
1

Extreme Programming

2

Extreme Programming

• Waterfall model inspired by civil engineering
• Civil engineering metaphor is not perfect

– Software is more organic than concrete
– You “grow the software” to meet changing

requirements

• Extreme Programming (XP) addresses this
– A version of the iterative model discussed before

3

Goals

• Minimize unnecessary work
• Maximize communication and feedback
• Make sure that developers do most important

work
• Make system flexible, ready to meet any

change in requirements

History

• Kent Beck
– Influential book “Extreme Programming

Explained” (1999)

• Speed to market, rapidly changing
requirements

• Some ideas go back much further
– “Test first development” used in NASA in the 60s
– Is this surprising?

4

5

XP Practices

• On-site customer
• The Planning Game
• Small releases
• Testing
• Simple design
• Refactoring

• Metaphor
• Pair programming
• Collective ownership
• Continuous integration
• 40-hour week
• Coding standards

6

XP Process

Multiple short cycles (2 weeks):
1. Meet with client to elicit requirements

• User stories + acceptance tests
2. Planning game

• Break stories into tasks, estimate cost
• Client prioritizes stories to do first

3. Implementation
• Write programmer tests first
• Simplest possible design to pass the tests
• Code in pairs
• Occasionally refactor the code

4. Evaluate progress and reiterate from step 1

7

Extreme Programming (XP)

• XP: like iterative but taken to the extreme

Scope

Time

Analyze
Design
Implement
Test

Waterfall Iterative XP

8

XP Customer

• Expert customer is part of the team
– On site, available constantly
– XP principles: communication and feedback
– Make sure we build what the client wants

• Customer involved actively in all stages:
– Clarifies the requirements
– Negotiates with the team what to do next
– Writes and runs acceptance tests
– Constantly evaluates intermediate versions
– Question: How often is this feasible?

9

The Planning Game: User Stories

• Write on index cards (or on a wiki)
– meaningful title
– short (customer-centered) description

• Focus on “what” not the “why” or “how”

• Uses client language
– Client must be able to test if a story is completed

Accounting Software

• I need an accounting software that let’s me
– create a named account,
– list accounts,
– query the balance of an account,
– delete an account.

• Analyze the CEO’s statement and create some
user stories

10

User Stories

11

Title: Create Account
Description: I can create a
named account

Title: List Accounts
Description: I can get a
list of all accounts.

Title: Delete Account
Description: I can delete a
named account

Title: Query Account Balance
Description: I can query the
account balance.

User Stories

12

Title: Create Account
Description: I can create a
named account

Title: List Accounts
Description: I can get a
list of all accounts.

Title: Delete Account
Description: I can delete a
named account

Title: Query Account Balance
Description: I can query
account balance.

How is the list
ordered?

User Stories

13

Title: Create Account
Description: I can create a
named account

Title: List Accounts
Description: I can get a
list of all accounts. I can
get an alphabetical list of
all accounts.

Title: Delete Account
Description: I can delete a
named account

Title: Query Account Balance
Description: I can query
account balance.

How is the list
ordered?

User Stories

14

Title: Create Account
Description: I can create a
named account

Title: List Accounts
Description: I can get a
list of all accounts. I can
get an alphabetical list of
all accounts.

Title: Delete Account
Description: I can delete a
named account

Title: Query Account Balance
Description: I can query
account balance.

Possible if
balance is not

zero?

User Stories

15

Title: Create Account
Description: I can create a
named account

Title: List Accounts
Description: I can get a
list of all accounts. I can
get an alphabetical list of
all accounts.

Title: Delete Account
Description: I can delete a
named account if the
balance is zero.

Title: Query Account Balance
Description: I can query
account balance.

Possible if
balance is not

zero?

User Story?

16

Title: Use AJAX for UI
Description: The user
interface will use AJAX
technologies to provide a
cool and slick online
experience.

User Story?

17

Title: Use AJAX for UI
Description: The user
interface will use AJAX
technologies to provide a
cool and slick online
experience. Not a user

story

18

Customer Acceptance Tests

• Client must describe how the user stories will
be tested
– With concrete data examples,
– Associated with (one or more) user stories

• Concrete expressions of user stories

User Stories

19

Title: Create Account
Description: I can create a
named account

Title: List Accounts
Description: I can get a
list of all accounts. I can
get an alphabetical list of
all accounts.

Title: Delete Account
Description: I can delete a
named account if the
balance is zero.

Title: Query Account Balance
Description: I can query
account balance.

