Extreme Programming




Extreme Programming

+ Waterfall model inspired by civil engineering

» Civil engineering metaphor is not perfect
- Software is more organic than concrete

- You "grow the software" to meet changing
requirements

+ Extreme Programming (XP) addresses this
- A version of the iterative model discussed before




Goals

* Minimize unnecessary work
* Maximize communication and feedback

* Make sure that developers do most important
work

* Make system flexible, ready to meet any
change in requirements




History

- Kent Beck

- Influential book "Extreme Programming
Explained” (1999)

+ Speed to market, rapidly changing
requirements

+ Some ideas go back much further
- "Test first development” used in NASA in the 60s
- Is this surprising?




XP Practices

* On-site customer
* The Planning Game
+ Small releases

- Testing

- Simple design

» Refactoring

* Metaphor

* Pair programming

» Collective ownership
- Continuous integration
* 40-hour week

- Coding standards




XP Process

Multiple short cycles (2 weeks):

1. Meet with client to elicit requirements
User stories + acceptance tests

2. Planning game
Break stories into tasks, estimate cost
Client prioritizes stories to do first

3. Implementation
Write programmer tests first
Simplest possible design to pass the tests
Code in pairs
Occasionally refactor the code

4. Evaluate progress and reiterate from step 1




Extreme Programming (XP)

- XP: like iterative but taken to the extreme

Time
Waterfall Iterative XP
= Scope




XP Customer

+ Expert customer is part of the team
- On site, available constantly
- XP principles: communication and feedback
- Make sure we build what the client wants

- Customer involved actively in all stages:
- Clarifies the requirements
- Negotiates with the team what to do next
- Writes and runs acceptance tests
- Constantly evaluates intermediate versions
- Question: How often is this feasible?




The Planning Game: User Stories

* Write on index cards (or on a wiki)

- meaningful title
- short (customer-centered) description

* Focus on "what"” not the "why" or "how"

» Uses client language
- Client must be able to test if a story is completed

9




Accounting Software

* I need an accounting software that let's me

- create a named account,

- list accounts,

- query the balance of an account,
- delete an account.

* Analyze the CEO's statement and create some
user stories

10




User Stories

Title: Create Account

Title: List Accounts

Description: I can create a
named account

Description: I can get a
list of all accounts.

Title: Query Account Balance

Description: I can query the
account balance.

Title: Delete Account

Description: I can delete a
named account

11




User Stories

How is the list
ordered?

Title: Create Account

Title: List Accounts

Description: I can create a
named account

Description: I can get a
list of all accounts.

Title: Query Account Balance

Description: I can query
account balance.

Title: Delete Account

Description: I can delete a
named account

12




User Stories

How is the list
ordered?

Title: Create Account

Title: List Accounts

Description: I can create a
named account

Description: I can get a
list of all accounts. I can
get an alphabetical list of
all accounts.

Title: Query Account Balance

Description: I can query
account balance.

Title: Delete Account

Description: I can delete a
named account

13




User Stories

Title: Create Account

Title: List Accounts

Description: I can create a
named account

Title: Query Account Balance

Description: I can query
account balance.

Description: I can get a

list o . nts. T can
Possible if

balance is not
zero?

Title: Delete Account

Description: I can delete a
named account

14




User Stories

Title: Create Account

Title: List Accounts

Description: I can create a
named account

Title: Query Account Balance

Description: I can query
account balance.

Description: I can get a

list o . nts. T can
Possible if

balance is not
zero?

Title: Delete Account

Description: I can delete a
named account if the
balance is zero.

15




User Story?

Title: Use AJAX for UL

Description: The user
interface will use ATAX
technologies to provide a
cool and slick online
experience.

16




User Story?

Title: Use AJAX for UI

Description: The user
interface will use ATAX
technologies to provide a
cool and slick online
experience.

Not a user
story

17




Customer Acceptance Tests

- Client must describe how the user stories will

be tested

- With concrete data examples,
- Associated with (one or more) user stories

» Concrete expressions of user stories

18




User Stories

Title: Create Account

Title: List Accounts

Description: I can create a
named account

Description: I can get a
list of all accounts. I can
get an alphabetical list of
all accounts.

Title: Query Account Balance

Description: I can query
account balance.

Title: Delete Account

Description: I can delete a
named account if the
balance is zero.

