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Abstract—Automatically recognizing human activities in a  of sensor readings at the aggregator. The incomplete sensor
body sensor network (BSN) enables many human-centric readings in consequence undermine classifier performance
applications. Many current works recognize human activites [10]. On the other hand, two strategies could be adapted

through collecting and analyzing sensor readings from on-bdy I .
sensor nodes. These sensing-based solutions face a dilemma © €nhance the availability of sensor readings at the aggre-

On one hand, to guarantee data availability and recognition ~ gator, but they have their own limitations. First, on-body
accuracy, sensing-based solutions have to either utilize liigh sensor nodes may maintain their sending power at a high
transmission power or involve a packet retransmission mech  |evel (e.g.,—15 dBm [9]) in order to achieve a satisfying
anism. On the other hand, enhancing the transmission power PDR (e.g.90% [9]). However, an increased sending power

increases a sensor node’s energy overheads and communioati tonlv i heads. but al | th
range. The enlarged communication range in consequence not only Increases energy overheads, but also enlarges the

increases privacy risks. A packet retransmission mechanis communication range. As a result, private information wmith

complicates on-body sensor nodes’ MAC layer and hence a BSN (e.g., acoustic sensor readings) could be overheard

increases energy overheads. _ _ _ and analyzed by malicious entities. Although privacy could
In contrast to the sensing-based solutions, we build Radi@s be enhanced by using a security protocol [11], the extra

nse, a prototype system that exploits wireless communicain head tbei ds d bod
patterns for BSN activity recognition. Using RadioSense, & energy overneads cannot be ignored. second, on-body sensor

benchmark three system parameters (transmission (TX) powe  nodes may install a MAC protocol that contains a packet
packet sending rate, and smoothing window size) to design retransmission mechanism. This Quality of Service (Qo0S)
algorithms for system parameter selection. The algorithmsim component complicates the MAC protocol and increases
to balance accuracy, latency, and energy overheads. Inadin,  gnargy overheads. In addition to this dilemma, sensingas

we investigate the minimal amount of training data needed fo ; . - .
reliable performance. We evaluate our RadioSense system i solutions also require the availability of various sensors

multiple subjects’ data collected over a two-week period ad [12][13][14], and continuous sensing also accounts for a
demonstrate that RadioSense achieves reliable performaadn  large portion of energy overheads [15].

terms of accuracy, latency, and battery lifetime. In contrast to the sensing-based solutions, we propose

Keywords-Body Sensor Network; On-body Sensor Nodes; RadioSense - a prototype system that exploits wireless
Communication Patterns; Activity Recognition; communication patterns for BSN activity recognition. Pre-
vious work [9] has found that the impermeability of human

|. INTRODUCTION body causes packet loss and fading of transmitted signals.

As the cost of wireless sensing devices declines, ther®adioSense is built upon the fact thifferent activities have
is a trend to deploy body sensor network (BSN) as thdlifferent patterns of packet loss and fading, which we call
solution for human-centric applications, such as personatommunication patternsRadioSense collects communica-
health monitoring [1], assisted living [2], and physical tion patterns from on-body sensor nodes and utilizes them
fitness assessment [3]. As an important component, activitfor activity recognition.
recognition enables BSN applications to be aware of user's RadioSense is built upon two dedicated on-body sensor
activity. Many sensing-based solutions [4][5][6][7][8hve  nodes, which send simple fake packets to the aggregator at
been proposed for activity recognition in BSN. These effort a low rate and power level. The aggregator extracts each
collect sensor readings from on-body sensor nodes andode’s communication features (such as PDR and the mean
utilize pattern recognition algorithms to recognize user’ of Received Signal Strength Indicator (RSSI) [16] values)
activity at an aggregator, such as a PC or a smartphone. from arrival packets within a fixed time window. Features
Although the effectiveness of the sensing-based solutionsf all on-body sensor nodes form a communication pattern.
has been demonstrated in previous works, they face a dilenT-he aggregator uses the communication pattern within each
ma. On one hand, packet loss undermines accuracy. Reseatthe window as a signature to identify the corresponding
on BSN link layer behavior [9] has demonstrated that theactivity. In this paper, we demonstrate that RadioSense has
impermeability of human body causes the packet deliveryhe following features:
ratio (PDR) to decrease. Packet loss reduces the avayabili « Low transmission power: Through experiments, we



