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Abstract—Automatically recognizing human activities in a
body sensor network (BSN) enables many human-centric
applications. Many current works recognize human activities
through collecting and analyzing sensor readings from on-body
sensor nodes. These sensing-based solutions face a dilemma.
On one hand, to guarantee data availability and recognition
accuracy, sensing-based solutions have to either utilize ahigh
transmission power or involve a packet retransmission mech-
anism. On the other hand, enhancing the transmission power
increases a sensor node’s energy overheads and communication
range. The enlarged communication range in consequence
increases privacy risks. A packet retransmission mechanism
complicates on-body sensor nodes’ MAC layer and hence
increases energy overheads.

In contrast to the sensing-based solutions, we build RadioSe-
nse, a prototype system that exploits wireless communication
patterns for BSN activity recognition. Using RadioSense, we
benchmark three system parameters (transmission (TX) power,
packet sending rate, and smoothing window size) to design
algorithms for system parameter selection. The algorithmsaim
to balance accuracy, latency, and energy overheads. In addition,
we investigate the minimal amount of training data needed for
reliable performance. We evaluate our RadioSense system with
multiple subjects’ data collected over a two-week period and
demonstrate that RadioSense achieves reliable performance in
terms of accuracy, latency, and battery lifetime.

Keywords-Body Sensor Network; On-body Sensor Nodes;
Communication Patterns; Activity Recognition;

I. I NTRODUCTION

As the cost of wireless sensing devices declines, there
is a trend to deploy body sensor network (BSN) as the
solution for human-centric applications, such as personal
health monitoring [1], assisted living [2], and physical
fitness assessment [3]. As an important component, activity
recognition enables BSN applications to be aware of user’s
activity. Many sensing-based solutions [4][5][6][7][8] have
been proposed for activity recognition in BSN. These efforts
collect sensor readings from on-body sensor nodes and
utilize pattern recognition algorithms to recognize user’s
activity at an aggregator, such as a PC or a smartphone.

Although the effectiveness of the sensing-based solutions
has been demonstrated in previous works, they face a dilem-
ma. On one hand, packet loss undermines accuracy. Research
on BSN link layer behavior [9] has demonstrated that the
impermeability of human body causes the packet delivery
ratio (PDR) to decrease. Packet loss reduces the availability

of sensor readings at the aggregator. The incomplete sensor
readings in consequence undermine classifier performance
[10]. On the other hand, two strategies could be adapted
to enhance the availability of sensor readings at the aggre-
gator, but they have their own limitations. First, on-body
sensor nodes may maintain their sending power at a high
level (e.g.,−15 dBm [9]) in order to achieve a satisfying
PDR (e.g.,90% [9]). However, an increased sending power
not only increases energy overheads, but also enlarges the
communication range. As a result, private information within
a BSN (e.g., acoustic sensor readings) could be overheard
and analyzed by malicious entities. Although privacy could
be enhanced by using a security protocol [11], the extra
energy overheads cannot be ignored. Second, on-body sensor
nodes may install a MAC protocol that contains a packet
retransmission mechanism. This Quality of Service (QoS)
component complicates the MAC protocol and increases
energy overheads. In addition to this dilemma, sensing-based
solutions also require the availability of various sensors
[12][13][14], and continuous sensing also accounts for a
large portion of energy overheads [15].

In contrast to the sensing-based solutions, we propose
RadioSense - a prototype system that exploits wireless
communication patterns for BSN activity recognition. Pre-
vious work [9] has found that the impermeability of human
body causes packet loss and fading of transmitted signals.
RadioSense is built upon the fact thatdifferent activities have
different patterns of packet loss and fading, which we call
communication patterns.RadioSense collects communica-
tion patterns from on-body sensor nodes and utilizes them
for activity recognition.

RadioSense is built upon two dedicated on-body sensor
nodes, which send simple fake packets to the aggregator at
a low rate and power level. The aggregator extracts each
node’s communication features (such as PDR and the mean
of Received Signal Strength Indicator (RSSI) [16] values)
from arrival packets within a fixed time window. Features
of all on-body sensor nodes form a communication pattern.
The aggregator uses the communication pattern within each
time window as a signature to identify the corresponding
activity. In this paper, we demonstrate that RadioSense has
the following features:

• Low transmission power: Through experiments, we



demonstrate that communication patterns are most dis-
criminative among different activities when the trans-
mission (TX) power is low (e.g.−28.7 dBm). Thus,
in RadioSense, not only does a low TX power result
in small energy overheads, but also high recognition
accuracy. Another benefit of a low TX power is a small
communication range. In experiments, we find that an
on-body sensor node’s largest communication range is
less than2 meters when the TX power is< −25 dBm.
In RadioSense, on-body sensor nodes send fake packets
within such a small range. As a result, privacy risks are
reduced.

