimentation indicates that ADAPTLOAD results in an effective scheme, even when servers must support

both static and dynamic Web pages.

Index Terms—Clustered Web servers, self-managing clusters, load balance, locality awareness, workload characterization, static and

dynamic pages.

1 INTRODUCTION

THE wide deployment of Web browsers as the standard
interface for IT applications, such as news sites, e-
commerce stores, and search engines, makes Web server
clusters the architecture of choice. Serving the ever-increasing
and diversified customer population in such systems while
ensuring high availability in a cost-effective way is a
challenge. Service replication is the obvious vehicle to achieve
scalability and availability, but this requires robust load
balancing policies, especially given the complexity of the
workload characteristics experienced by a Web cluster.
Contemporary servers provide not only static and read-only
information, but also personalized dynamic pages created on
demand. This, in conjunction with bursty client request rates
that fluctuate dramatically even within short periods of time
and the wide disparity of per-request CPU and I/O resource
requirements, further complicates resource allocation in Web
server clusters. Being able to swiftly adapt the scheduling
policy to the workload without human intervention is critical
for the commercial success of Web sites [21].

In this paper, we focus on self-adjusting strategies for
effective load balancing in a locally distributed Web server
cluster that provides replicated services. We assume a Web
server architecture consisting of a front-end device (com-
monly called a Web switch) and a set of homogeneous,
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back-end Web server nodes. The switch acts as the initial
interface between the cluster nodes and the Internet, and
distributes the incoming requests to the servers, trying to
balance the load among them. The server nodes are
responsible for serving individual requests [2]; in particular,
a server node handles requests for static content located
either in its local memory or in its local disk, while dynamic
requests are forwarded first to a specialized server, e.g., a
database server, before they can be transmitted to the client
by the server node.

A robust self-tuned load balancing policy in such an
environment is critical for high performance. Previous
research addressed issues of scalability, availability, and
quality of service support within the context of load
balancing in clustered Web servers. For a comprehensive
survey see [11]. However, most of these classic works on
task assignment assume that job service requirements
follow the well-behaved exponential distribution, thus they
are less effective when the workload has highly variable
arrival and service processes [23].

High variability in the arrival rates can be due to
periodicity, e.g., dependence on the time of the day or
day of the week, may be triggered by unpredictable events,
e.g., breaking news in a news site, or may be due to the
nature of Internet itself: Bursty arrivals can lead to periods
of transient overload where the number of requests in the
system increases dramatically within a very short time
period. Effective load balancing policies should offer rapid
system adaptation under transient overload conditions.
Variability in the service process becomes an additional
obstacle to effective load balancing. For static requests, it is
well-documented that the size of Web documents (and,
consequently, their service demands) follows heavy-tailed
distributions [4], [7], while, for dynamic requests, there is
virtually no correlation between document size and service
demand.

Our thesis is that an effective load balancing policy must
self-adjust its parameters as the arrival and service
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characteristics of the incoming workload change. In [23], we
proposed a new policy named ADAPTLOAD and gave a
proof of concept that dynamically readjusting its para-
meters based on the monitored workload is a promising
approach. ADAPTLOAD advocates dedicating servers to
requests of similar size, with the aim of reducing the
average job slowdown through separation of long and short
jobs. The policy is based on the empirical distribution of the
workload resource demands, i.e., the request sizes and their
frequencies. Given that there are N identical servers,
request sizes are partitioned into N disjoint intervals,
[so =0,s1), [s1,52), up to [sny—_1,sny = 00), so that server i,
for 1 <i < N, is responsible for satisfying requests whose
size falls in the ith interval. Each request is forwarded to the
appropriate server as determined by its size. The key idea is
to set the intervals so that each server is subject to a similar
overall load.

While this approach is feasible postmortem, the ability to
predict the request size distribution of the incoming
workload is critical to the effectiveness of ADAPTLOAD in
any practical setting. Using actual workload traces from the
1998 World Cup Soccer Web site, we gave a first proof of
concept using a simple simulation model; under certain
assumptions, ADAPTLOAD was shown to be a promising
load balancing policy in a constantly changing environment
[23] and to effectively set its interval boundaries according
to the current workload characteristics.

In this paper, we present a detailed simulation study of
ADAPTLOAD’s performance under realistic architectural
assumptions. First, by its nature, ADAPTLOAD behaves
similarly to a “locality-aware” allocation policy [22] since it
directs requests for the same document to the same server
(unless changes in the request distribution force the interval
boundaries to change, in which case requests for some
documents will be directed to a different server). We
conduct a workload characterization study and quantify the
performance benefits of the implicit caching achieved by
ADAPTLOAD. Furthermore, we compare its performance
with LARD, a locality-aware policy that aims to balance the
load while achieving the benefits of explicit caching
through a request assignment based on the contents of
each server’s cache [22].

Second, we address the policy fairness by presenting a
statistical performance study for various job sizes. Slow-
down percentiles across the spectrum of job sizes indicate
that ADAPTLOAD is able to consistently service all resource
queues under transient overload conditions.

Third, we present an analysis of ADAPTLOAD’s perfor-
mance under workloads that serve both static and dynamic
pages. For static pages, the size of the file returned in
response to a request is a good characterization of the
length of the job, but this is not true for dynamic pages.
Through experimentation, we show that ADAPTLOAD
compares favorably to classic load balancing policies and
that determining the interval boundaries from information
on the static portion of the workload alone is effective even
in the presence of moderately mixed workloads.

Our paper is organized as follows: Section 2 summarizes
related work. Section 3 presents a detailed characterization of
the workload used to drive our simulations, focusing on its
transient characteristics. A detailed description of ADAPT-
LOAD is presented in Section 4. Section 5 describes the
architecture of the Web server cluster we consider. Section 6
presents an analysis of the policy’s performance focusing on
the implicit caching achieved by ADAPTLOAD. The behavior

of the policy in the presence of both static and dynamic pages
is considered in Section 7, while an improved version of
ADAPTLOAD is presented in Section 8. Finally, Section 9
summarizes our contributions and outlines future work.