20

Example: Accounting Customer Tests

• Tests are associated with (one or more) stories

1. If I create an account “savings”, then another called
“checking”, and I ask for the list of accounts I must
obtain: “checking”, “savings”

2. If I now try to create “checking” again, I get an error
3. If now I query the balance of “checking”, I must get 0.
4. If I try to delete “stocks”, I get an error
5. If I delete “checking”, it should not appear in the new

listing of accounts

21

Automate Acceptance Tests

• Customer can write and later (re)run tests
– E.g., customer writes an XML table with data

examples, developers write tool to interpret table

• Tests should be automated
– To ensure they are run after each release

22

Tasks

• Each story is broken into tasks
– To split the work and to improve cost estimates

• Story: customer-centered description
• Task: developer-centered description
• Example:

– Story: “I can create named accounts”
– Tasks: “ask the user the name of the account”
 “check to see if the account already exists”
 “create an empty account”

• Break down only as much as needed to estimate cost
• Validate the breakdown of stories into tasks with the

customer

23

Tasks

• If a story has too many tasks: break it down

• Team assigns cost to tasks
– We care about relative cost of task/stories
– Use abstract “units” (as opposed to hours, days)
– Decide what is the smallest task, and assign it 1 unit
– Experience will tell us how much a unit is
– Developers can assign/estimate units by bidding: “I

can do this task in 2 units”

24

Play the Planning Game

25

Planning Game

• Customer chooses the important stories for
the next release

• Development team bids on tasks
– After first iteration, we know the speed (units/

week) for each sub-team

• Pick tasks => find completion date
• Pick completion date, pick stories until you fill

the budget
• Customer might have to re-prioritize stories

26

XP Planning Game

27

Test-driven development

• Write unit tests before implementing tasks
• Unit test: concentrate on one module

– Start by breaking acceptance tests into units

• Example of a test
addAccount(“checking”);
if(balance(“checking”) != 0) throw …;
try { addAccount(“checking”);
 throw …;
} catch(DuplicateAccount e) { };

Think about names and
calling conventions

Test both good and
bad behavior

28

Why Write Tests First?

• Testing-first clarifies the task at hand
– Forces you to think in concrete terms
– Helps identify and focus on corner cases

• Testing forces simplicity
– Your only goal (now) is to pass the test
– Fight premature optimization

• Tests act as useful documentation
– Exposes (completely) the programmer’s intent

• Testing increases confidence in the code
– Courage to refactor code

29

Test-Driven Development. Bug Fixes

• Fail a unit test
– Fix the code to pass the test

• Fail an acceptance test (user story)
– Means that there aren’t enough user tests
– Add a user test, then fix the code to pass the test

• Fail on beta-testing
– Make one or more unit tests from failing scenario

• Always write code to fix tests

30

Simplicity

• Just-in-time design
– design and implement what you know right now;

don’t worry too much about future design decisions

• No premature optimization
– You are not going to need it (YAGNI)

• In every big system there is a simple one
waiting to get out

31

Refactoring: Improving the Design of Code

• Make the code easier to read/use/modify
– Change “how” code does something

• Why?
– Incremental feature extension might outgrow the

initial design
– Expected because of lack of extensive early design

32

Refactoring: Remove Duplicated Code

• Why? Easier to change, understand
• Inside a single method: move code outside

conditionals
if(…) { c1; c2 } else { c1; c3}
c1; if(…) { c2 } else { c3 }

• In several methods: create new methods
• Almost duplicate code

– … balance + 5 … and … balance – x …
– int incrBalance(int what) { return balance + what; }

33

Refactoring: Change Names

• Why?
– A name should suggest what the method does and

how it should be used

• Examples:
– moveRightIfCan, moveRight, canMoveRight

• Meth1: rename the method, then fix compiler errors
– Drawback: many edits until you can re-run tests

• Meth2: copy method with new name, make old one
call the new one, slowly change references
– Advantage: can run tests continuously

34

Refactoring and Regression Testing

• Comprehensive suite needed for fearless refactoring

• Only refactor working code
– Do not refactor in the middle of implementing a feature

• Plan your refactoring to allow frequent regression
tests

• Modern tools provide help with refactoring

• Recommended book: Martin Fowler’s “Refactoring”

35

Continuous Integration

• Integrate your work after each task.
– Start with official “release”
– Once task is completed, integrate changes

with current official release.

• All unit tests must run after integration

• Good tool support:
– Hudson, CruiseControl

36

Hudson

37

XP: Pair programming

• Pilot and copilot metaphor
– Or driver and navigator

• Pilot types, copilot monitors high-level issues
• simplicity, integration with other components,

assumptions being made implicitly

• Disagreements point early to design problems
• Pairs are shuffled periodically

38

Pair programming

39

Benefits of Pair Programming

• Results in better code
– instant and complete and pleasant code review
– copilot can think about big-picture

• Reduces risk
– collective understanding of design/code

• Improves focus and productivity
– instant source of advice

• Knowledge and skill migration
– good habits spread

40

Why Some Programmers Resist Pairing?

• “Will slow me down”
– Even the best hacker can learn something from

even the lowliest programmer

• Afraid to show you are not a genius
– Neither is your partner
– Best way to learn

41

Why Some Managers Resist Pairing?