• Preference for packet loss:Through experiments, we
demonstrate that packet loss is an important feature for
achieving high recognition accuracy at low TX powers.
Thus, in RadioSense, packet loss boosts accuracy rather
than undermining it.

• MAC layer simplicity: RadioSense does not depend
on a complicated MAC protocol with QoS assurance.
A simple MAC layer entails low energy overheads.

• Device simplicity: RadioSense does not rely on any
special sensors. Only a low power radio (e.g. CC2420
[17]) is required on each on-body sensor node. In
contrast to the sensing-based solutions, energy over-
heads for obtaining and transmitting sensor readings
are removed.

The main contributions of this paper are summarized as
follows:

- We are among the first to reveal the discriminative
capacity of communication patterns. Moreover, we
propose RadioSense, a prototype system that collects
communication patterns from on-body sensor nodes and
exploits them for activity recognition.

- We benchmark three system parameters (TX power,
packet sending rate, and smoothing window size) and
provide algorithms for system parameter selection dur-
ing the training phase. The algorithms aim to balance
accuracy, latency, and energy overheads. In addition,
we also investigate the minimal amount of training data
needed for reliable performance.

- We evaluate RadioSense using data collected from
three subjects at mutiple places with different back-
ground noise levels during a two-week period. The
results demonstrate that RadioSense achieves reliable
performance in terms of accuracy, latency, and battery
lifetime.

The rest of the paper is organized as follows. We first
discuss related works. Next, we present the potential of uti-
lizing communication patterns for BSN activity recognition.
Then, we propose a detailed design of RadioSense, after
which we benchmark three system parameters to balance ac-
curacy, latency, and energy overheads. Next, we demonstrate
performance evaluation of RadioSense. Finally, we present

conclusions and future work.

II. RELATED WORK

Many works propose methods that utilize sensor readings
for activity recognition. For example, PBN [5] is a practical
activity recognition system that utilizes sensor readingscol-
lected from on-body sensors. CenceMe [18] utilizes sensors
on smartphone for activity recognition. Rather than using
sensor readings, our approach exploits the discriminative
capacity of communication patterns for activity recognition.

There are a few works utilizing communication infor-
mation for activity recognition. In [5], RSSI values are
used as one type of sensor readings for practical activity
recognition in BSN. In the paper, the authors use a default
TX power level for on-body sensor nodes and illustrate
that raw RSSI readings do not have strong discriminative
capacity through K-L divergence analysis. However, rather
than using raw RSSI readings at a default TX power level
of on-body sensor nodes, our work automatically selects
the optimal TX power level, at which we experimentally
demonstrate the statistical features of RSSI readings are
adequate for activity recognition. In [6], RSSI readings
are used to differentiate between sitting and standing. In
contrast, we design algorithms to automatically select the
optimal system parameters (TX power level and packet
sending rate) for on-body sensor nodes. With the selected
parameters, we further explore the discriminative capacity
of RSSI readings and combine RSSI features with packet
delivery ratios (PDRs) to recognize more complex activities.
In [19], the authors deploy wireless devices at critical spots
within a room. The RSSI values collected from these devices
are used to recognize both the room state (empty or not) and
human activities (sitting, standing and walking). Our work
uses more communication features collected from on-body
sensor nodes, which work at the optimal system parameters,
and aims to handle more complex activities.

In addition to activity recognition, communication infor-
mation has been exploited for other applications. For exam-
ple, radio tomography uses the fading of RSSI caused by
human body for indoor motion tracking [20]. Radio signals
have also been used for localization [21]. In contrast, we
utilize different fading patterns caused by different human
activities in BSN for activity recognition.

III. M OTIVATION

In this section, we demonstrate the potential of utilizing
communication patterns to recognize activities.

A. Experiment Setup

In experiment, we use Tmotes as on-body sensor nodes.
Each Tmote is equipped with a CC2420 radio with 31
transmission power levels, which range from 1 (lowest) to
31 (highest). Although Tmote also has several sensors (e.g.,
light and temperature sensors), we only use its radio.



Figure 1. Setup.

In experiment, a user wears three
Tmotes with CSMA enabled as de-
picted in Figure 1. The one on the right
wrist and the one on the right ankle
are used as on-body sensor nodes and
highlighted with squares. Wrist and an-
kle are critical places for deploying on-
body sensor nodes for activity recogni-
tion [5]. The third, which is used as a

base station, is highlighted with a cycle. Each of the two
on-body sensor nodes sends 4 packets per second at the TX
power level 2 (-28.7 dBm). Each packet only contains the
id of the node from which it is sent out. The base station
receives packets from the two on-body sensor nodes, extracts
the node ids, and sends messages containing the ids to a
laptop through the USB interface. A software module on
the laptop receives messages from the base station and logs
the timestamp of each arrival message. Each run of this
software module lasts for one minute, during which the user
is required to perform one activity. There are three activities
(sitting, standing, walking) to perform in total.