2 REeLATED WORK

In a typical clustered Web server system, URL requests
arrive at a switch [10] responsible for routing requests to the
server nodes [12], [14], [16], [22] according to a scheduling
policy aimed at optimizing some performance measure,
e.g., maximizing the number of network connections or
minimizing the server expected response time. Many
implementation alternatives (DNS-based, dispatcher-based
at the network level, and server-based) exist to schedule
client requests among multiple server nodes and provide
load balancing coupled with high scalability and avail-
ability (see [11] for a survey of dynamic load balancing
policies in Web server clusters).

There is a significant body of research in task scheduling
and load balancing, but the common assumption is that each
job’s service requirement is exponentially distributed (see
[17] and references therein). These traditional policies fail to
balance the load if the workload is long tailed [17]. Instead, for
long-tailed workloads, there is an increasing trend toward
policies that strive to avoid serving “long” and “short” jobs at
the same server node [13], [16]. Furthermore, “locality-
aware” policies that base their load balancing decisions on
the cache contents of the server nodes have been shown to
achieve superior performance [22].

If the workload (i.e., the distribution of file popularity) is
known a priori, size-based policies have been shown to do
well [13], [16]. Such policies easily apply to systems that
support static pages. With regard to dynamic pages, there
have been significant efforts in characterizing and modeling
requests for personalized content [5], [9], [24], [25]. Web
server data on actual e-commerce sites are nearly impos-
sible to obtain as studies on such systems are subject to
nondisclosure agreements. Consequently, one can only
resort to synthetic workload generators to study such
systems, the most prominent being the TPC-W benchmark
[15]. Studies based on the TPC-W and its variants focus on
bottleneck identification [1], [26], [20], and there is con-
sensus that the CPU of the database server is almost always
the bottleneck.

In this paper, we first assume that the workload is
composed only of static pages, but there is no a priori
knowledge of the file popularity. Our work is in the same
spirit as those in [13], [16] but, unlike them, it considers
load-balancing as an online problem where the interval
boundaries are periodically adjusted according to fluctua-
tions in the workload arrival rate and service demands.
Then, we show that size-based policies can be effective even
for workloads that support both static and dynamic pages:
Using an online size-based policy even just for a portion of
the workload (i.e., its static part) can result in effective load
balancing.

3 THE WORKLOAD

In our evaluation of ADAPTLOAD, we use traces from the
1998 World Soccer Cup Web site." The server for this site
was composed of 30 low-latency platforms distributed

1. Available from the Internet Traffic Archive at http://ita.ee.Ibl.gov/.
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TABLE 1
Statistical Information Regarding the Unique Files Requested on 24 June

‘ Number of unique files ‘ Mean (byte) ‘ Median (byte) ‘ Maximum (Mbyte) ‘ Total Size (Mbyte) ‘

| 17,332 | 11786 |

3714 | 3.1 |

194.7 |

TABLE 2
Statistical Information Regarding the Total Files Requested on 24 June

‘ Number of requests ‘ Mean (byte) ‘ Median (byte) ‘ Total Transferred (Mbyte) ‘

| 38834515 | 52485 |

963 | 189,800 |

across four physical locations. Client requests were dis-
patched to a location via a Cisco Distributed Director, and
each location was responsible for load balancing the
incoming requests among its servers. Trace data were
collected during 92 days, from 26 April 1998 to 26 July 1998,
when the server was operational. For each request, the
following information was recorded: IP address of the client
issuing the request, date and time of the request, URL
requested, HTTP response status code, and content length
(in bytes) of the transferred document. The Web site
contained static pages only. For a detailed analysis of the
World Cup workload, see [4].

We focus on a single day of the trace (24 June), which we
selected as representative. On that day, more than 38 million
requests for 17,322 distinct files were successfully served
and recorded in the trace. Tables 1 and 2 present the
statistics of the unique file size distribution and total file
transfers, respectively. Note the disparity between mean
and median in Table 1 and between the means in Tables 1
and 2, as well as the maximum document size. All indicate
the presence of a long-tailed workload.” This is further
confirmed by the cumulative distribution function (CDF) of
the unique file sizes and total file transfers. Fig. 1 clearly
indicates that the majority of transfers are due to small files
and only a small percentage is due to a few very large files.

We now turn to the request arrival rate and its relationship
to the average request size. Fig. 2a plots the number of request
arrivals per minute as a function of time: There is a huge
variability in the arrival rate over the course of the day, with
two peaks during the evening hours. Figs. 2b and 2c show the
average and the coefficient of variation (C.V.) of the request
size (during each minute) as a function of time: There is
significant variability in the average request size during the
course of the day, and coefficients of variation as high as 10
indicate the presence of heavy tails. Note also the inverse
behavior between workload arrival rate and service distribu-
tion: The two peaks in Fig. 2a correspond to lower coefficients
of variation in Fig. 2c. Similar characteristics are observed for
nearly every high traffic day of the World Cup trace.

This analysis illustrates the difficulties in policy para-
meterization: the parameters need fast adaptation to
changes in the request distribution, which can vary
dramatically from one minute to the next within the course
of a day. The next section discusses the sensitivity of the

2. Arlitt and Jin [4] suggest that this workload can be effectively modeled
using a hybrid distribution: a Lognormal distribution for the body and a
power-law distribution for the tail.

policy to the workload characteristics and alternatives to
improve its robustness.

4 ADAPTLOAD: ONLINE LOAD BALANCING

In a cluster with N server nodes, ADAPTLOAD requires
partitioning the possible request sizes into N intervals,
{[so =0,51),[51,82)s .., [SN-1,88 = 00)}, so that server n,
for 1 <n < N, is assigned to satisfy the requests for files
with size falling in the nth interval, [s,_1, s,). The values of
the N — 1 size boundaries s, 3, . .., sy are critical, as they
determine the load seen by each server. These boundaries
should result in a uniform expected slowdown (defined as
the ratio of the actual response time for a request to the
ideal response time it would experience if it were serviced
immediately) at each server, by providing each server with
approximately the same load. Since we are considering an
homogeneous cluster, each interval should be set so that the
requests routed to the corresponding server contribute a
fraction 1/N to the value of the expected total number of

requested bytes, S. In other words, we should have, for

1<n<N,
Sn 1 00 g
/ x - dF(z) N/o x - dF(z) N’

Sn—1

where F(x) is the CDF of the request sizes. If the cluster
consisted of heterogeneous servers, the policy could be
extended to account for different server speeds, i.e., if server
i’s speed is b;, then ADAPTLOAD would allocate a fraction
b;/ Zj\:l b; of the total load to server i.

