
iRAM: Sensing Memory Needs of My Smartphone

David T. Nguyen×, Hongyang Zhao×, Gang Zhou×, Ge Peng×, Guoliang Xing†, Xin Qi?
×College of William and Mary, USA;

†Michigan State University, USA; ?NSX Group, VMware Inc.
dunguk@gmail.com; {hyzhao, gzhou, gpeng}@cs.wm.edu; glxing@cse.msu.edu; xqi@email.wm.edu

Abstract—Our study reveals that facilitating warm launch of
just five smartphone applications is extremely expensive, using
up to 36 percent of memory. Further investigation of 20 popular
applications indicates that rich multimedia applications have
high heap usage and go above allowed boundaries, up to 5.63
times more heap than guaranteed by the system, and may cause
crashes and erroneous behaviors. Therefore, we present iRAM,
a personalized system that maintains optimal heap size limits
to avoid crashes, efficiently maximizes free memory levels, and
cleans low-priority processes to reduce application delays. The
evaluation on memory hungry applications indicates that iRAM
reduces application crashes by up to 14 percent, and reduces
launch delays by up to 78.2 percent. In addition, the results
confirm that iRAM increases free memory levels by up to 4.8
times. This performance gain comes with 3.5 percent of CPU
overhead and 0.9 percent of power overhead.

Keywords-Smartphone Memory; Application Crash; Appli-
cation Launch

I. INTRODUCTION

In a recent study [6], when consumers were asked if they
had encountered a problem (app crashes, freezes, errors, or
extremely slow launch) accessing a mobile app within the
last six months, 56 percent said yes. Among those who have
experienced a problem, 62 percent reported a crash, freeze
or error; 47 percent experienced slow launch; and 40 percent
reported an app that would not launch.

We think that many such performance issues are due to lit-
tle available memory and its inefficient utilization. Our study
reveals that after having launched five regular applications
(Facebook, Instagram, G+, Angry Birds, and YouTube), the
amount of free memory left is just around 4 percent. The low
free memory level stays throughout the experiment, and does
not recover to significantly larger values. This negatively
affects the smartphone’s overall application performance,
and ultimately results in slow response times and crashes. In
addition, many applications do not respect heap thresholds,
and go far above their allowed heap usage, which also
contributes to more erroneous behavior. Users quickly notice
apps that are slow or likely to break (whether because of
downtime, crashes, etc.), and this impairs both usage and
brand perception. Users expect a mobile app to be fast and
responsive; if it is not, it will get poor reviews, low ratings
and low adoption numbers. While 79 percent of consumers
would retry a mobile app only once or twice if it failed to
work the first time, only 16 percent would give it more than

two attempts [6]. Poor mobile app experience is likely to
discourage users from using an app again.

Our paper addresses two key research questions towards
achieving better application performance. (1) How does
memory affect smartphone application performance? (2)
How can we improve smartphone performance through
learning user application priorities and application memory
behaviors? In order to address the first research question,
we study memory usage of several groups of applications.
In particular, we identify the amount of memory available
before and after their launch. Little available memory may
result in delayed I/O operations or frequent communication
with much slower flash disks, which essentially causes slow
application response. Next, we investigate heap usage of
applications. High heap usage of games and other rich mul-
timedia apps may increase crash rates and likelihood of er-
roneous behaviors. To address the second research question,
we design and implement a system prototype called iRAM
on the Android platform. iRAM efficiently maximizes free
memory levels, cleans low-priority processes, and maintains
optimal heap size limits. The system learns which apps are
of high priority for a particular user, and keeps them in the
main memory. The launch of such apps is then much faster,
since it corresponds to warm launch. iRAM also applies a
prediction model to predict heap usage of a set of apps,
and dynamically adjusts the heap size based on predicted
values. With this set of simple optimizations, iRAM reduces
application delays and decreases likelihood of erroneous
behaviors.

In summary, the contributions of our paper are as follows:
• First, through a measurement study we find that fa-

cilitating warm launch of just five applications is ex-
tremely expensive, using up to 36 percent of memory.
The resulting little memory left can be one of the
main reasons causing slow application response due
to delayed I/O operations or frequent communication
with much slower flash disks. Therefore, in order to
improve the application performance, we investigate
how each application consumes the memory. Our heap
usage study of 20 popular applications indicates that
rich multimedia applications have high heap usage
and go above allowed boundaries. This mainly applies
to games that require up to 5.63 times more heap
than guaranteed by the system, and may cause crashes



and erroneous behaviors. Finally, further investigation
reveals that limited heap may not only cause an app
to crash, but may even prevent an app from launching.
While on Samsung S4, all five games fail to launch
until the heap size of 64MB, on Nexus 4, all five
games fail to launch until the heap size of 128MB.
Therefore, the heap size directly affects success or
failure of application launch.

• Second, we design and implement iRAM, a system that
maintains optimal heap size limits to avoid crashes,
efficiently maximizes free memory levels, and cleans
low-priority processes to reduce application delays.

• Third, our evaluation on memory hungry applications
indicates that iRAM reduces application crashes by
up to 14 percent. In addition, the results confirm that
iRAM increases free memory levels by up to 4.8 times.
The evaluation using 40 popular applications from four
groups (games, streaming, miscellaneous, and sensing)
also shows that iRAM reduces launch delays by up to
78.2 percent. This performance gain comes with 3.5
percent of CPU overhead and 0.9 percent of power
overhead.