B. The Potential of Exploiting Communication Patterns

With the logged message arrival times, we plot the mes-
sage arrival patterns of each activity in one minute in Figure
2. The x-axis represents the time point (in seconds) during
this one minute. A spike at timet means that a message
arrives att.
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Figure 2. One Minute Message Arrival Patterns at the Base Station.

From Figure 2, we observe that the message arrival pattern
of the wrist node is enough for distinguishing walking from
the other two activities. In contrast, sitting and standing
have very similar message arrival patterns of the wrist node.
However, they can be distinguished from each other by the
message arrival patterns of the ankle node. Thus, intuitively,
these three activities are able to be separated from each other
with the message arrival patterns of both the wrist and ankle
nodes.

With only three activities being considered, we demon-
strate the potential of exploiting communication patternsof
the right wrist and ankle nodes for recognizing activities.
However, it is just a concept proof. In the rest of this paper,
we consider more complex activities.

IV. RADIOSENSE ARCHITECTURE

In this section, we introduce the architecture of Ra-
dioSense, a prototype system that exploits communication
patterns for activity recognition. RadioSense mainly contains
three components (as depicted in Figure 3), a sensor node
working as a base station, a laptop working as an aggregator,
and two dedicated on-body sensor nodes that have low power
radios, such as CC2420. The base station is placed at the
center of user’s body. The on-body sensor nodes are placed
at user’s wrist and ankle, which are the critical positions
to deploy sensor nodes for activity recognition [5]. The
base station and on-body sensor nodes form a body sensor
network. The base station is connected to the aggregator
through the USB interface.

To unobtrusively recognize a user’s activities, RadioSense
must continuously collect communication information, from
which communication patterns are extracted. The commu-
nication information collected by RadioSense includes the
message arrival patterns as depicted in Figure 2 and the RSSI
value of each arrival packet.

In RadioSense, each message contains two fields,nodeid

andrssi. Each on-body sensor node assigns its id number to
thenodeid field and sends messages encapsulated in packets
periodically to the base station with the optimal parameters
(TX power level and packet sending rate) obtained by the
Training Module. On receipt of each packet, the RelayApp
calls the MAC layer interface to measure the RSSI value
of the received packet, extracts the message, and assigns
the RSSI value to therssi field in the message. Then,
the RelayApp module transmits the message containing the
RSSI value to the aggregator through the USB interface.
At the aggregator, the Time Stamper module logs the time
and the RSSI value of each arrival message. It also logs the
ground truth labels inputted from the GUI module during the
training phase. The message arrival times of each on-body
sensor node form its message arrival pattern.

A. Features and Classifier

The features used by RadioSense are all communication
features extracted from the log, which is generated by
the Time Stamper module. The log contains each on-body
sensor node’s message arrival pattern and the RSSI values
of packets at runtime. It also contains the ground truth labels
from the GUI module during the training phase. Smoothing
window is the runtime time window within which features
are extracted and classified. From message arrival patterns,
the Feature Extraction module in Figure 3 extracts PDRs of
on-body sensor nodes within each smoothing window based
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Figure 3. RadioSense Architecture.

on their current packet sending rate. From RSSI values of
each sensor node’s packets, the Feature Extraction module
extracts 18 statistical features (the max, min, max−min,
mean, var, median, mean crossing rate, values of the RSSI
histgram with 10 bins, and iqr (interquartile range) of RSSI
values) within each smoothing window. During the training
phase, the Feature Extraction module extracts these features
and forwards them with the ground truth labels to the
Training Module. The Training Module uses the feature
selection algorithm with sequential forward strategy [22]
to select the best features and returns them to the Feature
Extraction module. In addition, the Training Module trainsa
classifier with the selected features for the Runtime Module.
At runtime, only the selected features are extracted by the
Feature Extraction module and used by the Runtime Module
to classify activities. The activity classification results are
sent to the GUI module for display.

In RadioSense, we choose Support Vector Machine
(SVM) combined with RBF kernel to differentiate user’s
activities. SVM is one of the best classifiers and has
been successfully applied in many real-world classification
problems, including activity recognition [15] and epileptic
seizure detection [23]. In general, SVM has four advantages
over other classifiers [24]: (i) the optimization involved in
SVM corresponds to a convex optimization problem, whose
local solution is also a global solution; (ii) it is able to
achieve high accuracy with a relatively small number of
training examples; (iii) it scales well with data dimension-
ality; (iv) it is in a simple form and hence fast to execute in
runtime. These four properties make SVM a promising fit
for activity recognition.