ADAPTLOAD builds a discrete data histogram (DDH)
encoding the empirical size distribution of batches of K
requests as they arrive in the system. Since ADAPTLOAD is
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Fig. 1. CDFs of the unique and total file transfers on 24 June.
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Fig. 2. Arrival and service characteristics of requests on 24 June.
(a) Arrival intensity: number of requests per minute. (b) Average request
size. (c) C.V. of request size.

an online algorithm, it must manipulate DDHs efficiently,
i.e., in constant time per request. To achieve this goal, we
represent each DDH using a vector V' with a constant
number F of bins; for 1< f<F, the fth bin V[f]
accumulates the total number of bytes due to requests for
files with size between C/~! and C/, where C is some real
constant greater than one (using a value of C close to one
results in a fine DDH representation, but also in a larger
value for F since C must exceed the size of the largest file
that may be requested). Accordingly, the boundaries are
expressed in terms of bin indices, not actual file sizes.
Since a significant portion of the workload consists of a
few popular files, it may not be possible to select N distinct
boundaries and still ensure that each interval [s,_1,sy)
corresponds to a fraction 1/N of the load. This forces us to
introduce “fuzzy” boundaries: We associate a probability p,
to every boundary point s,, for 1 <n < N, expressing the
portion of the requests for files of size s, that is to be served
by server n. The remaining portion 1 — p,, of requests for
this file size is served by server n+ 1, or even higher-
numbered servers. Thus, the boundaries are expressed as a
sequence of N — 1 pairs, [(sp,pn) : 1 <n < N —1]. If many
requests are for files of similar, but not exactly equal, size,
ADAPTLOAD works well because it nevertheless assigns
these files to different bins. If many requests are for the
same few files having exactly the same size, the “fuzzy”
boundaries eventually cause multiple servers to have these
files in their cache; at that point, ADAPTLOAD acts
appropriately and balances the load among these servers.
A case where ADAPTLOAD would not work well is when
there is a large number of requests, each for a different file,
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Discrete Data Histogram (DDH) of request sizes

Assume N=4 servers

to server 4

Fig. 3. High-level idea of ADAPTLOAD.

but all these files have the same size; however, in this a very
unlikely case. Fig. 3 gives an illustration of the high-level
idea of ADAPTLOAD.

In the previous section, we showed that the workload
can be highly variable even across a single day. This suggests
that frequent adjustments of the s, boundaries are
imperative for high performance. A simple way to do this
is to use the last K requests seen by the system when
computing the DDH needed to determine the boundaries
for the allocation of the next K requests. The value of K
should be neither too small (since we must ensure that the
computed DDH is statistically significant) nor too large
(since we must adapt promptly to workload fluctuations).

Predicting the incoming workload based on batches of K
requests helps ADAPTLOAD capture the cluster’s transient
behavior. In [23], we showed that the performance of
ADAPTLOAD improves if information from the entire
workload history is used to predict the future workload,
in a geometrically discounted fashion: The near past history
weighs more than the far past one. The flow of incoming
requests is partitioned into batches of K requests and the
“all batches DDH” is updated with the “current batch” DDH.
The geometrically discounted history can be formalized as
follows.

Let O; be a vector representing the DDH observed in the
ith batch. Then, the DDH U, used to allocate the next batch
of requests is obtained as a geometrically discounted
weighted sum of all the previously observed batches:

Z;’:o o' I0; ~ (1-)0; 4 (a—a"™U;

i i— _ i+l
Z.j:(]a J l-a

The coefficient o, 0 < a < 1, controls the rate at which past
data decreases in importance. The case oo = 0 corresponds to
the algorithm previously presented, where only the last batch
iis used to compute U;,,; the case o = 1 corresponds to giving
the same weight to all batches. For any given trace and value
of K, itis possible to find an a posteriori value of o providing
nearly optimal performance: Obviously, as a trend, the larger
K, the smaller «. Fortunately, ADAPTLOAD proves to be not
too sensitive to the value chosen for the (K, «) pair.

Fig. 4 illustrates the algorithm that uses geometrically
discounted history of past workload to determine fuzzy
boundary points for ADAPTLOAD. In the following sec-
tions, we concentrate on ADAPTLOAD’s ability to cope with
transient overloads by effectively balancing the load among
the servers and by implicitly behaving like a locality-aware
policy. Furthermore, we concentrate on ADAPTLOAD’s
ability to treat fairly requests of different sizes as well as

Ui =
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1. initialize overall algorithm

b. initialize ¢ to the first batch index:
c. initialize the used DDH:

a. initialize number of requests:
b. initialize observed DDH:
3. while R < K do

c. compute index f satisfying C7~1 < s < Cf
d. add s to bin f of observed DDH:
4. compute the next used DDH:

5. increment batch index:

a. initialize server index:
b. initialize accumulated weight:
c. initialize total weight in U;:
d. compute total weight in U;:
7. for f =1to F do
a. add the f*" bin of the used DDH to A:
b. while A >n-B/N
L set boundary for server n:
II.  set fraction for server n:
III. increment server index:

8. go to 2. and process another batch of K requests

a. setthe N — 1 fuzzy boundaries [(s1, 1), (s2,1),

2. initialize the counters for a new batch of K requests:

a. getanew request, let its size be s, and increment R

b. assign this request to a server based on s and [(s1,p1), (S2,D2), -, (SN—1,PN—1)]

6. initialize computation of new fuzzy boundaries [(s1, p1), (s2,D2), -, (SN—1,PN-1)]

..., (sn—1,1)] to reasonable guesses
10
forf=1to Fdo U;[f] «+ O

R+0
for f=1to Fdo O;[f]+ 0

Oi[f] + Oi[f1 + s
Up1 < (1 = )0 + (@ = a)U;) / (1 — ')
i—i+1

n<+1
A+0
B+0
for f =1to Fdo B+ B+ Uj[f]

sp & f

pn+ 1—(A—n-B/N)/Ui[f]
n<n+1l

Fig. 4. Setting the fuzzy boundaries [(s1, p1), (s2,p2), - ., (Sn—1, pn-1)] With ADAPTLOAD.

its performance under workloads that have both static and
dynamic requests.

