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Abstract—The importance of Random Number Generators
(RNG) to various computing applications is well understood. To
ensure a quality level of output, high-entropy sources should be
utilized as input. However, the algorithms used have not yet fully
evolved to utilize newer technology. Even the Android Pseudo
Random Number Generator (APRNG) merely builds atop the
Linux RNG to produce random numbers. This work presents an
exploratory study into methods of generating random numbers
on sensor-equipped mobile and IoT devices. We first perform a
data collection study across 37 Android devices to determine two
things - how much random data is consumed by modern devices,
and which sensors are capable of producing sufficiently random
data.

We use the results of our analysis to create an experimental
framework called SensoRNG, which serves as a prototype to
test the efficacy of a sensor-based RNG. SensoRNG employs
collection of data from on-board sensors and combines them via
a lightweight mixing algorithm to produce random numbers. We
evaluate SensoRNG with the National Institute of Standards and
Technology (NIST) statistical testing suite and demonstrate that
a sensor-based RNG can provide high quality random numbers
with only little additional overhead.

Index Terms—Random Number Generation, Mobile Comput-
ing, Sensors

I. INTRODUCTION

R andom numbers and the generators thereof are an essen-
tial part of the mainstream computing landscape [1], [2].

The values produced by an RNG are utilized in a wide variety
of applications, from OS-level functionality (stack pointer
randomization), facilitating games and gaming content (AI
decision making, lotteries, procedural generation), scientific
computing (Monte Carlo, Markov models), and computer
security (cryptographic key generation) [2]–[4].

While random number generation is a topic that has been
well studied in the context of traditional computing environ-
ments, the rapidly growing mobile and Internet of Things (IoT)
landscape has created a new space for research and exploration
[5]. Mobile devices have proliferated and evolved into all-
encompassing personal computers that not only perform famil-
iar tasks, but also enable new functionality that standard com-
puting environments are not equipped to address, such mobile
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payment and banking, or two-factor authentication. Meanwhile
IoT-ready devices serve to extend the sensing capabilities of
other devices, enabling previously ‘dumb’ technologies, such
as the car or home, to become aware of their surroundings.
This growing list of non-trivial use cases only adds to the
demand for quality random numbers in a various contexts.

Many current RNG implementations either directly use - or
are built on top of - the Linux PRNG (LPRNG), which draws
its randomness from system level events and user input [6], [7].
However the LPRNG has difficulty extracting large amounts of
entropy from these events, and instead relies on a large amount
of mathematical mixing to produce random numbers [8]. To
address this, there has been growing support for integrating
hardware-based RNGs or alternative entropy sources in recent
devices, such as with Intel RDRAND [9], [10]. However it
is impossible for legacy devices to take advantage of newer
hardware. Furthermore, hardware is susceptible to problems
such as bias, degradation, or backdoors - all of which are
typically more difficult to fix should they arise.

As a compromise between these two approaches, previous
work has looked into extracting randomness from different
sensors, such as the accelerometer or camera [11], [12].
However, these works are limited in their approach. Some
are simply limited in the number of sensors they examine
[11]–[13], in the scope of their analysis, or have analysis
methods not suited for implementation in a mobile or IoT
context. Others have not considered the impact of changing
environmental contexts or hardware [11]–[14]. Furthermore,
very few works consider the overhead of using sensors as an
input source in terms of power use and CPU overhead [11],
[15].

Based on the limitations of previous work, we chose the
following research questions to address with our exploratory
study.
RQ1 Which sensors in modern mobile or IoT devices are

capable of providing randomness, and how much?
RQ2 What is the demand for randomness in the context of a

mobile system?
RQ3 How does sensor hardware diversity impact the effec-

tiveness of a sensor-based RNG?
RQ4 What kind of overhead does a sensor-based RNG impose

on a mobile or IoT system?
In summary, the major contributions of our work are as

follows:
1) We conduct a data collection study surveying 37 Android

devices of varying hardware capabilities. Our analysis
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of the data reveals two things: which sensors are suitable
sources of random noise and the demand for random
data in mobile devices. Specifically, we show that ran-
dom data use tends to occur in short bursts, but never
overwhelming to the RNG.

2) We implement SensoRNG, a proof-of-concept RNG
which draws randomness from hardware sensors. Our
framework leverages opportunistic collection of data
to efficiently gather the necessary sensor samples with
reduced overhead. SensoRNG is implemented both as an
Android system service, as well as an Android library
for the sake of evaluation.

3) We provide an evaluation of SensoRNG on multiple
aspects, demonstrating the viability of a sensor-based
RNG as well as evaluating its overhead.

4) We discuss and provide insight into our findings, includ-
ing the strengths and drawbacks of utilizing a sensor-
based RNG.

II. BACKGROUND

A random number generator is effectively a black box
that takes input and produces unpredictable numbers within
some defined range. RNGs can be classified into two main
categories - Pseudo-Random Number Generators (PRNGs) and
True Random Number Generators (TRNGs). A PRNG is a
complicated mathematical function that simulates randomness
and is designed to be exceptionally difficult to reverse engineer
based on output alone. The randomness of a PRNG stems from
some random source, often referred to as a seed. A TRNG
relies on an input source that is shown to exhibit random
tendencies, such as radioactive decay or atmospheric noise, to
produce values. Mathematically proving that a stream of bits
produced by an RNG is truly random is effectively impossi-
ble. However it can be strongly suggested through rigorous
statistical testing that a stream exhibits properties similar to
what would be expected from a probability distribution [16].

1) Entropy: Entropy is a standard metric in information
theory that measures the uncertainty of events in a probability
space [17]. In the context of RNGs, we utilize entropy (in
part) to describe how random a given stream of values is. To
take an explicit measurement, we utilize the standard Shannon
Entropy formula

H(P ) = −
n∑

i=1

pi ∗ log2(pi)

where pi is the probability of a given event in P occurring. In
the case of a random bit stream, the events in the probability
space are all length k binary strings, and the probability of
an individual event is equal to the number of instances that
a particular string appears as a sub-sequence of the original
bit stream. Shannon entropy is calculated against a uniform
distribution and is reported in a unit of bits.

