CS 654 Advanced Computer Architecture

Lec. 11: Vector Computers

Peter Kemper

Adapted from the slides of:
Krste Asanovic
(krste@mit.edu)
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Supercomputers

Definition of a supercomputer:
Fastest machine in world at given task

A device to turn a compute-bound problem into an
I/0 bound problem

Any machine costing $30M+
Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer

Supercomputer Applications

Typical application areas
 Military research (nuclear weapons, cryptography)
 Scientific research
« Weather forecasting
* Oil exploration
* Industrial design (car crash simulation)

All involve huge computations on large data sets

In 70s-80s, Supercomputer = Vector Machine

Vector Supercomputers
Epitomized by Cray-1, 1976:

Scalar Unit + Vector Extensions
 Load/Store Architecture

* Vector Registers

* Vector Instructions

 Hardwired Control

* Highly Pipelined Functional Units

* Interleaved Memory System

* No Data Caches

* No Virtual Memory

Cray-1 (1976)

Cray-1 (1976)

Single Port
Memory

16 banks of

64-bit words
+

8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

memory bank cycle 50 ns

Yo Vi V. Mask
—64Flement vV
V3 . V. Length
Vector Registers V4 Vi
V5
V6
V7 > FP Add
S0 S; »| FP Mul
((Ay) +jkm) S1
> S2 S, FP Recip
S, s3
(A,) 64 —p| s4 S, Int Add
———> 1 pe T, S5
|| Regsje—— =0 : Int Logic
Int Shift
A0
((A)*+jkm) A1 Pop Cnt
g A2 A
A A3 j >
A) |64 — > A | Addr Add
S e . A5
B Reg k A6 A Addr Mul
AZ
—7
64-bitx16 | |17 NIP CiP
_> -
LIP

processor cycle 12.5 ns (80MHz)

Vector Programming Model

~

/
N

/ Scalar Registers Vector Registers
r15 v15
r0 vo 0] [11 [2] [VLRMAX-1]
\\ Vector Length Register | VLR
4 Vector Arithmetic z; : /

Instructions

ADDV v3, v1, v2

-

@@@@@@

[VLR- 1]

/ Vector Load and
Store Instructions

LVv1l, 1, r2

/////T

Vector Register

\ Base r1

Strlde r2

Memory

J
<

Vector Code Example

C code # Scalar Code # Vector Code
for (i=0; i<64; i++) LI R4, 64 LI VLR, 64
C[i] = A[i] + B[i];|1o°P: LV V1, Rl
L.D FO, O(R1) LV V2, R2
L.D F2, 0(R2) ADDV.D V3, V1, V2

ADD.D F4, F2, FO SV V3, R3
S.D F4, O(R3)
DADDIU R1l, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

Vector Instruction Set Advantages

« Compact
— one short instruction encodes N operations

- Expressive, tells hardware that these N operations:
— are independent
— use the same functional unit
— access disjoint registers
— access registers in the same pattern as previous instructions
— access a contiguous block of memory (unit-stride load/store)
— access memory in a known pattern (strided load/store)

« Scalable
— can run same object code on more parallel pipelines or lanes

Vector Arithmetic Execution

* Use deep pipeline (=> fast clock) V V Vv
to execute element operations 12 3
« Simplifies control of deep pipeline
because elements in vector are v v |

independent (=> no hazards!) |

Six stage multiply pipeline | <

V3 <- vl * v2

Vector Memory System

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

* Bank busy time: Cycles between accesses to same bank

Base Stride

Vector Registers l l
| ol -
Address ! v
Generator <+
v

Memory Banks

Vector Instruction Execution

ADDV C,A,B

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] BI[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] BI[23]
A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] BI[19]
A[3] B3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
##/ ##/##/##/##/
T C[2] f T C[8] f T C[9] f | C[10]f | C[11]f
ci c4l/ csl] el Cm
i i i i i

C[0] C[0] C[1] C[2] C[3]

Vector Unit Structure

(—\
w— w—
L L
[| [|
Vector T I T T v
RegiSters El t Elements
4 o,?g,n..s. 1,5,9, ...
v v * v v *
|] |]
L, L,
[ane i) T |

Elements
2,6,10, ...

Elements
3,7,11, ...