19




Example: Accounting Customer Tests

+ Tests are associated with (one or more) stories

1. If I create an account "savings”, then another called
“checking”, and I ask for the list of accounts I must
obtain: "checking”, "savings”

. If I now try to create "checking” again, I get an error
. If now I query the balance of "checking”, T must get O.
. If T try to delete "stocks”, I get an error

o h W N

. If I delete "checking”, it should not appear in the new

listing of accounts .




Automate Acceptance Tests

»+ Customer can write and later (re)run tests

- E.g., customer writes an XML table with data
examples, developers write tool to interpret table

- Tests should be automated

- To ensure they are run after each release

21




Tasks

» Each story is broken into tasks
- To split the work and to improve cost estimates

- Story: customer-centered description
- Task: developer-centered description

+ Example:
- Story: "I can create named accounts”
- Tasks: "ask the user the name of the account”
“check fo see if the account already exists"
“create an empty account”

» Break down only as much as needed to estimate cost

» Validate the breakdown of stories into tasks with the ,,
customer




Tasks

» If a story has oo many tasks: break it down

»+ Team assigns cost to tasks

We care about relative cost of task/stories

Use abstract "units” (as opposed to hours, days)
Decide what is the smallest task, and assign it 1 unit
Experience will tell us how much a unit is

Developers can assign/estimate units by bidding: "I
can do this task in 2 units”

23




Play the Planning Game

e : | Seclect and
Read Write 5 Unclaimed Estimate
Story Cards [ ™| Task Cards [ Tasks o
. : e Tasks
: too big” or
"0 busy”
Phase 2
Accepted
Tasks: [Programmer| |Programmer| |Programmer| |Programmer
1 2 3 4
copynghit 2000 by Willien C Wake

24




Planning Game

» Customer chooses the important stories for
the next release

* Development team bids on tasks

- After first iteration, we know the speed (units/
week) for each sub-team

* Pick tasks => find completion date

+ Pick completion date, pick stories until you fill
the budget

» Customer might have to re-prioritize stories




XP Planning Game

EXTREME PROGRAMMING

|

scottadams® aol.com

I CANT GIVE YOU
ALL OF THESE
FEATURES IN THE
FIRST VERSION.

www.dilbert.com

Copyright 9 2883 United Feature Syndi

AND EACH FEATURE
NEEDS TO HAVE
WHAT WE CALL A
"USER STORY .

cate, Inc.

n'.’-.’q'&:l 82002 Untted Festure Syndicats, Inc

OKAY,HERES A
STORY: YOU GIVE
ME ALL OF MY
FEATURES OR T'LL
RUIN YOUR LTIFE.

26




Test-driven development

Write unit tests before implementing tasks

Unit test: concentrate on one module

- Start by breaking GCCQPTG"C?Q.%&T%% %2%565 and

calling conventions
Example of a test
addAccount("checking”);
if(balance("checking”) = 0) throw =, . o+, good and
try { addAccount("checking"); bad behavior
throw ...;
} catch(DuplicateAccount e) { };

27




Why Write Tests First?

+ Testing-first clarifies the task at hand
- Forces you to think in concrete terms
- Helps identify and focus on corner cases
+ Testing forces simplicity
- Your only goal (now) is to pass the test
- Fight premature optimization
+ Tests act as useful documentation
- Exposes (completely) the programmer’s intent

+ Testing increases confidence in the code
- Courage to refactor code 28




Test-Driven Development. Bug Fixes

* Fail a unit test
- Fix the code to pass the test

* Fail an acceptance test (user story)
- Means that there aren't enough user tests
- Add a user test, then fix the code to pass the test

* Fail on beta-testing

- Make one or more unit tests from failing scenario

+ Always write code to fix tests

29




Simplicity

- Just-in-time design
- design and implement what you know right now;
don't worry too much about future design decisions

* No premature optimization
- You are not going to need it (YAGNI)

* In every big system there is a simple one
waiting to get out

30




Refactoring: Improving the Design of Code

* Make the code easier to read/use/modify
- Change "how" code does something
* Why?
- Incremental feature extension might outgrow the
initial design
- Expected because of lack of extensive early design

31




Refactoring: Remove Duplicated Code

+ Why? Easier to change, understand

» Inside a single method: move code outside
conditionals
if(..){cl;c2}else{cl; c3}
cl; if(.){c2}else{c3}
+ In several methods: create new methods