demonstrate that communication patterns are most dissonclusions and future work.
criminative among different activities when the trans-
mission (TX) power is low (e.g—28.7 dBm). Thus,
in RadioSense, not only does a low TX power result Many works propose methods that utilize sensor readings
in small energy overheads, but also high recognitiorfor activity recognition. For example, PBN [5] is a practica
accuracy. Another benefit of a low TX power is a small activity recognition system that utilizes sensor readicgs
communication range. In experiments, we find that arlected from on-body sensors. CenceMe [18] utilizes sensors
on-body sensor node’s largest communication range in smartphone for activity recognition. Rather than using
less thar2 meters when the TX power is —25 dBm.  sensor readings, our approach exploits the discriminative
In RadioSense, on-body sensor nodes send fake packetgpacity of communication patterns for activity recogpniti
within such a small range. As a result, privacy risks are There are a few works utilizing communication infor-
reduced. mation for activity recognition. In [5], RSSI values are
« Preference for packet lossThrough experiments, we used as one type of sensor readings for practical activity
demonstrate that packet loss is an important feature forecognition in BSN. In the paper, the authors use a default
achieving high recognition accuracy at low TX powers. TX power level for on-body sensor nodes and illustrate
Thus, in RadioSense, packet loss boosts accuracy rathéirat raw RSSI readings do not have strong discriminative
than undermining it. capacity through K-L divergence analysis. However, rather
« MAC layer simplicity: RadioSense does not dependthan using raw RSSI readings at a default TX power level
on a complicated MAC protocol with QoS assurance.of on-body sensor nodes, our work automatically selects
A simple MAC layer entails low energy overheads. the optimal TX power level, at which we experimentally
« Device simplicity: RadioSense does not rely on any demonstrate the statistical features of RSSI readings are
special sensors. Only a low power radio (e.g. CC242(adequate for activity recognition. In [6], RSSI readings
[17]) is required on each on-body sensor node. Inare used to differentiate between sitting and standing. In
contrast to the sensing-based solutions, energy ovecontrast, we design algorithms to automatically select the
heads for obtaining and transmitting sensor readingsptimal system parameters (TX power level and packet
are removed. sending rate) for on-body sensor nodes. With the selected
The main contributions of this paper are summarized afarameters, we further explqre the discriminative. capacit
follows: of RSSI readings and combine RSSI features with packet
_ ~_ delivery ratios (PDRs) to recognize more complex actigitie
- We are among the first to reveal the discriminative| [19], the authors deploy wireless devices at criticaltspo
capacity of communication patterns. Moreover, Weyyithin a room. The RSS! values collected from these devices
propose RadioSense, a prototype system that collectge ysed to recognize both the room state (empty or not) and
communication patterns from on-body sensor nodes anflyman activities (sitting, standing and walking). Our work
exploits them for activity recognition. uses more communication features collected from on-body
- We benchmark three system parameters (TX powelgensor nodes, which work at the optimal system parameters,
pack_et sendmg rate, and smoothing window S|_ze) angnd aims to handle more complex activities.
provide algorithms for system parameter selection dur- |5 aqdition to activity recognition, communication infor-
ing the training phase. The algorithms aim to balancenation has been exploited for other applications. For exam-
accuracy, latency, and energy overheads. In additionyje radio tomography uses the fading of RSS! caused by
we also mvestllgate the minimal amount of training datay, ;man body for indoor motion tracking [20]. Radio signals
needed for reliable performance. have also been used for localization [21]. In contrast, we

- We evaluate RadioSense using data collected fromyjize different fading patterns caused by different hama
three subjects at mutiple places with different back-gctivities in BSN for activity recognition.

ground noise levels during a two-week period. The
results demonstrate that RadioSense achieves reliable IIl. M OTIVATION

performance in terms of accuracy, latency, and battery |n this section, we demonstrate the potential of utilizing
lifetime. communication patterns to recognize activities.
The rest of the paper is organized as follows. We firstA E . { Set
discuss related works. Next, we present the potential ef uti" - xperiment Setup
lizing communication patterns for BSN activity recognitio [N experiment, we use Tmotes as on-body sensor nodes.
Then, we propose a detailed design of RadioSense, aft&ach Tmote is equipped with a CC2420 radio with 31
which we benchmark three system parameters to balance aéansmission power levels, which range from 1 (lowest) to
curacy, latency, and energy overheads. Next, we demomstra8l (highest). Although Tmote also has several sensors (e.g.
performance evaluation of RadioSense. Finally, we preseright and temperature sensors), we only use its radio.

II. RELATED WORK



In experiment, a user wears three With only three activities being considered, we demon-
Tmotes with CSMA enabled as de- strate the potential of exploiting communication patteshs
picted in Figure 1. The one on the right the right wrist and ankle nodes for recognizing activities.
wrist and the one on the right ankle However, it is just a concept proof. In the rest of this paper,
are used as on-body sensor nodes andve consider more complex activities.
highlighted with squares. Wrist and an-
kle are critical places for deploying on-
body sensor nodes for activity recogni- In this section, we introduce the architecture of Ra-
Figure 1. Setup.  tion [5]. The third, which is used as a dioSense, a prototype system that exploits communication
base station, is highlighted with a cycle. Each of the twopatterns for activity recognition. RadioSense mainly eorg
on-body sensor nodes sends 4 packets per second at the Th¢ee components (as depicted in Figure 3), a sensor node
power level 2 (-28.7 dBm). Each packet only contains theworking as a base station, a laptop working as an aggregator,
id of the node from which it is sent out. The base stationand two dedicated on-body sensor nodes that have low power
receives packets from the two on-body sensor nodes, extraatadios, such as CC2420. The base station is placed at the
the node ids, and sends messages containing the ids tocanter of user's body. The on-body sensor nodes are placed
laptop through the USB interface. A software module onat user’s wrist and ankle, which are the critical positions
the laptop receives messages from the base station and logs deploy sensor nodes for activity recognition [5]. The
the timestamp of each arrival message. Each run of thibase station and on-body sensor nodes form a body sensor
software module lasts for one minute, during which the usenetwork. The base station is connected to the aggregator
is required to perform one activity. There are three aétigit through the USB interface.