II. MEASUREMENT STUDY

In order to understand how memory affects smartphone
application performance, we conduct a measurement study.
First, we study memory usage of several regular applica-
tions. In particular, we measure the amount of memory
available before and after their launch. Little available
memory can be one of the main reasons causing slow appli-
cation response due to delayed I/O operations or frequent
communication with much slower flash disks. Next, we
investigate heap usage of applications. High heap usage
of games and other rich multimedia apps may increase
crash rates and likelihood of erroneous behaviors. In our
preliminary measurements, we utilize two devices: Samsung
S4 (2GB RAM, 128MB heap size) with Android 4.3, and
Nexus 4 (1GB RAM, 64MB heap size) with Android 4.2.
Our Performance Evaluation section later on also studies
more recent devices. The phones are normally used daily by
the authors. During experiments, the devices have all radio
communication disabled except for WiFi that is necessary
to provide stable Internet connection required on most apps.
The screen is set to stay-awake mode with constant bright-
ness, and the screen auto-rotation is disabled. The cache is
cleared before each measurement.

A. Free Memory

In this experiment, we study memory usage of five popular
applications: Facebook, YouTube, CNN, Angry Birds, and
Temple Run. In particular, we launch the five apps every
ten minutes, and issue 100 user events via Android Monkey
[11], which corresponds to using an app for a few seconds.
Then we close each app with the Home button keyevent,
assuring that an app does not get killed and stays in the

0 500 1000 1500 2000 2500 3000
0

20

40

60

Time (s)

F
re

e
 M

e
m

o
ry

 (
%

)

 

 

a) Nexus 4 (Android 4.2)

b) Samsung S4 (Android 4.3)

c) Samsung S4 (Android 5.0)

Figure 1. Free Memory.

background. We record free memory levels within one hour.
To facilitate the measurement, we implement a shell script
with the free [5] command to output free memory levels of
the devices. All codes used in the paper are available for
download on our GitHub page1.

The free memory levels during this experiment are il-
lustrated in Figure 1. The results in a) and b) indicate
that from the beginning, both devices have only less than
half of memory available, since the Android OS already
consumes a large portion. This is an expected behavior, and
it may be interesting for Android OS developers to find
ways to optimize memory consumption of the OS itself.
When the apps are launched the first time, the memory
level drops significantly. This is also expected, since the first
launch corresponds to cold launch. Specifically, device a) has
afterwards only three percent of memory left, while b) has
eight percent left. When the apps are relaunched after 10
minutes, the levels drop again but not dramatically, which
is because the apps are already in the background (warm
launch). However, facilitating this warm launch is extremely
expensive, using up 36 percent of memory on device b) and
23 percent on a). Notice that shortly after memory levels
drop during launch, we observe slight memory growth and
spikes due to Android’s memory cleaning, often referred
to as garbage collection. However, the Android’s cleaning
approach is not very efficient, and without the knowledge of
user application priorities, it fails to recover more memory.
This is observed both on older Android releases with Dalvik
garbage collection and more recent ones with improved
ART garbage collection [9] (Android 5.0 and newer). For
comparison, we display memory levels of a Samsung S4
device with Android 5.0 in c). The results indicate that the
newly introduced ART garbage collection is able to recover
more memory than its predecessor. However, we still think
that this cleaning can be more personalized and aggressive,
and that we can remove more low-priority processes. For
that we will need to learn which processes are of the top
priority to a user. Notice also that device a) has mostly
lower memory values throughout the measurement due to
its smaller total RAM capacity. The above results reveal that
simple usage of only five regular applications can already
use up a significant amount of memory. To understand how
each application consumes the memory, we study heap usage

1https://github.com/davidnguyenwm/iRAM



of several groups of popular applications in the following
subsection.

B. Heap Usage

This experiment investigates heap usage of applications.
To obtain a deeper understanding, we look into the heap
behavior of 20 applications from four diverse groups: games
(Angry Birds, Grand Theft Auto, Need for Speed, Tem-
ple Run, The Simpsons), streaming (CNN, Nightly News,
ABC News, YouTube, Pandora), miscellaneous (Facebook,
Twitter, Gmail, Maps, AccuWeather), and sensing apps
(Accelerometer Monitor, Gyroscope Log, Proximity Sensor,
Compass, Barometer Monitor). Each application is launched
and run for a minute and gets issued a set of predefined user
events via Android Monkey. Every time an app is running,
there are no other apps in the background. To facilitate the
measurement, we implement a shell script with the dumpsys
meminfo [4] command to output the heap usage of the apps.

The results of the experiment are displayed in Figure 2.
There are several key observations. Due to rich multimedia
content, games in Figure 2 (a) use up much more heap
than the heap size allowed by the OS. For instance, the
Simpsons game reaches a maximum of 360MB, while the
heap allowed is only 128MB on Samsung S4 (2.81 times
difference), and 64MB on Nexus 4 (5.63 times difference),
respectively. To make the figure less complex, we only
display the larger heap size. The Android design allows apps
to grow heap usage above the default heap size threshold,
but such oversized usage does not have any performance
guarantee, and apps may be killed unexpectedly by the
system during run-time. This happens during the experiment
with Need for Speed, and the app crashes unexpectedly at
the fourth second, causing a sudden drop in heap usage.
The app is subsequently relaunched at the sixth second to
continue the experiment. Through a memory analysis tool
named littleeye [10], we are able to see that right before the
crash, there is an OutOfMemory error event. The streaming
apps in Figure 2 (b) overall use up less heap than games,
but still go above the threshold, especially CNN and ABC
News with their rich user interface. The miscellaneous apps
in Figure 2 (c) indicate a varying heap usage. Facebook
has high heap usage due to its aggressive caching policy
and advanced multimedia support (five posts ahead, auto
video play, images pre-loading, etc.). Maps go over the heap
threshold when a route across the whole U.S. is loaded.
While Gmail, mainly text oriented, is always far below the
threshold. Finally, the sensing apps with their simple user
interface use little heap, and are the least memory hungry.
The main takeaways of this subsection are following. Rich
multimedia applications may have high heap usage and go
above allowed boundaries. This mainly applies to games that
require up to 5.63 times more heap than guaranteed by the
system, and may cause crashes and erroneous behaviors.

Figure 3. System Architecture.