B. Training Module

In addition to the runtime features and classifier, the
Training Module also generates the optimal parameters for
on-body sensor nodes with the aim of balancing accuracy,
latency, and energy overheads. As demonstrated by [9],
on-body sensor nodes’ TX power determines their PDRs
and hence affects the communication pattern utilized by
RadioSense. In addition, on-body sensor nodes’ packet
sending rate also has effects on the communication pattern.
For example, a higher packet sending rate captures more
information of the RSSI variation during each activity. Since
accuracy depends on how discriminative the communication

pattern is, different TX powers and packet sending rates that
result in different communication patterns in consequence
affect accuracy. Moreover, we do not expect on-body sensor
nodes to use a high TX power and packet sending rate, since
doing that quickly depletes the battery. Thus, one function
of the Training Module is to determine the optimal TX
power and packet sending rate for on-body sensor nodes.
The optimal parameters should achieve high accuracy and
low energy overheads at the same time.

In addition, the smoothing window size is a system
parameter that balances accuracy and latency [23][25] at
runtime. The Training Module also determines the optimal
smoothing window size that achieves high accuracy and fast
response at the same time.

V. BENCHMARKING SYSTEM PARAMETERS

In this section, we benchmark three system parameters
(TX power, packet sending rate, and smoothing window
size) with the data collected by RadioSense. According
to benchmarking results, we propose algorithms for the
Training Module to automatically select the optimal system
parameters. During the training phase, the Training Module
selects the optimal system parameters in the order of TX
power level, packet sending rate, and smoothing window
size. In addition, we also investigate the minimal amount of
training data needed for reliable performance.

A. Data Collection

To benchmark the three system parameters, we collect
data of seven activities (running, sitting, standing, walking,
lying, riding, and cleaning) from one subject. Unlike [25]
that selects the optimal system parameters through bench-
marking multiple subjects’ data, we only use data from one
subject because we experimentally find that accuracy is not
a monotonous function of some system parameter, such TX
power. Multiple subjects’ data may blur the relationships
between accuracy and system parameters. With one subject’s
data, we can observe the clear relationships between accu-
racy and system parameters and experimentally justify our
observations, based on which we design algorithms to select
the optimal parameters for individual subject. Compared
to the one-for-all optimal parameters obtained in [25], our
algorithms results in different optimal system parametersfor
different subjects.
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Figure 6. Snapshots of RSSI Values of Wrist
Node’s Packets. Packet Sending Rate = 4 pkts/s.

The subject wears on-body sensor nodes in the manner
illustrated in Figure 1. Data is collected with different
combinations of TX power level and packet sending rate.
The range of TX power level in data collection is from 1
to 5. The range of packet sending rate in the data collection
is from 1 pkt/s to 4 pkts/s. Thus, there are in total 20
parameter combinations. We collect data with 9 parameter
combinations. For each parameter combination, both on-
body sensor nodes are configured with the corresponding
parameters, and each activity is performed for 30 minutes.
To introduce the diversity of background noise levels (e.g.
interferences and multi-path fading, etc), we collect data
from different places, such as lab, classroom, living room,
gym, kitchen, and outdoor. Each activity is performed at
multiple places with different background noise levels. The
data collection process lasts for 15 days in total.

We group the collected data into three activity sets. The
first activity set contains four activities: running, sitting,
standing, and walking. The second activity set contains
two more activities: lying and riding. The third activity set
contains one more activity: cleaning. Previous work [26] has
identified cleaning as a difficult activity to classify. With
these three activity sets, we investigate whether adding new
activities into an activity set affects benchmarking results or
not. We use the Java interface of libsvm [27] for the SVM
classifier training and testing.

B. TX Power Level

Figure 4 depicts how accuracy changes as on-body sensor
nodes’ TX power level increases. In this figure, the smooth-
ing window size and packet sending rate are set to be 9
seconds and 4 pkts/s, respectively. We follow the routine
of 10-folds cross validation to estimate accuracies. In each
round of cross validation, data is divided into 10 subsets, 9
of which are used for training and the remaining 1 is used
for testing. This process is repeated 10 times and each of
the 10 subsets is used exactly once as the testing data. The
estimated accuracy is the average accuracy over 10 rounds
[24].

We have two observations from Figure 4. First, the
accuracy increases at the beginning and then decreases as the

TX power level increases. TX power level 2, after which the
accuracy decreases, is the optimal TX power level, because it
has the lowest TX power that achieves the highest accuracy.
Second, the above observation holds for all three activity
sets. To better understand the first observation, we tabulate
the feature selection results during the training phase in
Table I.

TX Power Level No. of PDR PDR No. of
Activities (Wrist) (Ankle) RSSI Features

4
√ √

3
1 6

√ √
4

7
√ √

5
4

√ √
3

2 6
√ √

3
7

√ √
5

4 × × 4
3 6 × × 5

7 × × 5
4 × × 4

4 6 × × 4
7 × × 5
4 × × 4

5 6 × × 4
7 × × 5

Table I
SELECTED FEATURES AT EACH TX POWER LEVEL. SMOOTHING

WINDOW SIZE = 9 SECONDS, PACKET SENDING RATE = 4 PKTS/S.