(sitting, standing, walking) to perform in total. To unobtrusively recognize a user’s activities, Radioens
must continuously collect communication information,nifro
which communication patterns are extracted. The commu-

With the logged message arrival times, we plot the mesnjcation information collected by RadioSense includes the
sage arrival patterns of each activity in one minute in Fegur message arrival patterns as depicted in Figure 2 and the RSSI
2. The x-axis represents the time point (in seconds) duringalue of each arrival packet.

this one minute. A spike at time means that a message |n RadioSense, each message contains two fiele;id

IV. RADIOSENSEARCHITECTURE

B. The Potential of Exploiting Communication Patterns

arrives att. andrssi. Each on-body sensor node assigns its id number to
Messages from the Wrist Node Messages from the Ankle Node thenodeid field and sends messages encapsulated in packets
periodically to the base station with the optimal paranseter
(TX power level and packet sending rate) obtained by the
o 10 20 3 40 50 60 WMMQM%MW@M% Training Module. On receipt of each packet, the RelayApp

Sitting Sitting

calls the MAC layer interface to measure the RSSI value
of the received packet, extracts the message, and assigns
the RSSI value to thessi field in the message. Then,
_— e ‘ the RelayApp module transmits the message cont_aining the
0 10 20 30 40 50 60 0 10 20 30 40 50 60 RSSI value to the aggregator through the USB interface.
Standing Standing . .

At the aggregator, the Time Stamper module logs the time
and the RSSI value of each arrival message. It also logs the
ground truth labels inputted from the GUI module during the
‘ A — TN training phase. The message arrival times of each on-body
o 10 20 3 40 50 6 0 10 20 30 40 50 60 sensor node form its message arrival pattern.

Walking Walking
Time in Seconds. Time in Seconds.

A. Features and Classifier

Figure 2. One Minute Message Arrival Patterns at the Bas#oSta . . .
9 g The features used by RadioSense are all communication

From Figure 2, we observe that the message arrival patterfieatures extracted from the log, which is generated by
of the wrist node is enough for distinguishing walking from the Time Stamper module. The log contains each on-body
the other two activities. In contrast, sitting and standingsensor node’s message arrival pattern and the RSSI values
have very similar message arrival patterns of the wrist nodeof packets at runtime. It also contains the ground truthlabe
However, they can be distinguished from each other by thérom the GUI module during the training phase. Smoothing
message arrival patterns of the ankle node. Thus, intlyfive window is the runtime time window within which features
these three activities are able to be separated from eaeh othare extracted and classified. From message arrival patterns
with the message arrival patterns of both the wrist and ankléhe Feature Extraction module in Figure 3 extracts PDRs of
nodes. on-body sensor nodes within each smoothing window based
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Figure 3. RadioSense Architecture.

on their current packet sending rate. From RSSI values gpattern is, different TX powers and packet sending ratets tha
each sensor node’s packets, the Feature Extraction modulesult in different communication patterns in consequence
extracts 18 statistical features (the max, min, mmin, affect accuracy. Moreover, we do not expect on-body sensor
mean, var, median, mean crossing rate, values of the RS8bdes to use a high TX power and packet sending rate, since
histgram with 10 bins, and igr (interquartile range) of RSSldoing that quickly depletes the battery. Thus, one function
values) within each smoothing window. During the training of the Training Module is to determine the optimal TX
phase, the Feature Extraction module extracts these &saturpower and packet sending rate for on-body sensor nodes.
and forwards them with the ground truth labels to theThe optimal parameters should achieve high accuracy and
Training Module. The Training Module uses the featurelow energy overheads at the same time.
selection algorithm with sequential forward strategy [22] In addition, the smoothing window size is a system
to select the best features and returns them to the Featuparameter that balances accuracy and latency [23][25] at
Extraction module. In addition, the Training Module trams runtime. The Training Module also determines the optimal
classifier with the selected features for the Runtime Modulesmoothing window size that achieves high accuracy and fast
At runtime, only the selected features are extracted by theesponse at the same time.
Feature Extraction module and used by the Runtime Module
to classify activities. The activity classification resubire
sent to the GUI module for display. In this section, we benchmark three system parameters
In RadioSense, we choose Support Vector MachindTX power, packet sending rate, and smoothing window
(SVM) combined with RBF kernel to differentiate user’s size) with the data collected by RadioSense. According
activities. SVM is one of the best classifiers and hasfo benchmarking results, we propose algorithms for the
been successfully applied in many real-world classificatio Training Module to automatically select the optimal system
problems, including activity recognition [15] and epilept parameters. During the training phase, the Training Module
seizure detection [23]. In general, SVM has four advantageselects the optimal system parameters in the order of TX
over other classifiers [24]: (i) the optimization involven i power level, packet sending rate, and smoothing window
SVM corresponds to a convex optimization problem, whosesize. In addition, we also investigate the minimal amount of
local solution is also a global solution; (i) it is able to training data needed for reliable performance.
achieve high accuracy with a relatively small number of
training examples; (iii) it scales well with data dimension
ality; (iv) it is in a simple form and hence fast to execute in 10 benchmark the three system parameters, we collect
runtime. These four properties make SVM a promising fitdata of seven activities (running, sitting, standing, ek