5 SYSTEM ARCHITECTURE

We focus on evaluating how well ADAPTLOAD balances the
load and on assessing the performance benefits of the
policy’s implicit tendency to achieve a high locality. To this
end, we compare ADAPTLOAD against the classic Join
Shortest Queue (JSQ®) policy and LARD, a locality-aware
request distribution strategy that explicitly exploits cache
locality while striving to balance the load in the system [22].
LARD reduces the impact of I/O bandwidth by assigning
the requests for a file to a server that most likely contains
that file in its memory, if any. This achieves high locality
and partitions the working set across all servers. Only when
the load unbalance across servers is significant, LARD
ignores locality and directs requests to under-utilized
servers to balance the load, thus imitating the JSQ policy.
The parameters that correspond to high and low load levels

3. We also compared with Join Shortest Weighted Queue (JSWQ) as
described in the preliminary version of this paper, whose performance now
is very close or even worse than JSQ given our more detailed system
assumptions. For this reason, we chose JSQ as comparator.

and indicate imbalance must be selected judiciously to
absorb workload fluctuations and temporary imbalances
without significantly reducing cache hit ratios [22].

Since our focus is on the performance of the three load
balancing policies, we make the following assumptions.
First, we assume that the cost of forwarding the request to
the appropriate server is negligible. This assumption clearly
favors LARD, which can only be implemented in a content-
aware switch that has exact knowledge of the contents of the
memory of each server. ADAPTLOAD, instead, can be
implemented with a one-level routing mechanism, using a
content-aware front-end device that forwards requests to a
specific server according to their size [3]; this is computa-
tionally less expensive than LARD. In such an environment,
ADAPTLOAD’s DDH is built and maintained at the front-
end, which then makes the scheduling decisions. However,
ADAPTLOAD could also be implemented in a content-blind
switch as a two-level request redistribution scheme: Each
request is forwarded to one of the servers using a simple
policy such as round-robin, and this server then forwards it
to the appropriate server based on the size of requested
document [6]. In such an environment, ADAPTLOAD’s
DDH is built and maintained by the servers of the cluster,
provided they periodically communicate with each other to
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share their knowledge of the DDH and determine the
boundaries.

We also assume that the Web cluster contains mirrored
homogeneous servers that operate independently from each
other. Each server sends directly its response to the client
(i.e., traffic does not flow through the switch) via a new
network connection, assuming that the Web server uses the
HTTP 1.0 protocol. Each server has its own memory, local
disk, and network card(s). We refer to the local memory as
“cache” to stress that it is much faster than the local disk.

Once the request is assigned to a particular server, its
flow is as follows: First, a connection is established between
the client and the server. A Decision Process is responsible
for establishing this connection and determining the file
location, i.e., cache or local disk. We assume that this
process introduces no contention and makes instantaneous
decisions.* If the requested file is in the cache, it is
scheduled for transmission and queued at the Netfwork/
CPU Queue, which has an infinite buffer and a Round Robin
scheduling discipline with a time slice equal to the time
required to transfer 1.5 Kbytes (the maximum data length of
an IEEE 802.3 Ethernet packet). This is an abstraction of the
draining of the socket buffers to the network through the
Ethernet card, each buffer containing (a portion of) the file
corresponding to a connection. We further assume that the
time to transmit a file that is in a socket buffer is
approximated well by its size [18]. If the requested file is
instead not in the cache, the request is sent to the Disk
Queue, which has an infinite buffer and a FIFO (first-in-first-
out) discipline. Once the requested file is fetched from the
disk, it is placed in the cache following an LRU (Least
Recently Used) replacement policy and enters the Network/
CPU Queue for future transfer.

The processing time of arequestis of course much smallerif
served from the cache than from the local disk. We model this
using the following parameters [19]: The transmission cost for
a file at the network queue is 40 us per 512 bytes; the disk
latency is 28 ms (2 seeks + 1 rotation) and the transfer time
from disk to cache is 410 us per 4 Kbytes (resulting in a peak
transfer rate of 10 Mbytes/sec). Files larger than 44 Kbytes
incur an additional latency of 14 ms (1 seek + 1 rotation) for
every additional 44 Kbytes block or part thereof.

6 PERFORMANCE ANALYSIS OF ADAPTLOAD

We analyze ADAPTLOAD via a simulation driven by the
trace presented in Section 3. Each entry in the trace
corresponds to a single file transfer and provides the
request arrival time and the number of bytes transferred
(from which we infer the service time). Since the arrival
time accuracy is only in seconds and many requests arrive
at the cluster within one second, we introduce finer time
scales by uniformly distributing the requests within the
second they arrived. In all our experiments, we strive to
preserve the arrival process, as the system performance is
sensitive to it. To simulate load conditions higher or lower
than the one in the actual trace, we adjust the processing
speed of the requests by changing the service rate at the

4. Connection establishment and tear-down cost is ignored in the
simulation model, although it may be significant. We stress that this cost is
the same for all three policies. ADAPTLOAD needs a small modification to
account for this: When the DDH is built, a constant (corresponding to the
connection overhead) is added to each request size. The performance of the
three policies is qualitatively the same whether the connection overhead is
accounted for or not.