From table I, we observe that the PDRs of two on-body
sensor nodes are selected for activity recognition when the
TX power level is low (e.g., 1 or 2). As the TX power
level becomes higher, the PDRs are no longer selected. It is
because a human body’s height is limited and a higher TX
power level results in higher PDRs for different activities,
but the PDRs are less discriminative when they are high for
all activities.

Figure 5 supports the above explanation. In Figure 5, the
average KL divergence over all activity pairs and all on-
body sensor nodes are demonstrated at different TX power
levels and time intervals. KL divergence is a metric that
measures how different two distributions are [24]. A higher
KL divergence value means the two distributions being
compared are more different and vice versa. The x-axis in
the figure is the time interval during which the PDR of
each activity is calculated. To calculate each average KL
divergence value in Figure 5, we first fix the TX power
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level and time interval. Second, for each on-body sensor
node, the PDR distribution of each activity during 2 minutes
is then computed. We empirically choose 2 minutes, the
minimal total time that results in clear differences of average
KL divergence among TX power levels. Third, for any
pair of activities, we calculate the KL divergence of their
PDR distributions. Fourth, the average KL divergence for
this on-body sensor node is obtained by averaging the KL
divergences of all activity pairs. At last, the average KL
divergences of all on-body sensor nodes are averaged. From
this figure, we observe that TX power level 2 has the largest
average KL divergence, which means that the PDRs are most
discriminative at this TX power level. In contrast, average
KL divergences are much smaller at higher TX power levels.
Thus, the PDRs are less discriminative at these power levels.

From table I, we also observe that when the TX power
level is higher than 2, the feature selection algorithm only
selects RSSI related features. As illustrated by Figure 4,
accuracy decreases from TX power level 3. It can be inferred
that the discriminative capacity of RSSI features is decreas-
ing as the TX power level increases. Figure 6 supports this
inference. Figure 6 illustrates the typical snapshots of RSSI
values of the wrist node’s packets at TX power levels 3 and
5. RSSI values of 15 seconds during running and walking
are depicted. From this figure, we observe that the RSSI
values are more discriminative between the two activities
when the TX power level is 3. One possible reason for this
observation is that the differences of human body’s fading
effects among different activities become smaller as the TX
power level increases.

Among the selected RSSI features listed in Table I, most
of them are the features extracted from the RSSI values of
the wrist node’s arrival packets. It can be inferred that the
RSSI values of the wrist node captures more information
for recognizing activities, because the wirst node is near the
base station and has less packet loss.

From Figure 5 and 4, the average KL divergence is
a metric that indicates the discriminative capacity of the
PDRs. Moreover, we observe that when the PDRs are
most discriminative, the highest accuracy is achieved. Thus,
in our design, the Training Module uses the average KL

divergence as a metric to select the optimal TX power
level. In addition, Figure 5 indicates that the time interval
of 8 seconds achieves the maximal average KL divergence
difference among different TX power levels.

Therefore, we design the following steps for the Training
Module to automatically select the optimal TX power level:
(i) It configures the on-body sensor nodes with a relatively
high packet sending rate (e.g., 4 pkts/s) because the optimal
packet sending rate is determined after the optimal TX power
level; (ii) For each TX power level, it collects message
arrival patterns for 2 minutes and calculates the average
KL divergence by using 8 seconds as the time interval; (iii)
Starting from TX power level 1 and following its increasing
order, as long as the average KL divergence of the current
TX power level is smaller than that of the previous TX
power level, the previous TX power level is selected, and
the selection process stops.

C. Packet Sending Rate

Figure 7 depicts how accuracy changes as on-body sensor
nodes’ packet sending rate varies. In this figure, the TX
power level and smoothing window size are set to be 2
and 9 seconds, respectively. Each accuracy in this figure is
computed from 5-minute data of each activity following the
routine of 10-fold cross validation. We empirically choose
5 minutes, the minimal total time that results in stable
estimated accuracy during the cross validation process.

From Figure 7, we observe that the accuracy increases
as the packet sending rate increases. It is because a higher
packet sending rate captures more information of the RSSI
variation during each activity. All activity sets share this
observation. However, a higher packet sending rate means
increased energy overheads. Thus, to balance accuracy and
energy overheads, the optimal packet sending rate should
be the rate above which there is no obvious accuracy
improvement. In Figure 7, compared to the accuracy (for the
seven-activity set) achieved at 3 pkts/s, we observe that the
accuracy increasing rate becomes slow as the packet sending
rate is increased to 4 pkts/s. It is reasonable to estimate that
the packet sending rates, which are larger than 4 pkts/s could
only achieve limited accuracy improvement.