V. BENCHMARKING SYSTEM PARAMETERS

A. Data Collection

for activity recognition. lying, riding, and cI(_aaning) from one subject. Unlike [25]
o that selects the optimal system parameters through bench-
B. Training Module marking multiple subjects’ data, we only use data from one

In addition to the runtime features and classifier, thesubject because we experimentally find that accuracy is not
Training Module also generates the optimal parameters foa monotonous function of some system parameter, such TX
on-body sensor nodes with the aim of balancing accuracypower. Multiple subjects’ data may blur the relationships
latency, and energy overheads. As demonstrated by [9hetween accuracy and system parameters. With one subject’s
on-body sensor nodes’ TX power determines their PDRglata, we can observe the clear relationships between accu-
and hence affects the communication pattern utilized byacy and system parameters and experimentally justify our
RadioSense. In addition, on-body sensor nodes’ packeibservations, based on which we design algorithms to select
sending rate also has effects on the communication patterthe optimal parameters for individual subject. Compared
For example, a higher packet sending rate captures mote the one-for-all optimal parameters obtained in [25], our
information of the RSSI variation during each activity. &n  algorithms results in different optimal system paramefars
accuracy depends on how discriminative the communicatiodifferent subjects.
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Figure 4. Recognition Accuracy vs. TX Power Figure 5. Average KL Divergence of PDR
Level. Smoothing Window Size = 9 seconds, Distributions vs. Different Time Intervals. Packet
Packet Sending Rate = 4 pkts/s. Sending Rate = 4 pkts/s.

Figure 6. Snapshots of RSSI Values of Wrist
Node’s Packets. Packet Sending Rate = 4 pkts/s.

The subject wears on-body sensor nodes in the mannérX power level increases. TX power level 2, after which the
illustrated in Figure 1. Data is collected with different accuracy decreases, is the optimal TX power level, because i
combinations of TX power level and packet sending ratehas the lowest TX power that achieves the highest accuracy.
The range of TX power level in data collection is from 1 Second, the above observation holds for all three activity
to 5. The range of packet sending rate in the data collectiosets. To better understand the first observation, we tabulat
is from 1 pkt/s to 4 pkts/s. Thus, there are in total 20the feature selection results during the training phase in
parameter combinations. We collect data with 9 parametefable I.
combinations. For each parameter combination, both on-
body sensor nodes are configured with the corresponding || ™ Povertevell Ro-ol 1 FOR | FOR) | res) Feaures
parameters, and each activity is performed for 30 minutes.
To introduce the diversity of background noise levels (e.g.
interferences and multi-path fading, etc), we collect data
from different places, such as lab, classroom, living room,
gym, kitchen, and outdoor. Each activity is performed at
multiple places with different background noise levelseTh
data collection process lasts for 15 days in total.

We group the collected data into three activity sets. The 4
first activity set contains four activities: running, sitj,
standing, and walking. The second activity set contains 5
two more activities: lying and riding. The third activitytse
_Conte_li_ns one m(_)re aCtiVity:_Cl_eaning' _P_reVious WOI’_k [ZQ_ha SELECTED FEATURES AT EAgﬁka;( IPOWERLEVEL. SMOOTHING
identified cleaning as a difficult activity to classify. With  winpow Size = 9 SECONDS PACKET SENDING RATE = 4 PKTS/S.
these three activity sets, we investigate whether addimg ne
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activities into an activity set affects benchmarking resor From table I, we observe that the PDRs of two on-body
not. We use the Java interface of libsvm [27] for the SVMsensor nodes are selected for activity recognition when the
classifier training and testing. TX power level is low (e.g., 1 or 2). As the TX power
level becomes higher, the PDRs are no longer selected. It is
B. TX Power Level because a human body’s height is limited and a higher TX