Memory Subsystem

TO Vector Microprocessor (1995)

Vector register Lane

elements striped
over lanes

f- 4 5 3 ¢ - E
=, - - 4 v [>
y b 5 -
i)i ! B .
th B . = 3 U = ¥ -
. . i ——s . -8 —— i B -
3 S8 | - ! P
4 = 23 5
) i i
4 RN '
H 8] :
i guy | 7
va b ' .
: i Ft
ﬁ '
f]ii 1

[zlm [3]m[4] - [5]m [6]

"”lx‘"#‘ "l. @ L l "- o/- ™

: f
. &
-
paee
44

2

r*

4
3
o

G -

:l‘;:;titlr_l.lj;illl.!llgl. mmm il l |

Vector Memory-Memory versus
Vector Register Machines

* Vector memory-memory instructions hold all vector operands
in main memory

* The first vector machines, CDC Star-100 (“73) and Tl ASC (‘71),
were memory-memory machines

« Cray-1 (’76) was first vector register machine

Vector Memory-Memory Code

Example Source Code ADDV C, A, B
for (i=0; i<N; i++) SUBV D, A, B
{

C[i] = A[i] + B[i]; Vector Register Code
D[i]

A[i] - B[i]; LV V1, A
} LV V2, B

ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV v4, D

Vector Memory-Memory vs.
Vector Register Machines

* Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?

 VMMAs make if difficult to overlap execution of
multiple vector operations, why?

 VMMASs incur greater startup latency

— Scalar code was faster on CDC Star-100 for vectors < 100 elements
— For Cray-1, vector/scalar breakeven point was around 2 elements

=Apart from CDC follow-ons (Cyber-205, ETA-10) all
major vector machines since Cray-1 have had vector
register architectures

Automatic Code Vectorization
for (i=0; i < N; i++)
C[i] = A[i] + B[i];
Scalar Sequential Code . - Vectorize.d Code

1 2 Vector Instruction

: Vectorization is a massive compile-time
: reordering of operation sequencing
=> requires extensive loop dependence
' analysis

Vector Stripmining
Problem: Vector registers have finite length

Solution: Break loops into pieces that fit into vector
registers, “Stripmining”

for (i=0; i<N; i++)
C[i] = A[i]+B][1];

A B C

Y Y

}Remainder

~

-64 elements

ANDI R1l, N, 63 # N mod 64

MTC1l VLR, Rl # Do remainder
loop:
LV V1, RA

DSLL R2, R1l, 3 # Multiply by 8
DADDU RA, RA, R2 # Bump pointer
LV V2, RB

DADDU RB, RB, R2

ADDV.D V3, V1, V2

SV V3, RC

DADDU RC, RC, R2

DSUBU N, N, Rl # Subtract elements
LI R1, 64

MTC1l VLR, R1 # Reset full length
BGTZ N, loop # Any more to do?

Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
— example machine has 32 elements per vector register and 8 lanes

Load Unit Multiply Unit Add Unit
[load Yoo s57s

OOOOO¢-£‘-"AAAAA
time e eoeoeeoblaaaaaladdimannnnnn
ooeoee oo plaaaaaaallnmmmmnnm
BEIEIEIEI e NN CICICICICICICIE
ololojo]o|d—=/la A A A A 4= Numnnnnnn
olojolololoo|blalalalalall2dd fa’emmm m mE
ololololololololalalalalalala klm/mmmmnn=
AlAlAAAAlaaAlnmmnnmnn
Instruction LI

issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

Vector Chaining

* Vector version of register bypassing
— introduced with Cray-1

LV vl

<
N <
W<
<
o<

MULV v3,vl,v2

ADDV v5, v3, v4

Load
Unit

Memory

Vector Chaining Advantage

« Without chaining, must wait for last element of result to
be written before starting dependent instruction

Time —»

* With chaining, can start dependent instruction as soon
as first result appears

Vector Startup

Two components of vector startup penalty

— functional unit latency (time through pipeline)

— dead time or recovery time (time before another vector
instruction can start down pipeline)

Functional Unit Latency

< >
yy
R|I X[X| X|W
R|X|X | X|W First Vectorn Instruction
R|I X | X| X | W
Y
A
R|I X | X[X|W
R|I X | X[X|W .
Dead|Time
R|I X | X[X|W
R|X|[X|X]|wW v
A
R|I X[X | X | W
< Dead Tlme> RIx ! x| x!|w Second Vector Instruction
R|X|[X|[X|W v