III. SYSTEM ARCHITECTURE OVERVIEW

In order to improve application performance in smart-
phones through memory optimizations, we need to address
the above challenges. Of the top priority is the finding that
rich multimedia applications have high heap usage and are
likely to crash. Next, users cannot tolerate slow application
response caused by little available memory. Therefore, we
present iRAM, a personalized system that maintains optimal
heap size limits to avoid crashes, efficiently maximizes free
memory levels, and cleans low-priority processes to reduce
application delays. The architecture of iRAM is illustrated
in Figure 3. It is fully located in the kernel space, and
consists of several key modules: the Heap Manager, the
Priority Manager, the Scheduler, the Config module, and
the Context Aggregator. We elaborate each module and
its functionality below. iRAM’s complete source code is
available for download on our mentioned GitHub page.
Heap Manager. Our system prototype follows the implica-
tions from the previous experimental study. Since high heap
usage of games and other rich multimedia applications may
cause crashes and erroneous behaviors, the Heap Manager
dynamically configures global heap thresholds such that
they are always higher than application heap requirements.
To achieve this, we employ an autoregression model with
exogenous inputs (ARX) to predict future heap usage, and
then dynamically update the global heap size to avoid
crashes. Specifically, we combine past data from the same
run and historical data from previous runs together to predict
future heap usage with the use of the ARX model. The
prediction of future heap usage using past heap usage forms
the autoregressive portion of the model, while the historical
heap usage data serves as exogenous inputs. Finally, based
on the predicted heap usage, we dynamically adjust the
global heap size threshold to avoid crashes.
Priority Manager. The Priority Manager module maximizes
free memory levels, and cleans low-priority processes to
reduce application delays. In particular, the Priority Manager
finds candidate processes to be killed based on Android’s
importance hierarchy, from the lowest to the highest im-
portance. Next, if there are any high priority user processes
among the candidate processes, they are filtered out. Finally,
the processes left in the candidate list are killed. Motivated
by [28], we obtain high priority user processes through a



0 10 20 30 40 50 60
0

100

200

300

400

Time (s)

H
e
a
p

 U
s
a
g

e
 (

M
B

)

(a) Games

 

 

Angry Birds

Grand Theft Auto

Need for Speed

Temple Run

The Simpsons

Heap Size

0 10 20 30 40 50 60
0

100

200

300

400

Time (s)

H
e
a
p

 U
s
a
g

e
 (

M
B

)

(b) Streaming

 

 CNN

Nightly News

ABC News

YouTube

Pandora

Heap Size

0 10 20 30 40 50 60
0

100

200

300

400

Time (s)

H
e
a
p

 U
s
a
g

e
 (

M
B

)

(c) Miscellaneous

 

 Facebook

Twitter

Gmail

Maps

AccuWeather

Heap Size

0 10 20 30 40 50 60
0

100

200

300

400

Time (s)

H
e
a
p

 U
s
a
g

e
 (

M
B

)

(d) Sensing

 

 

Accelerometer Monitor

Gyroscope Log

Proximity Sensor

Compass

Barometer Monitor

Heap Size

Figure 2. Heap Usage.

simple prediction method. Assuming the next application to
be used by the user has the highest user priority, we apply
prediction by partial matching (PPM). Therefore, predicting
next app based on previous usage pattern corresponds to
predicting next letter based on probability distribution occur-
rence of previous letters. iRAM predicts 9 next applications
and places them in the Whitelist. If a candidate process to be
killed is also listed in the Whitelist, such process is filtered
out and is not killed.

Scheduler. The Scheduler triggers Priority Manager and
memory cleaning if the free memory level is below a
threshold defined in the Config module. The Scheduler
checks this memory level each time period, which is also
configurable in the Config module. By default, we set the
period to be 20 seconds when the device screen is on, and
60 seconds when the screen is off. The rationale behind this
is the assumption that when it is off, there are not many user
activities, and hence no frequent cleaning is required. While
when the screen is on, the user is actively using the device,
and likely many memory operations are going on.

Config Module. Config includes several global parameters.
AGGRESSION LEVEL defines how aggressively the system
should proceed during memory cleaning. There are three
levels, roughly 1 includes all background processes, 2 in-
cludes background processes and system caches, 3 includes
background processes and foreground processes and system
caches. Details are discussed in the Priority Manager Design
section. Finally, MIN MEM is a memory threshold below
which the system should proceed with cleaning, and its
default value is set to be 60 percent, implying that a
relatively high free memory level is required.

Context Aggregator. Context Aggregator collects informa-
tion about the user and device. Such information is, for
example, whether the device is being used or in the sleep
mode, how long the device is being used or how long the
screen is off. The context information is utilized by the

10 20 30 40 50 60
0

100

200

Time (s)
H

e
a

p
 (

M
B

)

 

 

1st Measurement

2nd Measurement

3rd Measurement

Figure 4. Angry Birds’ Heap Usage.

Scheduler module to manage memory cleaning process.
IV. HEAP MANAGER DESIGN

In this section, we elaborate the Heap Manager’s sys-
tem design previously introduced in System Architecture
Overview.

A. Heap Usage Prediction with ARX

To predict future heap usage, a simple approach is apply-
ing past data, which refers to the heap usage data obtained
from the moment an app is launched till the current time
stamp. The accuracy of such method is based on high
autocorrelation between the predicted heap usage and past
heap usage. If predicted and past heap usage data are highly
correlated, then this method can achieve satisfiable predic-
tion result. Figure 4 displays three measurements of Angry
Birds’ application launch. The figure indicates that after
10 seconds, heap usage remains relatively stable. During
this stable heap period, if we use past stable heap usage
data to predict future usage, the prediction accuracy will be
high. However, heap usage increases rapidly at the beginning
of the application launch. Therefore, if we only predict
heap usage based on past data obtained during launch, the
predicted value will be lower than the real heap usage.
Hence, setting the global heap size threshold based on the
predicted value may lead to an application crash, since the
real heap usage will exceed the threshold. Another method
to predict heap usage is based on historical data, which
refers to heap usage traces collected in the past. Figure 4



indicates that the launch curves from different measurements
are similar at the beginning (approx. first 10 seconds). The
correlation coefficients between the first and second, second
and third, third and first measurements in the first 10 seconds
are 0.907, 0.892, and 0.987, respectively. However, once the
app runs stably, heap usage from different measurements
shows about 20MB difference. Therefore, after the app runs
stably, prediction only based on historical data will not be
accurate.