Figure 4 depicts how accuracy changes as on-body senspower level results in higher PDRs for different activities
nodes’ TX power level increases. In this figure, the smoothbut the PDRs are less discriminative when they are high for
ing window size and packet sending rate are set to be @ll activities.
seconds and 4 pkts/s, respectively. We follow the routine Figure 5 supports the above explanation. In Figure 5, the
of 10-folds cross validation to estimate accuracies. Irheacaverage KL divergence over all activity pairs and all on-
round of cross validation, data is divided into 10 subsets, $ody sensor nodes are demonstrated at different TX power
of which are used for training and the remaining 1 is usedevels and time intervals. KL divergence is a metric that
for testing. This process is repeated 10 times and each aheasures how different two distributions are [24]. A higher
the 10 subsets is used exactly once as the testing data. TK& divergence value means the two distributions being
estimated accuracy is the average accuracy over 10 roundsmpared are more different and vice versa. The x-axis in
[24]. the figure is the time interval during which the PDR of

We have two observations from Figure 4. First, theeach activity is calculated. To calculate each average KL
accuracy increases at the beginning and then decreases as dlivergence value in Figure 5, we first fix the TX power
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level and time interval. Second, for each on-body sensodivergence as a metric to select the optimal TX power
node, the PDR distribution of each activity during 2 minuteslevel. In addition, Figure 5 indicates that the time intérva
is then computed. We empirically choose 2 minutes, theof 8 seconds achieves the maximal average KL divergence
minimal total time that results in clear differences of ager  difference among different TX power levels.
KL divergence among TX power levels. Third, for any Therefore, we design the following steps for the Training
pair of activities, we calculate the KL divergence of their Module to automatically select the optimal TX power level:
PDR distributions. Fourth, the average KL divergence for(i) It configures the on-body sensor nodes with a relatively
this on-body sensor node is obtained by averaging the Klhigh packet sending rate (e.g., 4 pkts/s) because the dptima
divergences of all activity pairs. At last, the average KL packet sending rate is determined after the optimal TX power
divergences of all on-body sensor nodes are averaged. Frolevel; (ii) For each TX power level, it collects message
this figure, we observe that TX power level 2 has the largesarrival patterns for 2 minutes and calculates the average
average KL divergence, which means that the PDRs are mogiL divergence by using 8 seconds as the time interval; (iii)
discriminative at this TX power level. In contrast, averageStarting from TX power level 1 and following its increasing
KL divergences are much smaller at higher TX power levelsorder, as long as the average KL divergence of the current
Thus, the PDRs are less discriminative at these power level3X power level is smaller than that of the previous TX
From table I, we also observe that when the TX powermower level, the previous TX power level is selected, and
level is higher than 2, the feature selection algorithm onlythe selection process stops.
selects RSSI related features. As illustrated by Figure 4 .
accuracy decreases from TX power level 3. It can be inferreds- Packet Sending Rate
that the discriminative capacity of RSSI features is desrea  Figure 7 depicts how accuracy changes as on-body sensor
ing as the TX power level increases. Figure 6 supports thisodes’ packet sending rate varies. In this figure, the TX
inference. Figure 6 illustrates the typical snapshots c8RS power level and smoothing window size are set to be 2
values of the wrist node’s packets at TX power levels 3 andaind 9 seconds, respectively. Each accuracy in this figure is
5. RSSI values of 15 seconds during running and walkingcomputed from 5-minute data of each activity following the
are depicted. From this figure, we observe that the RSSioutine of 10-fold cross validation. We empirically choose
values are more discriminative between the two activitiess minutes, the minimal total time that results in stable
when the TX power level is 3. One possible reason for thisestimated accuracy during the cross validation process.
observation is that the differences of human body’s fading From Figure 7, we observe that the accuracy increases
effects among different activities become smaller as the TXas the packet sending rate increases. It is because a higher
power level increases. packet sending rate captures more information of the RSSI
Among the selected RSSI features listed in Table |, mosvariation during each activity. All activity sets share shi
of them are the features extracted from the RSSI values adbservation. However, a higher packet sending rate means
the wrist node’s arrival packets. It can be inferred that thancreased energy overheads. Thus, to balance accuracy and
RSSI values of the wrist node captures more informatiorenergy overheads, the optimal packet sending rate should
for recognizing activities, because the wirst node is near t be the rate above which there is no obvious accuracy
base station and has less packet loss. improvement. In Figure 7, compared to the accuracy (for the
From Figure 5 and 4, the average KL divergence isseven-activity set) achieved at 3 pkts/s, we observe theat th
a metric that indicates the discriminative capacity of theaccuracy increasing rate becomes slow as the packet sending
PDRs. Moreover, we observe that when the PDRs areate is increased to 4 pkts/s. It is reasonable to estimate th
most discriminative, the highest accuracy is achievedsThu the packet sending rates, which are larger than 4 pkts/slcoul
in our design, the Training Module uses the average Klonly achieve limited accuracy improvement.