Therefore, we design the Training Module to automati-
cally select the optimal packet sending rate as follows: (i)
the Training Module fixes the TX power level at the optimal
one and collects data of each activity for 5 minutes at each
packet sending rate; (ii) the Training Module selects the
packet sending ratei pkts/s as the optimal one if: (a) the
packet sending ratei achieves90% accuracy with a relatively
large smoothing window size (e.g., 9 seconds); (b) ori >= 4

pkts/s and the accuracy improvement achieved by the packet
sending ratei+ 1 is less than2%.

D. Smoothing Window Size

Features extracted from a longer smoothing window are
more robust to noise and hence result in higher accuracy.
However, the delay of a longer smoothing window is larger
compared to a shorter smoothing window. Thus, smoothing
window size has to balance accuracy and latency.

Figure 8 depicts how accuracy changes as the smoothing
window size varies. To get this figure, we use 10-minute
data of each activity and set the TX power level and packet
sending rate to be 2 and 4 pkts/s, which are the optimal
parameters for the subject. The accuracies are computed
following the 10-fold cross validation routine. From Figure
8, we observe that at the beginning the accuracy increases as
the smoothing window size increases. It is because features
extracted from a longer smoothing window are more robust
to noise. The increasing rate becomes slow or near zero after
the smoothing window size passes a threshold. It is because
there is not much information gain by using a size which
is larger than the threshold. In Figure 8, for example, the
threshold is 10 seconds for the seven-activity set.

Therefore, we design the Training Module to automati-
cally select the optimal smoothing window size as follows:
the Training Module fixes the TX power level and packet
sending rate at the optimal ones and uses the total training
data (10-minute data of each activity) to select the smoothing
window size i as the optimal one if: (a) the smoothing
window sizei achieves90% accuracy; (b) ori >= 10 sec-
onds (Here, 10-second is an acceptable latency for activity
recognition [5].) and the accuracy improvement achieved by
using the smoothing window sizei+ 1 is less than2%.

E. Amount of Training Data

Intuitively, accuracy increases as the amount of training
data increases, because the trained classifier can encode
more information. However, labeling data is tedious. Thus,
we also investigate the minimal amount of training data
needed for reliable performance with the data of all three
subjects (collected in Section VI). Different from bench-
marking the three system parameters (Section V-B∼V-D),
we use the data of all subjects to obtain the minimal amount
of training data for all subjects. Since it is meaningless to
optimize the amount of training data individually for each

subject during the training phase, we choose an optimal one
for all subjects before the training phase.

Figure 9 demonstrates how accuracy varies with different
amount of training data of each activity. The TX power level,
packet sending rate, and smoothing window size are set to
be the optimal ones for each subject and each activity set.
The average accuracies of all three subjects are given for
training data of each activity up to 25 minutes.

From Figure 9, we observe that the accuracy increases
quickly in the first 10 minutes. After 10 minutes, the
accuracy increases slowly. Thus, in the deign, the Training
Module collects 10-minute data of each activity for training.
With the smoothing window size of 8 seconds (the optimal
smoothing window size for 6 activities of subject 1), there
are about 75 instances of each activity during 10 minutes.

F. Summary

During the training phase, the Training Module follows
the steps below to obtain the optimal system parameters:
(i) Starting from TX power level 1, the Training Module
collects 2-minute data of each activity to select the optimal
TX power level. (ii) Then, starting from packet sending
rate 1 pkts/s, the Training Module collects 5-minute data
of each activity at the optimal TX power level to select
the optimal packet sending rate. (iii) After selecting the
optimal parameters for on-body sensor nodes, the Training
Module collects 10-minute data of each activity. With the
collected data, the Training Module searches the optimal
smoothing window size for feature extraction. (iv) With
the optimal smoothing window size and training data, the
Training Module trains a classifier for the Runtime Module.

VI. EVALUATION

In this section, we evaluate RadioSense from three as-
pects: accuracy, latency, and battery lifetime. In addition,
we measure the communication range of RaidoSense and
investigate whether RadioSense is able to coexist with other
on-body sensor nodes.

A. Experiment Setup

Subject Gender Height (m) Weigh (kg)
1 Male 1.80 85.0
2 Male 1.68 63.0
3 Female 1.56 48.0

Table II
SUBJECTINFORMATION.

In experiment,
we implement
RadioSense on
three Tmotes and a
laptop. We collect
data of activities

(running, sitting, standing, walking, lying, riding, and
cleaning) from three subjects. The information of each
subject is summarized in Table II.

Each subject wears sensor nodes in the manner depicted in
Figure 1. During the training phase, data is first collected for
selecting the optimal parameters for on-body sensor nodes.
Then, each subject performs each activity for 10 minutes for
the Training Module to select the optimal smoothing window
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Figure 10. Activity Classification Accuracy.
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Figure 11. Activity Classification Precision.
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Figure 12. Activity Classification Recall.

size and train a classifier. To test the runtime accuracy,
each subject performs each activity for 30 minutes. Each
activity is performed in various environments (such as lab,
classroom, living room, gym, kitchen, and outdoor) with
different background noise levels in both training and testing
phases. The whole testing process lasts for 2 weeks.