Based on the above observations, we combine past data
from the same run and historical data from previous runs
together to predict future heap usage with the use of the
ARX model. The prediction of future heap usage using past
heap usage forms the autoregressive portion of the model,
while the historical heap usage data serves as exogenous
inputs:

y (t) =

p∑
i=1

aiy (t− i) +
q−1∑
j=0

bju (t− j) + e (t) , (1)

where t indexes time, y (t) denotes the heap usage at time t,
u (t) represents historical heap usage at time t, ai and bj are
coefficients, and e (t) is a sequence of independent random
variables. The objective of the model is to provide timely
prediction of future heap usage. In order to do this, we have
to estimate the coefficients, ai, bj . In addition, the model
orders p and q are also unknown and have to be estimated.
Parameters ai and aj can be estimated using the least-
squares method. For orders p and q, in our experiment, we
vary p from 0 to 3 and q from 0 to 4 in Equation 1 to obtain
the optimal values of p and q for prediction. Intuitively, this
answers the question of how much of past and historical
heap usage data should be used to predict heap usage in the
future. Within the ranges examined, p = 0 or q = 0 represent
models where there is no past data or historical data. Also,
if p = 0 and q = 1, we have a linear regression between
current heap usage and historical heap usage. If q = 0, we
have standard autoregression model (AR).

B. ARX Parameters

Based on the ARX model in Equation 1, we adopt
K-fold cross-validation approach to compute the optimal
combination of p and q. In a typical K-fold cross-validation
scheme, one dataset is equally divided into K subsets. At
each step of the scheme, one subset is selected as a test
set, while other subsets function as a training set in order to
estimate the model parameters. In the experiment, we collect
eleven one-minute-long heap usage traces for each app as
the dataset in K-fold cross-validation scheme. Heap usage
prediction in the ARX model depends both on past heap
usage and historical heap usage. Therefore, we randomly
select one trace as a historical trace, and combine it with any
other trace into one sample. This way the dataset is divided
into K subsets, where each subset contains two traces, one
current running and one historical trace.

q=0 q=1 q=2 q=3 q=4
p =0 null 11.07 9.49 8.50 8.45
p =1 7.68 5.97 6.16 6.29 5.98
p =2 7.63 5.95 6.15 6.38 6.07
p =3 7.63 6.17 6.26 6.33 6.14

Table I
ANGRY BIRDS’ RMSE.

By studying the launch curves of all applications, we find
a common property that it takes three seconds for apps
to use up the default heap size (128MB). This means the
default heap size helps avoiding crashes during the first
three seconds, but does not help avoiding crashes afterwards.
Therefore, we can apply the default heap size for the first
three seconds, and use the ARX model to predict heap usage
for the time period after those three seconds. Notice that y (t)
is computed based on past data, y (t− 1) , · · · , y (t− p), and
historical data, u (t) , · · · , u (t− q + 1). Therefore, the first
data value that can be predicted is y (max (p+ 1, q)). As we
use the ARX model after three seconds, the first prediction
time max (p+ 1, q) should be less than or equal to four
seconds. Therefore, the data range for p is 0, 1, 2, 3, and q
is 0, 1, 2, 3, 4.

Considering the above constraints, our K-fold validation
testing procedure is as follows. For each app and for each
(p, q) pair from p = 0, 1, 2, 3 and q = 0, 1, 2, 3, 4, repeat the
following steps:

1) Divide the dataset into K subsets {S1, S2, . . . , SK}.
2) For each Sk, k = 1, . . . ,K, compute the parameters ai and

bj using all the other subsets with the least squares methods.
Based on the estimated model parameters and associated
prediction model in Equation 1, predict the heap usage value
of each member of Sk.

3) Compare the predicted heap usage result with the real heap
usage data using the root mean-squared error (RMSE):

ε =

√
1

T

∑
t

(
y(t)predicted − y(t)real

)2
(2)

We choose K = 10. Using the above 10-fold cross-
validation, we compute the root mean-squared error for all
the apps under different (p, q) pairs. The (p, q) pair that
gives the smallest RMSE is selected as the optimal model
orders. Table I shows the RMSE for Angry Birds. The table
indicates that the ARX model achieves the smallest RMSE
under p = 2 and q = 1. This means that to predict heap
usage for Angry Birds at time t, two heap usage data values
at time (t − 1) and (t − 2), and one historical heap usage
data value at time t are the most effective data points in
prediction. We also observe that when using past heap usage
data alone (q = 0) or using historical heap usage data alone
(p = 0), the RMSE values are relatively high (larger than
7.6MB and 8.4MB in corresponding cases). When past and
historical data are combined together (p 6= 0, q 6= 0), we get
lower RMSE values. This indicates that both past heap usage
data and historical heap usage data are useful in prediction.



10 20 30 40 50 60
0

100

200

Time(s)

H
e
a
p

 (
M

B
)

 

 Predicted Usage Real Usage Heap Size

(a) Angry Birds

10 20 30 40 50 60

100

200

Time(s)

H
e

a
p

 (
M

B
)

 

 

Predicted Usage

Real Usage

Heap Size

(b) CNN

10 20 30 40 50 60

100

200

Time(s)

H
e

a
p

 (
M

B
)

 

 

Predicted Usage

Real Usage

Heap Size

(c) Facebook

10 20 30 40 50 60

100

200

Time(s)

H
e

a
p

 (
M

B
)

 

 

Predicted Usage

Real Usage

Heap Size

(d) Accelerometer Monitor

Figure 5. Heap Usage Prediction.