» Almost duplicate code
- .. balance + 5 ... and .. balance - x ...
- int incrBalance(int what) { return balance + whas; }




Refactoring: Change Names

* Why?
- A name should suggest what the method does and
how it should be used
+ Examples:
- moveRightIfCan, moveRight, canMoveRight

* Methl: rename the method, then fix compiler errors
- Drawback: many edits until you can re-run tests

* Meth2: copy method with new name, make old one

call the new one, slowly change references
33

- Advantage: can run tests continuously




Refactoring and Regression Testing

+ Comprehensive suite needed for fearless refactoring

* Only refactor working code

- Do not refactor in the middle of implementing a feature

» Plan your refactoring to allow frequent regression
tests

* Modern tools provide help with refactoring

- Recommended book: Martin Fowler's “Refac’ror'ing'34




Continuous Integration

» Integrate your work after each task.

- Start with official "release”

- Once task is completed, integrate changes
with current official release.

» All unit tests must run after in‘regra’rion/]

* Good tool support: \]

- Hudson, CruiseControl

35




Hudson

What is Hudson?

Hudson monitors executions of repeated jobs, such as buildinga - — - -
software project or jobs run by cron. Among those things, current = ®EEENE
Hudson focuses on the following two jobs: : B T

—

1. Building/testing software projects continuously, just like ...
CruiseControl or DamageControl. In a nutshell, Hudson
provides an easy-to-use so-called continuous integration
system, making it easier for developers to integrate
changes to the project, and making it easier for users to
obtain a fresh build. The automated, continuous build
increases the productivity.

2. Monitoring executions of externally-run jobs, such as cron jobs and procmail jobs, even
those that are run on a remote machine. For example, with cron, all you receive is regular
e-mails that capture the output, and it is up to you to look at them diligently and notice when it
broke. Hudson keeps those outputs and makes it easy for you to notice when something is
wrong.

L2 S N o S

—_—

L R RS

36




XP: Pair programming

Pilot and copilot metaphor
- Or driver and navigator

Pilot types, copilot monitors high-level iss

simplicity, integration with other components,
assumptions being made implicitly

ues

Disagreements point early to design problems

Pairs are shuffled periodically

37




Pair programming

WE'RE GOING TO TRY
SOMETHING CALLED
EXTREME PROGRAM-
MING.

scottadams® acl.com

—
www.dilbert.com

FIRST,PICK A
PARTNER. THE TWO
OF YOU WILL WORK
AT ONE COMPUTER
FOR FORTY HOURS
A WEEK.

Copyright 9 2883 United Feature Syndicate, Inc.

/{9fa3 © 2002 United Feature Syndicate, Inc

THE NEW SYSTEM IS
A MINUTE OLD AND
I ALREADY HATE
EVERYONE.

38




Benefits of Pair Programming

- Results in better code

- instant and complete and pleasant code review
- copilot can think about big-picture

- Reduces risk
- collective understanding of design/code
* Improves focus and productivity

- instant source of advice

* Knowledge and skill migration
- good habits spread 39




Why Some Programmers Resist Pairing?

+ "Will slow me down"

- Even the best hacker can learn something from

even the lowliest programmer

» Afraid to show you are not a genius
- Neither is your partner
- Best way to learn

40




Why Some Managers Resist Pairing?

* Myth: Inefficient use of personnel

- That would be true if the most time consuming part
of programming was typing |
- 15% increase in dev. cost, and same decrease in bugs
+ 2 individuals: 50 loc/h each, 1 bug/33 loc
* 1 team: 80 loc/h, 1 bug/40 loc
* 1 bug fix costs 10 hours
» BOkloc program 2 individuals: 1000 devel + 15000 bug fix
» BOkloc program 1 team: 1250 devel + 12500 bug fix

* Resistance from developers

41




Evaluation and Planning

* Run acceptance tests

+ Assess what was completed
- How many stories ?

- Discuss problems that came up
- Both technical and team issues

+ Compute the speed of the team
+ Re-estimate remaining user stories
* Plan with the client next iteration

42




XP Practices

* On-site customer
* The Planning Game
+ Small releases

- Testing

- Simple design

» Refactoring

* Metaphor

* Pair programming

» Collective ownership
- Continuous integration
* 40-hour week

- Coding standards

43




What's Different About XP

* No specialized analysts, architects,
programmers, testers, and integrators

- every XP programmer participates in all of these
critical activities every day.