B. Accuracy and Latency

In this subsection, we first present the optimal system
parameters selected by the Training Module for all subjects.
Second, we demonstrate the runtime accuracy and latency
of each subject. Finally, we demonstrate the accuracies of
more activities for one of the subjects.

1) Optimal System Parameters:The first parameter opti-
mized by the Training Module is the TX power level. Table
III summarizes the average KL divergence computed by
the Training Module for each subject. The time interval for
computing PDR is 8 seconds.

Subject 1 Subject 2 Subject 3
TXPowerLevel 1 9.88 12.86 12.90

TXPowerLevel 2 13.18 20.79 8.80
TXPowerLevel 3 1.21 1.59 1.58

Table III
AVERAGE KL D IVERGENCE OFPDR
DISTRIBUTIONS OFEACH SUBJECT.

In Table
III, the
average KL
divergence at
TX power
level 2 is the

largest for subject 1 and 2. Thus, the Training Module
selects TX power level 2 for subject 1 and 2. In contrast,
for subject 3, the Training Module selects TX power level
1 that has the largest average KL divergence. It is because
subject 3 is shorter than the first two subjects and TX power
level 2 results in a relatively high PDR during her different
activities. Thus, at TX power level 2, the differences among
the PDR distributions of her different activities are smaller
than those at TX power level 1.

All the optimal system parameters selected by the Train-
ing Module for each subject are summarized in Table IV.

Subject TX Power Level Packet Sending Rate Smoothing Window Size
(pkts/s) (seconds)

1 2 4 8
2 2 3 6
3 1 4 6

Table IV
OPTIMAL SYSTEM PARAMETERSSELECTED BY THE TRAINING

MODULE.

From Table IV we observe that subject 2 has a smaller
packet sending rate and smoothing window size. It may be
because subject 2 performs each activity more cleanly and
hence his data has less noise and is easier to classify.

2) Runtime Accuracy and Latency:In Figure 10, we
present the total runtime accuracy of classifying seven
activities for all three subjects. In addition to the total
runtime accuracy, for each activity, we also plot its runtime
accuracy ((true positive + true negative)/(true positive +
false positive+ true negative + false negative)) in Figure
10, runtime precision (true positive/(true positive + false
positive)) in Figure 11, and runtime recall (true positive/(true
positive + false negative)) in Figure 12.

In Figure 10, Subject 1, 2, and 3 have the total runtime
accuracies of86.3%, 92.5%, and84.2%, respectively. Inter-
estingly, subject 2 performs much better than the other two
subjects. Moreover, from Table III, we observe that subject2
has the largest average KL divergence of PDR distributions
among all subjects at their optimal TX power levels. Thus,
it can be inferred that the average KL divergence of PDR
distributions is a validated metric for indicating accuracy
during the TX power level selection. The reason why subject
2 performs much better may be because that subject 2
performs each activity more cleanly.

In addition, we observe that most individual activities
have accuracies over90%. Compared to the most recent
sensing-based solution [5], RadioSense achieves comparable
accuracies in recognizing the locomotion activities (suchas
sitting, standing, walking, and lying). Running and ridingare
not considered in [5]. From Figure 11, we also observe that
most individual activities have precisions over0.8, which
indicates the consistency of the accuracy results in Figure10.
Finally, we conclude that 10 minutes training data of each
activity is adequate for RadioSense to achieve promising
accuracy results.

To achieve the accuracies, precisions, and recalls depicted
in Figure 10, 11, 12, the average latencies for subject 1,
2, 3 are 9.16 seconds,6.46 seconds, and7.12 seconds,
respectively. In contrast to subject 2, subject 1 and 3’s
latencies are much larger than their smoothing window sizes.
It is because the accuracies for subject 1 and 3 are lower than



that of subject 2. One misclassified activity introduces an
additional latency of one smoothing window size. The more
activities are misclassified, the more latencies are introduced.

3) Evaluation with More Activities:Aside from evaluat-
ing the activity set that includes high level activities, we
collect data for two more activity sets from subject 1. The
activity sets include more specific activities during sitting
and cleaning. The first set is thesitting set, which includes
driving, working, reading, eating, and watching TV. All
these activities are performed when subject 1 is sitting. The
second set is thecleaning set, which includes cleaning table,
cleaning floor, cleaning bathtub, and cleaning blackboard.
Previous work [26] has identified cleaning as a difficult
activity to classify. The system parameters are configured
with subject 1’s optimal system parameters. Each activity is
performed for 10 minutes during training and for 30 minutes
during testing. The runtime accuracies of these two activity
sets are summarized in Figure 13.
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Figure 13. Accuracies for
More Activities.