C. Global Heap Threshold

Based on the predicted heap usage, we update the global
heap size threshold as follows:

y(t)global = y(t)predicted + α · ε, (3)

where y(t)global is the global heap size we need to set,
y(t)predicted is the predicted heap usage, α is a constant,
and ε is root mean-squared error. We vary α from 0 to
5 to compute the global heap threshold, and compute the
percentage of time that the threshold is larger than real heap
usage under different α. When α is set to 0, 1, 2, 3, 4,
we get the following numbers: 45.47%, 81.14%, 96.05%,
98.39%. The larger the α is, the larger the heap threshold,
and the lower probability the app crashes. However, if the
heap threshold is set to be a very large value, the system
may need to distribute a large amount of memory to an app.
In our system, we select α as 2. In this case, the real heap
usage does not exceed the global heap threshold for 96% of
time. To dynamically adjust the heap size, we utilize Android
command setprop dalvik.vm.heapsize.

We plot heap usage prediction for Angry Birds in Fig-
ure 5(a) (p = 2 and q = 1). The figure confirms that the
Predicted Usage curve and Real Usage curve are in prox-
imity with the maximum error of 29.20MB and RMSE of
5.33MB. The global heap threshold (Heap Size) is set equal
to the default threshold provided by the device manufacturer
(128MB) for the first three seconds. Then the threshold is
updated by Equation 3. The figure indicates that real usage
data only exceeds the heap size at the time stamp of the 49th
second by 18.55MB, which demonstrates the effectiveness of
the Heap Manager module. We also display the results for a
sample streaming app (CNN) in Figure 5(b), a miscellaneous
app (Facebook) in Figure 5(c), and a sensing app (Ac-
celerometer Monitor) in Figure 5(d), with RMSE values of
5.47MB, 5.34MB, and 0.48MB, respectively. This confirms
that our heap prediction methodology allows efficient heap
utilization by setting the heap size reasonably close to its
real usage.

V. PRIORITY MANAGER DESIGN

In this section, we elaborate the Priority Manager’s system
design. The Priority Manager efficiently maximizes free
memory levels, and cleans low-priority processes to reduce
application delays. Processes with the lowest importance are
obtained based on Android’s importance hierarchy [8].

Based on the AGGRESSION LEVEL, iRAM selects pro-
cesses to kill from the lowest to highest importance. If it

equals 1, iRAM populates the candidate list with Empty and
Background processes. If it equals 2, iRAM populates the
candidate list with Empty processes, Background processes,
and system caches. If it equals 3, iRAM populates the
candidate list with Empty, Background, Service, Perceptible,
Visible, Foreground processes, and system caches.

Next, if there are any high priority user processes among
the candidate processes, they are filtered out. We define high
priority user processes as applications that have the highest
probability of being used next by the user. We obtain high
priority user processes through app prediction by partial
matching, a variant of an existing text compression method
called PPM [15]. PPM generates a probability distribution
for the prediction of the next character in a sequence.
Consider the alphabet of lower case English characters
and the input sequence “abracadabra”. Assume that each
character corresponds to an application used by the user.
For each character in this string, PPM needs to create a
probability distribution representing how likely the character
is to occur. However, the only information it has to work
with is the record of previous characters in the sequence.
For the first character in the sequence, there is no prior
information about what character is likely to occur, so
assigning a uniform distribution is the optimal strategy. For
the second character in the sequence, ‘a’ can be assigned
a slightly higher probability because it has been observed
once in the input history.

Consider the task of predicting the next character after the
sequence “abracadabra”. One way to go about this prediction
is to find the longest match in the input history which
matches the most recent input. The most recent input is the
character furthest to the right and the oldest input is the
character furthest to the left. In this case, the longest match
is “abra” which occurs in the first and eighth positions.
The string “dabra” is a longer context from the most recent
input, but it does not match any other position in the input
history. Based on the longest match, a good prediction for
the next character in the sequence is simply the character
immediately after the match in the input history. In this
case, after the string “abra” was the character ’c’ in the
fifth position. Hence, ’c’ is a good prediction for the next
character.

Therefore, predicting next app based on previous usage
pattern corresponds to predicting next letter based on prob-
ability distribution occurrence of previous letters. Since we
want to predict at each moment nine next applications to



(a) NFS (b) TR (c) TS

Figure 7. Crash Behaviors. (a) Need for Speed app displaying
error message “Unfortunately, NFS Most Wanted has stopped!”;
(b) Temple Run app displaying its logo and a black screen; (c)
The Simpsons app displaying a black screen

be used by the user, we want to know nine next characters
instead of one next character. The choice of nine apps will
be explained in the evaluation. Our code is also available on
our mentioned GitHub account. As proven by the previous
work [28], this prediction approach outperforms all previous
solutions that also incorporate user context such as location
and time.

VI. PERFORMANCE EVALUATION

This section evaluates iRAM, and answers the follow-
ing questions. (1) How does iRAM contribute to reducing
erroneous application behaviors? We address this by per-
forming a crash rate test on memory hungry applications.
(2) How does iRAM improve application performance? This
is addressed by evaluating how free memory levels are
improved by iRAM, and how well high priority applications
are predicted. We also record the launch delay of 40 popular
apps from Google Play with and without iRAM. In addition,
we conduct an experiment on the Facebook application
to determine the user-perceived performance improvement
of our solution. (3) Does iRAM incur any performance
penalties or cost? This is determined by evaluating CPU
and power overhead.

The evaluation utilizes the same devices as in the measure-
ment study: Samsung S4 (2GB RAM) with Android 4.3 and
Nexus 4 (1GB RAM) with Android 4.2. When necessary, we
discuss results of both devices, otherwise Samsung S4 is the
main phone. As mentioned, the phones are normally used
daily by the authors. During experiments, the devices have
identical setup as in the Measurement Study.

