
1

UML: Unified Modeling Language

2

Objectives of UML

• UML is a general purpose notation that is used
to

• visualize
• specify
• construct and
• document

the artifacts of a software system

3

Structural Diagrams

• Class Diagram – set of classes and their relationships.
Describes interface to the class (set of operations
describing services)

• Object Diagram – set of objects (class instances) and
their relationships

• Component Diagram – logical groupings of elements
and their relationships

• Deployment Diagram - set of computational
resources (nodes) that host each component

4

Behavioral Diagram

• Use Case Diagram – high-level behaviors of the
system, user goals, external entities: actors

• Sequence Diagram – focus on time ordering of
messages

• Collaboration Diagram – focus on structural
organization of objects and messages

• State Chart Diagram – event driven state changes of
system

• Activity Diagram – flow of control between activities

5

From Requirements to Analysis

• From the Use Case diagrams an initial set of
objects and classes can be identified

• This is the first step of analysis

• The second step is to refine the use cases
through interaction diagrams

6

What is a Good Class?

7

What is a Good Class?

• Should provide a crisp abstraction of
something from the problem domain (or
solution) domain

• Embody a small well defined set of
responsibilities and carry them out well

• Provides clear separation of abstraction,
specification, and implementation

• Is understandable and simple yet extendable
and adaptable

8

Object Oriented Decomposition

• Identifying objects which derived from the
vocabulary of the problem (and solution)
domain

• Algorithmic view highlights the ordering of
events

• OO view emphasizes the agents that either
cause action or are the subject upon which
the actions operate

9

Object Model

• Abstraction – separate behavior from
implementation

• Encapsulation – separate interface from
implementation

• Modularity – high cohesion and low coupling
• Hierarchy – Inheritance
• Polymorphism – dynamic variable binding
• Typing – strong enforcement
• Concurrency – active vs. inactive
• Persistence – existence transcends runtime

10

Types of Objects

• Boundary – represent the interactions
between the system and actors

• Control – represent the tasks that are
performed by the user and supported by the
system

• Entity – represent the persistent information
tracked by the system

11

Object Modeling

• Given the high-level requirements (use cases)
• Define the object model

– Identify objects
– Compile a data dictionary
– Identify association and aggregations
– Identify attributes of objects
– Generalize objects into classes
– Organize and abstract using inheritance
– Iterate and refine model
– Group classes into modules/components

12

Object identification

• Identifying objects (or object classes) is the
most difficult part of object oriented design

• There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers

• Object identification is an iterative process. You
are unlikely to get it right first time

13

Approaches to identification

• Use a grammatical approach based on a natural
language description of the system:
– Objects and attributes are nouns and verbs are

operations
• Base the identification on tangible things in the

application domain
– Objects, roles, events, interactions, locations

• Use a behavioural approach and identify objects
based on what participates in what behaviour
– who initiates and participates in those behaviours

• Use a scenario-based analysis. The objects,
attributes and methods in each scenario are

14

Example: Weather Monitoring Station

• This system shall provide automatic monitoring of
various weather conditions. Specifically, it must
measure:
– wind speed and direction
– temperature
– barometric pressure
– humidity

• The system shall also provide the following derived
measurements:
– wind chill
– dew point temperature
– temperature trend

15

Weather Monitoring System Requirements

• The system shall have the means of determining the
current time and date so that it can report the highest
and lowest values for any of the four primary
measurements during the previous 24 hour period

• The system shall have a display that continuously indicates
all eight primary and derived measurements, as well as
current time and date

• Through the use of a keypad the user may direct the
system to display the 24 hour low or high of any one
primary measurement, with the time of the reported value

• The system shall allow the user to calibrate its sensors
against known values, and set the current time and date

16

Hardware Requirements

• Use a single board computer
• Time and date are supplied by an on-board clock

accessible via memory mapped I/O
• Temperature, barometric pressure, and humidity

are measured by on board circuits with remote
sensors.

• Wind direction and speed are measured from a
boom encompassing a wind vane (16 directions) and
cups (which advance a counter every revolution)

17

Hardware Requirements (contd.)

• User input is provided through an off the shelf
keypad, managed by onboard circuit supplying
audible feed back for each key press.

• Display is off the self LCD with a simple set of
graphics primitives.

• An onboard timer interrupts the computer every
1/60 second.