network and disk queues. This allows us to examine the
policy performance for heavily or lightly loaded clusters.
As described in the previous section, ADAPTLOAD
balances the load on the back-end servers using its
knowledge of the past workload distribution. Specifically,
the algorithm of Fig. 4 schedules the ith batch of K requests
according to boundaries computed using the (i — 1)th batch
of K requests. As expected, the performance of the policy is
sensitive to the value of K. For the World Cup 1998
workload, we experimented with several values for K and
searched for the optimal value of « in [0, 1] for each value of
K. When K is large enough, e.g., 2'% = 32,768, the optimal
value of « is very close to 0; when K is small, e.g., 29 =512,
the optimal value of « is closer to 1. For simplicity, we fix
(/,a) to (32,768,0), i.e.,, only the previous batch of K
requests is used to create the histogram. This choice of
values proved to be nearly optimal [23]. Our analysis in the
following sections focuses on the following questions:

o Can ADAPTLOAD respond quickly to transient over-
load? We plot the average slowdown perceived by
the end user during each time interval correspond-
ing to N requests. Since the system operates under
transient overload conditions and is clearly not in
steady state, our experiments focus on examining
ADAPTLOAD’s ability to respond to sudden arrival
bursts and quickly serve as many requests as
possible, as efficiently as possible.

e How close is ADAPTLOAD to a locality-aware policy?
Although ADAPTLOAD is not explicitly aware of the
cache content of the servers, it achieves the same goal
asalocality-aware policy: By sending requests for files
with the same size to the same server, cache hits are
maximized. To study the effect of cache size, we define
the trace working set as the set of all unique files
transferred on 24 June, and observe the performance
of ADAPTLOAD as a function of the cache size,
expressed as a percentage of this working set.

e  Does the policy achieve equal utilization across servers?
Since ADAPTLOAD bases its boundaries on knowl-
edge of the workload distribution, we examine the
per-server utilization as a function of time and
comment on the policy’s ability to distribute the load
effectively.

e  Does ADAPTLOAD treat short jobs differently from long
jobs? This question refers to the policy’s fairness. To
measure the responsiveness of the system, we report
the average request slowdown of the classes of
requests defined by the request sizes intervals.

e  Can ADAPTLOAD work in mixed static/dynamic work-
loads? We examine ADAPTLOAD's ability to serve
mixed workloads by considering its behavior when
only a fraction (i.e., the static part) of the workload
data is used for statistical inference about the size of
future requests.

In the following sections, we compare ADAPTLOAD’s
performance with that achieved by JSQ and LARD. As
mentioned in the previous section, the performance of
LARD is sensitive to its parameterization. After extensive
experimentation using the June 24 data set, we selected the
low and high load parameters that achieved the best
performance for LARD across all experiments. Here, we
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Fig. 5. Average request slowdown and average response time for ADAPTLOAD, JSQ, and LARD as a function of time with per-node cache sizes of

(a) 5 percent, (b) 15 percent, and (c) 25 percent of the working set.

report results based on this optimal set of parameters only.
Unless otherwise noted, we assume a cluster of four servers.

6.1 ADAPTLOAD and Locality Awareness

The first set of experiments is designed to examine
ADAPTLOAD’s performance as a function of the fraction
of the working set that fits in the cache. We compare
ADAPTLOAD’s performance with that achieved using the
Join Shortest Queue (JSQ) and the LARD load balancing
policies.

We design our experiments so that there is no file in the
cache at the beginning of the simulation, thus the first
request for a file results in a cache miss; this models a cold
cache for all policies. We present performance metrics as
averages computed for each group of 100,000 requests. In
this fashion, we capture the user-perceived performance
under a transient workload that changes dramatically over
the course of a day. Fig. 5 shows the average request
slowdown as a function of time for three different cache
sizes. Slowdown, the ratio of actual time spent in the system
to the time spent in the system if the server were idle and
the requested file in the cache, is the fundamental measure
of responsiveness for servers, since users are more willing
to wait for “large” requests than for “small” ones [8]. If the
per-node cache size is = percent of the working set, the
effective cache size approaches the sum of the node cache
sizes. Since our experiments consider four nodes, when the
node cache size is 25 percent of the working set, we expect
to capture almost the entire working set across the cluster.

Fig. 5 (left column) indicates that JSQ’s slowdown is very
sensitive to the cache size (a logarithmic scale is used for the
y-axis). When the per-node cache size is 5 percent of the
working set, ADAPTLOAD outperforms JSQ by several
orders of magnitude and performs similarly to LARD. As
the cache size increases, ADAPTLOAD’s gain persists until
the per-node cache reaches 25 percent (i.e., the cached
portion of the working set approaches 100 percent). After
this cache size, J[SQ’s performance keeps improving: If there
is a high probability that the requested document is cached,
then JSQ is preferable as it minimizes queuing. We return to
the issue of sensitivity to the cache size later in this section.

Fig. 5 (right column) plots the average request response
time for the three policies over time and further confirms the
above observations. For this metric, the disparity in perfor-
mance of the various policies is not as severe as for the
slowdown, but the same trends persist except when the
arrival rate is increased significantly. ADAPTLOAD’s perfor-
mance is similar to LARD’s, but JSQ clearly outperforms
them. Fig. 2 shows that the C.V. of request sizes is relatively
small in this busy period. Small caches are enough to hold
almost all the requested files and achieve a large hitratio, as is
also shown by Fig. 7. In this case, queue length is more
important than locality awareness and JSQ outperforms other
policies. We discuss how to improve ADAPTLOAD under this
condition in Section 8. Finally, observe a spike in ADAPT-
LOAD’s curve around the 45,000th second, clearly visible in
Figs. 5b and 5c. This is due to many requests for small files,
more than what the previous workload suggested. This
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Fig. 6. Network/CPU and disk utilization for ADAPTLOAD, JSQ, and LARD as a function of time with per-node cache size of 15 percent of the working set.

discrepancy is reflected in the server boundaries calculated
by ADAPTLOAD, which result in a long queue at the first
server and consequently poor performance. The entire period
from the 35,000th to the 45,000th second is characterized by
such sharp oscillations in the workload and requests for many
new small files that are not in the cache (Figs. 6 and 7). This
results in higher disk utilization and lower cache hit ratio, in
particular, for the first server, which receives requests for
small files. Most workload oscillations, except the one at the
45,000th second, are handled well by ADAPTLOAD when the
cache size is larger (Figs. 5b and 5c), but not when the cache
size is small (Fig. 5a). LARD performs better than ADAPT-
LOAD in such situations, because it makes scheduling
decisions based on both the queue length and the cache
content, thus avoids queue build-up at individual servers.
However, ADAPTLOAD quickly recovers and its perfor-
mance levels are already restored in the next group of
requests. In Section 8, we elaborate on how to further improve
ADAPTLOAD by considering both queue length and work-
load characteristics when making scheduling decisions.