A. Crash Rate

First, we investigate how iRAM contributes to reducing
erroneous behaviors of the five games (Need for Speed,
Temple Run, The Simpsons, Angry Birds, and Grand Theft
Auto). Specifically, we launch each game every ten minutes,
and record crash statistics, with and without iRAM. Each
time we launch a game, there are four common apps in the
background (Facebook, YouTube, Accelerometer Monitor,
and Heads Up), while the game being launched is not
currently in the background. This is to create typical memory
pressure on the device. Having four apps in the background

is reasonable, since current Android OS allows users to have
up to 17 background apps. Each game is launched 50 times
throughout 500 minutes.

The experiment has several interesting findings. First,
the crashes of the applications have varying behaviors, as
illustrated in Figure 7. Need for Speed displays an error
message indicating the app has stopped. While Temple
Run crashes by showing its logo and a black screen, The
Simpsons game displays a completely black screen. Finally,
Angry Birds and Grand Theft Auto freeze on their launch
screen. For the sake of space, we display the first three cases.
All these crash behaviors are unacceptable, and impair both
usage and brand perception. Users expect a mobile app to
be fast and responsive, but most of all, users expect an app
to work. Next, Figure 6 (a) illustrates the amount of crashes
over 50 runs for each application. Without iRAM, Temple
Run has seven crashes over 50 runs, corresponding to 14
percent crash rate. Compared to other games, Temple Run
has the highest heap usage during the first two seconds
of its launch, which explains this result. The Simpsons
game has six crashes, and Need for Speed four crashes.
These two games have the steepest growth of heap usage,
and hence the high crash rates are not surprising. Finally,
Angry Birds and Grand Theft Auto have the lowest crash
rate. Both games have mild heap usage at the beginning,
and their maximal values are much smaller than those of
others. Note that with iRAM, there are no crashes recorded.
This is credited to the fact that iRAM predicts future heap
usage, and then dynamically updates the global heap size
thresholds such that they are always higher than application
heap requirements.

Is the crash rate of up to 14 percent of the state-of-the-
art significant? We think it is. Bad application performance
means losing users. Users will not tolerate a problematic
mobile app, and will abandon it after only one or two failed
attempts. According to a recent study [6], 79 percent of users
would retry a mobile app only once or twice if it failed to
work the first time. If dissatisfied with the performance of a
mobile app, 48 percent of users would be less likely to use
the app again.

So what are the main reasons causing app crashes? There
are no statistics covering applications across the board, but
based on error submissions from Facebook’s user base, 62
percent of app crashes are due to OutOfMemory errors,
while others are due to various system instability (CPU,
GPU, network, storage, etc.). The results are based on 1.385
billion Facebook’s mobile monthly active users across all
mobile platforms (Android, iOS, Windows Mobile, etc.).
According to our analysis, most OutOfMemory errors are
caused by bad programming habits of application devel-
opers. iRAM can minimize consequences of poor memory
management, but only developers can eliminate root causes
of app crashes. To avoid memory leaks, developers may
follow this simple guidance:



(a) Crash Rate (NFS: Need for Speed;
TR: Temple Run; TS: The Simpsons;
AB: Angry Birds; GTA: Grand Theft
Auto)

0 500 1000 1500 2000 2500 3000

20

40

60

Time (s)

F
re

e
 M

e
m

o
ry

 (
%

)

 

 

S4 N4 S4 with iRAM N4 with iRAM

(b) Free Memory

Figure 6. Crash Rate and Free Memory.

1) Strictly apply pairs based on owner lifecycle
• onResume − > onPause
• onCreate − > onDestroy
• onAttachToWindow − > onDetachFromWindow

2) Use only what is needed
• plan standard memory usage, and specify in the app’s

manifest if higher usage is expected
• monitor usage (use tools such as dumpsys, littleeye,

Omura, etc.)

B. Free Memory

In this experiment, we study memory usage of the five
popular applications used in Measurement Study: Facebook,
YouTube, CNN, Angry Birds, and Temple Run. In particular,
we launch the five apps every ten minutes and issue 100
user events via Android Monkey [11], which corresponds to
using an app for a few seconds. Then we close each app
with the Home button keyevent, assuring that an app does
not get killed and stays in the background. We record free
memory levels within one hour. This is measured both on
Samsung S4 and Nexus 4, with and without iRAM.

The free memory levels during this experiment are il-
lustrated in Figure 6 (b). The results indicate that without
iRAM, Samsung S4 has an average of 15.1 percent of free
memory, and an average of 57.1 percent with iRAM (3.8
times more). Nexus 4 has an average of 7.5 percent of free
memory without iRAM, and 35.9 percent of free memory
with iRAM (4.8 times more). This large amount of memory
on both devices is made available thanks to the Priority
Manager that periodically finds candidate processes to be
killed based on Android’s importance hierarchy, from the
lowest to the highest importance. However, if there are any
high priority user processes among the candidate processes,
they are filtered out and hence not killed. High priority user
processes are obtained through a prediction method, and
we will find out in the following subsection how well such
prediction works.
C. Prediction Accuracy

To evaluate prediction accuracy, we run the prediction on
a dataset from real-world iPhone usage of 34 students [30]
in the period of one year. The trace with applications run
by users includes entries with user IDs, names of appli-
cations, and time stamps. The prediction accuracy results
are displayed in Figure 8. As seen, the more applications
in the Whitelist, the higher likelihood it includes an app
to be used next. In other words, the more apps in the

1 2 3 4 5 6 7 8 9 10
0

50

100

Number of Apps in Whitelist

A
c

c
u

ra
c

y
 (

%
)

Figure 8. Prediction Accuracy.

Whitelist, the better the prediction. However, the accuracy
growth slows down significantly when close to 5-6 apps, and
there are almost no changes when close to 9-10 apps. Since
we aim for high accuracy, but also not having too many
apps to potentially pollute memory, nine applications seem
reasonable. That is also what iRAM applies. Therefore, an
app to be used next by the user exists in the Whitelist with
the probability of 91 percent.