• Myth: Inefficient use of personnel
– That would be true if the most time consuming part

of programming was typing !
– 15% increase in dev. cost, and same decrease in bugs

• 2 individuals: 50 loc/h each, 1 bug/33 loc
• 1 team: 80 loc/h, 1 bug/40 loc
• 1 bug fix costs 10 hours
• 50kloc program 2 individuals: 1000 devel + 15000 bug fix
• 50kloc program 1 team: 1250 devel + 12500 bug fix

• Resistance from developers

42

Evaluation and Planning

• Run acceptance tests
• Assess what was completed

– How many stories ?

• Discuss problems that came up
– Both technical and team issues

• Compute the speed of the team
• Re-estimate remaining user stories
• Plan with the client next iteration

43

XP Practices

• On-site customer
• The Planning Game
• Small releases
• Testing
• Simple design
• Refactoring

• Metaphor
• Pair programming
• Collective ownership
• Continuous integration
• 40-hour week
• Coding standards

44

What’s Different About XP

• No specialized analysts, architects,
programmers, testers, and integrators
– every XP programmer participates in all of these

critical activities every day.

• No complete up-front analysis and design
– start with a quick analysis of the system
– team continues to make analysis and design

decisions throughout development.

45

What’s Different About XP

• Develop infrastructure and frameworks as you
develop your application
– not up-front
– quickly delivering business value is the driver of XP

projects.

46

When to (Not) Use XP

• Use for:
– A dynamic project done in small teams (2-10 people)
– Projects with requirements prone to change
– Have a customer available

• Do not use when:
– Requirements are truly known and fixed
– Cost of late changes is very high
– Your customer is not available (e.g., space probe)

What can go wrong?

• Requirements defined incrementally
– Can lead to rework or scope creep

• Design is on the fly
– Can lead to significant redesign

• Customer representative
– Single point of failure
– Frequent meetings can be costly 47

48

Recommended Approach in This Class

• “Agile + Classical”
• Classical:

– Staged waterfall development
– Generation of project documentation as you go

• Agile
– XP planning game to move from customer

requirements (user stories) to design specification
– Test-driven development
– Refactoring
– Continuous system integration
– Pair-programming (encouraged)

49

Conclusion: XP

• Extreme Programming is an incremental
software process designed to cope with
change

• With XP you never miss a deadline; you just
deliver less content

Agile Software Development

• “Agile Manifesto” 2001

“Scrum” project management
+ Extreme programming engineering practice

Build software incrementally, using short 1-4
week iterations

 Keep development aligned with changing needs
50

Structure of Agile Team

• Cross functional team
– Developers, testers, product owner, scrum master

• Product Owner: Drive product from business
perspective
– Define and prioritize requirements
– Determine release date and content
– Lead iteration and release planning meetings
– Accept/reject work of each iteration

51

Structure of Agile Team

• Cross functional team
– Developers, testers, product owner, scrum master

• Scrum Master:Team leader who ensures team
is fully productive
– Enable close cooperation across roles
– Remove blocks
– Work with management to track progress
– Lead the “inspect and adapt” processes

52

Iterations

• Team works in iterations to deliver user
stories

• Set of unfinished user stories kept in
“backlog”

• Iteration time fixed (say 2 weeks)
– Stories planned into iterations based on priority/

size/team capacity
– Each user story is given a rough size estimate using

a relative scale
53

Stories implemented by Tasks

• Story = Collection of tasks

• Wait to break stories into task until story is
planned for current iteration

• Tasks estimated in hours

• Stories validated by acceptance tests
54

When is a Story done?

• “done” means:
– All tasks completed (dev, test, doc, …)
– All acceptance tests running
– Zero open defects
– Accepted by product owner

55

SCRUM

• “Process skeleton” which contains a set of
practices and predefined roles
– ScrumMaster (maintains processes)
– Product Owner (represents the business)
– Team (Designers/developers/testers)

• At each point:
– User requirements go into prioritized backlog
– Implementation done in iterations or sprints 56

Sprint Planning

• Decide which user stories from the backlog go
into the sprint (usually Product Owner)

• Team determines how much of this they can
commit to complete

• During a sprint, the sprint backlog is frozen

57

Meetings: Daily Scrum

• Daily Scrum: Each day during the sprint, a project status
meeting occurs

• Specific guidelines:
– Start meeting on time
– All are welcome, only committed members speak
– Meeting lasts 15 min

• Questions:
– What have you done since yesterday?
– What are you planning to do today?
– Do you have any problems preventing you from finishing your

goals?
58

Scrum of Scrums

• Normally after the scrum
• Meet with clusters of teams to discuss work, overlap

and integration
• Designated person from each team attends

• 4 additional questions:
– What has the team done since last meeting?
– What will the team do before we meet again?
– Is anything slowing your team down?
– Are you about to put something in another team’s way?

59

Sprint-related Meetings

• Sprint Planning

• Sprint Review

• Sprint Retrospective

60

Conclusion: Process

• NO SILVER BULLET!
– Need to adapt according to specific goals
– No single process uniformly good or bad

• Necessary (See ESR email to Linus Torvalds)

61

Acknowledgements

• Many slides courtesy of Rupak Majumdar

62