To further confirm ADAPTLOAD’s ability to balance the
load, we compare the utilization of the network/CPU and
disk servers for ADAPTLOAD, JSQ, and LARD when the
per-node cache size is 15 percent. Fig. 6 (first row) shows
that the network servers are evenly utilized across all four
servers for ADAPTLOAD and JSQ but not for LARD, which
achieves good load balance only during high arrival rate
periods, where it behaves like JSQ. Fig. 6 (second row) gives
the per-server utilization of the local disks and indicates
that the I/O queues grow much faster with JSQ than with
ADAPTLOAD and LARD.

Since the cache size determines the cache hit ratios,
which in turn determine what fraction of files is served by
the disk, we plot the cache hit ratios for ADAPTLOAD and
JSQ as a function of time in Fig. 7; the effect of cold misses is
clearly visible at the beginning of the simulation across all
cache sizes and for all policies. For small cache sizes,
ADAPTLOAD behaves like LARD and achieves high cache

hit ratios; almost 100 percent of requests find their target
files in the server cache, even when the per-node cache size
is only 15 percent of the working set. As cache size
increases, the portion of the files that fit in cache increases,
and the cache hit ratio achieved by JSQ improves greatly.
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Fig. 8. (a) Average request slowdown, (b) response time, and (c) system
cache hit ratio for ADAPTLOAD, JSQ, and LARD as function of cache size.

Hit ratios greater than 90 percent for both ADAPTLOAD and
LARD regardless of the cache size suggest a high concen-
tration of user interests: A few popular documents are
responsible for the majority of requests. This is corroborated
by Fig. 2c: The higher the C.V., the lower the cache hit ratio,
which explains why JSQ performs worse than ADAPT-
LOAD, especially during the morning and early afternoon
hours when the C.V. of request service time is high.

To quantify policy sensitivity to cache size, we run
experiments where the per-node cache size ranges from
2 percent to 100 percent of the working set. Fig. § shows the
average request slowdown, average request response time,
and cache hit ratio for the three policies as a function of cache
size. The values in this graph are averages computed over the
entire trace. The performance of JSQ deteriorates fast when
the per-node cache size falls below 20 percent, while ADAPT-
LOAD and LARD maintain high performance even with a
per-node cache size of 10 percent. A crossover point exists
when the per-node cache size is about 25 percent: After this
point, JSQ and LARD provide slightly better performance
than ADAPTLOAD. The reason for this is that, with so much
cache, almost all files requested multiple times reside in the
cache of each server, thus the most important factor to achieve
the highest performance becomes load balance: JSQ does
(very slightly) better than ADAPTLOAD at this since its
dispatcher knows the current queue length of each server.

6.2 Fairness

ADAPTLOAD bases its decisions solely on the size of the
requested file, independently of the queue length of each
server. Given that most requests are for some popular files
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Fig. 9. Slowdown percentiles plot under (a) ADAPTLOAD, (b) JSQ, and
(c) LARD.

and the average size of a requested file is around 5 Kbytes,
we must address the question of fairness: What is the
performance for different request sizes?

We present a percentile histogram of the slowdowns of
all requests in the trace (recall that the total number of
requests on 24 June is nearly 39 million). A partition of the
range of requested file sizes in bins of powers of two results
in 22 bins, [2171,2), for 1 <i < 22. We classify the slow-
down of a requested file into four categories: between 1 and
5 (low), between 5 and 20 (medium), between 20 and 100
(high), and above 100 (very high), and we compute the
percentile of each slowdown category within each bin b;.

Fig. 9 shows the slowdown percentiles as a function of the
file size for ADAPTLOAD, JSQ, and LARD when the per-node
cache size is 15 percent of the working set. The y-axis is in
logarithmic scale and decreasing order: The darkest area
corresponds to very high slowdowns, while the lightest one
corresponds to low slowdowns. Fig. 9 is best understood by
imagining vertical lines for each file size. For example, with
ADAPTLOAD (Fig. 9a), 98 percent of the files that are
1,000 bytes have a slowdown from 1 to 5, 1.5 percent of the
files have a slowdown from 5 t0 20, 0.4 percent of the files have
a slowdown from 20 to 100, and only 0.01 percent have
slowdown greater than 100.

Files between 1 Kbytes and 0.1 Mbytes, which account
for almost 50 percent of the entire workload, have similar
slowdowns with ADAPTLOAD and LARD, but higher
slowdowns with JSQ. Requests for very small files, less
than 50 bytes, have high slowdowns under all policies, but
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Fig. 10. Average slowdown for ADAPTLOAD, JSQ, and LARD as a function of different number of servers with per-server cache sizes of (a) 5 percent

and (b) 10 percent of the working set.

this is just due to the definition of slowdown as a ratio and
is not a problem in practice since their response time is
nevertheless still small in an absolute sense. Finally, for
large files, ADAPTLOAD performs best.

We conclude that ADAPTLOAD treats all classes of file
sizes fairly, and guarantees low slowdowns for the
medium-size files that are most commonly requested from
a Web site [9].

6.3 Scalability

In all previous experiments, we assumed four servers. To
demonstrate that ADAPTLOAD scales well with the number
of servers, we also experimented with systems having 8, 12,
16, and 20 servers. Results are reported in Fig. 10, assuming
that the per-server cache size is 5 percent or 10 percent of
the working set. Performance improves in all policies as the
servers increase from 4 to 8, and stabilizes around 12: Given
the parameters of the simulation, increasing the number of
servers to beyond 12 does not help performance. The figure
also illustrates that the ADAPTLOAD and LARD curves are
very close to each other, consistently outperforming JSQ.