18

Display and Keypad

• LCDDisplay – Values and current system state (Running,
Calibrating, Selecting, Mode)
– Operations: drawtext, drawline, drawcircle, settextsize,

settextstyle, setpensize

• Keypad allows user input and interaction
– Operations: last key pressed
– Attributes: key

Date:
Time:
Temp:
Pressure:
Humidity:

N

S

EW

Temp Hum Press

Wind Time Date

Select Cal Mode

19

Use Diagrams

20

Scenario: Powering Up

1. Power is turned on
2. Each sensor is constructed
3. User input buffer is initialized
4. Static elements of display are drawn
5. Sampling of sensors is initialized

• The past high/low values of each primary
measurement is set to the value and time of
their first sample.

• The temperature and Pressure trends are flat.

21

Scenario: Setting Time and Date

1. User presses Select key
2. System displays selecting
3. User presses any one of the keys Time or

Date. Any other key is ignored except Run
4. System flashes the corresponding label
5. Users presses Up or Down to change date or

time.
6. Control passes back to step 3 or 5

22

Scenario: Display Highest and Lowest

1. User presses Select key
2. System displays selecting
3. User presses any one of the keys (Wind, Temp,

Humidity, Pressure). Any other key is ignored
except Run

4. System flashes the corresponding label
5. Users presses Up or Down to select display of

highest or lowest in 24 hour period. Any other key
press is ignored except for Run

6. System displays value with time of occurrence
7. Control passes back to step 3 or 5

23

Identify Objects

• From the vocabulary of the domain

24

Identify Objects

• From the vocabulary of the domain
• User, clock, sensor, temperature, LCDDisplay,

Keypad, time, date, wind speed, humidity,
barometer, calibrator, metric units, English units,
input manager, sensor sampler, wind direction,
display manager, trend, pressure, current time,
current date, current temp, high temp, low temp,
change temp, change time, power up, power down,
input buffer, trend, key, running, selecting

25

Eliminate Terms

• Refine the model by eliminating
• Redundancy – classes that represent the same

concept
• Irrelevant classes – things you don’t care about
• Vague classes – ill defined boundaries
• Attributes – describe parts of objects
• Operators – sequence of actions are often

mistaken for classes
• Roles – what it is not the role it plays
• Implementation details – save it for later

26

New Data Dictionary

• Time & Date
• Sensors: Temperature, Pressure, Humidity,

Wind Speed, Wind Direction
• Keypad
• Input Manager
• Display (LCD Device)
• Display Manager
• Timer (clock)
• Sensor Sampler

27

Relationships

28

Relationships

29

More UML Diagrams

• Modeling Behavior
• Interaction Diagrams
• State Chart Diagrams
• Activity Diagrams

30

Refining the Object Model

• Typically, only very simplistic object models can
be directly derived from use cases

• A better understanding of the behavior of each
use case is necessary (i.e., analysis)

• Use interaction diagrams to specify and detail the
behavior of use cases

• This helps to identify and refine key abstractions
and relationships

• Operations, attributes, and messages are also
identified during this process

31

Interaction Diagrams

• There is one (or more) Interaction diagram per use
case
– Represent a sequence of interactions
– Made up of objects, links, and messages

• Sequence diagrams
– Models flow of control by time ordering
– Emphasizes passing messages over time
– Shows simple iteration and branching

• Collaboration diagrams
– Models flow of control by organization
– Structural relationships among instances in the

interaction

32

Sequence Diagrams

• X-axis is objects
– Object that initiates interaction is left most
– Object to the right are increasingly more subordinate

• Y-axis is time
– Messages sent and received are ordered by time

• Object life lines represent the existence over a
period of time

• Activation (double line) is the execution of the
procedure.

33

Message Passing

• Send – sends a signal (message) to an object
• Return – returns a value to a caller
• Call – invokes an operation
• Stereotypes

– <<create>>
– <<destroy>>

34

Example UML Sequence Diagram

35

Prof. Majumdar CS 130 Lecture 4 36

Prof. Majumdar CS 130 Lecture 4 37

38

Example: Weather Station

39

Types of Diagrams

• Structural Diagrams – focus on static aspects
of the software system
– Class, Object, Component, Deployment

• Behavioral Diagrams – focus on dynamic
aspects of the software system
– Use-case, Interaction, State Chart, Activity

40

Example: Phone Call

Which of
the objects
are
boundary,
control and
entity?