For the sitting set, the total
runtime accuracy and latency are
91.5% and 8.35 seconds, respec-
tively. For the cleaning set, the
total runtime accuracy and la-
tency are95.8% and 8.29 sec-
onds, respectively. All the accu-
racies are summarized in Figure
13.

Interestingly, only the PDR of
the ankle node is selected as an
important feature for classifying

the activities in the sitting set. It is because the communi-
cation range of the wrist node well covers the base station
even at the lowest TX power level when the subject is sitting.
The PDRs of the wrist node during different activities are not
significantly different. Moreover, for different activities, the
distance between the subject’s right hand and the base station
is different and the subject’s right hand moves differently.
Thus, three RSSI features of the wirst node are selected by
the feature selection algorithm during the training phase and
play an important role in classifying the activities.

C. Battery Lifetime

We use nine Tmotes to measure the average battery
lifetimes of on-body sensor nodes in RadioSense system.
These Tmotes are divided into three groups, each of which
is configured with the optimal parameters obtained by the
Training Module for each subject. We run each Tmote with
brand new batteries (AA, Alkaline, LR6, 1.5V) and record
the battery lifetimes in hours.

The average battery lifetimes of the three groups are
159.3 hours, 168.7 hours, 175.3 hours, respectively. From
these results, we conclude that on-body sensor nodes in
RadioSense have long battery lifetimes.

D. Communication Range and Privacy

TX Power Level TX Power (dBm) Max Comm. Diameter (cm)
1 −33.0 77.2

2 −28.7 108.3

3 −25.0 388.0

7 −15.0 923.2

Table V
THE TX POWER AND THE LARGESTCOMMUNICATION DIAMETER OF

EACH TX POWER LEVEL.

We measure the communication ranges of TX power
levels 1, 2, 3, and 7. In the measurement, a sensor node
is defined as being connected with a base station as long
as the PDR of this sensor node at the base station is larger
than20%. The measured ranges with the corresponding TX
powers [17] are organized in Table V. From this table, we
observe that TX power level 1 and 2, which are selected as
the optimal TX power levels for three subjects, correspond
to very low TX powers.

A lower TX power level not only indicates lower energy
overheads, but also generates a smaller communication
range. For example, instead of TX power level 7 (to achieve
90% PDR in BSN [9]) whose communication range is
923.2cm, RadioSense selects TX power level 1 and 2 for
the three subjects. From Table V, the communication ranges
when using these two TX power levels are less than 2
meters. On-body sensor nodes in RadioSense only send
fake packets within such small communication ranges. As a
result, privacy risks are reduced.

E. Coexistence with other On-body Sensor Nodes

RadioSense utilizes two dedicated on-body sensor nodes
(the RadioSense nodes). In this subsection, we investigate
whether the RadioSense nodes can coexist with other on-
body sensor nodes. In the experiment, subject 1 wears Ra-
dioSense nodes and two extra on-body sensor nodes, which
are placed on the left wrist and left ankle. These two extra
on-body sensor nodes are deployed for general purpose. The
general purpose nodes work at TX power level 7 and their
packet sending rate is 4 pkts/s. Both the RadioSense nodes
and general propuse nodes work on the same communication
channel with CSMA enabled and communicate with the base
station. At runtime, subject 1 performs each of the seven
high level activities for 30 minutes. First, the total runtime
accuracy is90.8%. Compared to the total runtime accuracy
(86.3%) without the the general purpose nodes, the accuracy
is higher. The reason may be that the general purpose nodes
contend with the RadioSense nodes for the communication
channel. The contention increases the discriminative capac-
ity of the communication pattern utilized by RadioSense.
Second, the average PDRs of the general purpose nodes are
98.0% and 95.6%, which indicate very good link quality
[28]. Since the RadioSense nodes work at a low TX power,
they have limited effects on the general purpose nodes’
communication. Thus, we conclude that the existence of the



RadioSense nodes rarely affects the communication qualities
of the general purpose nodes.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we propose RadioSense, a system that
demonstrates the feasibility of utilizing wireless communi-
cation patterns for BSN activity recognition. Through our
experiments with data gathered from three subjects during a
two-week period, we demonstrate that RadioSense achieves
promising results in terms of accuracy, latency, and battery
lifetime. We also demonstrate that RadioSense is able to
coexist with other on-body sensor nodes.

In future, we will continue our work from three aspects.
First, we plan to program a smartphone as the base station
in RadioSense, which makes RadioSense more practical.
Second, we plan to consider communication features (e.g.
inter-link reception correlation) between on-body sensor
nodes. Intuitively, such communication features include
more comprehensive information of activities. Third, we
plan to investigate the impacts of different deployment
locations of on-body sensor nodes.
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