Therefore, we design the Training Module to automati-subject during the training phase, we choose an optimal one
cally select the optimal packet sending rate as follows: (ifor all subjects before the training phase.
the Training Module fixes the TX power level at the optimal Figure 9 demonstrates how accuracy varies with different
one and collects data of each activity for 5 minutes at eaclamount of training data of each activity. The TX power level,
packet sending rate; (i) the Training Module selects thepacket sending rate, and smoothing window size are set to
packet sending raté pkts/s as the optimal one if: (a) the be the optimal ones for each subject and each activity set.
packet sending rateachieve®0% accuracy with a relatively The average accuracies of all three subjects are given for
large smoothing window size (e.g., 9 seconds); (k)= 4  training data of each activity up to 25 minutes.
pkts/s and the accuracy improvement achieved by the packet From Figure 9, we observe that the accuracy increases

sending rate + 1 is less thar2%. quickly in the first 10 minutes. After 10 minutes, the
accuracy increases slowly. Thus, in the deign, the Training
D. Smoothing Window Size Module collects 10-minute data of each activity for tragnin

Features extracted from a longer smoothing window aréNIth ttr;]e smqoghlng WmdfOWGS'ZGt.OTf se?ondbs_ (t?i oriﬁmal
more robust to noise and hence result in higher accuracﬁmoob |ntg7v;|r_1 otw size cf>r ?}C |V|t_|e_ts c:j su Jelco )2 tere
However, the delay of a longer smoothing window is Iargerare abou Instances of each activity during minutes.
compared to a shorter smoothing window. Thus, smoothing:  symmary
window size has to balance accuracy and latency. . - -

) . . During the training phase, the Training Module follows

Figure 8 depicts how accuracy changes as the smoothlr‘ﬁ;] ) . )

. . : 7 . e steps below to obtain the optimal system parameters:
window size varies. To get this figure, we use 10-minute

data of each activity and set the TX power level and packe{?)”i ::a:gtlggmfirnour?e-l(—j);tap\)c:)\:‘vzraulzivglt:tzil\}itthfo Zﬁ?clz??hg/lgglzlrﬁa
sending rate to be 2 and 4 pkts/s, which are the optim y

parameters for the subject. The accuracies are computec% power level. (ii) Then, starting from packet sending

. L . . rate 1 pkts/s, the Training Module collects 5-minute data
following the 10-fold cross validation routine. From Figur o .

. . of each activity at the optimal TX power level to select

8, we observe that at the beginning the accuracy increases as

. ) s : e optimal packet sending rate. (iii) After selecting the
the smoothing window size increases. It is because features _. L
ptimal parameters for on-body sensor nodes, the Training

extracted from a longer smoothing window are more rObust\)flodule collects 10-minute data of each activity. With the

to noise. The increasing rate becomes slow or near zero after L .
. . . . Collected data, the Training Module searches the optimal
the smoothing window size passes a threshold. It is because

there is not much information gain by using a size WhiChsmoothlng window size for feature extraction. (iv) With

is larger than the threshold. In Fiaure 8. for examole. th the optimal smoothing window size and training data, the
ger t ) 9 L pie. eI'raining Module trains a classifier for the Runtime Module.
threshold is 10 seconds for the seven-activity set.

Therefore, we design the Training Module to automati- V1. EVALUATION
cally select the optimal smoothing window size as follows:

L . In this section, we evaluate RadioSense from three as-
the Training Module fixes the TX power level and packet ) ' Y o
. pects: accuracy, latency, and battery lifetime. In additio

"We measure the communication range of RaidoSense and
investigate whether RadioSense is able to coexist withrothe
on-body sensor nodes.

data (10-minute data of each activity) to select the smagthi
window size: as the optimal one if: (a) the smoothing
window sizei achieves90% accuracy; (b) or >= 10 sec-

onds (Here, 10-second is an acceptable latency for activith. Experiment Setup
recognition [5].) and the accuracy improvement achieved b

; R ; - ; Subject | Gender | Height (m) | Weigh (kg) In eXperimenta
using the smoothing window size+ 1 is less thar2%. T Al 185 550 we implement
2 Male 1.68 63.0 :
RadioSense on
ini 3 Female 1.56 48.0

E. Amount of Training Data —— three Tmotes and a
Intujtively, accuracy increases as the amount of training SUBJECTINFORMATION. laptop. We  collect
data increases, because the trained classifier can encode data of activities

more information. However, labeling data is tedious. Thus(running, sitting, standing, walking, lying, riding, and
we also investigate the minimal amount of training datacleaning) from three subjects. The information of each
needed for reliable performance with the data of all threesubject is summarized in Table II.

subjects (collected in Section VI). Different from bench- Each subject wears sensor nodes in the manner depicted in
marking the three system parameters (Section~\W), Figure 1. During the training phase, data is first collectad f
we use the data of all subjects to obtain the minimal amounselecting the optimal parameters for on-body sensor nodes.
of training data for all subjects. Since it is meaningless toThen, each subject performs each activity for 10 minutes for
optimize the amount of training data individually for each the Training Module to select the optimal smoothing window
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Figure 10. Activity Classification Accuracy. Figure 11. Activity Classification Precision. Figure 12. Activity Classification Recall.