2) Applications: Random numbers have a wide range of
application scenarios, from high-level user level applications
to-low level system functions. High level applications fields
such as scientific computing use random numbers when per-
forming simulations. For example, an RNG could be used to

Fig. 1. The Linux PRNG framework. User input events correspond to
keyboard and mouse input, or user touch events for mobile devices.

initialize the parameters at the beginning of an experiment,
or perform a sampling from potential items during. At the
OS level, various constructs such as Address Space Layout
Randomization (ASLR), stack canaries, establishing network
connections, and much more.

While the concept of applying random numbers is relatively
straightforward, the consequences of a poor RNG varies from
application to application. For something as simple as a game
of chance, it can lead to simply poor user experience. In a
scientific simulation, this can lead to lost time, or even false
trends within the data. But for security algorithms, a poor RNG
can result in vulnerability to attacks or data breaches.

3) Linux PRNG: Figure 1 details the architecture of the
Linux PRNG (LPRNG). The LPRNG draws randomness from
three main sources: user input (mouse and keyboard for
desktops, touchscreen events for phones), interrupt request
(IRQ) timings, and disk read/write timings. These events are
collected by two pools, and then are fed into two output pools
as needed. When the non-blocking pool /dev/urandom is
read from, it will attempt to provide randomness from either
the non-blocking pool or pull in fresh randomness from the
input pool. If there is none available, it will use stale data
from the non-blocking pool in order to produce randomness
on demand.

At its core, the Android PRNG (APRNG) is an ex-
tension of the Linux PRNG, utilizing random data from
/dev/urandom and hashing it to produce random values.
The APRNG consists of two main parts: the EntropyMixer,
and the SecureRandom front end. The purpose of
the EntropyMixer is to preserve the current state of
/dev/urandom on shutdown and restore it on boot.
Additionally, it occasionally writes device-specific data to
/dev/urandom such as the current time and the serial
number. The other component, SecureRandom, acts as a
front-end to the current PRNG algorithm SHA1PRNG, and
is the current provider of cryptographically-secure random
numbers for Android OS.
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III. RELATED WORK

We categorize related work as follows: exploratory studies
into sensor randomness, methods of generating randomness in
devices, and studies into the Android/Linux PRNG.

Sensor Randomness: The study carried out by Krkovjak
et al. [11] investigates the microphone and camera in smart
phones as promising sources of randomness. Similarly, Suciu
et al. [12] study four sensors - the gyroscope, accelerometer,
magnetometer, and GPS - to determine the level of random-
ness that each might provide. While Krkovjak et al. rely on
Shannon entropy to quantify the non-deterministic nature of
the sensors, we perform a deeper analysis to determine the
significance of each bit per sensor sample. For the work by
Suciu et al., very little insight or information is provided
about the utilized analysis methodology. The authors also only
give a brief overview of how they combined incoming sensor
streams. By comparison, we offer a detailed examination of
a breadth of sensors examined in previous works. We also
explicitly outline the architecture of our prototype, SensoRNG,
and provide a detailed analysis of performance and power in
comparison with the APRNG.

New Methods for Randomness Generation: Randomness
generation in IoT devices has typically relied on the LPRNG.
However several authors have proposed alternative methods
for harvesting entropy or producing randomness. Kesley et al.
proposed the Yarrow RNG as a general purpose solution, and
is currently used in iOS and OSX [18]. In 2006, McEvoy et
al. proposed the Fortuna PRNG as a cryptographically secure
solution for generating random numbers. It has recently been
adopted by FreeBSD [19]. Both of these algorithms could
potentially be utilized in an IoT setting, but there has been
no investigation into the potential of overhead.

More recently, Intel has begin adding support for hardware
entropy gathering within the CPU with their RDRAND in-
struction [10]. Other work has has suggested that CPU jitter
could serve as a suitable entropy source for generating random
numbers [20], [21]. However, the former is limited to x86
processors while the latter has not received extensive testing
on low-power devices.

With regards to sensors, Francillon et al. proposed a method
for using received bit errors as a source of randomness in
wireless sensor nodes [22]. Lo Re et al. proposed a method
of using the physical measurements collected by large scale
wireless sensor nodes as an input to a TRNG [23]. Our
primarily concern in this work is with randomness extracted
from commodity sensors available in mobile and IoT devices.
We use these approaches as motivation for choosing which
sensors to consider for analysis in our data collection study.

Studies on the Linux PRNG: The Android PRNG utilizes
the Linux PRNG as part of its current implementation. There
has been recent work done outlining the architecture of the
LPRNG by Gutterman et al. [8] in 2006 and Lacharme et
al. [7] in 2012. There are three major sources that Android
uses to feed the random pool of the LPRNG - disk timings,
interrupt timings and user touch events. However, in the study
conducted by Ding et al. [14] it was noted that Android
tends to rely heavily on disk events, especially directly after

TABLE I
SUMMARY OF THE SENSORS CHOSEN FOR STUDY. GPS SAMPLE RATE

DEPENDS ON MOVEMENT, WHILE CAMERA SAMPLE RATE DEPENDS ON
HARDWARE.

Sensor Length (bits) Samples/second
Microphone 16 (x1) 44100

Accelerometer 32 (x3) 5
Magnetometer 32 (x3) 5

Gyroscope 32 (x3) 5
Radios 32 (x1) 2

GPS 64 (x2) Variable
Camera 32 (x1) Variable

system boot. Furthermore, the amount of random bits that can
be extracted from a single sample of one source is small,
corresponding to 3 bits for disk events and 4 bits for interrupts
[7]. Our study finds that a single sensor sample can provide
much more.

Another important feature of the LPRNG is the entropy
estimation counter associated with each pool. When data is
added to a particular pool, the counter is incremented accord-
ingly, and vice versa. These counters are kept for both the
random and urandom pools. A recent analysis performed
by Dodis et al. suggests that an attacker can take advantage
of the manner in which these counters are implemented and
potentially compromise the integrity of the output [24]. While
our work does not explicitly investigate the security of the
PRNG, we use works such as these as motivation for our
exploratory study.

IV. DATA COLLECTION STUDY

This section outlines the details of our data collection study,
in which we gather data traces from the entropy counter and
various sensors. We target Android for ease of collection from
a variety of sensors and devices, all of which run on top of
the Linux kernel.

