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Supercomputers

Definition of a supercomputer:
• Fastest machine in world at given task
• A device to turn a compute-bound problem into an

I/O bound problem
• Any machine costing $30M+
• Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer



Supercomputer Applications

 Typical application areas
• Military research (nuclear weapons, cryptography)
• Scientific research
• Weather forecasting
• Oil exploration
• Industrial design (car crash simulation)

All involve huge computations on large data sets

In 70s-80s, Supercomputer ≡ Vector Machine



Vector Supercomputers
Epitomized by Cray-1, 1976:

Scalar Unit + Vector Extensions
• Load/Store Architecture
• Vector Registers
• Vector Instructions
• Hardwired Control
• Highly Pipelined Functional Units
• Interleaved Memory System
• No Data Caches
• No Virtual Memory



Cray-1 (1976)



Cray-1 (1976)
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Vector Programming Model
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Vector Code Example

# Scalar Code
  LI R4, 64
loop:
  L.D F0, 0(R1)
  L.D F2, 0(R2)
  ADD.D F4, F2, F0
  S.D F4, 0(R3)
  DADDIU R1, 8
  DADDIU R2, 8
  DADDIU R3, 8
  DSUBIU R4, 1
  BNEZ R4, loop

# Vector Code
  LI VLR, 64 
  LV V1, R1
  LV V2, R2
  ADDV.D V3, V1, V2
  SV V3, R3

# C code
for (i=0; i<64; i++)
  C[i] = A[i] + B[i];



Vector Instruction Set Advantages

• Compact
– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in the same pattern as previous instructions
– access a contiguous block of memory (unit-stride load/store)
– access memory in a known pattern (strided load/store)

• Scalable
– can run same object code on more parallel pipelines or lanes



Vector Arithmetic Execution

• Use deep pipeline (=> fast clock)
to execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (=> no hazards!)
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V3 <- v1 * v2

Six stage multiply pipeline



Vector Memory System
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Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time: Cycles between accesses to same bank



Vector Instruction Execution
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Vector Unit Structure
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T0 Vector Microprocessor (1995)
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Vector Memory-Memory versus
Vector Register Machines

• Vector memory-memory instructions hold all vector operands
in main memory

• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71),
were memory-memory machines

• Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)
{
  C[i] = A[i] + B[i];
  D[i] = A[i] - B[i];
}

Example Source Code ADDV C, A, B
SUBV D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

Vector Register Code



Vector Memory-Memory vs.
Vector Register Machines

• Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?
– All operands must be read in and out of memory

• VMMAs make if difficult to overlap execution of
multiple vector operations, why?
– Must check dependencies on memory addresses

• VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors < 100 elements
– For Cray-1, vector/scalar breakeven point was around 2 elements

⇒Apart from CDC follow-ons (Cyber-205, ETA-10) all
major vector machines since Cray-1 have had vector
register architectures

(we ignore vector memory-memory from now on)



Automatic Code Vectorization
for (i=0; i < N; i++)
    C[i] = A[i] + B[i];
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Vector Stripmining
Problem: Vector registers have finite length
Solution: Break loops into pieces that fit into vector

registers, “Stripmining”
 ANDI R1, N, 63   # N mod 64
 MTC1 VLR, R1     # Do remainder
loop:
 LV V1, RA
 DSLL R2, R1, 3 # Multiply by 8      
 DADDU RA, RA, R2 # Bump pointer
 LV V2, RB
 DADDU RB, RB, R2 
 ADDV.D V3, V1, V2
 SV V3, RC
 DADDU RC, RC, R2
 DSUBU N, N, R1 # Subtract elements
 LI R1, 64
 MTC1 VLR, R1   # Reset full length
 BGTZ N, loop   # Any more to do?

for (i=0; i<N; i++)
    C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder



load

Vector Instruction Parallelism
Can overlap execution of multiple vector instructions

– example machine has 32 elements per vector register and 8 lanes

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle



Vector Chaining

• Vector version of register bypassing
– introduced with Cray-1
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Vector Chaining Advantage

• With chaining, can start dependent instruction as soon
as first result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to
be written before starting dependent instruction



Vector Startup
Two components of vector startup penalty

– functional unit latency (time through pipeline)
– dead time or recovery time (time before another vector

instruction can start down pipeline)
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Dead Time and Short Vectors

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

4 cycles dead time T0, Eight lanes
No dead time

100% efficiency with 8 element
vectors

No dead time

64 cycles active



Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
    A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD       # Load indices in D vector
LVI vC, rC, vD  # Load indirect from rC base
LV vB, rB       # Load B vector
ADDV.D vA, vB, vC # Do add
SV vA, rA       # Store result



Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)
    A[B[i]]++;

Is following a correct translation?
LV vB, rB       # Load indices in B vector
LVI vA, rA, vB  # Gather initial A values
ADDV vA, vA, 1  # Increment
SVI vA, rA, vB  # Scatter incremented values



Vector Conditional Execution

Problem: Want to vectorize loops with conditional
code:

for (i=0; i<N; i++)
    if (A[i]>0) then
        A[i] = B[i];

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:
CVM             # Turn on all elements
LV vA, rA       # Load entire A vector
SGTVS.D vA, F0  # Set bits in mask register where A>0
LV vA, rB       # Load B vector into A under mask
SV vA, rA       # Store A back to memory under mask



Masked Vector Instructions
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Compress/Expand Operations
• Compress packs non-masked elements from one

vector register contiguously at start of destination
vector register
– population count of mask vector gives packed vector length

• Expand performs inverse operation
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A[1]
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Used for density-time conditionals and also for general
selection operations



Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
    sum += A[i];  # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary
tree to perform reduction
# Rearrange as:
sum[0:VL-1] = 0                 # Vector of VL partial sums
for(i=0; i<N; i+=VL)            # Stripmine VL-sized chunks
    sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
# Now have VL partial sums in one vector register
do {
    VL = VL/2;                    # Halve vector length
    sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)



A Modern Vector Super: NEC SX-6 (2003)

• CMOS Technology
– 500 MHz CPU, fits on single chip
– SDRAM main memory (up to 64GB)

• Scalar unit
– 4-way superscalar with out-of-order and speculative

execution
– 64KB I-cache and 64KB data cache

• Vector unit
– 8 foreground VRegs + 64 background VRegs (256x64-bit

elements/VReg)
– 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit,

1 mask unit
– 8 lanes (8 GFLOPS peak, 16 FLOPS/cycle)
– 1 load & store unit (32x8 byte accesses/cycle)
– 32 GB/s memory bandwidth per processor

• SMP structure
– 8 CPUs connected to memory through crossbar
– 256 GB/s shared memory bandwidth (4096 interleaved

banks)



Multimedia Extensions

• Very short vectors added to existing ISAs for micros
• Usually 64-bit registers split into 2x32b or 4x16b or 8x8b
• Newer designs have 128-bit registers (Altivec, SSE2)
• Limited instruction set:

– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be aligned to 64/128-bit boundary

• Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy
– loop unrolling to hide latencies increases register pressure

• Trend towards fuller vector support in microprocessors