Since iRAM has 91 percent of prediction accuracy, in
order to evaluate launch delay of an application, we can
assume the app is in the Whitelist. This is discussed in the
following subsection.
D. Launch Delay

To address the second question on how iRAM improves
application performance, we measure launch delay of 40
popular apps (10 games, 10 streaming, 10 miscellaneous,
and 10 sensing) from Google Play, with and without iRAM.
In order to evaluate application launch with iRAM, we insert
each tested app in the Whitelist. During the experiment, only
one app runs at a time. This is to achieve a fair comparison
between the two cases: with iRAM, and without iRAM.

The Android Monkey tool [11] is utilized to trigger the
launch process of each app. The application launch delay
starts when the launch process is triggered, and ends when
the process completes. The launch delay includes three
components. We use the time command [1] to output the
three time components: the time taken by the app in the
user mode (user), the time taken by the app in the kernel
mode (system), and the time the app spends waiting for the
disk and network I/Os to complete (totalIO). The storage
I/O delay is obtained by dividing the total number of I/Os
completed (kBread + kBwrtn) over the total rate of I/Os
completed (kBreadRate + kBwrtnRate) in a flash block
device. The network I/O delay is then calculated as the
total I/O delay (totalIO) subtracted by the storage I/O delay
(diskIOdelay).

The launch delay of the 40 apps with and without iRAM



1 1* 2 2* 3 3* 4 4* 5 5* 6 6* 7 7* 8 8* 9 9* 10 10* 11 11* 12 12* 13 13* 14 14* 15 15* 16 16* 17 17* 18 18* 19 19* 20 20*
0

0.2

0.4

0.6

0.8

T
im

e
 (

s
)

 

 
user system network I/O disk I/O

21 21* 22 22* 23 23* 24 24* 25 25* 26 26* 27 27* 28 28* 29 29* 30 30* 31 31* 32 32* 33 33* 34 34* 35 35* 36 36* 37 37* 38 38* 39 39* 40 40*
0

0.2

0.4

0.6

0.8
T

im
e
 (

s
)

Launch Delay

RAM: numbers without star | iRAM: numbers with star

games streaming misc. sensing

Figure 9. Launch Delay. 1:Angry Birds; 2:GTA; 3:Need for Speed; 4:Temple Run; 5:The Simpsons; 6:CNN; 7:Nightly News; 8:ABC
News; 9:YouTube; 10:Pandora; 11:Facebook; 12:Twitter; 13:Gmail; 14:Google Maps; 15:ZArchiver; 16:Accelerometer M.; 17:Gyroscope
Log; 18:Proximity Sensor; 19:Compass; 20:Barometer; 21:2048 Puzzle; 22:Pet Rescue Saga; 23:Pou; 24:Solitaire; 25:Words; 26:CT 24;
27:Live Extra; 28:VEVO; 29:VOYO.cz; 30:WATCH ABC; 31:Instagram; 32:File Commander; 33:RAR for Android; 34:Dropbox; 35:File
Manager; 36:Physics Toolbox; 37:Sensor Kinetics; 38:Android Sensor Box; 39:Sensor Music Player; 40:Sensor Mouse.

(a) CPU Overhead. (b) Power Overhead.
Figure 10. Launch Delay and Overhead.

is illustrated in Figure 9. The figure includes 10 games (1-5,
21-25), 10 streaming apps (6-10, 26-30), 10 miscellaneous
apps (11-15, 31-35), and 10 sensing apps (16-20, 36-40).
Applications running with iRAM are denoted with a star
(*). The reduction in launch delays with iRAM ranges from
68.8 percent (Instagram) to 78.2 percent (File Commander)
as compared to delays without iRAM. The launch delay with
iRAM enabled for all the 40 apps is on average 71.9 percent
faster than with iRAM disabled. These results are expected.
The app launch is I/O intensive, and includes a lot of I/O
activities involving the flash disk. However, thanks to iRAM,
an application being launched is already in the background,
and most I/Os only involve the main memory, which is much
faster than the flash disk. The speed of main memory on our
device is 400Mbps, while the speed of the flash disk is only
24Mbps, which makes the main memory 16.7 times faster
than the flash disk.
E. Overhead

To answer the last question whether iRAM incurs any
performance penalties, we evaluate iRAM’s CPU and power
overhead. We study the CPU overhead of the five pop-
ular applications used in Measurement Study: Facebook,
YouTube, CNN, Angry Birds, and Temple Run. In particular,
we launch the five apps every ten minutes and issue 100
user events via Android Monkey [11], which corresponds to
using an app for a few seconds. We record CPU utilization
within one hour, with and without iRAM, and the results are
illustrated in Figure 10(a). As observed, CPU utilization with
iRAM is on average 3.5 percent higher than the case without
iRAM. iRAM’s CPU utilization peeks during the launch
time of the five apps, but since each optimization period lasts
only 0.13 second, the average overhead is acceptable. While

improving the application performance is important, having
solid power efficiency is equally important. To evaluate
power overhead, we launch the above five apps every ten
minutes and issue 100 user events via Android Monkey,
with and without iRAM. The battery on Samsung S4 is fully
charged at the beginning. We record how long the battery
lasts for each case. The results are presented in Figure 10(b).
While without iRAM, the battery lasts 10.54 hours (10 hours
32 minutes). With iRAM, the battery lasts 10.44 hours (10
hours 26 minutes). This implies that the power overhead of
iRAM is 0.9 percent, which is acceptable.