A. Study Overview

Modern Android devices come equipped with hardware
sensors that are available for a variety of tasks. For example,
many devices come with a microphone to enable the user to
make calls and record audio, or an accelerometer to detect
device orientation. With respect to a sensor-based RNG, we
are interested in three sensor properties: the sample size (how
many bits are needed to represent the sample data), the sensor
resolution (the smallest change in value that a sensor can
detect), and the sampling rate (how fast a sensor can report
samples). Ideally, we want all of these attributes to be as
large as possible. Because Android devices are produced by a
number of manufacturers and span a wide range of capabilities,
they are an ideal platform to explore the potential impacts of
hardware diversity.

Sensor Data: For our data collection study, we chose to
include seven sensors commonly found in Android devices.
Table I summarizes the sample size and rates for each sensor.
The number in parentheses represents the number of axes
the sensor reports on. These sensors were selected based on
availability and the accessibility from an Android application.
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Fig. 2. Screenshots of the SensorPass app used for data collection.

Documentation for interfacing with Android sensors can be
found at the Android developer website [25].

Entropy Counter Data: The Linux PRNG tracks the
amount of random data available for the system to use
when generating a value. This amount is stored in the
file /proc/sys/kernel/random/entropy_avail,
referred to as the entropy counter. The entropy counter is
an estimate of the number of bits of randomness currently
available in the input pool, and will increment and decrement
accordingly when entropy is added or removed. The maximum
amount of random data that can be stored at any time is 4096
bits. We sample the entropy counter every 0.25 seconds.

B. SensorPass Application

To facilitate data collection, we implemented and distributed
an Android application called SensorPass on the Google Play
store, targeted at devices running at least Android 4.0.0.
SensorPass consists of two major components - the front-end
for the user to interact with and the back-end responsible for
automating data collection. Figure 2 shows two screens of the
user front-end.

The back-end to SensorPass is implemented as an Android
Service, and consists of a number of auxiliary classes that
collect data from each sensor. Collection is scheduled to
execute every hour, determined by when the application is
first launched. Data is collected from each sensor for three
minutes, after which the service automatically stops collection
and attempts to send data to our server. We only attempt to
send over a Wi-Fi connection to avoid unnecessary use of a
user’s mobile data plan.

Due to the way Android implements the camera API, it
is only possible to gather image data from the current active
application screen. This is understandable from the standpoint
of privacy, as malicious apps could take pictures or record
video without alerting the user. Therefore, we rely on asking
users to manually collect camera data for us by using a
toggle in the options menu. When the user presses the toggle,

TABLE II
SUMMARY OF SENSOR DATA FROM SENSORPASS

Sensor Total Data (Kb) Num. Traces
Microphone 6,320,048 2288

Accelerometer 62,296 2313
Magnetometer 55,024 2306

Gyroscope 53,064 2182
Radios 48,356 2311

GPS 2,560 2315
Camera 144,036 69

we collect preview frames until exactly 1MB of data has
accumulated, after which collection is automatically halted.

Legal Notice: This user study was approved by the Insti-
tutional Review Board (IRB) at the College of William and
Mary with PHSC protocol number PHSC-2014-07-22-9695-
gzhou. Users were aware that data was being collected for
research purposes, and all user data was kept anonymous.

Collection Statistics: Table II summarizes the data col-
lected over the course of the study. In total we collected data
from 37 devices running versions of Android ranging from
4.0.0 (“Ice-Cream Sandwich”) to 4.4.4 (“Kit-Kat”). The total
amount of data collected is 6.5GB. We note that a majority of
the data collected comes from the microphone. This is because
the sampling rate of the microphone is orders of magnitudes
higher than that of the other sensors. We also note that the
amount of data collected from the GPS is very low. This could
be due to two factors. First, users may not have turned on their
GPS during collection, resulting in no values being reported.
We also only collect data when the user’s location has changed
more than one meter, as interval polling resulted in too many
duplicate values. Under this strategy, a user not in motion
would only report one or two values.

C. Analysis Methodology and Tools

Sensor Data: The main objective in analyzing the sensor
data is to extract sufficient randomness from the samples for
further use. As illustrated in Figure 4, our approach takes a
bit-wise investigation of each sensor by treating successive
samples in each bit position as individual data streams. We
chose this analysis method for two reasons. First, directly
examining the raw bits requires the least amount of computa-
tion, as opposed to performing more in-depth data analysis.
This also eases the burden of processing when extracting
randomness in the framework. Secondly, it allows us to use
a general framework for sensor analysis, rather than requiring
new methods for individual sensors. This allows for additional
sensors not covered in this work to be easily examined in
future work.

For analyzing the randomness of a given stream, we utilize
the NIST Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications.1 The
NIST suite is freely available to the public, open source, and
provides a straightforward framework for determining whether
or not a given stream of bits or numbers appears statistically

1http://csrc.nist.gov/groups/ST/toolkit/rng/documentation software.html
(as of Nov. 2015)

http://csrc.nist.gov/groups/ST/toolkit/ rng/documentation_software.html
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Fig. 3. Heatmap of which bits from sensor samples show sufficient randomness. A black square indicates the bit is ‘good’, a gray square indicates a bit is
‘fair’, and an uncolored square indicates the bit is ‘bad’. We have excluded the Magnetometer, GPS, and Camera rows as they provided 0 good bits.

Fig. 4. Diagram of the bitwise method used for analysis. The left block
represents successive samples from a sensor (horizontal), while the right block
represents the k streams we form for analysis with the NIST suite (vertical).

random. We refer to a RNG under test as an input source,
while a string of random data produced by the generator as
an input stream.

For a given input source, the full NIST Suite performs a
battery of 15 statistical tests, each designed to evaluate a cer-
tain property of a single input stream against how that property
would manifest in a uniform random stream. For each single
run of a test, a p-value is returned which indicates whether or
not the stream passes that particular test. A p-value greater than
0.05 is considered passing, indicating that the stream is not
significantly distinguishable from random. Running a test on
multiple streams from the same source produces a collection
of p-values which can be characterized by a distribution, on
which the final reported p-value is computed. For a source
to be considered truly random, this distribution of p-values
should tend toward completely uniform, implying that some
individual runs of a test will fail.