Dead Time and Short Vectors

i —>
No dead time I‘ o000 o .I

4 cycles dead time T0, Eight lanes

No dead time

— 100% efficiency with 8 element
vectors

64 cycles active

QQQQQQIOOOOQQQQ
QQQQQQIOOOOQQQQ

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%

with 128 element vectors

e®
o e
<

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector

ADDV.D vA, vB, vC # Do add
SV vA, rA # Store result

Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)
A[B[1]]++;

Is following a correct translation?

LV vB, rB # Load indices in B vector
LVI vA, rA, vB # Gather initial A wvalues
ADDV vA, vA, 1 # Increment

SVI vA, rA, vB # Scatter incremented values

Vector Conditional Execution

Problem: Want to vectorize loops with conditional
code:
for (i=0; i<N; i++)
if (A[i]>0) then
A[i] = B[1];

Solution: Add vector mask (or flag) registers
— vector version of predicate registers, 1 bit per element

...and maskable vector instructions
— vector operation becomes NOP at elements where mask bit is clear

Code example:

CVM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, FO # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

Simple Implementation

— execute all N operations, turn off
result writeback according to mask

M[7]=1
M[6]=0
M[5]=1
M[4]=1
M[3]=0

M[2]=0
M[1]=1

M[0]=0

Masked Vector Instructions

A7l B[]
A[6] B[6]
A[5] B[5]
Al4] Bl4]
A[3] B[3]
vov
e
ci

C[0]

Write Enable Write data port

Density-Time Implementation
— scan mask vector and only execute

elements with non-zero masks

M[7]=1
M[6]=0 T A[7] B[7]

M[5]=1 { {
MMF{\\\\‘]
|\/|[3]=()\A C[5] /
M[2]=0 1 C[4] /¢
M[1]=1 | =
M[0]=0 \. -

Write data port

Compress/Expand Operations

« Compress packs non-masked elements from one
vector register contiguously at start of destination
vector register

— population count of mask vector gives packed vector length
 Expand performs inverse operation

M[7]=1 —> A[7]
M[6]=0 | A[6]
M[5]=1 > A[5]

A[5] <« M[5]=1
M[4]=1 > A[4] A[4] |« M[4]=1
M[3]=0 A[3] B[3] M[3]=0
M[2]=0 A[2] A[5] B[2] | M[2]=0
M[1]=1 > A[1] A[4] AM] |« M[1]=1
M[0]=0 A[0] I A[1] — B[0] M[0]=0

Compress Expand

A[7] < M[7]=1
B[6] M[6]=0

Used for density-time conditionals and also for general
selection operations

Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)

sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary
tree to perform reduction

Rearrange as:

sum[0:VL-1] = 0 # Vector of VL partial sums

for (i=0; i<N; i+=VL) # Stripmine VL-sized chunks
sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

Now have VL partial sums in one vector register

do {
VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

A Modern Vector Super: NEC SX-6 (2003)

« CMOS Technology
— 500 MHz CPU, fits on single chip
— SDRAM main memory (up to 64GB)

 Scalar unit

— 4-way superscalar with out-of-order and speculative
execution

— 64KB I-cache and 64KB data cache

 Vector unit

— 8 foreground VRegs + 64 background VRegs (256x64-bit
elements/VReg)

— 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit,
1 mask unit

— 8 lanes (8 GFLOPS peak, 16 FLOPS/cycle)
— 1 load & store unit (32x8 byte accesses/cycle)
— 32 GB/s memory bandwidth per processor

 SMP structure
— 8 CPUs connected to memory through crossbar

— 256 GB/s shared memory bandwidth (4096 interleaved
banks)

Multimedia Extensions

Very short vectors added to existing ISAs for micros
Usually 64-bit registers split into 2x32b or 4x16b or 8x8b
Newer designs have 128-bit registers (Altivec, SSE2)

Limited instruction set:
— no vector length control
— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary
Limited vector register length:
— requires superscalar dispatch to keep multiply/add/load units busy
— loop unrolling to hide latencies increases register pressure

Trend towards fuller vector support in microprocessors