6.4 ADAPTLOAD’s Sensitivity to Workload
Characteristics

In Section 3, we discussed the variability of the workload
characteristics across the entire trace. Here, we concentrate
on the performance of ADAPTLOAD for two portions of the
trace having different statistical characteristics. First, we
concentrate on the time period from the 35,000th to the
45,000th second, where the arrival intensity is low but the
service is highly variable (i.e., the C.V. of the request size is
around 8). Then, we focus on the time period from the
58,000th to the 68,000th second, where the arrival intensity
is very high but many requests are for the same files,
significantly lowering the C.V. of the request size (ie.,
around 4).

In Fig. 11, we report on the average policy slowdown
across time for these two time periods but we scale the request
arrival rate in order to make the system operate under “light
load” and “heavy load.” The cache size is 15 percent of the
working set. Under light load during the 35,000th to the
45,000th second period, the network/CPU utilization was
around 20 percent and the disk utilization reached 40 percent
while, under heavy load, the network/CPU utilization was
around 40 percent and the disk utilization reached 80 percent.
For this part of the trace, the disk is the bottleneck device. Note
that ADAPTLOAD and LARD do significantly better than JSQ,
and their performance advantage increases as load increases.
Under light load, ADAPTLOAD’s performance is similar to
LARD’s, offering a slight quantitative benefit.

From the 58,000th to the 68,000th second and under light
load, the network/CPU utilization ranges from 25 percent to

50 percent while the disk utilization is consistently less than
15 percent. Under heavy load, the utilization ranges from
50 percent to nearly 100 percent for network/CPU and is less
than 20 percent for the disk. For this part of the trace where
requests are for the same files, the working set fits better in the
cache and the network/CPU is the bottleneck. Under light
load, ADAPTLOAD is consistently better than JSQ and LARD.
Under heavy load, ADAPTLOAD continues to outperform
JSQ and LARD until the 65,000th second, when the network/
CPU utilization reaches 100 percent and JSQ and LARD
balance load better.

To summarize, ADAPTLOAD s aload balancing algorithm
that works well under both high and low variability in the
service and arrival processes. However, when the cluster
operates under heavy load, i.e., the high arrival rate is the
dominating factor in cluster performance, ADAPTLOAD’s
performance drops because it does not explicitly consider the
current queue length at each server. In Section 8, we present
an algorithmic modification to address this limitation.

7 ADAPTLOAD AND DYNAMIC WORKLOAD

As presented in the previous sections, ADAPTLOAD
considers only static requests for actual files stored in the
servers’ local disks. Nowadays, however, most Web server
clusters must also process dynamic requests, which usually
require accessing database information or executing appli-
cations at specialized servers. Such dynamic requests have
unknown size, thus they cannot be assigned to servers
according to ADAPTLOAD's rules, nor would it make sense
to do so, since they do not correspond to preexisting files
that might be in the cache. For the same reason, while the
resource requirements for dynamic pages are known after-
the-fact, it does not make sense to use them for the
computation of ADAPTLOAD’s parameters, i.e., the DDH.
We then modify the algorithm of Fig. 4 to handle dynamic
requests as well as static ones, by distributing static requests
according to the ADAPTLOAD policy and dynamic requests
according to the JSQ policy.

7.1 System Architecture in the Presence of
Dynamic Pages

For dynamic requests, the following modifications to the
server architecture of Section 5 are made. The decision
process recognizes incoming dynamic requests and queues
them at the Dynamic Request Queue for processing. We
assume that the reply to a dynamic request is generated by
a database or specialized server within the cluster. We
modeled the time required to generate a dynamic request is
drawn from a Lognormal distribution with mean 3.275 ms
and C.V. equal to 3.4, parameters obtained using the TPC-W
workload that emulates the behavior of an online bookstore
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Fig. 11. Average slowdown for ADAPTLOAD, JSQ, and LARD as a function of the workload characteristics (per-server cache size is set to 15 percent).
(a) Light load (original trace), (b) heavy load, (c) light load, and (d) heavy load (original trace).

[26]. The dynamic page generation time includes contention
at the application and database servers. We assume that the
dynamic server serves requests using the processor sharing
discipline. Once the reply has been generated, it enters the
network queue of the server for transmission and is
handled in the same way as a static request.

To study the effect of dynamic requests, we modify our
static trace to generate a mixed static-and-dynamic stream
of requests. From our trace of (static) requests, we randomly
select requests as possible candidates for being considered
dynamic, independently and with a given probability 5 (a
parameter in our study). Because the file size that results
from a dynamic request is relatively small in practice, a
selected candidate request is classified as dynamic only if its
size is less than 100 Kbytes (this means that the fraction of
dynamic requests is almost [3 since almost all requests are for
sizes less than 100 Kbytes). All other requests are classified
as static, their size is known, and their processing proceeds
as usual. If a request is classified as dynamic, the associated
size on the original trace is taken to be the size of the reply
(to be eventually transferred over the network), but the time
to compute this reply is sampled from a Lognormal
distribution as described above.

7.2 Performance Analysis under Dynamic Load

We evaluate ADAPTLOAD's performance under two work-
load scenarios, with 8 =30 percent or 70 percent. We
assume a local cache equal to 30 percent of the working set,
i.e., a total 120 percent of the working set is present in the
cache of the cluster. This choice was made to favor JSQ
which we have shown to work well when the per-node
cache size is at least 25 percent of the working set. Fig. 12
presents the average request slowdown for the ADAPT-
LOAD and JSQ policies under the two scenarios. In both
cases, ADAPTLOAD continues to outperform JSQ (except for
the spike around the 45,000th second in Fig. 12, as is already

the case when all workload is static). Comparing Figs. 12a
and 12b, we find that the average request response times
increase for both policies as the fraction of dynamic requests
increases from 30 percent to 70 percent. This is simply due
to the additional service time that dynamic requests spend
at the application server. Since ADAPTLOAD behaves like
JSQ on dynamic requests, the performance gap between
ADAPTLOAD and JSQ decreases as the fraction of dynamic
requests increases.