For the purpose of our analysis, we pick a subset of 7 tests
from the full NIST suite - the frequency test, frequency test
within a block, runs test, longest run of ones within a block,
DFT test, binary matrix rank test, and approximate entropy
test. We specifically pick these tests to act as a simple sanity
check for ‘good’ and ‘bad’ bits. Each test addresses a different
quality of randomness - for example, the rank test make sure
there is no periodicity in the data. Complete descriptions of
each test and how to interpret the results can be found in the
NIST suite documentation [16].

Entropy Data: Our main goal in analyzing the entropy
counter traces is to assess the current demand for random data
by the APRNG. We want to observe any patterns in random

data use to help guide the design for a sensor-based RNG.
The data collected takes the form of integer samples over
time. Therefore we treat each collected entropy trace as a
time series for analysis and compute general statistics such as
median, mean, and max. Furthermore, we estimate the amount
of random data used over the entire trace by summing up all
the instances of a drop.

V. DATA ANALYSIS RESULTS

This section presents the analysis and results of the data
gathered in our collection study. We first begin with analysis
of the sensors, and then cover the analysis of random data use.

A. Sensor Data

This section presents the results from analysis of the col-
lected sensor data. We use a three tier classification to deter-
mine which bits are the best candidates for use in SensoRNG.
For a given bit to be ‘good’, it must pass at least 3 of the NIST
tests at least 75% of the time. For a bit to be considered ‘fair’,
it must pass 1-2 tests at least 75% of the time, or at least 3 tests
at least 50% of the time. A ‘bad’ bit is any bit that is not good
or fair. In the implementation of SensoRNG, the utilization
of ”good” bits is preferred over the utilization of ”fair” bits.
These numbers were chosen empirically, with the intuition that
while individual bit streams may not provide enough entropy
on their own, mixing together several streams will mask or
eliminate any individual deficiencies. (I.E. It should only take
roughly 2-4 ’good’ bits or 4-8 ’fair’ bits to produce one usable
bit of entropy)

Figure 3 illustrates the results of our analysis in a heat
map. Note that some sensors under test have been excluded
due to poor results. Some of the sensors that were cited as
good candidates for randomness in previous work (such as
the camera) do not perform as well under our analysis [11],
[13], [26]. This is likely due to the difference in techniques,
as examining bits individually is not tailored to any particular
data type. While this does not mean the particular sensor
is unusable for the production of random numbers, it does
indicate that the computational effort necessary to extract
randomness will likely be greater.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Distributions of entropy trace statistics. The Y axis is measured in number of traces. For 5a-5d, the X axis represents how full the buffer is (in
percent). For 5e-5f, the X axis is measured in bits.

TABLE III
QUANTILES OF MEASURED STATISTICS ACROSS ALL TRACES. VALUES

LISTED ARE IN BITS.

Quantile 0% 25% 50% 75% 100%
Mean 159 203 349 763 4096

Median 157 200 330 686 4096
Minimum 7 128 131 138 4096
Maximum 174 308 588 1690 4096

S. Deviation 0 39 119 384 1434

TABLE IV
STATISTICS OF TOTAL RANDOM DATA USE ACROSS ALL TRACES. VALUES

LISTED ARE IN BITS

Statistic Mean Min Median Max S. Dev
Total 1873 0 961 9644 1850

Avg. Mag. 195 50 117 2922 207
Quantile 0% 25% 50% 75% 100%

Total 0 415 961 3891 9644
Avg. Mag 50 73.1 117 232 2922

Summary of Findings: Overall, the data suggests that the
microphone is the best candidate for extracting usable amounts
of random data, producing 8 good bits per sample at a very
high rate. Following this is the accelerometer at 31 good bits
per sample, but at a lower rate. The gyroscope follows the
accelerometer by providing 27 fair bits per sample, however a
gyroscope is not guaranteed to be present in every device. The
radios follow, providing only 16 fair bits per sample. We find
that the magnetometer and GPS are not considerable sources
of randomness, though there is further room for investigation
into the GPS due to a small sample size. Similarly, we are
unable to extract any usable bits from the camera, likely due
to the analysis methodology.

B. Entropy Counter

This section presents analysis of the entropy counter traces.
Recall that the data collected for this part of the study
consists of an integer-valued time series with a rate of 4
times per second. Figures 5a-5d plot histograms detailing

the distribution of values for four metrics across all traces -
mean, median, minimum, maximum. We find that each statistic
roughly follows a negative exponential distribution, implying
that either a majority of devices are actively using random data
during the sampling period, or that the pool of random data
tends to only refill gradually. Table III further summarizes the
quartiles of each statistic.

Total Entropy Use: Figure 5e illustrates the distribution of
total random data use across all traces, while Table IV sum-
marizes basic statistics about the distribution. For a 3 minute
trace, we calculate approximately 10 bits of randomness per
second used on average, and less than 5.3 bits of randomness
per second being used in 50% of scenarios. However the
standard deviation is rather large, indicating that there may be
rare periods of heavy demand. The observed maximum rate
of random data use is approximately 53.5 bits per second.
This rate is easily sustainable with only a few sensors being
turned on. We note that there is a cluster of traces all using
around 4096 bits, which is the total size of the buffer for the
APRNG. However, we were unable to determine the cause of
this phenomenon.

Magnitude of Use: Figure 5f illustrates the average mag-
nitude of random data use. To calculate this, we summed up
all instances where the entropy counter dropped and divided
that value by the number of instances of the counter dropping
across the trace. We merged together contiguous drops to count
as one instance. This represents the average size of a request
for random bits. Table IV summarizes the findings. We note
that in a large majority of cases, the magnitude of a request
is less than that of 8 integers (256 bits), which indicates that
random data is typically only needed in short bursts. Only in
very rare cases are larger requests made, but no request is big
enough to drain the buffer completely.