* No complete up-front analysis and design

- start with a quick analysis of the system

- team continues to make analysis and design
decisions throughout development.

44




What's Different About XP

* Develop infrastructure and frameworks as you

develop your application
- not up-front

- quickly delivering business value is the driver of XP

projects.

45




When to (Not) Use XP

+ Use for:
- A dynamic project done in small tfeams (2-10 people)
- Projects with requirements prone to change

- Have a customer available

* Do not use when:
- Requirements are truly known and fixed
- Cost of late changes is very high
- Your customer is not available (e.g., space probe)

46




What can go wrong?

* Requirements defined incrementally

- Can lead to rework or scope creep

+ Design is on the fly
- Can lead to significant redesign

- Customer representative
- Single point of failure
- Frequent meetings can be costly

47




Recommended Approach in This Class

* "Agile + Classical”

» Classical:
- Staged waterfall development
- Generation of project documentation as you go
* Agile
- XP planning game to move from customer
requirements (user stories) to design specification
- Test-driven development
- Refactoring
- Continuous system integration 48
- Pair-programming (encouraged)




Conclusion: XP

+ Extreme Programming is an incremental
software process desighed to cope with
change

* With XP you never miss a deadline; you just

deliver less content

49




Agile Software Development

+ "Agile Manifesto” 2001

"Scrum” project management
+ Extreme programming engineering practice

Build software incrementally, using short 1-4
week iterations

Keep development aligned with changing needs

50




Structure of Agile Team

- Cross functional team

- Developers, testers, product owner, scrum master

* Product Owner: Drive product from business
perspective
- Define and prioritize requirements
- Determine release date and content
- Lead iteration and release planning meetings

- Accept/reject work of each iteration
51




Structure of Agile Team

- Cross functional team

- Developers, testers, product owner, scrum master

+ Scrum Master: Team leader who ensures team
is fully productive
- Enable close cooperation across roles
- Remove blocks
- Work with management to track progress

- Lead the "inspect and adapt” processes
52




Iterations

- Team works in iterations to deliver user
stories

» Set of unfinished user stories kept in
"backlog”

+ Iteration time fixed (say 2 weeks)

- Stories planned into iterations based on priority/
size/team capacity

- Each user story is given a rough size estimate ysing
a relative scale




Stories implemented by Tasks

+ Story = Collection of tasks

» Wait to break stories into task until story is

planned for current iteration

- Tasks estimated in hours

- Stories validated by acceptance tests

54




When is a Story done?

+ "done"” means:
- All tasks completed (dev, test, doc, ...)
- All acceptance tests running
- Zero open defects
- Accepted by product owner

55




SCRUM

- "Process skeleton” which contains a set of
practices and predefined roles

- ScrumMaster (maintains processes)
- Product Owner (represents the business)
- Team (Designers/developers/testers)

* At each point:
- User requirements go into prioritized backlog
- Implementation done in iterations or sprints

56




Sprint Planning

+ Decide which user stories from the backlog go
into the sprint (usually Product Owner)

+ Team determines how much of this they can
commit to complete

» During a sprint, the sprint backlog is frozen

57




Meetings: Daily Scrum

Daily Scrum: Each day during the sprint, a project status
meeting occurs

Specific guidelines:
- Start meeting on time
- All are welcome, only committed members speak
- Meeting lasts 15 min
Questions:
- What have you done since yesterday?
- What are you planning to do today?

- Do you have any problems preventing you from finishing yours
goals?




Scrum of Scrums

Normally after the scrum

Meet with clusters of teams to discuss work, overlap
and integration

Designated person from each team attends

4 additional questions:
- What has the team done since last meeting?
- What will the team do before we meet again?
- Is anything slowing your team down?

- Are you about o put something in another feam's way?




Sprint-related Meetings

» Sprint Planning

* Sprint Review

*+ Sprint Retrospective

60




Conclusion: Process

* NO SILVER BULLET!

- Need to adapt according to specific goals
- No single process uniformly good or bad

* Necessary (See ESR email to Linus Torvalds)

61




Acknowledgements

* Many slides courtesy of Rupak Majumdar

62