size and train a classifier. To test the runtime accuracy, From Table IV we observe that subject 2 has a smaller
each subject performs each activity for 30 minutes. Eaclpacket sending rate and smoothing window size. It may be
activity is performed in various environments (such as labpecause subject 2 performs each activity more cleanly and
classroom, living room, gym, kitchen, and outdoor) with hence his data has less noise and is easier to classify.
different background noise levels in both training andingst 2) Runtime Accuracy and Latencyn Figure 10, we
phases. The whole testing process lasts for 2 weeks. present the total runtime accuracy of classifying seven
activities for all three subjects. In addition to the total
runtime accuracy, for each activity, we also plot its rurgim

In this subsection, we first present the optimal systemaccuracy ((true positive + true negative)/(true positive +
parameters selected by the Training Module for all subjectsalse positive+ true negative + false negative)) in Figure
Second, we demonstrate the runtime accuracy and latengyo, runtime precision (true positive/(true positive + éals
of each subject. Finally, we demonstrate the accuracies gjositive)) in Figure 11, and runtime recall (true posit{tre/e
more activities for one of the subjects. positive + false negative)) in Figure 12.

1) Optimal System Parameter3he first parameter opti-  |n Figure 10, Subject 1, 2, and 3 have the total runtime
mized by the Training Module is the TX power level. Table accuracies 086.3%, 92.5%, and84.2%, respectively. Inter-
Il summarizes the average KL divergence computed byestingly, subject 2 performs much better than the other two
the Training Module for each subject. The time interval for subjects. Moreover, from Table I, we observe that subect

B. Accuracy and Latency

computing PDR is 8 seconds. has the largest average KL divergence of PDR distributions
Subject 1] Subject 2] Subect3]] [N Table  among all subjects at their optimal TX power levels. Thus,
TXPowerLevel 1 9.88 12.86 12.90 B B ;
e s | 20 = the it can be inferred that the average KL divergence of PDR
TXPowerLevel 3| 1.21 159 158 | average KL  distributions is a validated metric for indicating accyrac
Table 1l divergence at  during the TX power level selection. The reason why subject
AVERAGE KL D IVERGENCE OFPDR ™ power 2 performs much better may be because that subject 2
DISTRIBUTIONS OFEACH SUBJECT. level 2 is the

performs each activity more cleanly.

largest for subject 1 and 2. Thus, the Training Module |n addition, we observe that most individual activities
selects TX power level 2 for Subject 1 and 2. In Contrast,ha\/e accuracies over0%. Compared to the most recent
for subject 3, the Training Module selects TX power level sensing-based solution [5], RadioSense achieves coniparab
1 that has the largest average KL divergence. It is becausgccuracies in recognizing the locomotion activities (sash
subject 3 is shorter than the first two subjects and TX powesitting, standing, walking, and lying). Running and ridiag
level 2 results in a relatively high PDR during her different not considered in [5]. From Figure 11, we also observe that
activities. ThUS, at TX power level 2, the differences amondmost individual activities have precisions oveR, which

the PDR distributions of her different activities are sraall indicates the Consistency of the accuracy results in F|g0re
than those at TX power level 1. Finally, we conclude that 10 minutes training data of each

All the optimal system parameters selected by the Trainactivity is adequate for RadioSense to achieve promising
ing Module for each subject are summarized in Table IV.accuracy results.

Subject | TX Power Level | Packet Sending Rate Smoothing Window Size To achieve the accuracies, precisions, and recalls ddpiCte
(pkts/s) (seconds) in Figure 10, 11, 12, the average latencies for subject 1,
. 2 . S 2, 3 are9.16 seconds,6.46 seconds, and’.12 seconds,
3 1 Z 6 respectively. In contrast to subject 2, subject 1 and 3's
Table IV latencies are much larger than their smoothing window sizes
OPTIMAL SYSTEM PARAMETERS SELECTED BY THE TRAINING It is because the accuracies for subject 1 and 3 are lower than

MODULE.



that of subject 2. One misclassified activity introduces arD. Communication Range and Privacy
additional latency of one smoothing window size. The more

activities are misclassified, the more latencies are iniced. TX Power Level | TX vaggfo(dBm) Max Com“;-7'32iam9tef (cm)
3) Evaluation with More ActivitiesAside from evaluat- 2 8.7 108.3
ing the activity set that includes high level activities, we 3 :fg-g gggg
collect data for two more activity sets from subject 1. The : -
activity se_ts inCIUde_ more _spec_ifi_c aCtiVitieS_ du_ring B THE TX POWER AND THELARlaEbSE(\:/OMMUNICATION DIAMETER OF
and cleaning. The first set is tls#tting sef which includes EACH TX POWER L EVEL.