Summary of Findings: In our investigation, we find a
stratification of random data use patterns. On one hand, half
of the traces report very low values, indicating that the device
is idle or experiencing light use. On the other hand, random
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Fig. 6. The SensoRNG Framework. Input is received from sensors via the
polling controller and then queued for processing. Processed samples are
merged with values already present in the buffer and then sent through a
reduction function to further mix together temporally separate bits.

data use falls into two main categories - constant, light use or
heavy, incidental use. While roughly the same amount is used
at the end of the sampling period, the shape of these plots
are vastly different. Overall, we find that the need for random
numbers is always present and experiences occasional spikes.

VI. SENSORNG

We now present the framework for SensoRNG, our proof-
of-concept sensor-based RNG. Figure 6 presents the archi-
tecture of the algorithm. Using the assumption that the data
from sensors provides a minimum guarantee of randomness,
our design of SensoRNG is kept intentionally simple. There
are three main components - the controller, the aggregation
and folding function, and the reduction function, which serve
the roles of collecting samples, processing and combining
samples, and mixing entropy into the buffer respectively. We
utilize two layers of mixing via the aggregation and reduction
in order to fold together randomness that is both temporally
local and temporally distant.

We implement two versions of SensoRNG for the purposes
of evaluation. The first version is a system service embedded in
Android OS. Here, we instrument the sensors directly to enable
opportunistic collection of sensor data without unnecessary
polling overhead. Opportunistic collection has been utilized
in other works to minimize the energy overhead of collection
[27]. The second version is an Android application library.
Instead of opportunistic collection, we instead utilize reac-
tionary collection, manually polling only when the internal
buffer drops beneath a threshold of 25%. We instantiate two
versions to evaluate 1) the quality of the output produced and
the overhead in terms of power; and 2) The ease of adapting
our framework to existing applications respectively.

Polling Controller: The controller is the component that
acts as the middleman between the hardware sensors and the

SensoRNG mixing algorithm. The duties of the controller
are threefold: First, it serializes incoming sensor samples and
processes them, stripping them down to the most desired bits
as determined in section 5. Second, it monitors the amount of
data available in the random buffer, ensuring that it stays above
the minimum desired capacity. Should passive collection of
sensor data fail to meet the needs of the system, the controller
can briefly turn on any sensor in order to help refill the buffer
to an acceptable level. We discuss specific implementation
parameters in the evaluation section.

Aggregation and Folding: This routine is called by the
controller in order to process individual sensor samples. In this
function, non-random bits are stripped away and the remaining
are compressed into a smaller stream of information based on
the results of our sensor analysis. Specifically, we split each
incoming sample into two sets, G and B, where G consists
of all good bits, and B consists of all ‘bad’ bits. Instead of
directly using G, we take the parity of all bits in B and reverse
the order of the bits in G if the result is 1. This serves simply
as an occasional additional step in the mixing function

The next step, the aggregation step, we store the results
of the previous step (E = G1G2 . . . Gk) in a processing
queue. Once enough samples have been collected, we create a
bitstring T of fixed length l for the folding step. The algorithm
then pops the top element E from the processing queue and
‘stripes’ it across T . Namely, let T have a position pointer p.
Then for each bit i in E, we perform the following operations

T [(p+ i) mod l] = T [(p+ i) mod l]⊕ E[i]

Where ⊕ is bitwise xor. This process is repeated for a number
of samples E1, E2 . . . En. Once this process is complete, T is
sent to the reduction function.

Reduction Function: The reduction function takes input
from both the internal buffer and the folding function in order
to further mix together bits that are not temporally local. We
take inspiration in our design from asymmetric cryptography
algorithms which utilize a substitution table, or ‘s-box’, to
mix in key bits [28]. We aim to make the reduction function
difficult to reverse to prevent reconstruction of input data,
ensuring backwards unpredictability. This is realized by using
a ‘many-to-one’ mapping, where multiple inputs map to a
single output.

The reduction function operates as follows: Inputs to the
function are three n bit chunks, T , H1 and H2 corresponding
to freshly processed data, and the first two n bit chunks from
the head of the buffer. We first calculate I = T ⊕H1. I serves
as input to a substitution table in order to get output S. The
length of S in bits can vary based on the parameters used to
generate the table. We then concatenate together H2, S,¬H1

and append the result to the end of the buffer, shuffling the
order and parity of bits that were already in the buffer.

The substitution table is generated using the following pro-
cedure. There are three parameters - input length n, minimum
output length m, and output length range r. First, we generate
a random permutation of the integer values in [0, 2n). We then
form a sorted list of bit strings between length m and length
m+ r − 1. Starting from a random point in the permutation,
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TABLE V
EXAMPLE SUBSTITUTION TABLE R(X) IN THE REDUCTION FUNCTION

WITH PARAMETERS (n,m, r) = (4, 1, 2). FOR BREVITY, INPUT IS LISTED
IN HEXADECIMAL, WHILE OUTPUT IS LISTED AS A BINARY STRING.

x 1 3 5 7 9 B D F
R(x) 0 1 00 01 10 11 0 1

x 0 2 4 6 8 A C E
R(x) 00 01 10 11 0 1 00 01

we step through both the permutation of values and the list of
bit strings, creating pairs and storing them in a hash table.

An example substitution function R(x) is in Table V. The
table used in the SensoRNG algorithm is generated randomly
with the first few incoming bits. Note that by this design,
multiple input values can map to the same output value.
Similarly, by varying the output length, it is difficult to tell
what segments in the output map back to input segments.

Theoretical Complexity: The SensoRNG algorithm is
designed to be computationally lightweight with a theoretical
complexity of O(n), where n is the number of bits in a given
input. Consider a single input of length n. Determining the
good and bad bits of the input is done via a bitmask and
shift, which results in two operations per bit, or at worst 2n
operations. A reversing of the good bits due to the parity of the
bad bits may result in another n operations. The aggregation
and folding function performs an additional n bitwise xor
operations to fold together successive samples. In the reduction
function, there is one bitwise xor of two n bit strings, one
negation of an n bit string, and one substitution in a hash
table for O(1). In total, this brings the theoretical complexity
to 6n+O(1), or O(n).

VII. SENSORNG EVALUATION

In this section, we evaluate SensoRNG in comparison with
the current Android OS implementation of SecureRandom.

A. Experimental Setup

We pick two main targets to evaluate SensoRNG: quality
of random numbers provided and the power efficiency of each
implementation.