VII. RELATED WORK

The previous work can be classified into 3 categories:
smartphone storage, application delay, and enterprise solu-
tions.
Smartphone Storage. Kim et al. [20] present an analysis of
storage performance on Android smartphones and external
flash storage devices. Nguyen et al. [22], [23] study the
impact of flash storage on smartphone energy efficiency. In
their more recent work [25], [24], [26], the authors also
research storage I/O behaviors, and design a system that
improves application response times by prioritizing reads
over writes. Our work does not study internal or external
flash storage devices, but instead focuses on smartphone’s
memory component that is also referred to as dynamic
random-access memory (DRAM), or often simply random-
access memory (RAM) [7]. Finally, Guo et al. [18] propose
a system that modifies page swapping and employs several
flash-aware techniques. However, a major disadvantage of
swapping is longer memory access time that negatively
impacts application responsiveness.
Application Delay. Yan et al. [32] and Parate et al. [28]
propose systems to reduce the launch delay via prelaunching.
Our proposed solution (iRAM) learns which apps are of high
priority for a particular user, and keeps them in the main
memory. Hence, there is no complex prelaunching involved
as in the previous work. In [31], [33], the authors develop
applications that present icons for the most probable apps
on the main screen of the phone and highlight the most
probable one. Li [21] presents an on-device service that



predicts actions the user is likely to perform at a given
time. In contrast, iRAM predicts heap usage of applications,
and dynamically adjusts the heap size based on predicted
values. With this set of simple optimizations, in addition to
reduced application delays, iRAM also contributes to smaller
likelihood of crash behaviors.
Enterprise Solutions. DRAM technology has been recog-
nized in enterprise systems. Over the years, DRAM has
been used to improve performance in main-memory database
systems [16], [17], and large-scale web applications have
rekindled interest in DRAM-based storage in recent years. In
addition to special-purpose systems like web search engines
[12], general-purpose storage systems [3], [19], [14], [27],
[29] also keep part or all of their data in memory to
maximize performance. Inspired by these works, we believe
that we are among the first to study smartphone application
performance from the main-memory perspective.

VIII. CONCLUSION AND FUTURE WORK

This paper presents iRAM, a personalized system that
maintains optimal heap size limits to avoid crashes, ef-
ficiently maximizes free memory levels, and cleans low-
priority processes to reduce application delays. In future
work we plan to evaluate the impact of other stages of the
life cycle on application performance such as install, update,
switch, and uninstall, and quantify their effects on everyday
phone usage.

ACKNOWLEDGMENT

This work was supported in part by CIT grant MF15-032-
IT. REFERENCES

[1] Time man page. http://goo.gl/dEKuxs. (2014).

[2] Android Known Issues. https://code.google.com/p/
android-developer-preview/wiki/KnownIssues. (2015).

[3] A distributed memory object caching system. http://
memcached.org/. (2015).

[4] Dumpsys Meminfo. http://goo.gl/i6qCvt. (2015).

[5] Linux Free Command. http://linux.die.net/man/1/free.
(2015).

[6] Mobile Apps: What Consumers Really Need and Want. http:
//goo.gl/VcE59W. (2015).

[7] Mobile DDR. http://goo.gl/lFEaBk. (2015).

[8] Processes and Threads. http://goo.gl/KraoUH. (2015).

[9] ART and Dalvik. https://source.android.com/devices/tech/
dalvik/. (2016).

[10] Little Eye Labs. http://www.littleeye.co/. (2016).

[11] Monkey. http://goo.gl/F14hW. (2016).

[12] Luiz André Barroso el al.. Web search for a planet: The
Google cluster architecture. IEEE Micro, 2 (2003).

[13] Stuart K Card el al. The information visualizer, an informa-
tion workspace. ACM SIGCHI.

[14] Fay Chang el al. Bigtable: A distributed storage system for
structured data. ACM TOCS (2008).

[15] John G Cleary et al. Data compression using adaptive coding
and partial string matching. IEEE ToC.

[16] David J DeWitt et al. Implementation techniques for main
memory database systems.

[17] Hector Garcia-Molina et al. Main memory database systems:
An overview. IEEE TKDE (1992).

[18] W. Guo et al. MARS: Mobile Application Relaunching
Speed-up through Flash-Aware Page Swapping. IEEE TC
(2015).

[19] Robert Kallman et al. H-store: a high-performance, dis-
tributed main memory transaction processing system. VLDB
Endowment (2008).

[20] Hyojun Kim et al. Revisiting storage for smartphones. ACM
ToS (2012).

[21] Yang Li. Reflection: Enabling Event Prediction As an On-
device Service for Mobile Interaction. ACM UIST 2014.

[22] David T Nguyen et al. Storage-aware smartphone energy
savings. ACM UbiComp 2013.

[23] David T Nguyen et al. Evaluating Impact of Storage on
Smartphone Energy Efficiency. ACM UbiComp 2013.

[24] David T. Nguyen Improving Smartphone Responsiveness
through I/O Optimizations. ACM UbiComp 2014.

[25] David T. Nguyen et al. Reducing Smartphone Application
Delay through Read/Write Isolation. ACM MobiSys 2015.

[26] David T. Nguyen et al. Study of Storage Impact on Smart-
phone Application Delay. ACM MobiSys 2014.

[27] John Ousterhout et al. The case for RAMClouds: scalable
high-performance storage entirely in DRAM. ACM SIGOPS
(2010).

[28] Abhinav Parate et al. Practical prediction and prefetch
for faster access to applications on mobile phones. ACM
UbiComp 2013.

[29] Stephen M Rumble et al. Log-structured memory for DRAM-
based storage.. FAST 2014.

[30] Clayton Shepard et al. LiveLab: measuring wireless networks
and smartphone users in the field. ACM SIGMETRICS
(2011).

[31] Choonsung Shin et al. Understanding and Prediction of
Mobile Application Usage for Smart Phones. (ACM UbiComp
2012).

[32] Tingxin Yan et al. Fast app launching for mobile devices
using predictive user context. ACM MobiSys.

[33] Chunhui Zhang et al. Nihao: A predictive smartphone
application launcher. Mobile Computing. Springer.