driving, working, reading, eating, and watching TV. All  \\e measure the communication ranges of TX power
these activities are performed when subject 1 is sitting Thiayels 1. 2. 3. and 7. In the measurement. a sensor node

second set is theleaning setwhich includes cleaning table, s gefined as being connected with a base station as long

cleaning floor, cleaning bathtub, and cleaning blackboard,g the PDR of this sensor node at the base station is larger

Previous work [26] has identified cleaning as a difficult {h54,909% The measured ranges with the corresponding TX

activity to classify. The system parameters are configuregowerS [17] are organized in Table V. From this table, we

with subject 1's optimal system parameters. Each actisity i opserye that TX power level 1 and 2, which are selected as
performed for 10 minutes during training and for 30 minutesy,o optimal TX power levels for three subjects, correspond
during testing. The runtime accuracies of these two agtivit very low TX powers.

sets are summarized in Figure 13. A lower TX power level not only indicates lower energy

. 100 For the sitting set, the total o erheads, but also generates a smaller communication
S e runtime accuracy and latency are range. For example, instead of TX power level 7 (to achieve
g 6 91.5% and 8.35 seconds, respec- 9o, PPR in BSN [9]) whose communication range is
2 1 tively. For the cleaning set, the 993 9cm, RadioSense selects TX power level 1 and 2 for
£ % total runtime accuracy and la- the three subjects. From Table V, the communication ranges
E oL LU L LT tendcy are95.8% Ia”i”&ﬁg S€C- when using these two TX power levels are less than 2
_@i@f%:f@@&%ﬁ%o” onds, respectively. All the accu- mneters. On-body sensor nodes in RadioSense only send
oS Fsee”  racies are summarized in Figure faye packets within such small communication ranges. As a
‘;\;f 13. result, privacy risks are reduced.
Activities Interestingly, only the PDR of
Figure 13. Accuracies for ~ the ankle node is selected as ang  coexistence with other On-body Sensor Nodes
More Activities. important feature for classifying

the activities in the sitting set. It is because the communi- RadioSense utilizes two dedicated on-body sensor nodes
cation range of the wrist node well covers the base statiohfh® RadioSense nodes). In this subsection, we investigate
even at the lowest TX power level when the subject is sittingWhether the RadioSense nodes can coexist with other on-
The PDRs of the wrist node during different activities are no P0dy sensor nodes. In the experiment, subject 1 wears Ra-
significantly different. Moreover, for different activits, the —dioSense nodes and two extra on-body sensor nodes, which
distance between the subject’s right hand and the baserstatiare placed on the left wrist and left ankle. These two extra

is different and the subject's right hand moves differently ©n-body sensor nodes are deployed for general purpose. The
Thus, three RSSI features of the wirst node are selected pgeneral purpose nodes work at TX power level 7 and their

the feature selection algorithm during the training phas a packet sending rate is 4 pkts/s. Both the RadioSense nodes

play an important role in classifying the activities. and general propuse nodes work on the same communication
channel with CSMA enabled and communicate with the base
C. Battery Lifetime station. At runtime, subject 1 performs each of the seven

high level activities for 30 minutes. First, the total rumé

We use nine Tmotes to measure the average batteryccuracy i900.8%. Compared to the total runtime accuracy
lifetimes of on-body sensor nodes in RadioSense systen(g6.3%) without the the general purpose nodes, the accuracy
These Tmotes are divided into three groups, each of whicls higher. The reason may be that the general purpose nodes
is configured with the optimal parameters obtained by thecontend with the RadioSense nodes for the communication
Training Module for each subject. We run each Tmote withchannel. The contention increases the discriminativecapa
brand new batteries (AA, Alkaline, LR6, 1.5V) and record ity of the communication pattern utilized by RadioSense.
the battery lifetimes in hours. Second, the average PDRs of the general purpose nodes are

The average battery lifetimes of the three groups aré8.0% and 95.6%, which indicate very good link quality
159.3 hours, 168.7 hours, 175.3 hours, respectively. Frorf28]. Since the RadioSense nodes work at a low TX power,
these results, we conclude that on-body sensor nodes they have limited effects on the general purpose nodes’
RadioSense have long battery lifetimes. communication. Thus, we conclude that the existence of the



RadioSense nodes rarely affects the communication qggliti [11] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link éay

of the general purpose nodes.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose RadioSense, a system th&t?l

demonstrates the feasibility of utilizing wireless commiaun

cation patterns for BSN activity recognition. Through our

experiments with data gathered from three subjects during B3]

two-week period, we demonstrate that RadioSense achieves
promising results in terms of accuracy, latency, and batter

lifetime. We also demonstrate that RadioSense is able tp4]

coexist with other on-body sensor nodes.

In future, we will continue our work from three aspects.
First, we plan to program a smartphone as the base stati
in RadioSense, which makes RadioSense more practic

At

Second, we plan to consider communication features (e.g.
inter-link reception correlation) between on-body sensor
nodes. Intuitively, such communication features includel16]
more comprehensive information of activities. Third, we
plan to investigate the impacts of different deployment[17]

locations of on-body sensor nodes.
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