Quality: To evaluate the quality of the random numbers
returned by SensoRNG we once again employ the NIST suite,
utilizing a larger subset of tests in order to rigorously evaluate
produced bit streams. In addition to the seven tests used for
sensor analysis in section 5, we also include the cumulative
sum, serial, and linear complexity tests [16]. We exclude the
non-overlapping template test, the overlapping template test,
Maurer’s “Universal Statistic” test, and the random excursions
test due to the large number of potential parameters.

Power Efficiency: To evaluate the power consumption of
each RNG, we investigate two scenarios by simulating the
statistical average and maximum random data usage found
during our analysis in section 6. This is done by periodically
making a call to getRandomBytes() at a the appropriate
rates - 10 bits per second and 55 bits per second respectively.

To take power measurements, we utilize the Trepn power
monitor for Qualcomm Snapdragon processors [29]. For each

sensor we profiled a small test-harness application that in-
dependently polled the microphone, accelerometer, and gyro-
scope at the frequencies used for SensoRNG. We also used
the harness to profile each device while generating random
numbers. When profiling, we used the “Profile App” feature
of the Trepn power monitor with all overlays turned off. We
collected only the Power Measurement data point, with a
sampling rate of 100 ms. The Trepn Profiler has been utilized
in related research for accurately taking power measurements
[30], [31], and it has the ability to isolate and profile on a per
application basis.

B. SensoRNG Implementation
For our prototype implementation of SensoRNG, we utilize

the three most promising sensors discussed in this paper -
the microphone, gyroscope, and accelerometer. Based on our
analysis, these provide the most random data per sample and
have acceptable rates to cover established needs. We also note
that the accelerometer is constantly being polled at a low rate
by Android OS, likely to detect screen rotation. This was
discovered during instrumentation of Android OS.

To implement the entropy controller, we utilize a set of
simple thresholds, similar to how the Linux PRNG operates.
The length of the internal buffer for SensoRNG is set to 4096
bits long, the same as the Linux PRNG. When the internal
buffer falls below 25% capacity, we manually begin polling
the gyroscope and accelerometer to compensate. If the internal
buffer falls below 128 bits, we begin manually polling the
microphone. Should both of these methods fail to refresh the
buffer, we choose to block the call for data in order to provide
sufficient randomness. Once the pool has refilled beyond 95%
capacity, we switch off any manual polling to save on power.
For the substitution table in the reduction function, we choose
an input length of 8 bits, and an output length ranging from
2-4 bits.

Devices: All tests are performed on a Nexus 4 and
Nexus 5 running Android OS 5.0.1 “Lollipop”. For the
SecureRandom tests, we utilize the factory images available
from Google.2 For the SensoRNG tests, we utilize a modified
version of the Android 5.0.1 source compiled for each device
where SecureRandom is instrumented to utilize SensoRNG.

To generate the streams for testing, we wrote a small
testbed application that periodically makes calls to the
getRandomBytes() method for both SecureRandom
and SensoRNG. All experiments are performed with wireless
turned off and the screen at minimum brightness to minimize
energy noise. Similarly, as the wireless radios were not used in
SensoRNG, the SIM card was removed. Collection of random
numbers takes place during two scenarios: an ‘idle’ scenario
where the device is sitting in a quiet office environment,
and a ‘typical’ scenario where the device is in a pocket and
experiences light use during the day.

C. Evaluation Results
We now present the results of our evaluation of SensoRNG

in comparison to the APRNG’s SecureRandom.

2https://developers.google.com/android/nexus/images

https://developers.google.com/android/nexus/images
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TABLE VI
COMPARISON OF REPORTED P-VALUES FOR SENSORNG (SRNG) AND SECURERANDOM NIST SUITE RESULTS. EACH TEST CONSISTS OF 200 RUNS OF
40,000 BITS EACH. α = 0.01 IS SIGNIFICANT. (F) AND (R) STAND FOR THE FORWARD AND REVERSE VERSIONS OF A TEST RESPECTIVELY. VALUES OF

p < 0.01 ARE ITALICIZED AND MARKED BY ASTERISKS.

Nexus 4 Nexus 5
Test Name SRNG (idle) SRNG (typical) S. Random SRNG (idle) SRNG (typical) S. Random
Frequency 0.3881 0.5955 0.9357 0.9240 0.8255 0.7298

Block Frequency 0.0363 0.1718 0.5042 0.3838 0.7981 0.6267
Cum. Sum (f) 0.5442 0.1969 0.9470 0.7981 0.6786 0.2429
Cum. Sum (r) 0.2461 0.6838 0.4846 0.6890 0.4654 0.7887

Runs *0.0048* 0.0303 0.5442 *0.0043* 0.0351 0.2968
Longest Run 0.9868 0.9681 0.8074 0.5749 0.3627 0.8074

Rank 0.0302 0.0117 *0.0005* 0.1188 0.3041 0.3669
FFT 0.7548 0.8676 0.2248 0.0205 0.0965 0.3586

Approx. Entropy 0.2248 0.5697 0.4372 0.0104 0.2133 *0.0007*
Serial (f) 0.9512 0.2622 0.8741 0.0689 0.2077 0.7597
Serial (r) 0.9178 0.4465 0.9463 0.6993 0.9733 0.8165

Linear Complexity 0.7695 0.3504 0.2248 0.7791 0.3753 0.2429

1) Quality: Table VI summarizes the results of the NIST
suite for both SensoRNG and SecureRandom. The reported
p-value is calculated based on the distribution of the results of
all runs of a particular test. More information on the meaning
of this value is provided in the NIST suite documentation [16].

Overall, we find that SensoRNG performs favorably against
SecureRandom. Both implementations pass all but one test,
with a typical scenario passing all tests for SensoRNG. In
terms of individual tests we find the results to be split evenly,
with SensoRNG reporting higher p-values in some instances
and SecureRandom reporting higher values in others. We
note that a higher p-value in terms of the NIST suite should be
taken simply as a stronger statistical suggestion of randomness,
not a binary comparison of ‘better’ versus ‘worse’.