41

Properties of Sequence Diagrams

• Initiator is leftmost object (boundary object)

• Next is typically a control object

• Then comes entity objects

42

Collaboration Diagrams

• Emphasizes the organization of the objects
that participate in an interaction

• Association

• Messages, flow, and sequencing

43

Example: Collaboration Diagram

44

Collaboration vs. Sequence

• The two diagrams show almost the same
information

• Collaboration diagrams show more static
structure (however, class diagrams are better
at this)

• Sequence diagrams clearly highlight the
orderings and very useful for multi-tasking

45

Summary (Interaction Diagrams)

• Well structured interaction diagrams:
– Is focused on communicating one aspect of a system’s

dynamics
– Contains only those elements that are essential to

understanding

• Diagrams should have meaningful names
• Layout diagram to minimize line crossings
• Use branching sparingly (leave for activity diagrams)

46

State Diagrams

• Finite state machines (i.e., automata, Mealy/
Moore, state transition)

• Used to describe the behavior of one object (or
sometimes an operator) for a number of scenarios
that affect the object

• They are not good for showing interaction
between objects (use interaction diagrams)

• Only use when the behavior of an object is
complex and more detail is needed

47

State Diagram Features

• Event – something that happens at a specific point
(e.g., alarm goes off)

• Condition – something that has a duration
– Alarm is on
– Fuel level is low

• State – an abstraction of the attributes and
relationships of an object (or system)
– The fuel tank is in a too low level when the fuel level is below

level x for n seconds

48

Example: on/off Switch

off

on

pushdepart

 Button

49

Example

50

Prof. Majumdar CS 130 Lecture 4 51

52

Activity Diagrams

• Special form of a state machine (flow chart) –
intended to model computations and workflows

• States of the executing the computation not the
states of an object

• Flow between activity states is caused by the end
of a computation rather then an event

• Emphasis on control flow

53

Why Activity Diagrams

• Flowcharts (abet a bit glorified) are not very
amiable to OO

• Not part of any previous notations

• Suitable for modeling the business activities

• OO and UML is becoming very prevalent in
business applications

54
UML Distilled 3rd Edition by Martin Fowler

55
UML Distilled 3rd Edition by Martin Fowler

56
UML Distilled 3rd Edition by Martin Fowler

57

Even More UML

• Implementation and Architectural Diagrams

• Component diagrams

• Deployment diagrams

58

Component Diagrams

• A component is a physical thing that conforms
to and realizes a set of interfaces

• Bridge between logical and physical models
• Can represent object libraries, COM

components, Java Beans, etc.
• Classes represent logical abstractions,

components represent physical things that
reside on a node (machine)

• Components are reachable only through
interface

59

Examples

60

Deployment Diagrams

• Nodes are physical elements that represent a
computational resource (machine)

• Association between nodes
• Components are allocated to nodes (one or more)
• Components represent the physical packaging of

logical elements
• Nodes represent the physical deployment of

components

61

Example

62

With Components

63

Weather Station

64

ArgoUML

• http://argouml.tigris.org/

65

Opinions about UML: What’s Good

• A common language
– Makes it easier to share requirements, specs, designs

• Visual syntax is useful, to a point
– A (good) picture is worth 1000 words
– For the non-technical, easier to grasp simple diagrams than

simple pseudo-code

• To the extent UML is precise, it forces clarity
– Much better than natural language

• Commercial tool support

66

Opinions On UML: What’s Bad

• Hodge-podge of ideas
– Union of most popular modeling languages
– Sublanguages remain largely unintegrated

• Visual syntax does not scale well
– Many details are hard to depict visually

• Ad hoc text attached to diagrams

– No visualization advantage for large diagrams
• 1000 pictures are very hard to understand

67

UML is Happening

• UML is being widely adopted
– By users
– By tool vendors
– By programmers

• A step forward
– Seems useful
– First standard for high-levels of software process
– Expect further evolution, development of UML

Exercise

• Given high-level specification
– W&M BlackBoard System

• Work in groups of 2-3
• No talking or writing in any natural language
• ONLY using UML to communicate, see if you

can come up with a more or less thorough
design of the system so that all of you agree
on the design of the system 68

Acknowledgements

• Some slides are courtesy of Rupak Majumdar

69