8 IvPROVING ADAPTLOAD

ADAPTLOAD excels when the per-node cache size is small
but, when it is so large that a request can be cached in
several servers, performance is less sensitive to the locality of
files than to the queue length at the network card. In such
cases, JSQ and LARD perform better than ADAPTLOAD
because they are designed to equalize the queue length at
each node. This suggests that adjusting the size boundaries
so that each server has approximately the same queue
length may benefit ADAPTLOAD’s performance.

If Q(n) is the current queue length at server n for
1 < n < N, the expected queue length after a time interval T
(equal to the expected time between two successive
adjustments, i.e., the time for the next K requests to arrive)
can be approximated by

T -u
fs(n)’

where L(n) is the expected number of requests assigned to
server n during the time interval 7', y is the service rate, and
fs(n) is the mean size of the new arrival requests in this
time interval. T -p/fs(n) is the expected number of
requests processed during 7' assuming that the server is
always busy.

Q'(n) =Q(n) + L(n) — (1)
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Fig. 12. Average request slowdown and response time for ADAPTLOAD and JSQ as a function of time with (a) 30 percent and (b) 70 percent dynamic
requests in the workload when the per-node cache size is 30 percent of the working set.

Our previous work has shown that knowledge of a finite
portion of the past workload can be used as an indicator of
future behavior. To compute L(n) and fs(n), we then define
two additional vectors X; and Y., also with F bins. For
1< f<F, X;[f] records the number (not total size) of
requested files with size in the range [C/~!, C7] seen in the
ith batch, while Yj[f] predicts the number of requested
files in this range for the (i + 1)th batch. The entries of
vector X are initialized to 0 and incremented (by one) when
those of O; are, in lines 2.b and 3.d of Algorithm 4,
respectively. Vector Y;,,, like U;,, is obtained as a geome-
trically discounted weighted sum of all the previously
observed batches:

(1—a)X; + (a—a'™)Y;
1—qit! '

Y;H =

From Y, |, we can then estimate

Sp—1

L(n) = Yiulsn-a] - (1 = pa-1) + Z Yir1[f] + Yii[sn] - oo
f=sn-1+1

and

5,—1

fs(n) = (Um[sH] A =p) +

f=sp_1+1
Uis1[f] + Uis1[sn) ‘Pn) /L(n).

Analogously, time T" can be predicted using a geometrically
discounted weighted sum of all the previously observed
times required to receive batches of K requests.

We define two threshold values, TH; and T H,, set to
avoid unnecessary readjustments when the load is light
(' (n) < TH, for all server i), or when the queue lengths are
similar (|Q'(n) — Q'(m)| < TH, for any two servers n and
m). In our experiments, we set both T'H; and T'H to 4. If the

conditions of both thresholds are violated, we perform a
second scan of the DDH to equalize the expected queue
length as Q" = 32, @'(n)/N. Inverting (1), we deduce the
desired expected number of new requests that should be
assigned to server n as

T
fs(n)

and adjust the fuzzy boundaries accordingly. Fig. 13
presents the algorithm for this second scan of the DDH.
This code should be inserted after step 7 in Fig. 4.

In addition to this heuristic explicitly aimed at equalizing
queue length, we also consider “loading” idle servers to
equalize the servers’ utilization. If a request arrives when
the server it should join according to the improved
ADAPTLOAD algorithm is busy and if a different server is
idle, the request is dispatched to the idle server. Fig. 14
shows the average slowdown and response time of the
original ADAPTLOAD policy on the left versus those
achieved by the improved version on the right. The per-
node cache size is 60 percent of the working set, a favorable
setting for JSQ and LARD. ADAPTLOAD’s performance
improves significantly.

Ln)=Q"+

—Q(n), (2)

9 CONCLUSIONS

We studied ADAPTLOAD, a self-adjusting policy that
balances the load in a homogeneous Web server cluster
using the empirical size distribution of the requested docu-
ments. The policy is examined under a workload that
changes dramatically across time and uses knowledge of
the history of request distribution to allocate incoming
requests and to adjust its balancing parameters on-the-fly.
ADAPTLOAD tends to assign requests for the same file to
the same server, thus it achieves a high cache hit ratio and
low slowdowns. Unlike location-aware policies, though, it
does not have to maintain the status of each server’s cache.
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b. compute their maximum and minimum:

a. compute desired queue length:

b. compute desired number of requests:

L initialize server index:
1I.
for f =1to F' do
I.  addthe f** bin of Y to Z:
II.  while Z > L'(n) do
i. set boundary for server n :
ii. decrement Z:
iii.  set fraction for server n:

iv.  increment server index:

7°. determine whether load imbalances warrant adjustments

a. compute queue lengths assuming no change:

8. if Qmaz > TH,; and (Qmaa: - Qmm) > TH then

c. initialize computation of new fuzzy boundaries

initialize accumulated queue length weight:

forn=1to N do

Q'(n) = Q(n) + L(n) =T - p/fs(n)
Qmae = maz{Q'(1),Q"(2),...,Q"(N)}
Qmin = min{Q'(1),Q'(2),...,Q"(N)}

Q"=1/N-TN, Q'(n)
forn =1to N do
L'(n) =Q" = Q(n) + T - p/fs(n)

n+<1
Z+0

Z + Z + Yi[f]

sn < f

Z+ Z—L'(n)
pn(_l_Z/Yi[f]
n+<n+1

Fig. 13. Setting the fuzzy boundaries [(s1,p1), (s2,p2), - .-, (sn—1,pn-1)] in the second scan of DDH, with the goal of equalizing the queue lengths of

the N servers.

A detailed performance analysis of ADAPTLOAD was
presented to explore locality awareness, fairness, the effect
of different sampling rate, and the policy’s performance in
the presence of a mixed static and dynamic workload, from
which we conclude that ADAPTLOAD self-tunes its para-
meters according to changes in the cluster’s workload and
provides good performance under conditions of transient
overloads, behaves as locality-aware policies even without
any knowledge of cache contents, treats files with different
size fairly, is rather insensitive to the frequency of empirical

T T
AdaptLoad
Y
LARI

Average Slowdown
S

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (in seconds)

T T T T
Improved AdaptL})Sad e

LARD ----

Average Slowdown
3

1 |
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (in seconds)

data sampling, and retains its performance with a mixed
static/dynamic workload.
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