For some tests, SensoRNG has weaker p-values - particu-
larly the runs test and rank test. This is likely a side-effect of
the mixing function. The runs test checks to see how quickly
a given stream oscillates between 0 and 1. Because one of the
mixing function components is a substitution table, it is likely
that large strings of 0’s or 1’s are being broken up, increasing
the overall ‘oscillation’ of the bits in the output. This would
also impact the reported values of the approximate entropy test
and the rank test, which both look for large and small blocks
of similar bits.

2) Power: Table VII briefly summarizes the power draw
for polling each sensor on each test device. The numbers
were computed as follows: For each sensor we take a baseline
measurement with no sensors for 3 minutes. We then turn on
the sensor for three minutes and sample at the default rate
used in our data collection study, afterward subtracting out
the baseline measurement to isolate the sensor power use. All
values are in mW.

Across both test devices the accelerometer utilizes the least
power of the three chosen sensors, followed by the gyroscope
and then the microphone. For the Nexus 5, we find that turning
on all sensors uses additional 51.5mW, for a total of 12.9%.
For the Nexus 4, all sensors together only use an additional
70.1mW, or about 13.1% in our testing scenario. Despite the
microphone using the most power, it also provides the highest
sampling rate of the three sensors. This indicates that even
though the microphone is more expensive in terms of power,
it has a better power ratio for production of randomness.

TABLE VII
POWER VALUES FOR SAMPLING SENSORS AT THE DEFAULT RATE, PER

TEST DEVICE. BASE+ IS A BASELINE MEASUREMENT WITH ALL SENSORS
ACTIVE. ALL VALUES ARE REPORTED IN MW.

Device Mic. Accel. Gyro. Base Base+
Nexus 4 32.8 10.3 27.0 534.6 606.7
Nexus 5 22.0 10.8 18.7 399.1 452.9

Figures 7a and 7b show the power traces of the test devices
while they produce random numbers under two scenarios:
average load (10 bits/second) and max load (55 bits/second).
SensoRNG at the OS level employs opportunistic collection of
sensor data whenever possible. This means that even though
extra power is being drawn due to the sensors being on,
SensoRNG is not responsible for the overhead of polling. To
isolate the computational overhead, we took a measurement
- indicated as ‘Base+’ in Table VII - that examines power
consumption with all sensors active. Against this adjusted
baseline, we see that SensoRNG only uses an additional
10mW in the Nexus 5 for the average case, and 28mW extra
for the Nexus 4, resulting in only a 2% and 4% increase
respectively.

We also consider the worst-case for SensoRNG by con-
sidering it responsible for all additional power overhead. For
the average load scenario, we find that the Nexus 5 uses an
additional 31mW on average over SecureRandom, and the
Nexus 4 uses an additional 82mW on average. This translates
to a 7% increase in power consumption for the Nexus 5, and a
15% increase for the Nexus 4. For the maximum rate scenario
we find that the power consumption increases, with the Nexus
5 using an additional 35mW on average and the Nexus 4
using an additional 94mW when compared to the baseline.
This translates to a 8% increase in power for the Nexus 5
and a 17% increase in power for the Nexus 4. While this is
a notable increase for the worst case scenario, devices should
never be in this use state except for rare circumstances.

VIII. APPLICABILITY STUDY

To demonstrate the ability of the SensoRNG system to
immediately impact real world Android applications, we im-
plemented the framework in an Android Library called Sen-
soRNGLib and modified 5 free and open source (FOSS) appli-
cations from the F-Droid marketplace [32], a well-maintained
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(a) Nexus 4

(b) Nexus 5

Fig. 7. Power traces taken while producing random numbers. Black represents
SecureRandom while red represents SensoRNG. The left half of each plot is
the average (10 bits/sec) scenario, while the right half is the max (55 bits/sec).

repository for FOSS Android apps. Our study targets two
metrics to evaluate the applicability of SensoRNG to existing
apps: 1) effort involved in adopting SensoRNGLib; and 2) the
computational overhead of SensoRNGLib method calls.

A. SensoRNGLib Implementation

An important missing feature from SensoRNGLib is oppor-
tunistic collection of sensor data, which requires hooks into the
sensor data streams. Instead, we utilize reactionary collection,
where every time random data is requested we check the status
of the random pool. If the request would drain the pool below
a certain threshold, we activate all sensors for 3 seconds and
then turn them off. We empirically determined 3 seconds to
be sufficient to both refill the buffer and facilitate thorough
mixing. While true opportunistic collection cannot be per-
formed, the API does provide a method for developers to pass
sensor data into the library if their application already uses said
sensors. These two features allow SensoRNGLib to operate in
a similar fashion to the LPRNG, which uses simple thresholds
and allows for processes to write to /dev/(u)random.

B. Developer Effort

We extracted 5 applications from the F-Droid marketplace
in order to evaluate the programming effort required to adapt
SensoRNG to real-world apps. When choosing these applica-
tions we aimed to fulfill several criteria including: 1) Apps that
are popular or well-known (based on number of downloads or
developer activity), 2) Apps of varying size and complexity
(in order to offer a broad discussion of the programming
effort required for different size apps), 3) Apps that contain
at least one call to the system-level implementation of the
Random Number generator (e.g. calls to SecureRandom).
Thus, as our subject applications we used: k9 mail [33],
keepassdroid [34], RandomMusicPlayer [35], Addi [36], and

TABLE VIII
DEVELOPER METRICS FOR IMPLEMENTING SENSORNGLIB. TIME (IN

MINUTES) IS MEASURED FROM THE START OF COMPILING THE ORIGINAL
SOURCE SUCCESSFULLY TO COMPILING THE INSTRUMENTED VERSION

SUCCESSFULLY.

Metric RMP k9 KeePass Addi aagtl
LoC Changed 5 8 21 8 5
Time (mins) 15 20 30 30 15

TABLE IX
AVERAGE NORMALIZED CPU USAGE FOR BOTH THE ORIGINAL AND

SENSORNGLIB IMPLEMENTATIONS OF KEEPASSDROID AND
RANDOMMUSIC PLAYER.

KeepassDroid RandomMusicPlayer
Original 24.07% 25.74%
SensoRNG 23.65% 24.92%

aagtl [37]. For each of these applications we replaced the
calls to the standard Android/Linux RNG with calls to the
appropriate methods in the SensoRNGLib. To evaluate the
programming effort required to adapt each application, we
recorded the total number of lines of code changed and the
time required to modify each app. Our experience indicates
that modification of applications to utilize SensoRNGLib is
very intuitive, requiring little effort on behalf of the developer
even in complicated applications.

C. Computational Overhead
In order to evaluate the computational overhead of the

SensoRNG implementation of each app to the original im-
plementation, we profiled each application with the Android
activity manager profiler (AMP) [38] in order to collect
method traces for general uses of each application. We selected
two applications (RandomMusicPlayer, and Keepassdroid),
for which we could reliably (e.g. deterministically) construct
GUI-based execution scenarios that trigger calls to the RNG.
We then recorded the low-level GUI-event scenarios on a
Google Nexus 5 smartphone using the getevent Android
shell command [39] for each application alongside method
traces to be sure that the recorded scenarios triggered the
method calls related to the RNG. Next, we translated these
low-level event traces into high level executable scripts in
the form of adb commands (e.g. adb shell input tap
507 565) using a methodology inspired by RERAN [40].
After the translation, we replayed these event sequences for
both versions (e.g. SensoRNG and original) of each app on
the Nexus 5 device while collecting normalized cpu-usage
information using the Trepn profiler [29]. When conducting
these tests the phone’s network connections were disabled
and only the Trepn profiler and target application were run-
ning, with the Trpen profiler only targeting the specific app-
under-test. This methodology should produce reliable results
that isolate the performance recordings of the application in
question. The results show no significant deviation in cpu-
usage between the two implementations, suggesting that the
SensoRNG implementation of these apps does not impose
additional computational overhead.

IX. DISCUSSION & FUTURE WORK

Our work has demonstrated the viability of utilizing sensors
as a source of randomness. As the Internet of Things grows
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TABLE X
COMPARISON TABLE FOR DIFFERENT SENSORNG IMPLEMENTATIONS.

OS Implementation App Library
* System service, will always be available * Service tied with the app process
Opportunistic collection of sensor data * Selective, manual polling of sensors
Heavy load impacts total system performance * One hungry app taxes its own buffer
Centralized buffer for all processes * Individual buffers for each app
One buffer size for all processes * Customizable, per-app buffer sizes
Requires OS modification, harder to adopt * Easy to include in any app
One algorithm for all processes * Can customize algorithm per app
Available to system processes * Not available to system processes
System can securely store buffer on shutdown * Apps must ensure secure buffer storage, extra effort

in scope, we can expect an increase in the number of low-
profile devices dedicated to sensing and monitoring. For these
devices, it may be the case that randomness can be more easily
generated from sensor data rather than traditional methods.
Future work could even target the sharing of this random data
between IoT devices in local networks.

Limitations: Sensor-based RNGs lack the ability to re-
peatedly generate a single sequence of random numbers on
demand. This capability is central to debugging and verifica-
tion as these activities require reproducible behavior, and a
PRNG can simply utilize a test seed to easily reproduce a
sequence of random values. To implement such functionality,
the user would have to exactly recreate all sensor inputs in the
same order - a feat that is physically improbable. A potential
solution is to introduce a “test” mode which accepts input by
reading from a single, predictable source, such as a file.

One current limitation of SensoRNG is that our analysis
of samples is done on a global scale across multiple devices.
However, it may be the case that what works well for one
device configuration is not the ideal case for another. For
example, older devices may have a lower sensor resolution
and provide fewer usable bits per sample. In the future, it
would be worth designing methods to investigate devices
on an individual basis, creating a ‘device profile’ that can
characterize randomness from each sensor.

While we show it is possible to passively harvest sufficient
entropy from sensors on mobile devices, smaller IoT devices
may struggle to collect enough randomness to meet their
own needs. This is entirely dependent on what sensors the
device comes equipped with. Furthermore, the power cost
of processing sensor samples may be too high for low-end
devices, or devices with batteries, to tolerate. Because of this,
future testing will target low-end devices to see if entropy
needs can still be met, and if not, whether potential hybrid
options can take advantage of the sensor as an entropy source
while lessening the impact on battery.

Implementation Considerations: For our work, we imple-
mented SensoRNG at two locations - in the OS as a system
service, and in the application layer as an Android library.
Table X illustrates a number of trade-offs we noticed during
implementation and evaluation. We summarize these points
under three main categories.

Performance: With regards to performance and overhead,
we find that implementation at the OS level is more efficient.
This is because there is only one buffer to track and one
processing queue for samples. At the library level, each
application gets an individual buffer to store random bits in.

Similarly, each app is responsible for processing sensor data
to extract randomness, rather than just the system. Consequen-
tially, the power overhead can be slightly higher as the app
library cannot rely on opportunistic collection unless the app
itself uses the desired sensors. However, one app taxing the
RNG at the OS level may impact performance system wide,
whereas one app taxing its own RNG will not.

Flexibility: With regards to flexibility, we find that the
app library is much more flexible for the needs of an app
developer. Instrumenting a sensor-based RNG at the OS level
requires modifying and recompiling Android OS, which is not
possible for every device. However, an Android app library
has documented support for inclusion into any app, making
the bar for adoption much lower. Similarly, as we made the
library open source, it is possible for anyone to modify the
algorithm or parameters to their needs, whereas it would be
much more difficult to modify at the OS level.

Feature Availability: With regards to feature availability,
the OS implementation is slightly more robust. An RNG at
the OS level can be available to all processes, while an RNG
in an app library is only available to the processes that want
to implement it. Similarly at the OS level, the buffer can be
easily stored between boots, while it is up to the developer to
choose whether or not to do so at the library level.

X. CONCLUSIONS

This paper presents an exploratory study into the viability
of a sensor-based RNG for mobile and IoT devices. Our
findings on the state of random data use in the Android PRNG
show that, in the average scenario, devices operate under
conditions of light, but constant use. Furthermore, we show
which sensors on modern hardware are capable of meeting the
demand for random data. To evaluate these claims we present
a prototype framework SensoRNG, which exploits the noise
in sensor data for the purposes of generating random numbers.
Our evaluation on several points compares favorably against
the current Android PRNG, with only a small computational
overhead, suggesting the viability of a fully optimized solution.
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